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Introduction

Artificial intelligence (AI for short) is the field of embedding human thinking into 

computers In other words, creating an artificial brain that mimics the functions of the 

biological brain. Whatever the human can do intelligently is now required to be moved 

into machines. First-generation AI focuses on problems that can be formally described 

by humans. Using AI, steps for doing something intelligent are described in a form of 

instructions that machines follow. Machines follow the human without changes. These 

features are characteristic of the first era of AI.

Humans can fully describe only simple problems such as Tic-Tac-Toe or even 

chess and fail to describe the more complicated problems. In chess, the problem can 

be simply explained by representing the board as a matrix of size 8×8, describing each 

piece and how it moves, and describing the goals. Machines will be restricted to those 

tasks formally described by humans. By programming such instructions, machines can 

play chess intelligently. Machine intelligence is now artificial. The machine itself is not 

intelligent, but humans have transferred their intelligence to the machine in the form of 

several static lines of code. By static, it is meant that the behavior is the same in all cases.

The machine, in this case, is tied to the human and can’t work on its own. This is like 

a master-slave relationship. The human is the master and the machine is the slave, which 

just follows the human’s orders and no more.

Embedding intelligent behavior inside chunks of code can’t handle all intelligent 

behaviors of humans. Some simple tasks, such as sorting numbers or playing some 

games, can be described by humans and then handled by the machine with 100% 

of human intelligence. However, some complex tasks, such as speech-to-text, image 

recognition, sentiment analysis, and others, can’t be solved by just code. Such problems 

could not be described by the human as done with chess. It is impossible to write code 

to recognize image objects such as cats. Such intelligent behavior of recognizing objects 

simply can’t be solved using a static code because there is no single rule for classifying 

objects. There is no rule to recognize cats, for instance. Even if a rule is successfully 

created to recognize cats in one environment, it will definitely fail when applied in 

another. So how can we make machines intelligent in such tasks? This is machine 

learning (ML), in which rules are learned by machines.
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To make the machine able to recognize objects, we can give it previous knowledge 

from experts in a way the machine can understand. Such knowledge-based systems 

form the second era of AI. One of the challenges in such systems is how to handle 

uncertainty and unknowns. Humans can recognize objects even in different and 

complex environments and are able to handle uncertainty and unknowns intelligently, 

but machines can’t.

In ML, the human is responsible to do the complex task of investigating the data 

to find what types of features are able to categorize objects accurately. Unfortunately, 

it is a challenging task to find the best types of features to use. This is the question that 

researchers are trying to answer for different applications. For example, to diagnose a 

disease, the expert human starts by collecting data for both affected and nonaffected 

persons, labels such data well, and finds some types of features that are robust in 

discriminating between people with the disease and those without it. Such features may 

be age, gender, blood sugar, and blood pressure. This is a very challenging task because 

the larger the dataset, the more complex for humans to find features working across all 

samples.

These days, however, ML models can be trained to identify how to discriminate 

between the different classes. The ML algorithm is what finds the suitable mathematical 

function that creates the most robust relationship between the inputs and their outputs.

ML algorithms are not doing everything; the key intelligence is still found in the 

human expert, not in the machine. The human collects and labels the data, extracts the 

most suitable features, and selects the best ML algorithm. After that, the ML algorithm 

just learns what the human has told it. Still, the machine plays an important role in 

finding the rule by which the inputs are mapped to the outputs.

Usually, ML algorithms trained with data from a certain environment(s) can’t 

work with other environments. This is a key limitation. There are huge amounts of 

data existing all over the world. Day after day, the data increases and traditional ML 

techniques are not suitable for its manipulation. For instance, images are complex to 

describe using a set of engineered features due to the variations even within the same 

environment. The work (i.e., feature engineering) should be repeated to make the ML 

algorithm suited to work with other environments.

If the human ability to find good discriminating features decreases as the number 

of classes increases, we can avoid depending on humans and leave that task for the 

machine. The machine itself will try to explore the data and find suitable features to 

discriminate the classes. Just give the machine the data and it will find what features to 
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use in order to make a classifier. This is deep learning (DL). The convolutional neural 

network (CNN) DL model is the trend for working with large amounts of images.

The field of DL focuses on learning how to draw conclusions from raw data without 

the need of the in-between step of feature engineering. This is why DL can be practically 

called “automated feature engineering.” It is tiresome in its processing and memory 

requirements and may take weeks to discriminate between different classes.

This book targets those of tomorrow’s data scientists who would like to start 

understanding the basic concepts of DL for computer vision. Readers should have 

a basic understanding of image processing and Python. Here is an overview of the 

chapters.

Chapter 1 selects the most suitable set of features for classifying the Fruits 360 

dataset based on a review of some commonly used feature descriptors in computer 

vision. Such features are implemented in Python. By filtering such features in the 

preprocessing step, the minimum number of elements are used for classification. This 

chapter concludes that traditional handcrafted features are not suitable for complex 

problems. DL is the alternative for working with millions of samples and thousands of 

classes.

Chapter 2 discusses the artificial neural network (ANN), which is the base of DL 

models. It starts by explaining how the ANN is just a combination of linear models. ANN 

architecture is designed for some simple examples by specifying the best number of 

layers and neurons. Based on both numerical and Python examples, it will be clear how 

ANN works for both forward and backward passes.

Chapter 3 uses the feature set from Chapter 2 to implement the ANN for classifying 

a subset of the Fruits 360 dataset. Because no optimization technique is used within the 

implementation, the classification accuracy is low.

Chapter 4 gives an introduction to single- and multiobjective optimization 

techniques. It uses the genetic algorithm random-based technique for optimizing the 

ANN weights. This increases the classification accuracy to more than 97%.

Chapter 5 discusses CNNs for recognizing multidimensional signals. The chapter 

starts by highlighting the differences between fully connected neural networks (FCNNs) 

and CNNs and how CNN is derived from FCNN. Based on numerical examples, the two 

basic operations in CNN, namely, convolution and pooling, will be clear. CNN layers are 

implemented in NumPy for understanding how things work in detail.

Chapter 6 introduces the TensorFlow DL library, which is used to build DL 

models for parallel and distributed processing of large amounts of data. TensorFlow 
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placeholders, variables, dataflow graphs, and TensorBoard are discussed based on some 

examples building a simple linear model and an ANN for simulating the XOR gate. By 

the end of this chapter, a CNN is created using tensorflow.nn module for classifying the 

CIFAR10 dataset.

Chapter 7 deploys the trained models into a web server for being accessed by 

Internet users using a web browser. A web application is created using the Flask 

microframework. HTML, CSS, and JavaScript are used to build the front pages for 

accessing the web server. The HTML pages send HTTP requests to the server with an 

image, and the server responds to such requests with the predicted class.

Chapter 8 builds cross-platform applications using the Kivy open source library. 

By linking Kivy to NumPy, it is possible to build data science applications that work 

unchanged on different platforms. This removes the overhead of customizing the code 

for a specific platform. An Android application is created to read an image and execute 

the CNN layers implemented using NumPy in Chapter 5.

To benefit from the projects created, it is preferred to push them online for other 

people to use and benefit from. An appendix discusses how to package Python projects 

and distribute them into the Python package index (PyPI) repository.

Before starting, let’s take a brief overview of the Python environment used in the 

book.

All code in the book is implemented using Python. Because native Python is 

complex for handling images, multiple libraries are used to help to produce an efficient 

implementation for applications across the chapters.

At first, native Python could be downloaded from this link (www.python.org/

downloads). The book uses Python 3. Just install the version of Python that is suitable 

for your system. The next step is to prepare all libraries required across the entire book. 

Rather than installing individual libraries, it is recommended to use Anaconda Python 

distribution. It is available for download from this link (www.anaconda.com/download). 

It supports Windows, Mac, and Linux and packages more than 1,400 data science 

libraries. A list of all supported packages can be accessed from this page (https://repo.

anaconda.com/pkgs). By just installing Anaconda on your machine, all of the supported 

libraries will be ready for use. This is helpful to avoid the challenges of preparing the 

Python environment.

The required libraries in this book are NumPy, SciPy, Matplotlib, scikit-image, 

scikit-learn, TensorFlow, Flask, Werkzeug, Jinja, Pickle, Pillow, and Kivy. All of these 

libraries, except for Kivy, are supported by Anaconda. Later in this chapter, we will 

InTroduCTIon

http://www.python.org/downloads
http://www.python.org/downloads
http://www.anaconda.com/download
https://repo.anaconda.com/pkgs
https://repo.anaconda.com/pkgs


xxi

see the function of each of them. Note that such libraries can be installed easily. After 

installing the native Python, we can use the pip installer to download and install a library 

based on this command: “pip install <lib-name>”. Just type the name of the library. Some 

installations are not straightforward and might change if the system changes. Thus, 

we can’t cover the different installations. For such reasons, Anaconda is better than 

installing each library individually. Let’s discuss the libraries needed.

Python supports a number of built-in data structures: list, tuple, dictionary, set, and 

string. Unfortunately, no data structure provides flexibility in data science applications.

These data structures support working with different data types at the same time. 

The same data structure might contain numbers, characters, objects, and more. String 

is an exception, in which only characters are supported. Moreover, string and tuple are 

immutable, which means it is impossible to change their values after they are created. 

Dictionary adds a key to each item. Saving image pixels using a dictionary requires 

adding a key to each pixel which enlarges the amount of data saved. Set is restricted to 

just set operations and images are not restricted to just such operations.

Talking about images, which are the main concern of the book, list is the suitable 

data structure. It is a mutable data type that is able to hold matrices. Unfortunately, 

working with lists makes the process complex. We have to make sure everything is 

numeric, of a certain specific type because different numeric data types can be saved 

in the same list. To apply a simple operation such as adding a number to the image, we 

have to write loops for visiting each element and apply such operations individually. 

In data science applications, it is recommended to use the tools that make applying 

the operations easier. There are some challenging tasks to conquer when building an 

application, and we do not need to add another challenge in programming such tasks.

For such reasons, the NumPy (Numeric Python) library is used. Its basic role is to 

support a new data structure in Python, which is array. Working with NumPy arrays is 

simpler than working with lists. For example, using just the addition operator (+), we 

can add a number to each element in the image after it is converted into a NumPy array. 

Many other libraries have their functions accept and return a NumPy array.

Some operations are supported inside the NumPy array, but it is not meant to apply 

operations. The SciPy (Scientific Python) library supports the same operations in the 

NumPy arrays and more. It also supports working with the n-dimensional NumPy arrays 

(e.g., images) using the scipy.ndimage submodule. For more advanced operations on 

images, the scikit-image library is used. For example, image features can be extracted 

using this library.
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After reading the image and applying some operations, Matplotlib is used for 

displaying the images. It is mainly used for 2D visualization, but it also supports some 3D 

features.

After reading the images, extracting features, and making visualizations, we can start 

building ML models using the scikit-learn library. It supports different types of models 

that are ready for use. Just feed it with inputs, outputs, and their parameters to have a 

trained model.

After training a ML model, we can save it for later use using the pickle library, which 

serializes and deserializes the objects. Up to this point, we can build and save an ML 

model. We then move to building and saving a DL model using TensorFlow. It is the 

most commonly used DL library, as it supports different APIs that match the needs 

of professionals and beginners alike. TensorFlow has its own ways to save the trained 

models.

In order to deploy the trained models, Flask is used. It is a microframework for 

building web applications. By deploying the trained models to the web server, clients can 

access such applications using a web browser. They can upload test images to the server 

and receive the classification label. Flask uses the Jinja2 template engine and WSGI for 

building the applications. For such reasons, the libraries Jinja and werkzeug must be 

installed.

In order to build a data science mobile application that runs on-device, Kivy is used. 

It is a Python library that allows the Python code to run cross-platform. In this book, Kivy 

is used to build rich data science applications running for Android. The APK generated 

by Kivy can be used in the market exactly as if it were created normally using Android 

Studio.

Kivy uses the python-for-android packager, which allows adding the required 

dependencies in the Android application. Because scikit-image is not supported by 

python-for-android, images are read using Pillow, which is supported to run on Android 

devices.

Implementations of the projects are available at this GitHub account:  github.com/

AhmedFGad
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CHAPTER 1

Recognition in Computer 
Vision
Most computer science research tries to build a human-like robot that is able to function 

exactly as humans. Even emotional properties are not impossible for such robots. Using 

a sensor, the robot feels the temperature in the surrounding environment. Using facial 

expressions, it is possible to know whether a person is sad or happy. Even things that 

seem impossible might eventually only be challenging.

At the current time, a very challenging application is object recognition. Recognition 

can be based on different types of data such as audio, image, and text. But image 

recognition is a very efficient way due to the plenitude of information that can be helpful 

in the task. Thus, it is regarded as the most popular application in computer vision.

There is a massive number of objects existing in the world, and differentiating them  

is a complex task. Different objects might have similar visual appearance except for subtle 

details. Moreover, the same object appears differently based on its surrounding environment. 

For example, based on the light, viewing angle, distortion, and occlusion, the same object 

appears differently in the image. Depending on the native image, pixels may not be a good 

option for image recognition. This is because a minor change in each pixel leads to a major 

change in the image, and thus the system is unable to recognize the objects correctly. The 

target is to find a set of unique properties or features that do not change even with changing 

pixel locations or values, as long as the structure of the object appears somewhere in the 

image. Manually extracting features from images is a big challenge in image recognition. 

