

Python Deep Learning
Second Edition

Exploring deep learning techniques and neural network
architectures with PyTorch, Keras, and TensorFlow

Ivan Vasilev
Daniel Slater
Gianmario Spacagna
Peter Roelants
Valentino Zocca

BIRMINGHAM - MUMBAI

Python Deep Learning
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Yogesh Deokar
Content Development Editor: Nathanya Dias
Technical Editor: Kushal Shingote
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Priyanka Dhadke

First published: October 2016
Second edition: January 2019

Production reference: 1110119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-846-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packtpub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packtpub.com
http://www.packtpub.com

Contributors

About the authors
Ivan Vasilev started working on the first open source Java Deep Learning library with GPU
support in 2013. The library was acquired by a German company, where he continued its
development. He has also worked as machine learning engineer and researcher in the area
of medical image classification and segmentation with deep neural networks. Since 2017 he
has focused on financial machine learning. He is working on a Python open source
algorithmic trading library, which provides the infrastructure to experiment with different
ML algorithms. The author holds an MSc degree in Artificial Intelligence from The
University of Sofia, St. Kliment Ohridski.

Daniel Slater started programming at age 11, developing mods for the id Software game
Quake. His obsession led him to become a developer working in the gaming industry on
the hit computer game series Championship Manager. He then moved into finance,
working on risk- and high-performance messaging systems. He now is a staff engineer
working on big data at Skimlinks to understand online user behavior. He spends his spare
time training AI to beat computer games. He talks at tech conferences about deep learning
and reinforcement learning; his blog can be found at www.danielslater.net. His work in
this field has been cited by Google.

Gianmario Spacagna is a senior data scientist at Pirelli, processing sensors and telemetry
data for internet of things (IoT) and connected-vehicle applications. He works closely with
tire mechanics, engineers, and business units to analyze and formulate hybrid, physics-
driven, and data-driven automotive models. His main expertise is in building ML systems
and end-to-end solutions for data products. He holds a master's degree in telematics from
the Polytechnic of Turin, as well as one in software engineering of distributed systems from
KTH, Stockholm. Prior to Pirelli, he worked in retail and business banking (Barclays), cyber
security (Cisco), predictive marketing (AgilOne), and did some occasional freelancing.

Peter Roelants holds a master's in computer science with a specialization in AI from KU
Leuven. He works on applying deep learning to a variety of problems, such as spectral
imaging, speech recognition, text understanding, and document information extraction. He
currently works at Onfido as a team leader for the data extraction research team, focusing
on data extraction from official documents.

Valentino Zocca has a PhD degree and graduated with a Laurea in mathematics from the
University of Maryland, USA, and University of Rome, respectively, and spent a semester
at the University of Warwick. He started working on high-tech projects of an advanced
stereo 3D Earth visualization software with head tracking at Autometric, a company later
bought by Boeing. There he developed many mathematical algorithms and predictive
models, and using Hadoop he automated several satellite-imagery visualization programs.
He has worked as an independent consultant at the U.S. Census Bureau, in the USA and in
Italy. Currently, Valentino lives in New York and works as an independent consultant to a
large financial company.

About the reviewer
Greg Walters, since 1972, has been involved with computers and computer programming.
Currently, he is extremely well versed in Visual Basic, Visual Basic .NET, Python, and SQL
using MySQL, SQLite, Microsoft SQL Server, and Oracle. He also has experience in C++,
Delphi, Modula-2, Pascal, C, 80x86 Assembler, COBOL, and Fortran.

He is a programming trainer and has trained numerous people in the use of various
computer software packages, such as MySQL, Open Database Connectivity, Quattro Pro,
Corel Draw!, Paradox, Microsoft Word, Excel, DOS, Windows 3.11, Windows for
Workgroups, Windows 95, Windows NT, Windows 2000, Windows XP, and Linux.

He is currently retired and in his spare time, he is a musician, loves to cook, and lives in
central Texas.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Machine Learning - an Introduction 6
Introduction to machine learning 7
Different machine learning approaches 8

Supervised learning 8
Linear and logistic regression 10
Support vector machines 12
Decision Trees 13
Naive Bayes 15

Unsupervised learning 16
K-means 18

Reinforcement learning 19
Q-learning 21

Components of an ML solution 22
Neural networks 26

Introduction to PyTorch 29
Summary 33

Chapter 2: Neural Networks 34
The need for neural networks 35
An introduction to neural networks 36

An introduction to neurons 37
An introduction to layers 39
Multi-layer neural networks 41
Different types of activation function 43
Putting it all together with an example 45

Training neural networks 48
Linear regression 49
Logistic regression 52
Backpropagation 55
Code example of a neural network for the XOR function 59

Summary 67

Chapter 3: Deep Learning Fundamentals 68
Introduction to deep learning 69
Fundamental deep learning concepts 70

Feature learning 71
Deep learning algorithms 73

Deep networks 73
A brief history of contemporary deep learning 74

Table of Contents

[ii]

Training deep networks 75
Applications of deep learning 77
The reasons for deep learning's popularity 80
Introducing popular open source libraries 81

TensorFlow 83
Keras 84
PyTorch 84
Using Keras to classify handwritten digits 85
Using Keras to classify images of objects 89

Summary 92

Chapter 4: Computer Vision with Convolutional Networks 93
Intuition and justification for CNN 94
Convolutional layers 95

A coding example of convolution operation 100
Stride and padding in convolutional layers 102

1D, 2D, and 3D convolutions 105
1x1 convolutions 106
Backpropagation in convolutional layers 106
Convolutional layers in deep learning libraries 107

Pooling layers 108
The structure of a convolutional network 110

Classifying handwritten digits with a convolutional network 111
Improving the performance of CNNs 114

Data pre-processing 114
Regularization 115
Weight decay 115
Dropout 116
Data augmentation 116
Batch normalization 117

A CNN example with Keras and CIFAR-10 118
Summary 121

Chapter 5: Advanced Computer Vision 122
Transfer learning 122

Transfer learning example with PyTorch 124
Advanced network architectures 129

VGG 130
VGG with Keras, PyTorch, and TensorFlow 132

Residual networks 133
Inception networks 135

Inception v1 136
Inception v2 and v3 138
Inception v4 and Inception-ResNet 140
Xception and MobileNets 141

DenseNets 143

Table of Contents

[iii]

Capsule networks 144
Limitations of convolutional networks 144
Capsules 146

Dynamic routing 148
Structure of the capsule network 150

Advanced computer vision tasks 151
Object detection 151

Approaches to object detection 153
Object detection with YOLOv3 154
A code example of YOLOv3 with OpenCV 158

Semantic segmentation 162
Artistic style transfer 163
Summary 165

Chapter 6: Generating Images with GANs and VAEs 166
Intuition and justification of generative models 167
Variational autoencoders 168

Generating new MNIST digits with VAE 173
Generative Adversarial networks 180

Training GANs 181
Training the discriminator 183
Training the generator 184
Putting it all together 186

Types of GANs 187
DCGAN 187

The generator in DCGAN 188
Conditional GANs 190

Generating new MNIST images with GANs and Keras 191
Summary 196

Chapter 7: Recurrent Neural Networks and Language Models 197
Recurrent neural networks 198

RNN implementation and training 201
Backpropagation through time 203
Vanishing and exploding gradients 207

Long short-term memory 209
Gated recurrent units 212

Language modeling 214
Word-based models 214

N-grams 214
Neural language models 216

Neural probabilistic language model 217
word2vec 218
Visualizing word embedding vectors 220

Character-based models for generating new text 221
Preprocessing and reading data 222
LSTM network 223
Training 226

Table of Contents

[iv]

Sampling 227
Example training 228

Sequence to sequence learning 229
Sequence to sequence with attention 231

Speech recognition 233
Speech recognition pipeline 233
Speech as input data 235
Preprocessing 235
Acoustic model 237

Recurrent neural networks 237
CTC 238

Decoding 239
End-to-end models 240

Summary 240

Chapter 8: Reinforcement Learning Theory 241
RL paradigms 242

Differences between RL and other ML approaches 244
Types of RL algorithms 244

Types of RL agents 245
RL as a Markov decision process 245

Bellman equations 249
Optimal policies and value functions 253

Finding optimal policies with Dynamic Programming 254
Policy evaluation 254

Policy evaluation example 255
Policy improvements 258
Policy and value iterations 259

Monte Carlo methods 261
Policy evaluation 261
Exploring starts policy improvement 262
Epsilon-greedy policy improvement 264

Temporal difference methods 265
Policy evaluation 265
Control with Sarsa 267
Control with Q-learning 268
Double Q-learning 270

Value function approximations 271
Value approximation for Sarsa and Q-learning 274

Improving the performance of Q-learning 274
Fixed target Q-network 275

Experience replay 276
Q-learning in action 276
Summary 284

Chapter 9: Deep Reinforcement Learning for Games 285

Table of Contents

[v]

Introduction to genetic algorithms playing games 285
Deep Q-learning 287

Playing Atari Breakout with Deep Q-learning 287
Policy gradient methods 304

Monte Carlo policy gradients with REINFORCE 306
Policy gradients with actor–critic 308

Actor-Critic with advantage 311
Playing cart pole with A2C 313

Model-based methods 321
Monte Carlo Tree Search 322
Playing board games with AlphaZero 324

Summary 326

Chapter 10: Deep Learning in Autonomous Vehicles 327
Brief history of AV research 328
AV introduction 330

Components of an AV system 332
Sensors 332

Deep learning and sensors 334
Vehicle localization 334
Planning 334

Imitiation driving policy 335
Behavioral cloning with PyTorch 337

Driving policy with ChauffeurNet 347
Model inputs and outputs 347
Model architecture 350
Training 351

DL in the Cloud 354
Summary 357

Other Books You May Enjoy 358

Index 361

Preface
With the surge in artificial intelligence in applications catering to both business and
consumer needs, deep learning is more important than ever for meeting current and future
market demands. With this book, you’ll explore deep learning, and learn how to put
machine learning to use in your projects.

This second edition of Python Deep Learning will get you up to speed with deep learning,
deep neural networks, and how to train them with high-performance algorithms and
popular Python frameworks. You’ll uncover different neural network architectures, such as
convolutional networks, recurrent neural networks, long short-term memory (LSTM)
networks, and capsule networks. You’ll also learn how to solve problems in the fields of
computer vision, natural language processing (NLP), and speech recognition. You'll study
generative model approaches such as variational autoencoders and Generative Adversarial
Networks (GANs) to generate images. As you delve into newly evolved areas of
reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are
the main components behind popular game Go, Atari, and Dota.

By the end of the book, you will be well-versed with the theory of deep learning along with
its real-world applications.

Who this book is for
This book is for data science practitioners, machine learning engineers, and those interested
in deep learning who have a basic foundation in machine learning and some Python
programming experience. A background in mathematics and conceptual understanding of
calculus and statistics will help you gain maximum benefit from this book.

What this book covers
Chapter 1, Machine Learning – an Introduction, will introduce you to the basic ML concepts
and terms that we'll be using throughout the book. It will give an overview of the most
popular ML algorithms and applications today. It will also introduce the DL library that
we'll use throughout the book.

Preface

[2]

Chapter 2, Neural Networks, will introduce you to the mathematics of neural networks.
We'll learn about their structure, how they make predictions (that's the feedforward part),
and how to train them using gradient descent and backpropagation (explained through
derivatives). The chapter will also discuss how to represent operations with neural
networks as vector operations.

Chapter 3, Deep Learning Fundamentals, will explain the rationale behind using deep neural
networks (as opposed to shallow ones). It will take an overview of the most popular DL
libraries and real-world applications of DL.

Chapter 4, Computer Vision with Convolutional Networks, teaches you about convolutional
neural networks (the most popular type of neural network for computer vision tasks). We'll
learn about their architecture and building blocks (the convolutional, pooling, and capsule
layers) and how to use a convolutional network for an image classification task.

Chapter 5, Advanced Computer Vision, will build on the previous chapter and cover more
advanced computer vision topics. You will learn not only how to classify images, but also
how to detect an object's location and segment every pixel of an image. We'll learn about
advanced convolutional network architectures and the useful practical technique of transfer
learning.

Chapter 6, Generating Images with GANs and VAEs, will introduce generative models (as
opposed to discriminative models, which is what we'll have covered up until this point).
You will learn about two of the most popular unsupervised generative model approaches,
VAEs and GANs, as well some of their exciting applications.

Chapter 7, Recurrent Neural Networks and Language Models, will introduce you to the most
popular recurrent network architectures: LSTM and gated recurrent unit (GRU). We'll
learn about the paradigms of NLP with recurrent neural networks and the latest algorithms
and architectures to solve NLP problems. We'll also learn the basics of speech-to-text
recognition.

Chapter 8, Reinforcement Learning Theory, will introduce you to the main paradigms and
terms of RL, a separate ML field. You will learn about the most important RL
algorithms. We'll also learn about the link between DL and RL. Throughout the chapter, we
will use toy examples to better demonstrate the concepts of RL.

Chapter 9, Deep Reinforcement Learning for Games, you will understand some real-world
applications of RL algorithms, such as playing board games and computer games. We'll
learn how to combine the knowledge from the previous parts of the book to create better-
than-human computer players on some popular games.

Preface

[3]

Chapter 10, Deep Learning in Autonomous vehicles, we'll discuss what sensors autonomous
vehicles use, so they can create the 3D model of the environment. These include cameras,
radar sensors, ultrasound sensors, Lidar, as well as accurate GPS positioning. We'll talk
about how to apply deep learning algorithms for processing the input of these sensors. For
example, we can use instance segmentation and object detection to detect pedestrians and
vehicles using the vehicle cameras. We'll also make an overview of some of the approaches
vehicle manufacturers use to solve this problem (for example Audi, Tesla, and so on).

To get the most out of this book
To get the most out of this book, you should be familiar with Python. You'd benefit from
some basic knowledge of calculus and statistics. The code examples are best run on a Linux
machine with an NVIDIA GPU capable of running PyTorch, TensorFlow, and Keras.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Python-Deep-Learning-Second-Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Python-Deep-Learning-Second-Edition
https://github.com/PacktPublishing/Python-Deep-Learning-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781789348460_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We can parameterize this house with a five-dimensional vector, x = (100, 25,
3, 2, 7)."

A block of code is set as follows:

import torch

torch.manual_seed(1234)

hidden_units = 5

net = torch.nn.Sequential(
 torch.nn.Linear(4, hidden_units),
 torch.nn.ReLU(),
 torch.nn.Linear(hidden_units, 3)
)

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348460_ColorImages.pdf

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Machine Learning - an

Introduction
"Machine Learning (CS229) is the most popular course at Stanford. Why? Because,
increasingly, machine learning is eating the world." - Laura Hamilton, Forbes

Machine learning(ML) techniques are being applied in a variety of fields, and data
scientists are being sought after in many different industries. With machine learning, we
identify the processes through which we gain knowledge that is not readily apparent from
data in order to make decisions. Applications of machine learning techniques may vary
greatly, and are found in disciplines as diverse as medicine, finance, and advertising.

In this chapter, we'll present different machine learning approaches, techniques, some of
their applications to real-world problems, and we'll also introduce one of the major open
source packages available in Python for machine learning, PyTorch. This will lay the
foundation for the later chapters in which we'll focus on a particular type of machine
learning approach using neural networks, which will aim to emulate brain functionality. In
particular, we will focus on deep learning. Deep learning makes use of more advanced
neural networks than those used during the 1980s. This is not only a result of recent
developments in the theory, but also advancements in computer hardware. This chapter
will summarize what machine learning is and what it can do, preparing the reader to better
understand how deep learning differentiates itself from popular traditional machine
learning techniques.

This chapter will cover the following topics:

Introduction to machine learning
Different machine learning approaches
Neural networks
Introduction to PyTorch

https://pytorch.org/

Machine Learning - an Introduction Chapter 1

[7]

Introduction to machine learning
Machine learning is often associated with terms such as big data and artificial
intelligence (AI). However, both are quite different to machine learning. In order to
understand what machine learning is and why it's useful, it's important to understand what
big data is and how machine learning applies to it.

Big data is a term used to describe huge datasets that are created as the result of large
increases in data that is gathered and stored. For example, this may be through cameras,
sensors, or internet social sites.

It's estimated that Google alone processes over 20 petabytes of
information per day, and this number is only going to increase. IBM
estimated that every day, 2.5 quintillion bytes of data is created, and that
90% of all the data in the world has been created in the last two years
(https:/ ​/​www. ​ibm. ​com/ ​blogs/ ​insights- ​on- ​business/ ​consumer-
products/ ​2- ​5- ​quintillion- ​bytes- ​of-​data- ​created- ​every- ​day- ​how-
does- ​cpg- ​retail- ​manage- ​it/ ​).

Clearly, humans alone are unable to grasp, let alone analyze, such huge amounts of data,
and machine learning techniques are used to make sense of these very large datasets.
Machine learning is the tool used for large-scale data processing. It is well-suited to
complex datasets that have huge numbers of variables and features. One of the strengths of
many machine learning techniques, and deep learning in particular, is that they perform
best when used on large datasets, thus improving their analytic and predictive power. In
other words, machine learning techniques, and deep learning neural networks in
particular, learn best when they can access large datasets where they can discover patterns
and regularities hidden in the data.

On the other hand, machine learning's predictive ability can be successfully adapted to
artificial intelligence systems. Machine learning can be thought of as the brain of an AI
system. AI can be defined (though this definition may not be unique) as a system that can
interact with its environment. Also, AI machines are endowed with sensors that enable
them to know the environment they are in, and tools with which they can relate back to the
environment. Machine learning is therefore the brain that allows the machine to analyze the
data ingested through its sensors to formulate an appropriate answer. A simple example is
Siri on an iPhone. Siri hears the command through its microphone and outputs an answer
through its speakers or its display, but to do so, it needs to understand what it's being told.
Similarly, driverless cars will be equipped with cameras, GPS systems, sonars, and LiDAR,
but all this information needs to be processed in order to provide a correct answer. This
may include whether to accelerate, brake, or turn. Machine learning is the information-
processing method that leads to the answer.

https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/

Machine Learning - an Introduction Chapter 1

[8]

We explained what machine learning is, but what about deep learning (DL)? For now, let's
just say that deep learning is a subfield of machine learning. DL methods share some
special common features. The most popular representatives of such methods are deep
neural networks.

Different machine learning approaches
As we have seen, the term machine learning is used in a very general way, and refers to the
general techniques used to extrapolate patterns from large sets, or it is the ability to make
predictions on new data based on what is learned by analyzing available known data.
Machine learning techniques can roughly be divided in two large classes, while one more
class is often added. Here are the classes:

Supervised learning
Unsupervised learning
Reinforcement learning

Supervised learning
Supervised learning algorithms are a class of machine learning algorithms that
use previously-labeled data to learn its features, so they can classify similar but unlabeled
data. Let's use an example to understand this concept better.

Let's assume that a user receives a large amount of emails every day, some of which are
important business emails and some of which are unsolicited junk emails, also known as
spam. A supervised machine algorithm will be presented with a large body of emails that
have already been labeled by a teacher as spam or not spam (this is called training data).
For each sample, the machine will try to predict whether the email is spam or not, and it
will compare the prediction with the original target label. If the prediction differs from the
target, the machine will adjust its internal parameters in such a way that the next time it
encounters this sample it will classify it correctly. Conversely, if the prediction was correct,
the parameters will stay the same. The more training data we feed to the algorithm, the
better it becomes (this rule has caveats, as we'll see next).

In the example we used, the emails had only two classes (spam or not spam), but the same
principles apply for tasks with arbitrary numbers of classes. For example, we could train
the software on a set of labeled emails where the classes
are Personal, Business/Work, Social, or Spam.

Machine Learning - an Introduction Chapter 1

[9]

In fact, Gmail, the free email service by Google, allows the user to select up to five
categories, which are labeled as the following:

Primary: Includes person-to-person conversations
Social: Includes messages from social networks and media-sharing sites
Promotions: Includes marketing emails, offers, and discounts
Updates: Includes bills, bank statements, and receipts
Forums: Includes messages from online groups and mailing lists

In some cases, the outcome may not necessarily be discrete, and we may not have a finite
number of classes to classify our data into. For example, we may try to predict the life
expectancy of a group of people based on their predetermined health parameters. In this
case, the outcome is a continuous function, that is, the number years the person is expected
to live, and we don't talk about classification but rather regression.

One way to think of supervised learning is to imagine we are building a function, f, defined
over a dataset, which comprises information organized by features. In the case of email
classification, the features can be specific words that may appear more frequently than
others in spam emails. The use of explicit sex-related words will most likely identify a spam
email rather than a business/work email. On the contrary, words such as meeting, business,
or presentation are more likely to describe a work email. If we have access to metadata, we
may also use the sender's information as a feature. Each email will then have an associated
set of features, and each feature will have a value (in this case, how many times the specific
word is present in the email body). The machine learning algorithm will then seek to map
those values to a discrete range that represents the set of classes, or a real value in the case
of regression. The definition of the f function is as follows:

In later chapters, we'll see several examples of either classification or regression problems.
One such problem we'll discuss is the classification of handwritten digits (the famous
Modified National Institute of Standards and Technology, or MNIST, database). When given
a set of images representing 0 to 9, the machine learning algorithm will try to classify each
image in one of the 10 classes, wherein each class corresponds to one of the 10 digits. Each
image is 28x28 (= 784) pixels in size. If we think of each pixel as one feature, then the
algorithm will use a 784-dimensional feature space to classify the digits.

http://yann.lecun.com/exdb/mnist/

Machine Learning - an Introduction Chapter 1

[10]

The following screenshot depicts the handwritten digits from the MNIST dataset:

Example of handwritten digits from the MNIST dataset

In the next sections, we'll talk about some of the most popular classical supervised
algorithms. The following is by no means an exhaustive list or a thorough description of
each machine learning method. We can refer to the book Python Machine
Learning by Sebastian
Raschka (https://www.packtpub.com/big-data-and-business-intelligence/python-mach
ine-learning). It's a simple review meant to provide the reader with a flavor of the
different techniques. Also, at the end of this chapter in the Neural networks section, we'll
introduce neural networks and we'll talk about how deep learning differs from the classical
machine learning techniques.

Linear and logistic regression
Regression algorithms are a type of supervised algorithm that uses features of the input
data to predict a value, such as the cost of a house, given certain features, such as size, age,
number of bathrooms, number of floors, and location. Regression analysis tries to find the
value of the parameters for the function that best fits an input dataset.

In a linear-regression algorithm, the goal is to minimize a cost function by finding
appropriate parameters for the function, over the input data that best approximates the
target values. A cost function is a function of the error, that is, how far we are from getting
a correct result. A popular cost function is the mean square error (MSE), where we take the
square of the difference between the expected value and the predicted result. The sum over
all the input examples gives us the error of the algorithm and represents the cost function.

Say we have a 100-square-meter house that was built 25 years ago with 3 bathrooms and 2
floors. Let's also assume that the city is divided into 10 different neighborhoods, which
we'll denote with integers from 1 to 10, and say this house is located in the area denoted by
7. We can parameterize this house with a five-dimensional vector, x = (100, 25, 3, 2,
7). Say that we also know that this house has an estimated value of €100,000. What we
want is to create a function, f, such that f(x) = 100000.

https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning
https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning

Machine Learning - an Introduction Chapter 1

[11]

In linear regression, this means finding a vector of weights, w= (w1, w2, w3, w4,
w5), such that the dot product of the vectors, x • w = 10000, would be 100*w1 + 25*w2
+ 3*w3 + 2*w4 + 7*w5 = 100000 or . If we had 1,000 houses, we could repeat
the same process for every house, and ideally we would like to find a single vector, w, that
can predict the correct value that is close enough for every house. The most common way
to train a linear regression model can be seen in the following pseudocode block:

Initialize the vector w with some random values
repeat:
 E = 0 # initialize the cost function E with 0
 for every sample/target pair (xi, ti) of the training set:

 E += # here ti is the real cost of the house
 MSE = E / total_number_of_samples # Mean Square Error
 use gradient descent to update the weights w based on MSE
 until MSE falls below threshold

First, we iterate over the training data to compute the cost function, MSE. Once we know
the value of MSE, we'll use the gradient-descent algorithm to update w. To do this, we'll
calculate the derivatives of the cost function with respect to each weight, wi . In this way,
we'll know how the cost function changes (increase or decrease) with respect to wi . Then
we'll update its value accordingly. In Chapter 2, Neural Networks, we will see that training
neural networks and linear/logistic regressions have a lot in common.

We demonstrated how to solve a regression problem with linear regression. Let's take
another task: trying to determine whether a house is overvalued or undervalued. In this
case, the target data would be categorical [1, 0] - 1 for overvalued, 0 for undervalued, if
the price of the house will be an input parameter instead of target value as before. To solve
the task, we'll use logistic regression. This is similar to linear regression but with one
difference: in linear regression, the output is . However, here the output will be a
special logistic function (https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Logistic_ ​function), .
This will squash the value of in the (0:1) interval. You can think of the logistic
function as a probability, and the closer the result is to 1, the more chance there is that the
house is overvalued, and vice versa. Training is the same as with linear regression, but the
output of the function is in the (0:1) interval and the labels is either 0 or 1.

Logistic regression is not a classification algorithm, but we can turn it into one. We just
have to introduce a rule that determines the class based on the logistic function output. For
example, we can say that a house is overvalued if the value of and
undervalued otherwise.

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function

Machine Learning - an Introduction Chapter 1

[12]

Support vector machines
A support vector machine (SVM) is a supervised machine learning algorithm that is
mainly used for classification. It is the most popular member of the kernel method class of
algorithms. An SVM tries to find a hyperplane, which separates the samples in the dataset.

A hyperplane is a plane in a high-dimensional space. For example, a
hyperplane in a one-dimensional space is a point, and in a two-
dimensional space, it would just be a line. We can think of classification as
a process of trying to find a hyperplane that will separate different groups
of data points. Once we have defined our features, every sample (in our
case, an email) in the dataset can be thought of as a point in the
multidimensional space of features. One dimension of that space
represents all the possible values of one feature. The coordinates of a point
(a sample) are the specific values of each feature for that sample. The ML
algorithm task will be to draw a hyperplane to separate points with
different classes. In our case, the hyperplane would separate spam from
non-spam emails.

In the following diagram, on the top and bottom, you can see two classes of points (red and
blue) that are in a two-dimensional feature space (the x and y axes). If both
the x and y values of a point are below five, then the point is blue. In all other cases, the
point is red. In this case, the classes are linearly-separable, meaning we can separate them
with a hyperplane. Conversely, the classes in the image at the bottom are linearly-
inseparable:

The SVM tries to find a hyperplane that maximizes the distance between itself and the
points. In other words, from all possible hyperplanes that can separate the samples, the
SVM finds the one that has the maximum distance from all points. In addition, SVMs can
also deal with data that is not linearly-separable. There are two methods for this:
introducing soft margins or using the kernel trick.

Machine Learning - an Introduction Chapter 1

[13]

Soft margins work by allowing a few misclassified elements while retaining the most
predictive ability of the algorithm. In practice, it's better not to overfit the machine learning
model, and we could do so by relaxing some of the support-vector-machine hypotheses.

The kernel trick solves the same problem in a different way. Imagine that we have a two-
dimensional feature space, but the classes are linearly-inseparable. The kernel trick uses
a kernel function that transforms the data by adding more dimensions to it. In our case,
after the transformation, the data will be three-dimensional. The linearly-inseparable
classes in the two-dimensional space will become linearly-separable in the three dimensions
and our problem is solved:

In the graph on the left image, we can see a non-linearly-separable set before the kernel was applied and on the bottom. On the right, we can see the same dataset after the kernel
has been applied, and the data can be linearly separated

Decision Trees
Another popular supervised algorithm is the decision tree. A decision tree creates a
classifier in the form of a tree. This is composed of decision nodes, where tests on specific
attributes are performed; and leaf nodes, which indicate the value of the target attribute. To
classify a new sample, we start at the root of the tree and navigate down the nodes until we
reach a leaf.

A classic application of this algorithm is the Iris flower dataset
(http://archive.ics.uci.edu/ml/datasets/Iris), which contains data from 50 samples
of three types of Irises (Iris Setosa, Iris Virginica, and Iris Versicolor). Ronald Fisher, who
created the dataset, measured four different features of these flowers:

The length of their sepals
The width of their sepals
The length of their petals
The width of their petals

http://archive.ics.uci.edu/ml/datasets/Iris

Machine Learning - an Introduction Chapter 1

[14]

Based on the different combinations of these features, it's possible to create a decision tree
to decide which species each flower belongs to. In the following diagram, we have defined
a decision tree that will correctly classify almost all the flowers using only two of these
features, the petal length and width:

To classify a new sample, we start at the root note of the tree (petal length). If the sample
satisfies the condition, we go left to the leaf, representing the Iris Setosa class. If not, we go
right to a new node (petal width). This process continues until we reach a leaf. There are
different ways to build decision trees, and we will discuss them later, in the chapter.

In recent years, decision trees have seen two major improvements. The first is Random
Forests, which is an ensemble method that combines the predictions of multiple trees. The
second is Gradient-Boosting Machines, which creates multiple sequential decision trees,
where each tree tries to improve the errors made by the previous tree. Thanks to these
improvements, decision trees have become very popular when working with certain types
of data. For example, they are one of the most popular algorithms used in Kaggle
competitions.

Machine Learning - an Introduction Chapter 1

[15]

Naive Bayes
Naive Bayes is different from many other machine learning algorithms. Most machine
learning techniques try to evaluate the probability of a certain event, Y , and given
conditions, X, which we denote with . For example, when we are given a picture that
represents digits (that is, a picture with a certain distribution of pixels), what is the
probability that the number is five? If the pixel's distribution is close to the pixel
distribution of other examples that were labeled as five, the probability of that event will be
high. If not, the probability will be low.

Sometimes we have the opposite information, given the fact that we know that we have an
event, Y. We also know the probability, that our sample is X. The Bayes theorem states that

, where means the probability of event, X, given Y, which is
also why naive Bayes is called a generative approach. For example, we may calculate the
probability that a certain pixel configuration represents the number five, knowing what the
probability is. Given that we have a five, that a random pixel configuration may match the
given one.

This is best understood in the realm of medical testing. Let's say we conduct a test for a
specific disease or cancer. Here, we want to know the probability of a patient having a
particular disease, given that our test result was positive. Most tests have a reliability value,
which is the percentage chance of the test being positive when administered on people with
a particular disease. By reversing the expression, we get the
following:

p(cancer | test=positive) = p(test=positive | cancer) * p(cancer) /
p(test=positive)

Let's assume that the test is 98% reliable. This means that if the test is positive, it will also be
positive in 98% of cases. Conversely, if the person does not have cancer, the test result will
be negative. Let's make some assumptions on this kind of cancer:

This particular kind of cancer only affects older people
Only 2% of people under 50 have this kind of cancer
The test administered on people under 50 is positive only for 3.9% of the
population (we could have derived this fact from the data, but we provide this
information for the purpose of simplicity)

Machine Learning - an Introduction Chapter 1

[16]

We can ask the following question: if a test is 98% accurate for cancer and if a 45-year-old
person took the test, which turned out to be positive, what is the probability that they may
have cancer? Using the preceding formula, we can calculate the following:

p(cancer | test=positive) = 0.98 * 0.02 / 0.039 = 0.50

We call this classifier naive because it assumes the independence of different events to
calculate their probability. For example, if the person had two tests instead of one, the
classifier will assume that the outcome of test 2 did not know about the outcome of test 1,
and the two tests were independent from one another. This means that taking test 1 could
not change the outcome of test 2, and therefore its result was not biased by the first test.

Unsupervised learning
The second class of machine learning algorithms is unsupervised learning. Here, we don't
label the data beforehand, but instead we let the algorithm come to its conclusion. One of
the most common, and perhaps simplest, examples of unsupervised learning is clustering.
This is a technique that attempts to separate the data into subsets.

To illustrate this, let's view the spam-or-not-spam email classification as an unsupervised
learning problem. In the supervised case, for each email, we had a set of features and a
label (spam or not spam). Here, we'll use the same set of features, but the emails will not be
labeled. Instead, we'll ask the algorithm, when given the set of features, to put each sample
in one of two separate groups (or clusters). Then the algorithm will try to combine the
samples in such a way that the intraclass similarity (which is the similarity between
samples in the same cluster) is high and the similarity between different clusters is low.
Different clustering algorithms use different metrics to measure similarity. For some more
advanced algorithms, you don't have to specify the number of clusters.

In the following graph, we show how a set of points can be classified to form three subsets:

Machine Learning - an Introduction Chapter 1

[17]

Deep learning also uses unsupervised techniques, albeit different than clustering. In natural
language processing (NLP), we use unsupervised (or semi-supervised, depending on who
you ask) algorithms for vector representations of words. The most popular way to do this is
called word2vec. For each word, we use its surrounding words (or its context) in the text
and feed them to a simple neural network. The network produces a numerical vector,
which contains a lot of information for the word (derived by the context). We then use these
vectors instead of the words for various NLP tasks, such as sentiment analysis or machine
translation. We’ll describe word2vec in Chapter 7, Recurrent Neural Networks and Language
Models.

Another interesting application of unsupervised learning is in generative models, as
opposed to discriminative models. We will train a generative model with a large amount of
data of a certain domain, such as images or text, and the model will try to generate new
data similar to the one we used for training. For example, a generative model can colorize
black and white images, change facial expressions in images, or even synthesize images
based on a text description. In Chapter 6, Generating Images with GANs and Variational
Autoencoders, we'll look at two of the most popular generative techniques, Variational
Autoencoders and Generative Adversarial Networks (GANs).

The following depicts the techniques:

Machine Learning - an Introduction Chapter 1

[18]

In the preceding image, you can see how the authors of StackGAN: Text to Photo-
realistic Image Synthesis with Stacked Generative Adversarial Networks, Han
Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and
Dimitris Metaxas, use a combination of supervised learning and unsupervised GANs to
produce photo-realistic images based on text descriptions.

K-means
K-means is a clustering algorithm that groups the elements of a dataset into k distinct
clusters (hence the k in the name). Here is how it works:

Choose k random points, called centroids, from the feature space, which will1.
represent the center of each of the k clusters.
Assign each sample of the dataset (that is, each point in the feature space) to the2.
cluster with the closest centroid.
For each cluster, we recomputed new centroids by taking the mean values of all3.
the points in the cluster.
With the new centroids, we repeat steps 2 and 3 until the stopping criteria is met.4.

The preceding method is sensitive to the initial choice of random centroids and it may be a
good idea to repeat it with different initial choices. It's also possible for some centroids to
not be close to any of the points in the dataset, reducing the number of clusters down from
k. Finally, it's worth mentioning that if we used k-means with k=3 on the Iris dataset, we
may get different distributions of the samples compared to the distribution of the decision
tree that we'd introduced. Once more, this highlights how important it is to carefully
choose and use the correct machine learning method for each problem.

Now let's discuss a practical example that uses k-means clustering. Let's say a pizza-
delivery place wants to open four new franchises in a city, and they need to choose the
locations for the sites. We can solve this problem with k-means:

Find the locations where pizza is ordered from most often and these will be our1.
data points.
Choose four random points where the site locations will be located.2.

https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1612.03242

Machine Learning - an Introduction Chapter 1

[19]

By using k-means clustering, we can identify the four best locations that3.
minimize the distance to each delivery place:

In the left image, we can see the distribution of points where pizza is delivered most often. The round pints in the right image indicate where the new franchises should be located
and their corresponding delivery areas

Reinforcement learning
The third class of machine learning techniques is called reinforcement learning (RL). We
will illustrate this with one of the most popular applications of reinforcement learning:
teaching machines how to play games. The machine (or agent) interacts with the game
(or environment). The goal of the agent is to win the game. To do this, the agent
takes actions that can change the environment’s state. The environment provides the agent
with reward signals that help the agent to decide its next action. Winning the game would
provide the biggest reward. In formal terms, the goal of the agent is to maximize the total
rewards it receives throughout the game:

The interaction of different elements of a reinforcement learning system

Machine Learning - an Introduction Chapter 1

[20]

In reinforcement learning, the agent takes an action, which changes the state of the
environment. The agent uses the new state and the reward to determine its next action.

Let’s imagine a game of chess as an RL problem. The environment here would include the
chess board along with the locations of the pieces. The goal of our agent is to beat the
opponent. The agent will then receive a reward when they capture the opponent’s piece,
and they will win the biggest reward if they checkmate the opponent. Conversely, if the
opponent captures a piece or checkmates the agent, the reward will be negative. However,
as part of their larger strategies, the players will have to make moves that neither capture a
piece, nor checkmate the other’s king. The agent won’t receive any reward then. If this was
a supervised learning problem, we would have to provide a label or a reward for each
move. This is not the case with reinforcement learning. In this book, we’ll demonstrate how
to use RL to allow the agent to use its previous experience in order to take new actions and
learn from them in situations such as this.

Let’s take another example, in which sometimes we have to sacrifice a pawn to achieve a
more important goal (such as a better position on the chessboard). In such situations, our
humble agent has to be smart enough to take a short-term loss as a long-term gain. In an
even more extreme case, imagine we had the bad luck of playing against Magnus Carlsen,
the current world chess champion. Surely, the agent will lose in this case. However, how
would we know which moves were wrong and led to the agent's loss? Chess belongs to a
class of problems where the game should be considered in its entirety in order to reach a
successful solution, rather than just looking at the immediate consequences of each action.
Reinforcement learning will give us the framework that will help the agent to navigate and
learn in this complex environment.

An interesting problem arises from this newfound freedom to take actions. Imagine that the
agent has learned one successful chess-playing strategy (or policy, in RL terms). After some
games, the opponent might guess what that policy is and manage to beat us. The agent will
now face a dilemma with the following decisions: either to follow the current policy and
risk becoming predictable, or to experiment with new moves that will surprise the
opponent, but also carry the risk of turning out even worse. In general terms, the agent uses
a policy that gives them a certain reward, but their ultimate goal is to maximize the total
reward. A modified policy might be more rewarding and the agent will be ineffective if
they don’t try to find such a policy. One of the challenges of reinforcement learning is the
tradeoff between exploitation (following the current policy) and exploration (trying new
moves). In this book, we’ll learn the strategies to find the right balance between the two.
We’ll also learn how to combine deep neural networks with reinforcement learning, which
made the field so popular in recent years.

Machine Learning - an Introduction Chapter 1

[21]

So far, we’ve used only games as examples; however, many problems can fall into the RL
domain. For example, you can think of an autonomous vehicle driving as an RL problem.
The vehicle can get positive rewards if it stays within its lane and observes the traffic rules.
It will gain negative rewards if it crashes. Another interesting recent application of RL is in
managing stock portfolios. The goal of the agent would be to maximize the portfolio value.
The reward is directly derived from the value of the stocks in the portfolio.

Q-learning
Q-learning is an off-policy temporal-difference reinforcement learning algorithm. What a
mouthful! But fear not, let’s not worry about what all this means, and instead just see how
the algorithm works. To do this, we’ll use the game of chess we introduced in the previous
section. As a reminder, the board configuration (the locations of the pieces) is the current
state of the environment. Here, the agents can take actions, a, by moving pieces, thus
changing the state into a new one. We'll represent a game of chess as a graph where the
different board configurations are the graph’s vertices, and the possible moves from each
configuration are the edges. To make a move, the agent follows the edge from the current
state, s, to a new state, s'. The basic Q-learning algorithm uses Q-table to help the agent
decide which moves to make. The Q-table contains one row for each board configuration,
while the columns of the table are all possible actions that the agent can take (the moves). A
table cell, q(s, a), contains the cumulative expected reward, called Q-value. This is the
potential total reward that the agent will receive for the remainder of the game if they take
an action, a, from their current state, s. At the beginning, the Q-table is initialized with an
arbitrary value. With that knowledge, let’s see how Q-learning works:

Initialize the Q table with some arbitrary value
for each episode:
 Observe the initial state s
 for each step of the episode:
 Select new action a using a policy based on the Q-table
 Observe reward r and go to the new state s’
 Update q(s, a) in the Q table using the Bellman Equation
 until we reach a terminal state for the episode

An episode starts with a random initial state and finishes when we reach the terminal state.
In our case, one episode would be one full game of chess.

Machine Learning - an Introduction Chapter 1

[22]

The question that arises is this: how does the agent's policy determine what will be the next
action? To do so, the policy has to take into account the Q-values of all the possible actions
from the current state. The higher the Q-value, the more attractive the action is. However,
the policy will sometimes ignore the Q-table (exploitation of the existing knowledge) and
choose another random action to find higher potential rewards (exploration). In the
beginning, the agent will take random actions because the Q-table doesn’t contain much
information. As time progresses and the Q-table is gradually filled, the agent will become
more informed in interacting with the environment.

We update q(s, a) after each new action, by using Bellman equation. The Bellman equation
is beyond the scope of this introduction, but we’ll discuss it in detail in the later chapters.
For now, it's enough to know that the updated value, q(s, a), is based on the newly-received
reward, r , as well as the maximum possible Q-value, q*(s’, a’), of the new state, s'.

This example was intended to help you understand the basic workings of Q-learning, but
you might have noticed an issue with this. We store the combination of all possible board
configurations and moves in the Q-table. This would make the table huge and impossible to
fit in today’s computer memory. Fortunately, there is a solution for this: we can replace the
Q-table with a neural network, which will tell the agent what the optimal action is in each
state. In recent years, this development has allowed reinforcement learning algorithms to
achieve superhuman performance on tasks such as the game of Go, Dota 2, and Doom. In
this book, we’ll discuss how to apply Q-learning and other RL algorithms to some of these
tasks.

Components of an ML solution
So far, we've discussed three major classes of machine learning algorithms. However, to
solve an ML problem, we'll need a system in which the ML algorithm is only part of it. The
most important aspects of such a system are as follows:

Learner: This is algorithm is used with its learning philosophy. The choice of this
algorithm is determined by the problem we're trying to solve, since different
problems can be better suited for certain machine learning algorithms.
Training data: This is the raw dataset that we are interested in. This can be
labeled or unlabeled. It's important to have enough sample data for the learner to
understand the structure of the problem.

Machine Learning - an Introduction Chapter 1

[23]

Representation: This is how we express the data in terms of the chosen features,
so that we can feed it to the learner. For example, to classify handwritten images
of digits, we'll represent the image as an array of values, where each cell will
contain the color value of one pixel. A good choice of representation of the data is
important for achieving better results.
Goal: This represents the reason to learn from the data for the problem at hand.
This is strictly related to the target, and helps define how and what the learner
should use and what representation to use. For example, the goal may be to clean
our mailbox from unwanted emails, and this goal defines what the target of our
learner is. In this case, it is the detection of spam emails.
Target: This represents what is being learned as well as the final output. The
target can be a classification of unlabeled data, a representation of input data
according to hidden patterns or characteristics, a simulator for future predictions,
or a response to an outside stimulus or strategy (in the case of reinforcement
learning).

It can never be emphasized enough: any machine learning algorithm can only achieve an
approximation of the target and not a perfect numerical description. Machine learning
algorithms are not exact mathematical solutions to problems, they are just approximations.
In the previous paragraph, we defined learning as a function from the space of features (the
input) into a range of classes. We'll later see how certain machine learning algorithms, such
as neural networks, can approximate any function to any degree, in theory. This theorem is
called the Universal Approximation Theorem, but it does not imply that we can get a
precise solution to our problem. In addition, solutions to the problem can be better
achieved by better understanding the training data.

Typically, a problem that is solvable with classic machine learning techniques may require
a thorough understanding and processing of the training data before deployment. The
steps to solve an ML problem are as follows:

Data collection: This implies the gathering of as much data as possible. In the
case of supervised learning, this also includes correct labeling.
Data processing: This implies cleaning the data, such as removing redundant or
highly correlated features, or even filling missing data, and understanding the
features that define the training data.

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Machine Learning - an Introduction Chapter 1

[24]

Creation of the test case: Usually, the data can be divided into three sets:
Training set: We use this set to train the ML algorithm.
Validation set: We use this set to evaluate the accuracy of the
algorithm with unknown data during training. We'll train the
algorithm for some time on the training set and then we'll use the
validation set to check its performance. If we are not satisfied with
the result, we can tune the hyperparameters of the algorithm and
repeat the process again. The validation set can also help us to
determine when to stop the training. We'll learn more about this
later in this section.
Test set: When we finish tuning the algorithm with the training or
validation cycle, we'll use the test set only once for a final
evaluation. The test set is similar to the validation set in the sense
that the algorithm hasn't used it during training. However, when
we strive to improve the algorithm on the validation data, we may
inadvertently introduce bias, which can skew the results in favor of
the validation set and not reflect the actual performance. Because
we use the test only once, this will provide a more objective
measurement of the algorithm.

One of the reasons for the success of deep learning algorithms is that they
usually require less data processing than classic methods. For a classic
algorithm, you would have to apply different data processing and extract
different features for each problem. With DL, you can apply the same data
processing pipeline for most tasks. With DL, you can be more productive
and you don't need as much domain knowledge for the task at hand
compared to the classic ML algorithms.

There are many valid reasons to create testing and validation datasets. As mentioned,
machine learning techniques can only produce an approximation of the desired result.
Often, we can only include a finite and limited number of variables, and there may be many
variables that are outside of our control. If we only used a single dataset, our model may
end up memorizing the data, and producing an extremely high accuracy value on the data
it has memorized. However, this result may not be reproducible on other similar but
unknown datasets. One of the key goals of machine learning algorithms is their ability to
generalize. This is why we create both, a validation set used for tuning our model selection
during training, and a final test set only used at the end of the process to confirm the
validity of the selected algorithm.

Machine Learning - an Introduction Chapter 1

[25]

To understand the importance of selecting valid features and to avoid memorizing the data,
which is also referred to as overfitting in the literature-and we'll use that term from now
on-let's use a joke taken from an xkcd comic as an example (http://xkcd.com/1122):

 "Up until 1996, no democratic US presidential candidate who was an incumbent and
with no combat experience had ever beaten anyone whose first name was worth more in
Scrabble."

It's apparent that such a rule is meaningless, but it underscores the importance of selecting
valid features and the question, "how much is a name worth in Scrabble," can bear any
relevance while selecting a US president? Also, this example doesn't have any predictive
power over unknown data. We'll call this overfitting, which refers to making predictions
that fit the data at hand perfectly, but don't generalize to larger datasets. Overfitting is the
process of trying to make sense of what we'll call noise (information that does not have any
real meaning) and trying to fit the model to small perturbations.

To further explain this, let's try to use machine learning to predict the trajectory of a ball
thrown from the ground up into the air (not perpendicularly) until it reaches the ground
again. Physics teaches us that the trajectory is shaped as a parabola. We also expect that a
good machine learning algorithm observing thousands of such throws would come up with
a parabola as a solution. However, if we were to zoom into the ball and observe the
smallest fluctuations in the air due to turbulence, we might notice that the ball does not
hold a steady trajectory but may be subject to small perturbations, which in this case is the
noise. A machine learning algorithm that tries to model these small perturbations would
fail to see the big picture and produce a result that is not satisfactory. In other words,
overfitting is the process that makes the machine learning algorithm see the trees, but
forgets about the forest:

A good prediction model versus a bad (overfitted) prediction model, with the trajectory of a ball thrown from the ground

http://xkcd.com/1122

Machine Learning - an Introduction Chapter 1

[26]

This is why we separate the training data from the validation and test data; if the accuracy
on the test data was not similar to the training data accuracy, that would be a good
indication that the model overfits. We need to make sure that we don't make the opposite
error either, that is, underfitting the model. In practice though, if we aim to make our
prediction model as accurate as possible on our training data, underfitting is much less of a
risk, and care is taken to avoid overfitting.

The following image depicts underfitting:

Underfitting can be a problem as well

Neural networks
In the previous sections, we introduced some of the popular classical machine learning
algorithms. In this section, we'll talk about neural networks, which is the main focus of the
book.

The first example of a neural network is called the perceptron, and this was invented by
Frank Rosenblatt in 1957. The perceptron is a classification algorithm that is very similar to
logistic regression. Such as logistic regression, it has weights, w, and its output is a
function, , of the dot product, (or of the weights and input.

Machine Learning - an Introduction Chapter 1

[27]

The only difference is that f is a simple step function, that is, if , then , or
else , wherein we apply a similar logistic regression rule over the output of the
logistic function. The perceptron is an example of a simple one-layer neural feedforward
network:

A simple perceptron with three input units (neurons) and one output unit (neuron)

The perceptron was very promising, but it was soon discovered that is has serious
limitations as it only works for linearly-separable classes. In 1969, Marvin Minsky and
Seymour Papert demonstrated that it could not learn even a simple logical function such as
XOR. This led to a significant decline in the interest in perceptron's.

However, other neural networks can solve this problem. A classic multilayer
perceptron has multiple interconnected perceptron's, such as units that are organized in
different sequential layers (input layer, one or more hidden layers, and an output
layer). Each unit of a layer is connected to all units of the next layer. First, the information is
presented to the input layer, then we use it to compute the output (or activation), yi, for
each unit of the first hidden layer. We propagate forward, with the output as input for the
next layers in the network (hence feedforward), and so on until we reach the output. The
most common way to train neural networks is with a gradient descent in combination
with backpropagation. We'll discuss this in detail in chapter 2, Neural Networks.

Machine Learning - an Introduction Chapter 1

[28]

The following diagram depicts the neural network with one hidden layer:

Neural network with one hidden layer

Think of the hidden layers as an abstract representation of the input data. This is the way
the neural network understands the features of the data with its own internal logic.
However, neural networks are non-interpretable models. This means that if we observed
the yi activations of the hidden layer, we wouldn't be able to understand them. For us, they
are just a vector of numerical values. To bridge the gap between the network's
representation and the actual data we're interested in, we need the output layer. You can
think of this as a translator; we use it to understand the network's logic, and at the same
time, we can convert it to the actual target values that we are interested in.

The Universal approximation theorem tells us that a feedforward network with one
hidden layer can represent any function. It's good to know that there are no theoretical
limits on networks with one hidden layer, but in practice we can achieve limited success
with such architectures. In Chapter 3, Deep Learning Fundamentals, we'll discuss how to
achieve better performance with deep neural networks, and their advantages over the
shallow ones. For now, let's apply our knowledge by solving a simple classification task
with a neural network.

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Machine Learning - an Introduction Chapter 1

[29]

Introduction to PyTorch
In this section, we'll introduce PyTorch, version 1.0. PyTorch is an open source python deep
learning framework, developed primarily by Facebook that has been gaining momentum
recently. It provides the Graphics Processing Unit (GPU), an accelerated multidimensional
array (or tensor) operation, and computational graphs, which we can be used to build
neural networks. Throughout this book, we'll use PyTorch, TensorFlow, and Keras, and
we'll talk in detail about these libraries and compare them in Chapter 3, Deep Learning
Fundamentals.

 The steps are as follows:

Let's create a simple neural network that will classify the Iris flower dataset. The1.
following is the code block for creating a simple neural network:

import pandas as pd

dataset =
pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-da
tabases/iris/iris.data',
 names=['sepal_length', 'sepal_width',
'petal_length', 'petal_width', 'species'])

dataset['species'] = pd.Categorical(dataset['species']).codes

dataset = dataset.sample(frac=1, random_state=1234)

train_input = dataset.values[:120, :4]
train_target = dataset.values[:120, 4]

test_input = dataset.values[120:, :4]
test_target = dataset.values[120:, 4]

The preceding code is boilerplate code that downloads the Iris dataset CSV file2.
and then loads it into the pandas DataFrame. We then shuffle the
DataFrame rows and split the code into numpy
arrays, train_input/train_target (flower properties/flower class), for the
training data and test_input/test_target for the test data.

https://pytorch.org/

Machine Learning - an Introduction Chapter 1

[30]

We'll use 120 samples for training and 30 for testing. If you are not familiar with3.
pandas, think of this as an advanced version of NumPy. Let's define our first
neural network:

import torch

torch.manual_seed(1234)

hidden_units = 5

net = torch.nn.Sequential(
 torch.nn.Linear(4, hidden_units),
 torch.nn.ReLU(),
 torch.nn.Linear(hidden_units, 3)
)

We'll use a feedforward network with one hidden layer with five units, a ReLU4.
activation function (this is just another type of activation, defined simply as f(x)
= max(0, x)), and an output layer with three units. The output layer has three
units, whereas each unit corresponds to one of the three classes of Iris flower.
We'll use one-hot encoding for the target data. This means that each class of the
flower will be represented as an array (Iris Setosa = [1, 0, 0], Iris
Versicolour = [0, 1, 0], and Iris Virginica = [0, 0, 1]), and one
element of the array will be the target for one unit of the output layer. When the
network classifies a new sample, we'll determine the class by taking the unit with
the highest activation value.
torch.manual_seed(1234) enables us to use the same random data every time5.
for the reproducibility of results.
Choose the optimizer and loss function:6.

choose optimizer and loss function
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1,
momentum=0.9)

With the criterion variable, we define the loss function that we'll use, in this case,7.
this is cross-entropy loss. The loss function will measure how different the output
of the network is compared to the target data.

Machine Learning - an Introduction Chapter 1

[31]

We then define the stochastic gradient descent (SGD) optimizer with a learning8.
rate of 0.1 and a momentum of 0.9. The SGD is a variation of the gradient descent
algorithm. We'll discuss loss functions and SGD in detail in Chapter 2, Neural
Networks. Now, let's train the network:

train
epochs = 50

for epoch in range(epochs):
 inputs =
torch.autograd.Variable(torch.Tensor(train_input).float())
 targets =
torch.autograd.Variable(torch.Tensor(train_target).long())

 optimizer.zero_grad()
 out = net(inputs)
 loss = criterion(out, targets)
 loss.backward()
 optimizer.step()

 if epoch == 0 or (epoch + 1) % 10 == 0:
 print('Epoch %d Loss: %.4f' % (epoch + 1, loss.item()))

We'll run the training for 50 epochs, which means that we'll iterate 50 times over9.
the training dataset:

Create the torch variable that are input and target from the numpy1.
array train_input and train_target.
Zero the gradients of the optimizer to prevent accumulation from the2.
previous iterations. We feed the training data to the neural
network net (input) and we compute the loss function criterion (out,
targets) between the network output and the target data.
Propagate the loss value back through the network. We do this so that3.
we can calculate how each network weight affects the loss function.
The optimizer updates the weights of the network in a way that will4.
reduce the future loss function values.

 When we run the training, the output is as follows:

Epoch 1 Loss: 1.2181
Epoch 10 Loss: 0.6745
Epoch 20 Loss: 0.2447
Epoch 30 Loss: 0.1397
Epoch 40 Loss: 0.1001
Epoch 50 Loss: 0.0855

Machine Learning - an Introduction Chapter 1

[32]

In the following graph, you can see how the loss function decreases with each epoch. This
shows how the network gradually learns the training data:

The loss function decreases with the number of epochs

Let's see what the final accuracy of our model is: 10.

import numpy as np

inputs = torch.autograd.Variable(torch.Tensor(test_input).float())
targets = torch.autograd.Variable(torch.Tensor(test_target).long())

optimizer.zero_grad()
out = net(inputs)
_, predicted = torch.max(out.data, 1)

error_count = test_target.size - np.count_nonzero((targets ==
predicted).numpy())
print('Errors: %d; Accuracy: %d%%' % (error_count, 100 *
torch.sum(targets == predicted) / test_target.size))

We do this by feeding the test set to the network and computing the error manually. The
output is as follows:

Errors: 0; Accuracy: 100%

We were able to classify all 30 test samples correctly.

Machine Learning - an Introduction Chapter 1

[33]

We must also keep in mind trying different hyperparameters of the network and see how
the accuracy and loss functions work. You could try changing the number of units in the
hidden layer, the number of epochs we train in the network, as well as the learning rate.

Summary
In this chapter, we covered what machine learning is and why it's so important. We talked
about the main classes of machine learning techniques and some of the most popular classic
ML algorithms. We also introduced a particular type of machine learning algorithm, called
neural networks, which is at the basis for deep learning. Then, we looked at a coding
example where we used a popular machine learning library to solve a particular
classification problem. In the next chapter, we'll cover neural networks in more detail and
explore their theoretical justifications.

2
Neural Networks

In Chapter 1, Machine Learning – an Introduction, we introduced a number of basic machine
learning(ML) concepts and techniques. We went through the main ML paradigms, as well
as some popular classic ML algorithms, and we finished with neural networks. In this
chapter, we will formally introduce what neural networks are, describe in detail how a
neuron works, see how we can stack many layers to create a deep feedforward neural
network, and then we'll learn how to train them.

In this chapter, we will cover the following topics:

The need for neural networks
An introduction to neural networks
Training neural networks

Initially, neural networks were inspired by the biological brain (hence the
name). Over time, however, we've stopped trying to emulate how the
brain works and instead we focused on finding the correct configurations
for specific tasks including computer vision, natural language processing,
and speech recognition. You can think of it in this way: for a long time, we
were inspired by the flight of birds, but, in the end, we created airplanes,
which are quite different. We are still far from matching the potential of
the brain. Perhaps the machine learning algorithms in the future will
resemble the brain more, but that's not the case now. Hence, for the rest of
this book, we won't try to create analogies between the brain and neural
networks.

Neural Networks Chapter 2

[35]

The need for neural networks
Neural networks have been around for many years, and they've gone through several
periods during which they've fallen in and out of favor. But recently, they have steadily
gained ground over many other competing machine learning algorithms. This resurgence is
due to having computers that are fast, the use of graphical processing units (GPUs) versus
the most traditional use of computing processing units (CPUs), better algorithms and
neural net design, and increasingly larger datasets that we'll see in this book. To get an idea
of their success, let's take the ImageNet Large-Scale Visual Recognition Challenge (http:/ ​/
image-​net.​org/​challenges/ ​LSVRC/ ​, or just ImageNet). The participants train their
algorithms using the ImageNet database. It contains more than one million high-resolution
color images in over a thousand categories (one category may be images of cars, another of
people, trees, and so on). One of the tasks in the challenge is to classify unknown images in
these categories. In 2011, the winner achieved a top-five accuracy of 74.2%. In 2012, Alex
Krizhevsky and his team entered the competition with a convolutional network (a special
type of deep network). That year, they won with a top-five accuracy of 84.7%. Since then,
the winners have always been convolutional networks and the current top-five accuracy is
97.7%. But deep learning algorithms have excelled in other areas; for example, both Google
Now and Apple's Siri assistants rely on deep networks for speech recognition and Google's
use of deep learning for their translation engines.

We'll talk about these exciting advances in the next chapters. But for now, we'll use simple
networks with one or two layers. You can think of these as toy examples that are not deep
networks, but understanding how they work is important. Here's why:

First: knowing the theory of neural networks will help you understand the rest of
the book, because a large majority of neural networks in use today share
common principles. Understanding simple networks means that you'll
understand deep networks too.
Second: having some fundamental knowledge is always good. It will help you a
lot when you face some new material (even material not included in this book).

I hope these arguments will convince you of the importance of this chapter. As a small
consolation, we'll talk about deep learning in depth (pun intended) in chapter 3, Deep
Learning Fundamentals.

http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/

Neural Networks Chapter 2

[36]

An introduction to neural networks
We can describe a neural network as a mathematical model for information processing. As
discussed in Chapter 1, Machine Learning – an Introduction, this is a good way to describe
any ML algorithm, but, in this chapter, well give it a specific meaning in the context of
neural networks. A neural net is not a fixed program, but rather a model, a system that
processes information, or inputs. The characteristics of a neural network are as follows:

Information processing occurs in its simplest form, over simple elements
called neurons.
Neurons are connected and they exchange signals between them through
connection links.
Connection links between neurons can be stronger or weaker, and this
determines how information is processed.
Each neuron has an internal state that is determined by all the incoming
connections from other neurons.
Each neuron has a different activation function that is calculated on its state, and
determines its output signal.

A more general description of a neural network would be as a computational graph of
mathematical operations, but we will learn more about that later.

We can identify two main characteristics for a neural net:

The neural net architecture: This describes the set of connections-namely,
feedforward, recurrent, multi or single-layered, and so on-between the neurons,
the number of layers, and the number of neurons in each layer.
The learning: This describes what is commonly defined as the training. The most
common but not exclusive way to train a neural network is with the gradient
descent and backpropagation.

Neural Networks Chapter 2

[37]

An introduction to neurons
A neuron is a mathematical function that takes one or more input values, and outputs a
single numerical value:

In this diagram, we can see the different elements of the neuron

The neuron is defined as follows:

First, we compute the weighted sum of the inputs xi and the1.
weights wi (also known as an activation value). Here, xi is either numerical
values that represent the input data, or the outputs of other neurons (that is, if
the neuron is part of a neural network):

Neural Networks Chapter 2

[38]

The weights wi are numerical values that represent either the strength
of the inputs or, alternatively, the strength of the connections between
the neurons.
The weight b is a special value called bias whose input is always 1.

Then, we use the result of the weighted sum as an input to the activation2.
function f, which is also known as transfer function. There are many types of
activation functions, but they all have to satisfy the requirement to be non-linear,
which we'll explain later in the chapter.

You might have noticed that the neuron is very similar to remove logistic
regression and the perceptron, which we discussed in Chapter 1, Machine
Learning – an Introduction. You can think of it as a generalized version of
these two algorithms. If we use the logistic function or step function as
activation functions, the neuron turns into logistic regression or
perceptron respectively. Additionally, if we don't use any activation
function, the neuron turns into linear regression. In this case, however, we
are not limited to these cases and, as you'll see later, they are rarely used
in practice.

As we mentioned in Chapter 1, Machine Learning – an Introduction, the activation value
defined previously can be interpreted as the dot product between the vector w and the
vector x: . The vector x will be perpendicular to the weight vector w, if

. Therefore, all vectors x such that define a hyperplane in the feature
space Rn , where n is the dimension of x.

That sounds complicated! To better understand it, let's consider a special case where the
activation function is f(x) = x and we only have a single input value, x. The output of the
neuron then becomes y = wx + b, which is the linear equation. This shows that in one-
dimensional input space, the neuron defines a line. If we visualize the same for two or more
inputs, we'll see that the neuron defines a plane, or a hyperplane, for an arbitrary number
of input dimensions.

Neural Networks Chapter 2

[39]

In the following diagram, we can also see that the role of the bias, b, is to allow the
hyperplane to shift away from the center of the coordinate system. If we don't use bias, the
neuron will have limited representation power:

The preceding diagram displays the hyperplane

We already know from Chapter 1, Machine Learning – an Introduction, that the perceptron
(hence the neuron) only works with linearly separable classes, and now we know that
because it defines a hyperplane. To overcome this limitation, we'll need to organize the
neurons in a neural network.

An introduction to layers
A neural network can have an indefinite number of neurons, which are organized in
interconnected layers. The input layer represents the dataset and the initial conditions. For
example, if the input is a grayscale image, the output of each neuron in the input layer is
the intensity of one pixel of the image. For this very reason, we don't generally count the
input layer as a part of the other layers. When we say 1-layer net, we actually mean that it is
a simple network with just a single layer, the output, in addition to the input layer.