This is why automatic approaches to feature extraction are becoming the alternative.

Because recognition of any object in any environment is complex at the current time, 

the alternative way is to restrict the environment or the objects targeted. For example, 

rather than recognizing all types of animals, we can just target a group of them. Rather than 

working indoors and outdoors, we might restrict the environment to just indoor images. 
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Rather than recognizing objects in different views, we might only work with some views. 

Generally, creating a narrow artificial intelligence application, while challenging, is easier 

and has fewer difficulties than general artificial intelligence application.

This chapter discusses how to build a recognition application to classify fruit  

images. It starts by presenting some types of features that are useful generally with 

different types of applications and then finds the best of such features for use with our 

target application. By the end of this chapter, we will find why manually extracting 

features is challenging and why automatic feature mining using convolutional neural 

networks (CNNs) is preferred.

 Image Recognition Pipeline
Similar to most traditional recognition applications, image recognition is likely to follow 

some predefined steps, from accepting an input to returning the desired results. A 

summary of such steps is presented in Figure 1-1.

Figure 1-1. General recognition pipeline

Chapter 1  reCognition in Computer Vision
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Sometimes the input image is not suitable in its current form for processing. For 

example, if we are to build a face recognition application that captures images in a 

complex environment to recognize the people inside it, then it is preferred to remove 

the background before starting to recognize the target object. Background removal, in 

this case, is a type of preprocessing. Generally, any step preceding the actual work is 

called preprocessing. Preprocessing is a step that maximizes the probability of successful 

recognition.

After preparing the inputs, we come to the actual work, which starts with feature 

extraction or mining. This is the critical step in most recognition applications. The target 

is to find a set of representative features that accurately describes each input. Such a set 

of features should maximize the probability of mapping each input to its correct output 

and also minimize the probability of assigning each input a wrong label. As a result, 

there should be an analysis of the types of features to be used.

The application and the set of features used are related. The features are selected 

based on the application. By understanding the nature of the application, the type 

of features required will be easily detected. For an application such as human face 

detection, what are the features to be extracted? Human faces have skin of various colors, 

and thus we can determine that skin color is the feature to be used. Knowing that the 

application is to detect human faces in grayscale outdoor images, low lighting, and in a 

moving environment helps to select the appropriate features. If you are asked to build 

an application to recognize oranges and bananas, you can benefit from the fact that 

oranges and bananas have different colors and thus decide that only color features are 

enough. But they are not enough to recognize different types of skin cancer, for instance. 

More work must be done to find the most suitable set of features. The next section titled 

Feature Extraction discusses some features helpful in image recognition applications.

After creating a feature vector holding the features that are likely to be useful in the 

recognition application, we come to other steps that add further enhancement, namely, 

feature selection and reduction. The primary goal of feature selection and reduction can 

be defined as obtaining an optimal feature subset from a set of features that enhances 

the learning algorithm performance or accuracy by reducing the number of irrelevant, 

correlated, and noise features. The section titled Feature Selection & Reduction 

discusses the approaches for reducing the feature vector length by removing such 

features.
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 Feature Extraction
It is unusual to apply the image in its native form as input to the training model. 

There are different reasons why extracting features is a better way. One reason is 

that images, even small ones, have a very large number of pixels, where each pixel is 

applied as an input to the model. For a grayscale image of size 100×100 pixels, there are 

100×100 = 10,000 input variables to be applied to the model. For a small dataset of 100 

samples, there will be a total of 100×10,000 = 1,000,000 inputs across the entire dataset. If 

the image is Red-Green-Blue (RGB), the total number is multiplied by 3. This requires a 

large memory in addition to being computationally intensive.

Another reason why feature extraction is preferred before training is that the input 

image has different types of objects with different properties, and we just want to target a 

single object. For example, Figure 1-2(a) shows an image of a dog from the “Dogs Vs. Cats 

Kaggle” competition. Our goal is to detect the dog, and we do not care about either the 

wood or the grass. If the complete image is used as the input to the model, the wood and 

the grass will affect the results. It is better to just use features exclusive to the dog. It is clear 

that the dog color is different from other colors in the image, according to Figure 1-2(b).

Figure 1-2. Targeting a specific object inside the image is easier when using features

Generally, successful modeling of the problem is tied to the selection of the best 

features. The data scientist should select the most representative set of features for the 

problem being solved. There are different types of features to be used to describe the 

images. These features can be categorized in different ways. One way is to examine 

whether they are extracted globally or locally from specific regions in the image. Local 
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features are those such as edge and keypoints. Global features are those such as color 

histogram and pixel count. By global, it is meant that the feature describes the entire 

image. Saying that the color histogram is centered at the left region means that the entire 

image is dark. The description is not just for a specific region of the image. Local features 

are focused on a specific something within the image such as the edges.

Subsequent subsections discuss the following features:

• Color Histogram

• Edge

• HOG

• Texture

• GLCM

• GLGCM

• LBP

 Color Histogram
The color histogram represents the distribution of the colors across the image. It is 

usually used with gray images, but there are modifications to use it with color images. 

For simplicity, let’s calculate the color histogram for the 5×5 2-bit image in Figure 1-3. 

The image has just 4 grayscale levels. The image is randomly generated using NumPy.

Figure 1-3. Two-bit grayscale image of size 5×5
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By calculating the frequency of each grayscale level, the histogram is presented in 

Figure 1-4. Based on the histogram, it is obvious that the high-frequency bins are located 

to the right and thus the image is bright because most of its pixels are high.

Figure 1-4. Histogram of a 2-bit 5×5 grayscale image

Listing 1-1 gives the Python code used to randomly generate the previous tiny image 

in addition to calculating and displaying the histogram.

Listing 1-1. Histogram for a Tiny Randomly Generated Image

import matplotlib.pyplot

import numpy

rand_img = numpy.random.uniform(low=0, high=3, size=(5,5))

rand_img = numpy.uint8(rand_img)

hist = numpy.histogram(rand_img, bins=4)

matplotlib.pyplot.bar(left=[0,1,2,3], height=hist[0], align="center", 

width=0.3)

matplotlib.pyplot.xticks([0,1,2,3], fontsize=20)

matplotlib.pyplot.yticks(numpy.arange(0, 15, 2), fontsize=20)
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The numpy.random.uniform() accepts the size of the array to be returned in addition 

to the lower and higher bounds of the range from which image pixels will be assigned 

values. The lower bound is 0 and the higher bound is 3 because we are looking to create 

a 2-bit image. numpy.uint8() is used to convert the values from floating-point to integer. 

Then, the histogram is calculated using numpy.histogram(), which accepts the image and 

number of bins and returns the frequency of each level. Finally, matplotlib.pyplot.bar() 

is used to return a bar graph showing each level on the x axis and its frequency on the y 

axis. matplotlib.pyplot.xticks() and matplotlib.pyplot.yticks() are used to change 

the range of the x axis and y axis in addition to the display font size.

 Histogram of a Real-World Image

Let’s calculate the histogram on a real-world image as in Figure 1-2(a) after converting it 

to black-and-white. Both the grayscale image and the histogram are shown in Figure 1-5.  

It seems that the histogram is mostly concentrated in the left part, which means the 

image is generally dark. Because the dog’s body is white, part of the histogram is located 

at the rightmost part of the histogram distribution.

Figure 1-5. Grayscale image histogram

Chapter 1  reCognition in Computer Vision



8

Listing 1-2 gives the Python code for reading the color image, converting it to 

grayscale, calculating its histogram, and finally plotting the histogram as a bar graph.

Listing 1-2. Histogram for a Real-World Image

import matplotlib.pyplot

import numpy

import skimage.io

im = skimage.io.imread("69.jpg", as_grey=True)

im = numpy.uint8(im*255)

hist = numpy.histogram(im, bins=256)

matplotlib.pyplot.bar(left=numpy.arange(256), height= hist[0], 

align="center", width=0.1)

Using the skimage.io.imread() function, the image is both read and converted 

to grayscale using the as_grey attribute. When set to True, the image is returned as 

grayscale. The returned image data type is float64. To convert it to an unsigned integer 

that ranges from 0 to 255, the numpy.uint8() is used. The image is firstly multiplied by 

255 before conversion because numpy.uint8() does not rescale the inputs. It just makes 

sure the numbers are integers represented by 8 bits. For example, applying a number 

equal to 0.7 to this function, the result is 0. We want to rescale 0.4 from the 0–1 range to 

the 0–255 range and then convert it into uint8. Without multiplying the inputs by 255, all 

values will be just 0 or 1. Note that the number of histogram bins is set to 256 rather than 

4 in the previous example because the image is represented as 8-bit.

 HSV Color Space

Color histogram means that the image pixels are represented in one of the color 

spaces, and then the frequency of the levels existing in such color spaces are counted. 

Previously, the image was represented in the RGB color space, which ranges from 0 to 

255 to each channel. But this is not the only existing color space.

Another color space that we will cover is HSV (Hue-Saturation-Value). The 

advantage of this color space is the separation of color and illumination information. 

The hue channel holds the color information and the other channels (saturaiton and 

value) specifies the lightness of the color. It is useful to target the color rather than the 

illumination and creating illumination-invariant features. We will not cover the HSV 
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color space in this book, but it is fine to read more about how colors are generated using 

HSV. What is worth mentioning is that the hue channel represents a circle with its values 

ranging from 0 to 360, where a degree of 0 represents red, 120 for green, 240 for blue, and 

back to red at degree 360. So, it starts and ends at a red color.

For the image in Figure 1-2(a), the hue channel and its histogram are shown 

in Figure 1-6. When the hue channel gets represented as the grayscale image as in 

Figure 1-6(a), the red color will be given a high value (white), as shown in the dog collar. 

Because the blue is given a high hue value of 240, it is lighter in the grayscale image.  

The green color with a hue value of 140 is nearer to 0 than to 360; thus, it has a dark color. 

Note that the dog’s body, which is white in RGB color space, looks black in the HSV. 

The reason is that HSV is not responsible for the intensity but just the color. It will be 

white in the value channel.

Figure 1-6. Hue channel of a color image represented in HSV and its histogram

According to Listing 1-3, the RGB image is converted into HSV color space and its 

hue channel histogram is displayed.

Listing 1-3. Displaying the Image Histogram Using Matplotlib

import matplotlib.pyplot

import numpy

import skimage.io

import skimage.color
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im = skimage.io.imread("69.jpg", as_grey=False)

im_HSV = skimage.color.rgb2hsv(im)

Hue = im_HSV[:, :, 0]

hist = numpy.histogram(Hue, bins=360)

matplotlib.pyplot.bar(left=numpy.arange(360), height=hist[0], 

align="center", width=0.1)

Because the hue channel is the first channel in the HSV color space, it is given the 

index 0 to get returned.

Features are expected to be unique for different images. If different images have the 

same features, the results will not be accurate. The color histogram has such a drawback, 

as it could be identical for different images. The reason is that the color histogram just 

counts the frequency of colors, whatever their arrangement in the image. Figure 1-7(a) 

transposed the image in Figure 1-3. Based on Figure 1-7(b), the histograms of the image 

before and after transposition are identical despite the pixel locations being different.

Figure 1-7. Changing pixel locations does not change the color histogram

One may think that this is not a problem, as a good feature descriptor should 

remain persistent even with changes to the image such as rotation and scale. The color 

histogram is not able to meet this property, as it returns the same histogram even if 

the images are completely different. To solve this problem, both the pixel intensity and 

location should be considered to return a more representative feature. Examples of such 

features are texture features such as GLCM.
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 GLCM
One of the popular statistical texture analysis methods depends on the second-order 

statistics extracted from the spatial relationship between pairs of pixels. The most 

popular of such features are ones extracted from the co-occurrence matrix (CM). One of 

the CMs is the gray-level co-occurrence matrix (GLCM). Based on its name, it accepts a 

grayscale image as input and returns GLCM matrix as output.

GLCM can be described as a two-dimensional histogram that counts the number of 

co-occurrences between each pair of grayscale levels according to the distance between 

them. What makes GLCM different from the first-order histogram is that GLCM depends 

not just on the intensity but also on the spatial relationship of the pixels. For every two 

pixels, one is called reference and the other is called neighbor. GLCM finds how many 

times two intensity levels co-occur when the distance between them is D and the angle 

is θ. GLCM(1, 3),D = 1,θ = 0° refers to how many times the reference pixel with the intensity 

value of 1 co-occurs with its neighbor with intensity 3 when they are separated by 

distance D = 1 and angle θ = 0°. When θ = 0, this means they are on the same horizontal 

line. θ specifies the direction and D specifies the distance in that direction. Note that the 

reference exists to the left side of the neighbor.

The steps to calculate the GLCM are as follows:

 1. If the input image was grayscale or binary, use it directly. If it was 

a color image, convert it into the grayscale image or use just one of 

its channels if appropriate.

 2. Find the total number of intensity levels in the image. If the 

number is L, then number these levels from 0 to L − 1.

 3. Create an LxL matrix, where both rows and columns are 

numbered from 0 to L − 1.

 4. Select the appropriate parameters of the GLCM (D, θ).

 5. Find the co-occurrence between every two pairs of intensity 

levels.
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 D Values

Research studies showed that the best values for D are ones ranging from 1 to 10. Larger 

values will yield GLCMs that don’t capture the detailed textural information. So, the 

results are accurate for D=1, 2, 4, 8, with D=1, 2 being the best. Normally, a pixel is likely 

to be more correlated with pixels near to it. Decreasing the distance yields better results 

than higher distances.