Unlike the examples we've seen so far, the output layer can have more than one neuron.
This is especially useful in classification, where each output neuron represents one class.
For example, in the case of the Modified National Institute of Standards and
Technology(MNIST) dataset, we'll have 10 output neurons, where each neuron
corresponds to a digit from 0-9. In this way, we can use the 1-layer net to classify the digit
on each image. We'll determine the digit by taking the output neuron with the highest
activation function value. If this is y7 , we'll know that the network thinks that the image
shows the number 7.

Neural Networks Chapter 2

[40]

In the following diagram, you can see the 1-layer feedforward network. In this case, we
explicitly show the weights w for each connection between the neurons, but usually, the
edges connecting neurons represent the weights implicitly. Weight wij connects the i-th
input neuron with the j-th output neuron. The first input, 1, is the bias unit, and the
weight, b1, is the bias weight:

1-layer feedforward network

In the preceding diagram, we see the 1-layer neural network wherein the neurons on the
left represent the input with bias b, the middle column represents the weights for each
connection, and the neurons on the right represent the output given the weights w.

Neural Networks Chapter 2

[41]

The neurons of one-layer can be connected to the neurons of other layers, but not to other
neurons of the same layer. In this case, the input neurons are connected only to the output
neurons.

But why do we need to organize the neurons in layers in the first place? One argument is
that the neuron can convey limited information (just one value). But when we combine the
neurons in layers, their outputs compose a vector and, instead of single activation, we can
now consider the vector in its entirety. In this way, we can convey a lot more information,
not only because the vector has multiple values, but also because the relative ratios between
them carry additional information.

Multi-layer neural networks
As we have mentioned many times, 1-layer neural nets can only classify linearly separable
classes. But there is nothing that prevents us from introducing more layers between the
input and the output. These extra layers are called hidden layers. The following diagram
demonstrates a 3-layer fully connected neural network with two hidden layers. The input
layer has k input neurons, the first hidden layer has n hidden neurons, and the second
hidden layer has m hidden neurons. The output, in this example, is the two
classes y1 and y2. On top is the always-on bias neuron. A unit from one-layer is connected to
all units from the previous and following layers (hence fully connected). Each connection
has its own weight, w, that is not depicted for reasons of simplicity:

Multi-layer sequential network

Neural Networks Chapter 2

[42]

But we are not limited to networks with sequential layers, as shown in the preceding
diagram. The neurons and their connections form directed cyclic graphs. In such a graph,
the information cannot pass twice from the same neuron (no loops) and it flows in only one
direction, from the input to the output. We also chose to organize them in layers; therefore,
the layers are also organized in the directed cyclic graph. The network in the preceding
diagram is just a special case of a graph whose layers are connected sequentially. The
following diagram also depicts a valid neural network with two input layers, two output
layers, and randomly interconnected hidden layers. For the sake of simplicity, we've
depicted the multiple weights, w, connecting the layers as a single line:

A neural network

There is a special class of neural networks called recurrent networks,
which represent a directed cyclic graph (they can have loops). We'll
discuss them in detail in chapter 8, Reinforcement Learning Theory.

In this section, we introduced the most basic type of neural network, that is, the neuron,
and we gradually expanded it to a graph of neurons, organized in layers. But we can think
of it in another way. Thus, we came to know that the neuron has a precise mathematical
definition. Therefore, the neural network, as a composition of neurons, is also a
mathematical function where the input data represents the function arguments and the
network weights, w, are its parameters.

Neural Networks Chapter 2

[43]

Different types of activation function
We now know that multi-layer networks can classify linearly inseparable classes. But to do
this, they need to satisfy one more condition. If the neurons don't have activation functions,
their output would be the weighted sum of the inputs, , which is a linear function.
Then the entire neural network, that is, a composition of neurons, becomes a composition of
linear functions, which is also a linear function. This means that even if we add hidden
layers, the network will still be equivalent to a simple linear regression model, with all its
limitations. To turn the network into a non-linear function, we'll use non-linear activation
functions for the neurons. Usually, all neurons in the same layer have the same
activation function, but different layers may have different activation functions. The most
common activation functions are as follows:

: This function lets the activation value go through and is called the
identity function.

: This function activates the neuron; if the activation is above a
certain value, it's called the threshold activity function.

: This function is one of the most commonly used, as its output is
bounded between 0 and 1, and it can be interpreted stochastically as the
probability of the neuron activating. It's commonly called the logistic function,
or the logistic sigmoid.

: This activation function is called bipolar
sigmoid, and it's simply a logistic sigmoid rescaled and translated to have a
range in (-1, 1).

: This activation function is called the
hyperbolic tangent (or tanh).

: This activation function is probably the closest to its biological
counterpart. It's a mix of the identity and the threshold function, and it's called
the rectifier, or ReLU, as in Rectified Linear Unit. There are variations on the
ReLU, such as Noisy ReLU, Leaky ReLU, and ELU (Exponential Linear Unit).

Neural Networks Chapter 2

[44]

The identity activation function, or the threshold function, was widely used at the inception
of neural networks with implementations such as the perceptron or the Adaline (adaptive
linear neuron), but subsequently lost traction in favor of the logistic sigmoid, the hyperbolic
tangent, or the ReLU and its variations. The latter three activation functions differ in the
following ways:

Their range is different.
Their derivatives behave differently during training.

The range for the logistic function is (0,1), which is one reason why this is the preferred
function for stochastic networks, in other words, networks with neurons that may activate
based on a probability function. The hyperbolic function is very similar to the logistic
function, but its range is (-1, 1). In contrast, the ReLU has a range of (0, ∞).

But let's look at the derivative (or the gradient) for each of the three functions, which
is important for the training of the network. This is similar to how, in the linear regression
example that we introduced in Chapter 1, Machine Learning – an Introduction, we were
trying to minimize the function, following it along the direction opposite to its derivative.

For a logistic function f, the derivative is f * (1-f), while if f is the hyperbolic tangent, its
derivative is (1+f) * (1-f).

We can quickly calculate the derivative of the logistic sigmoid by simply

noticing that the derivative with respect to activation a of the
function is given by the following:

If f is the ReLU, the derivative is much simpler, that is, . Later in the
book, we'll see the deep networks exhibit the vanishing gradients problem, and the
advantage of the ReLU is that its derivative is constant and does not tend
to zero as a becomes large.

Neural Networks Chapter 2

[45]

Putting it all together with an example
As we already mentioned, multi-layer neural networks can classify linearly separable
classes. In fact, the Universal Approximation Theorem states that any continuous functions
on compact subsets of Rn can be approximated by a neural network with at least one hidden
layer. The formal proof of such a theorem is too complex to be explained here, but we'll
attempt to give an intuitive explanation using some basic mathematics. We'll implement a
neural network that approximates the boxcar function, in the following diagram on the
right, which is a simple type of step function. Since a series of step functions can
approximate any continuous function on a compact subset of R, this will give us an idea of
why the Universal Approximation Theorem holds:

The diagram on the left depicts continuous function approximation with a series of step functions, while the diagram on the right illustrates a single boxcar step
function

To do this, we'll use the logistic sigmoid activation function. As we know, the logistic
sigmoid is defined as , where :

Let's assume that we have only one input neuron, x = x11.
In the following diagrams, we can see that by making w very large, the sigmoid2.
becomes close to a step function. On the other hand, b will simply translate the
function along the x axis, and the translation t will be equal to -b/w (t = -b/w):

Neural Networks Chapter 2

[46]

On the left, we have a standard sigmoid with a weight of 1 and a bias of 0; in the middle, we have a sigmoid with a weight of 10; and on the right, we have a
sigmoid with a weight of 10 and a bias of 50

With this in mind, let's define the architecture of our network. It will have a single
input neuron, one hidden layer with two neurons, and a single output neuron:

Neural Networks Chapter 2

[47]

Both hidden neurons use the logistic sigmoid activation. The weights and biases
of the network are organized in such a way as to take advantage of the sigmoid
properties we described previously. The top neuron will initiate the first
transition t1 (0 to 1), and then, after some time has elapsed, the second neuron will
initiate the opposite transition t2. The following code implements this example:

The user can modify the values of the weight w
as well as bias_value_1 and bias_value_2 to observe
how this plots to different step functions

import matplotlib.pyplot as plt
import numpy

weight_value = 1000

modify to change where the step function starts
bias_value_1 = 5000

modify to change where the step function ends
bias_value_2 = -5000

plot the
plt.axis([-10, 10, -1, 10])

print("The step function starts at {0} and ends at {1}"
 .format(-bias_value_1 / weight_value,
 -bias_value_2 / weight_value))

inputs = numpy.arange(-10, 10, 0.01)
outputs = list()

iterate over a range of inputs
for x in inputs:
 y1 = 1.0 / (1.0 + numpy.exp(-weight_value * x - bias_value_1))
 y2 = 1.0 / (1.0 + numpy.exp(-weight_value * x - bias_value_2))

 # modify to change the height of the step function
 w = 7

 # network output
 y = y1 * w - y2 * w

 outputs.append(y)

plt.plot(inputs, outputs, lw=2, color='black')
plt.show()

Neural Networks Chapter 2

[48]

We set large values for weight_value, bias_value_1, and bias_value_2. In this way,
the expressions numpy.exp(-weight_value * x - bias_value_1) and numpy.exp(-
weight_value * x - bias_value_2) can switch between 0 and infinity in a very short
interval of the input. In turn,y1 and y2 will switch between 1 and 0. This would make for a
stepwise (as opposed to gradual) logistic sigmoid shape, as explained previously. Because
the numpy.exp expressions get an infinity value, the code will produce overflow
encountered in exp warning, but this is normal.

This code, when executed, produces the following result:

Training neural networks
We have seen how neural networks can map inputs onto determined outputs, depending
on fixed weights. Once the architecture of the neural network has been defined and
includes the feed forward network, the number of hidden layers, the number of neurons
per layer, and the activation function, we'll need to set the weights, which, in turn, will
define the internal states for each neuron in the network. First, we'll see how to do that for a
1-layer network using an optimization algorithm called gradient descent, and then we'll
extend it to a deep feed forward network with the help of backpropagation.

Neural Networks Chapter 2

[49]

The general concept we need to understand is the following:

Every neural network is an approximation of a function, so each neural network will not be
equal to the desired function, but instead will differ by some value called error. During
training, the aim is to minimize this error. Since the error is a function of the weights of the
network, we want to minimize the error with respect to the weights. The error function is a
function of many weights and, therefore, a function of many variables. Mathematically, the
set of points where this function is zero represents a hypersurface, and to find a minimum
on this surface, we want to pick a point and then follow a curve in the direction of the
minimum.

We should note that a neural network and its training are two separate
things. This means we can adjust the weights of the network in some way
other than gradient descent and backpropagation, but this is the most
popular and efficient way to do so and is, ostensibly, the only way that is
currently used in practice.

Linear regression
We have already introduced linear regression in Chapter 1, Machine Learning – an
Introduction. To recap, regarding utilization of the vector notation, the output of a linear
regression algorithm is a single value, y , and is equal to the dot product of the input
values x and the weights w: . As we now know, linear regression is a special case
of a neural network; that is, it's a single neuron with the identity activation function. In this
section, we'll learn how to train linear regression with gradient descent and, in the
following sections, we'll extend it to training more complex models. You can see how the
gradient descent works in the following code block:

Initialize the weights w with some random values
repeat:
 # compute the mean squared error (MSE) loss function for all
samples of the training set
 # we'll denote MSE with J

 # update the weights w based on the derivative of J with
respect to each weight

until MSE falls below threshold

Neural Networks Chapter 2

[50]

At first, this might look scary, but fear not! Behind the scenes, it's very simple and
straightforward mathematics (I know that sounds even scarier!). But let's not lose sight of
our goal, which is to adjust the weights, w, in a way that will help the algorithm to predict
the target values. To do this, first we need to know how the output yi differs from the target
value ti for each sample of the training dataset (we use superscript notation to mark the i-th
sample). We'll use the mean-squared error loss function (MSE), which is equal to the mean
value of the squared differences yi - ti for all samples (the total number of samples in the
training set is n). We'll denote MSE with J for ease of use and, to underscore that, we can
use other loss functions. Each yi is a function of w, and therefore, J is also a function of w. As
we mentioned previously, the loss function J represents a hypersurface of dimension equal
to the dimension of w (we are implicitly also considering the bias). To illustrate this,
imagine that we have only one input value, x, and a single weight, w. We can see how the
MSE changes with respect to w in the following diagram:

MSE diagram

Our goal is to minimize J, which means finding such w, where the value of J is at its global
minimum. To do this, we need to know whether J increases or decreases when we
modify w, or, in other words, the first derivative (or gradient) of J with respect to w:

In the general case, where we have multiple inputs and weights, we can calculate1.
the partial derivative with respect to each weight wj using the following formula:

Neural Networks Chapter 2

[51]

And to move toward the minimum, we need to move in the opposite direction2.
set by for each wj.
Let's calculate the derivative:3.

If , then and, therefore,

The notation can sometimes be confusing, especially the first time you
encounter it. The input is given by the vectors xi, where the superscript
indicates the i-th example. Since x and w are vectors, the subscript
indicates the j-th coordinate of the vector. yi then represents the output of
the neural network given the input xi, while ti represents the target, that is,
the desired value corresponding to the input xi.

Now, that we have calculated the partial derivatives, we'll update the weights4.
with the following update rule:

We can see that η is the learning rate. The learning rate determines the ratio by
which the weight adjusts as new data arrives.

We can write the update rule in matrix form as follows:5.

Here, ∇, also called nabla, represents the vector of partial derivatives.

Neural Networks Chapter 2

[52]

is a vector of partial derivatives. Instead of writing the
update rule for w separately for each of its components, wj, we can use the
matrix form where, instead of writing the partial derivative, for each
occurrence of j, we use ∇ to indicate each partial derivative for each j.

You may have noticed that in order to update the weights, we accumulate the error across
all training samples. In reality, there are big datasets, and iterating over them for just one
update would make training impractically slow. One solution to this problem is
the stochastic (or online) gradient descent (SGD) algorithm, which works in the same way
as regular gradient descent, but updates the weights after every training sample. However,
SGD is prone to noise in the data. If a sample is an outlier, we risk increasing the error
instead of decreasing it. A good compromise between the two is the mini-batch gradient
descent, which accumulates the error for every n samples or mini-batches and performs
one weight update. In practice, you'll almost always use mini-batch gradient descent.

Before we move to the next section, we should mention that besides the global minimum,
the loss function might have multiple local minimums and minimizing its value is not as
trivial, as in this example.

Logistic regression
Logistic regression uses logistic sigmoid activation, in contrast to linear regression, which
uses the identity function. As we've seen before, the output of the logistic sigmoid is in the
(0,1) range and can be interpreted as a probability function. We can use logistic regression
for a 2-class (binary) classification problem, where our target, t, can have two values,
usually 0 and 1 for the two corresponding classes. These discrete values shouldn't be
confused with the values of the logistic sigmoid function, which is a continuous real-valued
function between 0 and 1. The value of the sigmoid function represents the probability that
the output is in class 0 or class 1:

Let's denote the logistic sigmoid function with σ(a), where a is the neuron1.
activation value x•w, as defined previously. For each sample x, the probability
that the output is of class y, given the weights w, is as follows:

Neural Networks Chapter 2

[53]

We can write that equation more succinctly as follows:2.

And, since the probabilities P(ti|xi, w) are independent for each sample xi, the3.
global probability is as follows:

If we take the natural log of the preceding equation (to turn products into sums),4.
we get the following:

Our objective now is to maximize this log to get the highest probability of
predicting the correct results.

As before, we'll use gradient descent to minimize the cost function J(w), defined5.
by .

As before, we calculate the derivative of the cost function with respect to the
weights wj to obtain the following:

Neural Networks Chapter 2

[54]

To understand the last equation, let's recap the chain rule for derivatives,
which states that if we have the function F(x)= f(g(x)), then the derivative
of F with respect to x would be F'(x) = f'(g(x))g'(x), or

 .

Now, back to our case:

Therefore, according to the chain rule,the following is true:

Similarly,the following applies:

This is similar to the update rule we've seen for linear regression.

In this section, we saw a number of complicated equations, but you shouldn't feel bad if
you don't fully understand them. We can recap by saying that we applied the same
gradient descent algorithm to logistic regression as with linear regression. But this time,
finding the partial derivatives of the error function with respect to the weights is slightly
more complicated.

Neural Networks Chapter 2

[55]

Backpropagation
So far, we have learned how to update the weights of 1-layer networks with gradient
descent. We started by comparing the output of the network (that is, the output of the
output layer) with the target value, and then we updated the weights accordingly. But, in a
multi-layer network, we can only apply this technique for the weights that connect the final
hidden layer to the output layer. That's because we don't have any target values for the
outputs of the hidden layers. What we'll do instead is calculate the error in the final hidden
layer and estimate what it would be in the previous layer. We'll propagate that error back
from the last layer to the first layer; hence, we get the name backpropagation.
Backpropagation is one of the most difficult algorithms to understand, but all you need is
some knowledge of basic differential calculus and the chain rule.

Let's first introduce some notation:

We'll define wij as the weight between the i-th neuron of layer l, and the j-th1.
neuron of layer l+1.
In other words, we use subscripts i and j, where the element with2.
subscript i belongs to the layer preceding the layer containing the element with
subscript j.
In a multi-layer network, l and l+1 can be any two consecutive layers, including3.
input, hidden, and output layers.
Note that the letter y is used to denote both input and output values. yi is the4.
input to the next layer l+1, and it's also the output of the activation function of
layer l:

In this example, layer 1 represents the input, layer 2 the output, and wij connects the yi activation in layer 1 to the inputs of the j-th neuron of layer 2

Neural Networks Chapter 2

[56]

We'll denote the cost function (error) with J, the activation value x•w with a,5.
and the activation function (sigmoid, ReLU, and so on) output with y.
To recap the chain rule, for F(x) = f(g(x)), we have 6.

 . In our case, aj is a function of the
weights, w*j, yj is a function of aj, and J is function of yj. Armed with this great
knowledge and using the preceding notation, we can write the following for the
last layer of our neural network (using partial derivatives):

Since we know that , we have the following:7.

If y is the logistic sigmoid, we'll get the same result that we have already
calculated at the end of the Logistic regression section. We also know the cost
function and we can calculate all the partial derivatives.

For the previous (hidden) layers, the same formula holds:8.

Even though we have several layers, we always concentrate on pairs of
successive layers and, perhaps abusing the notation somewhat, we always
have a "first" (or input) layer, and a "second" (or output) layer, as in the
preceding diagram.

Neural Networks Chapter 2

[57]

We know that , and we also know that is the derivative of the
activation function, which we can calculate. Then, all we need to do is calculate

the derivative . Let's note that this is the derivative of the error with respect to
the activation function in the "second" layer. We can now calculate all the
derivatives, starting from the last layer and moving backward, because the
following applies:

We can calculate this derivative for the last layer.
We have a formula that allows us to calculate the derivative for one
layer, assuming we can calculate the derivative for the next.

In the following equation, yi is the output of the first layer (and input for the9.
second), while yj is the output of the second layer. Applying the chain rule, we
have the following:

The sum over j reflects the fact that in the feedforward part, the
output yi is fed to all neurons in the second layer; therefore, they all
contribute to yi when the error is propagated backward.

Once again, we can calculate both and ; once we know , we10.

can calculate . Since we can calculate for the last layer, we can move

backward and calculate for any layer, and therefore for any layer.
To summarize, if we have a sequence of layers where the following applies:11.

We then have these two fundamental equations:

Neural Networks Chapter 2

[58]

By using these two equations, we can calculate the derivatives for the cost with

respect to each layer. If we set , then δj represents the variation in
cost with respect to the activation value, and we can think of δj as the error
at neuron yj.

We can rewrite these equations as follows:12.

This implies that . These two equations give an alternate
view of backpropagation, as there is a variation in cost with respect to the
activation value.

It provides a formula to calculate this variation for any layer once we know the13.
variation for the following layer:

We can combine these equations to show the following:14.

The update rule for the weights of each layer is given by the following equation:15.

Neural Networks Chapter 2

[59]

Code example of a neural network for the XOR
function
In this section, we'll create a simple network with one hidden layer, which solves the XOR
function. As we mentioned at the end of the previous chapter, the XOR function is a
linearly inseparable problem, hence the need for a hidden layer. The source code will allow
you to easily modify the number of layers and the number of neurons per layer, so you can
try a number of different scenarios. We'll not use any ML libraries. Instead, we'll implement
them from scratch only with the help of numpy. We'll also use matplotlib to visualize the
results:

With that, let's start by importing these libraries:1.

import matplotlib.pyplot as plt
import numpy
from matplotlib.colors import ListedColormap

Next, we define the activation function and its derivative (we use tanh(x) in2.
this example):

def tanh(x): return (1.0 - numpy.exp(-2*x))/(1.0 + numpy.exp(-2*x))
def tanh_derivative(x):
 return (1 + tanh(x))*(1 - tanh(x))

Then, we start the definition of the NeuralNetwork class:3.

class NeuralNetwork:

Because of the Python syntax, anything inside the NeuralNetwork class will have
to be indented.

First, we define the __init__ initializer of NeuralNetwork:4.
 net_arch is a one-dimensional array containing the number of
neurons for each layer. For example [2, 4, and 1] means an input layer
with two neurons, a hidden layer with four neurons, and an output
layer with one neuron. Since we are studying the XOR function, the
input layer will have two neurons, and the output layer will only have
one neuron.

Neural Networks Chapter 2

[60]

We also set the activation function to the hyperbolic tangent, and we will then5.
define its derivative.
Finally, we initialize the network weights with random values in the range (-1, 1),6.
as demonstrated in the following code block:

net_arch consists of a list of integers, indicating
the number of neurons in each layer
def __init__(self, net_arch):
 self.activation_func = tanh
 self.activation_derivative = tanh_derivative
 self.layers = len(net_arch)
 self.steps_per_epoch = 1000
 self.net_arch = net_arch

 # initialize the weights with random values in the range
(-1,1)
 self.weights = []
 for layer in range(len(net_arch) - 1):
 w = 2 * numpy.random.rand(net_arch[layer] + 1,
net_arch[layer + 1]) - 1
 self.weights.append(w)

Next, we need to define the fit function, which will train our network.7.

First, we add 1 to the input data (the always-on bias neuron) and set up the code8.
to print the result at the end of each epoch to keep a track of our progress.
In the last line, nn represents the NeuralNetwork class and predict is the9.
function in the NeuralNetwork class that we'll define later:

def fit(self, data, labels, learning_rate=0.1, epochs=10):
 """
 :param data: data is the set of all possible pairs of
booleans
 True or False indicated by the integers 1 or 0
 labels is the result of the logical operation
'xor'
 on each of those input pairs
 :param labels: array of 0/1 for each datum
 """

 # Add bias units to the input layer
 ones = numpy.ones((1, data.shape[0]))
 Z = numpy.concatenate((ones.T, data), axis=1)
 training = epochs * self.steps_per_epoch
 for k in range(training):
 if k % self.steps_per_epoch == 0:

Neural Networks Chapter 2

[61]

 # print ('epochs:', k/self.steps_per_epoch)
 print('epochs: {}'.format(k /
self.steps_per_epoch))
 for s in data:
 print(s, nn.predict(s))

Next, we select a random sample from the training set and propagate it forward10.
through the network so that we can calculate the error between the network
output and the target data:

 sample = numpy.random.randint(data.shape[0])
 y = [Z[sample]]

 for i in range(len(self.weights) - 1):
 activation = numpy.dot(y[i], self.weights[i])
 activation_f = self.activation_func(activation)
 # add the bias for the next layer
 activation_f = numpy.concatenate((numpy.ones(1),
numpy.array(activation_f)))
 y.append(activation_f)

 # last layer
 activation = numpy.dot(y[-1], self.weights[-1])
 activation_f = self.activation_func(activation)
 y.append(activation_f)

Now that we have the error, we can propagate it backward, so we can update the11.
weights. We'll use stochastic gradient descent to update the weights (that is, we
are going to update the weights after each step):

 # error for the output layer
 error = labels[sample] - y[-1]
 delta_vec = [error * self.activation_derivative(y[-1])]

 # we need to begin from the back from the next to last
layer
 for i in range(self.layers - 2, 0, -1):
 error = delta_vec[-1].dot(self.weights[i][1:].T)
 error = error * self.activation_derivative(y[i][1:])
 delta_vec.append(error)

 # reverse
 # [level3(output)→level2(hidden)] ⇒
[level2(hidden)→level3(output)]
 delta_vec.reverse()

 # backpropagation
 # 1. Multiply its output delta and input activation

Neural Networks Chapter 2

[62]

 # to get the gradient of the weight.
 # 2. Subtract a ratio (percentage) of the gradient from the
weight
 for i in range(len(self.weights)):
 layer = y[i].reshape(1, nn.net_arch[i] + 1)

 delta = delta_vec[i].reshape(1, nn.net_arch[i + 1])
 self.weights[i] += learning_rate * layer.T.dot(delta)

This concludes the training phase of the network. We'll now write a predict12.
function to check the results, which returns the network output:

 def predict(self, x):
 val = numpy.concatenate((numpy.ones(1).T, numpy.array(x)))
 for i in range(0, len(self.weights)):
 val = self.activation_func(numpy.dot(val, self.weights[i]))
 val = numpy.concatenate((numpy.ones(1).T, numpy.array(val)))

 return val[1]

Finally, we'll write a function, which plots the lines separating the classes, based13.
on the input variables (we'll see the plots at the end of the section):

 def plot_decision_regions(self, X, y, points=200):
 markers = ('o', '^')
 colors = ('red', 'blue')
 cmap = ListedColormap(colors)

 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

 # To produce zoomed-out figures, you can replace the
preceding 2 lines with:
 # x1_min, x1_max = -10, 11
 # x2_min, x2_max = -10, 11

 resolution = max(x1_max - x1_min, x2_max - x2_min) /
float(points)

 xx1, xx2 = numpy.meshgrid(numpy.arange(x1_min,
 x1_max,
 resolution),
 numpy.arange(x2_min, x2_max,
resolution))
 input = numpy.array([xx1.ravel(), xx2.ravel()]).T
 Z = numpy.empty(0)
 for i in range(input.shape[0]):
 val = nn.predict(numpy.array(input[i]))

Neural Networks Chapter 2

[63]

 if val < 0.5:
 val = 0
 if val >= 0.5:
 val = 1
 Z = numpy.append(Z, val)

 Z = Z.reshape(xx1.shape)

 plt.pcolormesh(xx1, xx2, Z, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())
 # plot all samples

 classes = ["False", "True"]

 for idx, cl in enumerate(numpy.unique(y)):
 plt.scatter(x=X[y == cl, 0],
 y=X[y == cl, 1],
 alpha=1.0,
 c=colors[idx],
 edgecolors='black',
 marker=markers[idx],
 s=80,
 label=classes[idx])

 plt.xlabel('x-axis')
 plt.ylabel('y-axis')
 plt.legend(loc='upper left')
 plt.show()

In the following code block, we can see the code to run the entire process:14.

if __name__ == '__main__':
 numpy.random.seed(0)

 # Initialize the NeuralNetwork with 2 input, 2 hidden, and 1
output neurons
 nn = NeuralNetwork([2, 2, 1])

 X = numpy.array([[0, 0],
 [0, 1],
 [1, 0],
 [1, 1]])

 y = numpy.array([0, 1, 1, 0])

 nn.fit(X, y, epochs=10)

Neural Networks Chapter 2

[64]

 print("Final prediction")
 for s in X:
 print(s, nn.predict(s))

 nn.plot_decision_regions(X, y)

We use numpy.random.seed(0) to ensure that the weight initialization is consistent
across runs, so we'll be able to compare results, but it's not necessary for the
implementation of the neural net.

In the following diagrams, you can see how the nn.plot_decision_regions
function method plots the hypersurfaces, which separate the classes. The circles represent
the network output for the (True, True) and (False, False) inputs, while the triangles
represent the (True, False) and (False, True) inputs for the XOR function:

The following diagram represents the output:

Neural Networks Chapter 2

[65]

This is the same diagram, the top one zooming out, and the bottom one zooming
in, on the selected inputs. The neural network learns to separate those points
creating a band containing the two True output values. You can generate the
zoomed-out image by modifying the x1_min, x1_max, x2_min, and x2_max
variables in the lot_decision_regions function.

Networks with different architectures can produce different separating regions.
We can try different combinations of hidden layers when we instantiate the
network. When we build the default network, nn = NeuralNetwork([2,2,1]),
the first and last values (2 and 1) represent the input and output layers and cannot
be modified, but we can add different numbers of hidden layers with different
numbers of neurons. For example, ([2,4,3,1]) will represent a 3-layer neural
network, with four neurons in the first hidden layer and three neurons in the
second hidden layer. You'll be able to see that while the network finds the right
solution, the curves separating the regions will be different, depending on
the chosen architecture.Now, nn = NeuralNetwork([2,4,3,1]) will produce
the following separation:

Neural Networks Chapter 2

[66]

And here is the separation for nn = NeuralNetwork([2,4,1]):

The architecture of the neural network defines the way the network goes about solving the
problem at hand, and different architectures provide different approaches (though they
may all give the same result). We are now ready to start looking more closely at what deep
neural nets are and their applications.

Neural Networks Chapter 2

[67]

Summary
In this chapter, we introduced neural networks in detail and we mentioned their success
vis-à-vis other competing algorithms. Neural networks are comprised of interconnected
neurons (or units), where the weights of the connections characterize the strength of the
communication between different neurons. We discussed different network architectures,
and how a neural network can have many layers, and why inner (hidden) layers are
important. We explained how the information flows from the input to the output by
passing from each layer to the next based on the weights and the activation function, and
finally, we showed how to train neural networks, that is, how to adjust their weights using
gradient descent and backpropagation.

In the next chapter, we'll continue discussing deep neural networks, and we'll explain in
particular the meaning of deep in deep learning, and that it not only refers to the number of
hidden layers in the network, but to the quality of the learning of the network. For this
purpose, we'll show how neural networks learn to recognize features and put them
together as representations of larger objects. We'll also describe a few important deep
learning libraries, and finally, we'll provide a concrete example where we can apply neural
networks to handwritten digit recognition.

3
Deep Learning Fundamentals

In this chapter, we will introduce deep learning(DL) and deep neural networks (DNNs),
that is, neural networks with multiple hidden layers. You may wonder what the point of
using more than one hidden layer is, given the universal approximation theorem. This is in
no way a naive question, and for a long time neural networks were used in that way.
Without going into too much detail, one reason is that approximating a complex function
might require a huge number of neurons in the hidden layer, making it impractical to use.
There is also another, more important, reason for using deep networks, which is not
directly related to the number of hidden layers, but to the level of learning. A deep network
does not simply learn to predict output Y given input X; it also understands basic features
of the input. It's able to learn abstractions of features of input examples, to understand the
basic characteristics of the examples, and to make predictions based on those
characteristics. This is a level of abstraction that is missing in other basic machine
learning(ML) algorithms and in shallow neural networks.

In this chapter, we will cover the following topics:

Introduction to deep learning
Fundamental deep learning concepts
Deep learning algorithms
Applications of deep learning
The reasons for deep learning's popularity
Introducing popular open source libraries

Deep Learning Fundamentals Chapter 3

[69]

Introduction to deep learning
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton published a milestone paper
titled ImageNet Classification with Deep Convolutional Neural Networks https:/ ​/ ​papers. ​nips.
cc/​paper/​4824-​imagenet- ​classification- ​with- ​deep- ​convolutional- ​neural- ​networks.
pdf. The paper describes their use of neural networks to win the ImageNet competition of
the same year, which we mentioned in Chapter 2, Neural Networks. At the end of their
paper, they wrote the following:

"It is notable that our network's performance degrades if a single convolutional layer is
removed. For example, removing any of the middle layers results in a loss of about 2% for
the top-1 performance of the network. So the depth really is important for achieving our
results."

They clearly mention the importance of the number of hidden layers present in deep
networks. Krizheysky, Sutskever, and Hilton talk about convolutional layers, which we will
not discuss until Chapter 4, Computer Vision With Convolutional Networks, but the basic
question remains: what do those hidden layers do?

A typical English saying is a picture is worth a thousand words. Let's use this approach to
understand what deep learning is. We'll use images from the highly-cited
paper Convolutional deep belief networks for scalable unsupervised learning of hierarchical
representations (https:/ ​/ ​ai. ​stanford. ​edu/ ​~ang/ ​papers/ ​icml09-
ConvolutionalDeepBeliefNetworks. ​pdf). In Proceedings of the International Conference on
Machine Learning (ICML) (2009) by H. Lee, R. Grosse, R. Ranganath, and A. Ng, the authors
train a neural network with pictures of different categories of either objects or animals. In
the following screenshot, we can see how the different layers of the network learn different
characteristics of the input data. In the first layer, the network learns to detect some small
basic features such as lines and edges, which are common for all images in all categories:

The first layer weights (top) and the second layer weights (bottom) after training

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://ai.stanford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf

Deep Learning Fundamentals Chapter 3

[70]

But in the next layers, which we can see in the preceding screenshot, it combines those lines
and edges to compose more complex features that are specific for each category. In the first
row of the bottom-left image, we can see how the network can detect different features of
human faces such as eyes, noses, and mouths. In the case of cars, these would be wheels,
doors, and so on, as seen in the second image from the left in the following image. These
features are abstract, that is, the network has learned the generic shape of a feature (such as
a mouth or a nose) and can detect this feature in the input data, despite the variations it
might have:

Columns 1-4 represent the second layer (top) and third layer (bottom) weights learned for a specific object category (class). Column 5 represents the weights learned for a mixture
of four object categories (faces, cars, airplanes, and motobikes)

In the second row of the preceding image, we can see how, in the deeper layers, the
network combines these features in even more complex ones, such as faces and whole cars.
A strength of deep neural networks is that they can learn these high-level abstract
representations by themselves, deducting them from the training data.

Fundamental deep learning concepts
In 1801, Joseph Marie Charles invented the Jacquard loom. Charles named the Jacquard,
hence the name of its invention, was not a scientist, but simply a merchant. The Jacquard
loom used a set of punched cards, where each card represented a pattern to be reproduced
on the loom. At the same time, each card was an abstract representation of that pattern.
Punched cards have been used since, for example, in the tabulating machine invented by
Herman Hollerith in 1890, or in the first computers as a means to input code. In the
tabulating machine, the cards were simply abstractions of samples to be fed into the
machine to calculate statistics on a population. But in the Jacquard loom, their use was
subtler, and each card represented the abstraction of a pattern that could be combined with
others to create more complex patterns. The punched card is an abstract representation of a
feature of reality, the final weaved design.

Deep Learning Fundamentals Chapter 3

[71]

In a way, the Jacquard loom sowed the seeds of what deep learning is today, the definition
of a reality through the representations of its features. A deep neural network does not
simply recognize what makes a cat a cat, or a squirrel a squirrel, but it understands what
features are present in a cat and a squirrel respectively. It learns to design a cat or a squirrel
using those features. If we were to design a weaving pattern in the shape of a cat using a
Jacquard loom, we would need to use punched cards that have whiskers on the nose, such
as those of a cat, and an elegant and slender body. Conversely, if we were to design a
squirrel, we would need to use the punched card that makes a furry tail. A deep network
that learns basic representations of its output can make classifications using the
assumptions it has made. For example, if there is no furry tail, it will probably not be a
squirrel, but rather a cat. In this way, the amount of information the network learns is much
more complete and robust, and the most exciting part is that deep neural networks learn to
do this automatically.

Feature learning
To illustrate how deep learning works, let's consider the task of recognizing a simple
geometric figure, for example, a cube, as seen in the following diagram. The cube is
composed of edges (or lines), which intersect in vertices. Let's say that each possible point
in the three-dimensional space is associated with a neuron (forget for a moment that this
will require an infinite number of neurons). All the points/neurons are in the first (input)
layer of a multi-layer feed-forward network. An input point/neuron is active if the
corresponding point lies on a line. The points/neurons that lie on a common line (edge)
have strong positive connections to a single common edge/neuron in the next layer.
Conversely, they have negative connections to all other neurons in the next layer. The only
exception are the neurons that lie on the vertices. Each such neuron lies simultaneously on
three edges, and is connected to its three corresponding neurons in the subsequent layer.

Now we have two hidden layers, with different levels of abstraction—the first for points
and the second for edges. But this is not enough to encode a whole cube in the network.
Let's try with another layer for vertices. Here, each three active edge/neurons of the second
layer, which form a vertex, have a significant positive connection to a single common
vertex/neuron of the third layer. Since an edge of the cube forms two vertices, each
edge/neuron will have positive connections to two vertices/neurons and negative
connections to all others. Finally, we'll introduce the last hidden layer (cube). The four
vertices/neurons forming a cube will have positive connections to a single cube/neuron
from the cube/layer:

Deep Learning Fundamentals Chapter 3

[72]

An abstraction of a neural network representing a cube. Different layers encode features with different levels of abstraction

The cube representation example is oversimplified, but we can draw several conclusions
from it. One of them is that deep neural networks lend themselves well to hierarchically
organized data. For example, an image consists of pixels, which form lines, edges, regions,
and so on. This is also true for speech, where the building blocks are called phonemes; as
well as text, where we have characters, words, and sentences.

In the preceding example, we dedicated layers to specific cube features deliberately, but in
practice, we wouldn't do that. Instead, a deep network will "discover" features
automatically during training. These features might not be immediately obvious and, in
general, wouldn't be interpretable by humans. Also, we wouldn't know the level of the
features encoded in the different layers of the network. Our example is more akin to classic
machine learning algorithms, where the user has to use his/her own experience to select
what they think are the best features. This process is called feature engineering, and it can
be labor-intensive and time-consuming. Allowing a network to automatically discover
features is not only easier, but those features are highly abstract, which makes them less
sensitive to noise. For example, human vision can recognize objects of different shapes,
sizes, in different lighting conditions, and even when their view is partly obscured. We can
recognize people with different haircuts, facial features, and even when they wear a hat or a
scarf that covers their mouth. Similarly, the abstract features the network learns will help it
to recognize faces better, even in more challenging conditions.

Deep Learning Fundamentals Chapter 3

[73]

Deep learning algorithms
In chapter 3, Deep Learning Fundamentals, we gave an easy-to-understand introduction to
deep learning. In the next section, Deep networks, we'll give a more precise definition of the
key concepts that will be thoroughly introduced in the coming chapters.

Deep networks
We could define deep learning as a class of machine learning techniques, where
information is processed in hierarchical layers to understand representations and features
from data in increasing levels of complexity. In practice, all deep learning algorithms are
neural networks, which share some common basic properties. They all consist of
interconnected neurons that are organized in layers. Where they differ is network
architecture (or the way neurons are organized in the network), and sometimes in the way
they are trained. With that in mind, let's look at the main classes of neural networks. The
following list is not exhaustive, but it represents the vast majority of algorithms in use
today:

Multi-layer perceptrons (MLPs): A neural network with feed-forward
propagation, fully-connected layers, and at least one hidden layer. We
introduced MLPs in Chapter 2, Neural Networks.
Convolutional neural networks (CNNs): A CNN is a feedforward neural
network with several types of special layers. For example, convolutional layers
apply a filter to the input image (or sound) by sliding that filter all across the
incoming signal, to produce an n-dimensional activation map. There is some
evidence that neurons in CNNs are organized similarly to how biological cells
are organized in the visual cortex of the brain. We've mentioned CNNs several
times up to now, and that's not a coincidence – today, they outperform all other
ML algorithms on a large number of computer vision and NLP tasks.
Recurrent networks: This type of network has an internal state (or memory),
which is based on all or part of the input data already fed to the network. The
output of a recurrent network is a combination of its internal state (memory of
inputs) and the latest input sample. At the same time, the internal state changes,
to incorporate newly input data. Because of these properties, recurrent networks
are good candidates for tasks that work on sequential data, such as text or time-
series data. We'll discuss recurrent networks in Chapter 7, Recurrent Neural
Networks and Language Models.

Deep Learning Fundamentals Chapter 3

[74]

Autoencoders: A class of unsupervised learning algorithms, in which the output
shape is the same as the input that allows the network to better learn basic
representations. We'll discuss autoencoders when we talk about generative deep
learning, in Chapter 6, Generating Images with GANs and VAEs.

A brief history of contemporary deep learning
In addition to the aforementioned models, the first edition of this book included networks
such as Restricted Boltzmann Machines (RBMs) and DBNs. They were popularized by
Geoffrey Hinton, a Canadian scientist, and one of the most prominent deep learning
researchers. Back in 1986, he was also one of the inventors of backpropagation. RBMs are a
special type of generative neural network, where the neurons are organized into two layers,
namely, visible and hidden. Unlike feed-forward networks, the data in an RBM can flow in
both directions – from visible to hidden units, and vice versa. In 2002, Prof. Hinton
introduced contrastive divergence, which is an unsupervised algorithm for training RBMs.
And in 2006, he introduced Deep Belief Nets, which are deep neural networks that are
formed by stacking multiple RBMs. Thanks to their novel training algorithm, it was
possible to create a DBN with more hidden layers than had previously been possible. To
understand this, we should explain why it was so difficult to train deep neural networks
prior to that. In the past, the activation function of choice was the logistic sigmoid, shown in
the following chart:

Logistic sigmoid (blue) and its derivative (green)

Deep Learning Fundamentals Chapter 3

[75]

We now know that, to train a neural network, we need to compute the derivative of the
activation function (along with all the other derivatives). The sigmoid derivative has
significant value in a very narrow interval, centered around 0 and converges towards 0 in
all other cases. In networks with many layers, it's highly likely that the derivative would
converge to 0, when propagated to the first layers of the network. Effectively, this means
we cannot update the weights in these layers. This is a famous problem called vanishing
gradients and (along with a few other issues), which prevents the training of deep
networks. By stacking pre-trained RBMs, DBNs were able to alleviate (but not solve) this
problem.

But training a DBN is not easy. Let's look at the following steps:

First, we have to train each RBM with contrastive divergence, and gradually
stack them on top of each other. This phase is called pre-training.
In effect, pre-training serves as a sophisticated weight initialization algorithm for
the next phase, called fine-tuning. With fine-tuning, we transform the DBN in a
regular multi-layer perceptron and continue training it using supervised
backpropagation, in the same way we saw in Chapter 2, Neural Networks.

However, thanks to some algorithmic advances, it's now possible to train deep networks
using plain old backpropagation, thus effectively eliminating the pre-training phase. We
will discuss these improvements in the coming sections, but for now, let's just say that they
rendered DBNs and RBMs obsolete. DBNs and RBMs are, without a doubt, interesting from
a research perspective, but are rarely used in practice anymore. Because of this, we will
omit them from this edition.

Training deep networks
As we mentioned in chapter 2, Neural Networks, we can use different algorithms to train a
neural network. But in practice, we almost always use Stochastic Gradient Descent (SGD)
and backpropagation, which we introduced in Chapter 2, Neural Networks. In a way, this
combination has withstood the test of time, outliving other algorithms, such as DBNs. With
that said, gradient descent has some extensions worth discussing.

In the following section, we'll introduce momentum, which is an effective improvement
over the vanilla gradient descent. You may recall the weight update rule that we
introduced in Chapter 2, Neural Networks:

, where λ is the learning rate.1.

To include momentum, we'll add another parameter to this equation.

Deep Learning Fundamentals Chapter 3

[76]

First, we'll calculate the weight update value:2.

Then, we'll update the weight:3.

From the preceding equation, we see that the first component, , is the momentum. The
 represents the previous value of the weight update and μ is the coefficient, which will

determine how much the new value depends on the previous ones. To explain this, let's
look at the following diagram, where you will see a comparison between vanilla SGD and
SGD with momentum. The concentric ellipses represent the surface of the error function,
where the innermost ellipse is the minimum and the outermost the maximum. Think of the
loss function surface as the surface of a hill. Now, imagine that we are holding a ball at the
top of the hill (maximum). If we drop the ball, thanks to Earth's gravity, it will start rolling
toward the bottom of the hill (minimum). The more distance it travels, the more its speed
will increase. In other words, it will gain momentum (hence the name of the optimization).
As a result, it will reach the bottom of the hill faster. If, for some reason, gravity didn't exist,
the ball would roll at its initial speed and it would reach the bottom more slowly:

A comparison between vanilla SGD and SGD + momentum

In your practice, you may encounter other gradient descent optimizations, such as Nesterov
momentum, ADADELTA https:/ ​/​arxiv. ​org/ ​abs/​1212. ​5701, RMSProp https:/ ​/ ​www.​cs.
toronto.​edu/​~tijmen/ ​csc321/ ​slides/ ​lecture_ ​slides_ ​lec6. ​pdf, and Adam https:/ ​/
arxiv.​org/​abs/​1412. ​6980. Some of these will be discussed in later chapters of the book.

https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Deep Learning Fundamentals Chapter 3

[77]

Applications of deep learning
Machine learning in general, and deep learning in particular, are producing more and more
astonishing results in terms of the quality of predictions, feature detection, and
classification. Many of these recent results have made the news. Such is the pace of
progress, that some experts are worrying that machines will soon be more intelligent than
humans. But I hope that any such fears you might have will be alleviated after you have
read this book. For better or worse, we're still far from human-level intelligence.

In Chapter 2, Neural Networks, we mentioned how deep learning algorithms have occupied
the leaderboard of the ImageNet competition. They are successful enough to make the
jump from academia to industry. Let's now talk about some real-world use cases of deep
learning:

Nowadays, new cars have a suite of safety and convenience features that aim to
make the driving experience safer and less stressful. One such feature is
automated emergency braking if the car sees an obstacle. Another one is lane-
keeping assist, which allows the vehicle to stay in its current lane without the
driver needing to make corrections with the steering wheel. To recognize lane
markings, other vehicles, pedestrians, and cyclists, these systems use a forward-
facing camera. One of the most prominent suppliers of such systems, Mobileye
https:/​/ ​www. ​mobileye. ​com/ ​, has produced custom chips that use CNNs to
detect these objects on the road ahead. To give you an idea of the importance of
this sector, in 2017, Intel acquired Mobileye for $15.3 billion. This is not an
outlier, and Tesla's famous Autopilot system also relies on CNNs to achieve the
same results. In fact, the director of AI at Tesla, Andrej Karpathy https:/ ​/​cs.
stanford. ​edu/ ​people/ ​karpathy/ ​, is a well-known researcher in the field of deep
learning. We can speculate that future autonomous vehicles will also use deep
networks for computer vision.
Both Google's Vision API https:/ ​/​cloud. ​google. ​com/ ​solutions/ ​image-
search-​app- ​with- ​cloud- ​vision and Amazon's Rekognition https:/ ​/ ​aws.
amazon.​com/ ​rekognition/ ​faqs/ ​ service use deep learning models to provide
various computer vision capabilities. These include recognizing and detecting
objects and scenes in images, text recognition, face recognition, and so on.

https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cs.stanford.edu/people/karpathy/
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://cloud.google.com/solutions/image-search-app-with-cloud-vision
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/
https://aws.amazon.com/rekognition/faqs/

Deep Learning Fundamentals Chapter 3

[78]

If these APIs are not enough, you can run your own models in the cloud. For
example, you can use Amazon's AWS Deep Learning AMIs (Amazon Machine
Images), https:/ ​/​aws. ​amazon. ​com/ ​machine- ​learning/ ​amis/ ​ , virtual machines
that come configured with some of the most popular DL libraries. Google offers a
similar service with their Cloud AI, https:/ ​/​cloud. ​google. ​com/​products/ ​ai/ ​,
but they've gone one step further. They created Tensor Processing Units
TPUs,(https:/ ​/​cloud. ​google. ​com/​tpu/ ​)– microprocessors, optimized for fast
neural network operations such as matrix multiplication and activation
functions.
Deep learning has a lot of potential for medical applications. However, strict
regulatory requirements, as well as patient data confidentiality have slowed
down its adoption. Nevertheless, we'll identify two areas in which deep learning
could have a high impact:

Medical imaging is an umbrella term for various non-invasive
methods of creating visual representations of the inside of the
body. Some of these include Magnetic resonance images (MRIs),
ultrasound, Computed Axial Tomography (CAT) scans, X-rays,
and histology images. Typically, such an image is analyzed by a
medical professional to determine the patient's condition.
Computer-aided diagnosis, and computer vision in particular, can
help specialists by detecting and highlighting important features of
images. For example, to determine the degree of malignancy of
colon cancer, a pathologist would have to analyze the morphology
of the glands, using histology imaging. This is a challenging task,
because morphology can vary greatly. A deep neural network
could segment the glands from the image automatically, leaving
the pathologist to verify the results. This would reduce the time
needed for analysis, making it cheaper and more accessible.
Another medical area that could benefit from deep learning is the
analysis of medical history records. When a doctor diagnoses a
patient's condition and prescribes treatment, they consult the
patient's medical history first. A deep learning algorithm could
extract the most relevant and important information from those
records, even if they are handwritten. In this way, the doctor's job
would be made easier, and the risk of errors would also be
reduced.

Google's Neural Machine Translation API https:/ ​/​arxiv. ​org/ ​abs/ ​1611.
04558 uses – you guessed it – deep neural networks for machine translation.

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558
https://arxiv.org/abs/1611.04558

Deep Learning Fundamentals Chapter 3

[79]

Google Duplex is another impressive real-world demonstration of deep learning.
It's a new system that can carry out natural conversations over the phone. For
example, it can make restaurant reservations on a user's behalf. It uses deep
neural networks, both to understand the conversation, and also to generate
realistic, human-such as replies.
Siri (https:/ ​/ ​machinelearning. ​apple. ​com/ ​2017/ ​10/ ​01/​hey- ​siri. ​html), Google
Assistant, and Amazon Alexa (https:/ ​/​aws. ​amazon. ​com/ ​deep- ​learning/ ​)rely
on deep networks for speech recognition.
Finally, AlphaGo is an artificial intelligence (AI) machine based on deep
learning, which made the news in 2016 by beating the world Go champion, Lee
Sedol. AlphaGo had already made the news, in January 2016, when it beat the
European champion, Fan Hui. Although, at the time, it seemed unlikely that it
could go on to beat the world champion. Fast-forward a couple of months and
AlphaGo was able to achieve this remarkable feat by sweeping its opponent in a
4-1 victory series. This was an important milestone, because Go has many more
possible game variations than other games, such as chess, and it's impossible to
consider every possible move in advance. Also, unlike chess, in Go it's very
difficult to even judge the current position or value of a single stone on the
board. In 2017, DeepMind released an updated version of AlphaGo
called AlphaZero(https:/ ​/ ​arxiv.​org/ ​abs/ ​1712. ​01815).

Neural networks are representatives of pattern recognition, one
possible approach to artificial intelligence. Pattern recognition is the
process of automating the recognition of patterns and regularities in data.
In other words, in pattern recognition, the computer uses machine
learning to learn features of data by itself. The opposite approach would
be to use hand-crafted rules (hardcoded by a human).

With this short list, we aimed to cover the main areas in which deep learning is applied,
such as computer vision, natural language processing, speech recognition, and
reinforcement learning. This list is not exhaustive, as there are many other uses for deep
learning algorithms. Still, I hope this has been enough to spark your interest.

https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815

Deep Learning Fundamentals Chapter 3

[80]

The reasons for deep learning's popularity
If you've followed machine learning for some time, you may have noticed that many DL
algorithms are not new. We dropped some hints about this in the A brief history of
contemporary deep learning section, but let's see some more examples now. Multilayer
perceptrons have been around for nearly 50 years. Backpropagation has been discovered a
couple of times, but finally gained recognition in 1986. Yann LeCun, a famous computer
scientist, perfected his work on convolutional networks in the 1990s. In 1997, Sepp
Hochreiter and Jürgen Schmidhuber invented long short-term memory, a type of recurrent
neural network still in use today. In this section, we'll try to understand why we have AI
summer now, and why we only had AI winters(https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​AI_
winter) before.

The first reason is, today, we have a lot more data than in the past. The rise of the internet
and software in different industries has generated a lot of computer-accessible data. We
also have more benchmark datasets, such as ImageNet. With this comes the desire to
extract value from that data by analyzing it. And, as we'll see later, deep learning
algorithms work better when they are trained with a lot of data.

The second reason is the increased computing power. This is most visible in the drastically
increased processing capacity of Graphical Processing Units (GPUs). Architecturally,
Central Processing Units (CPUs) are composed of a few cores that can handle a few
threads at a time, while GPUs are composed of hundreds of cores that can handle
thousands of threads in parallel. A GPU is a highly parallelizable unit, compared to a CPU,
which is mainly a serial unit. Neural networks are organized in such a way as to take
advantage of this parallel architecture. Let's see why.

As we now know, neurons from a network layer are not connected to neurons from the
same layer. Therefore, we can compute the activation of each neuron in that layer
independently from the others. This means that we can compute their activation in parallel.
To better understand this, let's use two sequential fully-connected layers, where the input
layer has n neurons and the second layer has m neurons. The activation value for each
neuron is . If we express it in vector form, we have ,
where x and w are n-dimensional vectors (because the input size is n). We can combine the
weight vectors for all neurons in the second layer in an n by m dimensional
matrix, W. Now, let's recall that we train the network using mini batches of inputs with an
arbitrary size, k. We can represent one mini batch of input vectors as a k by n dimensional
matrix, X. We'll optimize the execution by propagating the whole mini batch through the
network as a single input. Putting it all together, we can compute all of the neuron
activations of the second layer, Y, for all input vectors in the mini batch, as a matrix
multiplication - Y = XW. This highly parallelizable operation can fully utilize the
advantages of the GPU.

https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/AI_winter

Deep Learning Fundamentals Chapter 3

[81]

Furthermore, CPUs are optimized for latency and GPUs are optimized for bandwidth. This
means that a CPU can fetch small chunks of memory very quickly, but will be slow to fetch
large chunks. The GPU does the opposite. For matrix multiplication in a deep network with
a lot of wide layers, bandwidth becomes the bottleneck, not latency. In addition, the L1
cache of the GPU is much faster than the L1 cache for the CPU and is also larger. The L1
cache represents the memory of the information that the program is likely to use next, and
storing this data can speed up the process. Much of the memory gets reused in deep neural
networks, which is why L1 cache memory is important.

But even under these favorable conditions, we still haven't addressed the issue of training
deep neural networks, such as vanishing gradients. Thanks to a combination of algorithmic
advances, it's now possible to the train neural networks with almost arbitrary depth with
the help of the combination. These include better activation functions, Rectified Linear
Unit (ReLU), better initialization of the network weights before training, new network
architectures, as well as new types of regularization techniques such as Batch
normalization.

Introducing popular open source libraries
There are many open-source libraries that allow the creation of deep neural nets in Python,
without having to explicitly write the code from scratch. In this book, we'll use three of the
most popular: - TensorFlow, Keras, and PyTorch. They all share some common features, as
follows:

The basic unit for data storage is the tensor. Consider the tensor as a
generalization of a matrix to higher dimensions. Mathematically, the definition of
a tensor is more complex, but in the context of deep learning libraries, they are
multi-dimensional arrays of base values. A tensor is similar to a NumPy array
and is made up of the following:

A basic data type of tensor elements. These can vary between
libraries, but typically include 16-, 32-, and 64-bit float and 8-, 16-,
32-, and 64-bit integers.

Deep Learning Fundamentals Chapter 3

[82]

An arbitrary number of axes (also known as the rank, order, or
degree of the tensor). An 0D tensor is just a scalar value, 1D is a
vector, 2D is a matrix, and so on. In deep networks, the data is
propagated in batches of n samples. This is done for performance
reasons, but it also suits the notion of stochastic gradient descent.
For example, if the input data is one-dimensional, such as [0, 1], [1,
0], [0, 0], and [1, 1] for XOR values, we'll actually work with a 2D
tensor [[0, 1], [1, 0], [0, 0], [1, 1]] to represent all of
the samples in a single batch. Alternatively, two-dimensional
grayscale images will be represented as a three-dimensional tensor.
In the context of deep learning libraries, the first axis of the tensor
represents the different samples.
A shape that is the size (the number of values) of each axis of the
tensor. For example, the XOR tensor from the preceding example
will have a shape of (4, 2). A tensor representing a batch of 32
128x128 images will have a shape of (32, 128, 128).

Neural networks are represented as a computational graph of operations. The
nodes of the graph represent the operations (weighted sum, activation function,
and so on). The edges represent the flow of data, which is how the output of one
operation serves as an input for the next one. The inputs and outputs of the
operations (including the network inputs and outputs) are tensors.
All libraries include automatic differentiation. This means, that all you need to
do is define the network architecture and activation functions, and the library
will automatically figure out all of the derivatives required for training with
backpropagation.
All libraries use Python.
Until now, we've referred to GPUs in general, but in reality, the vast majority of
deep learning projects work exclusively with NVIDIA GPUs. This is so because
of the better software support NVIDIA provides. These libraries are no
exception – to implement GPU operations, they rely on the CUDA toolkit in
combination with the cuDNN library. cuDNN is an extension of CUDA, built
specifically for deep learning applications. As was previously mentioned in
the Applications of deep learning section, you can also run your deep learning
experiments in the cloud.

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

Deep Learning Fundamentals Chapter 3

[83]

For these libraries, we will quickly describe how to switch between a GPU and a
CPU. Much of the code in this book can then be run on a CPU or a GPU, depending on the
hardware available to the reader.

At the time of writing, the latest versions of the libraries are the following:

TensorFlow 1.12.0
PyTorch 1.0
Keras 2.2.4

We'll use them throughout the book.

TensorFlow
TensorFlow (TF) (https:/ ​/ ​www. ​tensorflow. ​org), is the most popular deep learning
library. It's developed and maintained by Google. You don't need to explicitly require the
use of a GPU; rather TensorFlow will automatically try to use it if you have one. If you have
more than one GPU, you must assign operations to each GPU explicitly, or only the first
one will be used. To do this, you simply need to type the line that is show in the following
code block:

with tensorflow.device("/gpu:1"):
 # model definition here

Here's an example:

"/cpu:0": the main CPU of your machine
"/gpu:0": the first GPU of your machine, if one exists
"/gpu:1": the second GPU of your machine, if a second exists
"/gpu:2": the third GPU of your machine, if a third exists, and so on

TensorFlow has a steeper learning curve, compared to the other libraries. You can refer to
the TensorFlow documentation to learn how to use it.

https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org

Deep Learning Fundamentals Chapter 3

[84]

Keras
Keras is a high-level neural net Python library that runs on top of
TensorFlow, CNTK (https:/ ​/​github. ​com/​Microsoft/ ​CNTK), or Theano. For the purposes
of this book, we'll assume that it uses TensorFlow on the backend. With Keras, you can
perform rapid experimentation and it's relatively easy to use compared to TF. It will
automatically detect an available GPU and attempt to use it. Otherwise, it will revert to the
CPU. If you wish to specify the device manually, you can import TensorFlow and use the
same code as in the previous section, TensorFlow:

with tensorflow.device("/gpu:1"):
 # Keras model definition here

Once again, you can refer to the online documentation for further information
at http://keras.io.

PyTorch
PyTorch (https:/​/ ​pytorch. ​org/ ​) is a deep learning library based on Torch and developed
by Facebook. It is relatively easy to use, and has recently gained a lot of popularity. It will
automatically select a GPU, if one is available, reverting to the CPU otherwise. If you wish
to select the device explicitly, you could use the following code sample:

at beginning of the script
device = torch.device("cuda:0" if torch.cuda.is_available() else
"cpu")
...
then whenever you get a new Tensor or Module
this won't copy if they are already on the desired device
input = data.to(device)
model = MyModule(...).to(device)

https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
http://keras.io
http://keras.io
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/

Deep Learning Fundamentals Chapter 3

[85]

Using Keras to classify handwritten digits
In this section, we'll use Keras to classify the images of the MNIST dataset. It's comprised of
70,000 examples of handwritten digits by different people. The first 60,000 are typically
used for training and the remaining 10,000 for testing:

Sample of digits taken from the MNIST dataset

One of the advantages of Keras is that it can import this dataset for you without needing to
explicitly download it from the web (it will download it for you):

Our first step will be to download the datasets using Keras:1.

from keras.datasets import mnist

Then, we need to import a few classes to use a feed-forward network:2.

from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.utils import np_utils

Next, we'll load the training and testing data. (X_train, Y_train) are the3.
training images and labels, and (X_test, Y_test) are the test images and
labels:

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

Deep Learning Fundamentals Chapter 3

[86]

We need to modify the data to be able to use it. X_train contains 60,000 28 x 284.
pixel images, and X_test contains 10,000. To feed them to the network as inputs,
we want to reshape each sample as a 784-pixel long array, rather than a (28,28)
two-dimensional matrix. We can accomplish this with these two lines:

X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)

The labels indicate the value of the digit depicted in the images. We want to5.
convert this into a 10-entry one-hot encoded vector comprised of zeroes and just
one 1 in the entry corresponding to the digit. For example, 4 is mapped to [0, 0, 0,
0, 1, 0, 0, 0, 0, 0]. Conversely, our network will have 10 output neurons:

classes = 10
Y_train = np_utils.to_categorical(Y_train, classes)
Y_test = np_utils.to_categorical(Y_test, classes)

Before calling our main function, we need to set the size of the input layer (the6.
size of the MNIST images), the number of hidden neurons, the number of epochs
to train the network, and the mini batch size:

input_size = 784
batch_size = 100
hidden_neurons = 100
epochs = 100

We are ready to define our network. In this case, we'll use7.
the Sequential model, where each layer serves as an input to the next. In
Keras, Dense means fully-connected layer. We'll use a network with one hidden
layer, sigmoid activation, and softmax output:

model = Sequential([
 Dense(hidden_neurons, input_dim=input_size),
 Activation('sigmoid'),
 Dense(classes),
 Activation('softmax')
])

Keras now provides a simple way to specify the cost function (the loss) and its8.
optimization, in this case, cross-entropy and stochastic gradient descent. We'll
use the default values for learning rate, momentum, and so on:

model.compile(loss='categorical_crossentropy',
metrics=['accuracy'], optimizer='sgd')

Deep Learning Fundamentals Chapter 3

[87]

Softmax and cross-entropy

In the Logistic regression section of Chapter 2, Neural Networks, we learned
how to apply regression to binary classification (two classes) problems.
The softmax function is a generalization of this concept for multiple
classes. Let's look at the following formula:

Here, i, j = 0, 1, 2, ... n and xi represent each of n arbitrary real values,
corresponding to n mutually exclusive classes. The softmax "squashes" the
input values in the (0, 1) interval, similar to the logistic function. But it has
the additional property that the sum of all the squashed outputs adds up
to 1. We can interpret the softmax outputs as a normalized probability
distribution of the classes. Then, it makes sense to use a loss function,
which compares the difference between the estimated class probabilities
and the actual class distribution (the difference is known as cross-
entropy). As we mentioned in step 5 of this section, the actual distribution
is usually a one-hot-encoded vector, where the real class has a probability
of 1, and all others have a probability of 0. The loss function that does this
is called cross-entropy loss:

Here, qi(x) is the estimated probability of the output to belong to class
i (out of n total classes) and pi(x) is the actual probability. When we use
one-hot-encoded target values for pi(x), only the target class has a non-
zero value (1) and all others are zeros. In this case, cross entropy loss will
only capture the error on the target class and will discard all other
errors. For the sake of simplicity, we'll assume that we apply the formula
over a single training sample.