 θ Values

For a 3×3 matrix, the center pixel has 8 neighboring pixels. Between such center pixel 

and all other 8 pixels, there are 8 possible values for θ as described in Figure 1-8.

Figure 1-8. Values of θ between the center pixel and its eight neighboring pixels

Because the co-occurring pairs obtained by choosing θ set to 0° and 180° are equal 

(i.e., GLCM(1, 3),θ = 0° = GLCM(3, 1),θ = 180°), only one angle is sufficient. Generally, angles 

separated by 180° return the same results. This applies to angles (45°, 225°), (135°, 315°), 

and (90°, 270°).

Let’s start to calculate the GLCM for the previous matrix in Figure 1-3, repeated 

again in the matrix below, when D=1 and θ=0. Because that image has four intensity 

levels, then the available pairs when the reference intensity is 0 are (0,0), (0,1), (0,2), and 

(0,3). When the reference intensity is 1, then the pairs are (1,0), (1,1), (1,2), and (1,3). 

This continues for 2 and 3.

3 2 2 0 3

1 3 0 2 2

2 2 2 2 3

3 3 3 2 3

0 2 3 2 2
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Calculating GLCM(0, 0),D = 1,θ = 0°, the value will be 0. This is because there is no pixel with 

intensity 0 that is 1 pixel away horizontally from another pixel with intensity 0. The result 

is also 0 for pairs (0,1), (1,0), (1,1), (1,2), (2,1), and (3,1).

For GLCM(0, 2),D = 1,θ = 0°, the result is 2 because there are three times when the intensity 

3 is located 1 pixel away from intensity 0 horizontally (i.e., θ = 0°). The result is also 

2 for GLCM(3, 3),D = 1,θ = 0°. For GLCM(0, 3),D = 1,θ = 0°, the result is 1 because there is only one 

occurrence of the intensity 3 with distance 1 and angle 0 from intensity 0. This is located 

in the top right of the original matrix.

The complete GLCM is available in Figure 1-9. The matrix is of size 4×4 because it 

has 4 intensity levels numbered from 0 to 3. The row and column labels are added to 

make it easier to know which intensity level co-occurs with another.

Figure 1-9. GLCM of the matrix in Figure 1-3 where distance is 1 and angle is 0

The Python code used to return the preceding GLCM is given in Listing 1-4.

Listing 1-4. GLCM Matrix Calculation

import numpy

import skimage.feature

arr = numpy.array([[3, 2, 2, 0, 3],

                   [1, 3, 0, 2, 2],

                   [2, 2, 2, 2, 3],

                   [3, 3, 3, 2, 3],

                   [0, 2, 3, 2, 2]])

co_mat = skimage.feature.greycomatrix(image=arr, distances=[1], angles=[0], 

levels=4)
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The skimage.feature.greycomatrix() is used to calculate the GLCM. It accepts 

the input image, distances, angles at which the matrix will be calculated, and finally, the 

number of levels used. The number of levels is important, as the default is 256.

Note that there is a matrix for each unique pair of angles and distances. There is just 

a single angle and distance used and thus a single GLCM matrix returned. The shape of 

the returned output has four numbers as follows:

co_mat.shape = (4, 4, 1, 1)

The first two numbers represent the number of rows and columns, respectively. The 

third number represents the number of used distances. The last one is the number of 

angles. If the matrix is to be calculated for more distances and angles, then specify them 

in skimage.feature.greycomatrix(). The next line calculates the GLCM using two 

distances and three angles.

co_mat = skimage.feature.greycomatrix(image=arr, distances=[1, 4], 

angles=[0, 45, 90], levels=4)

The shape of the returned matrix is

co_mat.shape = (4, 4, 2, 3)

Because there are two distances and three angles, the total number of returned 

GLCMs is 2×3 = 6. To return the GLCM at distance 1 and angle 0°, the indexing will be as 

follows:

co_mat[:, :, 0, 0]

This returns the complete 4×4 GLCM, but only for the first distance (1) and first angle 

(0) according to their order in the skimage.feature.greycomatrix() function. To return 

the GLCM corresponding to distance 4 and angle 90°, the indexing will be as follows:

co_mat[:, :, 1, 2]

 GLCM Normalization

The previously calculated GLCMs are useful for learning how many times each intensity 

level co-occurs with each other. We can benefit from such information to predict  

the probability of co-occurrence between each two intensity levels. The GLCM can  

be converted into a probability matrix, and thus we can know the probability of  

co- occurrence between each of two intensity levels l1 and l2 when separated by distance 
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D and angle θ. This is done by dividing each element in the matrix by the sum of matrix 

elements. The resulting matrix is called the normalized or probability matrix. Based 

on Figure 1-9, the sum of all elements is 20. After dividing each element by that, the 

normalized matrix is shown in Figure 1-10.

Figure 1-10. Normalized GLCM matrix with distance 1 and angle 0

One benefit from normalizing the GLCM is that all elements in the output matrix 

are in the same scale from 0.0 to 1.0. Moreover, the results are independent of the image 

size. For example, the highest frequency according to Figure 1-9 of size 5×5 is 6 for the 

pair (2,2). If a new image is larger (e.g., 100×100), the highest frequency will not be 6 

but a larger value such as 2,000. We can’t compare 6 by 2,000 because such numbers 

are relevant to the image size. By normalizing the matrix, the elements of the GLCM are 

independent of the image size and thus we can compare them correctly. In Figure 1-10, 

the pair (2,2) is given a probability of 0.3, which is comparable with the probability of co-

occurrence from any image of any size.

Normalizing the GLCM in Python is very simple. Based on a boolean parameter 

called “normed”, if set to True the result will be normalized. It is set to False by default. 

The normalized matrix is calculated according to this line:

co_mat_normed = skimage.feature.greycomatrix(image=arr, distances=[1], 

angles=[0], levels=4, normed=True)

The GLCM is of size 4×4 because we are using a 2-bit image with just 4 levels. For 

the 8-bit grayscale image in Figure 1-2(a), there are 256 levels and thus the matrix size 

is 256×256. The normalized GLCM is shown in Figure 1-11. The probabilities are large 

for two regions. The first one is at the top left (low intensity) as the background has dark 

colors. The other region is at the bottom right (high intensity) for the dog’s body, because 

its color is white.
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As the number of levels increases, the size of the matrix will increase. The GLCM 

in Figure 1-11 has 256×256 = 65,536 elements. Using all elements in the matrix in the 

feature vector will increase its length greatly. We can reduce this number by extracting 

some features from the matrix, including dissimilarity, correlation, homogeneity, energy, 

contrast, and ASM (angular second moment). Listing 1-5 gives the Python code required 

to extract such features.

Listing 1-5. Extracting GLCM Features

import skimage.io, skimage.feature

import numpy

img = skimage.io.imread('im.jpg', as_grey=True);

img = numpy.uint8(img*255)

Figure 1-11. GLCM matrix of a grayscale image with 256 levels with distance 6 
and angle 0
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glcm = skimage.feature.greycomatrix(img, distances=[6], angles=[0], 

levels=256, normed=True)

dissimilarity = skimage.feature.greycoprops(P=glcm, prop='dissimilarity')

correlation = skimage.feature.greycoprops(P=glcm, prop='correlation')

homogeneity = skimage.feature.greycoprops(P=glcm, prop='homogeneity')

energy = skimage.feature.greycoprops(P=glcm, prop='energy')

contrast = skimage.feature.greycoprops(P=glcm, prop='contrast')

ASM = skimage.feature.greycoprops(P=glcm, prop='ASM')

glcm_props = [dissimilarity, correlation, homogeneity, energy, contrast, ASM]

print('Dissimilarity',dissimilarity,'\nCorrelation',correlation, 

'\nHomogeneity',homogeneity,'\nEnergy',energy,'\nContrast',contrast, 

'\nASM',ASM)

One drawback of GLCM is being dependent on the grayscale values. Just a small 

change in the illumination affects the resulting GLCM. One solution is to build the 

CM using gradients rather than intensities. Such a matrix is called gray-level gradient- 

based co-occurrence matrix (GLGCM) . By using gradients, GLGCM is invariant to the 

illumination changes.

Both GLCM and GLGCM are variant to image transformations. That is, if the same 

grayscale image is affected by a transformation such as rotation, the descriptor will yield 

different features. A good feature descriptor should be invariant to such effects.

 HOG
GLCM is used to describe the image texture but it can’t describe the abrupt changes in 

image intensities (i.e., edges). Sometimes texture is not the suitable feature to use in a 

problem, and we have to look for another feature. One category of feature descriptors is 

used to describe the image edges. Such features describe different aspects of the edges 

such as edge direction or orientation, edge position, and edge strength or magnitude.

This subsection discusses a descriptor called histogram of oriented gradients (HOG) 

that describes the edge orientations. Sometimes, the target objects have a unique 

direction of movement, and thus HOG is a suitable feature. HOG creates a histogram 

of a number of bins representing the frequency of the edge orientations. Let’s see how 

HOG works.
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 Image Gradients

There are changes in intensities between every pair of neighboring pixels within the image. 

To measure that change, the gradient vector for every pixel is calculated to measure how 

the intensity changes from this pixel to its neighboring pixels. That vector’s magnitude is 

the difference in intensities between two pixels. The vector also reflects the direction of 

change in terms of X direction and Y direction. For the grayscale image in Figure 1-12, let’s 

calculate the change in the intensity in both X and Y directions for pixel 21 in the third row 

and the fourth column.

Figure 1-12. Grayscale image to calculate its gradients

Figure 1-13. Masks to calculate the horizontal and vertical gradients

Masks to use to find the gradient magnitude in X and Y directions are in Figure 1-13. 

Let’s start calculating the gradients.

By centering the horizontal mask on the target pixel, we can calculate the gradient 

in the X direction. In this case, the neighboring pixels are 83 and 98. By subtracting these 

values, either subtract the left pixel from the pixel to the right or right from left but be 

consistent across the entire image: the amount of change at this pixel is 98 − 83 = 15. The 

angle used in this case is 0°.
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To get the amount of change at that pixel in the Y direction, the vertical mask is 

centered at the target pixel. Then, the top and left pixels for that pixel are subtracted to 

return 63 − 53 = 10. The angle used in this case is 90°.

After calculating the change in both X and Y directions, next is to calculate the final 

gradient magnitude according to Equation 1-1 and also the gradient direction according 

to Equation 1-2.

 Z X Y= +2 2  (Equation 1-1)

 Angle
Y

X
= -tan 1  (Equation 1-2)

The gradient magnitude is equal to 15 10 18 032 2+ = . .

 Gradient Direction

Regarding the gradient direction, one might say that the direction of change for that pixel 

is at 0° because the magnitude at the 0° is higher than the vector at 90°. Others might 

say, however, that the pixel doesn’t change at either 0° or 90° but at an in-between angle. 

Such an angle is calculated by taking both X and Y directions into regard. The direction 

of that vector is tan .- °=1 15

10
56 31 . As a result, that pixel direction of change is at 56.31°.

After calculating the angles for all images, the next step is to create a histogram for 

such angles. To make the histogram smaller, not all angles are used but just a set of 

predefined angles. The most common angles to use are horizontal (0°), vertical (90°), 

and diagonal (45° and 135°). Each angle contributes by a value equal to its gradient 

magnitude calculated according to Equation 1-3. For example, if the current pixel 

contributes to the Z bin, it adds a value of 18.03 to it.

 Contributing to Histogram Bins

The angle we previously calculated is 56.31°. It is not one of the previously selected 

angles. The solution is to assign that angle to the nearest histogram bin. 56.31° is located 

between bins 45° and 90°. Because 56.31° is nearer to 45° than 90°, it will be assigned to 

the bin 45°. A better way is to split the contribution of that pixel to both of these angles 

(45° and 90°).
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The distance between the angles 45° and 90° is 45°. The distance between the angle 

56.31° and 45° is just ∣56.31° − 45° ∣  = 11.31. That means the angle of 56.31° is far away 

from 45° by a percentage equal to 
11 32

45
25

.
% %° = . In other words, 56.31° is 75% near to 45°.  

Similarly, the distance between the angle 56.31° and 95° is just ∣56.31° − 90° ∣  = 33.69. 

That means the angle of 56.31° is far away from 90° by a percentage equal to 
33 69

45
75

.
% %° = . The value by which the angle adds to a bin is calculated according to 

Equation 1-3.

 contribution
abs pixel bin

bin
pixelvalue

angle angle

spacing
g=

-( )
rradientMagnitude( )  (Equation 1-3)

Where pixelangle is the direction of the current pixel, pixelgradientMagnitude is the current 

pixel gradient magnitude, binangle is the histogram bin value, and binspacing is the amount 

of space between every two bins.

As a result, the angle of 56.31° adds to 45° a percentage of 75% of its gradient 

magnitude, which is equal to 
75

100
18 03 13 5x . .= . It adds just 25% of its gradient 

magnitude to 45° to 90°, which is equal to 
25

100
18 03 4 5x . .= .

A more practical histogram contains nine angles starting from 0° and ending at 180°. 

The difference between every pair of angles will be 180/9=20. Thus the angles used are 

0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°, and 180°. The bins are not these angles but the 

center of each range. For the 0°–20° range, the bin used is 10°. For 20°–40°, the bin is 30°, 

and so on. The final histogram bins are 10°, 30°, 50°, 70°, 90°, 110°, 130°, 150°, and 170°.  