We are ready to train the network. In Keras, we can do this in a simple way, with9.
the fit method:

model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=epochs,
verbose=1)

Deep Learning Fundamentals Chapter 3

[88]

All that's left to do is to add code to evaluate the network accuracy on the test10.
data:

score = model.evaluate(X_test, Y_test, verbose=1) print('Test
accuracy:', score[1])

And that's it. The test accuracy will be about 96%, which is not a great result, but
this example runs in less than 30 seconds on a CPU. We can make some simple
improvements, such as a larger number of hidden neurons, or a higher number of
epochs. We'll leave those experiments to you, to familiarize yourself with the
code.

To see what the network has learned, we can visualize the weights of the hidden11.
layer. The following code allows us to obtain them:

weights = model.layers[0].get_weights()

 To do this, we'll reshape the weights for each neuron back to a 28x28 two-12.
dimensional array:

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy

fig = plt.figure()

w = weights[0].T
for neuron in range(hidden_neurons):
 ax = fig.add_subplot(10, 10, neuron + 1)
 ax.axis("off")
 ax.imshow(numpy.reshape(w[neuron], (28, 28)), cmap=cm.Greys_r)

plt.savefig("neuron_images.png", dpi=300)
plt.show()

Deep Learning Fundamentals Chapter 3

[89]

And we can see the result in the following image:13.

Composite figure of what was learned by all the hidden neurons

For simplicity, we've aggregated the images of all neurons in a single figure that represents
a composite of all neurons. Clearly, since the initial images are very small and do not have
lots of details (they are just digits), the features learned by the hidden neurons are not all
that interesting. But it's already clear that each neuron is learning a different shape.

Using Keras to classify images of objects
With Keras, it's easy to create neural nets, but it's also easy to download test datasets. Let's
try to use the CIFAR-10 (Canadian Institute For Advanced Research, https:/ ​/​www. ​cs.
toronto.​edu/​~kriz/ ​cifar. ​html) dataset instead of MNIST. It consists of 60,000 32x32 RGB
images, divided into 10 classes of objects, namely: airplanes, automobiles, birds, cats, deers,
dogs, frogs, horses, ships, and trucks:

We'll import CIFAR-10 in the same way as we did MNIST:1.

from keras.datasets import cifar10
from keras.layers.core import Dense, Activation
from keras.models import Sequential
from keras.utils import np_utils

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Deep Learning Fundamentals Chapter 3

[90]

Then, we'll split the data into 50,000 training images and 10,000 testing images.2.
Once again, we need to reshape the image to a one-dimensional array. In this
case, each image has 3 color channels (red, green, and blue) of 32x32 pixels, hence
3 x32x3 = 3072:

(X_train, Y_train), (X_test, Y_test) = cifar10.load_data()

X_train = X_train.reshape(50000, 3072)
X_test = X_test.reshape(10000, 3072)

classes = 10
Y_train = np_utils.to_categorical(Y_train, classes)
Y_test = np_utils.to_categorical(Y_test, classes)

input_size = 3072
batch_size = 100
epochs = 100

This dataset is more complex than MNIST and the network has to reflect that.3.
Let's try to use a network with three hidden layers and more hidden neurons
than the previous example:

model = Sequential([
 Dense(1024, input_dim=input_size),
 Activation('relu'),
 Dense(512),
 Activation('relu'),
 Dense(512),
 Activation('sigmoid'),
 Dense(classes),
 Activation('softmax')
])

We'll run the training with one additional4.
parameter, validation_data=(X_test, Y_test), which will use the test data
as a validation set:

model.compile(loss='categorical_crossentropy',
metrics=['accuracy'], optimizer='sgd')
model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs,
validation_data=(X_test, Y_test), verbose=1)

Deep Learning Fundamentals Chapter 3

[91]

Next, we'll visualize the weights of 100 random neurons from the first layer.5.
We'll reshape the weights to 32x32 arrays and we'll compute the mean value of
the 3 color channels to produce a grayscale image:

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.gridspec as gridspec
import numpy
import random

fig = plt.figure()
outer_grid = gridspec.GridSpec(10, 10, wspace=0.0, hspace=0.0)

weights = model.layers[0].get_weights()

w = weights[0].T

for i, neuron in enumerate(random.sample(range(0, 1023), 100)):
 ax = plt.Subplot(fig, outer_grid[i])
 ax.imshow(numpy.mean(numpy.reshape(w[i], (32, 32, 3)), axis=2),
cmap=cm.Greys_r)
 ax.set_xticks([])
 ax.set_yticks([])
 fig.add_subplot(ax)

plt.show()

 If everything goes as planned, we'll see the result in the following image:

Composite figure with the weights of 100 random neurons from the first layer. Unlike MNIST, there is no clear indication of what the neurons might have learned

Deep Learning Fundamentals Chapter 3

[92]

Compared to the MNIST example, training takes much longer. But by the end, we'll have
about 60% training accuracy and only about 51% test accuracy, despite the larger network.
This is due to the higher complexity of the data. The accuracy of the training keeps
increasing, but the validation accuracy plateaus at some point, showing that the network
starts to overfit and to saturate some parameters.

Summary
In this chapter, we explained what deep learning is and how it's related to deep neural
networks. We discussed the different types of networks and how to train them. We also
mentioned many real-world applications of deep learning and tried to analyze the reasons
for its efficiency. Finally, we introduced three of the most popular deep learning libraries,
namely, TensorFlow, Keras and PyTorch. We also implemented a couple of examples with
Keras, but we hit a low accuracy ceiling when we tried to classify the CIFAR-10 dataset.

In the next chapter, we'll discuss how to improve these results with the help of
convolutional networks – one of the most popular and effective deep network
models. We'll talk about their structure, building blocks, and what makes them uniquely
suited to computer vision tasks. To spark your interest, let's recall that convolutional
networks have consistently won the popular ImageNet challenge since 2012, delivering top-
five accuracy from 74.2% to 97.7%.

4
Computer Vision with

Convolutional Networks
 In Chapter 2, Neural Networks, and Chapter 3, Deep Learning Fundamentals, we set high
expectations of deep learning and computer vision. First, we mentioned the ImageNet
competition, and then we talked about some of its exciting real-world applications, such as
semi-autonomous cars. In this chapter, and the next two chapters, it's time to deliver on
those expectations.

Vision is arguably the most important human sense. We rely on it for almost any action we
take. But image recognition has (and in some ways still is), for the longest time, been one of
the most difficult problems in computer science. Historically, it's been very difficult to
explain to a machine what features make up a specified object, and how to detect them. But,
as we've seen, in deep learning the neural network can learn those features by itself.

In this chapter, we will cover the following topics:

Intuition and justification for convolutional neural networks (CNNs)
Convolutional layers
Stride and padding in convolutional layers
Pooling layers
The structure of a convolutional network
Improving the performance of CNNs
A CNN example with Keras and CIFAR-10

Computer Vision with Convolutional Networks Chapter 4

[94]

Intuition and justification for CNN
The information we extract from sensory inputs is often determined by their context. With
images, we can assume that nearby pixels are closely related and their collective
information is more relevant when taken as a unit. Conversely, we can assume that
individual pixels don't convey information related to each other. For example, to recognize
letters or digits, we need to analyze the dependency of pixels close by, because they
determine the shape of the element. In this way, we could figure the difference between,
say, a 0 or a 1. The pixels in an image are organized in a two-dimensional grid, and if the
image isn't grayscale, we'll have a third dimension for the color maps.

Alternatively, a magnetic resonance image (MRI) also uses three-dimensional space. You
might recall that, until now, if we wanted to feed an image to a neural network, we had to
reshape it from two-dimensional to a one-dimensional array. CNNs are built to address this
issue: how to make information pertaining to neurons that are closer more relevant than
information coming from neurons that are further apart. In visual problems, this translates
into making neurons process information coming from pixels that are near to one
another. With CNNs, we'll be able to feed one-, two-, or three-dimensional inputs and the
network will produce an output of the same dimensionality. As we'll see later, this will give
us several advantages.

If you recall, at the end of the previous chapter, we tried to classify the CIFAR-10 images
using network of fully-connected layers with little success. One of the reasons is that they
overfit. Let's analyze the first hidden layer of that network, which has 1,024 neurons. The
input size of the image is 32x32x3 = 3,072. Therefore, the first hidden layer had a total of
2072 * 1024 = 314, 5728 weights. That's no small number! Not only is it easy to overfit such a
large network, but it's also memory inefficient. Additionally, each input neuron (or pixel) is
connected to every neuron in the hidden layer. Because of this, the network cannot take
advantage of the spatial proximity of the pixels, since it doesn't have a way of knowing
which pixels are close to each other. By contrast, CNNs have properties that provide an
effective solution to these problems:

They connect neurons, which only correspond to neighboring pixels of the
image. In this way, the neurons are "forced" to only take input from other
neurons which are spatially close. This also reduces the number of weights, since
not all neurons are interconnected.
A CNN uses parameter sharing. In other words, a limited number of weights are
shared among all neurons in a layer. This further reduces the number of weights
and helps fight overfitting. It might sound confusing, but it will become clear in
the next section.

Computer Vision with Convolutional Networks Chapter 4

[95]

In this chapter, we'll discuss CNNs in the context of computer vision and
all explanations and examples will be related to that. But they are also
successfully applied in areas such as speech recognition and natural
language processing (NLP). Many of the explanations we'll describe here
are also valid for those areas. That is, the principles of CNNs are the same
regardless of the field of use.

Convolutional layers
The convolutional layer is the most important building block of a CNN. It consists of a set
of filters (also known as kernels or feature detectors), where each filter is applied across all
areas of the input data. A filter is defined by a set of learnable weights. As a nod to the
topic at hand, the following image illustrates this very well:

Displayed is a two-dimensional input layer of a neural network. For the sake of simplicity,
we'll assume that this is the input layer, but it can be any layer of the network. As we've
seen in the previous chapters, each input neuron represents the color intensity of a pixel
(we'll assume it's a grayscale image for simplicity). First, we'll apply a 3x3 filter in the top-
right corner of the image. Each input neuron is associated with a single weight of the filter.
It has nine weights, because of the nine input neurons, but, in general, the size is arbitrary
(2x2, 4x4, 5x5, and so on). The output of the filter is a weighted sum of its inputs (the
activations of the input neurons). Its purpose is to highlight a specific feature in the input,
for example, an edge or a line. The group of nearby neurons, which participate in the input
are called the receptive field. In the context of the network, the filter output represents the
activation value of a neuron in the next layer. The neuron will be active, if the feature is
present at this spatial location.

Computer Vision with Convolutional Networks Chapter 4

[96]

In a convolutional layer, the neuron activation value is defined in the
same way as the activation value of the neuron, we defined in Chapter 2,
Neural Networks. But here, the neuron takes input only from a limited
number of input neurons in its immediate surroundings. This is opposed
to a fully-connected layer, where the input comes from all neurons.

So far, we've calculated the activation of a single neuron. What about the others? It's simple!
For each new neuron, we'll slide the filter across the input image and we'll compute its
output (the weighted sum) with each new set of input neurons. In the following diagram,
you can see how to compute the activations of the next two positions (one pixel to the
right):

As the filter moves across the image, we compute the new activation values for the neurons in the output slice

Computer Vision with Convolutional Networks Chapter 4

[97]

By saying "slide", we mean that the weights of the filter don't change across the image. In
effect, we'll use the same nine filter weights to compute the activations of all output
neurons, each time with a different set of input neurons. We call this parameter sharing,
and we do it for two reasons:

By reducing the number of weights, we reduce the memory footprint and
prevent overfitting.
The filter highlights specific features. We can assume that this feature is useful,
regardless of its position on the image. By sharing weights, we guarantee that the
filter will be able to locate the feature throughout the image.

To compute all output activations, we'll repeat the process until we've moved across the
whole input. The spatially arranged neurons are called depth slices (or a feature map),
implying that there is more than one slice. The slice can serve as an input to other layers in
the network. It's interesting to note that each input neuron is part of the input of multiple
output neurons. For example, as we slide the filter, the green neuron in the preceding
diagram will form the input of nine output neurons. Finally, just as with regular layers, we
can use activation function after each neuron. As we mentioned in Chapter
2, Neural Networks, the most common activation function is the ReLU. An example of this is
shown in the following illustration:

An example of convolution with a 2x2 filter over a 4x4 slice. The output is a 3x3 slice

In convolutional layers, the bias weight is also shared across all neurons.
We'll have a single bias weight for the whole slice.

Computer Vision with Convolutional Networks Chapter 4

[98]

So far, we have described the one-to-one slice relation, where the output is a single slice,
which takes input from another slice (or an image). This works well in grayscale, but how
do we adapt it for color images (n to 1 relation)? Once again, it's simple! First, we'll split the
image in color channels. In the case of RGB, that would be three. We can think of each color
channel as a depth slice, where the values are the pixel intensities for the given color (R, G,
or B), as shown in the following example:

An example of an input slice with depth 3

The combination of slices is called input volume with a depth of 3. A unique 3x3 filter is
applied to each slice. The activation of one output neuron is just the weighted sum of the
filters applied across all slices. In other words, we'll combine the three filters in one big 3 x 3
x 3 + 1 filter with 28 weights (we added depth and a single bias). Then, we'll compute the
weighted sum by applying the relevant weights to each slice.

The input and output features maps have different dimensions. Let's say
we have an input layer with size (width, height) and a filter with
dimensions (filter_w, filter_h). After applying the convolution, the
dimensions of the output layer are (width - filter_w + 1, height
- filter_h + 1).

Computer Vision with Convolutional Networks Chapter 4

[99]

As we mentioned, a filter highlights a specific feature, such as edges or lines. But, in
general, many features are important and we'll be interested in all of them. How do we
highlight them all? As usual, it's simple (if Grumpy Cat read this book, she would surely be
tired of so much optimism). We'll apply multiple filters across the set of input slices. Each
filter will generate a unique output slice, which highlights the feature, detected by the filter
(n to m relation). An output slice can receive input from:

All input slices, which is the standard for convolutional layers. In this scenario, a
single output slice is a case of the n-to-1 relationship, we described before. With
multiple output slices, the relation becomes n-to-m. In other words, each input
slice contributes to the output of each output slice.
A single input slice. This operation is known as depthwise convolution. It's a
kind of reversal of the previous case. In its most simple form, we apply a filter
over a single input slice to produce a single output slice. This is a case of the one-
to-one relation, we described in the previous section. But we can also specify
a channel multiplier (an integer m), where we apply m filters over a single
output slice to produce m output slices. This is a case of 1-to-m relation. The total
number of output slices is n * m.

Let's denote the width and height of the filter with Fw and Fh, the depth of the input volume
with D, and the depth of the output volume with M. Then, we can compute the total
number of weights W in a convolutional layer with the following equation:

Let's say we have three slices and want to apply four 5x5 filters to them. Then, the
convolutional layer will have a total of (3x5x5 + 1) * 4 = 304 weights, and four output slices
(output volume with depth of 4), one bias per slice. The filter for each output slice will have
three 5x5 filter patches for each of the three input slices and one bias for a total of 3x5x5 + 1
= 76 weights. The combination of the output maps is called output volume with a depth of
four.

We can think of the fully-connected layer as a special case of
convolutional layer, with input volume of depth 1, filters with the same
size as the size of the input, and a total number of filters, equal to the
number of output neurons.

Computer Vision with Convolutional Networks Chapter 4

[100]

A coding example of convolution operation
We've now described how convolutional layers work, but we'll gain better intuition with a
visual example. Let's implement a convolution operation by applying a couple of filters
across an image. For the sake of clarity, we'll implement the sliding of the filters across the
image manually and we won't use any DL libraries. Let's start.

First, we'll import numpy, as shown in the following example:1.

import numpy as np

Then, we'll define the function conv, which applies the convolution across the2.
image. conv takes two parameters: image for the image itself and filter, for
the filter:

First, we'll compute the output image size, which depends on the input
image and filter sizes. We'll use it to instantiate the output image im_c.
Then, we'll iterate over all pixels of the image, applying the filter at
each location.
We'll check if any value is out of the [0, 255] interval and fix it, if
necessary.
Finally, we'll display the input and output images for comparison.

This is shown in the following example:

def conv(image, im_filter):
 """
 :param image: grayscale image as a 2-dimensional numpy array
 :param im_filter: 2-dimensional numpy array
 """

 # input dimensions
 height = image.shape[0]
 width = image.shape[1]

 # output image with reduced dimensions
 im_c = np.zeros((height - len(im_filter) + 1,
 width - len(im_filter) + 1))

 # iterate over all rows and columns
 for row in range(len(im_c)):
 for col in range(len(im_c[0])):
 # apply the filter
 for i in range(len(im_filter)):
 for j in range(len(im_filter[0])):
 im_c[row, col] += image[row + i, col + j] *

Computer Vision with Convolutional Networks Chapter 4

[101]

im_filter[i][j]

 # fix out-of-bounds values
 im_c[im_c > 255] = 255
 im_c[im_c < 0] = 0

 # plot images for comparison
 import matplotlib.pyplot as plt
 import matplotlib.cm as cm

 plt.figure()
 plt.imshow(image, cmap=cm.Greys_r)
 plt.show()

 plt.imshow(im_c, cmap=cm.Greys_r)
 plt.show()

Next, we'll download the image. The following boilerplate code is in the global3.
scope of the module. It loads the requested RGB image into a numpy array and
converts it to grayscale, as shown:

import requests
from PIL import Image
from io import BytesIO

load the image
url =
"https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Commande
r_Eileen_Collins_-_GPN-2000-001177.jpg/382px-
Commander_Eileen_Collins_-_GPN-2000-001177.jpg?download"
resp = requests.get(url)
image_rgb =
np.asarray(Image.open(BytesIO(resp.content)).convert("RGB"))

convert to grayscale
image_grayscale = np.mean(image_rgb, axis=2, dtype=np.uint)

Finally, we'll apply different filters across the image. To better illustrate our4.
point, we'll use 10 x 10 blur filter, as well as Sobel edge detectors, as shown in
the following example:

blur filter
blur = np.full([10, 10], 1. / 100)
conv(image_grayscale, blur)

Sobel edge detectors
sobel_x = [[-1, -2, -1],

Computer Vision with Convolutional Networks Chapter 4

[102]

 [0, 0, 0],
 [1, 2, 1]]
conv(image_grayscale, sobel_x)

sobel_y = [[-1, 0, 1],
 [-2, 0, 2],
 [-1, 0, 1]]
conv(image_grayscale, sobel_y)

This code generates the following images:

The first image is the grayscale input. The second image is the result of a 10 x 10 blur filter. The third and fourth images use detectors and vertical Sobel edge detector

In this example, we used filters with hard-coded weights to visualize how the convolution
operation works in neural networks. In reality, the weights of the filter will be set during
the network training. All we'll need to do is define the network architecture, such as the
number of convolutional layers, depth of the output volume, and the size of the filters. The
network will figure out the features, highlighted by each filter during training.

Stride and padding in convolutional layers
Until now, we assumed that sliding of the filter happens one pixel at a time, but that's not
always the case. We can slide the filter multiple positions. This parameter of the
convolutional layers is called stride. Usually, the stride is the same across all dimensions of
the input. In the following diagram, we can see a convolutional layer with a stride of 2:

Computer Vision with Convolutional Networks Chapter 4

[103]

With stride 2, the filter is translated by two pixels at a time

By using a stride larger than 1, we reduce the size of the output slice. In the previous
section, we introduced a simple formula for the output size, which included the sizes of the
input and the kernel. Now, we'll extend it to also include the stride: ((width -
filter_w) / stride_w + 1, ((height - filter_h) / stride_h + 1). For
example, the output size of a square slice generated by a 28x28 input image, convolved
with a 3x3 filter with stride 1, would be 28 - 3 + 1 = 26. But with stride 2, we get (28 - 3) / 2 +
1 = 13.

The main effect of the larger stride is an increase in the receptive field of the output
neurons. Let's explain this with an example. If we use stride 2, the size of the output slice
will be roughly four times smaller than the input. In other words, one output neuron will
"cover" area, which is four times larger, compared to the input neurons. The neurons in the
following layers will gradually capture input from larger regions from the input image.
This is important, because it would allow them to detect larger and more complex features
of the input.

A convolution operation with stride larger than 1 is usually called stride
convolution.

Computer Vision with Convolutional Networks Chapter 4

[104]

The convolution operations we have discussed until now have produced smaller output
than the input. But, in practice, it's often desirable to control the size of the output. We can
solve this by padding the edges of the input slice with rows and columns of zeros before
the convolution operation. The most common way to use padding is to produce output
with the same dimensions as the input. In the following diagram, we can see a
convolutional layer with padding of 1:

Convolutional layer with padding 1

The white neurons represent the padding. The input and the output slices have the same
dimensions (dark neurons). This is the most common way to use padding. The newly
padded zeros will participate in the convolution operation with the slice, but they won't
affect the result. The reason is that, even though the padded areas are connected with
weights to the following layer, we'll always multiply those weights by the padded value,
which is 0.

We'll now add padding to the formula of the output size. Let the size of the input slice
be I=(Iw, Ih), the size of the filter F=(Fw,Fh), the stride S=(Sw,Sh), and the padding P=(Pw,Ph).
Then the size O=(Ow,Oh) of the output slice is given by the following equations:

Computer Vision with Convolutional Networks Chapter 4

[105]

1D, 2D, and 3D convolutions
Until now, we've used 2D convolutions, where the input and output neurons were
arranged in a two-dimensional grid. This works very well for images. But we can also have
1D and 3D convolutions, where the neurons are arrange in one-dimensional or three-
dimensional space respectively. In all cases, the filter has the same number of dimensions as
the input and the weights are shared across the input. For example, we would use 1D
convolution with time-series data, because the values are arranged across a single time axis.
In the following diagram, we can see an example of 1D convolution:

1D convolution

The weights with the same color (red, green, or blue) share the same value. The output of
1D convolution is also 1D. If the input is 3D, such as a 3D MRI, we could use 3D
convolution, which will also produce 3D output. In this way, we'll maintain the spatial
arrangement of the input data. We can see an example of 3D convolution in the following
diagram:

3D convolution

The input has dimensions H/W/L and the filter has a single size F for all dimensions. The
output is also 3D.

Computer Vision with Convolutional Networks Chapter 4

[106]

In the previous sections, we used 2D convolutions to work with RGB
images. But we might consider the three colors as an additional
dimension, making the RGB image 3D. Why didn't we use 3D
convolutions then? The reason is that, even though we can think of the
input as 3D, the output is still a two-dimensional grid. Had we used 3D
convolution, the output would also be 3D, which doesn't carry any
meaning in the case of images.

1x1 convolutions
1x1 (pointwise) convolution is a special case of convolution, where each dimension of the
convolution filter is of size 1 (1x1 in 2D convolutions and 1x1x1 in 3D). At first this doesn't
make sense—a 1x1 filter doesn't increase the receptive field size of the output neurons. The
result of such convolution would be just pointwise scaling. But it can be useful in another
way - we can use them to change the depth between the input and output volumes. To
understand this, let's recall that in the general case we have input volume with a depth
of D slices and M filters for M output slices. Each output slice is generated by applying a
unique filter over all input slices. If we use a 1x1 filter and D != M, we'll have output slices
of the same size, but with different volume depth. At the same time, we won't change the
receptive field size between input and output. The most common use case is to reduce the
output volume, or D > M (dimension reduction), nicknamed the "bottleneck" layer.

Backpropagation in convolutional layers
In Chapter 2, Neural Networks, we talked about backpropagation in general, and for fully-
connected layers in particular. In a fully-connected layer, an input neuron contributes to all
output neurons. Because of this, when the gradient is routed back, all output neurons
contribute back to the original neuron. In effect, we used the same operation of weighted
sum in the forward and backward passes. The same rule applies for convolutional layers,
where the neurons are locally-connected. In the Convolutional layers section, we observed
how a neuron participates in the inputs of several output neurons. This is illustrated in the
following diagram, where we can see a convolution operation with 3x3 filter. The green
neuron will participate in the inputs of 9 output neurons, arranged in a 3x3
pattern. Conversely, the same neurons will route the gradient in the backward pass. This
example shows that the backward pass of a convolution operation is another convolution
operation with the same parameters, but with spatially-flipped filter. This operation is
known as transposed convolution (or deconvolution). As we'll see later in the book, it has
other applications besides backpropagation:

Computer Vision with Convolutional Networks Chapter 4

[107]

The backward pass of a convolution operation is also a convolution

As we mentioned in the previous chapter, all modern deep learning
libraries have automatic differentiation. This is true for all the layers, we'll
talk about in this chapter. You'll probably never have to implement the
derivatives of a convolution operation, except as an exercise.

Convolutional layers in deep learning libraries
PyTorch, Keras, and TensorFlow have out of the gate support for 1D, 2D, and 3D standard,
and depthwise convolutions. The inputs and outputs of the convolution operation are
tensors. A 1D convolution would have 3D input and output tensors. Their axes can be in
either NCW or NWC order, where:

N stands for the index of the sample in the mini-batch
C stands for the index of the depth slice in the volume
W stands for the content of the slice

In the same way, a 2D convolution will be represented by NCHW or NHWC ordered
tensors, where H and W are the height and width of the slices. A 3D convolution will have
NCDHW or NDHWC order, where D stands for the depth of the slice.

Computer Vision with Convolutional Networks Chapter 4

[108]

Pooling layers
In the previous section, we explained how to increase the receptive field of the neurons by
using a stride larger than 1. But we can also do this with the help of pooling layers. A
pooling layer splits the input slice into a grid, where each grid cell represents a receptive
field of a number of neurons (just as a convolutional layer does). Then, a pooling operation
is applied over each cell of the grid. Different types of pooling layers exist. Pooling layers
don't change the volume depth, because the pooling operation is performed independently
on each slice.

Max pooling: is the most popular way of pooling. The max pooling operation takes the
neuron with the highest activation value in each local receptive field (grid cell), and
propagates only that value forward. In the following figure, we can see an example of max
pooling with a receptive field of 2x2:

An example of the input and output of a max pooling operation with stride 2 and 2x2 receptive field. This operation discards 3/4 of the input neurons

Pooling layers don't have any weights. In the backward pass of max pooling, the gradient
is routed only to the neuron, which had the highest activation during the forward pass. The
other neurons in the receptive field propagate zeros.

Average pooling: is another type of pooling, where the output of each receptive field is the
mean value of all activations within the field. The following is an example of average
pooling:

Computer Vision with Convolutional Networks Chapter 4

[109]

An example of the input and output of a max pooling operation with stride 2 and 2x2 receptive field

Pooling layers are defined by two parameters:

Stride, which is the same as with convolutional layers
Receptive field size, which is the equivalent of the filter size in convolutional
layers

In practice, only two combinations are used. The first is a 2x2 receptive field with stride 2,
and the second is a 3x3 receptive field with stride 2 (overlapping). If we use a larger value
for either parameters, the network loses too much information. Alternatively, if the stride is
1, the size of the layer wouldn't be smaller, neither will the receptive field increase.

Based on these parameters, we can compute the output size of a pooling layer. Let's denote
the size of the input slice with I, the size of the receptive field with F, the size of the stride
with S, and the size of the output with O. Pooling layers typically don't have padding. Then
the formulas are as follows:

Pooling layers are still very much used, but sometimes we can achieve similar or better
results by simply using convolutional layers with larger strides. (See, for example, J.
Springerberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for Simplicity: The All
Convolutional Net, (2015), https://arxiv.org/abs/1412.6806).

https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806

Computer Vision with Convolutional Networks Chapter 4

[110]

The structure of a convolutional network
Before going further, let's put together everything we have learned so far. In the figure
following we can see the structure of a basic CNN:

A basic convolutional network with convolutional and fully-connected layers in blue and pooling layers in green

Most CNNs share basic properties. Here are some of them:

We would typically alternate one or more convolutional layers with one pooling
layer. In this way, the convolutional layers can detect features at every level of
the receptive field size. The aggregated receptive field size of deeper layers is
larger than the ones at the beginning of the network. This allows them to capture
more complex features from larger input regions. Let's illustrate this with an
example. Imagine that the network uses 3x3 convolutions with stride 1 and 2x2
pooling with stride 2:

The neurons of the first convolutional layer will receive input from
3x3 pixels of the image.
A group of 2x2 output neurons of the first layer will have a
combined receptive field size of 4x4 (because of the stride).
After the first pooling operation, this group will be combined in a
single neuron of the pooling layer.
The second convolution operation takes input from 3x3 pooling
neurons. Therefore, it will receive input from a square with side
3x4 = 12 (or a total of 12x12 = 144) pixels from the input image.

Computer Vision with Convolutional Networks Chapter 4

[111]

We use the convolutional layers to extract features from the input. The features
detected by the deepest layers are highly abstract, but they are also not readable
by humans. To solve this problem, we usually add one or more fully-connected
layers after the last convolutional/pooling layer. In this example, the last fully-
connected layer (output) will use softmax to estimate the class probabilities of the
input. You can think of the fully-connected layers as translators between the
network's language (which we don't understand) and ours.
The deeper convolutional layers usually have more filters (hence higher volume
depth), compared to the initial ones. A feature detector in the beginning of the
network works on a small receptive field. It can only detect a limited number of
features, such as edges or lines, shared among all classes. On the other hand, a
deeper layer would detect more complex and numerous features. For example, if
we have multiple classes such as cars, trees, or people, each would have its own
set of features such as tires, doors, leaves and faces, and so on. This would
require more feature detectors.

Classifying handwritten digits with
a convolutional network
In the third chapter, we introduced a simple neural network to classify digits using Keras
and we got 96% accuracy. We could improve this with some tricks (more hidden neurons,
for example), but let's try with a simple CNN instead:

First, we'll do the imports. We'll also set the random seed:1.

for reproducibility
from numpy.random import seed

seed(1)
from tensorflow import set_random_seed

set_random_seed(1)

Computer Vision with Convolutional Networks Chapter 4

[112]

Then, we'll do the imports, including convolutional and max pooling layers, as2.
shown in the following example:

from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Flatten

from keras.utils import np_utils

Next, we'll import the MNIST dataset. We already did a similar step in the3.
previous chapter in the section Using Keras to classify handwritten digits. Since we'll
be using convolutional layers, we can reshape the input in 28x28 patches, as
shown in the following example:

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 28, 28, 1)
X_test = X_test.reshape(10000, 28, 28, 1)

Y_train = np_utils.to_categorical(Y_train, 10)
Y_test = np_utils.to_categorical(Y_test, 10)

Then, we'll define the model - a network with two convolutional layers, one max4.
pooling layer, and two fully-connected layers. Besides this, we need to use
a Flatten between the max pooling and the fully-connected layer. We have to
do this, because the fully-connected layer expects one-dimensional input, but the
output of the convolutional layer is three-dimensional. This is shown in the
following example:

model = Sequential([
 Convolution2D(filters=32,
 kernel_size=(3, 3),
 input_shape=(28, 28, 1)), # first conv layer
 Activation('relu'),
 Convolution2D(filters=32,
 kernel_size=(3, 3)), # second conv layer
 Activation('relu'),
 MaxPooling2D(pool_size=(2, 2)), # max pooling layer
 Flatten(), # flatten the output tensor
 Dense(64), # fully-connected hidden layer
 Activation('relu'),
 Dense(10), # output layer
 Activation('softmax')])

print(model.summary())

Computer Vision with Convolutional Networks Chapter 4

[113]

We can use the model.summary() method of Keras to better explain the5.
network architecture. The output is shown in the following example:

Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
activation_1 (Activation) (None, 26, 26, 32) 0
__
conv2d_2 (Conv2D) (None, 24, 24, 32) 9248
__
activation_2 (Activation) (None, 24, 24, 32) 0
__
max_pooling2d_1 (MaxPooling2D) (None, 12, 12, 32) 0
__
flatten_1 (Flatten) (None, 4608) 0
__
dense_1 (Dense) (None, 64) 294976
__
activation_3 (Activation) (None, 64) 0
__
dense_2 (Dense) (None, 10) 650
__
activation_4 (Activation) (None, 10) 0
==
Total params: 305,194
Trainable params: 305,194
Non-trainable params: 0

Next, we'll define the optimizer. Instead of a stochastic gradient descent6.
(SGD), we'll use ADADELTA. It automatically makes the learning rate larger or
smaller in an inversely proportional way to the gradient. In this way, the
network doesn't learn too slowly and it doesn't skip minima by taking too large a
step. By using ADADELTA, we dynamically adjust the parameters with time (see
also: Matthew D. Zeiler, ADADELTA: An Adaptive Learning Rate Method,
arXiv:1212.5701v1 (https:/ ​/​arxiv. ​org/ ​abs/ ​1212. ​5701). This is shown in the
following example:

model.compile(loss='categorical_crossentropy',
metrics=['accuracy'], optimizer='adadelta')

Then, we'll train the network for 5 epochs, as shown in the following example:7.

model.fit(X_train, Y_train, batch_size=100, epochs=5,
validation_split=0.1, verbose=1)

https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701

Computer Vision with Convolutional Networks Chapter 4

[114]

Finally, we'll test, as shown in the following code:8.

score = model.evaluate(X_test, Y_test, verbose=1)
print('Test accuracy:', score[1])

The accuracy of this model is 98.5%.

Improving the performance of CNNs
We now know the basics of CNNs. With this foundation, we'll discuss different techniques
to improve their performance.

Data pre-processing
Until now, we've fed the network with unmodified inputs. In the case of images, these are
pixel intensities in the range [0:255]. But that's not optimal. Imagine that we have an RGB
image, where the intensities in one of the color channels is very high compared to the other
two. When we feed the image to the network, the values of this channel will become
dominant, diminishing the others. This could skew the results, because in reality every
channel has equal importance. To solve this, we need to prepare (or normalize) the data,
before we feed it to the network. In practice, we'll use two types of normalization:

Feature scaling: where . This operation scales all inputs in the [0,
1] range. For example, a pixel with intensity 125, would have a scaled value of

. Feature scaling is fast and easy to implement.

Standard score: where . Here μ and σ are the mean and standard
deviation of all training data. They are usually computed separately for each
input dimension. For example, in an RGB image, we would compute mean μ
and σ for each channel. We should note that μ and σ have to be computed only
on the training data and then applied to the test data.

Computer Vision with Convolutional Networks Chapter 4

[115]

Regularization
We already know that overfitting is a central problem in machine learning (and even more
so in deep networks). In this section, we'll discuss several ways to prevent it. Such
techniques are collectively known as regularization. To quote Ian Goodfellow's Deep
Learning book:

Regularization is any modification we make to a learning algorithm that is intended to
reduce its generalization error but not its training error.

Weight decay
The first technique we are going to discuss is weight decay (also known as L2
regularization). It works by adding additional terms to the value of the loss function.
Without going into too much detail, we'll say that this term is a function of all the weights
of the network. This means that, if the network weights have large values, the loss function
increases. In effect, weight decay penalizes large network weights (hence the name). This
prevents the network from relying too heavily on a few features associated with these
weights. There is less chance of overfitting, when the network is forced to work with
multiple features. In practical terms, we can add weight decay by changing the weight
update rule, we introduced in Chapter 2, Neural networks, as shown in the following
equations:

becomes

where λ is the weight decay coefficient.

Computer Vision with Convolutional Networks Chapter 4

[116]

Dropout
Dropout is a regularization technique, which can be applied to the output of some of the
network layers. Dropout randomly and periodically removes some of the neurons (along
with their input and output connections) from the network. During a training mini-batch,
each neuron has a probability p to be stochastically dropped. This is to ensure that no
neuron ends up relying too much on other neurons and "learns" something useful for the
network instead. Dropout can be applied after convolutional, pooling, or fully-connected
layers. In the following illustration, we can see a dropout for fully-connected layers:

An example of dropout on fully-connected layers

Data augmentation
One of the most efficient regularization techniques is data augmentation. If the training
data is too small, the network might start to overfit. Data augmentation helps counter this
by artificially increasing the size of the training set. Let's use an example. In the MNIST and
CIFAR-10 examples, we've trained the network over multiple epochs. The network will
"see" every sample of the dataset once per epoch. To prevent this, we can apply random
augmentations to the images, before using them for training. The labels will stay the same.
Some of the most popular image augmentations are:

Computer Vision with Convolutional Networks Chapter 4

[117]

Rotation
Horizontal and vertical flip
Zoom in/out
Crop
Skew
Contrast and brightness adjustment

The emboldened augmentations are shown in the following example:

Examples of different image augmentations

Batch normalization
In Data pre-processing, we explained why data normalization is important. Batch
normalization provides a way to apply data processing, similar to the standard score, for
the hidden layers of the network. It normalizes the outputs of the hidden layer for each
mini-batch (hence the name) in a way, which maintains its mean activation value close to 0,
and its standard deviation close to 1. We can use it with both convolutional and fully-
connected layers. Networks with batch normalization train faster and can use higher
learning rates. For more information about batch normalization, see the original
paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, by Sergey Ioffe and Christian Szegedy, which can be seen at the following link: Batch
Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

Computer Vision with Convolutional Networks Chapter 4

[118]

A CNN example with Keras and CIFAR-10
In Chapter 3, Deep Learning Fundamentals, we tried to classify the CIFAR-10 images with a
fully-connected network, but we only managed 51% test accuracy. Let's see if we can do
better with all the new things we've learned. This time we'll use CNN with data
augmentation.

We'll start with the imports. We'll use all the layers we introduced in this chapter,1.
as shown in the following example:

import keras
from keras.datasets import cifar10
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Dropout, Activation, Flatten,
BatchNormalization
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator

We'll define the mini batch_size for convenience, as shown in the following2.
code:

batch_size = 50

Next, we'll import the CIFAR-10 dataset and we'll normalize the data by dividing3.
it to 255 (maximum pixel intensity), as shown in the following code:

(X_train, Y_train), (X_test, Y_test) = cifar10.load_data()

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255

Y_train = keras.utils.to_categorical(Y_train, 10)
Y_test = keras.utils.to_categorical(Y_test, 10)

Then, we'll implement loading of the data and we'll define the augmentation4.
types we'll use:

To do this, we need the ImageDataGenerator class
We'll allow rotation of up to 90 degrees, horizontal flip, horizontal and
vertical shift of the data

Computer Vision with Convolutional Networks Chapter 4

[119]

We'll standardize the training data
(featurewise_center and featurewise_std_normalization).
Because the mean and standard deviation are computed over the
whole data set, we need to call
the data_generator.fit(X_train) method
Finally, we need to apply the training standardization over the test
set. ImageDataGenerator will generate a stream of augmented
images during training

We can see the implementation in the following code block:

data_generator = ImageDataGenerator(rotation_range=90,
 width_shift_range=0.1,
 height_shift_range=0.1,
 featurewise_center=True,
 featurewise_std_normalization=True,
 horizontal_flip=True)

data_generator.fit(X_train)

standardize the test set
for i in range(len(X_test)):
 X_test[i] = data_generator.standardize(X_test[i])

Next, we'll define the network:5.
It will have three blocks of two convolutional layers (3x3 filters) and
one max pooling layer
Perform batch normalization after each convolutional layer
We will define Exponential Linear Unit (ELU) activation functions
A single fully-connected layer after the last max pooling. Please note
the padding='same' parameter. This simply means that the output
volume slices will have the same dimensions as the input ones.

 The following code demonstrates the model:

model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=X_train.shape[1:]))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

Computer Vision with Convolutional Networks Chapter 4

[120]

model.add(Dropout(0.2))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))

model.add(Conv2D(128, (3, 3)))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(Conv2D(128, (3, 3)))
model.add(BatchNormalization())
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))

model.add(Flatten())
model.add(Dense(10, activation='softmax'))

Next, we'll define the optimizer, in this case, Adam, as shown in the following6.
code:

model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

Then, we'll train the network. Because of the data augmentation, we'll now use7.
the model.fit_generator method. Our generator is
the ImageDataGenerator, we defined earlier. We'll use the test set as
validation_data. In this way we'll know our actual performance after each
epoch.

In this example, we'll train the network for 100 epochs. However, if your
PC is older (or doesn't have a dedicated GPU), we would advise you to
run the training for 3 or 5 epochs. The results won't be as good, but you'll
still see improvement in the accuracy.

Computer Vision with Convolutional Networks Chapter 4

[121]

 The following code demonstrates the model:

model.fit_generator(
 generator=data_generator.flow(x=X_train,
 y=Y_train,
 batch_size=batch_size),
 steps_per_epoch=len(X_train) // batch_size,
 epochs=100,
 validation_data=(X_test, Y_test),
 workers=4)

Depending on the number of epochs, this model will produce the following results:

47% accuracy in 3 epochs
59% accuracy in 5 epochs
80% accuracy in about 100 epochs—significantly better than before, but still not
perfect

Summary
In this chapter, we introduced convolutional neural networks. We talked about their main
building blocks – convolutional and pooling layers – and we discussed their architecture
and features. We discussed data pre-processing and various regularization techniques such
as weight decay, dropout, and data augmentation. We also demonstrated how to use CNNs
to classify MNIST and CIFAR-10.

In the next chapter, we'll build upon our new-found computer vision knowledge with some
exciting additions. We'll discuss how to train networks faster by transferring knowledge
from one problem to another, as well as the best performing advanced CNN architectures.
We'll also go beyond simple classification with object detection, or how to find the object's
location on the image. And for dessert, we'll talk about a fun CNN application called neural
style transfer.

5
Advanced Computer Vision

In the Chapter 4, Computer Vision with Convolutional Networks, we introduced convolutional
networks for computer vision. In this chapter, we'll continue with more of the same, but at
a more advanced level. Our modus operandi so far has been to provide simple examples as
a support to the theoretical knowledge of neural networks. We can now elevate our
knowledge to the point where we'll be able to successfully solve real-world computer
vision tasks with Convolutional Neural Networks (CNNs).

This chapter will cover the following topics:

Transfer learning
Advanced network architectures
Capsule networks
Object detection
Semantic segmentation
Artistic style transfer

Transfer learning
So far, we've trained small models on toy datasets, where the training took no more than an
hour. But if we want to work with large datasets, such as ImageNet, we would need a much
bigger network that trains for a lot longer. More importantly, large datasets are not always
available for the tasks we're interested in. Keep in mind that besides obtaining the images,
they have to be labeled, and this could be expensive and time-consuming. So, what does a
humble engineer do when they want to solve a real ML problem with limited resources?
Enter transfer learning.

Advanced Computer Vision Chapter 5

[123]

Transfer learning is the process of applying an existing trained ML model to a new, but
related, problem. For example, we can take a network trained on ImageNet and repurpose
it to classify grocery store items. Alternatively, we could use a driving simulator game to
train a neural network to drive a simulated car, and then use the network to drive a real car
(but don't try this at home!). Transfer learning is a general ML concept, applicable to all ML
algorithms, but in this context we'll talk about CNNs. Here's how it works.

We start with an existing pre-trained net. The most common scenario is to take a net pre-
trained with ImageNet, but it could be any dataset. TensorFlow/Keras/PyTorch all have
popular ImageNet pre-trained neural architectures that we can use. Alternatively, we can
train our own network with a dataset of our choice.

In Chapter 4, Computer Vision with Convolutional Networks, we mentioned how the fully-
connected layers at the end of a CNN act as translators between the network's language
(the abstract feature representations learned during training) and our language, which is
the class of each sample. You can think of transfer learning as a translation to another
language. We start with the network's features, which is the output of the last convolutional
or pooling layer. Then, we translate them to a different set of classes of the new task. We
can do this by removing the last fully-connected layer (or all fully-connected layers) of an
existing pre-trained network and replacing it with another layer, which represents the
classes of the new problem. Here is a diagram of the transfer learning scenario:

In transfer learning, we can replace the last layer of a pre-trained net and repurpose it for a new problem

Advanced Computer Vision Chapter 5

[124]

But we cannot do this mechanically and expect the new network to work, because we still
have to train the new layer with data related to the new task. Here, we have two options:

Use the original part of the network as feature extractor and only train the new
layer(s): In this scenario, we feed the network a training batch of the new data
and propagate it forward to see the network output. This part works just such as
regular training would. But in the backward pass, we lock the weights of the
original net and only update the weights of the new layers. This is the
recommended way, when we have limited training data on the new problem. By
locking most of the network weights, we prevent overfitting on the new data.
Fine-tuning the whole network: In this scenario, we'll train the whole network,
and not just the newly added layers at the end. It is possible to update all
network weights, but we can also lock some of the weights in the first layers. The
idea here is that the initial layers detect general features – not related to a specific
task – and it makes sense to reuse them. On the other hand, the deeper layers
might detect task-specific features and it would be better to update them. We can
use this method when we have more training data and don't need to worry about
overfitting.

Transfer learning example with PyTorch
Now that we know what transfer learning is, let's see whether it works in practice. In this
section, we'll apply an advanced ImageNet pre-trained network on the CIFAR-10 images.
We'll use both types of transfer learning. It's preferable to run this example on GPU:

Do the following imports:1.

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import models, transforms

Define batch_size for convenience:2.

batch_size = 50

Advanced Computer Vision Chapter 5

[125]

Define the training dataset. We have to consider a few things:3.
The CIFAR-10 images are 32 x 32, while the ImageNet network expects
224 x 224 input. As we are using ImageNet based network, we'll
upsample the 32x32 CIFAR images to 224x224.
Standardize the CIFAR-10 data using the ImageNet mean and
standard deviation, because this is what the network expects.
Add minor data augmentation (flip):

training data
train_data_transform = transforms.Compose([
 transforms.Resize(224),
 transforms.RandomHorizontalFlip(),
 transforms.RandomVerticalFlip(),
 transforms.ToTensor(),
 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,
0.225])
])

train_set = torchvision.datasets.CIFAR10(root='./data',
 train=True,
 download=True,
transform=train_data_transform)

train_loader = torch.utils.data.DataLoader(train_set,
 batch_size=batch_size,
 shuffle=True,
 num_workers=2)

Follow the same steps with the validation/test data:4.

val_data_transform = transforms.Compose([
 transforms.Resize(224),
 transforms.ToTensor(),
 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,
0.225])
])

val_set = torchvision.datasets.CIFAR10(root='./data',
 train=False,
 download=True,
transform=val_data_transform)

val_order = torch.utils.data.DataLoader(val_set,
 batch_size=batch_size,
 shuffle=False,
 num_workers=2)

Advanced Computer Vision Chapter 5

[126]

Choose a device – preferably GPU with a fallback on CPU:5.

device = torch.device("cuda:0" if torch.cuda.is_available() else
"cpu")

Define the training of the model. Unlike Keras, in PyTorch we have to iterate6.
over the training data manually. This method iterates once over the whole
training set (one epoch) and applies the optimizer after each forward pass:

def train_model(model, loss_function, optimizer, data_loader):
 # set model to training mode
 model.train()

 current_loss = 0.0
 current_acc = 0

 # iterate over the training data
 for i, (inputs, labels) in enumerate(data_loader):
 # send the input/labels to the GPU
 inputs = inputs.to(device)
 labels = labels.to(device)

 # zero the parameter gradients
 optimizer.zero_grad()

 with torch.set_grad_enabled(True):
 # forward
 outputs = model(inputs)
 _, predictions = torch.max(outputs, 1)
 loss = loss_function(outputs, labels)

 # backward
 loss.backward()
 optimizer.step()

 # statistics
 current_loss += loss.item() * inputs.size(0)
 current_acc += torch.sum(predictions == labels.data)

 total_loss = current_loss / len(data_loader.dataset)
 total_acc = current_acc.double() / len(data_loader.dataset)

 print('Train Loss: {:.4f}; Accuracy: {:.4f}'.format(total_loss,
total_acc))

Advanced Computer Vision Chapter 5

[127]

Define the testing/validation of the model. It's very similar to the training phase,7.
but we will skip the backpropagation part:

def test_model(model, loss_function, data_loader):
 # set model in evaluation mode
 model.eval()

 current_loss = 0.0
 current_acc = 0

 # iterate over the validation data
 for i, (inputs, labels) in enumerate(data_loader):
 # send the input/labels to the GPU
 inputs = inputs.to(device)
 labels = labels.to(device)

 # forward
 with torch.set_grad_enabled(False):
 outputs = model(inputs)
 _, predictions = torch.max(outputs, 1)
 loss = loss_function(outputs, labels)

 # statistics
 current_loss += loss.item() * inputs.size(0)
 current_acc += torch.sum(predictions == labels.data)

 total_loss = current_loss / len(data_loader.dataset)
 total_acc = current_acc.double() / len(data_loader.dataset)

 print('Test Loss: {:.4f}; Accuracy: {:.4f}'.format(total_loss,
total_acc))

Define the first transfer learning scenario, where we use the pre-trained net as a8.
feature extractor:

We'll use a popular network, ResNet-18. We'll talk about it in detail in
the Advanced network architectures section. PyTorch will automatically
download the pre-trained weights.
Replace the last network layer with a new layer with 10 outputs (one
for each CIFAR-10 class).
Exclude the existing network layers from the backward pass, and only
pass the newly-added fully-connected layer to the Adam optimizer.
Run the training for epochs and we'll evaluate the network accuracy
after each epoch.

Advanced Computer Vision Chapter 5

[128]

The following is the tl_feature_extractor function, which implements all
this:

def tl_feature_extractor(epochs=3):
 # load the pre-trained model
 model = torchvision.models.resnet18(pretrained=True)

 # exclude existing parameters from backward pass
 # for performance
 for param in model.parameters():
 param.requires_grad = False

 # newly constructed layers have requires_grad=True by default
 num_features = model.fc.in_features
 model.fc = nn.Linear(num_features, 10)

 # transfer to GPU (if available)
 model = model.to(device)

 loss_function = nn.CrossEntropyLoss()

 # only parameters of the final layer are being optimized
 optimizer = optim.Adam(model.fc.parameters())

 # train
 for epoch in range(epochs):
 print('Epoch {}/{}'.format(epoch + 1, epochs))

 train_model(model, loss_function, optimizer, train_loader)
 test_model(model, loss_function, val_order)

Implement the fine-tuning approach. This function is similar to9.
tl_feature_extractor, but now we'll train the whole network:

def tl_fine_tuning(epochs=3):
 # load the pre-trained model
 model = models.resnet18(pretrained=True)

 # replace the last layer
 num_features = model.fc.in_features
 model.fc = nn.Linear(num_features, 10)

 # transfer the model to the GPU
 model = model.to(device)

 # loss function
 loss_function = nn.CrossEntropyLoss()

Advanced Computer Vision Chapter 5

[129]

 # We'll optimize all parameters
 optimizer = optim.Adam(model.parameters())

 # train
 for epoch in range(epochs):
 print('Epoch {}/{}'.format(epoch + 1, epochs))

 train_model(model, loss_function, optimizer, train_loader)
 test_model(model, loss_function, val_order)

Finally, we can run the whole thing in one of two ways:10.
Call tl_fine_tuning(epochs=5) to use the fine tuning transfer1.
learning approach for five epochs.
Call tl_feature_extractor(epochs=5) to train the network with2.
the feature extractor approach for five epochs.

With network as a feature extractor, we'll get about 76% accuracy, while with fine-tuning
we'll get 87%. But if we run the fine-tuning for more epochs, the network starts to overfit.

Advanced network architectures
We are now familiar with the powerful technique of transfer learning. In this section, we'll
discuss some recent and popular network architectures that go beyond the ones we've seen
so far. You'll be able to use these networks as pre-trained models in a transfer learning
scenario, or if you are brave enough, train them from scratch to solve your tasks.

Advanced Computer Vision Chapter 5

[130]

VGG
The first architecture we're going to discuss is VGG (from Oxford's Visual Geometry
Group, https:/​/ ​arxiv. ​org/ ​abs/ ​1409. ​1556). It was introduced in 2014, when it became a
runner-up in the ImageNet challenge of that year. The VGG family of networks remains
popular today and is often used as a benchmark against newer architectures. Prior to VGG
(for example, LeNet-5: http:/ ​/ ​yann. ​lecun. ​com/ ​exdb/ ​lenet/ ​) and AlexNet (https:/ ​/
papers.​nips.​cc/​paper/ ​4824- ​imagenet- ​classification- ​with- ​deep- ​convolutional-
neural-​networks. ​pdf), the initial convolutional layers of a network used filters with large
receptive fields, such as 7 x 7. Additionally, the networks usually had alternating single
convolutional and pooling layers. The authors of the paper observed that a convolutional
layer with a large filter size can be replaced with a stack of two or more convolutional
layers with smaller filters (factorized convolution). For example, we can replace one 5 x 5
layer with a stack of two 3 x 3 layers, or a 7 x 7 layer with a stack of three 3 x 3 layers. This
structure has several advantages:

The neurons of the last of the stacked layers have the equivalent receptive field
size of a single layer with a large filter.
The number of weights and operations of stacked layers is smaller, compared to
a single layer with large filter size. Let's assume we want to replace one 5 x 5
layer with two 3 x 3 layers. Let's also assume that all layers have an equal
number of input and output channels (slices), M. The total number of weights
(excluding biases) of the 5 x 5 layer is 5x5xMxM = 25xM2. On the other hand, the
total weights of a single 3 x 3 layer is 3x3xMxM = 9xM2, and simply
2x(3x3xMxM) = 18xM2 for two layers, which makes this arrangement 28% more
efficient (18/25 = 0.72). The efficiency will increase further with larger filters.
Stacking multiple layers makes the decision function more discriminative.

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Advanced Computer Vision Chapter 5

[131]

The VGG networks consist of multiple blocks of two, three, or four stacked convolutional
layers combined with a max-pooling layer. We can see the two most popular variants,
VGG16 and VGG19, in the following table:

Architecture of VGG16 and VGG19 networks, named so after the number of weighted layers in each network

As the depth of the VGG network increases, so does the width (number of filters) in the
convolutional layers. We have multiple pairs of convolutional layers with a volume depth
of 128/256/512 connected to other layers with the same depth. In addition, we also have two
4,096-neuron fully-connected layers. Because of this, the VGG networks have large number
of parameters (weights), which makes them memory-inefficient, as well computationally
expensive. Still, this is a popular and straightforward network architecture, which has been
further improved by the addition of batch normalization.

Advanced Computer Vision Chapter 5

[132]

VGG with Keras, PyTorch, and TensorFlow
All three libraries have pre-trained VGG models. Let's see how to use them. We'll start with
Keras, where it's easy to use this model in a transfer learning scenario. You can set
include_top to False, which will exclude the fully-connected layers. The following are
the steps:

Preload the weights by setting the weights parameter and they will be1.
downloaded automatically:

VGG16
from keras.applications.vgg16 import VGG16
vgg16_model = VGG16(include_top=True, weights='imagenet',
input_tensor=None, input_shape=None, pooling=None, classes=1000)

VGG19
from keras.applications.vgg19 import VGG19
vgg19_model = VGG19(include_top=True, weights='imagenet',
input_tensor=None, input_shape=None, pooling=None, classes=1000)

We'll continue with PyTorch, where you can choose whether you want to use a2.
pre-trained model (again with automatic download):

import torchvision.models as models
model = models.vgg16(pretrained=True)

Finally, the process of using pre-trained models with TensorFlow isn't as straightforward;
therefore we suggest the reader consult the official documentation on how to do this.

You can try other pre-trained models, using the same procedures we described. To avoid
repetition, we won't include the same code examples for the other architectures in the
section.

Advanced Computer Vision Chapter 5

[133]

Residual networks
Residual networks (ResNets, https:/ ​/​arxiv. ​org/ ​abs/ ​1512. ​03385) were released in 2015,
when they won all five categories of the ImageNet challenge that year. In Chapter 2, Neural
Networks, we mentioned that the layers of a neural network are not restricted to sequential
order, but form a graph instead. This is the first architecture we'll learn, which takes
advantage of this flexibility. This is also the first network architecture that has successfully
trained a network with the depth of more than 100 layers.

Thanks to better weight initializations, new activation functions, as well as normalization
layers, it's now possible to train deep networks. But the authors of the paper conducted
some experiments and observed that a network with 56 layers had higher training and
testing errors compared to a network with 20 layers. They argue that this should not be the
case. In theory, we can take a shallow network and stack identity layers (these are layers
whose output just repeats the input) on top of it to produce a deeper network that behaves
in exactly the same way as the shallow one. Yet, their experiments have been unable to
match the performance of the shallow network.

To solve this problem, they proposed a network constructed of residual blocks. A residual
block consists of two or three sequential convolutional layers and a separate parallel
identity (repeater) shortcut connection, which connects the input of the first layer and the
output of the last one. We can see three types of residual blocks in the following diagram:

Left: Original residual block. Middle: Original bottleneck residual block. Right: Residual block v2

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

Advanced Computer Vision Chapter 5

[134]

Each block has two parallel paths. The left path is similar to the other networks we've seen,
and consists of sequential convolutional layers + batch normalization. The right path
contains the identity shortcut connection (also known as skip connection). The two paths
are merged via an element-wise sum. That is, the left and right tensors have the same shape
and an element of the first tensor is added to the element of the same position of the second
tensor. The output is a single tensor with the same shape as the input. In effect, we
propagate forward the features learned by the block, but also the original unmodified
signal. In this way, we can get closer to the original scenario, as described by the authors.
The network can decide to skip some of the convolutional layers thanks to the skip
connections, in effect reducing its own depth. The residual blocks use padding in such a
way that the input and the output of the block have the same dimensions. Thanks to this,
we can stack any number of blocks for a network with arbitrary depth.

And now, let's see how the blocks in the diagram differ:

The first block contains two 3 x 3 convolutional layers. This is the original
residual block, but if the layers are wide, stacking multiple blocks becomes
computationally expensive.
The second block is equivalent to the first, but it uses the so-called bottleneck
layer. First, we use a 1 x 1 convolution to downsample the input volume depth
(we discussed this in Chapter 4, Computer Vision with Convolutional Layers). Then,
we apply a 3 x 3 (bottleneck) convolution on the reduced input. Finally, we
extend the output back to the desired depth with another 1 x 1 convolution. This
layer is less computationally expensive than the first.
The third block is the latest revision of the idea, published in 2016 by the same
authors. It uses pre-activations –; the batch normalization and the activation
function come before the convolutional layer. This may seem strange at first, but
thanks to this design, the skip connection path can run uninterrupted throughout
the whole network. This is contrary to the other residual blocks, where at least
one activation function is on the path of the skip connection. A combination of
stacked residual blocks still has the layers in the right order.

In the following table, we can see the family of networks proposed by the authors. Some of
their properties are as follows:

They start with a 7 x 7 convolutional layer with stride 2, followed by 3 x 3 max-
pooling.

Advanced Computer Vision Chapter 5

[135]

Downsampling is implemented with a modified residual block with stride 2.
Average pooling downsamples the output after all residual blocks and before the
fully-connected layer:

The family of the most popular residual networks. The residual blocks are represented by rounded rectangles

For more information about ResNets, check out the original paper, Deep Residual Learning
for Image Recognition (https:/ ​/​arxiv. ​org/ ​abs/ ​1512. ​03385), by Kaiming He, Xiangyu
Zhang, Shaoqing Ren, and Jian Sun, as well as the latest version, Identity Mappings in Deep
Residual Networks (https:/ ​/​arxiv. ​org/ ​abs/ ​1603. ​05027), by the same authors.

Inception networks
Inception networks (https:/ ​/ ​www. ​cs. ​unc. ​edu/ ​~wliu/ ​papers/ ​GoogLeNet. ​pdf by Szegedy
et al.) were introduced in 2014, when they won the ImageNet challenge of that year (there
seems to be a pattern here). Since then, the authors have released multiple improvements
(versions) of the architecture.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

Advanced Computer Vision Chapter 5

[136]

Fun fact: the name inception comes in part from the “We need to go
deeper” internet meme, related to the movie Inception.

The idea behind inception networks starts from the basic premise that the objects in an
image have different scales. A distant object might take up a small region of the image, but
the same object, once nearer, might take up the majority of the image. This presents a
difficulty for standard CNNs, where the neurons in the different layers have a fixed
receptive field size as imposed on the input image. A regular network might be a good
detector of objects in a certain scale, but could miss them otherwise. To solve this problem,
Szegedy et al proposed a novel architecture: one composed of inception blocks. An
inception block starts with a common input, and then splits it into different parallel paths
(or towers). Each path contains either convolutional layers with a different-sized filter, or a
pooling layer. In this way, we apply different receptive fields on the same input data. At the
end of the inception block, the outputs of the different paths are concatenated.

Inception v1
Here, we can see the first version of the inception block, part of the GoogLeNet network
architecture. GoogLeNet contains nine such inception blocks; we can see them in the
following diagram:

Inception v1 block

Advanced Computer Vision Chapter 5

[137]

The v1 block has four paths:

1 x 1 convolution, which acts as a kind of repeater to the input
1 x 1 convolution, followed by a 3 x 3 convolution
1 x 1 convolution, followed by a 5 x 5 convolution
3 x 3 max pooling with a stride of 1

The layers in the block use padding in such a way that the input and the output have the
same shape (but different depths). The padding is also necessary, because each path would
produce output with a different shape, depending on the filter size. This is valid for all
versions of the inception blocks.

The other major innovation of this inception block is the use of downsampling 1 x 1
convolutions. They are needed because the output of all paths is concatenated to produce
the final output of the block. The result of the concatenation is an output with a quadrupled
depth. If another inception blocks followed the current, its output depth would quadruple
again. To avoid such exponential growth, the block uses 1 x 1 convolutions to reduce the
depth for each path, which in turn reduces the output depth of the block. This makes it
possible to create deeper networks, without running out of resources.

GoogLeNet also utilizes auxiliary classifiers – that is, it has two additional classification
output (with the same groundtruth labels) at various intermediate layers. During training,
the total value of the loss is a weighted sum of the auxiliary losses and the real loss. For
more details about the architecture of GoogLeNet, we point the reader to the original paper,
Going Deeper with Convolutions (https:/ ​/ ​arxiv. ​org/ ​abs/ ​1409. ​4842), by Christian Szegedy,
Wei Liu, Yangqing Jia, Pierre Sermanet, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich.

https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842

Advanced Computer Vision Chapter 5

[138]

Inception v2 and v3
Inception v2 and v3 were released together and propose several improvements over the
original inception block. The first is the factorization of the 5 x 5 convolution in two stacked
3 x 3 convolutions. We discussed the advantages of this in the VGG section. We can see the
new inception block in the following diagram:

Inception block A

The next improvement is the factorization of an nxn convolution in two stacked
asymmetrical 1xn and nx1 convolutions. For example, we can split a single 3 x 3
convolution into two 1 x 3 and 3 x 1 convolutions, where the 3 x 1 convolution is applied
over the output of the 1 x 3 convolution. In the first case, the filter size would be 3 x 3 = 9,
while in the second case we would have a combined size of (3 x 1) + (1 x 3) = 3 + 3 = 6,
resulting in 33% efficiency:

Factorization of a 3 x 3 convolution in 1 x 3 and 3 x 1 convolutions

Advanced Computer Vision Chapter 5

[139]

The authors introduced two new blocks, which utilize factorized convolutions. The first
(second in total) is the equivalent of block A, we introduced preceding. The following
represents the image:

Inception block B. When n=3, it is equivalent to block A

The second (third in total) block is similar, but the asymmetrical convolutions are parallel,
resulting in a higher output depth (more concatenated paths). The hypothesis here is that
the more features (different filters) the network has, the faster it learns (we also discussed
the need for more filters in Chapter 4, Computer Vision with Convolutional Networks). On the
other hand, the wider layers take more memory and computation time. As a compromise,
this block is only used in the deeper part of the network, after the other blocks:

Inception block C

Advanced Computer Vision Chapter 5

[140]

Using these new blocks, the authors proposed two new inception networks: v1 and v2.
Another major improvement in this version is the use of batch normalization, which was
introduced by the same authors. For more information about Inception v2 and v3, check
out the original paper, Rethinking the Inception Architecture for Computer Vision (https:/ ​/
arxiv.​org/​abs/​1512. ​00567), by Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna, as well as Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift (https:/ ​/​arxiv. ​org/ ​abs/ ​1512. ​00567),
by Sergey Ioffe and Christian Szegedy.

Inception v4 and Inception-ResNet
In the latest revision of inception networks, the authors introduce three new streamlined
inception blocks that build upon the idea of the previous versions. They introduce 7 x 7
asymmetric factorized convolutions, and average pooling instead of max pooling. More
importantly, they create a residual/inception hybrid network known as Inception-ResNet,
where the inception blocks also include residual connections. We can see the schematic of
one such block in the following diagram:

An inception block with residual skip connection

For more information about the new inception blocks and the network architectures, check
out the original paper, Inception-v4, Inception-ResNet, and the Impact of Residual Connections on
Learning (https:/ ​/​arxiv. ​org/ ​abs/ ​1602. ​07261), by Christian Szegedy, Sergey Ioffe,
Vincent Vanhoucke, and Alex Alemi.

https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261

Advanced Computer Vision Chapter 5

[141]

Xception and MobileNets
The last inception network we'll discuss is Xception (from Extreme Inception). To
understand its hypothesis, let's recall that in Chapter 3, Deep Learning Fundamentals,
Computer Vision, and Convolutional Layers, we introduced standard and depthwise
convolutions. An output slice in standard convolution receives input from all input slices
using a single filter. The filter tries to learn features in a 3D space, where two of the
dimensions are spatial (the height and width of the slice) and the third is the channel.
Therefore, the filter maps both spatial and cross-channel correlations.

All inception blocks so far have started with a dimensionality-reduction 1 x 1 convolution.
From our new point of view, this connection maps cross-channel correlations, but not
spatial ones (because of the 1 x 1 filter size). On the other hand, the subsequent operations
in an inception block are standard convolutions, therefore mapping both types of
correlations. The author of Xception argues that, in fact, we can completely decouple cross-
channel and spatial correlations. We can do this with the so-called depthwise separable
convolutions. A depthwise separable convolution combines two operations: a depthwise
convolution and a 1 x 1 convolution. In a depthwise convolution, a single input slice
produces a single output slice, therefore it only maps spatial (and not cross-channel)
correlations. With 1 x 1 convolutions, we have the opposite. The following image represents
the depthwise convolution:

A depthwise separable convolution

Advanced Computer Vision Chapter 5

[142]

Let's compare the standard and depthwise separable convolutions.
Imagine that we have 32 input and output channels, and a filter with a
size of 3 x 3. In a standard convolution, one output slice is the result of
applying one filter for each of the 32 input slices for a total of 32 x 3 x 3 =
288 weights (excluding bias). In a comparable depthwise convolution, the
filter has only 3 x 3 = 9 weights and the filter for the 1 x 1 convolution has
32 x 1 x 1 = 32 weights. The total number of weights is 32 + 9 = 41.
Therefore, the depthwise separable convolution is both faster and more
memory-efficient compared to the standard one.

We can think of the depthwise separable convolution as an extreme (hence the name)
version of an inception block, where each depthwise input/output slice pair represents one
parallel path. We have as many parallel paths as the number of input slices. One difference
with the other inception blocks is that the 1 x 1 convolution comes last, instead of first. But
these operations are meant to be stacked anyway, and we can assume that the order is of no
significance. Another difference is the absence of non-linear activation (ReLU or ELU)
between the two operations. According to the author's experiments, networks with absent,
non-linearity depthwise convolution converged faster and were more accurate.

The Xception network is built entirely of depthwise separable convolutions and it also
includes residual connections. For more information, check out the original paper, Xception:
Deep Learning with Depthwise Separable Convolutions (https:/ ​/​arxiv. ​org/ ​abs/ ​1610. ​02357),
by François Chollet.

MobileNets are another class of models, built with depthwise separable convolutions.
These networks are lightweight and specifically optimized for mobile and embedded
applications. You can read more about them in the original paper, MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications (https:/ ​/​arxiv. ​org/ ​abs/ ​1704.
04861), by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam, as well as the new version,
MobileNetV2: Inverted Residuals and Linear Bottlenecks (https:/ ​/ ​arxiv. ​org/ ​abs/​1801. ​04381),
by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen.

https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381

Advanced Computer Vision Chapter 5

[143]

DenseNets
DenseNet stands for Densely-Connected Convolutional Networks. It tries to alleviate the
vanishing gradient problem and improve feature propagation, while reducing the number
of network parameters. We've already seen how ResNets introduce residual blocks with
skip connections to solve this. DenseNets take some inspiration from this idea and
introduce dense blocks. A dense block consists of sequential convolutional layers, where
any layer has a direct connection to all subsequent layers:

A dense block: The dimensionality-reduction layers (dashed lines) are part of the DenseNet-B architecture, while the original DenseNet doesn't have them

Here are some properties of the dense block:

The different inputs are merged via concatenation, unlike ResNets, which use
sum.
A batch normalization and ReLU are applied over each concatenation, and then
the result is fed to the following convolutional layer.
A dense block is specified by its number of convolutional layers and the output
volume depth of each layer, which is called growth rate in this context. Let's
assume that the input of the dense block has a volume depth of k0 and the output
volume depth of each convolutional layer is k. Then, because of the
concatenation, the input volume depth for the l-th layer will be k0 + k x (l −
1). The authors also introduced a second type of dense net, DenseNet-B, which
applies a dimensionality-reduction 1 x 1 convolution after each concatenation.
Although the later layers of a dense block have a large input volume depth
(because of the many concatenations), DenseNets can work with growth rate
values as low as 12, which reduces the total number of parameters.

Advanced Computer Vision Chapter 5

[144]

To make concatenation possible, dense blocks use padding in such a way that the
height and width of all output slices are the same throughout the block. The
network uses average pooling between the dense blocks for downsampling.

For more information about DenseNets, check out the original paper, Densely Connected
Convolutional Networks (https:/ ​/ ​arxiv. ​org/​abs/ ​1608. ​06993) by Gao Huang, Zhuang Liu,
Laurens van der Maaten, and Kilian Q. Weinberger.

Capsule networks
Capsule networks were introduced by Geoffrey Hinton as a way to overcome some of the
limitations of standard CNNs. To understand the idea behind capsule networks, we need to
understand these limitations first.

Limitations of convolutional networks
Let's start with a quote from professor Hinton himself:

"The pooling operation used in convolutional neural networks is a big mistake and the fact
that it works so well is a disaster."

What he means is that the CNNs are translation-invariant. To understand this, let's
imagine a picture with a face, located in the right half of the picture. Translation invariance
means that a CNN is very good at telling us that the picture contains a face, but it cannot
tell us whether the face is in the left or right part of the image. The main culprit for this
behavior is the pooling layers. Every pooling layer introduces a little translation invariance.
For example, the max pooling routes forward the activation of only one of the input
neurons, but the subsequent layers don't have any knowledge of which neuron is routed.
By stacking multiple pooling layers, we gradually increase the receptive field size. But the
detected object can be anywhere in the new receptive field, because none of the pooling
layers relay such information. Therefore, we also increase the translation invariance. At
first, this might seem to be a good thing, because the final labels have to be translation-
invariant. But it poses a problem, as CNNs cannot identify the position of one object
relative to another. It would identify both images following image as a face, because they
both contain the ingredients of a face, a nose, mouth, and eyes, regardless of their relative
positions to one another.

https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993

Advanced Computer Vision Chapter 5

[145]

This is also known as the "Picasso problem," as demonstrated in the following diagram:

A convolutional network would identify both of these images as a face

But that's not all. A CNN would be confused even if the face had a different orientation, for
example, if it was turned upside down. One way to overcome this is with data
augmentation (rotation) during training. But this only shows the limitations of the network.
We have to explicitly show it the object in different orientations and tell it that this is, in
fact, the same object.

So far, we've seen that a CNN discards the translation information (transitional invariance)
and doesn't understand the orientation of an object. In computer vision, the combination of
translation and orientation is known as pose. The pose is enough to uniquely identify the
object's properties in the coordinate system. Let's use computer graphics to illustrate this. A
3D object, say a cube, is entirely defined by its pose and the edge length. The process of
transforming the representation of a 3D object into an image on the screen is called
rendering. Knowing just its pose and the edge length of the cube, we can render it from any
point of view we like. Therefore, if we can somehow train a network to understand these
properties, we won't have to feed it with multiple augmented versions of the same object. A
CNN cannot do that, because its internal data representation doesn't contain information
about the object's pose (only about its type). In contrast, capsule networks preserve
information for both the type and the pose of an object. Therefore, they can detect objects
that can transform to each other, which is known as equivariance. We can also think of this
as "reverse graphics," that is, a reconstruction of the object's properties by its rendered
image.

Advanced Computer Vision Chapter 5

[146]

Capsules
To solve these problems, the authors of the paper propose a new type of network building
block, called a capsule, instead of the neuron. The output of a neuron is a scalar value. In
contrast, the output of a capsule is a vector (a list of values), which consists of the following:

The elements of the vector represent the pose and other properties of the object.
The length of the vector is in the (0, 1) range and represents the probability of
detecting the feature at that location. As a reminder, the length of a vector is

, where vi are the vector elements.

Let's consider a capsule, which detects faces. If we start moving a face across the image, the
values of the capsule vector will change to reflect the change in the position. However, its
length will always stay the same, because the probability of the face doesn't change with
the location.

The capsules are organized in interconnected layers, just such as a regular network. The
capsules in one layer serve as input to the capsules in the next. And such as a CNN, the
earlier layers detect basic features, and the deeper layers combine them in more abstract
and complex ones. But now the capsules also relay positional information, instead of just
detected objects. This allows the deeper capsules to analyze not only the presence of
features, but also their relationship. For example, a capsule layer may detect a mouth, face,
nose, and eyes. The subsequent capsule layer will be able to not only verify the presence of
these features, but also whether they have the correct spatial relationship. Only if both
conditions are true can the subsequent layer verify that a face is present. This is a high-level
overview of capsule networks. Now, let's see how exactly capsules work.

We can see the schematic of a capsule in the following diagram:

A capsule

Advanced Computer Vision Chapter 5

[147]

Let's analyze it in the following bullets:

The capsule inputs are the output vectors, u1, u2, ... un, from the capsules of the
previous layer.
We multiply each vector, ui, by its corresponding weight matrix, Wij, to produce
prediction vectors, . The weight matrices, W, encode spatial and
other relationships between the lower-level features, coming from the capsules of
the previous layer, and the high-level ones in the current layer. For example,
imagine that the capsule in the current layer detects faces and the capsules from
the previous layer detect the mouth (u1), eyes (u2), and nose (u3). Then,

 is the predicted position of the face, given where the location of the
mouth is. In the same way, predicts the location of the face based
on the detected location of the eyes, and predicts the location of
the face based on the location of the nose. If all three lower-level capsule vectors
agree on the same location, then the current capsule can be confident that a face
is indeed present. We only used location for this example, but the vectors could
encode other types of relationships between the features, such as scale and
orientation. The weights, W, are learned with backpropagation.

Next, we multiply the vectors by the scalar coupling coefficients, cij. These
coefficients are a separate set of parameters, apart from the weight matrices. They
exist between any two capsules and indicate which high-level capsules will
receive input from a lower-level capsule. But unlike weight matrices, which are
adjusted via backpropagation, coupling coefficients are computed on the fly
during the forward pass via a process called dynamic routing. We'll describe it in
the next section.
Then, we perform the sum of the weighted input vectors. This step is similar to
the weighted sum in neurons, but with vectors:

Advanced Computer Vision Chapter 5

[148]

Finally, we'll compute the output of the capsule, vj, by squashing the vector, sj. In
this context, squashing means transforming the vector in such a way that its
length comes in the (0, 1) range, without changing its direction. As mentioned,
the length of the capsule vector represents the probability of the detected feature
and squashing it in the (0, 1) range reflects that. To do this, the authors propose a
novel formula:

Dynamic routing
Let's describe the dynamic routing process to compute the coupling coefficients, cij. In the
following diagram, we have a lower capsule, I, that has to decide whether to send its
output to one of two higher-level capsules, J and K. The dark and light dots represent
prediction vectors, and , which J and K have already received from other lower-
level capsules. The arrows from the I capsule to the J and K capsules point to the and

 prediction vectors from I to J and K:

Dynamic routing example. The grouped dots indicate lower-level capsules that agree with each other

Advanced Computer Vision Chapter 5

[149]

The clustered prediction vectors (lighter dots) indicate lower-level capsules that agree with
each other with regards to the high-level feature. For example, if the K capsule describes a
face, then the clustered predictions would indicate lower-level features, such as mouth,
nose, and eyes. Conversely, the dispersed (darker) dots indicate disagreement. If the I
capsule predicts a vehicle tire, it would disagree with the clustered predictions in K.

However, if the clustered predictions in J represent features such as headlights, windshield,
or fenders, then the prediction of I would be in agreement with them. The lower-level
capsules have a way of determining whether they fall in the clustered or dispersed group of
each higher-level capsule. If they fall in the clustered group, they will increase the
corresponding coupling coefficient with that capsule and will route their vector in that
direction. Conversely, if they fall in the dispersed group, the coefficient will decrease.

Let's formalize this knowledge with a step-by-step algorithm, introduced by the authors:

For all i capsules in the l layer, and j capsules in the (l + 1) layer, we'll initialize1.
, where bij is a temporary variable equivalent to cij. The vector

representation of all bij is . At the start of the algorithm, the i capsule has an
equal chance to route its output to any of the capsules of the (l + 1) layer.
Repeat for r iterations, where r is a parameter:2.

For all i capsules in the l layer: . The sum of all
outgoing coupling coefficients, ci, of a capsule amounts to 1 (they have
a probabilistic nature), hence the softmax.

For all j capsules in the (l + 1) layer: . That is, we'll
compute all non-squashed output vectors of the (l + 1) layer.
For all j capsules in the (l + 1) layer, we'll compute the squashed
vectors: .
For all i capsules in the l layer, and j capsules in the (l + 1) layer:

. Here, is the dot product of the prediction
vector of the low-level i capsule and the output vector of the high-level
j capsule vectors. If the dot product is high, then the i capsule is in
agreement with the other low-level capsules, which route their output
to the j capsule, and the coupling coefficient increases.

Advanced Computer Vision Chapter 5

[150]

The authors have recently released an updated dynamic routing algorithm using a
clustering technique called Expectation–Maximization. You can read more about it in the
original paper, Matrix Capsules with EM Routing (https:/ ​/​ai.​google/ ​research/ ​pubs/
pub46653) by Geoffrey Hinton, Sara Sabour, and Nicholas Frosst.

Structure of the capsule network
In this section, we'll describe the structure of the capsule network, which the authors used
to classify the MNIST dataset. The input of the network is the 28 x 28 MNIST greyscale
images and the following are the steps:

We'll start with a single convolutional layer with 256 9 x 9 filters, stride 1, and1.
ReLU activation. The shape of the output volume is (256, 20, 20).
We have another convolutional layer with 256 9 x 9 filters and stride 2. The shape2.
of the output volume is (256, 6, 6).
Use the output of the layer as a foundation for the first capsule layer, called3.
PrimaryCaps. Take the (256, 6, 6) output volume and split it in to 32 separate (8,
6, 6) blocks. That is, each of the 32 blocks contains eight 6 x 6 slices. Take one
activation value with the same coordinates from each slice and combine these
values in a vector. For example, we can take activation (3, 7) of slice 1, (3, 7) of
slice 2, and so on and combine them in a vector with a length 8. We'll have 36 of
these vectors. Then we'll "transform" each vector into a capsule for a total of 36
capsules. The shape of the output volume of the PrimaryCaps layer is (32, 8, 6, 6).
The second capsule layer is called DigitCaps. It contains 10 capsules (one per4.
digit), whose output is a vector with length which is 16. The shape of the output
volume of the DigitCaps layer is (10, 16). During inference, we compute the
length of each DigitCaps capsule vector. We then take the capsule with the
longest vector as the prediction result of the network.
During training, the network includes three additional, fully-connected layers5.
after DigitCaps, the last of which has 784 neurons (28 x 28). In the forward
training pass, the longest capsule vector serves as input to these layers. They try
to reconstruct the original image, starting from that vector. Then, the
reconstructed image is compared to the original one and the difference serves as
additional regularization loss for the backward pass.

https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653
https://ai.google/research/pubs/pub46653

Advanced Computer Vision Chapter 5

[151]

Capsule networks are a new and promising approach to computer vision. However, they
are not widely adopted yet and don't have an official implementation in any of the deep
learning libraries discussed in this book, but you can find multiple third-party
implementations.

For more information about capsule networks, check out the original paper, Dynamic
Routing Between Capsules (https:/ ​/​arxiv. ​org/ ​abs/​1710. ​09829), by Sara Sabour, Nicholas
Frosst, and Geoffrey E Hinton.

Advanced computer vision tasks
So far, we've discussed classification tasks ; a CNN can tell us what object is in the image
and a confidence score, but nothing more. In this section, we'll discuss two more advanced
and interesting tasks: object detection and semantic segmentation.

Object detection
Object detection is the process of finding object instances of a certain class, such as faces,
cars, and trees, in images or videos. Unlike classification, object detection can detect
multiple objects, as well as their location in the image.

An object detector would return a list of detected objects with the following information for
each object:

The class of the object (person, car, tree, and so on).
Probability (or confidence score) in the [0, 1] range, which conveys how confident
the detector is that the object exists in that location. This is similar to the output
of a regular classifier.
The coordinates of the rectangular region of the image where the object is
located. This rectangle is called a bounding box.

https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829
https://arxiv.org/abs/1710.09829

Advanced Computer Vision Chapter 5

[152]

We can see the typical output of an object-detection algorithm in the following photograph.
The object type and confidence score are above each bounding box:

The output of an object detector. The vehicle on the left is wrongly classified as person, but the rest of the objects are classified correctly.

Advanced Computer Vision Chapter 5

[153]

Approaches to object detection
In this section, we'll outline three approaches:

Classic sliding window: Here, we'll use a regular classification network
(classifier). This approach can work with any type of classification algorithm, but
it's relatively slow and error-prone:

Build an image pyramid. This is a combination of different scales of1.
the same image (see the following photograph). For example, each
scaled image can be two times smaller than the previous one. In this
way, we'll be able to detect objects regardless of their size in the
original image.
Slide the classifier across the whole image. That is, we'll use each2.
location of the image as an input to the classifier and the result will
determine what type of object is in that location. The bounding box of
that location is just the image region that we used as input.
We'll have multiple overlapping bounding boxes for each object. We'll3.
use some heuristics to combine them in a single prediction.

 Here is an illustration of the sliding window approach:

Sliding window + image pyramid object detection

Advanced Computer Vision Chapter 5

[154]

Two-stage detection methods: These methods are very accurate, but relatively
slow. As the name suggests, they involve two steps:

A special type of CNN, called a Region Proposal Network, scans the1.
image and proposes a number of possible bounding boxes where
objects might be located. However, this network doesn't detect the
type of the object, but only whether an object is present in the region.
The regions of interest are sent to the second stage for object2.
classification.

One-stage detection methods: Here, a single CNN produces both the object type
and the bounding box. These approaches are usually faster, but less accurate
compared to two-stage methods.

Object detection with YOLOv3
In this section, we'll discuss one of the most popular detection algorithms, called YOLO.
The name is an acronym for the popular motto "You only live once," which reflects the one-
stage nature of the algorithm. The authors have released three versions with incremental
improvements of the algorithm. We'll first discuss the latest, v3.

Before diving deeper (pun intended), we should mention a few things about YOLO:

It works with a fully-convolutional network (without pooling layers), not unlike
the ones we've seen in this chapter. It uses residual connections and batch
normalization. The YOLOv3 network uses three different scales of the image for
prediction. What makes it different, though, is the use of special type of
groundtruth/output data, which is a combination of classification and regression.
The network takes the whole image as an input and outputs the bounding boxes,
object classes, and confidence scores of all detected objects in just a single pass.
For example, the bounding boxes in the image of people on the crosswalk at the
beginning of this section were generated using a single network pass.

With that introduction, let's see how YOLO works:

Split the image into a grid of S x S cells (in the following diagram, we can see a 31.
x 3 grid):

The network treats the center of each grid cell as the center of the
region, where an object might be located.
An object might lie entirely within a cell. Then, its bounding box will
be smaller than the cell. Alternatively, it can span over multiple cells
and the bounding box will be larger. YOLO covers both cases.

Advanced Computer Vision Chapter 5

[155]

YOLO can detect multiple objects in a grid cell with the help of anchor
boxes (more on that later), but an object is associated with one cell only
(1-to-n relation). That is, if the bounding box of the object covers
multiple cells, we'll associate the object with the cell, where the center
of the bounding box lies. For example, the two objects in the following
diagram span multiple cells, but they are both assigned to the central
cell, because their centers lie in it.
Some of the cells may contain object and others might not. We are only
interested in the ones that do:

An object detection YOLO example with a 3 x 3 cell grid, 2 objects, and their bounding boxes (dashed lines). Both objects are associated with the middle cell, because the centers
of their bounding boxes lie in that cell

Advanced Computer Vision Chapter 5

[156]

The network output and target data is a one-stage classifier. Тhe network outputs2.
possible detected objects for each grid cell. For example, if the grid is 3 x 3, then
the output will contain nine possible detected objects. For the sake of clarity, let's
discuss the output data (and its corresponding label) for a single grid
cell/detected object. It is an array with values, [bx, by, bh, bw, pc, c1, c2,

..., cn], where:
bx, by, bh, bw describes the bounding box, (if an object exists). bx and
by are the coordinates of the upper-left coordinate of the box. They are
normalized in the [0, 1] range with respect to the size of the image.
That is, if the image is of size 100 x 100 and bx = 20 and by = 50, their
normalized values would be 0.2 and 0.5. bh and bw represent the box
height and width. They are normalized with respect to the grid cell. If
the bounding box is larger than the cell, its value will be greater than 1.
Predicting the box parameters is a regression task.
pc is a confidence score in the [0, 1] range. The labels for the confidence
score are either 0 (not present) or 1 (present), making this part of the
output a classification task. If an object is not present, we can discard
the rest of the array values.
c1, c2, ..., cn is a one-hot encoding of the object class. For
example, if we have car, person, tree, cat, and dog classes, and the
current object is of the cat type, its encoding will be [0, 0, 0, 1,
0]. If we have n possible classes, the size of the output array for one
cell would be 5 + n (9 in our example).

The network output/labels will contain SxS such arrays. For example, the length
of the YOLO output for a 3 x 3 cell grid and four classes will be 3 x 3 x 9 = 81.

Let's address the scenario with multiple objects in the same cell. Thankfully,3.
YOLO proposes an elegant solution to this problem. We'll have multiple
candidate boxes (known as anchor boxes or priors) with a slightly different shape
for each cell. In the following diagram, we can see the grid cell (square,
uninterrupted line) and two anchor boxes – vertical and horizontal (dashed
lines). If we have multiple objects in the same cell, we'll associate each object with
one of the anchor boxes. Conversely, if an anchor box doesn't have an associated
object, it will have a confidence score of 0. This arrangement will also change the
network output. We'll have multiple output arrays per grid cell (one output array
per anchor box). To extend our previous example, let's assume we have a 3 x 3
cell grid with four classes and two anchor boxes per cell. Then, we'll have 3 x 3 x
2 = 18 output bounding boxes and a total output length of 3 x 3 x 2 x 9 = 162.

Advanced Computer Vision Chapter 5

[157]

 Following is a figure of a grid cell with two anchor boxes:

Grid cell (square, uninterrupted line) with two anchor boxes (dashed lines)

The only question now is how to choose the proper anchor box for an object
during training (during inference the network will choose by itself). We'll do this
with the help of Intersection over Union (IoU). This is just the ratio between the
area of the intersection of the object bounding box/anchor box, and the area of
their union:

Intersection over Union (IoU)

We'll compare the bounding box of each object to all anchor boxes, and assign the
object to the anchor box with the highest IoU.

Advanced Computer Vision Chapter 5

[158]

Now that we (hopefully) know how YOLO works, we can use it for predictions.4.
However, the output of the network might be noisy – that is, the output includes
all possible anchor boxes for each cell, regardless of whether an object is present
in them. Many of these boxes will overlap and actually predict the same object.
We'll get rid of the noise using non-maximum suppression. Here's how it works:

Discard all bounding boxes with a confidence score <= 0.6.1.
From the remaining bounding boxes, pick the one with the highest2.
possible confidence score.
Discard any box whose IoU >= 0.5 with the box we selected in the3.
previous step.

If you are worried that the network output/groundtruth data will become
too complex or large, don't be. CNNs work well with the ImageNet
dataset, which has 1,000 categories, and therefore 1,000 outputs.

For more information about YOLO, check out the original sequence of papers:

You Only Look Once: Unified, Real-Time Object Detection (https:/ ​/​arxiv. ​org/
abs/​1506. ​02640) by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi
YOLO9000: Better, Faster, Stronger (https:/ ​/ ​arxiv. ​org/ ​abs/​1612. ​08242) by
Joseph Redmon and Ali Farhadi
YOLOv3: An Incremental Improvement (https:/ ​/ ​arxiv. ​org/ ​abs/​1804. ​02767)
by Joseph Redmon and Ali Farhadi

A code example of YOLOv3 with OpenCV
In this section, we'll demonstrate how to use the YOLOv3 object detector with OpenCV. For
this example, you'll need OpenCV 3.4.2 or higher, and 250 MB of disk space for the pre-
trained YOLO network. Let's begin with the following steps:

Start with the imports:1.

import os.path
import cv2 # opencv import
import numpy as np
import requests

https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767

Advanced Computer Vision Chapter 5

[159]

Add some boilerplate code, which downloads and stores the following:2.
The YOLOv3 network configuration. We'll use the YOLO author's
GitHub and personal website to do this.
The names of the classes that the network can detect. We'll also load
them from the file.
A test image from Wikipedia. We'll also load the image from the file:

Download YOLO net config file
We'll it from the YOLO author's github repo
yolo_config = 'yolov3.cfg'
if not os.path.isfile(yolo_config):
 url =
'https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolo
v3.cfg'
 r = requests.get(url)
 with open(yolo_config, 'wb') as f:
 f.write(r.content)

Download YOLO net weights
We'll it from the YOLO author's website
yolo_weights = 'yolov3.weights'
if not os.path.isfile(yolo_weights):
 url = 'https://pjreddie.com/media/files/yolov3.weights'
 r = requests.get(url)
 with open(yolo_weights, 'wb') as f:
 f.write(r.content)

Download class names file
Contains the names of the classes the network can detect
classes_file = 'coco.names'
if not os.path.isfile(classes_file):
 url =
'https://raw.githubusercontent.com/pjreddie/darknet/master/data/coc
o.names'
 r = requests.get(url)
 with open(classes_file, 'wb') as f:
 f.write(r.content)

load class names
with open(classes_file, 'r') as f:
 classes = [line.strip() for line in f.readlines()]

Download object detection image
image_file = 'source.jpg'
if not os.path.isfile(image_file):
 url =
"https://upload.wikimedia.org/wikipedia/commons/c/c7/Abbey_Road_Zeb

Advanced Computer Vision Chapter 5

[160]

ra_crossing_2004-01.jpg"
 r = requests.get(url)
 with open(image_file, 'wb') as f:
 f.write(r.content)

read and normalize image
image = cv2.imread(image_file)
blob = cv2.dnn.blobFromImage(image, 1 / 255, (416, 416), (0, 0, 0),
True, crop=False)

Initialize the network with the weights and config we just downloaded:3.

Load the network
net = cv2.dnn.readNet(yolo_weights, yolo_config)

Feed the image to the network and do the inference:4.

set as input to the net
net.setInput(blob)

get network output layers
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in
net.getUnconnectedOutLayers()]

inference
the network outputs multiple lists of anchor boxes,
one for each detected class
outs = net.forward(output_layers)

Iterate over the classes and anchor boxes and prepare them for the next step:5.

extract bounding boxes
class_ids = list()
confidences = list()
boxes = list()

iterate over all classes
for out in outs:
 # iterate over the anchor boxes for each class
 for detection in out:
 # bounding box
 center_x = int(detection[0] * image.shape[1])
 center_y = int(detection[1] * image.shape[0])
 w = int(detection[2] * image.shape[1])
 h = int(detection[3] * image.shape[0])
 x = center_x - w // 2
 y = center_y - h // 2

Advanced Computer Vision Chapter 5

[161]

 boxes.append([x, y, w, h])

 # class
 class_id = np.argmax(detection[5:])
 class_ids.append(class_id)

 # confidence
 confidence = detection[4]
 confidences.append(float(confidence))

Remove the noise with non-max suppression. You can experiment with different6.
values of score_threshold and nms_threshold to see how the detected
objects change. For example, setting score_threshold=0.3 will detect more
cars in the distance:

non-max suppression
ids = cv2.dnn.NMSBoxes(boxes, confidences, score_threshold=0.3,
nms_threshold=0.5)

Draw the bounding boxes on the image and display the result:7.

draw the bounding boxes on the image
colors = np.random.uniform(0, 255, size=(len(classes), 3))

for i in ids:
 i = i[0]
 x, y, w, h = boxes[i]
 class_id = class_ids[i]

 color = colors[class_id]

 cv2.rectangle(image, (round(x), round(y)), (round(x + w),
round(y + h)), color, 2)

 label = "%s: %.2f" % (classes[class_id], confidences[i])
 cv2.putText(image, label, (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)

cv2.imshow("Object detection", image)
cv2.waitKey()

If everything goes alright, this code block will produce the same image that we saw at the
beginning of this section.

Advanced Computer Vision Chapter 5

[162]

Semantic segmentation
Semantic segmentation is the process of assigning a class label (such as person, car, or tree)
to each pixel of the image. You can think of it as classification, but on a pixel level – instead
of classifying the entire image under one label, we'll classify each pixel separately. Here is
an example of semantic segmentation:

Semantic segmentation

To train a segmentation algorithm, we'll need a special type of groundtruth data, where the
labels for each image are the semantically segmented version of the image.

There are many approaches to semantic segmentation, which we can see the in the
following bullets:

The easiest way to do this is using the familiar sliding-window technique, which
we described in the Approaches to object detection section. That is, we'll use a
regular classifier and we'll slide it in either direction with stride 1. After we get
the prediction for a location, we'll take the pixel that lies in the middle of the
input region and we'll assign it with the predicted class. Predictably, this
approach is very slow, due to the large number of pixels in an image (even a 1024
x 1024 image has more than 1,000,000 pixels).
We can use a special type of CNN, called Fully Convolutional Network (FCN),
to classify all pixels in the input region in a single pass. We can separate an FCN
into two virtual components (in reality, this is just a single network):

The encoder is the first part of the network. It is such as a regular
CNN, without the fully-connected layers at the end. The role of the
encoder is to learn highly abstract representations of the input
image (nothing new here).

Advanced Computer Vision Chapter 5

[163]

The decoder is the second part of the network. It starts after the
encoder and uses it as input. The role of the decoder is to
"translate" these abstract representations into the segmented
groundtruth data. To do this, the decoder uses the opposite of the
encoder operations. This includes unpooling (the opposite of
pooling) and deconvolutions (the opposite of convolutions). We'll
talk more about this concept (but in different context) in Chapter
6, Generating images with GANs and VAEs.

Artistic style transfer
Artistic style transfer is the use of the style (or texture) of one image to reproduce the
semantic content of another. It can be implemented with different algorithms, but the most
popular way was introduced in 2015 in the paper A Neural Algorithm of Artistic Style
(https:/​/​arxiv.​org/ ​abs/ ​1508. ​06576) by Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge. It's also known as neural style transfer and it uses (you guessed it!) CNNs. The
basic algorithm has been improved and tweaked over the past few years, but in this section
we'll look at the way it was first introduced, because it will give us a good foundation for
understanding the latest versions.

The algorithm takes two images as input:

Content image (C) we would like to redraw
Style image (I) whose style (texture) we'll use to redraw C

The result of the algorithm is a new image: G = C + S. Here is an example of artistic style
transfer:

An example of neural style transfer

https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576

Advanced Computer Vision Chapter 5

[164]

To understand how neural style transfer works, let's recall that CNNs learn a hierarchical
representation of the features. We know that the initial convolutional layers learn basic
features, such as edges and lines. Conversely, the deeper layers learn more complex
features, such as faces, cars, and trees. This is best visible in the diagrams in the What is deep
learning? section of Chapter 3, Deep Learning Fundamentals. Knowing this, let's start with the
following steps:

The authors propose we use a regular pre-trained VGG network. Next comes the1.
interesting part.
Feed the network with the content image, C. Extract and store the output2.
activations (or feature maps or slices) of one more of the hidden layers in the
middle of the network. Let's denote these activations with Ac

l, where l is the
index of the layer. We're interested in middle layers, because the level of feature
abstraction encoded in them is best suited for the task.
Do the same with the style image, S. This time, denote the style activations of the3.
l layer with As

l. The layers we choose for the content and style are not necessarily
the same.
Generate a single random image (white noise), G. This random image will4.
gradually turn into the end result of the algorithm. We'll repeat for a number of
iterations:

Propagate G through the network. This is the only image we'll use1.
throughout the whole process. Such as before, we'll store the
activations for all the l layers (here, l is the combination of all layers we
used for the content and style images). Let's denote these activations
with Ag

l.
Compute the difference between the random noise activations, Ag

l, on2.
one hand, and Ac

l and As
l on the other. These will be the two

components of our loss function:
, known as content loss: This is

just the mean-square error over the element-wise difference
between the two activations of all l layers.

, known as style loss: It's similar to the content loss,
but instead of raw activations, we'll compare their gram
matrices (we won't go into detail about that).

Advanced Computer Vision Chapter 5

[165]

Use the content and style losses to compute the total loss,3.
, which is just a weighted sum of the two.

The α and β coefficients determine which of the components will carry
more weight.
Backpropagate the gradients to the start of the network and update the4.

generated image, . In this way, we make G more similar
to both the content and style images, since the loss function is a
combination of both.

This algorithm makes it possible to harness the powerful representational power of
convolutional networks for artistic style transfer. It does this with a novel loss function and
a smart use of backpropagation.

If you are interested in implementing neural style transfer, check out the official PyTorch
tutorial at https:/ ​/​pytorch. ​org/ ​tutorials/ ​advanced/ ​neural_ ​style_ ​tutorial. ​html.

One shortcoming of this algorithm is that it's relatively slow. Typically, we have to repeat
this pseudo-training procedure for a couple hundred iterations to produce a visually-
appealing result. Fortunately, the paper Perceptual Losses for Real-Time Style Transfer and
Super-Resolution (https:/ ​/ ​arxiv. ​org/ ​abs/ ​1603. ​08155) by Justin Johnson, Alexandre Alahi,
and Li Fei-Fei, builds on top of the original algorithm to provide a solution, which is three
orders of magnitude faster.

Summary
In this chapter, we introduced some new and advanced computer vision techniques. We
started with transfer learning, which is a way to bootstrap network training by using pre-
trained models. Next, we discussed some of the popular neural network architectures in
use today. Then, we talked about capsule networks, which are a promising new approach
to computer vision. After that, we moved on to tasks beyond objects classification, such as
object detection and semantic segmentation. And finally, we introduced neural style
transfer.

In the next chapter, we'll explore a new type of ML algorithms, called generative models.
We can use them to generate new content, such as images. Stay tuned, it will be fun!

https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155

6
Generating Images with GANs

and VAEs
"What I cannot create, I do not understand."- Richard Feynman

This quote is often cited in the same sentence as generative models, and for good reason. In
the previous two chapters (Chapter 4, Computer Vision with Convolutional Networks and
Chapter 5, Advanced Computer Vision), we focused on supervised computer vision
problems, such as classification and object detection. Now, we'll discuss how to create new
images with the help of unsupervised neural networks. After all, it's a lot better knowing
that you don't need labeled data. More specifically, we'll talk about generative models.

This chapter will cover the following topics:

Intuition and justification of generative models
Variational autoencoders
Generative Adversarial networks

Generating Images with GANs and VAEs Chapter 6

[167]

Intuition and justification of generative
models
So far, we've used neural networks as discriminative models. This simply means that given
input data, a discriminative model will map it to a certain label (in other words, a
classification). A typical example is the classification of MNIST images in 1 of 10 digit
classes, where the neural network maps the input data features (pixel intensities) to the
digit label. We can also say this in another way, a discriminative model gives us the
probability of (class), given (input) . In the MNIST case, this is the
probability of the digit, given the pixel intensities of the image.

On the other hand, a generative model learns the distribution of the classes. You can think
of it as the opposite of what the discriminative model does. Instead of predicting the class
probability, , given certain input features, it tries to predict the probability of the input
features, given a class, - . For example, a generative model will be able to create
an image of a handwritten digit, given the digit class. Since we only have 10 classes, it will
be able to generate just 10 images. But we used this example just to better illustrate the
concept. In reality, the "class" could be an arbitrary tensor of values, and the model would
be able to generate an unlimited number of images with different features. If you don't
understand this now, don't worry, we'll see many examples throughout the chapter.

Two of the most popular ways to use neural networks in a generative way are variational
autoencoders(VAEs) and Generative Adversarial networks(GANs).

Generating Images with GANs and VAEs Chapter 6

[168]

Variational autoencoders
To understand VAEs, let's talk about regular autoencoders first. An autoencoder is a feed-
forward neural network that tries to reproduce its input. In other words, the target value
(label) of an autoencoder is equal to the input data, yi = xi, where i is the sample index.We
can formally say that it tries to learn an identity function, (a function that
repeats its input). Since our "labels" are just the input data, the autoencoder is an
unsupervised algorithm. The following diagram represents an autoencoder:

An autoencoder

Generating Images with GANs and VAEs Chapter 6

[169]

An autoencoder consists of an input, hidden (or bottleneck), and output layers. Although
it's a single network, we can think of it as a virtual composition of two components:

Encoder: Maps the input data to the network's internal representation. For the
sake of simplicity, in this example the encoder is a single, fully-connected hidden
bottleneck layer. The internal state is just its activation vector. In general, the
encoder can have multiple hidden layers, including convolutional.
Decoder: Tries to reconstruct the input from the network's internal data
representation. The decoder can also have a complex structure, which typically
mirrors the encoder.

We can train the autoencoder by minimizing a loss function, which is known as the
reconstruction error . It measures the distance between the original input and
its reconstruction. We can minimize it in the usual way with gradient descent and
backpropagation. Depending on the approach, we can use either mean square error (MSE)
or binary cross-entropy (such as cross-entropy, but with two classes) as reconstruction
errors. We first introduced MSE in Chapter 1, Machine Learning: an introduction and the
cross-entropy loss in Chapter 3, Deep Learning Fundamentals.

At this point, you might wonder what the point of the autoencoder is, since it just repeats
its input. However, we are not interested in the network output, but in its internal data
representation (which is also known as representation in the latent space). The latent space
contains hidden data features, which are not directly observed, but are inferred by the
algorithm instead. The key is that the bottleneck layer has fewer neurons than the
input/output ones. There are two main reasons for this:

Because the network tries to reconstruct its input from a smaller feature space, it
learns a compact representation of the data. You can think of it as a compression
(but not lossless).

Generating Images with GANs and VAEs Chapter 6

[170]

By using fewer neurons, the network is forced to learn only the most important
features of the data. To illustrate this concept, let's look at denoising
autoencoders, where we intentionally use corrupted input data, but non-
corrupted target data during training. For example, if we train a denoising
autoencoder to reconstruct MNIST images, we can introduce noise by setting
max intensity (white) to random pixels of the image (the following screenshot).
To minimize the loss with the noiseless target, the autoencoder is forced to look
beyond the noise in the input and learn only the important features of the data.
However, if the network had more hidden neurons than input, it could overfit on
the noise. With the additional constraint of fewer hidden neurons, it has nowhere
to go but to try to ignore the noise. Once trained, we can use a denoising
autoencoder to remove the noise from real images:

Denoising autoencoder input and target

The encoder maps each input sample to the latent space and each attribute of the latent
representation has a discrete value. That means that an input sample can have only one
latent representation. Therefore, the decoder can reconstruct the input in only one possible
way. In other words, we can generate a single reconstruction of one input sample. But we
don't want this. Instead, we want to generate new images that are different from the
original. Enter VAEs.

Generating Images with GANs and VAEs Chapter 6

[171]

A VAE can describe the latent representation in probabilistic terms. That is, instead of
discrete values, we'll have a probability distribution for each latent attribute, making the
latent space continuous. This makes it easier for random sampling and interpolation. Let's
illustrate this with an example. Imagine that we try to encode an image of a vehicle and our
latent representation has n attributes (n neurons in the bottleneck layer). Each attribute
represents one vehicle property, such as length, height, and width (the following
diagram).Say that the average vehicle length is four meters. Instead of the fixed value, the
VAE can decode this property as a normal distribution with a mean of 4 (the same applies
for the others). Then, the decoder can choose to sample a latent variable from the range of
its distribution. For example, it can reconstruct a longer and lower vehicle, compared to the
input. In this way, the VAE can generate an unlimited number of modified versions of the
input:

An example of a variational encoder, sampling different values from the distribution ranges of the latent variables

Let's formalize this:

We'll denote the encoder with , where are the weights and biases of
the network, is the input, and is the latent space representation. The encoder
output is a distribution (for example, Gaussian) over the possible values of ,
which could have generated .
We'll denote the decoder with , where are the decoder weights and
biases. First, is sampled stochastically (randomly) from the distribution. Then,
it's sent through the decoder, whose output is a distribution over the possible
corresponding values of .
The VAE uses a special type of loss function with two terms:

Generating Images with GANs and VAEs Chapter 6

[172]

The first is the Kullback-Leibler divergence between the probability distribution
 and the expected probability distribution, . It measures how much

information is lost, when we use to represent (in other words, how
close the two distributions are). It encourages the autoencoder to explore different
reconstructions. The second is the reconstruction loss, which measures the
difference between the original input and its reconstruction. The more they differ,
the more it increases. Therefore, it encourages the autoencoder to better
reconstruct the data.

To implement this, the bottleneck layer won't directly output the latent state variables.
Instead, it will output two vectors, which describe the mean and variance of the
distribution of each latent variable:

Variational encoder sampling

Once we have the mean and variance distributions, we can sample a state, , from the
latent variable distributions and pass it through the decoder for reconstruction. But we
cannot celebrate yet, because this presents us with another problem: backpropagation
doesn't work over random processes such as the one we have here. Fortunately, we can
solve this with the so-called reparameterization trick. First, we'll sample a random
vector, ε, with the same dimensions as from a Gaussian distribution (theε circle in the
preceding figure). Then, we'll shift it by the latent distribution's mean, μ, and scale it by the
latent distribution's variance, σ:

In this way, we'll be able to only optimize the mean and variance (red arrows) and we'll
omit the random generator from the backward pass. At the same time, the sampled data
will have the properties of the original distribution.

Generating Images with GANs and VAEs Chapter 6

[173]

Generating new MNIST digits with VAE
In this section, we'll see how a VAE can generate new digits for the MNIST dataset and
we'll use Keras to do so. We chose MNIST because it will illustrate the generative
capabilities of the VAE well. Let's start:

Do the imports:1.

import matplotlib.pyplot as plt
from matplotlib.markers import MarkerStyle
import numpy as np
from keras import backend as K
from keras.datasets import mnist
from keras.layers import Lambda, Input, Dense
from keras.losses import binary_crossentropy
from keras.models import Model

Instantiate the MNIST dataset (we've already done that):2.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_size = x_train.shape[1] * x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size])
x_test = np.reshape(x_test, [-1, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

Implement the build_vae function, which will build the VAE:3.
We'll have separate access to the encoder, decoder, and the full
network. The function will return them as a tuple.
The bottleneck layer will have only 2 neurons(that is, we'll have only 2
latent variables). In this way, we'll be able to display the latent
distribution as a 2D plot.
The encoder/decoder will contain a single intermediate (hidden) fully-
connected layer with 512 neurons. This is not a convolutional network.
We'll use cross-entropy reconstruction loss and KL divergence.

Generating Images with GANs and VAEs Chapter 6

[174]

The following is the implementation:

def build_vae(intermediate_dim=512, latent_dim=2):
 """
 Build VAE
 :param intermediate_dim: size of hidden layers of the
encoder/decoder
 :param latent_dim: latent space size
 :returns tuple: the encoder, the decoder, and the full vae
 """

 # encoder first
 inputs = Input(shape=(image_size,), name='encoder_input')
 x = Dense(intermediate_dim, activation='relu')(inputs)

 # latent mean and variance
 z_mean = Dense(latent_dim, name='z_mean')(x)
 z_log_var = Dense(latent_dim, name='z_log_var')(x)

 # reparameterization trick for random sampling
 # Note the use of the Lambda layer
 # At runtime, it will call the sampling function
 z = Lambda(sampling, output_shape=(latent_dim,),
name='z')([z_mean, z_log_var])

 # full encoder encoder model
 encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
 encoder.summary()

 # decoder
 latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
 x = Dense(intermediate_dim, activation='relu')(latent_inputs)
 outputs = Dense(image_size, activation='sigmoid')(x)

 # full decoder model
 decoder = Model(latent_inputs, outputs, name='decoder')
 decoder.summary()

 # VAE model
 outputs = decoder(encoder(inputs)[2])
 vae = Model(inputs, outputs, name='vae')

 # Loss function
 # we start with the reconstruction loss
 reconstruction_loss = binary_crossentropy(inputs, outputs) *
image_size

 # next is the KL divergence

Generating Images with GANs and VAEs Chapter 6

[175]

 kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
 kl_loss = K.sum(kl_loss, axis=-1)
 kl_loss *= -0.5

 # we combine them in a total loss
 vae_loss = K.mean(reconstruction_loss + kl_loss)
 vae.add_loss(vae_loss)

 return encoder, decoder, vae

Immediately tied to the network definition is the sampling function, which4.
implements the random sampling of latent vectors,z, using the
reparameterization trick (introduced in section Variational autoencoders):

def sampling(args: tuple):
 """
 Reparameterization trick by sampling z from unit Gaussian
 :param args: (tensor, tensor) mean and log of variance of
q(z|x)
 :returns tensor: sampled latent vector z
 """

 # unpack the input tuple
 z_mean, z_log_var = args

 # mini-batch size
 mb_size = K.shape(z_mean)[0]

 # latent space size
 dim = K.int_shape(z_mean)[1]

 # random normal vector with mean=0 and std=1.0
 epsilon = K.random_normal(shape=(mb_size, dim))

 return z_mean + K.exp(0.5 * z_log_var) * epsilon

Implement the plot_latent_distribution function. It collects the latent5.
representations of all images in the test set and displays them over a 2D plot. We
can do this because our network has only two latent variables (for the two axes of
the plot). Note that to implement it, we only need the decoder:

def plot_latent_distribution(encoder,
 x_test,
 y_test,
 batch_size=128):
 """
 Display a 2D plot of the digit classes in the latent space.

Generating Images with GANs and VAEs Chapter 6

[176]

 We are interested only in z, so we only need the encoder here.
 :param encoder: the encoder network
 :param x_test: test images
 :param y_test: test labels
 :param batch_size: size of the mini-batch
 """
 z_mean, _, _ = encoder.predict(x_test, batch_size=batch_size)
 plt.figure(figsize=(6, 6))

 markers = ('o', 'x', '^', '<', '>', '*', 'h', 'H', 'D', 'd',
'P', 'X', '8', 's', 'p')

 for i in np.unique(y_test):
 plt.scatter(z_mean[y_test == i, 0], z_mean[y_test == i, 1],
 marker=MarkerStyle(markers[i],
fillstyle='none'),
 edgecolors='black')

 plt.xlabel("z[0]")
 plt.ylabel("z[1]")
 plt.show()

Implement the plot_generated_images function.It will sample n*n vectors z6.
in a [-4, 4] range for each of the two latent variables. Next, it will generate
images based on the sampled vectors and it will display them in a 2D grid. Note
that to do this, we only need the decoder:

def plot_generated_images(decoder):
 """
 Display a 2D plot of the generated images.
 We only need the decoder, because we'll manually sample the
distribution z
 :param decoder: the decoder network
 """

 # display a nxn 2D manifold of digits
 n = 15
 digit_size = 28

 figure = np.zeros((digit_size * n, digit_size * n))
 # linearly spaced coordinates corresponding to the 2D plot
 # of digit classes in the latent space
 grid_x = np.linspace(-4, 4, n)
 grid_y = np.linspace(-4, 4, n)[::-1]

 # start sampling z1 and z2 in the ranges grid_x and grid_y
 for i, yi in enumerate(grid_y):
 for j, xi in enumerate(grid_x):

Generating Images with GANs and VAEs Chapter 6

[177]

 z_sample = np.array([[xi, yi]])
 x_decoded = decoder.predict(z_sample)
 digit = x_decoded[0].reshape(digit_size, digit_size)
 slice_i = slice(i * digit_size, (i + 1) * digit_size)
 slice_j = slice(j * digit_size, (j + 1) * digit_size)
 figure[slice_i, slice_j] = digit

 # plot the results
 plt.figure(figsize=(6, 5))
 start_range = digit_size // 2
 end_range = n * digit_size + start_range + 1
 pixel_range = np.arange(start_range, end_range, digit_size)
 sample_range_x = np.round(grid_x, 1)
 sample_range_y = np.round(grid_y, 1)
 plt.xticks(pixel_range, sample_range_x)
 plt.yticks(pixel_range, sample_range_y)
 plt.xlabel("z[0]")
 plt.ylabel("z[1]")
 plt.imshow(figure, cmap='Greys_r')
 plt.show()

Run the whole thing. We'll use the Adam optimizer (introduced in Chapter7.
3,Deep Learning fundamentals)to train the network for 50 epochs:

if __name__ == '__main__':
 encoder, decoder, vae = build_vae()

 vae.compile(optimizer='adam')
 vae.summary()

 vae.fit(x_train,
 epochs=50,
 batch_size=128,
 validation_data=(x_test, None))

 plot_latent_distribution(encoder,
 x_test,
 y_test,
 batch_size=128)

 plot_generated_images(decoder)

Generating Images with GANs and VAEs Chapter 6

[178]

If everything goes to plan, once the training is over, we'll see the latent distribution for each
digit class for all test images.

The left and bottom axes represent the z1 and z2 latent variables. Different marker shapes
represent different digit classes:

The latent distributions of the MNIST test images

Generating Images with GANs and VAEs Chapter 6

[179]

Next, we'll see the images, generated by plot_generated_images. The axes represent the
particular latent distribution, z, used for each image:

Images generated by the VAE

Generating Images with GANs and VAEs Chapter 6

[180]

Generative Adversarial networks
In this section, we'll talk about arguably the most popular generative model today: the
GANs framework. It was first introduced in 2014 in the landmark paper Generative
Adversarial Nets(http:/ ​/​papers. ​nips. ​cc/ ​paper/ ​5423- ​generative- ​adversarial- ​nets. ​pdf)
by Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair Aaron Courville, and Yoshua Bengio. The GANs framework can work with
any type of data, but it's most popular application by far is to generate images, and we'll
discuss them in this context only. Let's see how it work:

A GAN system

A GAN is a system of two components (neural networks):

Generator: This is the generative model itself. It takes a probability distribution
(random noise) as input and tries to generate a realistic output image. Its purpose
is similar to the decoder part of the VAE.
Discriminator: This takes two alternating inputs: the real images of the training
dataset or the generated fake samples from the generator. It tries to determine
whether the input image comes from the real images or the generated ones.

The two networks are trained together as a system. On the one hand, the discriminator tries
to get better at distinguishing between the real and fake images. On the other hand, the
generator tries to output more realistic images, so it could "deceive" the discriminator into
thinking that the generated image is real. To use the analogy in the original paper, you can
think of the generator as a team of counterfeiters, trying to produce fake currency.
Conversely, the discriminator acts as a police officer, trying to capture the fake money, and
the two are constantly trying to deceive each other (hence the name adversarial). The
ultimate goal of the system is to make the generator so good that the discriminator
wouldn't be able to distinguish between the real and fake images. Even though the
discriminator does classification, a GAN is still unsupervised, since we don't need labels for
the images.

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Generating Images with GANs and VAEs Chapter 6

[181]

Training GANs
Our main goal is for the generator to produce realistic images and the GAN framework is a
vehicle for that goal. We'll train the generator and the discriminator separately and
sequentially (one after the other), and alternate between the two phases multiple times.

Before going into more detail, let's use the following figure to introduce some notations:

We'll denote the generator with , where are the network weights,
and is the latent vector, which serves as an input to the generator. Think of it as
a random seed value to kickstart the image-generation process. It is similar to the
latent vector in the VAEs. has a probability distribution, , which is
usually random normal or random uniform. The generator outputs fake
samples, ,with a probability distribution of . You can think of as
the probability distribution of the real data according to the generator.

We'll denote the discriminator with , where are the network weights.
It takes as input either the real data with the distribution, or the
generated samples, . The discriminator is a binary classifier, which
outputs whether the input image is part of the real (network output 1) or the
generated data (network output 0).
During training, we'll denote the discriminator and generator loss functions with

 and , respectively.

Here is a more detailed diagram of a GAN framework:

Detailed example of a Generative Adversarial network

Generating Images with GANs and VAEs Chapter 6

[182]

GAN training is different compared to the training of a regular DNN, because we have two
networks. We can think of it as a sequential minimax zero-sum game of two players
(generator and discriminator):

Sequential: Means that the players take turns after one another, similar to chess
or tic-tac-toe (as opposed to simultaneous). First, the discriminator tries to
minimize , but it can only do so by adjusting the weights, . Next, the
generator tries to minimize , but it can only adjust the weights, . We
repeat this process multiple times.
Zero-sum: Means that the gains or losses of one player are exactly balanced by
the gains or losses of the opposite player. That is, the sum of the generator's loss
and the discriminator's loss is always 0:

Minimax: Means that the strategy of the first player (generator) is to minimize
the opponent's (discriminator) maximum score (hence the name). When we train
the discriminator, it becomes better at distinguishing between real and fake
samples (minimizing). Next, when we train the generator, it tries to step up
to the level of the newly-improved discriminator (we minimize , which is
equivalent to maximizing). The two networks are in constant
competition. We'll denote the minimax game by the following, where is the
cost function:

Let's assume that after a number of training steps, both and will be at
some local minimum. Then, the solution to the minimax game is called the Nash
equilibrium. A Nash equilibrium happens when one of the actors doesn't change
its action, regardless of what the other actor may do. A Nash equilibrium in a
GAN framework happens when the generator becomes so good that the
discriminator is no longer able to distinguish between the generated and real

samples. That is, the discriminator output will always be regardless of the
presented input.

Generating Images with GANs and VAEs Chapter 6

[183]

Training the discriminator
The discriminator is a classification neural network and we can train it in the usual way,
using gradient descent and backpropagation. However, the training set is composed of
equal parts real and generated samples. Let's see how to incorporate that in the training
process:

Depending on the input sample (real or fake), we have two paths:1.
Select the sample from the real data, , and use it to produce

.
Generate fake sample, . Here, generator and discriminator
work as a single network. We start with a random vector, , which we
use to produce the generated sample, . Then, we use it as input to
the discriminator to produce the final output, .

Compute the loss function, which reflects the duality of the training data (more2.
on that later).
Backpropagate the error gradient and update the weights. Although the two3.
networks work together, the generator weights, , will be locked and we'll only
update the discriminator weights, . This ensures that we'll improve the
discriminator performance by making it better, as opposed to making the
generator worse.

To understand the discriminator loss, let's recall the formula for the cross-entropy loss:

Where is the estimated probability of the output belonging to the i class (out of n total
classes) and is the actual probability. For the sake of simplicity, we'll assume that we
apply the formula over a single training sample. In the case of binary classification, this
formula can be simplified as follows:

In the case where the target probabilities are (one-hot-
encoding), one of the loss terms is always 0.

Generating Images with GANs and VAEs Chapter 6

[184]

We can expand the formula for a mini-batch of m samples:

Knowing all this, let's define the discriminator loss:

Although it seems complex, it is just a cross-entropy loss for a binary classifier with some
GAN-specific bells and whistles. Let's discuss them:

The two components of the loss reflect the two possible classes (real or fake),
which are in equal number in the training set.

 is the loss when the input is sampled from the real data.
Ideally, in such cases, we'll have .

In this context, the term (called expectation) implies that the is
sampled from . In essence, this part of the loss means "when we
sample from , we expect the discriminator output, " . Finally, 0.5 is

the cumulative class probability of the real data, , since it comprises exactly
half of the whole set.

 is the loss, when the input is sampled from the generated
data. Here, we can make the same observations as with the real data component.
However,this term is maximized when .

To summarize, the discriminator loss will be zero when for all and
 for all generated (or).

Training the generator
We'll train the generator by making it better at deceiving the discriminator. To do this, we'll
need both networks, similar to the way we train the discriminator with fake samples:

We start with a random latent vector, , and feed it through both the generator1.
and discriminator, to produce the output, .

Generating Images with GANs and VAEs Chapter 6

[185]

The loss function is the same as the discriminator loss. However, our goal here is2.
to maximize it, rather than minimize it, since we want to deceive the
discriminator.
In the backward pass, the discriminator weights, , are locked and we can only3.
adjust . This forces us to maximize the discriminator loss by making the
generator better, instead of making the discriminator worse.

You may notice that in this phase we only use generated data. The part of the loss function
that deals with real data will always be 0. Therefore,we can simplify it to the following:

The derivative (gradient) of this formula is , displayed in the following figure
with an uninterrupted line.This imposes a limitation on the training. Early on, when the
discriminator can easily distinguish between real and fake samples, (), the
gradient will be close to zero. This would result in little learning of the weights, (this
problem is known as diminished gradient):

Gradients of the two generator loss functions

Generating Images with GANs and VAEs Chapter 6

[186]

We can solve this issue by using a different loss function:

The derivative of this function is displayed in the preceding figure with a dashed line. This
loss is still minimized, when and at the same time the gradient is large, when
the generator underperforms. With this loss, the game is no longer zero-sum, but this won't
have a practical effect on the GAN framework.

Putting it all together
With our newfound knowledge, we can define the minimax objective in full:

In short, the generator tries to minimize the objective, while the discriminator tries to
maximize it. Note that while the discriminator should minimize its loss, the minimax
objective is a negative of the discriminator loss, and therefore the discriminator has to
maximize it.

The following is a step-by-step training algorithm, as it introduced by the authors of the
GAN framework.

Repeat for a number of iterations:

Repeat for k steps, where k is a hyperparameter:1.
Sample a mini-batch of m random samples from the latent space,

.
Sample a mini-batch of m samples from the real data,

.
Update the discriminator weights, , by ascending the stochastic
gradient of its loss:

Generating Images with GANs and VAEs Chapter 6

[187]

Sample a mini-batch of m random samples from the latent space,2.

.
Update the generator by descending the stochastic gradient of its loss:3.

At the end of this section, we'll mention that the gradient descent algorithm is designed to
find the minimum of the loss function, rather than the Nash equilibrium, which is not the
same thing. As a result, sometimes the training may fail to converge. But due to the
popularity of GANs, many improvements have been proposed. If the reader is interested in
training GANs, do your own research to learn more about them.

Types of GANs
Since the the GAN framework was first introduced, a lot of new variations have emerged.
In fact, there are so many new GANs now that in order to stand out, some of the authors
have come up with creative GAN names, such as BicycleGAN,DiscoGAN, GANs for LIFE,
and ELEGANT.In this section, we'll discuss some of them.

DCGAN
In the original GAN framework proposal, the authors used only fully-connected networks.
The first major improvement of the GAN framework is Deep Convolutional Generative
Adversarial networks (DCGANs). In this new architecture, both the generator and the
discriminator are convolutional networks. They have some constraints, which help to
stabilize the training:

The discriminator uses strided convolutions instead of pooling layers.
The generator is a special type of CNN, which uses fractional-strided
convolutions to increase the size of the images. We'll discuss it in the next section.
Both networks use batch normalization.
No fully-connected layers, with the exception of the last layer of the
discriminator.

Generating Images with GANs and VAEs Chapter 6

[188]

LeakyReLU (https:/ ​/​en. ​wikipedia. ​org/​wiki/ ​Rectifier_ ​(neural_
networks)#Leaky_ ​ReLUs)activations for all layers of the generator, except the
output, which uses Tanh (introduced in Chapter 2, Neural networks).
LeakyReLU activations for all layers of the discriminator, except the output,
which uses sigmoid.

You can think of these as general guidelines for GAN training and not just for DCGAN.

The generator in DCGAN
In the following diagram, we can see a sample generator network in the DCGAN
framework:

Generator network with deconvolutional layers

As usual, the generator starts with a random latent vector, . To transform it into an image,
we'll use a network with a special type of convolution operation, called transposed
convolution (also known as deconvolution or fractionally-strided convolution). We briefly
touched on it in Chapter 4, Computer Vision with Convolutional Networks, in the
Backpropagation in convolutional layers section, but let's discuss it in a little more detail
now.You can think of the transposed convolution as an opposite of the regular convolution.
As usual, we have input, output, and a filter with weights. But here, we'll apply the filter
over a single input neuron to produce multiple outputs.

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLUs

Generating Images with GANs and VAEs Chapter 6

[189]

Let's illustrate this concept with a simple 1D transposed convolution example:

Transposed convolution with stride 1 (left) and stride 2 (right)

We multiply a neuron's output by each of the filter weights to produce a patch with the
same dimensions as the filter. Then, we sum the overlapping regions of the patches to
produce the final output. Note that the overlap is in the output layer, as opposed to regular
convolution, where we had overlapping regions in the input.As a consequence, the stride is
also relevant to the output layer. By setting the stride larger than 1, we can increase the
output size, compared to the input. We can use this property of the transpose convolutions
to gradually up-sample the latent vector, , in the generator.