If an angle is 25°, it adds to the bins it is located between. That is, it adds to bins 10°  

(by 0.25) and 30° (by 0.75).

By repeating the preceding steps on pixel 68 located at the second row and the 

second column, the result of applying the horizontal mask is 97 − 50 = 47, which is 

the gradient change in the X direction. After applying the vertical mask, the result is 

43 − 23 = 20. The direction of change is calculated as follows based on Equation 1-2:

Angle = = =- - °tan tan1 1 20

47
23

Y

X
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Again, the resultant angle is not equal to any of the histogram bins. Thus the 

contribution of this angle is split across the bins it falls in between, which are 15° and 45°. 

It adds 0.27 to 45° and 0.73 to 45°.

For the pixel located at the fourth row and the second column with intensity value 

88, the change in in the X direction is 0. Applying Equation 1-2, the result will be 

divided by 0. To avoid dividing by zeros, add a very small value such as 0.0000001 to the 

denominator.

 HOG Steps

By this point, we have learned how to calculate the gradient magnitude and direction 

for any pixel. But there is still some work to be done before and after calculating these 

values. A summary of HOG steps is as follows:

 1. Split the input image into patches with aspect ratio 1:2. For 

example, the patch size might be 64×128, 100×200, and so on.

 2. Divide patches into blocks (e.g., four blocks).

 3. Divide each block into cells. Cell size within the block is not fixed.

• For example, if the block size is 16×16 and we determined to 

divide it into four cells, the size of each cell is 8×8. Note also 

that blocks might overlap with each other and one cell might be 

available in multiple blocks.

 4. For each cell within each block, calculate the gradient magnitude 

and direction for all pixels.

• Gradients are calculated based on the masks in Figure 1-13.

• Gradient magnitude and direction are calculated according to 

Equations 1-1 and 1-2, respectively.

 5. Based on the gradient magnitudes and directions, build the 

histogram for each cell. If the number of angles used to constitute 

the histogram is nine, then a 9×1 feature vector is returned by 

each cell. The histogram is calculated according to our previous 

discussion.
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 6. Concatenate all histograms of all cells within the same block and 

return just a single histogram for the entire block. If each cell 

histogram is represented by nine bins and each block has four 

cells, then the concatenated histogram length is 4×9=36. This 36×1 

is vector is the result of each block.

 7. The vector is normalized to make it robust against illumination 

changes.

 8. Concatenate the normalized vectors for all blocks within the 

image patch to return the final feature vector.

Figure 1-14 shows a patch from the image in Figure 1-5(a) of size 64×128.

Figure 1-14. Image patch to calculate its HOG

Before creating the histogram, the vertical and horizontal gradients are calculated 

according to the vertical and horizontal masks. The gradients are shown in Figure 1-15.
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The Python code used to calculate such gradients is given in Listing 1-6.

Listing 1-6. Calculating Gradients

import skimage.io, skimage.color

import numpy

import matplotlib

def calculate_gradient(img, template):

    ts = template.size #Number of elements in the template (3).

    #New padded array to hold the resultant gradient image.

    new_img = numpy.zeros((img.shape[0]+ts-1,

                           img.shape[1]+ts-1))

    new_img[numpy.uint16((ts-1)/2.0):img.shape[0]+numpy.uint16((ts-1)/2.0),

             numpy.uint16((ts-1)/2.0):img.shape[1]+ 

numpy.uint16((ts-1)/2.0)] = img

    result = numpy.zeros((new_img.shape))

Figure 1-15. Vertical and horizontal gradients for the 64×128 image patch
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     for r in numpy.uint16(numpy.arange((ts-1)/2.0,  

img.shape[0]+(ts-1)/2.0)):

        for c in numpy.uint16(numpy.arange((ts-1)/2.0,

                              img.shape[1]+(ts-1)/2.0)):

             curr_region = new_img[r-numpy.uint16((ts-1)/2.0):r+numpy.

uint16((ts-1)/2.0)+1,

                                   c-numpy.uint16((ts-1)/2.0):c+numpy.

uint16((ts-1)/2.0)+1]

            curr_result = curr_region * template

            score = numpy.sum(curr_result)

            result[r, c] = score

     #Result of the same size as the original image after removing the 

padding.

     result_img = result[numpy.uint16((ts-1)/2):result.shape[0]-numpy.

uint16((ts-1)/2),numpy.uint16((ts-1)/2):result.shape[1]-numpy.

uint16((ts-1)/2)]

    return result_img

Based on the calculate_gradient(img, template) function, which accepts a 

grayscale image and a mask, the image is filtered based on the mask and then it is 

returned. By calling it two times with different masks (vertical and horizontal), the 

vertical and horizontal gradients are returned.

The vertical and horizontal gradients are then used to calculate the gradient 

magnitude according to gradient_magnitude() function in Listing 1-7.

Listing 1-7. Gradient Magnitude

def gradient_magnitude(horizontal_gradient, vertical_gradient):

    horizontal_gradient_square = numpy.power(horizontal_gradient, 2)

    vertical_gradient_square = numpy.power(vertical_gradient, 2)

    sum_squares = horizontal_gradient_square + vertical_gradient_square

    grad_magnitude = numpy.sqrt(sum_squares)

    return grad_magnitude
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That function just applies the Equation 1-1 for the previously calculated vertical and 

horizontal gradients. The gradient magnitude for the patch image is shown in Figure  1- 16.

Figure 1-16. Gradient magnitude based on the previously calculated vertical and 
horizontal gradients for the 64×128 image patch

Using the function gradient_direction() in Listing 1-8, the gradient direction is 

calculated.

Listing 1-8. Gradient Direction

def gradient_direction(horizontal_gradient, vertical_gradient):

     grad_direction = numpy.arctan(vertical_gradient/(horizontal_

gradient+0.00000001))

    grad_direction = numpy.rad2deg(grad_direction)

     # Some angles are outside the 0-180 range. Next line makes all results 

fall within the 0-180 range.

    grad_direction = grad_direction % 180

    return grad_direction

Note the small value (0.00000001) added to the denominator. This avoids dividing 

by zero. Ignoring that, some outputs values will be NaN (Not a Number).
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Figure 1-17 shows the image patch after being split into 16×8 cells. Each cell has 8×8 

pixels and each block has 4 cells (i.e., each block has 16×16 pixels).

Figure 1-17. Image divided into 16×8 cells

Based on the previously calculated gradient magnitude and direction, we can just 

return the results of the first 8×8 cell in the image patch (top-left cell) as in Figure 1-18.
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44.41 88.69 91.57 89.74 84.94 84.98 88.62 91.62

0.26 15.95 165.96 63.43 1.97 178.15173.66 15.26

0.77 29.74 159.44116.57 2.05 0.0 0.0 168.69

1.02 45.0 161.57153.43 0.0 0.0 0.0 146.31

0.75 38.66 160.02 135.0 4.4 1.97 172.87153.43

0.5 36.87 165.96 135.0 4.57 2.05 171.87 53.13

0.25 14.04 0.0 0.0 0.0 0.0 0.0 33.69

179.25 135.0 10.3 26.57 2.29 5.91 35.54 158.96

a (Gradient Direc�on)

207.19219.06219.08 219. 226.88239.92249.07248.1

222.0 7.28 8.25 2.24 29.02 31.02 9.06 11.4

223.02 8.06 8.54 2.24 28.02 30.0 9.0 10.2

225.04 7.07 9.49 2.24 27.0 30.0 9.0 7.21

228.02 6.4 11.7 4.24 26.08 29.02 8.06 2.24

230.01 5.0 12.37 4.24 25.08 28.02 7.07 5.0

231.0 4.12 12.0 3.0 24.0 27.0 6.0 10.82

230.02 5.66 11.18 2.24 25.02 29.15 8.6 13.93

b (Gradient Magnitude)

Figure 1-18. Gradient magnitude and direction of the top-left 8×8 cell
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The histogram will be created based on the simple examples we previously 

discussed. There are 9 histogram bins covering the range of angles from 0 to 180. 

Representing such range using just a limited number of bins makes each bin cover more 

than one angle. Using just 9 bins, then each one will cover 20 angles. The first bin covers 

angles from 0 (inclusive) to 20 (exclusive). The second one from 20 (inclusive) to 40 

(exclusive), until the last bin that covers angles from 160 (inclusive) to 180 (inclusive). 

The bin for each range will be given a number equal to the center of each range. That is 

the first bin is given 10, second bin 20, and so on until the last bin which is given 170. We 

can say that the bins starts from 10 to 170 with step 20. For each angle in Figure 1-18(a), 

the two histogram bins it falls within are found. Starting with the top-left element with 

value 44.41, it falls between bins 30 and 50. That value contributes to both of these bins 

according to Equation 1-3. The contribution value for bin 30 is calculated as follows:

contribution
abs

value =
-( ) ( ) = ´ =

44 41 30

20
207 19 0 72 207 19 149

.
. . . .228

Regarding bin 50, the contribution value is calculated as follows:

contribution
abs

value =
-( ) ( ) = ´ =

44 41 50

20
207 19 0 28 207 19 57 9

.
. . . . 11

The process continues for all 8×8 pixels in the current cell. The histogram for the 

top-left cell is shown in Figure 1-19(a). Assuming that each block contains 2×2 cells, the 

9-bin histograms of the three remaining cells in the top-left block marked in bright color 

in Figure 1-17 are also shown in Figure 1-19. By calculating all histograms for a given 

block, its feature vector is the concatenation of these four 9-bin histograms. The length of 

the feature vector is 9×4 = 36.
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Figure 1-19. Nine-bin histograms of the four cells inside the top-left block of the 
current image patch
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After calculating the feature vector of the first block, the next block with four cells is 

selected as marked with bright color in Figure 1-20.

Figure 1-20. The second block within the image patch highlighted in bright color

Again, the nine-bin histograms for each of the four cells inside that block are 

calculated as in Figure 1-21, and their results will be concatenated to return the 36×1 

feature vector.
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The histogram of each cell is calculated using the HOG_cell_histogram() function 

in Listing 1-9. This function accepts the direction and magnitude about a given cell and 

returns its histogram.

Listing 1-9. Cell Histogram

def HOG_cell_histogram(cell_direction, cell_magnitude):

    HOG_cell_hist = numpy.zeros(shape=(hist_bins.size))

    cell_size = cell_direction.shape[0]

    for row_idx in range(cell_size):

        for col_idx in range(cell_size):

First Cell at Location (0,0) Second Cell at Location (0,1) 

Third Cell at Location (1,0) Fourth Cell at Location (1,1) 

Figure 1-21. Nine-bin histograms of the four cells inside the second block marked 
with a bright color in Figure 1-20 of the current image patch
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            curr_direction = cell_direction[row_idx, col_idx]

            curr_magnitude = cell_magnitude[row_idx, col_idx]

            diff = numpy.abs(curr_direction - hist_bins)

            if curr_direction < hist_bins[0]:

                first_bin_idx = 0

                second_bin_idx = hist_bins.size-1

            elif curr_direction > hist_bins[-1]:

                first_bin_idx = hist_bins.size-1

                second_bin_idx = 0

            else:

                first_bin_idx = numpy.where(diff == numpy.min(diff))[0][0]

                 temp = hist_bins[[(first_bin_idx-1)%hist_bins.size, (first_

bin_idx+1)%hist_bins.size]]

                temp2 = numpy.abs(curr_direction - temp)

                res = numpy.where(temp2 == numpy.min(temp2))[0][0]

                if res == 0 and first_bin_idx != 0:

                    second_bin_idx = first_bin_idx-1

                else:

                    second_bin_idx = first_bin_idx+1

            first_bin_value = hist_bins[first_bin_idx]

            second_bin_value = hist_bins[second_bin_idx]

             HOG_cell_hist[first_bin_idx] = HOG_cell_hist[first_bin_idx] + 

(numpy.abs(curr_direction - first_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

             HOG_cell_hist[second_bin_idx] = HOG_cell_hist[second_bin_idx] + 

(numpy.abs(curr_direction - second_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

    return HOG_cell_hist

Listing 1-10 gives the complete code used to read an image patch and returns the 

histogram for the top-left cell in the first block. Note that the code works with grayscale 

images. If the input image is grayscale it will have just two dimensions. If the input image 

is color, then it will have a third dimension representing the channels. In this case, just 

one grayscale channel is used. The number of dimensions of a NumPy array is returned 

using the ndim property.
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Listing 1-10. Complete Implementation for Calculating Histogram for the  

Top-Left Cell

import skimage.io, skimage.color

import numpy

import matplotlib.pyplot

def calculate_gradient(img, template):

    ts = template.size #Number of elements in the template (3).