Let the size of the input slice be I, the size of the filter F, the stride S, and the input padding
P. Then, the size,O,of the output slice is given by the following:

For example, the output size of the left example is 1*(2 - 1) + 3 - 2*0 = 4. The
output size of the right example is 2*(2 - 1) + 3 - 2*0 = 5.

For more information about DCGANs, check out the original
paper,Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks(https:/ ​/​arxiv. ​org/ ​abs/ ​1511. ​06434), by
Alec Radford, Luke Metz, and Soumith Chintala.

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434

Generating Images with GANs and VAEs Chapter 6

[190]

Conditional GANs
Conditional GANs (CGANs) are an extension of the GAN framework where both the
generator and discriminator receive some additional conditioning input information, . This
could be the class of the current image or some other property.

For example, if we train a GAN to generate new MNIST images, we could add an
additional input layer with values of one-hot-encoded image labels:

Conditional GAN

CGANs have the one disadvantage that are not strictly unsupervised and we need some
kind of labels for them to work. However, they have some other advantages:

By using more and better-structured information for training, the model can
learn better data representations and generate better samples.
In regular GANs, all the image information is stored in the latent vector, . This
poses a problem: since can be complex, we don't have much control over the
properties of the generated image. For example, suppose that we want our
MNIST GAN to generate a certain digit, say 7. We would have to experiment
with different latent vectors until we reach the desired output. But with CGAN,
we could simply combine the one-hot vector of 7 with some random and the
network will generate the correct digit. We could still try different values
forand the model would generate different versions of the digit 7. In short,
CGANs provide a way to control (condition) the generator output.

For more information about CGANs, check out the original
paper,Conditional Generative Adversarial Nets (https:/ ​/ ​arxiv. ​org/ ​abs/
1411. ​1784), by Mehdi Mirza and Simon Osindero.

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784

Generating Images with GANs and VAEs Chapter 6

[191]

Generating new MNIST images with GANs and
Keras
In this section, we'll demonstrate how to use GANs to generate new MNIST images with
Keras. Let's start:

Do the imports:1.

import matplotlib.pyplot as plt
import numpy as np
from keras.datasets import mnist
from keras.layers import BatchNormalization, Input, Dense, Reshape,
Flatten
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam

Implement the build_generator function. In this example, we'll use a simple2.
fully-connected generator. However, we'll still follow the guidelines outlined in
the DCGAN section:

def build_generator(latent_dim: int):
 """
 Build discriminator network
 :param latent_dim: latent vector size
 """

 model = Sequential([
 Dense(128, input_dim=latent_dim),
 LeakyReLU(alpha=0.2),
 BatchNormalization(momentum=0.8),
 Dense(256),
 LeakyReLU(alpha=0.2),
 BatchNormalization(momentum=0.8),
 Dense(512),
 LeakyReLU(alpha=0.2),
 BatchNormalization(momentum=0.8),
 Dense(np.prod((28, 28, 1)), activation='tanh'),
 # reshape to MNIST image size
 Reshape((28, 28, 1))
])

 model.summary()

 # the latent input vector z
 z = Input(shape=(latent_dim,))

Generating Images with GANs and VAEs Chapter 6

[192]

 generated = model(z)

 # build model from the input and output
 return Model(z, generated)

Build the discriminator. Again, it's a simple, fully-connected network:3.

def build_discriminator():
 """
 Build discriminator network
 """

 model = Sequential([
 Flatten(input_shape=(28, 28, 1)),
 Dense(256),
 LeakyReLU(alpha=0.2),
 Dense(128),
 LeakyReLU(alpha=0.2),
 Dense(1, activation='sigmoid'),
], name='discriminator')

 model.summary()

 image = Input(shape=(28, 28, 1))
 output = model(image)

 return Model(image, output)

Implement the train function with the actual GAN training. This function4.
implements the procedure outlined in the Training GANs,Putting it all together
section:

def train(generator, discriminator, combined, steps, batch_size):
 """
 Train the GAN system
 :param generator: generator
 :param discriminator: discriminator
 :param combined: stacked generator and discriminator
 we'll use the combined network when we train the generator
 :param steps: number of alternating steps for training
 :param batch_size: size of the minibatch
 """

 # Load the dataset
 (x_train, _), _ = mnist.load_data()

 # Rescale in [-1, 1] interval
 x_train = (x_train.astype(np.float32) - 127.5) / 127.5

Generating Images with GANs and VAEs Chapter 6

[193]

 x_train = np.expand_dims(x_train, axis=-1)

 # Discriminator ground truths
 real = np.ones((batch_size, 1))
 fake = np.zeros((batch_size, 1))

 latent_dim = generator.input_shape[1]

 for step in range(steps):
 # Train the discriminator

 # Select a random batch of images
 real_images = x_train[np.random.randint(0,
x_train.shape[0], batch_size)]

 # Random batch of noise
 noise = np.random.normal(0, 1, (batch_size, latent_dim))

 # Generate a batch of new images
 generated_images = generator.predict(noise)

 # Train the discriminator
 discriminator_real_loss =
discriminator.train_on_batch(real_images, real)
 discriminator_fake_loss =
discriminator.train_on_batch(generated_images, fake)
 discriminator_loss = 0.5 * np.add(discriminator_real_loss,
discriminator_fake_loss)

 # Train the generator
 # random latent vector z
 noise = np.random.normal(0, 1, (batch_size, latent_dim))

 # Train the generator
 # Note that we use the "valid" labels for the generated
images
 # That's because we try to maximize the discriminator loss
 generator_loss = combined.train_on_batch(noise, real)

 # Display progress
 print("%d [Discriminator loss: %.4f%%, acc.: %.2f%%]
[Generator loss: %.4f%%]" %
 (step, discriminator_loss[0], 100 *
discriminator_loss[1], generator_loss))

Generating Images with GANs and VAEs Chapter 6

[194]

Implement a boilerplate function,plot_generated_images, to display some5.
generated images after the training is finished:

Create an nxn grid (the figure variable).1.
Create nxn random latent vectors (the noise variable), one for each2.
generated image.
Generate the images and place them in the grid cells.3.
Display the result.4.

The following is the implementation:

def plot_generated_images(generator):
 """
 Display a nxn 2D manifold of digits
 :param generator: the generator
 """
 n = 10
 digit_size = 28

 # big array containing all images
 figure = np.zeros((digit_size * n, digit_size * n))

 latent_dim = generator.input_shape[1]

 # n*n random latent distributions
 noise = np.random.normal(0, 1, (n * n, latent_dim))

 # generate the images
 generated_images = generator.predict(noise)

 # fill the big array with images
 for i in range(n):
 for j in range(n):
 slice_i = slice(i * digit_size, (i + 1) * digit_size)
 slice_j = slice(j * digit_size, (j + 1) * digit_size)
 figure[slice_i, slice_j] =
np.reshape(generated_images[i * n + j], (28, 28))

 # plot the results
 plt.figure(figsize=(6, 5))
 plt.axis('off')
 plt.imshow(figure, cmap='Greys_r')
 plt.show()

Generating Images with GANs and VAEs Chapter 6

[195]

Build the generator, discriminator, and the combined network. Run the training6.
for 15,000 steps using the Adam optimizer, and plot the results once it's done:

if __name__ == '__main__':
 latent_dim = 64

 # Build and compile the discriminator
 discriminator = build_discriminator()
 discriminator.compile(loss='binary_crossentropy',
 optimizer=Adam(lr=0.0002, beta_1=0.5),
 metrics=['accuracy'])

 # Build the generator
 generator = build_generator(latent_dim)

 # Generator input z
 z = Input(shape=(latent_dim,))
 generated_image = generator(z)

 # Only train the generator for the combined model
 discriminator.trainable = False

 # The discriminator takes generated image as input and
determines validity
 real_or_fake = discriminator(generated_image)

 # Stack the generator and discriminator in a combined model
 # Trains the generator to deceive the discriminator
 combined = Model(z, real_or_fake)
 combined.compile(loss='binary_crossentropy',
 optimizer=Adam(lr=0.0002, beta_1=0.5))

 # train the GAN system
 train(generator=generator,
 discriminator=discriminator,
 combined=combined,
 steps=15000,
 batch_size=128)

 # display some random generated images
 plot_generated_images(generator)

Generating Images with GANs and VAEs Chapter 6

[196]

If everything goes as planned, we should see something similar to the following:

Newly-generated MNIST images

Summary
In this chapter, we discussed how to create new images with generative models, which is
one of the most exciting machine learning areas at the moment. We talked about two of the
most popular generative algorithms: VAEs and GANs. First, we learned their theoretical
foundations and then we implemented simple programs to generate new MNIST digits
with each algorithm.

This chapter concludes the series of the last three chapters, which were dedicated to
computer vision. In the next chapter, we'll discuss how to apply DL algorithms in the field
of natural language processing (NLP). We'll also introduce the main NLP paradigms and a
new type of neural network, called the recurrent network, which is especially suited for
NLP tasks.

7
Recurrent Neural Networks and

Language Models
The neural network architectures we discussed in the previous chapters take in fixed sized
input and provide fixed sized output. This chapter will lift this constraint by
introducing Recurrent Neural Networks (RNNs). RNNs help us deal with sequences of
variable length by defining a recurrence relation over these sequences (hence the name).

The ability to process arbitrary sequences of input makes RNNs applicable for natural
language processing (NLP) and speech recognition tasks. In fact, RNNs can be applied to
any problem since it has been proven that they are Turing complete – theoretically, they can
simulate any program that a regular computer would not be able to compute. For example,
Google's DeepMind has proposed a model called Differentiable Neural Computer, which
can learn how to execute simple algorithms, such as sorting.

In this chapter, we will cover the following topics:

Recurrent neural networks
Language modeling
Sequence to sequence learning
Speech recognition

Recurrent Neural Networks and Language Models Chapter 7

[198]

Recurrent neural networks
RNN is a type of neural network, which can process sequential data with variable length.
Examples of such data include the words of a sentence or the price of a stock in various
moments of time. By using the word sequential, we imply that the elements of the sequence
are related to each other and their order matters. For example, if we take a book and shuffle
randomly all the words in it, the text will loose it's meaning, even though we'll still know
the individual words.

RNNs get their name because they apply the same function over a sequence recurrently.
We can define an RNN as a recurrence relation:

Here, f is a differentiable function, st is a vector of values called internal network state (at
step t), and xt is the network input at step t. Unlike regular networks, where the state only
depends on the current input (and network weights), here st is a function of both the
current input, as well as the previous state, st-1. You can think of st-1 as the network's
summary of all previous inputs. The recurrence relation defines how the state evolves step
by step over the sequence via a feedback loop over previous states, as illustrated in the
following diagram:

Left: Visual illustration of the RNN recurrence relation: st = st-1 * W + xt * U. The final output will be yt = st * V . Right: RNN states recurrently unfolded over the sequence t-1, t,
t+1. Note that the parameters U, V, and W are shared between all the steps

Recurrent Neural Networks and Language Models Chapter 7

[199]

The RNN has three sets of parameters (or weights):

U transforms the input xt to the state st

W transforms the previous state st-1 to the current state st

V maps the newly computed internal state st to the output yt

U, V, and W apply linear transformation over their respective inputs. The most basic case of
such a transformation is the familiar weighted sum we know and love. We can now define
the internal state and the network output as follows:

Here, f is the non-linear activation function (such as tanh, sigmoid, or ReLU).

For example, in a word-level language model, the input x will be a sequence of words
encoded in input vectors (x1 ... xt ...). The state s will be a sequence of state vectors (s1 ... st ...
). Finally, the output y will be a sequence of probability vectors (y1 ... yt ...) of the next
words in the sequence.

Note that in a RNN, each state is dependent on all previous computations via this
recurrence relation. An important implication of this is that RNNs have memory over time,
because the states s contains information based on the previous steps. In theory, RNNs can
remember information for an arbitrarily long period of time, but in practice they are limited
to looking back only a few steps. We will address this issue in more detail in the Vanishing
and exploding gradients section.

The RNN we described is somewhat equivalent to a single layer regular neural network
(with an additional recurrence relation). As we now know from Chapter 2, Neural
Networks, a network with a single layer has some serious limitations. Fear not! As with
regular networks, we can stack multiple RNNs to form a stacked RNN. The cell state sl

t of a
RNN cell at level l at time t will take the output yt

l-1 of the RNN cell from level l-1 and
previous cell state sl

t-1 of the cell at the same level l as the input:

Recurrent Neural Networks and Language Models Chapter 7

[200]

In the following diagram, we can see an unfolded, stacked RNN:

Stacked RNN

Because RNNs are not limited to processing fixed size inputs, they really expand the
possibilities of what we can compute with neural networks, such as sequences of different
lengths or images of varied sizes. The following are some combinations:

One-to-one: This is non-sequential processing, such as feedforward neural
networks and convolutional neural networks. Note that there isn't much
difference between a feedforward network and applying an RNN to a single time
step. An example of one-to-one processing is image classification, which we
looked at in Chapter 4, Computer Vision with Convolutional Networks.
One-to-many: This processing generates a sequence based on a single input, for
example, caption generation from an image (https:/ ​/​arxiv. ​org/​abs/ ​1411.
4555v2).
Many-to-one: This processing outputs a single result based on a sequence, for
example, sentiment classification from text.
Many-to-many indirect: A sequence is encoded into a state vector, after which
this state vector is decoded into a new sequence, for example, language
translation (https:/ ​/​arxiv. ​org/ ​abs/ ​1406. ​1078v3 and http:/ ​/​papers. ​nips. ​cc/
paper/​5346- ​sequence- ​to- ​sequence- ​learning- ​with- ​neural- ​networks. ​pdf).
Many-to-many direct: This outputs a result for each input step, for example,
frame phoneme labeling in speech recognition (see the Speech recognition section
for more details).

https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Recurrent Neural Networks and Language Models Chapter 7

[201]

The following is a graphical representation of the preceding input-output combinations
(idea from http:/ ​/​karpathy. ​github. ​io/ ​2015/ ​05/​21/ ​rnn- ​effectiveness/ ​):

RNN input-output combinations

RNN implementation and training
In the preceding section, Recurrent neural networks, we briefly discussed what RNNs are and
what problems they can solve. Let's dive into the details of an RNN and how to train it with
a very simple toy example: counting ones in a sequence.

In this problem, we will teach a basic RNN how to count the number of ones in the input,
and then output the result at the end of the sequence. This is an example of a "many-to-one"
relationship, which we defined in the previous section.

We'll implement this example with Python (no DL libraries) and NumPy. An example of
input and output is as follows:

In: (0, 0, 0, 0, 1, 0, 1, 0, 1, 0) Out: 3

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Networks and Language Models Chapter 7

[202]

The RNN we'll use is illustrated in the following diagram:

Basic RNN for counting ones in the input

The network will have only two parameters: an input weight U and a recurrence weight W.
The output weight V is set to 1 so that we just read out the last state as the output y.

Before we continue, let's add some code so that our example can be executable. We'll
import numpy and we'll define our training and data, x, and labels, y. x is two dimensional,
since the first dimension represents the sample in the mini-batch. For the sake of simplicity,
we'll use a mini-batch with a single sample:

import numpy as np

The first dimension represents the mini-batch
x = np.array([[0, 0, 0, 0, 1, 0, 1, 0, 1, 0]])

y = np.array([3])

The recurrence relation defined by this network is st = st-1 * W + xt * U. Note that this is a
linear model since we don't apply a non-linear function in this formula. We can implement
a recurrence relation as follows:

def step(s, x, U, W):
 return x * U + s * W

The states st and the weights W and U are single scalar values. A good solution to this is to
just get the sum of the inputs across the sequence. If we set U=1, then whenever input is
received, we will get its full value. If we set W=1, then the value we would accumulate
would never decay. So, for this example, we would get the desired output: 3.

Recurrent Neural Networks and Language Models Chapter 7

[203]

Nevertheless, let's use this simple example to network the training and implementation of
this neural network. This will be interesting, as we will see in the rest of this section. Let's
look at how we could get this result through backpropagation.

Backpropagation through time
Backpropagation through time is the typical algorithm we use to train recurrent
networks (http:/​/​axon. ​cs. ​byu. ​edu/ ​~martinez/ ​classes/ ​678/ ​Papers/ ​Werbos_ ​BPTT. ​pdf).
As the name suggests, it's based on the backpropagation algorithm we discussed in Chapter
2, Neural Networks.

The main difference between regular backpropagation and backpropagation through time
is that the recurrent network is unfolded through time for a certain number of time steps
(as illustrated in the preceding diagram). Once the unfolding is complete, we end up with a
model that is quite similar to a regular multilayer feedforward network. That is, one hidden
layer of that network represents one step through time. The only differences are that each
layer has multiple inputs: the previous state st-1 and the current input xt. The parameters
U and W are shared between all hidden layers.

The forward pass unwraps the RNN along the sequence and builds a stack of states for
each step. The following is an implementation of the forward pass, which returns
the activation s for each recurrent step and each sample in the batch:

def forward(x, U, W):
 # Number of samples in the mini-batch
 number_of_samples = len(x)

 # Length of each sample
 sequence_length = len(x[0])

 # Initialize the state activation for each sample along the sequence
 s = np.zeros((number_of_samples, sequence_length + 1))

 # Update the states over the sequence
 for t in range(0, sequence_length):
 s[:, t + 1] = step(s[:, t], x[:, t], U, W) # step function

 return s

Now that we have our forward step and loss function, we can define how the gradient is
propagated backward. Since the unfolded RNN is equivalent to a regular feedforward
network, we can use the chain rule we introduced in Chapter 2, Neural Networks, that is
backpropagation.

http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf

Recurrent Neural Networks and Language Models Chapter 7

[204]

Because the weights W and U are shared across the layers, we'll accumulate the error
derivatives for each recurrent step and in the end we'll update the weights with the
accumulated value.

First, we need to get the gradient of the output st with respect to the cost function (∂J/∂s).
Once we have it, we'll propagate it backward through the stack of activities we built during
the forward step. This backward pass pops activities off the stack to accumulate their error
derivatives at each time step. The recurrence relation to propagate this gradient through the
network can be written as follows (chain rule):

Here, J is the loss function.

The gradients of the parameters are accumulated as follows:

The following is an implementation of the backward pass:

The gradients for U and W are accumulated in gU and gW, respectively:1.

def backward(x, s, y, W):
 sequence_length = len(x[0])

 # The network output is just the last activation of sequence
 s_t = s[:, -1]

 # Compute the gradient of the output w.r.t. MSE cost function
at final state
 gS = 2 * (s_t - y)

 # Set the gradient accumulations to 0
 gU, gW = 0, 0

 # Accumulate gradients backwards

Recurrent Neural Networks and Language Models Chapter 7

[205]

 for k in range(sequence_length, 0, -1):
 # Compute the parameter gradients and accumulate the
results.
 gU += np.sum(gS * x[:, k - 1])
 gW += np.sum(gS * s[:, k - 1])

 # Compute the gradient at the output of the previous layer
 gS = gS * W

 return gU, gW

We can now try to use gradient descent to optimize our network. We'll use the2.
mean square error:

def train(x, y, epochs, learning_rate=0.0005):
 """Train the network"""

 # Set initial parameters
 weights = (-2, 0) # (U, W)

 # Accumulate the losses and their respective weights
 losses = list()
 weights_u = list()
 weights_w = list()

 # Perform iterative gradient descent
 for i in range(epochs):
 # Perform forward and backward pass to get the gradients
 s = forward(x, weights[0], weights[1])

 # Compute the MSE cost function
 loss = (y[0] - s[-1, -1]) ** 2

 # Store the loss and weights values for later display
 losses.append(loss)

 weights_u.append(weights[0])
 weights_w.append(weights[1])

 gradients = backward(x, s, y, weights[1])

 # Update each parameter `p` by p = p - (gradient *
learning_rate).
 # `gp` is the gradient of parameter `p`
 weights = tuple((p - gp * learning_rate) for p, gp in
zip(weights, gradients))

 print(weights)

Recurrent Neural Networks and Language Models Chapter 7

[206]

 return np.array(losses), np.array(weights_u),
np.array(weights_w)

Next, we'll implement the related plot_training function, which displays the3.
weights and the loss:

def plot_training(losses, weights_u, weights_w):
 import matplotlib.pyplot as plt

 # remove nan and inf values
 losses = losses[~np.isnan(losses)][:-1]
 weights_u = weights_u[~np.isnan(weights_u)][:-1]
 weights_w = weights_w[~np.isnan(weights_w)][:-1]

 # plot the weights U and W
 fig, ax1 = plt.subplots(figsize=(5, 3.4))

 ax1.set_ylim(-3, 2)
 ax1.set_xlabel('epochs')
 ax1.plot(weights_w, label='W', color='red', linestyle='--')
 ax1.plot(weights_u, label='U', color='blue', linestyle=':')
 ax1.legend(loc='upper left')

 # instantiate a second axis that shares the same x-axis
 # plot the loss on the second axis
 ax2 = ax1.twinx()

 # uncomment to plot exploding gradients
 ax2.set_ylim(-3, 200)
 ax2.plot(losses, label='Loss', color='green')
 ax2.tick_params(axis='y', labelcolor='green')
 ax2.legend(loc='upper right')

 fig.tight_layout()

 plt.show()

Finally, we can run this code:4.

losses, weights_u, weights_w = train(x, y, epochs=150)
plot_training(losses, weights_u, weights_w)

Recurrent Neural Networks and Language Models Chapter 7

[207]

This will produce the following graph:

The RNN loss and the uninterrupted line represents the loss, while the dashed lines represent the weights

Vanishing and exploding gradients
The preceding example has an issue, though. Let's run the training with a longer sequence:

x = np.array([[0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1,
0]])

y = np.array([12])

losses, weights_u, weights_w = train(x, y, epochs=150)
plot_training(losses, weights_u, weights_w)

The output is:

chapter_07_001.py:5: RuntimeWarning: overflow encountered in multiply
 return x * U + s * W
chapter_07_001.py:40: RuntimeWarning: invalid value encountered in multiply
 gU += np.sum(gS * x[:, k - 1])
chapter_07_001.py:41: RuntimeWarning: invalid value encountered in multiply
 gW += np.sum(gS * s[:, k - 1])

Recurrent Neural Networks and Language Models Chapter 7

[208]

The reason for these warnings is that the final parameters U and W end up as Not a
Number (NaN). In the following graph, we can see the weight updates and loss during the
training steps:

Parameters and loss function during exploding gradients scenario

The weights slowly move toward the optimum and the loss decreases until it overshoots at
epoch 23 (the exact epoch is unimportant, though). What happens is that the cost surface
we are training on is highly unstable. Using small steps, we might move to a stable part of
the cost function, where the gradient is low, and suddenly hits upon a jump in cost and a
corresponding huge gradient. Because the gradient is so huge, it will have a big effect on
our weights via the weight updates – they become NaNs (as illustrated by the jump outside
the plot). This problem is known as exploding gradients.

There is also the vanishing (as opposed to exploding) gradients problem, which we first
mentioned in chapter 3, Deep Learning Fundamentals. The gradient decays exponentially
over the number of steps to a point where it becomes extremely small in the earlier states.
In effect, they are overshadowed by the larger gradients from more recent time steps, and
the network's ability to retain the history of these earlier states vanishes. This problem is
harder to detect because the training will still work and the network will produce valid
outputs (unlike with exploding gradients). It just won't be able to learn long-term
dependencies.

Recurrent Neural Networks and Language Models Chapter 7

[209]

Although vanishing and exploding gradients are present in regular neural networks, they
are especially pronounced in RNNs. The reasons for this are as follows:

Depending on the sequence's length, an unfolded RNN can be much deeper
compared to a regular network.
The weights W are shared across all steps. This means that the recurrence relation
that propagates the gradient backward through time forms a geometric sequence:

In our simple linear RNN, the gradient grows exponentially if |W| > 1 (exploding
gradient). For example, 50 time steps over W=1.5 is W50 = 1.550 ≈ 6 * 108. The
gradient shrinks exponentially if |W| <1 (vanishing gradient). For example, 20
time steps over W=0.6 is W20 = 0.620 ≈ 3*10-5. If the weight parameter W is a
matrix instead of a scalar, this exploding or vanishing gradient is related to the
largest eigenvalue (ρ) of W (also known as a spectral radius). It is sufficient for ρ <
1 for the gradients to vanish, and it is necessary for ρ > 1 for them to explode.

Long short-term memory
Hochreiter and Schmidhuber studied the problems of vanishing and exploding gradients
extensively and came up with a solution called long short-term memory (LSTM) (https:/ ​/
www.​bioinf.​jku.​at/ ​publications/ ​older/ ​2604. ​pdf). LSTMs can handle long-term
dependencies due to a specially crafted memory cell. In fact, they work so well that most of
the current accomplishments in training RNNs on a variety of problems are due to the use
of LSTMs. In this section, we'll explore how this memory cell works and how it solves the
vanishing gradients issue.

The key idea of LSTM is the cell state (in addition to the hidden RNN state), where the
information can only be explicitly written in or removed so that the state stays constant if
there is no outside interference. The cell state can only be modified by specific gates, which
are a way to let information pass through. These gates are composed of a logistic sigmoid
function and element-wise multiplication. Because the logistic function only outputs values
between 0 and 1, the multiplication can only reduce the value running through the gate. A
typical LSTM is composed of three gates: a forget gate, an input gate, and an output gate.
The cell state, input, and output are all vectors, so the LSTM can hold a combination of
different information blocks at each time step.

https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf

Recurrent Neural Networks and Language Models Chapter 7

[210]

The following is a diagram of a LSTM cell (idea from http:/ ​/​colah. ​github. ​io/ ​posts/
2015-​08-​Understanding- ​LSTMs/ ​):

LSTM cell

Before we continue, let's introduce some notations:

xt, ct, and ht are the LSTM input, cell memory state, and output (or hidden state)
in moment t. c't is the candidate cell state (more on that later). The input xt and
the previous cell output ht-1 are connected to each gate and the candidate cell
vector with sets of weights W and U, respectively.
ct is the cell state in moment t.
ft, it, and ot are the forget, input, and output gates of the LSTM cell.

Let's start with the forget gate. As the name suggests, it decides whether we want to erase
the cell state or not. This gate was not in the original LSTM that was proposed by
Hochreiter. Instead, it was proposed by Gers and others
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.5709&rep=rep1&type
=pdf). The forget gate bases its decision on the output of the previous cell ht-1 and the
current input xt:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.5709&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.5709&rep=rep1&type=pdf

Recurrent Neural Networks and Language Models Chapter 7

[211]

It applies element-wise logistic functions on each element of the previous cell's vector
ct-1. Because the operation is element-wise, the values of this vector are squashed in the [0, 1]
range. An output of 0 erases a specific ct-1 cell block completely and an output of 1 allows
the information in that cell block to pass through. This means that the LSTM can get rid of
irrelevant information in its cell state vector.

The input gate decides what new information is going to be added to the memory cell. This
is done in two parts. The first part decides whether information is going to be added. As in
the input gate, it bases it decision on ht-1 and xt. It outputs 0 or 1 through the logistic
function for each cell block of the cell's vector. An output of 0 means that no information is
added to that cell block's memory. As a result, the LSTM can store specific pieces of
information in its cell state vector:

The candidate input to be added, c't, is based on the previous output ht-1 and the current
input xt. It is transformed via a tanh function:

The forget and input gates decide the new cell state by choosing which parts of the new and
the old state to include:

The output gate decides what the total cell output is going to be. It takes ht-1 and xt as inputs
and outputs 0 or 1 (via the logistic function) for each block of the cell's memory. An output
of 0 means that the block doesn't output any information, while an output of 1 means that
the block can pass through as a cell's output. The LSTM can thus output specific blocks of
information from its cell state vector:

Finally, the LSTM cell output is transferred by a tanh function:

Recurrent Neural Networks and Language Models Chapter 7

[212]

Because all of these formulas are derivable, we can chain LSTM cells together just like we
chain simple RNN states together and train the network via backpropagation through time.

But how does the LSTM protect us from vanishing gradients? Notice that the cell state is
copied identically from step to step if the forget gate is 1 and the input gate is 0. Only the
forget gate can completely erase the cell's memory. As a result, memory can remain
unchanged over a long period of time. Also, notice that the input is a tanh activation that's
been added to the current cell's memory. This means that the cell memory doesn't blow up
and is quite stable.

Let's use an example to demonstrate how a LSTM is unfolded. We'll start by using the value
of 4.2 as network input. The input gate is set to 1 so that the complete value is stored. Then,
for the next two time steps, the forget gate is set to 1. In this way, all the information is kept
throughout these steps and no new information is being added because the input gates are
set to 0. Finally, the output gate is set to 1, and 4.2 is outputted and remains unchanged.

The following is an example of a LSTM unfolding through time (source: http:/ ​/
nikhilbuduma.​com/ ​2015/ ​01/ ​11/ ​a-​deep- ​dive- ​into- ​recurrent- ​neural- ​networks/ ​):

Unrolling a LSTM through time

Gated recurrent units
A gated recurrent unit (GRU) is a type of recurrent block that was introduced in 2014
by Kyunghyun Cho et al. (https:/ ​/​arxiv. ​org/ ​abs/​1406. ​1078, https:/ ​/​arxiv. ​org/ ​abs/
1412.​3555), as an improvement over LSTM (see the following diagram). A GRU unit
usually has similar or better performance to a LSTM, but it does so with fewer parameters
and operations:

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555

Recurrent Neural Networks and Language Models Chapter 7

[213]

A GRU cell

Similar to the "classic" RNN, a GRU cell has a single hidden state, ht. You can think of it as a
combination of the hidden and cell states of an LSTM. The GRU cell has two gates:

An update gate zt, which is a combination of the input and forget LSTM gates. It
decides what information to discard and what new information to include in its
place, based on the network input xt and the previous cell hidden state ht-1. By
combining the two gates, we can ensure that the cell will forget information, but
only when we are going to include new information in its place:

A reset gate, rt, which uses the previous cell state ht-1 and the network input xt to
decide how much of the previous state to pass through:

Next, we have the candidate state, h't:

Recurrent Neural Networks and Language Models Chapter 7

[214]

Finally, the GRU output ht at time t is a linear interpolation between the previous output ht−1

and the candidate output h't:

Language modeling
Language modeling is the task of computing the probability of a sequence of words.
Language models are crucial to a lot of different applications, such as speech recognition,
optical character recognition, machine translation, and spelling correction. For example, in
American English, the two phrases wreck a nice beach and recognize speech are almost
identical in pronunciation, but their respective meanings are completely different from each
other. A good language model can distinguish which phrase is most likely to be correct,
based on the context of the conversation. This section will provide an overview of word
and character-level language models and how RNNs can be used to build them.

Word-based models
A word-based language model defines a probability distribution over sequences of words.
Given a sequence of words of length m, it assigns a probability P(w1, ... , wm) to the full
sequence of words. We can use these probabilities as follows:

To estimate the likelihood of different phrases in natural language processing
applications.
As a generative model to create new text. A word-based language model can
compute the likelihood of a given word to follow a sequence of words.

N-grams
The inference of the probability of a long sequence, say w1, ..., wm, is typically infeasible.
Calculating the joint probability of P(w1, ... , wm) would be done by applying the following
chain rule:

Recurrent Neural Networks and Language Models Chapter 7

[215]

The probability of the later words given the earlier words would be especially difficult to
estimate from the data. That's why this joint probability is typically approximated by an
independence assumption that the ith word is only dependent on the n-1 previous words.
We'll only model the joint probabilities of combinations of n sequential words, called n-
grams. For example, in the phrase the quick brown fox, we have the following n-grams:

1-gram: "The," "quick," "brown," and "fox" (also known as a unigram)
2-grams: "The quick," "quick brown," and "brown fox" (also known as a bigram)
3-grams: "The quick brown" and "quick brown fox" (also known as a trigram)
4-grams: "The quick brown fox"

The inference of the joint distribution is approximated via n-gram models that split the joint
distribution into multiple independent parts.

The term n-grams can be used to refer to other types of sequences of
length n, such as n characters.

If we have a huge corpus of text, we can find all the n-grams up until a certain n (typically 2
to 4) and count the occurrence of each n-gram in that corpus. From these counts, we can
estimate the probabilities of the last word of each n-gram, given the previous n-1 words:

1-gram:

2-gram:

N-gram:

The independence assumption that the ith word is only dependent on the
previous n-1 words can now be used to approximate the joint distribution.

For example, for a unigram, we can approximate the joint distribution by using the
following formula:

For a trigram, we can approximate the joint distribution by using the following formula:

Recurrent Neural Networks and Language Models Chapter 7

[216]

We can see that, based on the vocabulary size, the number of n-grams grows exponentially
with n. For example, if a small vocabulary contains 100 words, then the number of possible
5-grams would be 1005 = 10,000,000,000 different 5-grams. In comparison, the entire works
of Shakespeare contain around 30,000 different words, illustrating the infeasibility of using
n-grams with a large n. Not only is there the issue of storing all the probabilities, but we
would also need a very large text corpus to create decent n-gram probability estimations for
larger values of n. This problem is known as the curse of dimensionality. When the number
of possible input variables (words) increases, the number of different combinations of these
input values increases exponentially. The curse of dimensionality arises when the learning
algorithm needs at least one example per relevant combination of values, which is the case
in n-gram modeling. The larger our n, the better we can approximate the original
distribution and the more data we would need to make good estimations of the n-gram
probabilities.

Neural language models
One way to overcome the curse of dimensionality is by learning a lower dimensional,
distributed representation of the words (http:/ ​/​www. ​jmlr. ​org/ ​papers/ ​volume3/
bengio03a/​bengio03a. ​pdf). This distributed representation is created by learning an
embedding function that transforms the space of words into a lower dimensional space of
word embeddings, as follows:

Words -> one-hot encoding -> word embedding vectors

Words from the vocabulary with size V are transformed into one-hot encoding vectors of
size V (each word is encoded uniquely). Then, the embedding function transforms this V-
dimensional space into a distributed representation of size D (here, D=4).

The idea is that the embedding function learns semantic information about the words. It
associates each word in the vocabulary with a continuous-valued vector representation,
that is, the word embedding. Each word corresponds to a point in this embedding space,
and different dimensions correspond to the grammatical or semantic properties of these
words.

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Recurrent Neural Networks and Language Models Chapter 7

[217]

The goal is to ensure that the words close to each other in the embedding space should have
similar meanings. In this way, the information that some words are semantically similar
can be exploited by the language model. For example, it might learn that "fox" and "cat" are
semantically related and that both "the quick brown fox" and "the quick brown cat" are
valid phrases. A sequence of words can then be replaced with a sequence of embedding
vectors that capture the characteristics of these words. We can use this sequence as a base
for various NLP tasks. For example, a classifier trying to classify the sentiment of an article
might be trained on using previously learned word embedding's, instead of one-hot
encoding vectors. In this way, the semantic information of the words becomes readily
available for the sentiment classifier.

Word embedding's is one of the central paradigms when solving NLP tasks. We can use
them to improve the performance of other tasks where there might not be a lot of labeled
data available.

Neural probabilistic language model
It is possible to learn the language model and, implicitly, the embedding function via a
feedforward fully-connected network. Given a sequence of n-1 words (wt-n+1 , ..., wt-1), it tries
to output the probability distribution of the next word wt (the following diagram is based
on http:/​/​www.​jmlr. ​org/ ​papers/ ​volume3/ ​bengio03a/ ​bengio03a. ​pdf):

Neural network language model that outputs the probability distribution of the word wt, given the words wt-1 ... wt-n+1. C is the embedding matrix

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Recurrent Neural Networks and Language Models Chapter 7

[218]

The network layers play different roles:

The embedding layer takes the one-hot representation of the word wi and1.
transforms it into the word's embedding vector by multiplying it with the
embedding matrix C. This computation can be efficiently implemented with table
lookup. The embedding matrix C is shared over the words, so all words use the
same embedding function. C is represented by a V * D matrix, where V is the size
of the vocabulary and D the size of the embedding.
The resulting embeddings are concatenated and serve as an input to the hidden2.
layer, which uses tanh activation. The output of the hidden layer is thus
represented by the function z = tanh(H . (concat(C(wt-n+1) , ..., C(wt-1)) + d)), where H
is the embedding-to-hidden layer weights and d are the hidden biases.
Finally, we have the output layer with weights U, bias b, and softmax activation,3.
which maps the hidden layer to the word space probability distribution: y
= softmax(z*U + b).

This model simultaneously learns an embedding of all the words in the
vocabulary (embedding layer) and a model of the probability function for sequences of
words (network output). It is able to generalize this probability function to sequences of
words that were not seen during training. A specific combination of words in the test set
might not be seen in the training set, but a sequence with similar embedding features is
much more likely to be seen during training. Since we can construct the training data and
labels based on the positions of the words (which already exist in the text), training this
model is an unsupervised learning task.

word2vec
A lot of research has gone into creating better word embedding models, in particular by
omitting learning the probability function over sequences of words. One of the most
popular ways to do this is via word2vec
(http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phra
ses-and-their-compositionality.pdf and https://arxiv.org/pdf/1301.3781.pdf). To
create embedding vectors with a word2vec model, we'll need a simple neural network that
has the following:

It has an input, hidden, and an output layer
The input is a single one-hot encoded word representation
The output is a single softmax, which predicts the most likely word to be found
in the context (proximity) of the input word

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://arxiv.org/pdf/1301.3781.pdf

Recurrent Neural Networks and Language Models Chapter 7

[219]

We'll train the network with gradient descent and backpropagation. The training set
consists of (input, label) one-hot encoded pairs of words, appearing in close proximity to
each other in the text. For example, if part of the text is the sequence (quick, brown, fox), the
training samples will include the pairs (quick,brown), (brown,fox), and so on.

The embedding vectors are represented by the input-to-hidden weights of the network.
They are V * D shaped matrices, where V is the size of the vocabulary and D is the length of
the embedding vector (which is the same as the number of neurons in the hidden layer).
We can think of the weights as a table, where each row represents one word embedding
vector. Because the input is one-hot encoded, we'll always have only a single active row of
the weights during training. That is, for each input sample (word), only the word's own
embedding vector will participate. Since we are only interest in the embeddings, we'll
discard the rest of the network when the training is finished.

Depending on the way we train the model, we have two flavors:

Continuous bag of words (CBOW): Here, the neural network is trained to
predict which word fits in a sequence of words, where a single word has been
intentionally removed. For example, given the sqeuence "The quick _____ fox
jumps", the network will predict "brown". But, as we mentioned previously, the
network takes only a single word as input. Therefore, we'll transform this
sentence into multiple training (input, target) pairs: (the, brown),
(quick, brown), (fox, brown), and (fox, jumps).
Skip-gram: This is the opposite of CBOW. Given an input word, it predicts
which words surround it. For example, the word "brown" will predict the
words "The quick fox jumps". As with CBOW, we'll transform this sentence into
pairs (brown, the), (brown, quick), (brown, fox), (brown, jumps):

CBOW (left) and skip-gram (right)

Recurrent Neural Networks and Language Models Chapter 7

[220]

There are other popular embedding models such as GloVe (https:/ ​/​nlp. ​stanford. ​edu/
projects/​glove/​) and fastText (https:/ ​/ ​fasttext. ​cc/​).

Visualizing word embedding vectors
In the following diagram, we can see a 2D projection of some word embeddings
(source http:/​/​colah. ​github. ​io/ ​posts/ ​2014-​07- ​NLP- ​RNNs- ​Representations/ ​). The
words, which are semantically close, are also close to each other in the embedding space:

Related words in a 2D embedding space are close to each other in this space

A surprising result is that these word embedding's can capture analogies between words as
differences (as shown in the following diagram; source: https:/ ​/ ​www.​aclweb. ​org/
anthology/​N/​N13/ ​N13- ​1090. ​pdf). For example, it might capture that the difference between
the embedding of "woman" and "man" encodes the gender and that this difference is the
same in other gender-related words such as "queen" and "king":

embed(woman) - embed(man) ≃ embed(aunt) - embed(uncle)
embed(woman) - embed(man) ≃ embed(queen) - embed(king):

Word embedding's can capture semantic differences between words

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
https://fasttext.cc/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf

Recurrent Neural Networks and Language Models Chapter 7

[221]

Character-based models for generating new text
In this section, we'll discuss how to generate new text using character-based models via
TensorFlow (TF). This is an example of a "many-to-many" relationship, such as the one we
defined in the Recurrent neural networks section. We'll only discuss the most interesting code
sections, but the full example lives at https:/ ​/ ​github. ​com/ ​ivan- ​vasilev/ ​Python- ​Deep-
Learning-​SE/​tree/ ​master/ ​ch07/ ​language%20model.

In most cases, language modeling is performed at the word level, where the distribution is
over a fixed vocabulary of |V| words. Vocabularies in realistic tasks, such as the language
models used in speech recognition, often exceed 100,000 words. This large dimensionality
makes modeling the output distribution very challenging. Furthermore, these word level
models are quite limited when it comes to modeling text data that contains non-word
strings, such as multi-digit numbers or words that were never part of the training data (out-
of-vocabulary words).

To overcome these issues, we can use character-level language models (https:/ ​/​arxiv.
org/​abs/​1308.​0850). They model the distribution over sequences of characters instead of
words, thus allowing you to compute probabilities over a much smaller vocabulary. The
vocabulary of a character-level model comprises all the possible characters in our text
corpus. There is a downside to these models, though. By modeling the sequence of
characters instead of words, we need to model much longer sequences to capture the same
information over time. To capture these long-term dependencies, let's use an LSTM
language model.

The following part of this section will go into detail on how to implement a character-level
LSTM in TensorFlow and how to train it on Leo Tolstoy's War and Peace. This LSTM will
model the probability of the next character, given the previously seen characters: P(ct | ct-1 ...
ct-n).

Because the full text is too long to train a network with backpropagation through
time (BPTT), we'll use a batched variant called truncated BPTT. We'll divide the training
data into batches of fixed sequence length and train the network batch by batch. Since the
batches are sequential, we can use the final state of one batch as the initial state of the next.
This way, we can exploit the information stored in the state without having to do a full
backward pass through the full input text.

https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch07/language%20model
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850

Recurrent Neural Networks and Language Models Chapter 7

[222]

Preprocessing and reading data
To train a good language model, we need a lot of data. The English translation of Leo
Tolstoy's "War and peace", which contains more than 500,000 words, makes it a good
candidate for our small example. The book is in the public domain and can be downloaded
as plain text for free from Project Gutenberg (http://www.gutenberg.org/). As part of
preprocessing, we'll remove the Gutenberg license, book information, and table of contents.
Next, we will strip out newlines in the middle of sentences and reduce the maximum
number of consecutive newlines allowed to two (the code can be found at https:/ ​/​github.
com/​ivan-​vasilev/ ​Python- ​Deep- ​Learning- ​SE/​blob/ ​master/ ​ch07/ ​language%20model/
data_​processing.​py).

To feed the data into the network, we'll convert it into a numerical format. Each character
will be associated with an integer. In our example, we will extract a total of 98 different
characters from the text corpus. Next, we will extract input and targets. For each input
character, we will predict the next character. Because we are training with truncated BPTT,
we'll extract all training batches from sequential locations in the text to exploit the
continuity of the sequence. The process of converting the text into a list of indices and
splitting it up into batches of input and targets is illustrated in the following diagram. The
code lives at https:/ ​/​github. ​com/ ​ivan- ​vasilev/ ​Python- ​Deep- ​Learning- ​SE/ ​blob/
master/​ch07/​language%20model/ ​data_ ​reader. ​py:

Converting text into input and target batches of integer labels with length 5. The batches are extracted from sequential locations in the text

http://www.gutenberg.org/
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_processing.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/data_reader.py

Recurrent Neural Networks and Language Models Chapter 7

[223]

LSTM network
Now, we'll train a two-layer LSTM network with 512 cells in each layer. The full code is
available at https:/ ​/ ​github. ​com/ ​ivan- ​vasilev/ ​Python- ​Deep- ​Learning- ​SE/​blob/ ​master/
ch07/​language%20model/ ​model. ​py. Since we'll use truncated BPTT, we need to store the
state between batches:

First, we'll define placeholders for our input and targets. The placeholders are the1.
links between the model and the training data. We can feed the network with a
single batch by setting its values to the placeholders. The first dimension of both
the input and targets is the batch size, while the second is along the text
sequence. Both placeholders take batches of sequences where the characters are
represented by their index:

self.inputs = tf.placeholder(tf.int32, [self.batch_size,
self.sequence_length])
self.targets = tf.placeholder(tf.int32, [self.batch_size,
self.sequence_length])

To feed the characters into the network, we need to transform them into one-hot2.
vectors. This can be done easily in TensorFlow with the following line of code:

self.one_hot_inputs = tf.one_hot(self.inputs,
depth=self.number_of_characters)

Next, we will define our multilayer LSTM architecture. First, we need to define3.
the LSTM cells for each layer. lstm_sizes is a list of sizes for each layer. In our
case, this is (512, 512):

cell_list = [tf.nn.rnn_cell.LSTMCell(lstm_size) for lstm_size in
self.lstm_sizes]

Then, we wrap the cells in a single multilayer RNN cell:4.

self.multi_cell_lstm = tf.nn.rnn_cell.MultiRNNCell(cell_list)

To store the state between the batches, we need to get the initial state of the5.
network and wrap it in a variable to be stored. Because of computational reasons,
TF stores LSTM states in a tuple of two separate tensors (c and h from the Long
short-term memory section). We'll flatten this nested data structure with
the flatten method, wrap each tensor in a variable, and repack it as the original
structure with the pack_sequence_as method:

self.initial_state =
self.multi_cell_lstm.zero_state(self.batch_size, tf.float32)

https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch07/language%20model/model.py

Recurrent Neural Networks and Language Models Chapter 7

[224]

Convert to variables so that the state can be stored between
batches
Note that LSTM states is a tuple of tensors, this structure has
to be
re-created in order to use as LSTM state.
self.state_variables = tf.contrib.framework.nest.pack_sequence_as(
 self.initial_state,
 [tf.Variable(var, trainable=False)
 for var in
tf.contrib.framework.nest.flatten(self.initial_state)])

Now that we have the initial state defined as a variable, we can start unrolling6.
the network through time. TensorFlow provides the dynamic_rnn method,
which does this unrolling dynamically as per the sequence length of the input.
This method will return a tuple consisting of a tensor representing the LSTM
output and the final state:

lstm_output, final_state = tf.nn.dynamic_rnn(
 cell=self.multi_cell_lstm, inputs=self.one_hot_inputs,
 initial_state=self.state_variables)

Next, we need to store the final state as the initial state for the next batch. We'll7.
use the state_variable.assign method to store each final state in the right
initial state variable. The control_dependencies method forces the state to
update before we return the LSTM output:

store_states = [
 state_variable.assign(new_state)
 for (state_variable, new_state) in zip(
 tf.contrib.framework.nest.flatten(self.state_variables),
 tf.contrib.framework.nest.flatten(final_state))]
with tf.control_dependencies(store_states):
 lstm_output = tf.identity(lstm_output)

To get the logit output from the final LSTM output, we need to apply a linear8.
transformation to the output so that it can have batch size * sequence length *
number of symbols dimensions. Before this, we need to flatten the output to a
matrix of size number of outputs * number of output features:

output_flat = tf.reshape(lstm_output, (-1, self.lstm_sizes[-1]))

Recurrent Neural Networks and Language Models Chapter 7

[225]

Then, we can define and apply the linear transformation with a weight
matrix W and bias b to get the logits, apply the softmax function, and reshape it to
a tensor of the size batch size * sequence length * number of characters:

Define output layer
self.logit_weights = tf.Variable(
 tf.truncated_normal(
 (self.lstm_sizes[-1], self.number_of_characters),
stddev=0.01),
 name='logit_weights')
self.logit_bias = tf.Variable(
 tf.zeros((self.number_of_characters)), name='logit_bias')
Apply last layer transformation
self.logits_flat = tf.matmul(
 output_flat, self.logit_weights) + self.logit_bias
probabilities_flat = tf.nn.softmax(self.logits_flat)
self.probabilities = tf.reshape(
 probabilities_flat,
 (self.batch_size, -1, self.number_of_characters))

The following is a diagram of the unfolded LSTM character language model:

LSTM character language model unfolded

Recurrent Neural Networks and Language Models Chapter 7

[226]

Training
Now that we have defined the input, targets, and the network architecture, let's implement
the training:

The first step is to define a loss function, which describes the cost of outputting a1.
wrong sequence of characters, given the input and targets. Because we are
predicting the next character considering the previous characters, it's a
classification problem and we will use cross-entropy loss. We can do this with
the sparse_softmax_cross_entropy_with_logits TF function, which takes
as input the logit network output (before the softmax) and the targets as class
labels. To reduce the loss over the full sequence and all the batches, we'll use
their mean value. First, we have to flatten the targets into one-dimensional
vectors to make them compatible with the flattened network logit output:

Flatten the targets to be compatible with the flattened logits
targets_flat = tf.reshape(self.targets, (-1,))
Get the loss over all outputs
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
 logits=self.logits_flat, labels=targets_flat, name='x_entropy')
self.loss = tf.reduce_mean(loss)

Next, we'll define the TF training operation, which will optimize our network2.
over the input and target batches. We'll use the Adam optimizer to stabilize the
gradient updates. We'll also clip the gradients to prevent exploding gradients:

trainable_variables = tf.trainable_variables()
gradients = tf.gradients(loss, trainable_variables)
gradients, _ = tf.clip_by_global_norm(gradients, 5)
self.train_op = optimizer.apply_gradients(zip(gradients,
trainable_variables))

Then, we can start with the mini-batch optimization. If data_feeder is a3.
generator that returns consecutive batches of input and targets, we can train the
model by iteratively feeding them to the network via the placeholders. We'll reset
the initial state every 100-mini batches so that the network learns how to deal
with the initial states in the beginning of sequences. You can save the model with
a TensorFlow saver to reload it for sampling later:

with tf.Session() as sess:
 sess.run(init_op)
 if restore:
 print('Restoring model')
 model.restore(sess)
 model.reset_state(sess)

Recurrent Neural Networks and Language Models Chapter 7

[227]

 start_time = time.time()
 for i in range(minibatch_iterations):
 input_batch, target_batch = next(iter(data_feed))
 loss, _ = sess.run(
 [model.loss, model.train_op],
 feed_dict={model.inputs: input_batch, model.targets:
target_batch})

Sampling
Once the model has been trained, we can generate new text by sampling the sequences. We
can initialize our sampling architecture with the same code we used to train the model, but
we'll need to set batch_size to 1 and sequence_length to None. In this way, we can
generate a single string and sample sequences of different lengths. Then, we can initialize
the parameters of the model with the parameters that were saved after the training. To start
with the sampling, we'll feed the model an initial string (prime_string) to prime the state
of the network. After that, we can sample the next character based on the output
distribution of the softmax. Then, we can feed the newly sampled character as a new
network input and get the output distribution for the next one. We can continue this
process for a number of steps:

def sample(self, session, prime_string, sample_length):
 self.reset_state(session)
 # Prime state
 print('prime_string: ', prime_string)
 for character in prime_string:
 character_idx = self.label_map[character]
 out = session.run(
 self.probabilities,
 feed_dict={self.inputs: np.asarray([[character_idx]])})
 output_sample = prime_string
 print('start sampling')
 # Sample for sample_length steps
 for _ in range(sample_length):
 sample_label = np.random.choice(
 self.labels, size=(1), p=out[0, 0])[0]
 output_sample += sample_label
 sample_idx = self.label_map[sample_label]
 out = session.run(
 self.probabilities,
 feed_dict={self.inputs: np.asarray([[sample_idx]])})

 return output_sample

Recurrent Neural Networks and Language Models Chapter 7

[228]

Example training
Now that we have our code for training and sampling, we can train the network on Leo
Tolstoy's War and Peace and sample what the network has learned every couple of batch
iterations. Let's prime the network with the phrase "She was born in the year" and see how it
completes it during training.

The result we get after 500 batches is as follows: She was born in the year sive but us eret tuke
Toffhin e feale shoud pille saky doctonas laft the comssing hinder to gam the droved at ay vime. The
network has already picked up some distribution of characters and has come up with
things that look like words.

After 5,000 batches, the network picks up a lot of different words and names: She was born
in the year he had meaningly many of Seffer Zsites. Now in his crownchy-destruction, eccention,
was formed a wolf of Veakov one also because he was congrary, that he suddenly had first did not
reply. It still invents plausible looking words likes "congrary" and "eccention".

After 50,000 batches, the network outputs the following text: She was born in the year 1813.
At last the sky may behave the Moscow house there was a splendid chance that had to be passed the
Rostóvs', all the times: sat retiring, showed them to confure the sovereigns." It seems to have
figured out that a year number is a very plausible word to follow up our prime string. Short
strings of words seem to make sense, but the sentences on their own don't make sense yet.

After 500,000 batches, we stop the training and the network outputs the following: "She was
born in the year 1806, when he entered his thought on the words of his name. The commune would
not sacrifice him: "What is this?" asked Natásha. "Do you remember?"". We can see that the
network is now trying to make sentences, but the sentences are not coherent. It is
remarkable that it can now model small conversations in full sentences, including quotes
and punctuation.

While not perfect, the RNN language model is still able to generate coherent phrases of text.
We would like to encourage you to experiment further by using different architectures,
increasing the size of the LSTM layers, putting a third LSTM layer in the network, or
downloading more text data from the internet, to see how much you can improve the
current model.

The language models we have discussed so far are used in many different applications,
ranging from speech recognition to creating intelligent chatbots that are able to build up a
conversation with the user.

Recurrent Neural Networks and Language Models Chapter 7

[229]

Sequence to sequence learning
Many, many NLP problems can be formulated as sequence to sequence tasks. This is a type
of task where an input sequence is transformed into another, different output sequence, not
necessarily with the same length as the input. To better understand this concept, let's look
at some examples:

Machine translation is the most popular type of seq2seq task. The input
sequences are the words of a sentence in one language and the output sequences
are the words of the same sentence, translated into another language. For
example, we can translate the English sequence "Tourist attraction" to the
German "Touristenattraktion." Not only is the output sentence a different
length – there is no direct correspondence between the elements of the input and
output sequences. In particular, one output element corresponds to a
combination of two input elements. Machine translation that's implemented with
a single neural network is called neural machine translation (NMT).
Speech recognition, where we take different time frames of an audio input and
convert them into text transcript.
Question answering chatbots, where the input sequences are the words of a
textual question and the output sequence is the answer to that question.
Text summarization, where the input is a text document and the output is a short
summary of the text's contents.

In 2014, Sutskever et al. (https:/ ​/​arxiv. ​org/ ​abs/​1409. ​3215) and Cho et al. (https:/ ​/
arxiv.​org/​abs/​1406. ​1078) introduced a method called sequence to sequence (seq2seq, or
encoder-decoder) learning, which uses RNNs in a way that's especially suited for solving
tasks such as these. It's an example of an "indirect many-to-many" relationship, which we
defined in the Recurrent neural networks section.

A seq2seq model consists of two parts: an encoder and a decoder. Here's how it works:

The encoder is an RNN. The original paper uses LSTM, but GRU or other types
would also work. Taken by itself, the encoder works in the usual way – it reads
the input sequence, one timestep at a time, and updates its internal state after
each step. The encoder will stop reading the input sequence once a special <EOS>
– end of sequence – symbol is reached. If we assume that we use a textual
sequence, the <EOS> symbol signals the end of a sentence.

https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078

Recurrent Neural Networks and Language Models Chapter 7

[230]

Once the encoder is finished, we'll signal the decoder so that it can start
generating the output sequence with a special <GO> input signal. The encoder is
also a RNN (LSTM or GRU). The link between the encoder and the decoder is the
most recent encoder state vector ht (also known as the thought vector), which is
fed as the recurrence relation at the first decoder step. The decoder output yt+1 at
step t+1 is one element of the output sequence. We'll use it as an input at step t+2,
then we'll generate new output, and so on.

The following is a diagram of the seq2seq model (inspired by https:/ ​/​arxiv. ​org/ ​abs/
1409.​3215):

A seq2seq model

In the case of textual sequences, we'll use word embedding vectors as the
encoder input. The decoder output would be the softmax over all the
words in the vocabulary.

To summarize, the seq2seq model solves the problem of varying input/output sequence
lengths by encoding the input sequence in a fixed length state vector and then using this
vector as a base to generate the output sequence. We can formalize this by saying that it
tries to maximize the probability:

This is equivalent to the following:

https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215

Recurrent Neural Networks and Language Models Chapter 7

[231]

Here are the following steps:

 is the conditional probability where
is the input sequence with length T and is the

output sequence with length T'.
v is the fixed length encoding of the input sequence (the last state vector of the
encoder).

 is the probability of an output word yT' given prior
words y, as well as the vector v.

The original seq2seq paper introduces a few tricks to enhance the training and performance
of the model:

The input sequence is fed to the decoder in reverse. For example, "ABC" ->
"WXYZ" would become "CBA" -> "WXYZ". There is no clear explanation of why
this works, but the authors have shared their intuition. Since this is a step-by-step
model, if the sequences were in normal order, each source word in the source
sentence would be far from its corresponding word in the output sentence. If we
reverse the input sequence, the average distance between input/output words
won't change, but the first input words will be very close to the first output
words. This will help the model to establish better "communication" between the
input and output sequences.
Besides <EOS> and <GO>, the model uses two other special symbols:

<UNK> – unknown: This is used to replace rare words so that the
vocabulary size wouldn't grow too large.
<PAD>: For performance reasons, we have to train the model with
sequences of a fixed length. However, this contradicts the real-
world training data, where the sequences can have arbitrary
lengths. To solve this, the shorter sequences are filled with the
special <PAD> symbol.

Sequence to sequence with attention
The decoder has to generate the entire output sequence based solely on the thought vector.
For this to work, the thought vector has to encode the entire information of the input
sequence. However, the encoder is an RNN and we can expect that its hidden state will
carry more information about the latest sequence elements, compared to the earliest.

Recurrent Neural Networks and Language Models Chapter 7

[232]

Using LSTM cells and reversing the input helps, but cannot prevent it entirely. Because of
this, the thought vector becomes something of a bottleneck and the seq2seq model works
well for short sentences, but the performance deteriorates for longer ones. To solve this
problem, Bahdanau et al. (https:/ ​/ ​arxiv. ​org/​abs/ ​1409. ​0473) proposed a seq2seq
extension called an attention mechanism, which provides a way for the decoder to work
with all encoder hidden states, and not just the last one. Although the authors proposed it
in the context of NMT, it is generic and can be applied to any seq2seq task:

Attention mechanism

Attention works by plugging an additional context vector between the encoder and the
decoder. That is, the hidden decoder state st at time t is now a function not only of the
hidden state and decoder output at step t-1, but also of the context vector ct:

Each decoder step has a unique context vector and the context vector for one decoder step
is just a weighted sum of all encoder hidden states:

Here:

ct is the context vector for a decoder output step t out of T' the total output steps.
hi is the hidden state of encoder step i out of T total input steps.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473

Recurrent Neural Networks and Language Models Chapter 7

[233]

αt,i is the weight associated with hi in the context of the current decoder step
t. If αt,i is large, then the decoder will pay a lot of attention to hi at step
t. However, the input sequence states will have different weights, depending on
the current output step. For example, if the input and output sequences have
lengths of 10, the weights will be represented by a 10 x 10 matrix for a total of 100
weights. But how do we compute the weights? First, we should mention that the
sum of all weights for a decoder position t is 1. We can implement this with
softmax:

Here, et,k is an alignment model, which scores how well the inputs around
position k match the output at position t. This score is based on the previous
decoder state st-1 (we use st-1 because we have not computed st yet), as well as the
encoder state hk:

Since training the seq2seq model uses gradient descent and backpropagation, e
has to be differentiable. For that reason, e is usually a simple neural network with
one hidden layer.

Speech recognition
In the previous sections, we saw how RNNs can be used to learn patterns of many different
time sequences. In this section, we will look at how these models can be used for the
problem of recognizing and understanding speech. We will give a brief overview of the
speech recognition pipeline and provide a high-level view of how we can use neural
networks in each part of the pipeline.

Speech recognition pipeline
Speech recognition tries to find a transcription of the most probable word sequence
considering the acoustic observations provided:

transcription = argmax(P(words | audio features))

Recurrent Neural Networks and Language Models Chapter 7

[234]

This probability function is typically modeled in different parts (note that the normalizing
term P (audio features) is usually ignored):

P (words | audio features) = P (audio features | words) * P (words)

= P (audio features | phonemes) * P (phonemes | words) * P (words)

Phonemes are basic units of sound that define the pronunciation of words.
For example, the word "bat" is composed of three phonemes: /b/, /ae/,
and /t/. Each phoneme is tied to a specific sound. Spoken English
consists of around 44 phonemes.

Each of these probability functions will be modeled by different parts of the recognition
system. A typical speech recognition pipeline takes in an audio signal and performs
preprocessing and feature extraction. These features are then used in an acoustic model that
tries to learn how to distinguish between different sounds and phonemes: P (audio features |
phonemes). These phonemes are then matched to characters or words with the help of
pronunciation dictionaries: P(phonemes | words). The probabilities of the words that are
extracted from the audio signal are then combined with the probabilities of a language
model, P(words). The most likely sequence is then found via a decoding search step. A high-
level overview of this speech recognition pipeline is described in the following diagram:

Overview of a typical speech recognition pipeline

Large, real-world vocabulary speech recognition pipelines are usually based on this
pipeline. However, they use a lot of tricks and heuristics in each step to make the problem
tractable. While these details are out of the scope of this section, there is open source
software available – Kaldi (https:/ ​/​github. ​com/​kaldi- ​asr/​kaldi) – that allows you to
train a speech recognition system with advanced pipelines.

In the following sections, we will briefly describe each of the steps in this standard pipeline
and how deep learning can help improve these steps.

https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi

Recurrent Neural Networks and Language Models Chapter 7

[235]

Speech as input data
Speech is a type of sound that typically conveys information. It is a vibration that
propagates through a medium, such as air. If these vibrations are between 20 Hz and 20
kHz, they are audible to humans. These vibrations can be captured and converted into a
digital signal and then used in audio signal processing on computers. They are typically
captured by a microphone, after which the continuous signal is sampled at discrete
samples. A typical sample rate is 44.1 kHz, which means that the amplitude of the incoming
audio signal is measured 44,100 times per second. Note that this is around twice the
maximum human hearing frequency. A sampled recording of someone saying "hello
world" is plotted in the following diagram:

Speech signal of someone saying "hello world" in the time domain

Preprocessing
The recording of the audio signal in the preceding diagram was recorded over 1.2 seconds.
To digitize the audio, it is sampled 44,100 times per second (44.1 kHz). This means that
roughly 50,000 amplitude samples were taken for this 1.2-second audio signal.