    #New padded array to hold the resultant gradient image.

    new_img = numpy.zeros((img.shape[0]+ts-1,

                           img.shape[1]+ts-1))

    new_img[numpy.uint16((ts-1)/2.0):img.shape[0]+numpy.uint16((ts-1)/2.0),

             numpy.uint16((ts-1)/2.0):img.shape[1]+numpy.uint16((ts-1)/2.0)] 

= img

    result = numpy.zeros((new_img.shape))

     for r in numpy.uint16(numpy.arange((ts-1)/2.0,  

img.shape[0]+(ts-1)/2.0)):

        for c in numpy.uint16(numpy.arange((ts-1)/2.0,

                              img.shape[1]+(ts-1)/2.0)):

             curr_region = new_img[ r-numpy.uint16((ts-1)/2.0):r+numpy.

uint16((ts-1)/2.0)+1,

                                   c-numpy.uint16((ts-1)/2.0):c+numpy.

uint16((ts-1)/2.0)+1]

            curr_result = curr_region * template

            score = numpy.sum(curr_result)

            result[r, c] = score

     #Result of the same size as the original image after removing the 

padding.

     result_img =  result[numpy.uint16((ts-1)/2.0):result.shape[0]-numpy.

uint16((ts-1)/2.0), numpy.uint16((ts-1)/2.0):result.

shape[1]-numpy.uint16((ts-1)/2.0)]

    return result_img

def gradient_magnitude(horizontal_gradient, vertical_gradient):

    horizontal_gradient_square = numpy.power(horizontal_gradient, 2)
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    vertical_gradient_square = numpy.power(vertical_gradient, 2)

    sum_squares = horizontal_gradient_square + vertical_gradient_square

    grad_magnitude = numpy.sqrt(sum_squares)

    return grad_magnitude

def gradient_direction(horizontal_gradient, vertical_gradient):

     grad_direction = numpy.arctan(vertical_gradient/(horizontal_

gradient+0.00000001))  

    grad_direction = numpy.rad2deg(grad_direction)

    grad_direction = grad_direction%180

    return grad_direction

def HOG_cell_histogram(cell_direction, cell_magnitude):

    HOG_cell_hist = numpy.zeros(shape=(hist_bins.size))

    cell_size = cell_direction.shape[0]

    for row_idx in range(cell_size):

        for col_idx in range(cell_size):

            curr_direction = cell_direction[row_idx, col_idx]

            curr_magnitude = cell_magnitude[row_idx, col_idx]

      

            diff = numpy.abs(curr_direction - hist_bins)

            if curr_direction < hist_bins[0]:

                first_bin_idx = 0

                second_bin_idx = hist_bins.size-1

            elif curr_direction > hist_bins[-1]:

                first_bin_idx = hist_bins.size-1

                second_bin_idx = 0

            else:

                first_bin_idx = numpy.where(diff == numpy.min(diff))[0][0]

                 temp = hist_bins[[(first_bin_idx-1)%hist_bins.size, (first_

bin_idx+1)%hist_bins.size]]

                temp2 = numpy.abs(curr_direction - temp)

                res = numpy.where(temp2 == numpy.min(temp2))[0][0]

                if res == 0 and first_bin_idx != 0:

                    second_bin_idx = first_bin_idx-1
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                else:

                    second_bin_idx = first_bin_idx+1

            first_bin_value = hist_bins[first_bin_idx]

            second_bin_value = hist_bins[second_bin_idx]

             HOG_cell_hist[first_bin_idx] = HOG_cell_hist[first_bin_idx] + 

(numpy.abs(curr_direction - first_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

             HOG_cell_hist[second_bin_idx] = HOG_cell_hist[second_bin_idx] + 

(numpy.abs(curr_direction - second_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

    return HOG_cell_hist

  

img = skimage.io.imread("im_patch.jpg")

if img.ndim >2:

    img = img[:, :, 0]

horizontal_mask = numpy.array([-1, 0, 1])

vertical_mask = numpy.array([[-1],

                             [0],

                             [1]])

horizontal_gradient = calculate_gradient(img, horizontal_mask)

vertical_gradient = calculate_gradient(img, vertical_mask)

grad_magnitude = gradient_magnitude(horizontal_gradient, vertical_gradient)

grad_direction = gradient_direction(horizontal_gradient, vertical_gradient)

grad_direction = grad_direction % 180

hist_bins = numpy.array([10,30,50,70,90,110,130,150,170])

cell_direction = grad_direction[:8, :8]

cell_magnitude = grad_magnitude[:8, :8]

HOG_cell_hist = HOG_cell_histogram(cell_direction, cell_magnitude)

matplotlib.pyplot.bar(left=numpy.arange(9), height=HOG_cell_hist, 

align="center", width=0.8)

matplotlib.pyplot.show()
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After calculating the feature vector for a block, the next step is to normalize that 

vector. The motivation to feature normalization is that the feature vector is dependent on 

the image intensity levels, and it is better to make it robust against illumination changes. 

Normalization takes place by dividing each element in the vector by the vector length 

calculated according to Equation 1-4.

 vector X X Xlength n= + +¼+1 2
 (Equation 1-4)

Where Xi represents the vector element number i. The normalized vector is the result 

of the first block. The process continues until returning all 36×1 feature vectors for all 

blocks. These vectors are then concatenated for the entire image patch being processed.

Based on the preceding discussion, HOG has the following parameters to be 

specified before its calculation:

 1. Number of orientations.

 2. Number of pixels per cell.

 3. Number of cells per block.

HOG is already implemented in Python in the skimage.feature module and could 

be easily used according to the skimage.feature.hog() function. The preceding 

three parameters have default values that could be changed to meet your goals. If the 

normalized parameter is set to True then the normalized HOG is returned.

skimage.feature.hog(image, orientations=9, pixels_per_cell=(8, 8), 

cells_per_block=(3, 3), visualise=False, transform_sqrt=False, feature_

vector=True, normalise=None)

 LBP
LBP stands for local binary patterns, which is another second-order texture descriptor. 

The steps to extract the LBP features are as follows:

 1. Divide the image into blocks (e.g., 16×16 blocks).

 2. For each block, a 3×3 window gets centered over each pixel.
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The selected central pixel Pcentral is compared to each of its surrounding 8 neighbors 

Pneighbor according to Equation 1-5. From the eight comparisons, there will be eight binary 

digits.

 P
P P

otherwiseneighbor
neighbor central=

>ì
í
î

1

0

,

,
 (Equation 1-5)

 3. The 8-bit binary code is converted into an integer. The integer 

ranges from 0 to 28 = 255.

 4. Replace the Pcentral value with the calculated integer.

 5. After calculating the new values for all pixels within the same 

block, the histogram is calculated.

 6. After calculating the histograms across all blocks, they get 

concatenated.

Assuming that the block we are currently working on is in Figure 1-12, we can start 

calculating the basic LBP based on it.

By working on the pixel at the third row and the fourth column, the center pixel is 

compared to each of the eight neighbors. Figure 1-22 shows the results of the comparison.

Figure 1-22. The result of comparing the central pixel to its eight neighbors

Next is to return the binary code. You can start from any position in the 3×3 matrix 

but you must be consistent across the entire image. For example, starting from the top- 

left position and moving clockwise, the code is 11011101. You can either move clockwise 

or counterclockwise, but be consistent.

After that, the binary code is converted into a decimal by summing the 

multiplications of each binary by a weight corresponding to its position in the binary 

code. The result is 128 + 64 + 16 + 8 + 4 + 1 = 221.

After calculating the binary code for each pixel in the block and returning its 

decimal, the histogram is created. The process is repeated for all image blocks, and 

histograms from all blocks are concatenated as in the case of HOG.
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Figure 1-23. The output of applying LBP over a grayscale image with P-9 and R=3

This is the basic implementation of LBP, but such a feature descriptor has multiple 

variations that make it robust against illumination changes, scale, and rotation.

It could be implemented easily in Python using the skimage.feature.local_

binary_pattern() function that accepts three parameters:

• Input image.

• Number of neighboring points in a circle (P). This parameter helps to 

achieve rotation invariance.

• Radius of the circle (R). Such parameter helps to achieve scale 

invariance.

Here is an example of LBP applied to the grayscale image in Figure 1-2(a).

import skimage.feature

import skimage.io

import matplotlib.pyplot

im = skimage.io.imread("69.jpg", as_grey=True)

lbp = skimage.feature.local_binary_pattern(image=im, P=9, R=3)

matplotlib.pyplot.imshow(lbp, cmap="gray")

matplotlib.pyplot.xticks([])

matplotlib.pyplot.yticks([])

The output image is given in Figure 1-23.
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 Feature Selection & Reduction
Assuming that after a discussion with the experts in a given field, you deduced that 

features X, Y, and Z are suitable. These features are just selected initially, and there is a 

probability that some of these features might not be helpful. You decide whether each 

feature is good or bad based on some experimentation. After training a model based on 

these three features, the recognition rate is low and something must be changed in the 

feature vector. To know the reason, you conducted some experiments by training the 

model for each individual feature. You found that the correlation between feature Z and 

the target is low and thus decided not to use this feature. Eliminating certain features 

completely from the feature vector and keeping others is called feature selection. 

Selection techniques classify the feature as either bad or good. Bad features are 

eliminated completely while the good features are used exclusively.

In fact, some elements inside each feature might not be suitable for the type of 

application being analyzed. Assume that a feature X is used within the feature vector 

and that this feature has a set of 10 elements. One or more of these elements might not 

be helpful in the task. For example, some features are redundant. That is some features 

may be optimally correlated with each other, and thus only one feature is sufficient in 

describing the data and there is no need to use multiple features that work the same. 

Due to correlated features, there might not exist a unique optimal feature subset. This is 

because there may be more than one perfectly correlated feature, so one can replace the 

other and create a new feature subset.

Another type is the irrelevant features. Some features have no correlation with the 

predictions required and they are regarded as noise. Such features won’t enhance but 

rather degrade the results. So, it is preferred to detect such features and remove them so 

they don’t affect the learning process. Removing just a subset of elements and keeping 

the others is called feature reduction.

Another motivation behind reducing the length of the feature vector by removing 

bad features as much as possible is that the longer the feature vector length the more 

computational time is consumed in training and testing the models.

To classify features as relevant or irrelevant, some metrics are required to show the 

relevance of each feature with the output classes or how well each feature predicts the 

desired outputs. Feature relevance is the ability of a feature to discriminate the different 

classes. After the selection of the metrics, they will be used to create good feature 

subsets by eliminating bad features. The feature elimination methods are classified into 

supervised and unsupervised methods. Supervised methods include filter and wrapper, 

and unsupervised methods include embedded.
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 Filter
The filter approach adds an additional preprocessing step to apply variable ranking 

techniques for ranking features based on different criteria calculated for each feature to 

measure the feature’s relevance. These criteria include standard deviation (STD), energy, 

entropy, correlation, and mutual information (MI). Based on a threshold, the highly 

ranked features are selected to train the model. The filter methods are very fast and not 

time-consuming compared to other selection approaches. They are also simple in their 

calculations, scalable, able to avoid overfitting, and independent of the learning model.

For training different models, the selection is done just once and then the training 

models can use the selected features. But filter methods have a number of critical drawbacks 

that affect their performance heavily compared to other approaches to feature selection. The 

filter/ranking approach doesn’t model feature dependencies. It selects each variable/feature 

independently from the other features/variables in the same subset. A feature is selected 

when being highly ranked according to the selected criterion. The criterion used for ranking 

doesn’t take into consideration the relationship among multiple features. Ignoring feature 

dependencies can damage the entire selected subset because features that are significant by 

themselves in increasing the learning rate are not guaranteed to be so when combined with 

other features. There are some cases in which useful variables by themselves are still useful 

when combined together, but this is not always the case.

If the usefulness of two features f1 and f2 are x1 and x2 respectively, this doesn’t 

mean that their usefulness will be x1 + x2 when combined together. Also, ignoring 

feature dependencies makes it prone to redundant and correlated features. This is 

because there may be two or more features that perfectly satisfy the criterion but each 

of them is a perfect reflection of all the others doing the same task. So it is not required 

to use multiples of the same thing; just one is sufficient. Correlation is another form 

of redundancy in which features may not be identical but are dependent and always 

work the same (can be represented as two parallel lines). Perfectly correlated variables 

are truly redundant as they add no additional information. The use of redundant 

and correlated features leads to a large feature vector, and thus the benefits of feature 

selection to reduce the feature vector length is not achieved. Filter methods don’t 

interact with the learning model, as they are not relying on the learning algorithm 

performance due to decoupling the feature selection from the performance. Instead, 

these just consider a single criterion between the feature and the class label but not 

information to indicate how well the feature is working with the learning algorithm.  

A good feature selector should take into account how both the learning algorithm and 
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the training data set interact. Finally, it is not an easy task to calculate the threshold used 

to classify features as selected or not. All of these reasons lead to the use of other feature 

selection approaches that overcome these problems.

 Wrapper
The wrapper approach is the second approach that solves some of the problems with the 

filter methods. The wrapper methods try to interact with the learning model by creating 

a subset of selected features that maximize the performance. The wrapper approach 

creates all possible subsets of features to find the best subset. The wrapper approach is 

called so because it is wrapping around the learning algorithm. It uses the induction or 

learning algorithm as a black box to measure how well the selected feature subset works 

by training the algorithm with the selected subsets and then to use the one that maximizes 

its performance. When talking about the wrapper approach, multiple points should be 

covered well, including selecting feature subset length, creating the feature subset space, 

searching the feature subset space, assessing the performance of the learning algorithms, 

stopping search criteria, and determining which learning algorithms to use. The goal of 

any feature reduction/selection algorithm is to create all possible feature combinations 

of length L features from an original complete feature vector of length N that maximizes 

the performance where <N. For a normal feature vector length of =30, there is a large 

number of combinations to create subsets of length L = 10. For this reason, a search 

strategy is applied to search for the best subsets with an evaluation function penalizing bad 

subsets. The objective function, in this case, is the model performance. So, the problem is 

transformed from a learning problem to a search problem. The exhaustive search is not 

applicable for such problem, because it visits and train a learning model with all subsets, 

which is intensive in terms of calculations. So, evolutionary algorithms (EAs) are used 

to avoid exploring all subsets, and these can be categorized into two classes: sequential 

selection algorithms (deterministic) and heuristic search algorithms (random).

The deterministic search algorithms are further classified into two categories that 

are actually pretty similar, namely, forward selection and backward selection. In forward 

selection, the algorithm starts from a root representing an empty set of features and then 

adds feature by feature while training the learning model for each change. In backward 

selection, the root of the search is the complete set of features, and the algorithm then 

removes features one by one while training the learning model for each change. Examples 

of such algorithms include sequential feature selection (SFS), sequential backward 

selection (SBS), sequential forward floating selection (SFFS), adaptive SFFS (ASFFS),  
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and beam search. To prevent the search from being exhaustive, a stopping criterion is 

added to prevent exploring all possible combinations. The criterion can be a maximum 

feature vector length for forward selection or minimum length for backward selection. 

It can also be a maximum performance, so after reaching the selected performance, the 

search stops.

The second category of search algorithms, random algorithms, are informed 

searches that use a heuristic evaluation function, generating a heuristic value telling  

how close each subset is to the maximum performance. Examples of such search 

algorithms include genetic algorithm (GA), particle swarm optimization (PSO), 

simulated annealing (SA), and randomized hill climbing. GA will be discussed in  

detail in Chapter 5.

A question that must be answered is what is the optimal value for L (number of 

features)? Wrapper methods have different approaches to answer that question. One 

way is to select a fixed number of features to create the feature vector, and by using 

combinations, it is possible to get all possibilities to select just L features from N features. 

But unfortunately, the selected fixed value for L may not be the optimal one and there 

is no guarantee that the L selected features are the ones that give the best performance 

for the learning model. So, another way is to make the number of features to be selected 

variable and dynamically changing. This is by trying a different number of features and 

selecting the best number of features that maximize the performance as in the sequential 

selection algorithms. The drawback of making the number of features dynamically 

changing is adding more and more computational time by creating different features 

combinations of different lengths and training the model with them. To reduce this 

time, a criterion can be added to make the learning stop earlier after reaching a target 

performance or after the number of selected features reaches a maximum length.

Comparing the wrapper approach to the filter approach, there are a number of 

advantages. The wrapper approach interacts with the learning model as it uses the learning 

algorithm performance as a metric to select the best feature subsets. It also models feature 

dependencies, as features are not selected individually or independently from each other, 

and monitors how combining features together affects the performance. Finally, it is robust 

against redundant and correlated features. But there are a number of drawbacks to the 

various wrapper methods. They are time- consuming, as each model has to be trained 

multiple times. Some models are very time- consuming and may take hours to be trained 

once. As a result, wrapper methods are not the option for such models. Moreover, wrapper 

methods are affected by overfitting as the selection is dependent on the learning model and 

thus can’t generalize selected features across different models.
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 Embedded
Both filter and wrapper approaches to feature selection have their own advantages and 

disadvantages. The embedded methods try to combine the advantages of both filter 

and wrapper approaches. Such methods are not time-consuming, as they avoid the 

retraining of the learning algorithm that is seen in the filter and wrapper approaches. 

They maximize the performance by interacting with the learning model, as in the 

wrapper approach. The feature is selected only if it is correlated with the output class 

labels m. It is called embedded because it works by embedding feature selection within 

the training step.

Categories of the embedded approach are as follows: pruning, built-in, and 

regularization (penalization). Pruning methods start by training the learning model with 

the complete set of features and then calculate a correlation coefficient for each feature. 

Such coefficients are used to rank the importance of the features according to the model 

used. High values for coefficients reflect strong correlation. The built-in approach 

for embedded feature selection calculates an information gain for each feature as in 

decision tree learning (ID3).

In machine learning (ML), some models are trained very well and can make the 

correct predictions for any sample in the training data but unfortunately can’t make 

correct predictions for other samples outside the training samples. This problem 

is called overfitting. Regularization is a technique used to avoid this problem. 

Regularization is to tune or select the best model complexity to fit the training data 

while being able to predict unseen samples. Without regularization, the model may be 

very simple and underfit (can’t make correct predictions for both training and testing 

samples) or be very complex and overfit (correct predictions for training samples but 

wrong for testing samples). Both underfit and overfit make the model too weak and 

unable to be generalized to any sample. So, regularization is a way of generalizing the 

model to predict any sample, whether training or testing.

 Regularization
In order to find the best model, the common method in ML is to define a loss or cost 

function that describes how well the model fits the data. The goal is to find the model 

that minimizes this loss function. Normally, the objective function in any learning model 

has only a single criterion, which is maximizing the performance. The regularization 
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approach adds another criterion to the objective function to control the level of 

complexity, as shown in Equation 1-6.

L =  min error(Ypredict, Ycorrect) + λ penalty(Wi) (Equation 1-6)

Where Ypredict is the predicted class label, Ycorrect is the correct class label, error(.) 

calculates the prediction error, Wi is the weight for the feature element Xi, and λ is the 

regularization parameter controlling the model complexity. This parameter is used to 

control the trade-off between the objective function and the penalty. The penalty is 

defined according to Equation 1-7.

 penalty w W
i

i( ) =
=
å

1

 (Equation 1-7)

By changing λ values, the model complexity changes. This is by penalizing some 

features by setting their weights close or equal to zero. The magnitude of coefficients is 

a significant factor in determining the model complexity. Feature selection is indirectly 

achieved by selecting features with high weight magnitudes. The higher the weights, the 

more relevant is the feature in predicting the correct class. This is why the regularization 

approach is called penalization.

The goal of the regularization parameter λ is to minimize the loss L and keep it to 

a minimum. For a very large value for λ approaching ∞, the coefficients must be small 

and approach zero to make the total value as small as possible. This makes most of 

the coefficient zero and thus remove them. For a value of 0 < ʎ < ∞, there will be some 

coefficients equal to zero, which will be removed, but not many of them equal to zero. 

What is the best value for λ? There is no fixed value for λ and its value can be efficiently 

calculated using cross-validation (CV).

Combining the advantages of filter and wrapper approaches makes the embedded 

approach the most recent research trend for feature selection. It interacts with the 

learning model because it uses the training model performance as a metric like the 

wrapper methods, is not time-consuming like the filter methods because it doesn’t 

require retraining the model, and also models feature dependencies to avoid redundant 

and correlated features. Selecting features while training is efficient in terms of data use, 

as it is not required to split the data into training and validation sets. However, while 

features selected by embedded methods do well for the learning model used to select the 

features, the selected features may be dependent on such model and won’t work as well 

across different models as what is produced with the filter approach.
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CHAPTER 2

Artificial Neural Networks
Machine learning (ML) problems can be divided into three categories: supervised, 

unsupervised, and reinforcement. In supervised learning, a human expert conducts 

some experiments in a restricted environment and notices their results. The supervised 

learning algorithm explores the data collected from experiments to map inputs to 

outputs. For example, a restricted environment might have a robot that wants to go 

from one side of a small room to another. There are some obstacles in the room that 

may make the robot fall. The supervisor provides guidance about how to reach the wall 

without falling. This is done by giving the robot knowledge in the form of examples 

to help it learn how to pass obstacles. The robot uses this knowledge to increase the 

probability of passing the obstacle without falling. In such a case, the knowledge of the 

robot is completely dependent on the human.

In reinforcement learning, the human gives the robot a metric to evaluate its 

performance. The robot has to maximize this metric to reach its goal. It does not know 

when to move to the right. Based on the metric, the robot will try different locations 

to move and calculates the metric. If the robot fell at a given location, then it has to 

avoid it next time. In this way, the robot will find the way that makes it reach the goal 

without falling.

Compared to supervised and semisupervised learning, unsupervised learning will 

not be given the results of the experiments nor a metric. There is no human to guide it at 

all. This is very challenging.

An artificial neural network (ANN for short) is a kind of algorithm that works in all 

of these problems. This book only discusses supervised learning using ANN. ANN is 

a biologically inspired ML model that mimics the operation of the human brain. It is 

one of the most important topics to be covered when talking about deep learning (DL). 

Understanding the operation of simple ANNs with few layers and neurons makes it 

easier to understand how complex models work.
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In this chapter, prerequests to learn how CNNs work will be presented. It starts by 

exploring ANN at a beginner level. Starting by knowing that it is a collection of linear 

models, you will find that it is not a strange concept at all; in fact, you already know 

about it. The chapter discusses some concepts related to ANN, such as learning rate, 

backpropagation, and overfitting. This chapter will help you understand why we need 

the learning rate in ANNs and whether it is useful or not for training. Using a very simple 

Python code for a single-layer perceptron, the learning rate value will get changed 

to catch its idea and notice how changing the learning rate affects the results. It also 

discusses how the backpropagation algorithm is useful in updating the ANN weights. 

This chapter also explains overfitting, which is one of the reasons for poor predictions 

for unseen samples. A regularization technique based on regression is presented by 

simple steps to make it clear how to avoid overfitting. ANN has a special graph to make 

interpretation of its results easier. This chapter maps the mathematical representation 

and its graph and explores one of the points that make beginners struggle, which is 

how to determine the best number of neurons and hidden layers. Finally, a Python 

classification example using ANN is given.

 Introduction to ANNs
Supervised learning problems are divided into two main categories: classification 

and regression. Regression outputs are continuous numbers, while classification 

outputs are categorical labels. Each type of these problems can use either a linear or a 

nonlinear model. Classification problems can also be divided into binary or multiclass 

classification problems. All of these types of problems can be solved using neural 

networks. That is, a neural network can be made to produce continuous or discrete 

outputs. It can work with binary or multiclass problems and model linear and nonlinear 

functions. ANN is a general function approximator (i.e., ANN can simulate the operation 

of any linear and nonlinear functions). ANN is a parametric model that has a set of 

parameters that are learned from the problem, such as weights and bias. It also has a 

number of hyperparameters that can be tuned by the engineer, such as learning rate and 

the number of hidden layers.

ANNs actually consist of linear models that are grouped together to solve complex 

problems. The next subsection discusses how the basic building block of ANN is actually 

a linear model.
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 Linear Models Are the Base of ANNs
The simplest types of models for beginners to start with are the linear models. Of course, 

everyone knows about linear models, and this makes the next explanation easier. We can 

start with a simple regression problem in which we are looking to create a linear model 

for the sample shown in Table 2-1. What is the best linear model to fit such data? Let’s see.

Table 2-1. Simple Regression Problem

Input (X) Output (Y)

2 6

“Linear model” means a line that maps each input to its corresponding output. We 

will start with the simplest linear model, as in Equation 2-1. The model equalizes the 

input and the output together without having any other parameters in the equation.

After doing that, then we create our first model. One may wonder, where is the 

training part of building any model? The answer is that this model is a nonparametric 

model. “Nonparametric” means that the model has no parameters to learn from the 

data. Thus, no training is required to do the job. Later in this chapter, some parameters 

will be added.

 Y = X (Equation 2-1)

In a regular ML pipeline, after building a model we have to test it. In traditional 

problems, there will be more samples and the data will be divided into training and 

testing sets. After training the model, testing starts based on the training data. If it did 

well on the training data, then we can step through testing it over the unseen test data. 

This is because if a model is not working well on the data it is trained by, then it will likely 

to be worse for the unseen data. At all, our example takes us off such work, as it just has 

one sample and no training required. But the lack of training phase does not mean that 

there is no testing phase. Let’s test our model based on such a sample.

The testing phase checks how accurate the model for predicting the outputs for 

unseen samples rather than ones using in training. Based on our sample with X=2, 

when applied to the model it will also return 2. This is because the input always equals 

the output. The linear model, in addition to the positions of the predicted and desired 

outputs, is shown in Figure 2-1.
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We can simply take the difference between the desired and the predicted outputs as 

in Equation 2-2. The difference will be 2 − 6 =  − 4.

 error = predicted − desired (Equation 2-2)

The existence of an error means we have to change something in the model in 

order to reduce it. Looking back at the model in Equation 2-1, we see that there is no 

parameter that we could change. The equation just has the input and the output that we 

could not change. As a result, we could add a parameter a to this equation, which helps 

in the mapping between the input and the output. Equation 2-3 shows the modified 

model equation.

 Y = aX (Equation 2-3)

Let’s say that a has an initial value of 1.5. The equation is given in Equation 2-3 .́ 
Such a linear model is shown in Figure 2-2.

 Y = 1.5X (Equation 2-3′)

Figure 2-1. The nonparametric linear model’s predicted and desired outputs
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Note that after adding the parameter, the model is now a parametric model. This is 

because there is at least one parameter to be learned from the data. Now, after building 

the new model, we could predict the output of our sample. The predicted output is 

Ypredicted = 1.5(2) = 3. Then we can measure the error. According to Equation 2-2, the 

error is 3 − 6 =  − 3. Compared to the previous error, it seems that the new model 

with parameter a = 1.5 enhances the results compared to the previous model with no 

parameter. But there still error in the prediction that we need to reduce.

We can imagine that the first model in Equation 2-1 is actually represented by 

Equation 2-3, but the parameter a is always set to 1. Comparing the error produced 

when a = 1 to the error when a = 1.5, which is −4, it seems that the error reduced when 

a = 1.5 to be −3. One might wonder how the value −3 is less than −4. The answer is that 

the negative sign in the error just says the predicted output is lower than the desired 

output. The amount of difference is the absolute value of the error. That is, an error of −4 

means that there is a difference of 4 between the desired and the predicted outputs and 

that the desired output is lower than the predicted output because the error is negative. 