For only a small example, these are a lot of points over the time dimension. To reduce the
size of the input data, these audio signals are typically preprocessed to reduce the number
of time steps before feeding them into speech recognition algorithms. A typical
transformation transforms a signal to a spectrogram, which is a representation of how the
frequencies in the signal change over time.

Recurrent Neural Networks and Language Models Chapter 7

[236]

This spectral transformation is done by dividing the time signal in overlapping windows
and taking the Fourier transform of each of these windows. The Fourier transform
decomposes a signal over time into frequencies that make up the signal
(https://pdfs.semanticscholar.org/fe79/085198a13f7bd7ee95393dcb82e715537add.pdf
). The resulting frequency responses are compressed into fixed frequency bins. This array of
frequency bins is also known as filter banks. A filter bank is a collection of filters that
separate out the signal in multiple frequency bands.

Let's say that the previous "hello world" recording is divided into overlapping windows of
25 ms with a stride of 10 ms. The resulting windows are then transformed into a frequency
space with the help of a windowed Fourier transform. This means that the amplitude
information for each time step is transformed into amplitude information for each
frequency. The final frequencies are mapped to 40 frequency bins according to a
logarithmic scale, also known as the Mel scale. The resulting filter bank spectrogram is
shown in the following diagram. This transformation resulted in reducing the time
dimension from 50,000 to 118 samples, where each sample is a vector of size 40. We can use
these vectors as input to our speech recognition model.

Following is a Mel spectrum diagram of the speech signal we introduced in section Speech
as input data:

Mel spectrum of speech signal from the diagram in the Speech as input data section.

Especially in older speech recognition systems, these Mel-scale filter banks are even more
processed by decorrelation to remove linear dependencies. Typically, this is done by taking
a discrete cosine transform (DCT) of the logarithm of the filter banks. This DCT is a variant
of the Fourier transform. This signal transformation is also known as Mel Frequency
Cepstral Coefficients (MFCC).

More recently, deep learning methods, such as convolutional neural networks, have
learned some of these preprocessing steps (https:/ ​/​arxiv. ​org/ ​abs/ ​1804. ​09298).

https://pdfs.semanticscholar.org/fe79/085198a13f7bd7ee95393dcb82e715537add.pdf
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298
https://arxiv.org/abs/1804.09298

Recurrent Neural Networks and Language Models Chapter 7

[237]

Acoustic model
In speech recognition, we want to output the words being spoken as text. We can do this by
learning a time-dependent model that takes in a sequence of audio features, as described in
the previous section, and outputs a sequential distribution of possible words being spoken.
This model is called the acoustic model.

The acoustic model tries to model the likelihood that a sequence of audio features was
generated by a sequence of words or phonemes: P (audio features | words) = P (audio features
| phonemes) * P (phonemes | words).

A typical speech recognition acoustic model, before deep learning became popular, would
use hidden Markov models (HMMs) to model the temporal variability of speech signals
(http://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
and http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf). Each HMM state emits a
mixture of Gaussians to model the spectral features of the audio signal. The emitted
Gaussians form a Gaussian mixture model (GMM), and they determine how well each
HMM state fits in a short window of acoustic features. HMMs are used to model the
sequential structure of data, while GMMs model the local structure of the signal.

The HMM assumes that successive frames are independent given the hidden state of the
HMM. Because of this strong conditional independence assumption, the acoustic features
are typically decorrelated.

One way to improve the speech recognition pipeline is to replace GMMs with deep
networks.

Recurrent neural networks
This section describes how RNNs can be used to model sequential data. The problem with
the straightforward application of RNNs on speech recognition is that the labels of the
training data need to be perfectly aligned with the input. If the data isn't aligned well, then
the input to output mapping will contain too much noise for the network to learn anything.
Some early attempts try to model the sequential context of the acoustic features by using
hybrid RNN-HMM models, where the RNNs would model the emission probabilities of the
HMM models, much in the same way that DBNs are used
(http://www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf).

Later experiments tried to train LSTMs to output the posterior probability of the phonemes
at a given frame (https://www.cs.toronto.edu/~graves/nn_2005.pdf).

http://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
http://www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf
https://www.cs.toronto.edu/~graves/nn_2005.pdf

Recurrent Neural Networks and Language Models Chapter 7

[238]

The next step in speech recognition would be to get rid of the necessity of having aligned
labeled data and removing the need for hybrid HMM models.

CTC
Standard RNN objective functions are defined independently for each sequence step; each
step outputs its own independent label classification. This means that training data must be
perfectly aligned with the target labels. However, a global objective function that
maximizes the probability of a full correct labeling can be devised. The idea is to interpret
the network outputs as a conditional probability distribution over all possible labeling
sequences, given the full input sequence. The network can then be used as a classifier by
searching for the most probable labeling, given the input sequence.

Connectionist Temporal Classification (CTC) is an objective function that defines a
distribution over all the alignments with all the output sequences (ftp:/ ​/​ftp. ​idsia. ​ch/
pub/​juergen/​icml2006. ​pdf). It tries to optimize the overall edit distance between the
output sequence and the target sequence. This edit distance is the minimum number of
insertions, substitutions, and deletions required to change the output labeling to target
labeling.

A CTC network has a softmax output layer for each step. This softmax function outputs
label distributions for each possible label plus an extra blank symbol (∅). This extra blank
symbol represents that there is no relevant label at that time step. The CTC network will
thus output label predictions at any point in the input sequence. The output is then
translated into a sequence label by removing all the blanks and repeated labels from the
paths. This corresponds to outputting a new label when the network switches from
predicting no label to predicting a label or from predicting one label to another. For
example, "∅aa∅ab∅∅" gets translated into "aab." In effect, only the overall sequence of
labels has to be correct, thus removing the need for aligned data.

Doing this reduction means that multiple output sequences can be reduced to the same
output labeling. To find the most likely output labeling, we have to add all the paths that
correspond to that labeling. The task of searching for this most probable output labeling is
known as decoding.

An example of such a labeling in speech recognition could be outputting a sequence of
phonemes, given a sequence of acoustic features. The CTC objective's function, built on top
of an LSTM, can remove the need for using HMMs to model temporal variability
(https://arxiv.org/pdf/1303.5778.pdf and https://arxiv.org/pdf/1512.02595v1.pdf)
. An alternative to using the CTC sequence to sequence a model is an attention-based
model.

ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
https://arxiv.org/pdf/1303.5778.pdf
https://arxiv.org/pdf/1512.02595v1.pdf

Recurrent Neural Networks and Language Models Chapter 7

[239]

Decoding
The process of obtaining the actual words from the audio features and phoneme
distribution is known as decoding. Once we model the phoneme distribution with the
acoustic model and train a language model, we can combine it with a pronunciation
dictionary to get a probability function of words over audio features:

P (words | audio features) = P (audio features | phonemes) * P (phonemes | words) * P (words)

This probability function doesn't give us the final transcript yet; we still need to perform a
search over the distribution of the word sequence to find the most likely transcription. This
search process is called decoding. All possible paths of decoding can be illustrated in a
lattice data structure (source: https:/ ​/​www.​isip. ​piconepress. ​com/​projects/ ​speech/
software/​legacy/ ​lattice_ ​tools/ ​):

A pruned word lattice

The most likely word sequence, given a sequence of audio features, is found by searching
through all the possible word sequences (http://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf).
A popular search algorithm based on dynamic programming that guarantees it could find
the most likely sequence is the Viterbi algorithm (http:/ ​/​members. ​cbio. ​mines- ​paristech.
fr/​~jvert/​svn/​bibli/ ​local/ ​Forney1973Viterbi. ​pdf). It is a breadth-first search that is
mostly associated with finding the most likely sequence of states in an HMM.

For large vocabulary speech recognition, the Viterbi algorithm becomes intractable for
practical use. So, in practice, heuristic search algorithms, such as beam search, are used to
try and find the most likely sequence. The beam search heuristic only keeps the n best
solutions during the search and assumes that all the rest don't lead to the most likely
sequence.

https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
https://www.isip.piconepress.com/projects/speech/software/legacy/lattice_tools/
http://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf
http://members.cbio.mines-paristech.fr/~jvert/svn/bibli/local/Forney1973Viterbi.pdf

Recurrent Neural Networks and Language Models Chapter 7

[240]

Many different decoding algorithms exist
(http://www.cs.cmu.edu/afs/cs/user/tbergkir/www/11711fa16/aubert_asr_decoding.p
df), and the problem of finding the best transcription from the probability function is
mostly seen as an unsolved problem.

End-to-end models
We want to conclude this chapter by mentioning end-to-end techniques. Deep learning
methods, such as CTC
(http://www.jmlr.org/proceedings/papers/v32/graves14.pdf and
https://arxiv.org/abs/1512.02595) and attention models (https:/ ​/​arxiv. ​org/ ​abs/
1508.​01211) have allowed us to learn the full speech recognition pipeline in an end-to-end
fashion. They do so without modeling phonemes explicitly. This means that these end-to-
end models will learn acoustic and language models in one single model and directly
output a distribution over words. These models illustrate the power of deep learning by
combining everything in one model; with this, the model becomes conceptually easier to
understand.

Summary
In this chapter, we discussed recurrent neural networks, how to train them, the training
problems unique to RNNs, and how to solve those problems with LSTM and GRU. We
described the task of language modeling and how RNNs help us solve some of the
difficulties in modeling languages. Then, we put this all together in the form of a practical
example on how to train a character-level language model to generate text based on Leo
Tolstoy's War and Peace. Next, we introduced seq2seq models and the attention mechanism.
Finally, we gave a brief overview of how to apply deep learning, and especially RNNs, to
the problem of speech recognition.

In the next two chapters, we'll discuss how to teach a computer-controlled agent to
navigate a physical or virtual environment with the help of reinforcement learning. Thanks
to deep neural networks, this exciting ML area has seen some great improvements over the
last few years.

http://www.cs.cmu.edu/afs/cs/user/tbergkir/www/11711fa16/aubert_asr_decoding.pdf
http://www.cs.cmu.edu/afs/cs/user/tbergkir/www/11711fa16/aubert_asr_decoding.pdf
http://www.jmlr.org/proceedings/papers/v32/graves14.pdf
https://arxiv.org/abs/1512.02595
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211

8
Reinforcement Learning Theory

You may have read sci-fi novels from the 50s and 60s; they are full of visions of what life in
the 21st century would look like. These stories imagined a world of people with personal jet
packs, underwater cities, intergalactic travel, flying cars, and truly intelligent robots capable
of independent thought. The 21st century has arrived now; sadly, we are not going to get
those flying cars, but thanks to deep learning, we may get the robot.

In Chapter 9, Deep Reinforcement Learning for Games, and Chapter 10, Deep Learning in
autonomous Vehicles, we'll talk about Reinforcement learning (RL) – a way to make
machines interact with an environment, similar to the way we people interact with the
physical world. As with many of the algorithms discussed so far, RL is not a new concept.
But, recently, the field has seen something of a resurgence, in no small part thanks to the
successes of deep learning. Indeed, we'll later see how integrating deep networks in RL
frameworks can produce great results. In this section, we'll talk about the main paradigms
and algorithms of RL. Then, we'll see how to combine them with deep networks to teach
the computer to navigate a dynamic environment, such as a computer game. Games act as a
great playing field for testing RL algorithms. They give us an environment of large, but
manageable, possibilities. This is unlike the physical world, where even simple a task, such
as getting a robot arm to pick up objects, requires analyzing huge amounts of sensory data
and controlling many continuous-response commands for the arm's movement.
Furthermore, we can create and simulate different training and evaluation scenarios more
easily in a virtual environment, compared to a physical one.

When it comes to computer games, we know that humans can learn to play a game just
from the pixels visible on the screen and minimal instructions. If we input the same pixels
plus an objective into a computer agent, we know we have a solvable problem, given the
right algorithm. This is why so many researchers are looking at games as a great place to
start developing true AI self-learning machines that can operate independently of humans.
Also, if you like games, it's lots of fun.

Reinforcement Learning Theory Chapter 8

[242]

In this chapter, we will cover the following topics:

RL paradigms
RL as a Markov decision process
Finding optimal policies with Dynamic Programming
Monte Carlo methods
Temporal difference methods
Value function approximation
Experience replay
Q-learning in action

RL paradigms
In this section, we'll talk about the main paradigms of RL. We first mentioned some of them
in Chapter 1, Machine Learning: an Introduction, but it's worth discussing them here to
refresh our memory and for the sake of completeness. To help us with this task, we'll use a
maze game as an example. The maze is represented by a rectangular grid, where grid cells
with a value of 0 represent the walls, and the cells with a value of 1 are the paths. Some
locations contain intermediate rewards. An agent in the maze can use the paths to move
between locations. Its objective is to navigate its way to the other end of the maze and to get
the largest possible reward while doing so. The following is a diagram describing the basic
principles of how RL works:

Reinforcement learning scenario

Reinforcement Learning Theory Chapter 8

[243]

Here are some elements of an RL system:

Agent: The entity for which we are trying to learn actions. In the game, this is the
player who tries to find their way through the maze.
Environment: The world in which the agent operates. Here, this is the maze
(grid) itself.
State: All of the information available to the agent about its current environment.
In a maze, the state is simply the agent's position. In a chess game, the state
would be the positions of all the pieces on the board.
Action: A possible response, or set of responses, an agent can take. In a maze, the
action might be the direction that the agent chooses when at a crossroad (up,
down, left, or right). After each action, the environment will change its state and
then provide feedback to the agent.
Reward: The feedback that the agent gets from the environment after each action.
It might be the exit square or the carrots in the image that the agent is trying to
collect. Some mazes may also have traps that give a negative reward, which the
agent should try to avoid. The agent's main objective is to maximize the total
return (accumulated rewards) in the long run.

Policy: Determines what actions the agent will take, given the current state. In
the context of deep learning, we can train a neural network to make these
decisions. In the course of the training, the agent will try to modify its policy to
make better decisions. The task of finding the optimal policy is called policy
improvement (or control) and is one of the major RL tasks.
Value function: Determines what is good for the agent in the long run (unlike
the immediate reward). That is, when we apply the value function over a given
state, it will tell us the total return we can expect in the future, if we start from
that state. The agent's policy will take into consideration the value – and, to a
lesser extent, the reward – when deciding what action to take. The task of finding
the value function is called prediction (also known as policy evaluation) and is
the other major RL task.

Before we continue, we'll mention that this chapter was partially inspired by the excellent
book Reinforcement Learning, Second Edition (http:/ ​/​incompleteideas. ​net/ ​book/ ​the- ​book-
2nd.​html), by Richard S. Sutton and Andrew G. Barto.

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Reinforcement Learning Theory Chapter 8

[244]

Differences between RL and other ML
approaches
One of the most important distinctions between RL and other machine learning (ML)
approaches is that in RL we have delayed rewards. That is, the agent might have to take a
number of actions before the environment provides any reward signal. For example, in the
maze game, the reward might come only at the end, when the maze exit square is reached.
Therefore, when evaluating an action, the agent has to consider the problem in its entirety
and not just the immediate consequences. This is unlike supervised learning, where the
algorithm receives some kind of feedback (such as a label) for each training sample and has
no knowledge of (or interest in) the end goal. The various RL system elements we just
defined provide a mechanism for autonomous decision making in the absence of
immediate rewards. But with decision-making power and no immediate feedback, the
agent has to maintain a fine balance between exploitation (following the existing policy)
and exploration (a trial-and-error approach in the hopes of finding a better policy).

Types of RL algorithms
We can use different classification of RL algorithms, depending on several factors. In this
section, we'll outline some of the algorithms.

First, we'll divide RL algorithms based on the nature of the value function. We can identify
two main types:

Tabular solutions: The number of possible states and actions is small enough
that we can represent the value function as a table (array) and the agent is fully
familiar with the environment. One such scenario is the maze example, where the
whole maze is stored in a table and the maze itself is not too big. With tabular
solutions, we can often find the true optimal value function and optimal policy.
Approximate solutions: The state and action spaces could be arbitrarily large.
Imagine that we have to train an agent to play a computer game by just looking
at the rendered game images on the screen. There is nothing unusual in that –
after all, this is how we humans learn to play games. However, the number of
possible rendered images is great. In such situations, it's impossible to know all
states and actions, and it's not possible to have a tabular value function. On top
of that, the large number of possible states means that the agent will inevitably
run into situations it has never seen before. The way to solve a problem such as
this is to find an approximation of the value function, which can also generalize
over the unseen data. Fortunately, deep neural networks have proven to be good
candidates for that role.

Reinforcement Learning Theory Chapter 8

[245]

In the next sections, we'll discuss tabular RL solutions. We'll later see that we can extend
them to include the more complex approximation scenario.

Types of RL agents
We have different types of RL agents:

Value-based agents: These store the value function and base their decisions on it.
Such an agent will decide which action to take based on the value of the states,
where the action leads. These agents don't use a policy.
Policy-based agents: These use only the policy, and not the value function, when
deciding what action to take.
Actor-critic agents: Use both the value function and the policy to make decisions.
Model-based agents: These include a model of the environment. Given a state
and an action, the agent can use the model as a simulation of the real
environment to predict the next state and reward. In other words, the model
allows the agent to plan its future actions.
Model-free agents: These don't have an internal model of the environment, and
learn the policy with a trial-and-error approach. Model-free agents learn to take
their future actions.

Model-based and model-free agents can be value-based, policy-based, or actor-critic. RL
agents that use policy can be further classified, as follows:

On-policy: The agent takes actions based on the current policy.
Off-policy: The agent bases its actions on a behavior policy, while it tries to
optimize another target policy. Don't worry if you don't understand this yet, it
will become clearer as we progress.

RL as a Markov decision process
A Markov decision process (MDP) is a mathematical framework for modeling decisions.
We can use it to describe the RL problem. We'll assume that we work with a full knowledge
of the environment. An MDP provides a formal definition of the properties we defined in
the previous section (and adds some new ones):

 is the finite set of all possible environment states, and st is the state at time t.
 is the set of all possible actions, and at is the action at time t.

Reinforcement Learning Theory Chapter 8

[246]

 is the dynamics of the environment (also known as transition probabilities
matrix). It defines the conditional probability of transitioning to a new state, s',
given the existing state, s, and an action, a (for all states and actions):

We have transition probabilities between the states, because MDP is stochastic (it
includes randomness). These probabilities represent the model of the
environment – that is, how it will likely change given its current state and an
action, a. If the process were deterministic, we wouldn't need them. Model-based
agents have an internal representation of , which they use to predict the results
of their actions.

We should note that the new state depends only on the current state and not on
any previous states. In other words, the current state completely characterizes the
total state of the environment, which makes the MDP a memoryless process. This
feature of the MDP is called the Markov property.

 is the reward function. It describes the reward, the agent would receive when
it takes action a and transitions from s -> s':

We need the expectation, , because the environment described by the MDP is
stochastic and the transitions between different states are described by the
transition probabilities. In other words, we cannot say with certainty in what new
state (and hence which reward) we'll end up when the agent takes an action.
Instead, we can reasonably expect what the reward might be. We'll denote the
reward at time step t with rt.

γ is the discount factor. It's a value in the [0:1] range and it determines how much
the algorithm values the immediate rewards, as opposed to the future rewards.

Reinforcement Learning Theory Chapter 8

[247]

We can see an example MDP in the following diagram:

Left: The agent takes an action and receives the new state and reward. Right: An example of a simple MDP with four states (sa, sb, sc, and a terminal state, se) and four actions (ax,
ay, az, and ae). Each action has a transition probability, but only some actions have rewards

To understand an MDP better, let's see how to represent the maze game in a graph similar
to the one in the preceding diagram. We'll have as many states, sa, sb, sc, ..., as the number of
maze grid cells. Each state will be associated with four actions (up, down, left and right).
However, the maze walls will make it impossible to take certain actions to or from some of
the states, therefore they will have a probability of 0. Since this is a deterministic model, the
rest of the state/action pairs will have a probability of 1. That is, when the agent moves in
some direction, it is certain that it will end up in the corresponding neighboring maze
position.

We'll now describe the step-by-step execution of one MDP episode (an episode might be
one game of chess, for example):

The episode starts with the initial state, s0, at time time t=0 and ends at t=T when1.
we reach the terminal state.
Repeat until we reach the terminal state:2.

The agent takes the at action.1.
The environment samples a reward, rt+1, and a new state, st+1, based on2.

the transitional probabilities, .
The agent receives the new state, st+1, and reward, rt+1.3.

The MDP together with the agent will produce the following sequence (or trajectory):

s0, a0, r1, s1, a1, r2, s2, a2, r3, ... aT-1, rT, sT

Reinforcement Learning Theory Chapter 8

[248]

Some RL problems might be continuous, and not episodic, such as balancing a pole by
shifting the bottom end of the pole to the left or right. The goal is to keep the pole upright
indefinitely. We won't go into details about this scenario, but we should note that the
algorithm we described for episodic tasks can be used for continuous tasks too ().
Still, we need to consider that the agent's goal is to maximize the total return (the sum of all
future rewards) in the long run. In a continuous task, this is infinity. We can solve this with
the help of the discount factor, which lies in the [0:1] range. The formula for the discounted
return at time step t is as follows:

Although the sum is still infinite, if γ<0, then Gt will have a finite value. If γ=0, the agent is
only interested in the immediate reward and discards the long-term return. Conversely,
if γ=1, the agent will consider all future rewards equal to the immediate reward. For reasons
we'll see later in the chapter, we can rewrite this equation with a recursive relationship:

Next, let's discuss the value function and the policy. The value function estimates the
cumulative future rewards of a given state. However, the rewards depend on the future
actions of the agent, which are determined by the agent's policy (denoted by π). In formal
terms, the policy maps the state, s, to a probability of selecting each possible action, a,
starting from s. The value function and the policy are inextricably linked.

We can define two types of value functions:

State-value function : Describes the expected returns starting from
the st state and then following policy π:

Reinforcement Learning Theory Chapter 8

[249]

 is the expected value of the total return, Gt, at time step t. We use
expectation, because both the environment transition function and the policy
(depends on the type of policy) might act in a stochastic way. On the one hand,
when the agent takes an action, a, the environment might end up in any number
of different states, depending on the transition probabilities. On the other hand,
we may choose a policy that will act in a random way given equal conditions.
Therefore, we can only approximate what the value of the st state is.

Action-value function or q-function: This describes the expected return
starting from s, then taking action a, and following policy π:

The action-value definition follows the same assumptions as the state-value
function.

Next, let's denote with the probability that a policy, π, selects an action, a, given a
current state, s. Then, the following equation between the state-value and action-value
functions is true:

Intuitively, we can see that the state-value function is equivalent to the sum of the action-
value functions of all outgoing (from s) actions, a, multiplied by the policy probability of
selecting each action. Note that the sum of probabilities of all outbound actions from s is

 .

Bellman equations
The Bellman equations are named after Richard Bellman (https:/ ​/​en. ​wikipedia. ​org/
wiki/​Richard_​E.​_ ​Bellman), who also introduced the DP method. In DP, we can find the
optimal solution of a complex problem by breaking it down into simpler, recursive sub-
problems and finding their optimal solutions. For example, we can find the k-th Fibonacci
number using a bottom-up dynamic method.

https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman

Reinforcement Learning Theory Chapter 8

[250]

Although there is a strong chance that you are already familiar with this solution, we'll still
include it for the sake of completeness (it's just a few sentences). We'll start with the first
and second Fibonacci numbers (0 and 1). The third number is just the sum of the first two.
Then, the fourth number is the sum of the third and the second, but we already know both
of these. Therefore, finding the fourth number is trivial. By just storing the last two
numbers, we can compute any number of the sequence in O(n) time complexity and O(1)
memory complexity. We did this by splitting the problem into smaller sub-problems. We
won't focus further on DP itself, but if you want to learn more, detailed tutorials are widely
available.

The Bellman equation describes the relationship between the sub-problems and the main
problem in DP. We can also apply it for the MDP. We already saw that we can define the
discounted return, Gt, in recursive terms. Let's now see how to recursively define the state-
value function.

We'll start by rewriting it with the recursive definition of Gt:

Let's analyze its two components, starting with the expectation for the immediate
reward, rt+1:

Although it might seem complex, it's not difficult to understand. We are already familiar
with . Next, is the transition probability and is the expected
award the environment will sample, when transitioning from s -> s' via a. Finally, we sum
over all possible actions, a, and all possible resulting states, s'. To summarize, the expected
immediate reward is the sum over the product of the probabilities of the policy to select
each action, a, the transition probabilities, and the expected rewards for the transitions.

Reinforcement Learning Theory Chapter 8

[251]

Next, let's analyze the second component:

This equation is the same as the preceding one, but this time we are using the total
discounted return, instead of the immediate return.

Knowing this, we can rewrite the state-value equation with the new definitions:

Finally, we can see that the innermost expectation is equal to . Thus, we
can define the Bellman equation for the state-value function:

Here is a diagram of the state-value function:

The state-value function

Reinforcement Learning Theory Chapter 8

[252]

We can intuitively see that it recursively breaks down the value computation into an
immediate expected reward from the next state/action pairs (a sum over the policy
probabilities) and discounted return for all states, following the current one.

The Bellman equation for the action-value function is as follows:

We got the second form of the equation because of the equivalency we introduced at the
end of the preceding section.

Here is a diagram of the action-value function:

The action-value function

The Bellman equations are important, because they give us the ability to describe the value
of a state, st, with the value of the st+1 state. That is, if we know the value of st+1 ,we can easily
compute the value of st, and with an iterative approach, we can calculate the values of all
states.

Reinforcement Learning Theory Chapter 8

[253]

Optimal policies and value functions
The goal of the agent is to maximize the total cumulative reward in the long run. The
policy, which maximizes the total cumulative reward is called the optimal policy and is
denoted with denoted with . There could be different optimal policies, but they all share
the same value functions (optimal value functions).

We'll denote the state-value and action-value functions with respect to the optimal policy,
, with the following:

Let's expand on the optimal action-value function. First, we start with a state, s, and an
action, a. Next, to satisfy the optimal condition, we have to follow the optimal policy, .
Therefore, we can write in terms of :

Furthermore, the state-value function of a state, s, under the optimal policy must equal the
expected return for the best action starting from that state. This can be expressed as follows:

Based on that, we can define the Bellman optimality equation for :

Reinforcement Learning Theory Chapter 8

[254]

Where . Then, we can define the Bellman optimality equation for :

Where and .

We wrote a bunch of equations, but why exactly are they useful? As we demonstrated, we
can use the Bellman equations to express the value of one state by the value of another
state. The Bellman optimality equations build upon that and provide the base for iterative
approaches of finding the optimal policy (which maximizes the expected reward in the long
run). We'll talk about these algorithms in the next sections.

Finding optimal policies with Dynamic
Programming
Dynamic Programming (DP) is a base for many RL algorithms. The main paradigm of DP
algorithms is to use the state- and action-value functions as tools to find the optimal
policy, given a fully-known model of the environment. In this section, we'll see how to do
that.

Policy evaluation
We'll start with policy evaluation, or how to compute the state-value function, , given a
specific policy, π. This task is also known as prediction. As a reminder, we'll assume that
the state-value function is a table. We'll implement policy evaluation using the state-value
Bellman equation we defined in the Bellman equations section. Let's start:

Input the following:1.
The policy, π.
A small threshold value, θ, which is used to assess when to stop.

Reinforcement Learning Theory Chapter 8

[255]

Initialize the following:2.
The Δ variable with 0. We'll use it in combination with θ to assess
whether to stop.
The table with some value for all states.

Repeat until :3.

For each state si in , do the following:

Extract the expected total return, , for si.1.
Update the discounted return of si with the Bellman2.
equation:

Let's analyze this formula to make it clear. Given a
current state, si, we iterate over all possible actions, a, for
which the policy, π, gives a non-zero probability. Then,
for each of these actions, we calculate the sum of the

reward, (transition from the si -> s'i state) and the

discounted returns, , of the new state, s'i. We
wrap all this in the usual probabilities (policy and
transition) and the end result gives us the updated
discounted return for the si state. To summarize, we
update the value of a state using the values of its
neighboring states.

Policy evaluation example
To better understand this, let's use an example. Imagine that we have a simple robot,
navigating a grid environment (this example is also known as gridworld). We'll assume
that:

The grid is size 4 x 4. It's very similar to the maze example we defined earlier,
with the exception that it has no walls. The cells are numbered from 1 to 16,
where cells 1 and 16 are terminal states.

Reinforcement Learning Theory Chapter 8

[256]

The robot can navigate up, down, left, or right to any of the neighboring states.
Actions that take the robot off the grid leave it in its current state (but the reward
is still received).
The environment is deterministic – that is, the transition probability of moving to
the corresponding neighbor state when taking an action is always 1. For example,
if the robot takes the "up" action, it will move to the upper cell with a probability
of 1.
The transition between any two states carries a negative reward of -1. The only
exception is when the transition starts from any of the two terminal states, when
the reward is 0.
We'll use a discount factor of 1.
The robot uses a simple policy, which gives an equal probability of 0.25 for each
of the four actions for any grid cell.
The values for all states are initialized with 0:

The gridworld environment

Given these conditions, let's assume that we are in the first iteration of the policy-evaluation
procedure and we want to update the value of cell 2:

Reinforcement Learning Theory Chapter 8

[257]

First, we know that for any action is 0.25. Next, we know that the transition

probability, , is always 1, even for going upward off the edge, when the robot will

"transition" to its current state (2). The reward, , is always -1, even for going in the

terminal state. Finally, the expected return, , of each neighbor state is 0, because
this is the first iteration of the evaluation and the initial values are all zeros. Therefore, we
have the following:

Next, let's compute the new expected return for the neighboring state 3. One of the
scenarios is a transition from 3 -> 2. In this case, we'll use the newly-updated expected
return, , of state 2:

In the following diagram, we can see the illustration of the two steps we just described:

The first two steps of the policy-evaluation procedure

We'll continue performing the same steps for the rest of the states. In the next iteration of
the evaluation process, we'll repeat the same steps for each state, using the newly-updated
value function.

Reinforcement Learning Theory Chapter 8

[258]

Policy improvements
Once we're able to evaluate a policy, let's look at how to improve it. This task is also known
as control. We'll assume that the policy is represented as a table, where the best actions are
stored for each state (tabular solution). We'll also assume that we have an already-existing
value function, (the step described in the preceding section), and a policy, π. For each
state, s, we'll do the following:

Assume that we take all possible actions starting from s. That also includes the1.
action selected by the policy. Using the action-value Bellman equation, for each
action we'll compute the expected returns if we take that action and continue
following the policy, π, after that.
Compare the expected returns of the action, selected by the policy, to the2.
expected returns for the rest of the actions. If some of the newly-computed
expected returns are larger than the existing policy selection, we'll update the
policy to take the new action every time we are in the s state. This approach is
greedy, because we always take the max return. It is also relatively simple,
because we are only doing a one-step look-ahead when evaluating the
performance of the different actions.
Repeat the preceding steps until the policy selects the best action in all cases, that3.
is, until it is no longer necessary to update it.

We can describe this algorithm with the following equation. We'll denote the updated
policy with . The arg max symbolizes the comparison between the actions' expected
returns:

To better understand policy improvement, let's use the gridworld example from the Policy
evaluation example section. We'll assume that the policy evaluation has finished, and the
result after all iterations is are :

Reinforcement Learning Theory Chapter 8

[259]

Policy evaluation result with expected returns for each cell

Let us say that we want to improve the policy when the robot is located in cell 6 (displayed
in the preceding diagram). The initial policy gives an equal probability of taking each of the
four actions: π(6) = [up: 0.25, down: 0.25, left: 0.25, or right: 0.25]. After
applying the action-value Bellman equation for each of the four actions, we'll get the
following expected returns: up: - 1 -14 = -15, down: -1 - 20 = -21, left: - 1
-14 = -15, and right: -1 - 20 = -21 (this is just the sum of the transition reward and
the expected return of the next state). We can see that the up and left actions have better
expected returns (-15), compared to bottom and right (-21). In this case, we can update our
policy to π(6) = [up: 0.5, down: 0, left: 0.5, right: 0].

Policy and value iterations
In this section, we'll put together everything we've learned so far and we'll combine policy
evaluation and improvement in a single algorithm (so exciting!). Fortunately, the concepts
are simple.

We'll start with policy iteration. It refers to alternating steps of policy evaluation and policy
improvement until the process converges. Here is a sample diagram of the policy iteration
steps:

Policy iteration unfolded

Reinforcement Learning Theory Chapter 8

[260]

Policy iteration has one disadvantage: it performs evaluation in each iteration. Evaluation
itself is an iterative process, which might be time-consuming. It turns out that we can
improve its performance by doing just a single iteration of policy evaluation, instead of
waiting for the delta to fall below the threshold of θ. We can see that the Bellman equations
for one evaluation and one improvement step is similar (with the exception of the max
value in the improvement case). Because of this, we can combine the two steps for a better-
optimized algorithm, called value iteration.

The evaluation and improvement steps have a friendly/adversarial relationship. On the one
hand, if the policy is greedy with respect to the value function, it will usually invalidate
that value function with respect to the policy. That's because the existing function will no
longer represent the actions that would be taken by the updated policy. On the other hand,
if we update the value function to better represent the policy, the policy will no longer be
greedy with respect to the value function, because there will be no need to update it
anymore. At the same time, the interaction between the two would converge toward the
optimal policy and value function. A finite MDP has a finite number of policies, which
means that the policy iteration will converge in a finite amount of time.

In the following diagram, we can see an illustration of the process in terms of convergence
toward the optimal solution:

The interaction between policy evaluation and improvement

If you are interested in an example Python implementations of DP
prediction and control, check out https:/ ​/​github. ​com/​dennybritz/
reinforcement- ​learning/ ​tree/ ​master/ ​DP.

https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP
https://github.com/dennybritz/reinforcement-learning/tree/master/DP

Reinforcement Learning Theory Chapter 8

[261]

Monte Carlo methods
In this section, we'll describe our first algorithm, which does not require full knowledge of
the environment (model-free): the Monte Carlo (MC) method (yay, I guess...). Here, the
agent uses its own experience to find the optimal policy.

Policy evaluation
In the Dynamic programming section, we'll describe how to estimate the value function,

, given a policy, π (planning). MC does this by playing full episodes, and then
averaging the cumulative returns for each state over the different episodes.

Let's see how it works in the following steps:

Input the policy, π.1.
Initialize the following:2.

The table with some value for all states
An empty list of returns(s) for each state, s

For a number of episodes, do the following:3.
Generate a new episode, following policy π: s0, a0, r1, s1, a1, r2,1.
s2, a2, r3, ... aT-1, rT, sT.
Initialize the cumulative discounted return, G = 0.2.
Iterate over each t step of the episode, starting from T-1 and going to3.
0:

Update G with the reward at the t+1 step: G = G + γrt+1.1.
If the st state doesn't appear in any of the preceding episode2.
steps s0, s1, s2 ... st-1:

Append the current value of G to1.
the returns(st) list associated with st.

Update the value function with the average2.
of returns(st):

 .

Reinforcement Learning Theory Chapter 8

[262]

This MC variant is called first-visit, because if a state, s, appears multiple times in one
episode, we'll only add G to returns(s) the first time that the state occurred in the
episode trajectory. We'll ignore the other occurrences. Conversely, we can also add the
discounted reward every time the state occurs in the episode. In this case, we call it every-
visit MC. We can use the same pseudo-code as with first-visit, except that we'll remove the
check of whether the state has already occurred. Both first-visit and every-visit MC
converge to the real value function, , as the number of occurrences of each state, s,
approaches infinity. Unlike the DP policy evaluation, the MC method doesn't use the values
of other states to compute the value of the current one, and instead only relies on its own
experience to do this (the episodes).

Exploring starts policy improvement
MC policy improvement follows the same general pattern as DP. That is, we alternate
evaluation and improvement steps until convergence. But because we don't have a model
of the environment, it is better to estimate the action-value function, (state-action
pairs), instead of the state-value function. If we had a model, we could just follow a greedy
policy and choose the combination of action/reward and next state value with the highest
expected return (similar to DP). But here, the action values will be better for choosing new
policy. Therefore, to find the optimal policy, we have to estimate . With MC, we
can do this in the same way as we estimated the state-value function (preceding section).
That is, we'll generate multiple episodes and then average the returns of each state/action
pair. But if the policy is deterministic, every time the agent moves to a particular state, s, it
will choose the same action, a. Because of this, there is a chance that some state/action pairs
may never get visited and we won't be able to estimate for them. One way to solve
this is to ensure that each episode starts with a state/action pair (and not just with state),
and each state/action pair has non-zero probability of starting an episode. As the number of
episodes goes to infinity, every state/action pair will participate. This assumption is called
exploring starts (ES).

Reinforcement Learning Theory Chapter 8

[263]

Next, we'll describe first-visit MC ES. At each step of the algorithm, we'll estimate for
one state/action pair, and then we'll update the policy for the state, s, in a greedy way with
respect to the action-value function:

Input the policy, π1.
Initialize the following:2.

The table with some value for all state/action pairs
An empty returns(s, a) list for each state/action pair

For a number of episodes, do the following:3.
Generate a new episode, following the policy, π: s0, a0, r1, s1, a1,1.
r2, s2, a2, r3, ... aT-1, rT, sT.
Initialize the cumulative discounted return, G = 0.2.
Iterate over each t step of the episode, starting from T-1 and going3.
to 0:

Update G with the reward at the t+1 step: G = G + γrt+1.1.
If the pair (st, at) doesn't appear in any of the preceding2.
episode steps s0, a0, s1, a1 ... st-1, at:

Append the current value of G to1.
the returns(st, at) list associated with (st, at).
Update the value function with the average2.
of returns(st, at):

.

.3.

This algorithm is very similar to the one described in the preceding Policy evaluation section
(but we use instead of). Similarly, we have an every-visit version, which
averages the discounted reward every time state/action pair occurs in the episode. Worth
noting is the policy-improvement step. First, we calculate the new value of for
the s state. Then, we update the policy for that state, , in a greedy way by simply
choosing the action (among all actions starting from s) with the maximum expected return,
according to the action-value function.

Reinforcement Learning Theory Chapter 8

[264]

Epsilon-greedy policy improvement
In the preceding section, we discussed that if we follow a deterministic policy (DP), we
might not reach all state/action pairs. This would undermine our efforts to estimate the
action-value function. We solved this problem with the exploring-starts assumption. But
this assumption is unusual and it would be best to avoid it. In fact, the core of our problem
is that we follow the policy blindly, which prevents us from exploring all possible
state/action pairs. Can we solve this by introducing a different policy? Turns out it can
(surprise!). In this section, we'll introduce MC control with a non-deterministic epsilon-
greedy (ε-greedy) policy. The core idea is simple. Most of the time the ε-greedy policy
behaves just such as the greedy policy we used so far. But sometimes, with a probability of
ε, it will choose a random action, instead of the optimal one. In particular, all non-optimal
actions starting from the s state can be selected with minimal probability, , where

is the number of actions for the s state. The optimal action (selected by the greedy
policy) has a probability of being selected. Here is the first-visit MC for the
ε-greedy policy:

Input the policy, π.1.
Initialize the following:2.

The table with some value for all state/action pairs
An empty returns(s, a) list for each state/action pair

For a number of episodes, do the following:3.
Generate a new episode, following the policy, π: s0, a0, r1, s1, a1,1.
r2, s2, a2, r3, ... aT-1, rT, sT.
Initialize the cumulative discounted return G = 0.2.
Iterate over each t step of the episode, starting from T-1 and going3.
to 0:

Update G with the reward at the t+1 step: G = G + γrt+1.1.
If the (st, at) pair doesn't appear in any of the preceding2.
episode steps s0, a0, s1, a1 ... st-1, at:

Append the current value of G to1.
the returns(st, at) list associated with (st, at).

.2.
For all actions ai, starting from state s:3.

Reinforcement Learning Theory Chapter 8

[265]

Unlike the regular greedy policy, ε-greedy is non-deterministic (every action is selected
with a probability), and we'll assign a probability for each action, ai, starting from
the st state.

If you're interested in an example Python implementation of MC prediction and control,
check out https:/ ​/​github. ​com/ ​dennybritz/ ​reinforcement- ​learning/ ​tree/ ​master/ ​MC.

Temporal difference methods
Temporal difference (TD) is a class of model-free RL methods. On the one hand, they can
learn from the agent's experience, such as MC. On the other hand, they can estimate state
values based on the values of other states, such as DP. As usual, we'll explore the policy
evaluation and improvement tasks.

Policy evaluation
TD methods rely on their experience for policy evaluation. But unlike MC, they don't have
to wait until the end of an episode. Instead, they can update the action-value function after
each step of the episode. In its most basic form, a TD algorithm uses the following formula
to perform a state-value update:

Where α is called step size (learning rate) and it's in the range of [0, 1]. Let's analyze this
equation. We're going to update the value of the st state and we're following a policy, π, that
has led the agent to transition from the st state to the st+1 state. During the transition, the
agent has received a reward, rt+1. Think of as the label (target) value for

 .

https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC
https://github.com/dennybritz/reinforcement-learning/tree/master/MC

Reinforcement Learning Theory Chapter 8

[266]

We can assume the label is more accurate than , because it includes the reward, rt+1

(besides), which was actually given by the environment. On the contrary, is just
an estimation? Compare this with the MC method, where the target value is the total
discounted return, G, of the full episode. In other words, TD uses the estimated value
(expected updates), while MC uses the real discounted return (sample updates). Next,

is the difference between the label and the predicted value of the
algorithm (known as the TD error), just such as with classification in neural
networks. Finally, we'll update the value function using the step size, α, which determines
how fast the value will change with each update. The process is very similar to the weight
update rule for neural networks. The following diagram illustrates the MDP sequence of
states:

This method is called one-step TD, or TD(0). Other variants include n-step TD and TD(λ).

Let's see how TD(0) works:

Input the policy, π.1.
Initialize the table with some value for all states. 2.
Repeat for a number of episodes:3.

Start new episode with an initial state of st=0.1.
Repeat until the terminal state is reached:2.

Select action at, using the policy, π, for the current state, s.1.
Take the action at, transition to new state st+1, and observe2.
reward rt+1.

Update the value function, 3.
.

st = st+1.4.

Reinforcement Learning Theory Chapter 8

[267]

TD has several advantages over MC and DP. First, it's model-free, unlike DP. Next, it is an
online method, where we update the value constantly. Compare this to MC, which
performs an update only after the episode is finished, which could prove costly for long
episodes. This also makes it possible to apply TD for continuous tasks (as opposed to
periodic).

Control with Sarsa
Sarsa is an on-policy TD control method. Much such as MC control, we'll try to estimate the
action-value function in order to find the optimal policy. We'll do this for the same reasons
we outlined in the Exploring starts policy improvement section. But this time, we'll follow the
blueprint outlined in the preceding section. That is, we'll iterate over multiple episodes and

we'll update online, after each step of an episode. We can represent this process
with a formula, similar to the one in the preceding section, with the exception that it is for
the action-value function:

Where for each action of the terminal state. We start at the st state, take
the at action (following the policy), transition to the next state, st+1, and then take the next
action, at+1 (again, following the policy). The following diagram illustrates this MDP
sequence of state/action pairs:

The name of the method, Sarsa, comes from the fact that the five-element
sequence of the episode's trajectory is st, at, rt+1, st+1, at+1.

Reinforcement Learning Theory Chapter 8

[268]

Next, let's see how Sarsa works (hint: it's similar to TD(0)):

Input the policy, π.1.
Initialize the table with some value for all state/action pairs. 2.
Repeat the following for a number of episodes:3.

Start new episode with initial state/action pair, st=0, at=0.1.
Repeat the following until the terminal state is reached:2.

Take the action at and transition it to a new state st+1, and1.
observe reward rt+1.
Select next action, at+1, following the policy, π (for example, ε-2.
greedy).
Update the action-value function, 3.

.
st = st+1, at = at+1.4.

If you are interested in an example Python implementation of Sarsa, check out https:/ ​/
github.​com/​dennybritz/ ​reinforcement- ​learning/ ​tree/ ​master/ ​TD.

Control with Q-learning
Q-learning is an off-policy TD control method. It was developed by Watkins, C.J.C.H.
(http:/​/​www.​cs. ​rhul. ​ac. ​uk/ ​~chrisw/ ​new_ ​thesis. ​pdf) in 1989 (in 2019, Q-learning is able
to legally run for a seat in the United States Senate). With some improvements, it is one of
the most popular RL algorithms in use today. As with Sarsa and MC, we have to estimate
the action-value function. Q-learning is defined as follows:

https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Reinforcement Learning Theory Chapter 8

[269]

Although it resembles the definition of Sarsa, it has one substantial difference: tt is an off-
policy method, which means that we have two distinct policies:

Behavior policy: The agent uses this to actually navigate through the
environment. This is the same, as with Sarsa. We start at the st state, take
the at action (following the behavior policy), transition to the next state, st+1, and
then take next action, at+1 (again, following the behavior policy). It's important to
note that the behavior policy might not always choose the at+1 action with the
maximum expected return value. For example, an ε-greedy policy will sometimes
select random non-optimal actions.
Target policy: The agent uses this to compute the TD error in the action-
value update function. The target policy is always greedy. That is, the update
rule will always use the at+1 action with maximum expected return, regardless of
what action the behavior policy might choose (denoted by
 symbolizes).

But how do these two policies help us? On the one hand, we'll directly approximate the
optimal action-value function, q*, because we use the greedy target policy for the
estimation. Had we used the same greedy policy to navigate the agent, we would have
inevitably excluded some action value pairs (as we discussed in the Exploring starts policy
improvement section). Using a non-optimal behavior policy will ensure that we can include
all state/action pairs in the estimation. Conversely, if we had used a non-optimal policy for
estimation, we wouldn't have approximated the optimal function.

Knowing all this, let's see how Q-learning works:

Input the policy, π.1.
Initialize the table with some value for all state/action pairs. 2.
Repeat the following for a number of episodes:3.

Start new episode with the initial state/action pair, st=0, at=0.1.
Repeat the following until the terminal state is reached:2.

Take the action at, transition to a new state, st+1, and observe1.
the reward, rt+1.
Select next action, at+1, following the behavior policy (for2.
example, ε-greedy).
Update the action-value function,3.

,
using the greedy target policy.
st = st+1, at = at+1.4.

Reinforcement Learning Theory Chapter 8

[270]

If you are interested in an example Python implementation of Q-learning, check
out https:/​/​github. ​com/ ​dennybritz/ ​reinforcement- ​learning/ ​tree/ ​master/ ​TD.

Double Q-learning
Imagine that the majority of the actions, a, starting from state, s, have true action-values,

 . That is, the real return for each action starting from the s state is 0.
Unfortunately, we don't know the true action-values and instead we try to estimate
them, hoping that our estimation will eventually converge toward the optimum. Our
estimations, , are uncertain – some estimations might be slightly above 0, while
others might be slightly below. And here comes the issue. When we compute the estimation
of each state/action pair using the greedy target policy, we always use the action-value of
the pair with the maximum expected return, which is slightly positive. This means the
estimated action-values for all pairs will be slightly higher than the real action-values,
which are zeros. Therefore, our approximation of the action-value function will deviate
from the optimal by constantly overestimating the expected returns. This issue is
called maximization bias.

The reason for maximization bias in Q-learning is that we use the same greedy target policy
to select the action, amax, with the highest expected return, and at the same time to evaluate
its action value, . If the action, amax, is overestimated, the action-value estimation
will select it and it will use its overestimated value as target for all actions. The idea of
double Q-learning is to decompose the selection and evaluation in two separate action-
value estimations: q1 and q2. Both will try to estimate the optimal action-value function, q*,
but we'll split the state/action pairs in two sets – the first set to train q1 and the second set to
train q2. We'll use q1 to select the best action and q2 to estimate its value. Then the update
rule for q3 becomes the following:

q1 and q2 will still suffer from maximization bias. But by using different training sets, we can
at least ensure that they will overestimate different actions, a, when starting from the same
state, s. In this way, even if q1 selects an overestimated action, the action-value, q2, will not
be overestimated, thus minimizing the maximization bias (pun intended). We can also
reverse the roles of q1 and q2 in the preceding formula. To implement this, we'll flip a coin at
each step of the Q-learning algorithm (a chance of 0.5) and based on the result, we'll either
update q1 or q2.

https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD
https://github.com/dennybritz/reinforcement-learning/tree/master/TD

Reinforcement Learning Theory Chapter 8

[271]

In the following section, we can see a step-by-step trace of double Q-learning:

Input the policy, π.1.
Initialize the and tables with some value for all state/action pairs. 2.
Repeat the following for a number of episodes:3.

Start a new episode with the initial state, st=0.1.
Repeat until the terminal state is reached:2.

Select the at action following the behavior policy based on1.
both q1 and q2 (for example, ε-greedy).
Take the action at, transition to new state st+1, and observe2.
reward rt+1.
Update one of the two action-value estimations with a3.
probability of 0.5:

st = st+1.4.

Value function approximations
So far, we've worked under the assumption that the state- and action- value functions are
tabular. However, in tasks with large value spaces, such as computer games, it's impossible
to store all possible values in a table. Instead, we'll try to approximate the value functions.
To formalize this, let's think of the tabular value functions, and , as actual functions
with as many parameters as the number of table cells. As the state space grows, so does the
number of parameters, to the point where it becomes impossible to store them. Not only
that, but with a large number of states, the agent is bound to enter situations it has never
seen before.

Our goal then is to find another set of functions, and , with the following properties:

Approximates and with significantly fewer parameters, compared to the
tabular version
Generalizes well enough, so they can successfully approximate previously-
unseen situations

Reinforcement Learning Theory Chapter 8

[272]

We'll denote these functions with the following:

Where w is the function parameters. We can use any function for approximation, but for
the purposes of this book, we'll focus on neural networks. In this case, w is the network
weights.

So far so good, but how can we train the network? To do this, we'll treat the RL task as a
supervised learning problem, where the following is true:

The network input is the current state or state/action pair (depending on whether
it estimates or).
The network output is the value function approximation, or .
The target data (labels) is the real value function. or .

With these assumptions, let's define the loss function for the state- and action- value
functions that we'll use for training:

It is simply the mean-squared error of the sum over all states, s, of the difference between
the real and approximated value, with respect to the weights, w. represents the
expectation of a state distribution, which assigns a measure of importance to each state.
Think of the state distribution as the amount of time spent in the s state relative to the other
states.

Next, we can use the now-familiar stochastic gradient descent (SGD) optimization to
update the network parameters. To do this, we'll need the gradient (first derivative) of the
loss function with respect to the weights. We can compute it with the help of the chain
rule:

Reinforcement Learning Theory Chapter 8

[273]

Then, we can compute the weight-update delta by simply multiplying the gradient with the
learning rate:

But I can hear you say, "How can we do this when we don't know the true value functions?
Isn't the whole point of RL to actually find and ?" And you're be completely right. To
overcome this challenge, we'll use a trick. Recall the state-value function update rule that
we introduced in the Temporal difference methods section:

At the time, we observed how acts as a target value, is the
approximation, and is just the difference between the two. In fact,
this is exactly what we'll use as a target in our current task. However, instead of the true
value function (which we don't know), we'll use the network as an approximator. The
weight update then becomes the following:

We can train the network online as we let the agent interact with the environment
following the steps of the TD algorithm (Sarsa, Q-learning). We'll use the stream of
interaction experiences (action, reward, new state) as a training set. As the network training
loss converges towards 0, the agent's behavior improves (hopefully).

The following is a step-by-step trace of the TD(0) prediction method with a value-function
approximation:

Input the following:1.
Policy, π
Value function approximator, (neural net)

Reinforcement Learning Theory Chapter 8

[274]

Repeat the following steps for a number of episodes:2.
Start new episode with the initial state, st=0.1.
Repeat until the terminal state is reached:2.

Select the at action using the policy, π, for the current state, s.1.
Take the action at, transition to new state st+1, and observe2.
reward rt+1

Update the network weights:3.

st = st+1.4.

Value approximation for Sarsa and Q-learning
We can apply the same to Sarsa, which uses a similar update rule, but we'll approximate
the action-value function instead:

The same goes for Q-learning:

Improving the performance of Q-learning
In this section, we'll introduce a couple of tricks that can help to improve the agent's
performance.

Reinforcement Learning Theory Chapter 8

[275]

Fixed target Q-network
One issue with the value-function approximation in Q-learning is that we use the same
network to compute both the estimation at the t time and the TD target value, which is
based on the estimation at the t+1 time (preceding equation). Let's say that we update the
network weights at step t with the TD target at t+1. In the next iteration, we'll calculate the
next TD target at step t+2 (two) using the updated network. As a result, there is a strong
correlation between the TD target and the network weights. When the weights change, so
does the TD target. Think of it as a moving goalpost – as the network tries to get closer to
the TD target, the target shifts and goes further away. This could lead to oscillations and
unstable training. One solution to this problem is to use separate network with fixed
weights, wfixed, to compute the target value.

Here's how the process works:

Create the fixed target network as a carbon copy of the main network. That is, a1.
copy of the network architecture and weights.
Use the target network to generate the TD values for n iterations. Throughout the2.
whole time, the wfixed weights will be "frozen" – we will not perform any updates
on them.
After n iterations, we'll replace the target network with another carbon copy of3.
the latest version of the main network. Then, we can repeat the whole process.

Using a network with fixed weights will prevent the TD target value from shifting and will
stabilize the training. Here is the weight update rule, including the new fixed target
network:

Reinforcement Learning Theory Chapter 8

[276]

Experience replay
As we discussed in the Value function approximation section, we are training the network
online, as the agent receives stream of experiences from the environment. But the
environment is usually sequential, and consecutive experiences might not differ much. For
example, imagine that the agent is a car, which is currently sliding downhill. While doing
so, it receives consistent feedback that the speed increases. If we feed the network with such
unified training data, there is a chance that it will start dominating all other
experiences. The network might "forget" previous situations and the performance would
decrease (this is a disadvantage of some neural networks). We can solve this issue with
experience replay. As the environment interaction goes, we'll store a sliding window of the
latest n interactions: (state st-1, action at-1, reward rt, state st) for t = tnow -

n ... tnow . Instead of training the network with the latest data, we'll create one mini-batch
by extracting samples from various points of the sliding window. In this way, the network
will receive diversified training data and will perform much better. We can also improve
experience replay by prioritizing the experiences (prioritized experience replay). For
example, if a transition yielded a high TD error, we could use this training sample more
often until it improves.

This concludes our (rather lengthy) theoretical introduction to RL. We now have enough
knowledge to solve some fun RL tasks. In the next section, we'll see how to use Q-learning
to play a very simple computer game.

Q-learning in action
In this section, we'll use Q-learning in combination with a simple neural network to control
an agent in the cart-pole task. We'll use an ε-greedy policy and experience replay. This is a
classic RL problem. The agent must balance a pole attached to the cart via a joint. At every
step, the agent can move the cart left or right. It receives a reward of 1 every time step that
the pole is balanced. If the pole deviates by more than 15 degrees from upright, the game
ends:

Reinforcement Learning Theory Chapter 8

[277]

The cart-pole task

To help us with this, we'll use OpenAI Gym (https:/ ​/​gym. ​openai. ​com/ ​), which is an open
source toolkit for the development and comparison of RL algorithms. It allows us to teach
agents over various tasks, such as walking or playing games such as Pong, Pinball, other
Atari games, and even Doom.

We can install it with pip:

 pip install gym[all]

Next, let's start with the code.

First, we'll do the imports:1.

import random
from collections import deque

import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

Then, we'll create the cart-pole environment:2.

env = gym.make('CartPole-v0')

https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/

Reinforcement Learning Theory Chapter 8

[278]

The gym.make method creates the environment that our agent will run in. Passing
in the "CartPole-v0" string tells the OpenAI Gym that we want this to be the
cart-pole environment, represented by the env object. We'll use it to interact with
the game. The env.reset() method puts the environment into its initial state,
returning an array that describes it. Subsequent calls
to env.step(action) allow us to interact with the environment, returning the
new states in response to the agent's actions. Calling env.render() will display
the current state on the screen. The environment state is an array of four floating-
point values, which describe the position and angle of the cart and the pole.

We'll use the environment state array as input to our network. It will consist of3.
one hidden layer with 20 nodes, a tanh activation function, and an output layer
with two nodes. One output node will learn the expected reward for a move to
the left in the current state, the other the expected reward for a move to the right.

Here is how that code looks:

Build the network
input_size = env.observation_space.shape[0]

input_placeholder = tf.placeholder("float", [None, input_size])

weights and bias of the hidden layer
weights_1 = tf.Variable(tf.truncated_normal([input_size, 20],
stddev=0.01))
bias_1 = tf.Variable(tf.constant(0.0, shape=[20]))

weights and bias of the output layer
weights_2 = tf.Variable(tf.truncated_normal([20,
env.action_space.n], stddev=0.01))
bias_2 = tf.Variable(tf.constant(0.0, shape=[env.action_space.n]))

hidden_layer = tf.nn.tanh(tf.matmul(input_placeholder, weights_1) +
bias_1)
output_layer = tf.matmul(hidden_layer, weights_2) + bias_2

action_placeholder = tf.placeholder("float", [None, 2])
target_placeholder = tf.placeholder("float", [None])

Reinforcement Learning Theory Chapter 8

[279]

Why 1 hidden layer with 20 nodes? Why use a tanh activation function? Picking
hyperparameters is a dark art; the best answer we can give is that these values
worked well for the task at hand. When selecting network architecture, we are
usually interested in computation time and preventing overfitting. In RL, neither
of these issues is as important. Though we care about computation time, often the
bottleneck is the time spent running the game. As for overfitting, in RL we don't
have train/validation/test set split. Instead, we have an environment in which an
agent gets a reward. So, overfitting is not something we have to worry about
(until we start to train agents that can operate across multiple environments). This
is why you won't often see RL agents use regularizers. The caveat to this is that
over the course of training, the distribution of our training set may change
significantly as our agent improves its policy. There is always the risk that the
agent may overfit on the early training samples, which can cause the learning to
become more difficult later.

Would a deeper network be better? Maybe, but for tasks with such a minimal
amount of complexity, more layers tend not to improve things. Running the
network with extra hidden layers appears to make little difference. One hidden
layer gives us the capacity we need to learn the things we want in this task.

Why did we choose tanh activation, when a sigmoid would have worked too (we
have only one hidden layer)? We know that our target can be negative (for a
negative expected reward). That would suggest that the range of (-1 : 1) provided
by the tanh function might be preferable to the logistic range of (0 : 1). To judge
negative rewards, the sigmoid will have to work in combination with the bias.
This is a lot of conjecture and reasoning after the fact; the best answer is
ultimately that this combination works very well on this task.

Next, let's define our loss function and optimizer (Adam):4.

network estimation
q_estimation = tf.reduce_sum(tf.multiply(output_layer,
action_placeholder), reduction_indices=1)

loss function
loss = tf.reduce_mean(tf.square(target_placeholder - q_estimation))

Use Adam
train_operation = tf.train.AdamOptimizer().minimize(loss)

initialize TF variables
session = tf.Session()
session.run(tf.global_variables_initializer())

Reinforcement Learning Theory Chapter 8

[280]

The q_estimation variable will be the q-value network prediction.
Multiplying output_layer by the action_placeholder tensor will return 0 for
everything except for the action we took. Our loss is the difference between the
network estimation and target_placeholder.

Then, let's define our simplified ε-greedy policy:5.

def choose_next_action(state, rand_action_prob):
 """
 Simplified e-greedy policy
 :param state: current state
 :param rand_action_prob: probability to select random action
 """

 new_action = np.zeros([env.action_space.n])

 if random.random() <= rand_action_prob:
 # choose an action randomly
 action_index = random.randrange(env.action_space.n)
 else:
 # choose an action given our state
 action_values = session.run(output_layer,
feed_dict={input_placeholder: [state]})[0]
 # we will take the highest value action
 action_index = np.argmax(action_values)

 new_action[action_index] = 1
 return new_action

Next, we'll define the train function, which works for a single mini_batch:6.

def train(mini_batch):
 """
 Train the network on a single minibatch
 :param mini_batch: the mini-batch
 """

 last_state, last_action, reward, current_state, terminal =
range(5)

 # get the batch variables
 previous_states = [d[last_state] for d in mini_batch]
 actions = [d[last_action] for d in mini_batch]
 rewards = [d[reward] for d in mini_batch]
 current_states = [d[current_state] for d in mini_batch]
 agents_expected_reward = []

Reinforcement Learning Theory Chapter 8

[281]

 # this gives us the agents expected reward for each action we
might take
 agents_reward_per_action = session.run(output_layer,
feed_dict={input_placeholder: current_states})
 for i in range(len(mini_batch)):
 if mini_batch[i][terminal]:
 # this was a terminal frame so there is no future
reward...
 agents_expected_reward.append(rewards[i])
 else:
 # otherwise compute expected reward
 discount_factor = 0.9
 agents_expected_reward.append(
 rewards[i] + discount_factor *
np.max(agents_reward_per_action[i]))

 # learn that these actions in these states lead to this reward
 session.run(train_operation, feed_dict={
 input_placeholder: previous_states,
 action_placeholder: actions,
 target_placeholder: agents_expected_reward})

Then, let's define the q_learning function, which will put the whole thing7.
together:

def q_learning():
 """The Q-learning method"""

 episode_lengths = list()

 # Experience replay buffer and definition
 observations = deque(maxlen=200000)

 # Set the first action to nothing
 last_action = np.zeros(env.action_space.n)
 last_action[1] = 1
 last_state = env.reset()

 total_reward = 0
 episode = 1

 time_step = 0

 # Initial chance to select random action
 rand_action_prob = 1.0

 while episode <= 500:
 # render the cart pole on the screen

Reinforcement Learning Theory Chapter 8

[282]

 # comment this for faster execution
 # env.render()

 # select action following the policy
 last_action = choose_next_action(last_state,
rand_action_prob)

 # take action and receive new state and reward
 current_state, reward, terminal, info =
env.step(np.argmax(last_action))
 total_reward += reward

 if terminal:
 reward = -1.
 episode_lengths.append(time_step)

 print("Episode: %s; Steps before fail: %s; Epsilon:
%.2f reward %s" %
 (episode, time_step, rand_action_prob,
total_reward))
 total_reward = 0

 # store the transition in previous_observations
 observations.append((last_state, last_action, reward,
current_state, terminal))

 # only train if done observing
 min_experience_replay_size = 5000
 if len(observations) > min_experience_replay_size:
 # mini-batch of 128 from the experience replay
observations
 mini_batch = random.sample(observations, 128)

 # train the network
 train(mini_batch)

 time_step += 1

 # reset the environment
 if terminal:
 last_state = env.reset()
 time_step = 0
 episode += 1
 else:
 last_state = current_state

 # gradually reduce the probability of a random action
 # starting from 1 and going to 0

Reinforcement Learning Theory Chapter 8

[283]

 if rand_action_prob > 0 and len(observations) >
min_experience_replay_size:
 rand_action_prob -= 1.0 / 15000

 # display episodes length
 plt.xlabel("Episode")
 plt.ylabel("Length (steps)")
 plt.plot(episode_lengths, label='Episode length')
 plt.show()

Finally, we can run the task by calling q_learning(). If everything goes as8.
planned, the code will produce a chart that displays the length of each episode:

Number of steps per episode

This looks good. For the first 200 or so episodes, we wanted to fill the experience replay
buffer with enough samples and no training was done. Then, we quickly reached 200 steps
per episode around game 400, at which point the environment imposes a limit on the
maximum episode length.