Note that changing the positions of the predicted and desired outputs in Equation 2-2 

will change the sign of the error. Let’s now return to our problem.

Figure 2-2. Parametric linear model
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When a = 1.5, the results are better compared to a = 1.0, and that means increasing 

the value of this parameter will reduce the error. Thus, we know the direction of change. 

Let’s try using a = 2.0. The predicted output will beYpredicted = 2.0(2) = 4. The error in this 

case will be equal to 4 − 6 =  − 2. The error reduced more than before.

Based on the previous results, we might deduce a relationship between the 

parameter and the error. Using a = 1, the error is −4. Adding 0.5 to the parameter 

(a = 1.5), the error got reduced by 1.0 to be −3. Adding another 0.5 to the parameter 

(a = 2.0), the error got reduced by 1.0 to be −2. So, adding 0.5 to the parameter reduces 

the error by 1.0. Thus, we could add 1.0 to the parameter to eliminate it completely, and 

the parameter will be a = 3.0. The predicted output in this case is Ypredicted = 3.0(2) = 6. The 

error will be 6 − 6 = 0. The error is now 0 and we reached the best results when a = 3.0.

Let’s make a change to the sample in Table 2-1 by changing the output of the  

output to be 6.5 rather than 6 in addition to using a new sample. Based on Equation 2-3  

with a = 3.0, the predicted output is Ypredicted = (3.0)2 = 6.0 for the first sample 

and Ypredicted = (3.0)3 = 9.0 for the second one. Thus, there is a total error equal to 

(6.0 − 6.5) + (9.0 − 9.5) =  − 1.0 (Table 2-2). How can this type of error be reduced?

Table 2-2. Regression Problem with Two Samples

Input (X) Output (Y)

2 6.5

3 9.5

Table 2-3. Regression Problem with Two Samples

Parameter Output (Y) Predicted Error Total Error

3.5
6.5 7.0 7.0−6.5=1.0

2.0
9.5 10.5 10.5−9.5=1.0

2.5
6.5 5.0 5.0−6.5=−1.5

−4.0
9.5 7.5 7.5−9.5=−2.5

The procedure we are following is to change the value of the parameter until 

reducing the error to 0. Table 2-3 shows the total error for the two values of the 

parameter. It seems that neither 3.0 nor a value greater than or equal to it eliminates the 

error. The models corresponding to a = 2.5, a = 3.0, and a = 3.5 are shown in Figure 2-3 

along with the desired outputs.
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The truth is that there is no value for the parameter that makes the error equal 0 for 

our example. We want a value that when multiplied by 2 gives 6.5 and when multiplied 

by 3 gives 9.5. It is impossible to find such a value. The value of the parameter that 

satisfies the first sample is a = 3.25, while it is a = 3.17 for the second sample. Thus, 

reaching an error of 0 is not possible on the current form of the model. For this reason, 

the bias plays an important role in solving such situations.

We can add a bias b to Equation 2-3 as in Equation 2-4. This bias is able to fix our 

problem.

 Y = aX + b (Equation 2-4)

But the problem’s complexity now increases. We are trying to find the values for two 

parameters (a, b). Based on the previous results when a = 3.0, the predicted outputs for 

the two samples are 6.0 and 9.0, respectively. The predicted outputs are less than the 

correct outputs by 0.5. As a result, the value of b = 0.5 is what we are looking for. As a 

result, a = 3.0 and b = 0.5 will give an error of 0. This is why the bias is important.

Figure 2-3. Multiple parametric linear models. The dotted line corresponds to 
model with a=2.5, starred line to a=3.5, and solid line to a=3.0.
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Bias allows us to freely move the linear model on the y axis while increasing the 

likelihood of fitting the data more than just moving it only on the x axis. Note that it is 

very useful in our example because there are fewer parameters. When the model has 

more parameters, bias might be omitted.

Extending the example in Table 2-2, there is a new input Z added to the problem and 

the new data is in Table 2-4. Because there are two inputs and one output, the previous 

model in Equation 2-4 will not work and we have to add the new input and its associated 

parameter. Equation 2-5 represents the new model.

Table 2-4. Regression Problem with Two Inputs 

and One Output

Input (X) Input (Z) Output (Y)

2 1.1 6.5

3 0.8 9.5

 Y = aX + cZ + b (Equation 2-5)

Now, we have to find the best values for the two parameters a and c in addition to the 

bias b. The same procedure used before will be applied to this problem to find the best 

values for these variables.

By creating simple linear models, we have successfully learned how the building 

blocks of ANNs work. ANNs consist of multiple of such linear models that are connected 

together in order to fit a problem. The following sections will explain how to design a 

network by connecting linear models together. The next subsection discusses how to 

draw an ANN for the previously created models.

 Graphing ANNs
ANNs are built by connecting multiple linear models together. As the number of 

parameters required in each model increases, the complete equation of the network 

becomes too complex. Thus, it is difficult to represent the problem as an equation, but 

a more simple way is to visualize the network as a graph. The network graph is simpler 

to understand and design. Here we are going to learn how to build the network graph, 

starting with a linear model.
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ANN is an artificial representation of biological neural networks. We can start by 

saying that the basic building block in an ANN is the artificial neuron. Previously in 

this chapter, we said also that the basic block of ANN is the linear model. Thus, we 

can deduce that the neuron is actually a linear model. As in linear models, the neuron 

accepts inputs, makes some types of processing such as multiplication and summation, 

and finally returns an output. Figure 2-4 shows the mapping between the linear model in 

Equation 2-4 and the artificial neuron. It is noted that all variables existing in the linear 

model also exist in the ANN graph. This kind of ANN is called a single-layer perceptron.

Figure 2-4. Mapping from a linear model with one input to ANN graph

We can start from the core of the graph, which is the circle with text “Math”. This 

circle represents the neuron of the neural networks. The neuron is a computational 

unit, and the type of computation it does is to multiply each input by its corresponding 

parameter, sum all results, and then return the output that represents the sum of 

products (SOP). For this reason, the input X is connected to that neuron.

Because each parameter must be associated with its input to calculate the SOP, 

the parameter a for the input X is written above the arrow connecting it to the neuron. 

Making each parameter near to its input helps in finding the parameter associated with 
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each input. This is for the inputs and their parameters. The idea might not be clear based 

on the current example because there is just one input, but it will be clearer later. Let’s 

move to the bias.

A new block is used after the neuron to add the bias b to the SOP. After adding b to 

the SOP, the output Y is produced. Up to this point, everything works well, but we can 

still make the graph simpler.

In our previous discussion, we treated the bias differently from the inputs. Each 

parameter is multiplied by its input, but the bias does not have an input to get multiplied 

by. We can assume that the bias has an input that is always equal to +1. This eases the 

process too much, as we could eliminate the bias block added after the neuron as in 

Figure 2-5. The neuron will multiply each parameter by its associated input and treat 

the bias the same. It will be regarded as a parameter that has an input of +1. To make 

the bias different from the regular parameters, it could be added vertically while other 

parameters are added horizontally in the graph.

Figure 2-5. Mapping from a linear model with one input to the ANN graph with 
bias treated the same as regular parameters by associating it to an input of +1
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Based on the previous example, we know how to graph a linear equation from the 

neural network perspective. Now, we can work with Equation 2-5, in which there are 

two inputs. The only change is to add the new input Z and its associated parameter c to 

the graph, similar to what we did with the input X and its parameter a. The new graph is 

shown in Figure 2-6. The process repeats itself for each new input.

Figure 2-6. Mapping from a linear model with two inputs to the ANN graph

In summary, a neuron in an ANN accepts a set of inputs, multiplies each of them 

by their associated parameters, adds the results of multiplication together, and finally 

returns the output. In ANNs, neurons are arranged into three types of layers: input, 

hidden, and output. Such arrangement doesn’t exist in biological neural networks but 

it helps us organize the network. Figure 2-7 shows the architecture of a general fully 

connected (FC) ANN with such three layers. The network is organized according to the 

three layers. The network only has a single input and output layer, but it could have 

more than one hidden layer. Note that neurons within each layer are named according 

to it. That is, a neuron within the input layer is said to be an input neuron, and a hidden 

neuron is a neuron within a hidden layer.
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For simplicity, all inputs are given the symbol X and all outputs are given the symbol 

O with a subscript that defines the index of either the input or the output. The network 

has n inputs, where X1 is the first input, X5 is the fifth input, and so on up to Xn. It also 

has m inputs, where O1 is the first input, O5 is the fifth input, and so on up to Om.

The neurons in the hidden layers are given symbols with two indices to reflect its 

layer index and also the location within its layer. For example, the first hidden layer has 

k neurons, where h1
1  is the first hidden neuron in the first hidden layer, h5

2  is the fifth 

hidden neuron in the second hidden layer, and so on up to Xp
r , which is the pth hidden 

neuron in the rth hidden layer.

Between every two layers, there are a number of parameters that are equal to the 

multiplication of the number of neurons within the two layers. For example, if the 

input layer has n neurons and the first hidden layer has k neurons, then the number of 

parameters required for connecting them is equal to n × k, where the parameter Wnk
1  

refers to the parameter between the nth neuron in the input layer and the kth neuron 

in the first hidden layer. This parameter could also be called weights, because each 

parameter reflects the importance of its associated input. The larger the value of a 

parameter, the more important its associated input will be.

Up to this point, a basic understanding of ANN is expected, but there is more to know 

about it. The next sections cover some important concepts about ANN that are critical in 

the successful building of ANN.

Figure 2-7. General FC artificial network architecture
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 Adjusting Learning Rate for Training ANN
An obstacle for newbies to ANNs is the learning rate. I have been asked many times 

about the effect of the learning rate on the training of ANNs. Why do we use learning 

rate? What is the best value for the learning rate? In this section, I will try to make things 

simpler using an example that shows how learning rate is useful in order to train an 

ANN. Let’s start by explaining the used example.

 Filter Example
A very simple example is used to get us out of complexity to just focus on our goal, which 

is the learning rate. The example is represented by Equation 2-6.

 Y activation X
X

X X
= ( ) = ìí

î

250 250

250

,

,

³³
<<

 (Equation 2-6)

If the input is 250 or smaller, then the output will be identical to the input. If the 

input is larger than 250, then it will be clipped and the output will be 250. It works like 

a filter that only passes inputs below 250 and cuts others to 250. Its graph is available in 

Figure 2-8.

Figure 2-8. The activation function of the filter example
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The data with six samples is shown in Table 2-5.

Figure 2-9. ANN architecture used with the filter example

Table 2-5. Data to Train a Network to Filter Inputs to  

See How Learning Rate Affects the Training Process

Input (X) Output (Y)

60 60

40 40

400 250

300 250

-50 -50

-10 -10

 ANN Architecture

The architecture of the ANN used is shown in Figure 2-9. There are just input and output 

layers. The input layer has just a single neuron for our single input. The output layer has 

just a single neuron for generating the output. The output layer neuron is responsible for 

mapping the input to the correct output. There is also a bias applied to the output layer 

neuron with value b and input +1. There is also a weight W for the input.
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 Activation Function

Based on the previously discussed networks, we can only approximate linear functions, 

as in Figure 2-1. But our problem uses a nonlinear function, as in Figure 2-8. How can 

we use an ANN to represent this type of network? The solution in this example is to use a 

function such as an activation function in ANN.

ANNs can approximate both linear and nonlinear functions. The way that ANN 

incorporates nonlinearity in its calculations is via the activation functions. The location of the 

activation function within the graph of an ANN is after the calculating of the SOP. The output 

of the neuron in this case will be the activation function output, not just the SOP. This is why 

the network output is set equal to the activation function output in Equation 2-6.

 Python Implementation

The Python code implementing the entire network is given in Listing 2-1. After 

discussing each of its parts and making it as easy as possible, we will focus on how 

changing the learning rate affects the network training.

Listing 2-1. Adjusting Learning Rate for Successful ANN Training

 1  import numpy

 2

 3  def activation_function(inpt):

 4      if(inpt > 250):

 5          return 250 # clip the result to 250

 6      else:

 7          return inpt # just return the input

 8

 9  def prediction_error(desired, expected):

10      return numpy.abs(numpy.mean(desired-expected)) # absolute error

11

12  def update_weights(weights, predicted, idx):

13       weights = weights + 0.00001*(desired_output[idx] - 

predicted)*inputs[idx] # updating weights

14      return weights # new updated weights

15

16  weights = numpy.array([0.05, .1]) #bias & weight of input
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17  inputs = numpy.array([60, 40, 100, 300, -50, 310]) # training inputs

18   desired_output = numpy.array([60, 40, 150, 250, -50, 250]) # training 

outputs

19

20  def training_loop(inpt, weights):

21      error = 1

22      idx = 0 # start by the first training sample

23      iteration = 0 #loop iteration variable

24      while(iteration < 2000 or error >= 0.01): #while(error >= 0.1):

25           predicted = activation_function(weights[0]*1+weights[1]* 

inputs[idx])

26          error = prediction_error(desired_output[idx], predicted)

27          weights = update_weights(weights, predicted, idx)

28          idx = idx + 1 # go to the next sample

29           idx = idx % inputs.shape[0] # restricts the index to the range 

of our samples

30          iteration = iteration + 1 # next iteration

31      return error, weights

32

33  error, new_weights = training_loop(inputs, weights)

34  print('--------------Final Results----------------')

35  print('Learned Weights : ', new_weights)

36  new_inputs = numpy.array([10, 240, 550, -160])

37  new_outputs = numpy.array([10, 240, 250, -160])

38  for i in range(new_inputs.shape[0]):

39       print('Sample ', i+1, '. Expected = ', new_outputs[i], ' , 

Predicted = ', activation_function(new_weights[0]*1+new_

weights[1]*new_inputs[i]))

Lines 17 and 18 are responsible for creating two arrays (inputs and desired_output) 

holding the training input and output data of our example. Line 16 creates an array of the 

network parameters, which are the input parameter and the bias. They were randomly 

initialized to 0.05 for the bias and 0.1 for the input. The activation function itself is 

implemented using the activation_function(inpt) method from line 3 to line 7. It accepts 

a single argument, which is the input, and returns a single value, which is the predicted 

output of the network.
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Because there may be an error in the prediction, we need to measure it to know how 

far we are from the correct prediction. For that reason, there is a method implemented 

in lines 9 and 10 called prediction_error(desired, expected), which accepts two inputs: 

the desired and predicted outputs. That method just calculates the absolute difference 

between each desired and predicted output. The best value for any error is for sure 0. 