Reinforcement Learning Theory Chapter 8

[284]

Summary
In this chapter, we introduced RL. We started with some basic paradigms and then we
discussed how to represent RL as a Markov Decision Process. We talked about the core RL
approaches – DP, Monte Carlo, and TD. Then, we learned about Sarsa, Q-learning, and
value function approximation using neural networks. Finally, we used the OpenAI Gym to
teach a simple agent to play the classic cart-pole game.

In the next chapter, we'll try to solve more advanced RL problems, such as Go and Atari
games, with the help of some state-of-the-art RL algorithms, such as Monte Carlo Tree
Search and Deep Q-learning.

9
Deep Reinforcement Learning

for Games
In the chapter 8, Reinforcement Learning Theory, we introduced Reinforcement Learning
(RL), a way to make a computer interact with an environment. In this chapter, we'll build
upon that knowledge and we'll explore some more advanced RL algorithms and tasks. But
don't worry, we won't create the Terminator just yet. We're aiming a little lower, so we'll
just see how to teach a machine to play games such as Atari Breakout and Go.

This chapter will cover the following:

Introduction to genetic algorithms playing games
Deep Q-learning (DQN)
Policy gradients
Actor-critic methods
Monte Carlo tree search
AlphaZero

Introduction to genetic algorithms playing
games
For a long time, the best results and the bulk of the research into AIs playing video game
environments were around genetic algorithms. This approach involves creating a set of
modules that take parameters to control the behavior of the AI. The range of parameter
values is then set by a selection of genes. A group of agents would then be created using
different combinations of these genes, which would be run on the game.

Deep Reinforcement Learning for Games Chapter 9

[286]

The most successful set of agent's genes would be selected, then a new generation of agents
would be created using combinations of the successful agent's genes. Those would again be
run on the game and so on until a stopping criteria is reached, normally either a maximum
number of iterations or a level of performance in the game. Occasionally, when creating a
new generation, some of the genes can be mutated to create new genes. A good example of
this is MarI/O, an AI that learned to play the classic SNES game Super Mario World using
neural network genetic evolution:

Super Mario World with neural network genetic evolution

The big downside of these approaches is that they require a lot of time and computational
power to simulate all the variations of parameters. Each member of every generation must
run through the whole game until the terminal state. The technique also does not take
advantage of any of the rich information in the game that a human can use. Whenever a
reward or punishment is received, there is contextual information around the state and the
actions taken, but genetic algorithms only use the final result of a run to determine fitness.
They are not so much learning as doing trial and error. In this chapter, we'll present some
better approaches using (can you guess?) deep reinforcement learning, a combination of
deep networks and RL.

Deep Reinforcement Learning for Games Chapter 9

[287]

Deep Q-learning
We ended Chapter 8, Reinforcement Learning Theory, with an example of an agent learning
to play the cart-pole game with the help of Q-learning and a simple network with one
hidden layer. The state of the cart-pole environment is described with four numerical
variables: cart position and velocity, and pole angle and velocity. We used these variables
as an input to the q-function approximation network and successfully trained the agent to
prevent the pole from tipping over for more than 200 episode steps. But if it was a human
playing the game, he or she would steer the cart based on the screen images he or she sees.
That is, if we think of the human as an "agent," the environment "state" he or she would use
would be the sequence of frames displayed on the screen. Compare this to just four
variables our artificial agent used, and you'll see that its task was much easier than that of
the human. And yet, a person wouldn't have any problem understanding what's on the
screen. This is not limited to just cart pole; we can learn any game, following the same
"procedure." Can we teach the agent do the same and only learn from the screen images,
without any prior knowledge of the game rules? As we ask this question, you have
probably already guessed there is a way to do it. In 2013, Minh et al. (all from
DeepMind; https:/ ​/ ​deepmind. ​com/ ​) released the seminal paper Playing Atari with Deep
Reinforcement Learning (https:/ ​/​arxiv. ​org/​abs/ ​1312. ​5602). They demonstrated how to
use Q-learning with a convolutional neural network (CNN) acting as a value-function
approximator to play a range of Atari games. The solution described in the paper is very
similar to the example we introduced at the end of the last chapter, but with two major
distinctions:

The paper uses experience replay and a CNN as q-function approximator.
The network input is a sequence of the n latest game frames. As we know from
Chapter 4, Computer Vision with Convolutional networks, the CNN input can be a
grayscale or RGB image. Here, an RGB game frame is converted to grayscale and
then a sequence of the latest frames is used as inputs to the network.

Playing Atari Breakout with Deep Q-learning
In this section, we'll implement an agent playing Atari Breakout (https:/ ​/​en. ​wikipedia.
org/​wiki/​Breakout_ ​(video_ ​game)). In this game, the player can use a ball to knock down
the eight rows of bricks, located at the top of the screen. The game is won when all bricks
are knocked down and lost if the ball reaches the bottom of the screen. The ball can ricochet
off the screen walls.

https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)
https://en.wikipedia.org/wiki/Breakout_(video_game)

Deep Reinforcement Learning for Games Chapter 9

[288]

The player can prevent the ball from falling by navigating a pad (located at the bottom) left
or right. Each knocked down brick carries a reward of 1:

Atari Breakout

Due to the nature of RL, this example might take a long time to train
(usually multiple hours, and sometimes more than a day)

We'll solve this task using deep Q-learning with the following tricks and improvements:

ε-greedy policy (Chapter 8, Reinforcement Learning Theory).
Experience replay (Chapter 8, Reinforcement Learning Theory).
Fixed q-target network (Chapter 8, Reinforcement Learning Theory).
Our deep network will use four sequential game frames as an input, because we
need multiple frames to know the ball's direction.

The code in this section is based on the Playing Atari with Deep Reinforcement
Learning (https:/ ​/​arxiv. ​org/ ​abs/ ​1312. ​5602) paper and partially inspired by https:/ ​/
github.​com/​dennybritz/ ​reinforcement- ​learning/ ​. We'll also use some of the
improvements introduced in the paper Rainbow: Combining Improvements in Deep
Reinforcement Learning (https:/ ​/​arxiv. ​org/​abs/ ​1710. ​02298). With that short introduction,
let's start!:

First, we'll do the imports (as usual):1.

import os
import pickle
import random

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://github.com/dennybritz/reinforcement-learning/
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298

Deep Reinforcement Learning for Games Chapter 9

[289]

import zlib
from collections import deque
from collections import namedtuple

import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

Next, we'll define some parameters of the RL algorithm. The constants are2.
annotated with comments, which describe their purpose:

resume = True # resume training from checpoint (if exists)
CHECKPOINT_PATH = 'deep_q_breakout_path_7'
MB_SIZE = 32 # mini batch size
ER_BUFFER_SIZE = 1000000 # experience relay (ER) buffer size
COMPRESS_ER = True # compress episodes in the EP buffer
EXPLORE_STEPS = 1000000 # frames over which to anneal epsilon
EPSILON_START = 1.0 # starting chance of an action being random
EPSILON_END = 0.1 # final chance of an action being random
STATE_FRAMES = 4 # number of frames to store in the state
SAVE_EVERY_X_STEPS = 10000 # how often to save the model on the
disk
UPDATE_Q_NET_FREQ = 1 # how often to update the q network
UPDATE_TARGET_NET_EVERY_X_STEPS = 10000 # copy the q-net weights
to the target net
DISCOUNT_FACTOR = 0.99 # discount factor

Next, we'll define the initialize function, which does the following:3.
Initializes the TensorFlow (TF) session.
Creates the estimation and target networks q_network
and t_network.
Defines the TF operations, which copy the weights
from q_network to t_network. There is one such operation for each
network parameter, defined in t_net_updates.
Initializes the Adam optimizer (as suggested by https:/ ​/​arxiv. ​org/
abs/ ​1710. ​02298).
Initializes the frame_proc routine, which transforms the RGB frames
to network inputs (we'll talk about it later).
Restores the TF session (that is, the network and optimizer) from a
previously saved checkpoint, to resume the training.

https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298

Deep Reinforcement Learning for Games Chapter 9

[290]

The following is the implementation:

def initialize():
 """Initialize the session, the networks, and the environment"""
 # Create environment
 env = gym.envs.make("BreakoutDeterministic-v4")

 tf.reset_default_graph()

 session = tf.Session()

 # Tracks the total number of training steps
 tf.Variable(0, name='global_step', trainable=False)

 # Create q- and target- networks
 q_network = build_network("q_network")
 t_network = build_network("target_network")

 # create the operations to copy the q-net weights to the t-net
 q_net_weights = [t for t in tf.trainable_variables()
 if t.name.startswith(q_network.scope)]
 q_net_weights = sorted(q_net_weights, key=lambda v: v.name)
 t_net_weights = [t for t in tf.trainable_variables()
 if t.name.startswith(t_network.scope)]
 t_net_weights = sorted(t_net_weights, key=lambda v: v.name)

 t_net_updates = \
 [n2_v.assign(n1_v) for n1_v, n2_v in zip(q_net_weights,
t_net_weights)]

 # pre-processor of game frames
 frame_proc = frame_preprocessor()

 optimizer = tf.train.AdamOptimizer(0.00025)
 # optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0,
1e-6)

 # training op
 train_op = optimizer.minimize(q_network.loss,
global_step=tf.train.get_global_step())

 # restore checkpoint
 saver = tf.train.Saver()

 if not os.path.exists(CHECKPOINT_PATH):
 os.mkdir(CHECKPOINT_PATH)

 checkpoint = tf.train.get_checkpoint_state(CHECKPOINT_PATH)

Deep Reinforcement Learning for Games Chapter 9

[291]

 if resume and checkpoint:
 session.run(tf.global_variables_initializer())
 session.run(tf.local_variables_initializer())

 print("\nRestoring checkpoint...")
 saver.restore(session, checkpoint.model_checkpoint_path)
 else:
 session.run(tf.global_variables_initializer())
 session.run(tf.local_variables_initializer())

 return session, \
 q_network, \
 t_network, \
 t_net_updates, \
 frame_proc, \
 saver, \
 train_op, \
 env

Note that the function returns multiple variables. Later, when we make the
function call, we'll turn them into global variables. When the following code
references some of them, know that they were defined here.

Next, we'll define the build_network function. We'll use it to build both the4.
estimation and target networks. The result of the function is a namedtuple,
which contains the inputs (placeholders) and outputs (tensors) of the network.
The network itself has the following properties:

Three convolutional layers and two fully-connected layers with ReLU
activations (as suggested by https:/ ​/​arxiv. ​org/ ​abs/ ​1710. ​02298).
It solves a regression (the difference between the target and output
estimations). Therefore, take the output of the last hidden layer
without any modifications (such as softmax).
We'll use Huber loss (https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Huber_ ​loss),
which is somewhat similar to the mean-squared-error. It allows us to
perform something akin to error clipping: put the reward in the [-1,1]
range.

https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss

Deep Reinforcement Learning for Games Chapter 9

[292]

The output is q estimations for all possible environment actions, given
the input state. Here, we have four actions:

The network takes as input multiple pre-processed game frames and outputs value estimations of all actions

The following is the implementation:

def build_network(scope: str, input_size=84, num_actions=4):
 """Builds the network graph."""

 with tf.variable_scope(scope):
 # Our input are STATE_FRAMES grayscale frames of shape 84,
84 each
 input_placeholder = tf.placeholder(dtype=np.float32,
 shape=[None, input_size,
input_size, STATE_FRAMES])

 normalized_input = tf.to_float(input_placeholder) / 255.0

 # action prediction
 action_placeholder = tf.placeholder(dtype=tf.int32,
shape=[None])

 # target action
 target_placeholder = tf.placeholder(dtype=np.float32,
shape=[None])

 # Convolutional layers
 conv_1 = tf.layers.conv2d(normalized_input, 32, 8, 4,
 activation=tf.nn.relu)
 conv_2 = tf.layers.conv2d(conv_1, 64, 4, 2,
 activation=tf.nn.relu)
 conv_3 = tf.layers.conv2d(conv_2, 64, 3, 1,
 activation=tf.nn.relu)

 # Fully connected layers
 flattened = tf.layers.flatten(conv_3)
 fc_1 = tf.layers.dense(flattened, 512,

Deep Reinforcement Learning for Games Chapter 9

[293]

 activation=tf.nn.relu)

 q_estimation = tf.layers.dense(fc_1, num_actions)

 # Get the predictions for the chosen actions only
 batch_size = tf.shape(normalized_input)[0]
 gather_indices = tf.range(batch_size) *
tf.shape(q_estimation)[1] + action_placeholder
 action_predictions = tf.gather(tf.reshape(q_estimation,
[-1]), gather_indices)

 # Calculate the loss
 loss = tf.losses.huber_loss(labels=target_placeholder,
 predictions=action_predictions,
reduction=tf.losses.Reduction.MEAN)

 Network = namedtuple('Network',
 'scope '
 'input_placeholder '
 'action_placeholder '
 'target_placeholder '
 'q_estimation '
 'action_predictions '
 'loss ')

 return Network(scope=scope,
 input_placeholder=input_placeholder,
 action_placeholder=action_placeholder,
 target_placeholder=target_placeholder,
 q_estimation=q_estimation,
 action_predictions=action_predictions,
 loss=loss)

Deep Reinforcement Learning for Games Chapter 9

[294]

Then, we'll define the frame_preprocessor function. Note that it uses TF graph5.
of operations to transform the RGB game frame to an input tensor of the
network. It does so by cropping, resizing, and converting it to grayscale. We'll
use the output of this operation chain as an input to our network:

An example of game frame (left) and the same frame, pre-processed as input to the network

The following is the implementation:

def frame_preprocessor():
 """Pre-processing the input data"""

 with tf.variable_scope("frame_processor"):
 input_placeholder = tf.placeholder(shape=[210, 160, 3],
dtype=tf.uint8)
 processed_frame =
tf.image.rgb_to_grayscale(input_placeholder)
 processed_frame =
tf.image.crop_to_bounding_box(processed_frame, 34, 0, 160, 160)
 processed_frame = tf.image.resize_images(
 processed_frame,
 [84, 84],
 method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

 processed_frame = tf.squeeze(processed_frame)

 FramePreprocessor = namedtuple('FramePreprocessor',
'input_placeholder processed_frame')

 return FramePreprocessor(
 input_placeholder=input_placeholder,
 processed_frame=processed_frame)

Deep Reinforcement Learning for Games Chapter 9

[295]

Next, we'll define the choose_next_action function, which implements the ε-6.
greedy policy. It starts by taking the q estimations of the net network, given the
current state. Then, it modifies the probability of the most likely action with
the epsilon value. Finally, it makes a semi-random choice of the new action, by
taking into account the modified probabilities. We should note that the value of
epsilon linearly decreases, as the agent gathers gathers more experience (this is
implemented outside the function). Following is the implementation:

def choose_next_action(state, net, epsilon):
 """Epsilon-greedy policy"""

 # choose an action given our last state
 tmp = np.ones(env.action_space.n, dtype=float) * epsilon /
env.action_space.n
 q_estimations = session.run(net.q_estimation,
 feed_dict={net.input_placeholder: np.reshape(state, (1,) +
state.shape)})[0]

 tmp[np.argmax(q_estimations)] += (1.0 - epsilon)

 new_action = np.random.choice(np.arange(len(tmp)), p=tmp)

 return new_action

Then, we'll implement the populate_experience_replay_buffer function. It7.
will generate the initial experience replay buffer, before the actual training has
started. The function runs multiple game episodes. During an episode, the agent
follows the ε-greedy policy we just defined in choose_next_action. The
episode steps come in the shape of game frames, which are combined in groups
of four (the STATE_FRAMES parameter), and then stored in the buffer variable
(which is of type deque). When an episode is over, we reset the environment and
start a new episode, and we repeat this until the buffer is filled. We can choose to
compress the states, before saving them in the buffer (the COMPRESS_ER
constant). This option is selected by default, as it reduces the memory
consumption and doesn't have significant impact on performance. Following is
the implementation:

def populate_experience_replay_buffer(buffer: deque,
initial_buffer_size: int):
 """Initial population of the experience replay buffer"""

 # Initialize epsilon based on the current step
 epsilon_step = (EPSILON_START - EPSILON_END) / EXPLORE_STEPS
 epsilon = max(EPSILON_END,
 EPSILON_START -

Deep Reinforcement Learning for Games Chapter 9

[296]

 session.run(tf.train.get_global_step()) * epsilon_step)

 # Populate the replay memory with initial experience
 state = env.reset()
 state = session.run(frame_proc.processed_frame,
 feed_dict={frame_proc.input_placeholder: state})

 state = np.stack([state] * STATE_FRAMES, axis=2)

 for i in range(initial_buffer_size):

 # Sample next state with the q_network
 action = choose_next_action(state, q_network, epsilon)

 # Perform one action step
 next_state, reward, terminal, info = env.step(action)
 next_state = session.run(frame_proc.processed_frame,
 feed_dict={frame_proc.input_placeholder: next_state})

 # Stack the game frames in a single array
 next_state = np.append(state[:, :, 1:], np.expand_dims(next_state,
2), axis=2)

 # Store the experience in ER
 if COMPRESS_ER:
 buffer.append(
 zlib.compress(
 pickle.dumps((state, action, reward, next_state, terminal), 2),
2))
 else:
 buffer.append((state, action, reward, next_state, terminal))

 # Set next state as current
 if terminal:
 state = env.reset()
 state = session.run(frame_proc.processed_frame,
 feed_dict={frame_proc.input_placeholder: state})

 state = np.stack([state] * STATE_FRAMES, axis=2)
 else:
 state = next_state

 print("\rExperience replay buffer: {} / {} initial ({}
total)".format(
 len(buffer), initial_buffer_size, buffer.maxlen), end="")

Deep Reinforcement Learning for Games Chapter 9

[297]

Next, we'll implement the deep_q_learning function, which is the centerpiece8.
of our program. As the name suggests, it runs the Q-learning algorithm.
Although the function is long, we have done our best to provide enough
comments to make it understandable. Nevertheless, let's discuss some of the
more important moments. After some initializations, we start the main loop. One
iteration of the loop represents one step in an episode. For each step, we do the
following:

Compute the new, reduced value of epsilon, which decreases linearly
with each iteration. The parameters of the decrease are defined with
the configuration constants.
If necessary, synchronize the q and target networks, by copying the
weights from the q network to the target network.
Select a new action, following the ε-greedy policy, according to the
new epsilon and the current state.
Send the action to the environment env and receive next_state and
reward.
Store the (state, action, reward, next_state, terminal)
tuple in the observations experience replay buffer. Note that we also
store whether the state is terminal (game over) or not.
Sample one mini_batch of experiences from the experience replay
buffer.
Then, sample the estimations of the next actions, q_values_next
using the target network,t_network.
Compute the estimated discounted returns targets_batch of the
next actions by taking into account whether the state is terminal or
not.
Perform one gradient descent step. DeepMind suggests to do one
gradient update every four steps of the environment (that is, four
frames). We can do this with the UPDATE_Q_NET_FREQ constant, but in
this example we've chosen to update on every
frame: UPDATE_Q_NET_FREQ=1.
If the state is terminal (game over), we save the progress, generate
chart, reset the environment, and start again (within the same loop).

Deep Reinforcement Learning for Games Chapter 9

[298]

Finally, here is the function itself:

def deep_q_learning():
 """The Q-learning training process"""

 # build experience replay
 observations = deque(maxlen=ER_BUFFER_SIZE)

 print("Populating replay memory...")
 populate_experience_replay_buffer(observations, 100000)

 # initialize statistics
 stats = namedtuple('Stats', 'rewards lengths')(rewards=list(),
lengths=list())
 global_time = session.run(tf.train.get_global_step())
 time = 0

 episode = 1

 episode_reward = 0
 global_reward = 0

 # Start the training with an initial state
 state = env.reset()
 state = session.run(frame_proc.processed_frame,
 feed_dict={frame_proc.input_placeholder:
state})
 state = np.stack([state] * STATE_FRAMES, axis=2)

 while True:
 # env.render()

 # Initialize epsilon based on the current step
 epsilon_step = (EPSILON_START - EPSILON_END) /
EXPLORE_STEPS
 epsilon = max(EPSILON_END, EPSILON_START - (global_time -
1) * epsilon_step)

 # Copy q-net weights to the target-net
 if global_time % UPDATE_TARGET_NET_EVERY_X_STEPS == 0:
 session.run(t_net_updates)
 print("\nCopied model parameters to target network.")

 # Sample next action
 action = choose_next_action(state, q_network, epsilon)

 # Perform one step with the selected action
 next_state, reward, terminal, info = env.step(action)

Deep Reinforcement Learning for Games Chapter 9

[299]

 # This is how we pre-process
 next_state = session.run(frame_proc.processed_frame,
feed_dict={frame_proc.input_placeholder: next_state})

 # Stack the game frames in a single array
 next_state = np.append(state[:, :, 1:],
np.expand_dims(next_state, 2), axis=2)

 # Store the experience in ER
 if COMPRESS_ER:
 observations.append(
 zlib.compress(pickle.dumps((state, action, reward,
next_state, terminal), 2), 2))
 else:
 observations.append((state, action, reward, next_state,
terminal))

 # Sample a mini-batch from the experience replay memory
 mini_batch = random.sample(observations, MB_SIZE)
 if COMPRESS_ER:
 mini_batch = [pickle.loads(zlib.decompress(comp_item))
for comp_item in mini_batch]

 states_batch, action_batch, reward_batch,
next_states_batch, terminal_batch = \
 map(np.array, zip(*mini_batch))

 if global_time % UPDATE_Q_NET_FREQ == 0:
 # Compute next q values using the target network
 q_values_next = session.run(t_network.q_estimation,
 feed_dict={t_network.input_placeholder:
next_states_batch})

 # Calculate q values and targets
 targets_batch = reward_batch + \
 np.invert(terminal_batch).astype(np.float32) * \
 DISCOUNT_FACTOR * \
 np.amax(q_values_next, axis=1)

 # Perform gradient descent update
 states_batch = np.array(states_batch)

 _, loss = session.run([train_op, q_network.loss],
 feed_dict={
 q_network.input_placeholder:
states_batch,
 q_network.action_placeholder:
action_batch,

Deep Reinforcement Learning for Games Chapter 9

[300]

 q_network.target_placeholder:
targets_batch})

 episode_reward += reward
 global_reward += reward
 time += 1
 global_time += 1

 print("\rEpisode {}: "
 "time {:5}; "
 "reward {}; "
 "epsilon: {:.4f}; "
 "loss: {:.6f}; "
 "@ global step {} "
 "with total reward {}".format(
 episode,
 time,
 episode_reward,
 epsilon,
 loss,
 global_time,
 global_reward), end="")

 if terminal:
 # Episode end

 print()

 stats.rewards.append(int(episode_reward))
 stats.lengths.append(time)

 time = 0
 episode_reward = 0
 episode += 1

 state = env.reset()
 state = session.run(frame_proc.processed_frame,
feed_dict={frame_proc.input_placeholder: state})
 state = np.stack([state] * STATE_FRAMES, axis=2)
 else:
 # Set next state as current
 state = next_state

 # save checkpoints for later
 if global_time % SAVE_EVERY_X_STEPS == 0:
 saver.save(session, CHECKPOINT_PATH + '/network',
 global_step=tf.train.get_global_step())

Deep Reinforcement Learning for Games Chapter 9

[301]

 # plot the results and save the figure
 plot_stats(stats)

 fig_file = CHECKPOINT_PATH + '/stats.png'
 if os.path.isfile(fig_file):
 os.remove(fig_file)

 plt.savefig(fig_file)
 plt.close()

 # save the stats
 with open(CHECKPOINT_PATH + '/stats.arr', 'wb') as f:
 pickle.dump((stats.rewards, stats.lengths), f)

As a dessert, let's implement the plot_stats function, which simply plots the9.
moving average of episode lengths and rewards:

def plot_stats(stats):
 """Plot the stats"""
 plt.figure()

 plt.xlabel("Episode")

 # plot the rewards
 # rolling mean of 50
 cumsum = np.cumsum(np.insert(stats.rewards, 0, 0))
 rewards = (cumsum[50:] - cumsum[:-50]) / float(50)

 fig, ax1 = plt.subplots()

 color = 'tab:red'

 ax1.set_ylabel('Reward', color=color)
 ax1.plot(rewards, color=color)
 ax1.tick_params(axis='y', labelcolor=color)

 # plot the episode lengths
 # rolling mean of 50
 cumsum = np.cumsum(np.insert(stats.lengths, 0, 0))
 lengths = (cumsum[50:] - cumsum[:-50]) / float(50)

 ax2 = ax1.twinx()

 color = 'tab:blue'
 ax2.set_ylabel('Length', color=color)
 ax2.plot(lengths, color=color)
 ax2.tick_params(axis='y', labelcolor=color)

Deep Reinforcement Learning for Games Chapter 9

[302]

Finally, we can run the whole thing:10.

if __name__ == '__main__':
 session, q_network, t_network, t_net_updates, frame_proc,
saver, train_op, env = \
 initialize()
 deep_q_learning()

If everything goes alright, in a few hours we'll see how the average length and reward of
the episodes starts to increase during training. In the following chart, we can see how the
episode length and reward change with training:

The reward and episode length increase as the training episodes increase

At one point in the training, the reward per episode goes as high as 25. If we omit the
averaging, we'll see individual episodes with a reward larger than 40. That is, the ball has
been able to knock out more than 40 bricks before the game ends. Although this is not an
earth shattering result, it clearly shows that the agent has learned to interact with the
environment in a non-random way.

We can improve upon our result with double Q-learning, which we introduced in Chapter
8, Reinforcement Learning Theory. Since we already use deep Q-learning (DQN), the new
abbreviation will become DQN. Recall that in DQN we have two approximation networks.
We use one of them to compute the next action q values and the other to actually select the
best action from these values.

Deep Reinforcement Learning for Games Chapter 9

[303]

In our example, we already have two networks, q_network and t_network, and we can
put them to additional use in the double Q-learning scenario. That is, we'll
use t_network to compute the next action q values as before. However, we'll select the best
action with q_network. In practice, we'll can do this by removing the following code from
the deep_q_learning function:

 # Calculate q values and targets
 targets_batch = reward_batch + \
 np.invert(terminal_batch).astype(np.float32) *
\
 DISCOUNT_FACTOR * \
 np.amax(q_values_next, axis=1)

 # Perform gradient descent update
 states_batch = np.array(states_batch)

And we then replace it with this:

The best action according to the q-network
best_actions = np.argmax(q_values_next, axis=1)

Next, predict the next q values with the target-network
q_values_next_target = session.run(t_network.q_estimation,
feed_dict={t_network.input_placeholder: next_states_batch})

Calculate q values and targets
Use the t-network estimations
But with the best action, selected by the q-network (Double Q-
learning)
targets_batch = reward_batch + \
 np.invert(terminal_batch).astype(np.float32) * \
 DISCOUNT_FACTOR * \
 q_values_next_target[np.arange(MB_SIZE),
best_actions]

Deep Reinforcement Learning for Games Chapter 9

[304]

Additionally, we'll set a new value to the EPSILON_END = 0.01 constant. With these
changes, the code will produce the following result:

The moving average result of DQN training

As we can see, the results are better compared to regular DQN. In fact, in one episode the
agent managed to receive an award of 61 and another episode lasted for 2778 steps (not
visible because of the moving average). We can see that in both cases, the agent peaks at
one point and then the result gradually declines.

Unfortunately, these examples go to show that training a value-function approximator in
an RL scenario is not easy. From the charts, we can see that the results start to diverge from
random late in the training. To even see whether our agent learns anything at all, we need
to wait multiple hours.

Policy gradient methods
All RL algorithms we discussed until now have tried to learn the state- or action-value
functions. For example, in Q-learning we usually follow an ε-greedy policy, which has no
parameters (OK, it has one parameter) and relies on the value function instead. In this
section, we'll discuss something new: how to approximate the policy itself with the help of
policy gradient methods. We'll follow a similar approach as in Chapter 8, Reinforcement
Learning Theory, in the Value function approximation section.

Deep Reinforcement Learning for Games Chapter 9

[305]

There, we introduced a value approximation function, which is described by a set of
parameters w (neural net weights). Here, we'll introduce a parameterized policy ,
which is described by a set of parameters θ. As with value function approximation, θ could
be the weights of a neural network.

Recall that we use the notation to describe the probability, which a stochastic (and
not deterministic) policy, π ,assigns to an action, a, given current state s. We'll denote the
parameterized policy with . That is, the policy will recommend new action based
on the environment state s, but also on its internal "state," described by θ.

Let's say that we have some scalar valued function , which measures the performance
of a parameterized policy with respect to its parameters θ. Our goal is to maximize it. A
policy gradient method uses gradient ascent to update the parameters θ in a way that
maximizes . That is, we can compute the first derivative (or gradient) of with
respect to θ and use it to update θ in a way, which will increase . We'll denote this with
the following:

Where α is the learning rate, is the derivative of with respect to θ, and
 symbolizes the increasing gradient. This process is the opposite of the gradient

descent we use to minimize the loss function of a neural network during training.

Approximating the policy has a few advantages over value-function approximation:

With training, it can approach deterministic policy, whereas the ε-greedy policy
in a value approximation approach always includes a random decision making
component ε (even when ε is small).
Sometimes, we may be able to approximate the policy with a simpler function,
compared to the value approximation function.
If we have prior domain knowledge of the environment, we can embed it in the
policy parameters.
we get better convergence, because the action probabilities change smoothly. In
value approximation methods, a small change in the estimated action values can
lead to a dramatic change in the action selection, if that change results in a
different action with maximum estimation. For example, imagine a simple maze-
walking robot. Let's say that at the first T-junction it encounters, it will move left.
Successive iterations of Q-learning will eventually show that the right is
preferable. But because the path is completely different, every other state/action q
value has to be recalculated and the previous knowledge is of little value.

Deep Reinforcement Learning for Games Chapter 9

[306]

One disadvantage of policy-based methods is that they can converge toward a local
maximum of (and not the global one).

We know that the result of is a scalar value, which measures the policy performance.
But what exactly does performance mean? Recall that the goal of the agent is to maximize
the cumulative total reward. We can intuitively see that we can measure the policy
performance using the same metric. That is, the higher total reward the agent gets from
following policy , the better the policy is. Then, we can define the policy performance
for single episode as follows:

Where s0 is the initial state of the episode and is the state-value function when we

follow our parameterized policy . In other words, finding the gradient will be
the same as finding . We can find with the help of policy gradient theorem,
which establishes the following:

The formula has the following components:

 is the state probability distribution. Think of it as a weight assigned to each
state. Usually, the state distribution is chosen to be the time spent in that state,
compared to the other states. The sum of all distributions is .

 is the action-value function, when following the parameterized policy
.

 is the derivative of the parameterized policy function with respect
to θ.

 means "proportional to."

We will not provide a formal proof of the theorem, but we can intuitively say that the
gradient depends on state and action distributions (that is, the environment), as well
as the parameterized policy (and by extension its parameters θ).

Deep Reinforcement Learning for Games Chapter 9

[307]

Monte Carlo policy gradients with REINFORCE
REINFORCE is a Monte Carlo policy gradient method. It is Monte Carlo in the sense that it
updates the policy by playing full environment episodes, in the same way as the Monte
Carlo value-approximation methods we described in Chapter 8, Reinforcement Learning
Theory. Once an episode finishes, REINFORCE updates the policy parameters θ for each
step t of the episode trajectory with the following rule:

Where α is the learning rate and Gt is the total discounted reward at time t. But, let's discuss
the last element of the equation. We divide (the gradient of the probability of
taking action at, given state st and θt) by the probability itself. If the gradient is
positive, we want to update θ in a way that will make selecting the same action more likely.
Conversely, if is negative, we want to make the selection of the same action
less likely. In other words, we want to update θ proportional to the gradient, hence it is in
the numerator. But why divide by the probability? The intuition here is that if the action
has high probability, it will receive updates more often, which might skew the probabilities
unfairly in its direction. We want to discourage this behavior, hence the probability is in the
denominator.

The expression has a compact
representation and the two are equal (we won't provide formal proof
though).

The following is the step-by-step trace of the REINFORCE algorithm:

The algorithm takes as input the parameterized policy .1.
Initialize the parameters θ in some arbitrary way (for example, with random2.
values).

Deep Reinforcement Learning for Games Chapter 9

[308]

Repeat this for a number of episodes:3.
Generate a new episode, following the policy : s0, a0, r1,1.
s1, a1, r2, s2, a2, r3,... aT-1, rT, sT

Iterate over each step t of the episode, starting from 0 and going2.
to T-1:

Calculate the total discounted return G at step t1.

 , where rj is the reward at episode step j
and γ is the discount factor.

Update the parameters .2.

Policy gradients with actor–critic
Actor-critic (AC) is a family of policy gradient algorithms similar to the temporal
difference (TD) methods (Chapter 8, Reinforcement Learning Theory). That is, unlike Monte
Carlo, an AC method doesn't have to play whole episodes to update the policy
parameters θ. AC has two components:

The actor, which is the parameterized policy . The actor (agent) will
use the policy to make decisions on what action to take next.
The critic, which is the state- or action value function approximation or (we
introduced this notation in Chapter 8, Reinforcement Learning Theory). The critic
will use the TD error as a feedback to the actor's actions.

AC is a hybrid between policy- and value-based methods, since it tries to learn both the
policy and the value function.

Deep Reinforcement Learning for Games Chapter 9

[309]

The following is a diagram of AC:

Actor-Critic method diagram

The execution of AC follows a similar pattern to REINFORCE, but instead of playing full
episodes, we'll update the policy parameters θ after each episode step. Because of this, we
won't have access to the total discounted return, Gt. Fear not, as we'll replace it with

the value function approximation (as in TD(0)) or (as in SARSA and Q-learning). You
can also think of AC in the opposite way, as a TD algorithm where we use parameterized
instead of an ε-greedy policy. This will introduce an extra step in our algorithm; we'll have
to learn an additional set of parameters w for either or .

First, let's see how AC works with state-value function approximation . We'll start with
the weight update rules for w and θ:

Deep Reinforcement Learning for Games Chapter 9

[310]

Where and are the learning rates. We want to update w in a way, which will
minimize the TD error. On the other hand, the goal of the θ update is to maximize the
return.

The following is a step-by-step trace of the AC algorithm with :

Input the following:1.
Value-function estimator (neural net)1.
Parameterized policy 2.

Repeat for a number of episodes:2.
Start a new episode with initial state st=0.1.
Repeat until the terminal state is reached:2.

Select action at, following the policy for the1.
current state st.
Take action at, transition to new state st+1, and observe2.
reward rt+1

Update the parameters:3.

Set the current state to st+1: st = st+14.

Next, let's talk about AC with action-value approximation . The weight update rules
become as follows:

Deep Reinforcement Learning for Games Chapter 9

[311]

The following is a step-by-step trace of the AC algorithm with :

Input the following:1.
Value function estimator (neural net)1.
Parameterized policy 2.

Repeat for a number of episodes:2.
Start new episode with initial state/action pair st=0, at=0.1.
Repeat until the terminal state is reached:2.

Take the action, at, transition to new state, st+1, and observe1.
reward rt+1

Select next action at+1, following the policy .2.
Update the parameters:3.

st = st+1, at = at+14.

Actor-Critic with advantage
One of the drawbacks of AC (and policy-based methods in general) is the high variance of

 . To understand this, note that we update the policy parameters θ by observing
the rewards of multiple episodes. Let's focus on a single episode. The agent starts at initial
state s and then takes a series of actions following the policy . These actions lead to new
states and their corresponding rewards. When the terminal state is reached, the episode has
accumulated some total reward. We'll use these rewards to update the policy parameters θ
either online (AC) or once at the end of the episode (REINFORCE). Next, let's imagine that
once the episode is finished, the agent will start another episode with the same initial
state, s. It would make sense that the new episode will have the same trajectory as the
previous one. However, this might not be the case.

Deep Reinforcement Learning for Games Chapter 9

[312]

At some episode step, a stochastic policy might dictate the agent to take a different action
compared to before. Not only that, but a stochastic environment might present a different
state, even if the agent takes the same action as before. This effect is especially pronounced,
because it can happen at any one of the many episode steps. Once that happens, the
remaining trajectory of the episode could be totally different than before, which could lead
to totally different rewards. Therefore, even a minor change in the policy or the
environment can lead to completely different outcomes, which is what we call high
variance. We can intuitively say that this unpredictability is not good for the learning
process.

Since we took so much time to explain this problem, you might have guessed that we won't
leave it open; we'll introduce a solution. The solution is to subtract a (preferably) constant
baseline value from the rewards of each episode. Let's try to explain this with an
example. Imagine that we have the same situation with two episodes starting from the
same initial state, but with different trajectories. Let's also imagine that for
the first episode and for the second. Next, let's say that the total reward of
the first episode is 200 and for the second is 190. In this case, the update rule for the first
episode (say in REINFORCE) will include . On the
other hand, the update rule for the second one will include

. As we can see, the weight updates will differ by a
lot. However, we can mitigate this problem by subtracting a constant value from both
rewards. For example, if this constant is 180, we'll have 0.7 * (200 - 180) = 14
and 0.3 * (190 - 180) = 3 respectively. Although the results are still different, they
are much closer than before.

We can implement this in practice with the so-called advantage function, where we use the
state-value function as baseline. The following is the advantage function when used with
the action values:

However, we can decompose as a sum of two components:

The immediate reward rt+1, we get when we take action at and transition from
st->st+1

The discounted state-value function of the new state st+1

Deep Reinforcement Learning for Games Chapter 9

[313]

Therefore, we can transform the advantage formula to this:

This is just the TD error for the state-value function. The AC method with advantage is
abbreviated as A2C.

One of the successful applications of A2C is by the OpenAI Five algorithm for playing Dota
2. This is a multiplayer online battle game, where 2 teams of 5 players (heroes) play against
each other. The goal of each team is to destroy the opposing team’s “Ancient” - a large
structure located in the team’s base. The game is highly complex: the episodes can last for
45 minutes on average, the heroes can only partially observe their surrounding
environment, (represented by a large map), and each hero can take dozens of actions. In
OpenAI Five, the heroes of one of the team are controlled by a combination of five LSTM
networks. The networks are trained with a A2C-based algorithm called Proximal Policy
Optimization (PPO, https:/ ​/ ​arxiv. ​org/ ​abs/ ​1707. ​06347). The performance of the
algorithm was tested with a game (best-of-three games) against a team of five of the best
Dota 2 human players. Although OpenAI Five ultimate lost 2 of the games, it was still an
impressive achievement.

Playing cart pole with A2C
In this section, we'll implement an agent that tries to play the cart pole game with the help
of A2C. We'll do this with the familiar tools: the OpenAI Gym and TensorFlow. Recall that
the state of the cart-pole environment is described by the position and angle of the cart and
the pole. We'll use feedforward networks with one hidden layer for both the actor and the
critic. Let's start!:

First, we'll do the imports:1.

from collections import namedtuple

import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

Deep Reinforcement Learning for Games Chapter 9

[314]

Next, we'll create the environment:2.

env = gym.make('CartPole-v0')

Then, we'll add some of the hyperparameters, which describe the training. We'll3.
take the INPUT_SIZE and ACTIONS_COUNT from the environment. Additionally,
we'll create one training mini-batch for the actor from three episodes:

DISCOUNT_FACTOR = 0.9
LEARN_RATE_ACTOR = 0.01
LEARN_RATE_CRITIC = 0.01
TRAIN_ACTOR_EVERY_X_EPISODES = 3
INPUT_SIZE = env.observation_space.shape[0]
ACTIONS_COUNT = env.action_space.n

Next, we'll create the TF session:4.

session = tf.Session()

Then, we'll define the build_actor function, which will create the5.
parameterized policy (actor) network. It has one hidden layer with 20 neurons,
Tanh activation, and a two-neuron softmax output. The output represents the
probability to take each of the two possible actions (left or right):

def build_actor():
 """Actor network definition"""

 input_placeholder = tf.placeholder("float", [None, INPUT_SIZE])

 # hidden layer definition
 hidden_weights = tf.Variable(tf.truncated_normal([INPUT_SIZE,
20], stddev=0.01))
 hidden_bias = tf.Variable(tf.constant(0.0, shape=[20]))
 hidden_layer = tf.nn.tanh(
 tf.matmul(input_placeholder, hidden_weights) + hidden_bias)

 # output layer definition
 output_weights = tf.Variable(tf.truncated_normal([20,
ACTIONS_COUNT], stddev=0.01))
 output_bias = tf.Variable(tf.constant(0.1,
shape=[ACTIONS_COUNT]))
 output_layer = tf.nn.softmax(
 tf.matmul(hidden_layer, output_weights) + output_bias)

 action_placeholder = tf.placeholder("float", [None,
ACTIONS_COUNT])
 advantage_placeholder = tf.placeholder("float", [None, 1])

Deep Reinforcement Learning for Games Chapter 9

[315]

 # training
 policy_gradient = tf.reduce_mean(advantage_placeholder
 * action_placeholder
 * tf.log(output_layer))

 train_op = tf.train.AdamOptimizer(LEARN_RATE_ACTOR).minimize(-
policy_gradient)

 return Actor(train_op=train_op,
 input_placeholder=input_placeholder,
 action_placeholder=action_placeholder,
 advantage_placeholder=advantage_placeholder,
 output=output_layer)

Note that the result of the function is a named tuple, Actor, which is defined as
follows:

Actor = namedtuple("Actor",
 ["train_op",
 "input_placeholder",
 "action_placeholder",
 "advantage_placeholder",
 "output"])

Next, let's define the critic network. It has one hidden layer with 20 neurons and6.
a single-neuron regression output for the state value:

def build_critic():
 """Critic network definition"""

 input_placeholder = tf.placeholder("float", [None, INPUT_SIZE])

 # hidden layer
 hidden_weights = tf.Variable(tf.truncated_normal([INPUT_SIZE,
20], stddev=0.01))
 hidden_bias = tf.Variable(tf.constant(0.0, shape=[20]))
 hidden_layer = tf.nn.tanh(
 tf.matmul(input_placeholder, hidden_weights) + hidden_bias)

 # output layer
 output_weights = tf.Variable(tf.truncated_normal([20, 1],
stddev=0.01))
 output_bias = tf.Variable(tf.constant(0.0, shape=[1]))
 output_layer = tf.matmul(hidden_layer, output_weights) +
output_bias

 target_placeholder = tf.placeholder("float", [None, 1])

Deep Reinforcement Learning for Games Chapter 9

[316]

 # cost and training
 cost = tf.reduce_mean(tf.square(target_placeholder -
output_layer))
 train_op =
tf.train.AdamOptimizer(LEARN_RATE_CRITIC).minimize(cost)

 return Critic(train_op=train_op,
 cost=cost,
 input_placeholder=input_placeholder,
 target_placeholder=target_placeholder,
 output=output_layer)

As with the actor, the result is a named tuple, Critic, which is defined as
follows:

Critic = namedtuple("Critic",
 ["train_op", "cost", "input_placeholder",
"target_placeholder", "output"])

Then, let's define the choose_action method. It generates next action7.
probabilities with the actor network, and then makes a random decision based on
them:

def choose_next_action(actor: Actor, state):
 """Actor selects next action"""

 probability_of_actions = session.run(actor.output,
feed_dict={actor.input_placeholder: [state]})[0]
 try:
 move = np.random.multinomial(1, probability_of_actions)
 except ValueError:
 # Sometimes because of rounding errors we end up with
 # action probabilities sum greater than 1.
 # In this case we need to reduce it slightly to be valid
 move = np.random.multinomial(1,
 probability_of_actions / (sum(probability_of_actions) +
1e-6))

 return move

Deep Reinforcement Learning for Games Chapter 9

[317]

Next, we'll implement the a2c function, which is the centerpiece of our program.8.
It does the following:

Builds the actor and critic networks and initialize the environment1.
env.
Starts the training by playing episodes and training2.
the actor and critic networks. At each training step, we'll do the
following:

We'll collect the trajectory of an episode in the lists1.
episode_states, episode_rewards,
and episode_actions lists. Once the episode is finished,
we'll use them to generate one training mini-batch for the
critic network and we'll perform one training step with
said mini-batch. Note that although we wait for the episode
to finish to do one training step, this is only for convenience
and doesn't change the nature of the A2C algorithm. That is,
unlike REINFORCE, we still compute the state_values
and advantages at each episode step, as if we didn't know
the full trajectory.
We'll also collect the combined trajectories of several2.
episodes (TRAIN_ACTOR_EVERY_X_EPISODES) in
the batch_states, batch_advantages, and
batch_actions lists. We'll use them to create a single
training mini-batch for the actor network.
We'll stop the training once we have 10 consecutive episodes3.
with maximum lengths. Let's hope that our A2c is smart
enough to do this, otherwise we'll end up in an infinite
loop.

Finally, we'll display a chart with the episode lengths, averaged over3.
10 episodes.

Deep Reinforcement Learning for Games Chapter 9

[318]

The following is the implementation:

def a2c():
 """A2C implementation"""

 actor = build_actor()
 critic = build_critic()

 session.run(tf.initialize_all_variables())

 time = 0

 last_state = env.reset()

 # Trajectory of the current episode
 episode_states, episode_rewards, episode_actions = [], [], []

 # A combination of multiple episode trajectories for one mini-
batch
 batch_states, batch_advantages, batch_actions = [], [], []

 episode_lengths = list()

 while True:
 # env.render()

 # The actor (policy) selects the next action
 last_action = choose_next_action(actor, last_state)
 current_state, reward, terminal, info =
env.step(np.argmax(last_action))

 if terminal:
 reward = -.10
 else:
 reward = 0.1

 episode_states.append(last_state)
 episode_rewards.append(reward)
 episode_actions.append(last_action)

 # We wait for the terminal state
 # Then create one training mini-batch of all episode steps
 # We do this for convenience, but this is still online
method
 if terminal:
 episode_lengths.append(time)
 print("Episode: {} reward
{}".format(len(episode_lengths), time))

Deep Reinforcement Learning for Games Chapter 9

[319]

 # Stop when the last 10 episodes have maximum length
 if len(episode_lengths) > 10 \
 and sum(episode_lengths[-10:]) / 10 ==
env._max_episode_steps - 1:
 break

 # get temporal difference values for critic for each
step
 cumulative_reward = 0
 for i in reversed(range(len(episode_states))):
 cumulative_reward = episode_rewards[i] + \
 DISCOUNT_FACTOR *
cumulative_reward
 episode_rewards[i] = [cumulative_reward]

 # estimate the state value for each state of the
episode
 state_values = session.run(critic.output,
 feed_dict={critic.input_placeholder:
episode_states})

 # calculate the advantage function for each state of
the episode
 advantages = list()

 for i in range(len(episode_states) - 1):
 advantages.append([episode_rewards[i][0] +
 DISCOUNT_FACTOR * state_values[i
+ 1][0]
 - state_values[i][0]])

 advantages.append([episode_rewards[-1][0] -
state_values[-1][0]])

 # train the critic (policy) over all steps of the
episode
 session.run([critic.train_op], {
 critic.input_placeholder: episode_states,
 critic.target_placeholder: episode_rewards})

 # add the current episode to the mini-batch
 batch_states.extend(episode_states)
 batch_actions.extend(episode_actions)
 batch_advantages.extend(advantages)

 # train the actor (state-value estimation)
 if len(episode_lengths) % TRAIN_ACTOR_EVERY_X_EPISODES
== 0:

Deep Reinforcement Learning for Games Chapter 9

[320]

 # standardize the data using z-standardization
 batch_advantages = np.array(batch_advantages)
 normalized_rewards = batch_advantages -
np.mean(batch_advantages)
 normalized_rewards /= np.std(normalized_rewards)

 # train the actor (policy)
 session.run(actor.train_op, feed_dict={
 actor.input_placeholder: batch_states,
 actor.action_placeholder: batch_actions,
 actor.advantage_placeholder:
normalized_rewards})

 # reset batch trajectories
 batch_states, batch_actions, batch_advantages = [],
[], []

 time = 0

 # reset episode trajectory
 episode_states, episode_rewards, episode_actions = [],
[], []

 # start new episode
 last_state = env.reset()
 else:
 # if not terminal state, then continue
 last_state = current_state
 time += 1

 # display episodes length with moving average 10
 cumsum = np.cumsum(np.insert(episode_lengths, 0, 0))
 episode_lengths = (cumsum[10:] - cumsum[:-10]) / float(10)

 plt.xlabel("Episode")
 plt.ylabel("Length (steps)")
 plt.plot(episode_lengths, label='Episode length')
 plt.show()

Finally, we can run the whole thing with this:9.

a2c()

Deep Reinforcement Learning for Games Chapter 9

[321]

If everything goes as planned, the program will produce the following chart in a short
amount of training time:

Training results of A2C on the cart-pole task

This task is fairly easy and we achieved the maximum episode length in around 200
episodes.

Model-based methods
RL methods such as Monte Carlo, SARSA, Q-learning, or Actor-Critic are model-free. The
main goal of the agent is to learn an (imperfect) estimation of either the true value function
(MC, SARSA, Q-learning) or the optimal policy (AC). As the learning goes on, the agent
needs to have a way to explore the environment in order to collect experiences for its
training. Usually, this happens with trial and error. For example, an ε-greedy policy will
take random actions at certain times, just for the sake of environment exploration.

In this section, we'll introduce model-based RL methods, where the agent won't follow the
trial-and-error approach when it takes new actions. Instead, it will plan the new action with
the help of a model of the environment. The model will try to simulate how the
environment will react to a given action. Then, the agent will make its decision based on the
simulation result.

Next, we'll learn about one of the most successful model-based methods, called Monte
Carlo Tree Search.

Deep Reinforcement Learning for Games Chapter 9

[322]

Monte Carlo Tree Search
In Monte Carlo Tree Search (MCTS), the environment model is represented by a search
tree. Let's say that the agent is at some state, s. Our immediate goal is to select the next
action (and our main goal is to maximize the total reward). To do this, we'll create a new
search tree with a single node (root): the state s. Then, we'll gradually build it node by node
by playing simulated episodes. The edges of the tree will represent actions and the nodes
will represent states where the agent ends up. In the process of tree building (that is,
playing simulations), we'll assign some performance value over each action (edge). Once
we finish building it, we'll be able to select the action (starting from the root node, s) with
the best performance value. In this section, we'll work in a tabular (fully known)
environment.

To better understand this process, let's assume that we have already built part of the tree,
and we are looking to expand it. The following is a diagram of the expansion of the tree
with a new node (action/state):

One MCTS sequence

The process has four steps:

Selection: We'll start from the root node s, and we'll recursively select child1.
nodes until we reach a leaf, L. How do we choose which child node to select at
each step of the recursion? We'll do this with a special greedy tree policy, which
will make the selection based on the performance value associated with each
action. We'll also maintain how many times we have selected each action
throughout the tree building process.

Deep Reinforcement Learning for Games Chapter 9

[323]

Expansion: If the leaf L is not terminal, we'll add one or more children to L by2.
selecting some new action(s) and transitioning to the resulting state(s), L'. The
actions can be selected randomly.
Simulation: Starting from L', the agent will continue taking actions until it3.
reaches a terminal state. However, during the simulation it will not consult the
search tree, since it has not been built for this trajectory yet. Instead, it will follow
a special rollout policy. This step is very similar to the Monte Carlo method we
introduced in chapter 8, Reinforcement Learning Theory.
Backpropagation: The simulation episode from step 3 has generated some total4.
reward. In this step, we'll propagate the reward back to the tree and we'll update
the performance values of the actions until we reach the root node. We will only
update the path we generate during the selection step.

We'll repeat these four steps until some condition is true. For example, we can stop after a
certain timeout. Once the tree is ready, we'll select the next action, starting from the root
node, s, and transitioning to the next state s'. We can repeat the same process for s', but
instead of building the tree from scratch, we can start with a subtree with root s' of the
previous state (root node s).

Next, let's focus on the selection step. Although fancier, this is still an RL problem, which
means that we'll face the exploration/exploitation dilemma. That is, if we always choose the
best action, we might miss out on some path of the tree with lower estimated return, but
higher actual return. We can balance between the two with the help of a formula called
Upper Confidence Bounds for Trees (UCT). We'll use it to compute the performance
values for the state/action pairs in the search tree. Let's assume that we are in the process of
building the search tree and we have already played a number of simulations. Then, the
UCT formula for action a, starting from state s in the search tree, is this:

This formula has the following components:

 is the average reward received for all previous simulations, which included
the edge representing the (s, a) state/action pair. This part of the formula
represents exploitation: the higher the average reward is, the more likely it is to
select the action.

 is the total number of times that state s has been visited.

Deep Reinforcement Learning for Games Chapter 9

[324]

 is the number of simulations that included the action a. This number is
smaller than , because every simulation that includes (s, a) will also include
the state s. But not every simulation that includes s will include (s, a).

 will be higher for actions that participated in fewer simulations, because
 is in the denominator. This component of the formula represents the

exploration.
c is the exploration parameter. It describes the ratio between exploration and
exploitation.

Playing board games with AlphaZero
MCTS with UCT is the base for a series of breakthroughs developed by DeepMind. These
include the Go-playing AlphaGo, its improved version AlphaGo Zero, and finally
AlphaZero (https:/ ​/ ​arxiv. ​org/ ​abs/ ​1712. ​01815), an improvement on AlphaGo Zero for
playing multiple games, such as Chess and Shogi. Let's discuss AlphaZero. For the sake of
simplicity, we'll assume that we want to teach the agent to play chess. Each state of the
environment will be one configuration of the board (the positions of the pieces). By taking a
turn (moving a piece), the players transition the environment from one state to another.

At the center of the algorithm is a neural network, which takes as input the current state of
the board and has two outputs (the network weights are denoted with θ):

 is the scalar state-value approximation. The [-1, 1] range
symbolizes the chance of victory for the current player at the end of the episode
(the end of one game). The value is 1 if the player wins and -1 otherwise.

 are the probabilities to take each action, given a current state s. In other
words, this is the network's policy estimation.

Next, let's take a look at the MCTS part of AlphaZero, which uses a modified version of
UCT:

https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815

Deep Reinforcement Learning for Games Chapter 9

[325]

The formula has the following components:

 is action-value estimation, which is in tabular form and is maintained only
for the state/action pairs of the search tree (and not the whole environment). It

carries the same meaning as in the original UCT formula.
 is the probability the network assigns to select action a, given state s.

An important feature of AlphZero is that it replaces the entire simulation step of MCTS
with . When MCTS reaches leaf node s, it won't continue with the simulation until a
terminal state. Instead, it will simply estimate the total reward of the episode with the

 state-value network output. This value is then propagated back through the tree in
the backpropagation step. Once the search tree is ready, we can select our next action. We'll
denote the MCTS policy with . The score for each action a, starting from the root state,
is simply:

Where s is the root node (our current state), is the total number of simulations, and
 is the number of simulations that included the action a. We'll select the action with the

highest score.

Let's observe that in AlphaZero we have two different policy estimations: the action
probabilities of the network and the MCTS policy . To understand the intuition
behind this, let's take a look at the training of the neural network. During training, the
network plays against itself (self-play); the algorithm powers both players. We'll use the
trajectories of the self-play episodes as a training set. For each step of an episode, we have a
training tuple, , where is the board state at step t, is the MCTS policy for
all actions, and is the indication of whether the player has won or lost [-1, 1]. Then, the
network loss function for one episode is this:

The left part of the equation is just the mean-squared-error between the predicted and the
actual results. The right side is the cross-entropy loss between the action predictions of
MCTS and the network outputs. Note that the "labels" for the network policy estimation

 are actually the MCTS action probabilities (we can assume they are more
accurate), which explains the need for the two estimations.

Deep Reinforcement Learning for Games Chapter 9

[326]

And that's it. AlphaZero is simpler than AlphaGo, and at the same time it easily defeated
the previous state-of-the art models in the games of chess, Shogi, and Go (the previous best
in Go was, in fact, AlphaGo).

If you are interested in trying AlphaZero, you can find a general
implementation for any board game in this repo: https:/ ​/​github. ​com/
suragnair/ ​alpha- ​zero- ​general.

Summary
In this chapter, we introduced some advanced RL techniques, starting with deep Q-
learning. Then, we used DQN to teach an agent to play the Atari Breakout game with
moderate success. Next, we introduced policy-based RL methods, which approximate the
optimal policy instead of the true value functions. Then, we used A2C to teach an agent
how to play the cart pole game. Finally, we introduced model-based RL methods and
MCTS in particular.

In the next chapter, we'll explore how to apply deep learning in the challenging and at the
same time exciting area of autonomous vehicles.

https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general

10
Deep Learning in Autonomous

Vehicles
Let's think about how autonomous vehicles (AVs) would affect our lives. For one thing,
instead of focusing our attention on driving, we'll be able to do something else during our
trip. Catering to the needs of such travelers could probably spawn a whole industry in
itself. But that's just a side effect. If we can be more productive or just relax during our
travels, it is likely that we'll start traveling more. Not to mention the benefits for people
with limited ability to drive themselves. Making such an essential and basic commodity as
transportation more accessible has the potential to transform our lives. And that's just the
effect on us as individuals. AVs can have profound effects on the economy too, starting
from delivery services and going to just-in-time manufacturing. In short, making AVs work
is a very high-stakes game. No wonder, then, that in recent years the research in this area
has transferred from the academic world to the real economy. Companies from Waymo,
Uber, and NVIDIA to virtually all major vehicle manufacturers are rushing to develop AVs.

However, we are not there just yet. One of the reasons is that self-driving is a complex task,
composed of multiple sub-problems, each a major task in its own right. To navigate
successfully, the vehicle "brain" needs an accurate 3D model of the environment. The way
to construct such a model is to fuse the signals coming from multiple sensors. Once we
have the model, we still need to solve the actual driving task. Think about the many
unexpected and unique situations a driver has to overcome without crashing. But even if
we create a driving policy, it needs to be accurate almost 100% of the time. Imagine that our
AV will successfully stop at 99 out of 100 red traffic lights. 99% accuracy is a great success
for any other machine learning(ML) task. Not so for autonomous driving, where even a
single mistake can lead to a crash.

In this chapter, we'll explore the applications of deep learning in AVs. We'll discuss how to
use deep networks to help the vehicle make sense of its surrounding environment. We'll
also see how to use them in actually controlling the vehicle.

Deep Learning in Autonomous Vehicles Chapter 10

[328]

This chapter will cover the following:

Brief history of AV research
AV introduction
Components of an AV system
Imitation driving policy
Driving policy with ChauffeurNet
Deep learning (DL) in the cloud

Brief history of AV research
The first serious attempt to implement self-driving cars began in the 1980s in Europe and
the USA. Since the mid 2000s, progress has rapidly accelerated. The following is a timeline
of some AV research historic points and milestones:

The first major effort in the area was the Eureka Prometheus Project (https:/ ​/
en.​wikipedia. ​org/ ​wiki/ ​Eureka_ ​Prometheus_ ​Project), which lasted from 1987
to 1995. It culminated in 1995, when an autonomous Mercedes-Benz S-Class took
a 1,600 km trip from Munich to Copenhagen and back using computer vision. At
some points, the car achieved speeds of up to 175 km/h on the German Autobahn
(fun fact: some sections of the Autobahn don't have speed restrictions). The car
was able to overtake other cars on its own. The average distance between human
interventions was 9 km, and at one point it drove 158 km without interventions.
In 1989, Dean Pomerleau from Carnegie Mellon University published ALVINN:
An Autonomous Land Vehicle in a Neural Network (https:/ ​/​papers. ​nips. ​cc/
paper/​95- ​alvinn- ​an- ​autonomous- ​land- ​vehicle- ​in-​a- ​neural- ​network. ​pdf), a
pioneering paper on the use of neural networks for AVs. This work is especially
interesting, as it applied many of the topics we've discussed in this book in AVs
nearly 30 years ago.

Let us look at the most important properties of ALVINN:

It uses a simple neural network to decide the steering angle of a vehicle (it
doesn't control the acceleration and the brakes).
The network is fully connected with one input, one hidden layer, and one output
layer.

https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf

Deep Learning in Autonomous Vehicles Chapter 10

[329]

 The input consists of the following:
A 30 x 32 single-color image (they used the blue channel from an
RGB image) from a forward-facing camera mounted on the vehicle.
An 8 x 32 image from a laser range finder. This is simply a grid,
where each cell contains the distance to the nearest obstacle,
covered by that cell in the field of view.
One scalar input, which indicates the road intensity, that is,
whether the road is lighter or darker than the non-road in the
image from the camera. This values comes recursively from the
network output.

A single fully-connected hidden layer with 29 neurons.
A fully-connected output layer with 46 neurons. 45 of those neurons represent
the curvature of the road, in a way that resembles one-hot encoding. That is, if
the middle neuron has the highest activation, then the road is straight.
Conversely, the left and right neurons represent increasing road curvature. The
final output unit indicates the road intensity.
The network was trained for 40 epochs on a dataset of 1,200 images:

The network architecture of ALVINN

There is also an interesting video, showing ALVINN driving a military
vehicle in 1992: https:/ ​/​www. ​youtube. ​com/ ​watch? ​v= ​ilP4aPDTBPE.

https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE
https://www.youtube.com/watch?v=ilP4aPDTBPE

Deep Learning in Autonomous Vehicles Chapter 10

[330]

The DARPA Grand Challenge (https:/ ​/​en.​wikipedia. ​org/ ​wiki/ ​DARPA_ ​Grand_
Challenge) was organized in 2004, 2005, and 2007. In the first year, the
participating teams' AVs had to navigate a 240 km route in the Mojave Desert.
The best performing AV managed just 11.78 km of that route, before getting
hung up on a rock. In 2005, the teams had to overcome a 212 km off-road course
in California and Nevada. This time, five vehicles managed to drive the whole
route. The 2007 challenge was to navigate a mock urban environment, built in an
air force base. The total route length was 89 km and the participants had to obey
the traffic rules. Six vehicles finished the whole course.
In 2009, Google started developing self-driving technology. This effort led to the
creation of Alphabet's (Google's parent company) subsidiary Waymo (https:/ ​/
waymo.​com/ ​). In December 2018, they launched the first commercial on-demand
ride hailing service with AVs in Phoenix, Arizona.
Mobileye (https:/ ​/​www. ​mobileye. ​com/ ​) uses deep neural networks to provide
driver-assistance systems (for example, lane keeping assistance). The company
has developed a series of system-on-chip (SOC) devices, specifically optimized
to run neural networks with low energy consumption, required for automotive
use. Its products are used by many of the major vehicle manufacturers. In 2017,
Mobileye was acquired by Intel for $15.3 billion. Since then BMW, Intel, Fiat-
Chrysler, and the automotive supplier Delphi have cooperated on joint
development of self-driving technology.
In 2016, General Motors acquired Cruise Automation (https:/ ​/​getcruise. ​com/ ​),
a developer of self-driving technology, for more than $500 million (the exact
figure is unknown). Since then, Cruise has tested and demonstrated multiple AV
prototypes, driving in San Francisco. In October 2018, it was announced that
Honda will also participate in the venture by investing $750 million in return for
a 5.7% stake.
Audi's Autonomous Intelligence Driving subsidiary has more than 150
employees developing and testing AV prototypes on the streets of Munich.

AV introduction
When we talk about AVs, we usually imagine fully driverless vehicles. But in reality, we
have cars, which require a driver, but still provide some automated features.

https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge
https://waymo.com/
https://waymo.com/
https://waymo.com/
https://waymo.com/
https://waymo.com/
https://waymo.com/
https://waymo.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://www.mobileye.com/
https://getcruise.com/
https://getcruise.com/
https://getcruise.com/
https://getcruise.com/
https://getcruise.com/
https://getcruise.com/
https://getcruise.com/
https://getcruise.com/

Deep Learning in Autonomous Vehicles Chapter 10

[331]

The Society of Automotive Engineers (SAE) has developed a scale of six levels of
automation:

Level 0: The driver handles the steering, acceleration, and braking of the vehicle.
The features at this level can only provide warnings and immediate assistance to
the driver's actions. Examples of features of this level include the following:

A lane departure warning simply warns the driver when the
vehicle has crossed one of the lane markings.
A blind spot warning warns the driver when another vehicle is
located in the blind spot area of the car (the area immediately left
or right of the rear end of the vehicle).

Level 1: Features that provide either steering or acceleration/braking assistance to
the driver. The most popular such features in vehicles today are these:

Lane keeping assist (LKA): The vehicle can detect the lane
markings and use the steering to keep itself centered in the lane.
Adaptive cruise control (ACC): The vehicle can detect other
vehicles and use brakes and acceleration to maintain a preset speed
or reduce it, depending on the circumstances.
Automatic emergency braking (AEB): The vehicle can stop
automatically if it detects an obstacle and the driver doesn't react.

Level 2: Features that provide both steering and brake/acceleration assistance to
the driver. One such feature is a combination between LKA and adaptive cruise
control. At this level, the car can return control to the driver without advance
warning at any moment. Therefore, he or she has to maintain constant focus on
the road situation. For example, if the lane markings suddenly disappear, the
LKA system can prompt the driver to take control of the steering immediately.
Level 3: This is the first level where we can talk about real autonomy. It is similar
to level 2 in the sense that the car can drive itself under certain limited conditions
and it can prompt the driver to take control. However, this is guaranteed to
happen in advance with sufficient time to allow an inattentive person to
familiarize themselves with the road conditions. For example, imagine that the
car drives itself on the highway, but the cloud-connected navigation obtains
information about construction works on the road ahead. The driver will be
prompted to take control well in advance of reaching the construction area.
Level 4: Vehicles at this level are fully autonomous in a wider range of situations,
compared to level-3. For example, a locally geofenced (that is, limited to a certain
region) taxi service could be at level 4. There is no requirement for the driver to
take control. Instead, if the vehicle goes outside this region, it should be able to
safely abort the trip.
Level 5: Full autonomy under all circumstances. The steering wheel is optional.

Deep Learning in Autonomous Vehicles Chapter 10

[332]

All commercially available vehicles today have features at level 2 at most. The only
exception (according to the manufacturer) is the 2018 Audi A8, which has a level 3 feature
called AI Traffic Jam Pilot. It takes charge of driving in slow-moving traffic at up to
60 km/h on highways and multi-lane roads with a physical barrier separating the two
directions of traffic. The driver can be prompted to take control with 10 seconds of advance
warning.

Components of an AV system
In this section, we'll discuss the building blocks of an AV system.

Sensors
For any automation feature to work, the vehicle needs a good perception of its surrounding
environment. The first step in building a good environment model is the vehicle sensors.
The following is a list of the most important sensors:

Camera: Its images are used to detect the road surface, lane markings,
pedestrians, cyclists, other vehicles, and so on. An important camera property
(besides resolution) in the automotive context is the field of view. It measures
how much of the observable world the camera sees at a given moment. For
example, with a 180o field of view, it can see everything in front of it and nothing
behind. With 360o, it can see both front and back (full observation). Different
types of camera systems exist:

 Mono camera: Uses a single forward-facing camera, usually
mounted on the top of the windshield. Most automation features
rely on this type of camera to work. A typical field of view for the
mono camera is 125o.
Stereo camera: A system of two forward-facing cameras, slightly
removed from each other. The distance between the cameras
allows them to capture the same picture from a slightly different
angle and combine them in a 3D image (in the same way we use
our eyes). A stereo system can measure the distance to some of the
objects in the image, while a mono camera relies only on heuristics
to do this.
Some vehicles have a system of four cameras (front, back, left, and
right), which can can assemble a 360o surrounding view of the
environment.
Night vision cameras.

Deep Learning in Autonomous Vehicles Chapter 10

[333]

Radar: A system that uses a transmitter to emit electromagnetic waves (in the
radio or microwave spectrum) in different directions. When the waves reach an
object, they are usually reflected, some of them in the direction of the radar itself.
The radar can detect them with a special receiver antenna. Since we know that
radio waves travel at the speed of light, we can calculate the distance to the
reflected object by measuring how much time has passed between emitting and
receiving the signal. We can also calculate the speed of an object (for example,
another vehicle) by measuring the difference between the frequencies of the
outgoing and incoming waves (Doppler effect). The "image" of the radar is
noisier, narrower, and with lower resolution, compared to a camera image. For
example, a long-range radar can detect objects at a distance of 160m, but in a
narrow 12o field of view. The radar can detect other vehicles and pedestrians, but
it won't be able to detect the road surface or lane markings. It is usually used for
ACC and AEB, while the LKA system uses a camera. Most vehicles have one or
two front-facing radars and, on rare occasions, a rear-facing radar.
Lidar (light detection and ranging): This sensor is somewhat similar to the radar,
but instead of radio waves, it emits a laser in the near-infrared spectrum. Because
of this, one emitted pulse can accurately measure the distance to a single point.
Lidar emits multiple signals very fast in a pattern, which creates a 3D point cloud
of the environment (for example, the sensor can rotate very fast). Following is an
illustration of how a vehicle would see the world with a lidar:

An illustration of how a vehicle sees the world through lidar

The data from multiple sensors can be merged into a single environment model with a
process called sensor fusion. Sensor fusion is usually implemented with Kalman filters
(https:/​/​en.​wikipedia. ​org/ ​wiki/ ​Kalman_ ​filter).

https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter

Deep Learning in Autonomous Vehicles Chapter 10

[334]

Deep learning and sensors
Now that we have an idea what sensors the vehicle uses, let's see how to apply deep
learning to the raw sensor data. First, we'll do this for the camera. In Chapter 5, Advanced
Computer Vision, we discussed how to use CNNs in two advanced vision tasks: object
detection and semantic segmentation. To recap, object detection creates a bounding box
around different classes of objects detected in the image. Semantic segmentation assigns a
class label to every pixel of the image. We can use segmentation to detect the exact shape of
the road surface and the lane markings on the camera image. We can use object detection to
classify and localize the objects of interest in the environment. These include other vehicles,
pedestrians, bicyclists, traffic signs, traffic lights, and so on.

Next, let's focus on lidar. We can use 3D CNNs (Chapter 4, Computer Vision with
Convolutional Networks) for object detection and segmentation of the lidar point cloud data.
This is similar to the way we use a 2D CNN for camera input. An example of these
techniques is Vehicle Detection from 3D Lidar Using Fully Convolutional Network (https:/ ​/
arxiv.​org/​abs/​1608. ​07916).

Vehicle localization
Localization is the process of determining the exact position of the vehicle on the map. Why
is this important? Companies such as HERE (https:/ ​/​www. ​here. ​com/ ​) specialize in
creating extremely accurate road maps, where the entire area of the road surface is known
within a few centimeters. Therefore, if we know the exact position of the vehicle on the
road, it won't be hard to calculate the optimal trajectory. One obvious solution is to use
GPS. However, GPS can be accurate to within 1-2 meters under perfect conditions. In areas
with high-rise buildings or mountains, the accuracy can suffer, because the GPS receiver
won't be able to get a signal from a sufficient number of satellites. One way to solve this
problem is with simultaneous localization and mapping (SLAM) algorithms. These
algorithms are beyond the scope of this book and we encourage you to do your own
research on the topic.

Planning
Planning (or driving policy) is the process of calculating the vehicle trajectory and speed.
Although we might have an accurate map and exact location of the vehicle, we still need to
keep in mind the dynamics of the environment. The car is surrounded by other moving
vehicles, pedestrians, traffic lights, and so on. What happens if the vehicle in front stops
suddenly? Or if it's moving too slow? Our AV has to make the decision to overtake and
then execute the maneuver. This is an area where ML and DL in particular can be especially
useful.

https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://arxiv.org/abs/1608.07916
https://www.here.com/
https://www.here.com/
https://www.here.com/
https://www.here.com/
https://www.here.com/
https://www.here.com/
https://www.here.com/
https://www.here.com/
https://www.here.com/
https://www.here.com/

Deep Learning in Autonomous Vehicles Chapter 10

[335]

One obstacle in AV research is that building an AV and obtaining the necessary permits to
test it is very expensive and time consuming. Thankfully, we can still train our algorithms
with the help of AV simulators.

Some of the most popular simulators are these:

Microsoft AirSim, built on the Unreal Engine (https:/ ​/​github. ​com/ ​Microsoft/
AirSim/​)
CARLA, built on the Unreal Engine (https:/ ​/​github. ​com/ ​carla- ​simulator/
carla)
Udacity's Self-Driving Car Simulator, built with Unity (https:/ ​/ ​github. ​com/
udacity/ ​self- ​driving- ​car- ​sim)
OpenAI Gym's CarRacing-v0 environment (we'll see an example in the next
section, Imitation driving policy)

Imitiation driving policy
In the section Components of an AV system we outlined several modules, necessary for a self-
driving system. In this section we'll discuss how to implement one of them - the driving
policy - with the help of DL. One way to do this is with RL, where the car is the agent and
the environment is, well, the environment. Another popular approach is imitation
learning, where the model (network) learns to imitate the actions of an expert (human).
Let's see the properties of imitation learning in the AV scenario:

We'll use a type of imitation learning, known as behavioral cloning. This simply
means that we'll train our network in a supervised way. Alternatively, we
have imitation learning in RL scenario, which is known as Inverse RL.
The output of the network is the driving policy, represented by desired steering
angle and/or acceleration or breaking. For example, we can have one regression
output neuron for the steering angle and one neuron for acceleration or braking
(as we cannot have both at the same time).
The network input can be either:

Raw sensor data. For example, an image from the forward-facing
camera. AV systems, where a single model starts from raw sensor
inputs and outputs driving policy, are referred to as end-to-end.

https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/Microsoft/AirSim/
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim

Deep Learning in Autonomous Vehicles Chapter 10

[336]

An intermediate environment model created with the help of
sensor fusion. In this case we can combine the data from different
sensors to produce a top-down (birds eye) 2D view of the
environment, similar to the lidar image in section Sensors. This
approach has several advantages over the end-to-end models.
First, instead of using the sensor data to create the top-down
image, we can produce it with a simulator. In this way, it will be
easier to collect training data, as we won't have to drive the real
car. Even more important is that we'll be able to simulate
situations, which rarely occur in the real world. For example, our
AV have to avoid crashes at any cost, yet a real world training data
will have very few, if any, crashes. If we only use real sensor data,
one of the most important driving situations will be severely
underrepresented.

We'll create the training dataset with the help of the expert. We'll let them drive
the vehicle manually. They could do this in the real world or in the simulator. At
each step of the journey, we'll record:

The current state of the environment. This could be the raw sensor
data or the top-down view representation. We'll use the current
state as input to the model.
The actions of the expert in the current state of the environment
(steering angle and breaking/acceleration). This will be the target
data for the network. During training we'll simply minimize the
error between the network predictions and the driver actions using
the familiar gradient descent. In this way, we'll teach the network
to imitate the driver.

Following is an illustration of the behavioral cloning scenario:

Behavioral cloning scenario.

Deep Learning in Autonomous Vehicles Chapter 10

[337]

In fact, we already mentioned behavioral cloning end-to-end system, when we discussed
ALVINN (section Brief history of AV research). More recently Bojarski et al. (https:/ ​/​arxiv.
org/​abs/​1604.​07316) introduced similar system, which uses a CNN with 5 convolutional
layers instead of a fully-connected network. In their experiment, the images of a forward-
facing camera on the vehicle are fed as input to the CNN. The output of the CNN is a single
scalar value, which represents the desired steering angle of the car. The network doesn't
control acceleration and breaking. To build the training dataset, the collected about 72
hours of real-world driving videos. During the evaluation, the car was able to drive itself
98% of the time in a suburban area (excluding lane changes and turns from one road to
another). Additionally, it managed to drive without intervention for 16 km on a multi-lane
divided highway.

Behavioral cloning with PyTorch
In this section, we'll implement something fun, a behavioral cloning example with PyTorch.
We'll do this with the help of the CarRacing-v0 OpenAI Gym environment, displayed as
follows:

In the CarRacing-v0 environment, the agent is a racing car. A birds-eye view is used the whole time

This example contains multiple Python files. In this section, we'll mention
the most important parts. The full source code lives at https:/ ​/​github.
com/​ivan- ​vasilev/ ​Python- ​Deep- ​Learning- ​SE/ ​tree/ ​master/ ​ch10/
imitation_ ​learning.

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/tree/master/ch10/imitation_learning

Deep Learning in Autonomous Vehicles Chapter 10

[338]

The goal is for the red racing car to drive around the track as quickly as it can without
sliding out of the road surface. We can control the car with four actions: accelerate, brake,
and turn left and right. The input for each action is continuous. For example, we can specify
full throttle with the value 1.0 and half throttle with the value 0.5 (the same goes for the
other controls). For the sake of simplicity, we'll assume that we can only specify two
discrete action values: 0 for no action and 1 for full action. Since originally this is an RL
environment, the agent will receive an award at each step as it progresses along the track.
However, we'll not use them, since the agent will learn directly from our actions. We'll
perform the following steps:

Create a training dataset by driving the car around the track ourselves (we'll1.
control it with the keyboard arrows). In other words, we'll be the expert, the
agent tries to imitate. At every step of the episode, we'll record the current game
frame (state) and the currently pressed keys, and we'll store them in a file. The
full code for this step is available at https:/ ​/​github. ​com/ ​ivan- ​vasilev/ ​Python-
Deep-​Learning- ​SE/ ​blob/ ​master/ ​ch10/ ​imitation_ ​learning/ ​keyboard_ ​agent.
py. All you have to do is run the file and the game will start. As you play, the
episodes will be recorded (once per five episodes) in the
imitation_learning/data/data.gzip file. If you want to start over, you can
simply delete it. You can exit the game by pressing Escape and pause with the
spacebar. You can also start a new episode by pressing Enter. In this case, the
current episode will be discarded and its sequence will not be stored. We would
advise you to play at least 20 episodes for a sufficient size of the training dataset.
It would be good to use the brake more often, because otherwise the dataset will
become too imbalanced. In normal play, acceleration is used much more
frequently than the brake or the steering. Alternatively, if you don't want to
play, the GitHub repository already includes an existing data file.
Train a CNN in a supervised manner using the dataset we just generated. The2.
input will be a single game frame (as opposed to the DQN scenario, where we
had four frames). The target (labels) will be the action recorded for the human
operator. If you want to omit this step, the repository already has a trained
PyTorch network located at https:/ ​/​github. ​com/​ivan- ​vasilev/ ​Python- ​Deep-
Learning- ​SE/ ​blob/ ​master/ ​ch10/ ​imitation_ ​learning/ ​data/ ​model. ​pt.
Let the CNN agent play by using the network output to determine the next3.
action to send to the environment. You can do this by simply running
the https:/ ​/​github. ​com/ ​ivan- ​vasilev/ ​Python- ​Deep- ​Learning- ​SE/ ​blob/
master/​ch10/ ​imitation_ ​learning/ ​nn_ ​agent. ​py file. If you haven't performed
any of the previous two steps, this file will use the existing agent.

https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/keyboard_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/data/model.pt
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py

Deep Learning in Autonomous Vehicles Chapter 10

[339]

With that introduction, let's start (the following source code is located at https:/ ​/​github.
com/​ivan-​vasilev/ ​Python- ​Deep- ​Learning- ​SE/​blob/ ​master/ ​ch10/ ​imitation_ ​learning/
train.​py).

First, we'll create the training dataset in several steps:

The read_data function reads imitation_learning/data/data.gzip in two1.
numpy arrays: one for the game frames and the other for the keyboard
combinations associated with them.
The environment accepts actions, composed of a three-element array, where the2.
following are true:

The first element has a value in the range [-1, 1] and represents the1.
steering angle (-1 for right, 1 for left).
The second element is the [0, 1] range and represents the throttle. 2.
The third element is in the [0, 1] range and represents the brake3.
power.

We'll use the seven most common key combinations: [0, 0, 0] for no action3.
(the car is coasting), [0, 1, 0] for acceleration, [0, 0, 1] for brake, [-1, 0,
0] for left, [-1, 0, 1] for a combination of left and brake, [1, 0, 0] for right,
and [1, 0, 1] for the right and brake combination. We have deliberately
prevented the simultaneous use of acceleration and left or right, as the car
becomes very unstable. The rest of the combinations are implausible. read_data
will convert these arrays to a single class label from 0 to 6. In this way, we'll
simply solve a classification problem with seven classes.
The read_data function will also balance the dataset. As we mentioned,4.
acceleration is the most common key combination, while some of the others, such
as brake, are the rarest. Therefore, we'll remove some of the acceleration samples
and we'll multiply some of the braking (and left/right + brake). However, the
author did this in a heuristic way by trying multiple combinations of
deletion/multiplication ratios and selected the ones that work best. If you record
your own dataset, your driving style may differ and you may want to modify
these ratios.
Once we have the numpy arrays, we'll convert them to PyTorch DataLoader5.
instances with the create_datasets function. These classes simply allow us to
extract the data in mini-batches and apply data augmentation.

https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/train.py

Deep Learning in Autonomous Vehicles Chapter 10

[340]

The following is the implementation:

def create_datasets():
 """Create training and validation datasets"""

 class TensorDatasetTransforms(torch.utils.data.TensorDataset):
 """
 Helper class to allow transformations
 by default TensorDataset doesn't support them
 """

 def __init__(self, x, y):
 super().__init__(x, y)

 def __getitem__(self, index):
 tensor = data_transform(self.tensors[0][index])
 return (tensor,) + tuple(t[index] for t in self.tensors[1:])

 x, y = read_data()
 x = np.moveaxis(x, 3, 1) # channel first (torch requirement)

 # train dataset
 x_train = x[:int(len(x) * TRAIN_VAL_SPLIT)]
 y_train = y[:int(len(y) * TRAIN_VAL_SPLIT)]

 train_set = TensorDatasetTransforms(
 torch.tensor(x_train),
 torch.tensor(y_train))

 train_loader = torch.utils.data.DataLoader(train_set,
 batch_size=BATCH_SIZE,
 shuffle=True,
 num_workers=2)

 # test dataset
 x_val, y_val = x[int(len(x_train)):], y[int(len(y_train)):]

 val_set = TensorDatasetTransforms(
 torch.tensor(x_val),
 torch.tensor(y_val))

 val_loader = torch.utils.data.DataLoader(val_set,
 batch_size=BATCH_SIZE,
 shuffle=False,
 num_workers=2)

 return train_loader, val_loader

Deep Learning in Autonomous Vehicles Chapter 10

[341]

In the preceding code, we have implemented the TensorDatasetTransforms
helper class to be able to apply the data_transform transformations over the
input image (defined in https:/ ​/​github. ​com/ ​ivan- ​vasilev/ ​Python- ​Deep-
Learning- ​SE/ ​blob/ ​master/ ​ch10/ ​imitation_ ​learning/ ​util. ​py). Before feeding
the image to the network, we'll convert it to grayscale, we'll normalize the color
values in the [0, 1] range, and we'll crop the bottom part of the frame (the black
rectangle, which shows the rewards and other information).

The following is the implementation:

data_transform = transforms.Compose([
 transforms.ToPILImage(),
 transforms.Grayscale(1),
 transforms.Pad((12, 12, 12, 0)),
 transforms.CenterCrop(84),
 transforms.ToTensor(),
 transforms.Normalize((0,), (1,)),
])

Next, we'll define our CNN, which is very similar to the network we used in the double q-
learning example of Chapter 9, Deep Reinforcement Learning for Games. It has the following
properties:

A single input 84x84 slice.1.
Three convolutional layers with striding for downsampling.2.
ELU activations.3.
Two fully-connected layers.4.
Seven output neurons (one for each neuron).5.
Batch normalization and dropout, applied after each layer (even the6.
convolutional) to prevent overfitting. Overfitting is not a problem in RL tasks,
but it is a real issue in supervised learning. Our problem is particularly
exaggerated, because we cannot use any meaningful data augmentation
techniques. For example, imagine that we randomly flipped the image
horizontally. In this case, we would have to also alter the label to reverse the
steering value. Therefore, we'll rely on regularization as much as we can.

The following is the network implementation:

def build_network():
 """Build the torch network"""

 class Flatten(nn.Module):
 """
 Helper class to flatten the tensor

https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/util.py

Deep Learning in Autonomous Vehicles Chapter 10

[342]

 between the last conv and first fc layer
 """

 def forward(self, x):
 return x.view(x.size()[0], -1)

 # Same network as with the DQN example
 model = torch.nn.Sequential(
 torch.nn.Conv2d(1, 32, 8, 4),
 torch.nn.BatchNorm2d(32),
 torch.nn.ELU(),
 torch.nn.Dropout2d(0.5),
 torch.nn.Conv2d(32, 64, 4, 2),
 torch.nn.BatchNorm2d(64),
 torch.nn.ELU(),
 torch.nn.Dropout2d(0.5),
 torch.nn.Conv2d(64, 64, 3, 1),
 torch.nn.ELU(),
 Flatten(),
 torch.nn.BatchNorm1d(64 * 7 * 7),
 torch.nn.Dropout(),
 torch.nn.Linear(64 * 7 * 7, 120),
 torch.nn.ELU(),
 torch.nn.BatchNorm1d(120),
 torch.nn.Dropout(),
 torch.nn.Linear(120, len(available_actions)),
)

 return model

Next, let's implement the training itself with the help of the train function. It takes the
network and the cuda device as parameters. We'll use cross-entropy loss and the Adam
optimizer (the usual combination for classification tasks). The function simply
iterates EPOCHS times and calls the train_epoch and test functions for each epoch. The
following is the implementation:

def train(model, device):
 """
 Training main method
 :param model: the network
 :param device: the cuda device
 """

 loss_function = nn.CrossEntropyLoss()

 optimizer = optim.Adam(model.parameters())

Deep Learning in Autonomous Vehicles Chapter 10

[343]

 train_loader, val_order = create_datasets() # read datasets

 # train
 for epoch in range(EPOCHS):
 print('Epoch {}/{}'.format(epoch + 1, EPOCHS))

 train_epoch(model,
 device,
 loss_function,
 optimizer,
 train_loader)

 test(model, device, loss_function, val_order)

 # save model
 model_path = os.path.join(DATA_DIR, MODEL_FILE)
 torch.save(model.state_dict(), model_path)

Then, we'll implement the train_epoch for a single epoch training. This function iterates
over all mini-batches and performs forward and backward passes for each one. The
following is the implementation:

def train_epoch(model, device, loss_function, optimizer, data_loader):
 """Train for a single epoch"""

 # set model to training mode
 model.train()

 current_loss = 0.0
 current_acc = 0

 # iterate over the training data
 for i, (inputs, labels) in enumerate(data_loader):
 # send the input/labels to the GPU
 inputs = inputs.to(device)
 labels = labels.to(device)

 # zero the parameter gradients
 optimizer.zero_grad()

 with torch.set_grad_enabled(True):
 # forward
 outputs = model(inputs)
 _, predictions = torch.max(outputs, 1)
 loss = loss_function(outputs, labels)

 # backward
 loss.backward()

Deep Learning in Autonomous Vehicles Chapter 10

[344]

 optimizer.step()

 # statistics
 current_loss += loss.item() * inputs.size(0)
 current_acc += torch.sum(predictions == labels.data)

 total_loss = current_loss / len(data_loader.dataset)
 total_acc = current_acc.double() / len(data_loader.dataset)

 print('Train Loss: {:.4f}; Accuracy: {:.4f}'.format(total_loss,
total_acc))

The train_epoch and test functions are similar to the ones we
implemented for the transfer learning code example of Chapter
5, Advanced Computer Vision. To avoid repetition, we won't implement the
test function here, although it's available in the GitHub repository.

We'll run the training for around 100 epochs, but you can shorten this to 20 or 30 epochs for
rapid experiments. One epoch usually takes less than a minute using the default training
set.

Next, let's implement the nn_agent_play function, which allows the agent to play the
game (defined in https:/ ​/​github. ​com/ ​ivan- ​vasilev/ ​Python- ​Deep- ​Learning- ​SE/ ​blob/
master/​ch10/​imitation_ ​learning/ ​nn_ ​agent. ​py). The function will start the
env environment with an initial state (game frame). We'll use it as an input to the network.
Then, we'll convert the softmax network output from one-hot encoding to an array-based
action and we'll send it to the environment to make the next step. We'll repeat these steps
until the episode ends. nn_agent_play also allows the user to exit by pressing Esc. Note
that we still use the same data_transform transformations as we did for the training.

The following is the implementation:

def nn_agent_play(model, device):
 """
 Let the agent play
 :param model: the network
 :param device: the cuda device
 """

 env = gym.make('CarRacing-v0')

 # use ESC to exit
 global human_wants_exit
 human_wants_exit = False

 def key_press(key, mod):

https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/nn_agent.py

Deep Learning in Autonomous Vehicles Chapter 10

[345]

 """Capture ESC key"""
 global human_wants_exit
 if key == 0xff1b: # escape
 human_wants_exit = True

 # initialize environment
 state = env.reset()
 env.unwrapped.viewer.window.on_key_press = key_press

 while 1:
 env.render()

 state = np.moveaxis(state, 2, 0) # channel first image

 # numpy to tensor
 state = torch.from_numpy(np.flip(state, axis=0).copy())
 state = data_transform(state) # apply transformations
 state = state.unsqueeze(0) # add additional dimension
 state = state.to(device) # transfer to GPU

 # forward
 with torch.set_grad_enabled(False):
 outputs = model(state)

 normalized = torch.nn.functional.softmax(outputs, dim=1)

 # translate from net output to env action
 max_action = np.argmax(normalized.cpu().numpy()[0])
 action = available_actions[max_action]

 # adjust brake power
 if action[2] != 0:
 action[2] = 0.3

 state, _, terminal, _ = env.step(action) # one step

 if terminal:
 state = env.reset()

 if human_wants_exit:
 env.close()
 return

Deep Learning in Autonomous Vehicles Chapter 10

[346]

Finally, we can run the whole thing. The full code for this is available at https:/ ​/ ​github.
com/​ivan-​vasilev/ ​Python- ​Deep- ​Learning- ​SE/​blob/ ​master/ ​ch10/ ​imitation_ ​learning/
main.​py . The following snippet builds and restores (if available) the network, runs the
training, and evaluates the network:

create cuda device
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

create the network
model = build_network()

if true, try to restore the network from the data file
restore = False
if restore:
 model_path = os.path.join(DATA_DIR, MODEL_FILE)
 model.load_state_dict(torch.load(model_path))

set the model to evaluation (and not training) mode
model.eval()

transfer to the gpu
model = model.to(dev)

train
train(model, dev)

agent play
nn_agent_play(model, dev)

Although we cannot show the agent in action here, you can easily do so by following the
instructions in this section. Still, we can say that it learns well and is able to make full laps
of the racing track on a regular basis (but not always). Interestingly, the network's driving
style strongly resembles the style of the operator who generated the dataset. The example
also goes to show that we shouldn't underestimate supervised learning. We were able to
create a decently performing agent with a small dataset and in a relatively short training
time. Had we approached this as an RL problem, it would have taken much longer to reach
similar results (admittedly, without the need for labeled data).

https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py
https://github.com/ivan-vasilev/Python-Deep-Learning-SE/blob/master/ch10/imitation_learning/main.py

Deep Learning in Autonomous Vehicles Chapter 10

[347]

Driving policy with ChauffeurNet
In this section, we'll discuss a recent paper called ChauffeurNet: Learning to Drive by Imitating
the Best and Synthesizing the Worst (https:/ ​/​arxiv. ​org/ ​abs/ ​1812. ​03079). It was released in
December 2018 by Waymo, one of the leaders in the AV space. The following are some of
the properties of the ChauffeurNet model:

It is a combination of two interconnected networks. The first is a CNN called
FeatureNet, which extracts features from the environment. These features are fed
as inputs to a second, recurrent network called AgentRNN, which them to
determine the driving policy.
It uses imitation supervised learning similarly to the algorithms we described in
the Imitation driving policy section. The training set is generated based on records
of real-world driving episodes. ChauffeurNet can handle complex driving
situations such as lane changes, traffic lights, traffic signs, changing from one
street to another, and so on.

This paper is published by Waymo on arxiv.org and is used here for
referential purposes only.
Waymo and arxiv.org are not affiliated, and do not endorse this book, or
the authors with Packt.

Model inputs and outputs
Unlike the end-to-end approach, which uses the raw sensor data (for example, camera
images), here we'll use the so-called middle-level input. This is a series of top-down (birds-
eye) view 400 × 400 images, similar to the images of the CarRacing-v0 environment but
much more complex. One moment of time is represented by multiple images, where each
one contains different elements of the environment.

https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079

Deep Learning in Autonomous Vehicles Chapter 10

[348]

We can see an example of a ChauffeurNet input/output combination in the following
diagram:

ChauffeurNet inputs (source: https:/ ​/​arxiv. ​org/ ​abs/​1812. ​03079)

Let's discuss the input/output elements in alphabetical order:

(a) is a precise representation of the road map. It is an RGB image, which uses
different colors to represent various road features such as lanes, cross-walks,
traffic signs, and curbs.
(b) is a temporal sequence of grayscale images of the traffic lights. Unlike the
features of (a), the traffic lights are dynamic; that is, they can be green, red, or
yellow at different times. In order to properly convey their dynamics, the
algorithm uses a series of images, displaying the state of the traffic lights for each
lane at each of the past Tscene seconds up to the current moment. The gray color of
the lines in each image represents the state of each traffic light, where the
brightest color is red, intermediate is for yellow, and the darkest is green or
unknown.
(c) is a grayscale image with the known speed limit for each lane. Different color
intensities represent different speed limits.

https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079

Deep Learning in Autonomous Vehicles Chapter 10

[349]

(d) is the intended route between the start and the destination. Think of it as the
directions generated by Google Maps.
(e) is a grayscale image, which represents the current location of the agent
(displayed as a white box).
(f) is a temporal sequence of grayscale images, which represent the dynamic
elements of the environment (displayed as boxes). These could be other vehicles,
pedestrians, or cyclists. As these objects change locations over time, the
algorithm conveys their trajectories with a series of snapshot images,
representing their positions over the last Tscene seconds. This works in the same
way as the traffic lights (b).
(g) is a single grayscale image for the agent trajectory of the past Tpose seconds
until the current moment. The agent locations are displayed as a series of points
on the image. Note that we display them in a single image, and not with a
temporal sequence like the other dynamic elements.
(h) is the algorithm output, a series of points that represent the desired locations
of the agent's future trajectory. These points carry the same meaning as the past
trajectory (g). The newly generated trajectory is fed to the control module of the
vehicle, which tries its best to execute it via the vehicle controls (steering,
acceleration, and brakes). The future location output at time t+1 is generated by
using the past trajectory (g) up to the current moment t. Once we have t+1, we
can add it to the past trajectory (g) and we can use it to generate the next location
at step t+2 in a recurrent manner:

Where I are the input images, pt is the agent position at time t, and δt is a 0.2s time
delta. The value of δt is arbitrary chosen by the authors of the paper.

Deep Learning in Autonomous Vehicles Chapter 10

[350]

Model architecture
The following is the ChauffeurNet model architecture:

(a) ChauffeurNet architecture and (b) the memory updates over the iterations (source: https:/ ​/ ​arxiv. ​org/ ​abs/​1812. ​03079)

https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079
https://arxiv.org/abs/1812.03079

Deep Learning in Autonomous Vehicles Chapter 10

[351]

First, we have FeatureNet (in the preceding diagram, (a)). Its inputs are the middle-level
top-down images we defined in the Model inputs and outputs section. The output
of FeatureNet is a feature vector, F, which represents the synthesized network
understanding of the current environment. This vector serves as one of the inputs to the
recurrent network AgentRNN. Let's say that we want to predict the next point of the
agent's trajectory (step k). Then, AgentRNN has the following outputs:

pk is the predicted next point of the driving trajectory at the step k. pk is added to
an additive memory, M, of the past predictions (pk, pk-1,, p0) at each step
(preceding diagram, (b)). M is represented by the input image (g) we defined in
section Model inputs and outputs section.

Bk is the predicted bounding box of the agent at the next step k.
Two additional outputs (not displayed in the diagram): θk for the heading (or
orientation) of the agent and sk for the desired speed. pk, θk, and sk fully describe
the agent in the environment.

The outputs pk and Bk are fed back recursively as inputs to AgentRNN for the next step, k+1.
The formula for the AgentRNN output is as follows:

Training
ChauffeurNet was trained with 30 million expert driving examples, using imitation
supervised learning. The middle-level, top-down input allows to use different sources of
training data with ease. On one hand, it can be generated from real-world driving with
a fusion between the vehicle sensor inputs (cameras, lidar) and mapping data such as
streets, traffic lights, traffic signs, and so on. On the other hand, we can generate images of
the same format with a simulated environment. As we mentioned in section Imitiation
driving policy, this allows us to simulate situations that occur rarely in the real world, such
as emergency braking or even crashes. To help the agent learn about such situations, the
authors of the paper explicitly synthesized multiple rare scenarios using simulation.

Deep Learning in Autonomous Vehicles Chapter 10

[352]

 The following are the components of the ChauffeurNet training process:

ChauffeurNet training components: (a) the model itself, (b) the additional networks, and (c) the losses
(source: https://arxiv.org/abs/1812.03079)

We are already familiar with the ChauffeurNet model itself (a). Let's focus on the two
additional networks involved in the process (b). These are the following:

The Road Mask network predicts a mask with the exact area of the road surface
over the current input images.
PerceptionRNN attempts to predict the future locations of every other dynamic
object in the environment (vehicles, cyclists, pedestrians, and so on).

Deep Learning in Autonomous Vehicles Chapter 10

[353]

These networks don't participate in the final vehicle control and are used only during
training. The intuition to use them is that the FeatureNet network will learn better
representations if it receives feedback from the tree tasks (AgentRNN, Road Mask Net, and
PerpcetionRNN), compared to simply getting feedback from AgentRNN.

Finally, let's focus on the various loss functions (c). The authors of the paper observed that
the imitation learning approach works well when the driving situation does not differ
significantly from the expert driving training data. However, the agent has to be prepared
for many driving situations that are not part of the training, such as collisions. If the agent
only relies on the training data, it will have to learn about collisions implicitly, which is not
easy. To solve this problem, the paper proposes explicit loss functions for the most
important situations. These include the following:

Waypoint loss: The error between the ground truth and the predicted agent
future position, pk.
Speed loss: The error between the ground truth and the predicted agent future
speed, sk.
Heading loss: The error between the ground truth and the predicted agent future
direction, θk.
Agent box loss: The error between the ground truth and the predicted agent
bounding box, Bk.
Geometry loss: Force the agent to explicitly follow the target trajectory,
independent of the speed profile.
On-road loss: Force the agent to navigate only over the road surface area and
avoid the non-road areas of the environment. This loss will increase if the
predicted bounding box of the agent overlaps with the non-road area of the
image, predicted by the road mask network.
Collision loss: Explicitly force the agent to avoid collisions. This loss will
increase if the agent's predicted bounding box overlaps with the bounding boxes
of any of the other dynamic objects of the environment.

ChauffeurNet performed well in various real-world driving situations. You can see some of
the results here: https:/ ​/​medium. ​com/ ​waymo/ ​learning- ​to- ​drive- ​beyond- ​pure-
imitation-​465499f8bcb2.

https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2

Deep Learning in Autonomous Vehicles Chapter 10

[354]

DL in the Cloud
In this chapter, we are discussing a serious topic, AVs and how to apply DL techniques in
them. Let's see how to approach this task in practice. First, let's observe that in deep
networks (as with most ML algorithms), we have two phases—training and inference. In
most production environments, the network is trained once, and then used only in
inference mode to solve tasks. If we obtain additional training data during the course of
events, we can eventually train the network again (for example, using transfer learning).
Then, we can embed the new model in the production environment until we need to retrain
it again and so on. The alternative to this is incremental learning, having the model
(network) constantly learn from new data, as it comes from the environment.

Although this approach is tempting, it has a few disadvantages, which are as follows:

As the training is a non-deterministic process, we cannot guarantee whether it
won't actually worsen the network performance. For one thing, the network
might start to overfit. Alternatively, it can learn from the new data at the expense
of forgetting the old one. In other words, training the network online in a
production environment can be risky.
The training process is more computationally intensive compared to inference. It
involves forward and backward passes and weight updates, whereas the
inference has only a forward pass. Besides taking more computational time, we
need additional memory to store the activations of each layer in the forward
pass, but also the gradients of the backward pass and the weight updates.
Therefore, we can use the model in inference mode with less powerful hardware,
compared to training.

It makes even more sense to separate the training and inference in AVs. On one hand, every
new network model deployed in the AV needs rigorous testing, to ensure that the car will
behave safely. Therefore, it is better to do the training and the evaluation offline. On the
other hand, if we want to mass-produce DL hardware for tens of thousands of AVs, it will
be more cost effective to produce less powerful hardware, which works only for inference.
The cars can simply collect environmental data as they drive, and send this data to a central
data center (also referred to as cloud). Once enough new data is collected, a new version of
the network model is trained in the center itself. The updated model is sent back to the AVs
via over-the-air (OTA) updates. In this way, the data of all the cars can be combined in a
single model, which wouldn’t impossible if each of them was learning separately from their
own experience. Admittedly, if the training requires labeled data, the new data still has to
be labeled manually.

Deep Learning in Autonomous Vehicles Chapter 10

[355]

Some automakers are already adopting similar approach. For example, Tesla can update
their Autopilot (the set of driving assistance features they offer) OTA. And we know that
the latest models of BMW, Mercedes, and Audi support OTA updates, although it is not
known whether they include driving-assistance features.

In this section, we'll focus on how to run DL algorithms in the cloud. We'll do this for two
reasons. First, unless we are working at a company such as Waymo, we probably don't
have access to an AV to tinker with. And second, cloud-based DL can be useful for all sorts
of problems and not just AVs. Thanks to the popularity of DL, many companies offer cloud
services to run your models. Two of the biggest providers are, Amazon Web Services
(AWS) and Google's cloud AI products (https:/ ​/​cloud. ​google. ​com/ ​products/ ​ai/ ​).

Let’s talk about Amazon first. Their most popular service is called Elastic Compute Cloud
(EC2, https:/​/​aws. ​amazon. ​com/ ​ec2/ ​). EC2 works with the so called Amazon Machine
Images (AMIs). These are template configurations, which contain the software
specifications of a virtual server, known as an instance. You can launch multiple instances
of the same AMI, depending on your needs. Assuming we already have an AWS account,
launching a new EC2 instance requires two main steps:

Select the desired AMI. Since we are interested in DL, we can select an AMI1.
called Deep Learning AMI (Ubuntu). It will launch a virtual server running
Ubuntu, which comes with various preinstalled DL libraries including MXNet,
TensorFlow, PyTorch, Keras, Chainer, Caffe/2, Theano, and CNTK, configured
with NVIDIA CUDA, cuDNN, NCCL, and Intel MKL-DNN. If our DL models
work one of these libraries we can immediately start using them on the instance.
Choose the instance hardware configuration. AWS offers multiple instance types2.
with different specs including the number of virtual CPUs, memory size, storage
size, and network bandwidth. Crucially, some of the instance come with up to 16
NVIDIA K80 GPUs with a combined 192 GB of GPU memory. We should note
that to use a GPU instance, you have to obtain permission from Amazon first.
That is, the process is not fully automated.

Once an instance is launched, it behaves just like a regular computer. For example, you can
access it via ssh, install software packages and run applications on it. Amazon will bill you,
depending on how much the instance is utilized. Alternatively, we can use the so called
EC2 spot instances, which are simply unutilized regular EC2 instances. They are cheaper to
use, but come with a small caveat, Amazon can interrupt a spot instance at any time, but it
will provide a two-minute warning before doing so. In this way, we can save our progress
before the instance is interrupted.

https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://cloud.google.com/products/ai/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Deep Learning in Autonomous Vehicles Chapter 10

[356]

Let's assume that you have logged in the instance via ssh and you’re using the bash
terminal. You can test whether the instance is working properly with the help of the source
examples of this book.

All you have to do is:

Clone the book's GitHub repository with the following command:1.

 git clone https://github.com/ivan-vasilev/Python-Deep-Learning-SE/

Navigate to any of the source code examples.2.

cd Python-Deep-Learning-SE/ch10/imitation_learning/

Run the training as follows:3.

python3 train.py

If everything goes as planned, we should see the how the training progresses through the
epochs.

Amazon offers a host of other ML cloud services. You can find out more about them here
https:/​/​aws.​amazon. ​com/ ​machine- ​learning/ ​.

Next, let's take a look at what Google offers. One of their ML services is the Cloud Deep
Learning VM Image (https:/ ​/ ​cloud. ​google. ​com/ ​deep- ​learning- ​vm/​). It allows you to
configure and launch a virtual server, similar to Amazon EC2. You can choose different
hardware parameters including the number of virtual CPU cores, memory size, disk size,
and the number of GPUs. Several GPU types are supported, such as NVIDIA K80, P100,
and V100. At the time of writing, the DL VM supports TensorFlow, Pytorch, Chainer
(https:/​/​github.​com/ ​chainer/ ​chainer), and XGBoost (https:/ ​/​github. ​com/ ​dmlc/
xgboost). Once you’ve deployed your configuration, you can use it like a regular server.

Another interesting ML service from Google is Cloud TPU (https:/ ​/​cloud. ​google. ​com/
tpu/​), where TPU stands for Tensor Processing Unit. As we mentioned in Chapter 1,
Machine Learning: An Introduction, these are application-specific integrated circuits
(ASICs), developed by Google and optimized for fast neural network operations. You can
use TPUs for your models via the Cloud VM (https:/ ​/​cloud. ​google. ​com/ ​compute/ ​),
which is similar to the DL VM. At present, TPUs only support TensorFlow models (and
Keras by extension).

Finally, we should note that using DL in the cloud is often convenient, but it could become
expensive over time.

https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/compute/

Deep Learning in Autonomous Vehicles Chapter 10

[357]

Summary
In this chapter, we explored the applications of deep learning in AVs. We started with a
brief historical reference of AV research. Then, we described the components of the AV
system and identified when it's appropriate to use DL techniques. Next, we introduced
driving policy with behavioral cloning and Waymo's ChauffeurNet. And finally, we
introduced DL in the cloud.

This chapter concludes our book. I hope you enjoyed the read!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Python Deep Learning Projects
Matthew Lamons, Rahul Kumar, Abhishek Nagaraja

ISBN: 9781788997096

Set up a deep learning development environment on Amazon Web Services
(AWS)
Apply GPU-powered instances as well as the deep learning AMI
Implement seq-to-seq networks for modeling natural language processing (NLP)
Develop an end-to-end speech recognition system
Build a system for pixel-wise semantic labeling of an image
Create a system that generates images and their regions

https://www.packtpub.com/big-data-and-business-intelligence/python-deep-learning-projects

Other Books You May Enjoy

[359]

Advanced Deep Learning with Keras
Rowel Atienza

ISBN: 9781788629416

Cutting-edge techniques in human-like AI performance
Implement advanced deep learning models using Keras
The building blocks for advanced techniques - MLPs, CNNs, and RNNs
Deep neural networks – ResNet and DenseNet
Autoencoders and Variational AutoEncoders (VAEs)
Generative Adversarial Networks (GANs) and creative AI techniques
Disentangled Representation GANs, and Cross-Domain GANs
Deep Reinforcement Learning (DRL) methods and implementation
Produce industry-standard applications using OpenAI gym
Deep Q-Learning and Policy Gradient Methods

https://www.packtpub.com/big-data-and-business-intelligence/advanced-deep-learning-keras

Other Books You May Enjoy

[360]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
A2C
 used, for implementing cart pole 313, 321
acoustic model
 about 237
 CTC 238
 RNNs, using 237
action-value function 249
activation function
 types 43
actor-critic (AC)
 drawback 311
 using, with policy gradients 308, 311
adaptive cruise control (ACC) 331
advantage function 312
AlexNet
 reference 130
AlphaZero
 reference 324, 326
 used, for playing board games 324, 326
ALVINN
 properties 328
anchor boxes 155
application-specific integrated circuits (ASICs) 356
approaches, object detection
 classic sliding window 153
 one-stage detection methods 154
 two-stage detection methods 154
arg max 258
artificial intelligence (AI) 7, 79
artistic style transfer 163
Atari Breakout
 playing, with DQN 287
 reference 287
autoencoders 74
automatic emergency braking (AEB) 331

autonomous vehicles (AVs)
 research history 328, 330
AV system, components
 about 332
 planning 334
 planning process 334
 sensors 332
 vehicle localization 334

B
backpropagation algorithm 55, 57, 58
backpropagation through time (BPTT) 221
Batch normalization 81
behavior policy 245, 269
behavioral cloning
 about 335
 using, with PyTorch 337, 341, 346
Bellman equations 250, 252
bipolar sigmoid 43
bounding box 151

C
capsule 146
capsule network
 about 144
 reference 151
 structure 150
cart pole
 implementing, with A2C 313, 321
Central Processing Units (CPUs) 80
centroids 18
Chainer
 reference 356
channel multiplier 99
character-based models
 data, preprocessing 222
 data, reading 222

[362]

 example training 228
 LSTM network 223, 225
 sampling 227
 training, implementing 226
 used, for generating text 221
ChauffeurNet model
 architecture 350
 inputs and outputs 347, 349
 properties 347
 reference 353
 training 351, 353
classes, machine learning (ML)
 reinforcement learning (RL) 19, 21
 supervised learning 8, 10
 unsupervised learning 16, 17
Cloud
 deep learning (DL) 354
CNN example
 with CIFAR-10 118, 121
 with Keras 118, 121
CNN
 intuition 94
 justification 94
 performance, improving 114
CNTK
 reference 84
Computed Axial Tomography (CAT) 78
computer vision tasks
 about 151
 object detection 151
 semantic segmentation 162
computing processing units (CPUs) 35
Conditional GANs 190
Connectionist Temporal Classification (CTC)
 about 238
 reference 240
content loss 164
continuous bag of words (CBOW) 219
convolution operation
 coding example 100, 102
convolutional layers
 1D convolutions 105
 1x1 convolutions 106
 2D convolutions 105
 3D convolution 105

 about 95
 backpropagation 106
 in deep learning libraries 107
 padding 102, 104
 stride 102
convolutional network
 limitations 144
 properties 110
 structure 110
 used, for classifying handwritten digits 111, 113
Convolutional Neural Networks (CNNs) 122
cross-entropy loss 87

D
decision trees 13, 14
Deep Convolutional Generative Adversarial

networks (DCGANs)
 about 187
 generator 188
deep learning (DL)
 about 8, 68, 69, 70, 80, 81
 applications 77, 79
 disadvantages 354
 feature 71, 72
 fundamental 70
 history 74, 75
 in Cloud 354, 355, 356
deep learning algorithms
 about 73
 deep networks 73
Deep Learning AMI 355
deep networks
 about 73
 autoencoders 74
 Multi-layer perceptrons (MLPs) 73
 recurrent networks 73
 training 75, 76
deep neural networks (DNNs) 68
Deep Q-learning (DQN)
 about 287
 used, for implementing Atari Breakout 287, 291,

295, 302, 304
dense block
 properties 143
DenseNets

[363]

 about 143
 reference 144
depth slices 97
depthwise convolution 99
discrete cosine transform (DCT) 236
discriminative models 167
driving policy
 using, with ChauffeurNet model 347
Dynamic Programming (DP)
 policy evaluation 254
 policy evaluation example 255
 policy improvements 258
 policy iteration 259
 used, for finding optimal policies 254
 value iterations 259
dynamic routing 147, 148, 149

E
end-to-end 335
equivariance 145
Eureka Prometheus Project
 reference 328
every-visit MC 262
exploring starts (ES) assumption 262
Exponential Linear Unit (ELU) 119

F
feature engineering 72
fine-tuning 75
first-visit MC 262

G
gated recurrent unit (GRU) 212, 214
Gaussian mixture model (GMM) 237
Generative Adversarial Networks (GANs)
 about 17, 167, 180
 Conditional GANs (CGANs) 190
 DCGAN 187
 discriminator 180
 discriminator, training 183
 generator 180
 generator, training 184
 minimax 182
 minimax objective, defining 186
 sequential 182

 training 181
 types 187
 used, for generating MNIST images 191, 195
 zero-sum 182
generative models
 justification 167
genetic algorithms 285
gradient descent 48
gram matrices 164
Graphical Processing Units (GPUs) 35, 80
growth rate 143

H
hidden Markov models (HMMs) 237
Huber loss
 reference 291
hyperplane 12

I
identity function 43
imitation driving policy
 implementing, with PyTorch 341, 344, 346
imitation learning approach 335
imitiation driving policy 335
inception network
 inception v1 136
 inception v2 138, 140
 inception v3 138, 140
 inception v4 140
 Inception-ResNet 140
 MobileNets 141
 reference 135
 Xception 141
input volume 98

K
K-means clustering algorithm 18
Kaldi
 reference 234
Kalman filters
 reference 333
Keras
 about 84
 used, for classification of handwritten digits 85,

86, 89

[364]

 used, for classification of images of objects 89,
92

 used, for generating MNIST images 191, 196
 using, with VGG 132

L
language modeling
 about 214
 word-based models 214
layers 39, 41
LeakyReLU
 reference 188
linear regression algorithm 10, 11, 49, 52
logistic regression algorithm 10, 11, 52, 54
logistic sigmoid 43
long short-term memory (LSTM)
 reference 209
LSTM cell
 reference 210

M
machine learning (ML)
 classes 8
 versus RL 244
magnetic resonance image (MRI) 78, 94
Markov decision process (MDP) 245, 248
maximization bias 270
Mean-squared error (MSE) 10
Mel Frequency Cepstral Coefficients (MFCC) 236
ML solution
 components 22, 24, 26
 data training 22
 goal 23
 learner algorithm 22
 representation 23
 target 23
MNIST digits
 generating, with VAE 173, 176
model-based methods
 about 321
 board games, playing, with AlphaZero 324
 Monte Carlo Tree Search (MCTS) 322
Monte Carlo (MC) method
 about 261
 Epsilon-greedy policy improvement 264

 exploring starts (ES) policy improvements 262
 policy evaluation 261
Monte Carlo policy gradients
 using, with REINFORCE 307
Monte Carlo Tree Search (MCTS)
 about 322
 backpropagation 323
 expansion 323
 selection 322
 simulation 323
multi-layer neural networks 41, 42
Multi-layer perceptrons (MLPs) 73

N
Naive Bayes 15, 16
natural language processing (NLP) 17, 94
network architectures
 about 129
 DenseNets 143
 inception networks 135
 residual networks 133
 VGG 130
neural algorithm of artistic style 163
neural language models
 about 216
 neural probabilistic language model 217
 word embedding vectors, visualizing 220
 word2vec 218
neural machine translation (NMT) 229
neural networks
 about 26, 28, 36
 activation function types 43
 code example, for XOR function 59, 61, 65, 66
 implementing, that approximates boxcar function

45, 47, 48
 layers 39, 41
 need for 35
 neurons 37, 38
 training 48
neurons 36, 37, 38
non-maximum suppression 158
normalization
 feature scaling 114
 standard score 114
Not a Number (NaN) 208

[365]

O
object detection
 about 151
 approaches 153
 YOLOv3, using 154, 156
object images
 classifying, with Keras 92
one-step TD method 266
open source libraries
 about 81, 83
 Keras 84
 PyTorch 84
 TensorFlow (TF) 83
OpenAI Gym
 reference 277
optimal policies 253
output volume 99
over-the-air (OTA) 354

P
parameter sharing 94
perceptron 26
phonemes 72
policy gradient methods
 about 304, 306
 advantages 305
 disadvantage 306
policy iteration
 disadvantages 260
pooling layer
 about 108
 average pooling 108
 defining, parameters 109
 max pooling 108
pre-training 75
prediction 243
prediction vectors 147
prioritized experience replay 276
Proximal Policy Optimization (PPO)
 reference 313
PyTorch
 about 29, 31, 32
 reference 84, 165
 transfer learning example 124, 127

 used, for implementing imitation driving policy
337, 339

 using, with VGG 132

Q
q-function 249
Q-learning
 about 21, 22
 performance, improving 274
 target Q-network, finding 275
 using 276, 279, 283
 value approximation 274

R
receptive field 95
reconstruction error 169
Rectified Linear Unit (ReLU) 43, 81
recurrent networks 73
recurrent neural networks (RNN)
 about 198, 199, 200
 backpropagation through time 203, 205, 206,

207

 gated recurrent unit (GRU) 212
 gradients, exploding 207
 gradients, vanishing 207, 209
 implementing 201, 202
 long short-term memory (LSTM) 209, 212
 many-to-many direct 200
 many-to-many indirect 200
 many-to-one 200
 one-to-many 200
 one-to-one 200
 training 201, 202
regularization 115
REINFORCE
 using, with Monte Carlo policy gradients 307
reinforcement learning (RL) agents
 actor-critic agents 245
 model-based agents 245
 model-free agents 245
Reinforcement learning (RL) agents
 off-policy 245
 on-policy 245
reinforcement learning (RL) agents
 policy-based agents 245

[366]

 value-based agents 245
reinforcement learning (RL) algorithms
 approximate solutions 244
 tabular solutions 244
reinforcement learning (RL)
 about 19, 21
 action 243
 agent 243
 and ML approaches, differences 244
 as Markov decision process (MDP) 245
 paradigms 242
 policy 243
 reward 243
 state 243
 value function 243
reparameterization trick 172
residual networks
 reference 133
Restricted Boltzmann Machines (RBMs) 74
rollout policy 323

S
Sarsa
 value approximation 274
semantic segmentation
 about 162
 approaches 162
sensors
 camera 332
 deep learning 334
 Lidar (light detection and ranging) 333
 radar 333
seq2seq model
 decoder 230
 encoder 229
sequence to sequence learning
 about 229, 231
 output sequence, generating 231, 233
set of learnable weights 95
simultaneous localization and mapping (SLAM)

334

skip-gram 219
Society of Automotive Engineers (SAE)
 levels 330
solution, MLproblem

 data collection 23
 data processing 23
 test case, creating 24
speech recognition
 about 233
 acoustic model 237
 decoding 239
 end-to-end models 240
 pipeline 233, 234
 preprocessing 235, 236
 speech, using as input data 235
stacked RNN 199
state-value function 248
stochastic gradient descent (SGD) 272
Stochastic Gradient Descent (SGD) 75
stride 102
style loss 164
supervised learning 8, 10
support vector machine (SVM) 12, 13
system-on-chip (SOC) 330

T
target policy 245
techniques, for CNN performance improvement
 batch normalization 117
 data augmentation 116
 data pre-processing 114
 dropout 116
 regularization 115
 weight decay 115
temporal difference (TD) methods
 about 265, 308
 controlling, with Q-learning 268
 controlling, with Sarsa 267
 double Q-learning 270
 policy evaluation 265
Tensor Processing Unit (TPU) 356
TensorFlow (TF)
 reference 83
 text, generating with character-based models

221

 using, with VGG 132
threshold activity function 43
training data 8
transfer function 38

transfer learning
 about 122
 using, with PyTorch 124, 129
translation-invariant 144
types, reinforcement learning (RL)
 Q-learning algorithm 21, 22
types, supervised learning
 decision trees 13, 14
 linear regression algorithm 10, 11
 logistic regression 11
 logistic regression algorithm 10
 Naive Bayes 15, 16
 support vector machine (SVM) 12, 13
types, unsupervised learning
 K-means clustering algorithm 18

U
unsupervised learning 16, 17
Upper Confidence Bounds for Trees (UCT) 323

V
value function approximations
 about 271, 273
 for Q-learning 274
 for Sarsa 274
value functions 253
variational autoencoders (VAEs)
 about 167, 168, 171, 172

 used, for generating MNIST digits 173, 176, 179
VGG
 about 130
 reference 130
 using, with Keras 132
 using, with PyTorch 132
 using, with TensorFlow 132
Viterbi algorithm
 reference 239

W
word-based models
 N-grams 214
 neural language models 216

X
XGBoost
 reference 356
XOR function
 code example, of neural network 59, 61, 65, 66

Y
YOLO
 about 154
 working 154
YOLOv3
 code example, with OpenCV 158, 161
 used, for detecting objects 154

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Machine Learning - an Introduction
	Introduction to machine learning
	Different machine learning approaches
	Supervised learning
	Linear and logistic regression
	Support vector machines
	Decision Trees
	Naive Bayes

	Unsupervised learning
	K-means

	Reinforcement learning
	Q-learning

	Components of an ML solution

	Neural networks
	Introduction to PyTorch

	Summary

	Chapter 2: Neural Networks
	The need for neural networks
	An introduction to neural networks
	An introduction to neurons
	An introduction to layers
	Multi-layer neural networks
	Different types of activation function
	Putting it all together with an example

	Training neural networks
	Linear regression
	Logistic regression
	Backpropagation
	Code example of a neural network for the XOR function

	Summary

	Chapter 3: Deep Learning Fundamentals
	Introduction to deep learning
	Fundamental deep learning concepts
	Feature learning

	Deep learning algorithms
	Deep networks
	A brief history of contemporary deep learning

	Training deep networks

	Applications of deep learning
	The reasons for deep learning's popularity
	Introducing popular open source libraries
	TensorFlow
	Keras
	PyTorch
	Using Keras to classify handwritten digits
	Using Keras to classify images of objects

	Summary

	Chapter 4: Computer Vision with Convolutional Networks
	Intuition and justification for CNN
	Convolutional layers
	A coding example of convolution operation

	Stride and padding in convolutional layers
	1D, 2D, and 3D convolutions
	1x1 convolutions
	Backpropagation in convolutional layers
	Convolutional layers in deep learning libraries

	Pooling layers
	The structure of a convolutional network
	Classifying handwritten digits with a convolutional network

	Improving the performance of CNNs
	Data pre-processing
	Regularization
	Weight decay
	Dropout
	Data augmentation
	Batch normalization

	A CNN example with Keras and CIFAR-10
	Summary

	Chapter 5: Advanced Computer Vision
	Transfer learning
	Transfer learning example with PyTorch

	Advanced network architectures
	VGG
	VGG with Keras, PyTorch, and TensorFlow

	Residual networks
	Inception networks
	Inception v1
	Inception v2 and v3
	Inception v4 and Inception-ResNet
	Xception and MobileNets

	DenseNets

	Capsule networks
	Limitations of convolutional networks
	Capsules
	Dynamic routing

	Structure of the capsule network

	Advanced computer vision tasks
	Object detection
	Approaches to object detection
	Object detection with YOLOv3
	A code example of YOLOv3 with OpenCV

	Semantic segmentation

	Artistic style transfer
	Summary

	Chapter 6: Generating Images with GANs and VAEs
	Intuition and justification of generative models
	Variational autoencoders
	Generating new MNIST digits with VAE

	Generative Adversarial networks
	Training GANs
	Training the discriminator
	Training the generator
	Putting it all together

	Types of GANs
	DCGAN
	The generator in DCGAN

	Conditional GANs

	Generating new MNIST images with GANs and Keras

	Summary

	Chapter 7: Recurrent Neural Networks and Language Models
	Recurrent neural networks
	RNN implementation and training
	Backpropagation through time
	Vanishing and exploding gradients

	Long short-term memory
	Gated recurrent units

	Language modeling
	Word-based models
	N-grams
	Neural language models
	Neural probabilistic language model
	word2vec
	Visualizing word embedding vectors

	Character-based models for generating new text
	Preprocessing and reading data
	LSTM network
	Training
	Sampling
	Example training

	Sequence to sequence learning
	Sequence to sequence with attention

	Speech recognition
	Speech recognition pipeline
	Speech as input data
	Preprocessing
	Acoustic model
	Recurrent neural networks
	CTC

	Decoding
	End-to-end models

	Summary

	Chapter 8: Reinforcement Learning Theory
	RL paradigms
	Differences between RL and other ML approaches
	Types of RL algorithms
	Types of RL agents

	RL as a Markov decision process
	Bellman equations
	Optimal policies and value functions

	Finding optimal policies with Dynamic Programming
	Policy evaluation
	Policy evaluation example

	Policy improvements
	Policy and value iterations

	Monte Carlo methods
	Policy evaluation
	Exploring starts policy improvement
	Epsilon-greedy policy improvement

	Temporal difference methods
	Policy evaluation
	Control with Sarsa
	Control with Q-learning
	Double Q-learning

	Value function approximations
	Value approximation for Sarsa and Q-learning
	Improving the performance of Q-learning
	Fixed target Q-network

	Experience replay
	Q-learning in action
	Summary

	Chapter 9: Deep Reinforcement Learning for Games
	Introduction to genetic algorithms playing games
	Deep Q-learning
	Playing Atari Breakout with Deep Q-learning

	Policy gradient methods
	Monte Carlo policy gradients with REINFORCE
	Policy gradients with actor–critic
	Actor-Critic with advantage

	Playing cart pole with A2C

	Model-based methods
	Monte Carlo Tree Search
	Playing board games with AlphaZero

	Summary

	Chapter 10: Deep Learning in Autonomous Vehicles
	Brief history of AV research
	AV introduction
	Components of an AV system
	Sensors
	Deep learning and sensors

	Vehicle localization
	Planning

	Imitiation driving policy
	Behavioral cloning with PyTorch

	Driving policy with ChauffeurNet
	Model inputs and outputs
	Model architecture
	Training

	DL in the Cloud
	Summary

	Other Books You May Enjoy
	Index