This is the optimal value.

What if there is a prediction error? In this case, we must make a change to the network. 

But what exactly to change? It is the network parameters that must be changed. For updating 

the network parameters, there is a method called update_weights(weights, predicted, idx) 

defined in lines 13 and 14. It accepts three inputs: old weights, predicted output, and the 

index of the input that has a false prediction. Equation 2-7 is used to update the weights.

 W n W n d n Y n X n+( ) = ( ) + ( ) - ( )éë ùû ( )1 h  (Equation 2-7)

Where

• η – learning rate

• d – desired output

• Y – predicted output

• X – input

• W(n)– current weights

• W(n + 1)– updated weights

The equation uses the weights of the current step n to generate the weights of the 

next step (n + 1). This equation helps us understand how the learning rate affects the 

learning process.

Finally, we need to concatenate all of these together to make the network learn. This 

is done using the training_loop(inpt, weights) method defined from line 20 to line 31. 

It goes into a training loop. The loop is used to map the inputs to their outputs with the 

least possible prediction error. The loop does three operations:

 1. Output Prediction.

 2. Error Calculation.

 3. Updating Weights.

Since we’ve gotten an idea about the example and its Python code, let us now see 

how the learning rate is useful in order to get the best results.
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 Learning Rate
In the previously discussed example in Listing 2-1, line 13 has the weights update 

equation, in which the learning rate is used. Let’s remove the learning rate from that 

equation. It will be as follows:

    weights = weights + (desired_output[idx] - predicted)*inputs[idx]

Let’s see the effect of removing the learning rate. In the first iteration of the training 

loop, the network has initial values for bias and weight of 0.05 and 0.1, respectively. 

The input is 60 and the desired output is 60. The expected output of line 25, namely, 

the result of the activation function, will be activation_function(0.05(+1)+0.1(60)). 

The predicted output is be 6.05. In line 26, the prediction error is calculated by 

getting the difference between the desired and the predicted output. The error is 

abs(60 −  6.05)=53.95. Then in line 27, the weights will get updated according to the 

preceding equation. The new weights are [0.05, 0.1] + (53.95)*60 = [0.05, 0.1] + 3237 

= [3237.05, 3237.1]. It seems that the new weights are too different from the previous 

weights. Each weight got increased by 3,237, which is too large. But let us continue 

making the next prediction.

In the next iteration, the network will have this data (b=3237.05 and W=3237.1,  

Input = 40, and desired output=40). The expected output will be activation_function 

((3237.05 + 3237.1(40))= 250. The prediction error will be abs(40 − 250) = 210. The error 

is very large. It is larger than the previous error, which was just 53.95. Thus, we have to 

update the weights again. According to the preceding equation, the new weights will be 

[3237.05, 3237.1] + (−210)*40 = [3237.05, 3237.1] + −8400 = [−5162.95,−5162.9]. Table 2-6 

summarizes the results of the first three iterations.

Table 2-6. Results of the First Three Iterations of Training the Filter Network

Prediction Error Update Value New Weights

6.05 53.95 3237.0 [3237.05, 3237.1]

250 210 −8400 [–5162.95, –5162.9 ]

−521452.95 521552.95 52155295.0 [52150132.04999999, 

52150132.09999999]

−2555356472.95 2555356422.95 −127767821147.0 [–1.27715671e+11,

–1.27715671e+11]
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As we go into more iterations, the results get worse. The magnitudes of the weights 

are changing rapidly, sometimes even changing their signs. They are moving from very 

large positive values to very large negative values. How can we stop these large and 

abrupt changes in the weights? How to scale down the value by which the weights are 

updated?

If we looked at the value by which the weights are changing from Table 2-6, it seems 

that the value is very large. This means that the network changes its weights at high 

speed. We just need to make it slower. If we are able to scale down this value, then 

everything will be alright. But how? Getting back to the code, it looks like the update 

equation is what generates such large values, specifically this part:

(desired_output[idx] - predicted)*inputs[idx]

We can scale this part by multiplying it by a small value such as 0.1. So, rather than 

generating 3237.0 as the update value in the first iteration, it will be reduced to just 323.7. 

We can even reduce this value to 0.001. Using 0.001, the update value is just 3.327.

We can catch it now. This value is the learning rate. Choosing small values for the 

learning rate makes the rate of weights update smaller and avoids abrupt changes. As the 

value gets larger, the changes become faster, and this creates bad results.

But what is the best value for the learning rate?
There is no particular value that we can say is the best value for the learning rate. 

The learning rate is a hyperparameter. A hyperparameter has its value determined by 

experiments. We try different values and use the value that gives the best results.

 Testing the Network
For our problem, using a value of .00001 works fine. After training the network with 

that learning rate, we can make a test. Table 2-7 shows the results of the prediction 

of four new testing samples. It seems that results are now much better after using the 

learning rate.
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Now we are able to understand that learning rate determines the steps by which we 

move. The larger the step, the more abrupt the changes. We might be near to the best 

solution and just need to change our parameters a bit to reach it, but omitting or using a 

bad value for the learning rate gets us away from the solution.

 Weight Optimization Using Backpropagation
In the previous section, we used the learning rate to update the weights of the ANN. In 

this section, we will use the backpropagation algorithm to do that job and deduce 

how it is better than just using the learning rate. Two examples are used to explain the 

algorithm numerically.

This section won’t dive directly into the details of the backpropagation algorithm but 

starts by training a very simple network. This is because the backpropagation algorithm 

is meant to be applied over a network after training. As a result, we should train the 

network before applying it to catch the benefits of the backpropagation algorithm and 

how to use it. Readers should have a basic understanding of how ANNs work, partial 

derivatives, and multivariate chain rule.

 Backpropagation for NN Without Hidden Layer
Starting with a simple example, Figure 2-10 shows its network structure, which we 

will use to explain how the backpropagation algorithm works. It has just two inputs, 

symbolized as X1 and X2. The output layer has just a single neuron, and there are no 

hidden layers. Each input has a corresponding weight where W1 and W2 are the weights 

for X1 and X2, respectively. There is a bias for the output layer neuron with a value of b 

and a fixed input value of +1.

Table 2-7. Test Sample Prediction Results

Input Desired Output Predicted Output

10 10 10.87

240 240 239.13

550 250 250

–160 –160 –157.85

Chapter 2  artifiCial Neural Networks



65

The output layer neuron uses the sigmoid activation function defined by Equation 2-8:

 f s
e s( ) =

+ -

1
1

 (Equation 2-8)

Where s is the SOP between each input and its corresponding weight. s is the input to 

the activation function, which in this example, is defined as in Equation 2-9.

 s = X1 ∗ W1 + X2 ∗ W2 + b (Equation 2-9)

Table 2-8 shows a single input and its corresponding desired output used 

as the training data. The basic target of this example is not training the network 

but understanding how the weights are updated using backpropagation. Now, to 

concentrate on backpropagation, we will analyze a single record of data.

Figure 2-10. Network structure to train and apply backpropagation

Table 2-8. Training Data for the 

First Backpropagation Example

X1 X2 Desired Output

0.1 0.3 0.03

Table 2-9. Initial Parameters of the Network

W1 W2 b

0.5 0.2 1.83

Assume the initial values for both weights and bias are as in Table 2-9.
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For simplicity, the values for all inputs, weights, and bias will be added to the 

network diagram to look as in Figure 2-11.

Figure 2-11. The network of the first backpropagation example with inputs and 
parameters added

Now, let us train the network and see whether the desired output will be returned 

based on the current weights and bias. The input of the activation function will be the SOP 

between each input and its weight. Then, the bias will be added to the total as follows:

s X W X W b= * + * +1 1 2 2

s = * + * +0 1 0 5 0 3 0 2 1 83. . . . .

s =1 94.

The output of the activation function will be calculated by applying the previously 

calculated SOP to the used function (sigmoid) as follows:

f s
e s( ) =

+ -

1
1

f s
e

( ) =
+ -

1
1 1 94.

f s( ) =
+

1
1 0 143703949.

f s( ) = 1
1 143703949.

f s( ) = 0 874352143.

Chapter 2  artifiCial Neural Networks



67

The output of the activation function reflects the predicted output for the current 

inputs. It is obvious that there is a difference between the desired and the expected 

output. But what are the sources for that difference? How should the predicted output be 

changed to get closer to the desired result? These questions will be answered later. But at 

least, let us see the error of our neural network based on an error function.

The error functions tell how close the predicted outputs are to the desired outputs. 

The optimal value for the error is zero, meaning that there is no error at all and that the 

desired and predicted results are identical. One of the error functions is the squared 

error function, as in Equation 2-10.

 E desired predicted= -( )1
2

2
 (Equation 2-10)

Note that the 
1
2

 added to the equation is for simplifying derivatives later. We can 

measure the error of our network as follows:

E = -( )1
2

0 03 0 874352143
2

. .

E = -( )1
2

0 844352143
2

.

E = ( )1
2

0 712930542.

E = 0 356465271.

The result ensures the existence of a large error (~0.357). This is what the error tells. 

It just gives us an indication of how far the predicted results are from the desired results. 

Now that we know how to measure the error, we need to find a way to minimize it. The 

only playable parameter we have is the weight. We can try different weights and then test 

our network.

 Weights Update Equation
The weights can be changed according to Equation 2-7 (used in the previous section) where

• n: training step (0, 1, 2, …).

• W(n): weights in the current training step.

W(n) = [b(n), W1(n),  W2(n), W3(n),..., Wm(n)]

• η: network learning rate.
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• d(n): desired output.

• Y(n): predicted output.

• X(n): current input at which the network made the false prediction.

For our network, these parameters have the following values:

• n: 0

• W(n): [1.83, 0.5, 0.2]

• η: hyperparameter. We can choose 0.01, for example.

• d(n): [0.03].

• Y(n): [0.874352143].

• X(n): [+1, 0.1, 0.3]. First value (+1) is for the bias.

We can update our neural network weights based on the previous equation:

W n W n d n Y n X n++ == ++ --1( ) ( ) ( ) ( )éë ùû ( )hh

= 1.83,0.5,0.2 +0.01 0.03 0.874352143 +1,0.1,0.3[ ] [ ][ ]--

== ++ -- ++1 83 0 5 0 2 0 844352143 1 0 1 0 3. . . . . ., , , ,[ ] [ ][ ]0.01

== ++ -- ++1 83 0 5 0 2 0 00844352143 1 0 1 0 3. . . . . ., , , ,[ ] [ ]

== ++ -- -- --1 83 0 5 0 2 0 008443521 0 000844352 0 002533056. . . . . ., , , ,[ ] [ ]

== 1 821556479 0 499155648 0 197466943. . ., ,[ ]

The new weights are given in Table 2-10.

Table 2-10. Updated Weights for the Network 

of the First Backpropagation Example

W1new W2new bnew

0.197466943 0.499155648 1.821556479

Based on the new weights, we will recalculate the predicted output and continue 

updating weights and calculating the predicted output until reaching an acceptable 

value for the error for the problem at hand.
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Here we successfully updated the weights without using the backpropagation 

algorithm. Are we still in need of that algorithm? Yes. The reasons will be explained next.

 Why Is the Backpropagation Algorithm Important?
Suppose, for the optimal case, that the weight update equation generated the best 

weights; it is still unclear what this function actually did. It is like a black box in that 

we don’t understand its internal operations. All we know is that we should apply 

this equation in case there is a classification error. Then the function will generate 

new weights to be used in the next training steps. But why are new weights better 

at prediction? What is the effect of each weight on the prediction error? How does 

increasing or decreasing one or more weights affect the prediction error?

It is required to have a better understanding of how the best weights are calculated. 

To do that, we should use the backpropagation algorithm. It helps us to understand how 

each weight affects the NN total error and tells us how to minimize the error to a value 

very close to zero.

 Forward vs. Backward Passes
When training a neural network, there are two passes, namely, forward and backward, as 

in Figure 2-12. The first pass is always the forward pass, in which the inputs are applied 

to the input layer and move toward the output layer, calculating the SOP between inputs 

and weights, applying activation functions to generate outputs, and finally calculating 

the prediction error to know how accurate the current network is.

Figure 2-12. Forward and backward passes of training an ANN
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But what if there is a prediction error? We should modify the network to reduce that 

error. This is done in the backward pass. In the forward pass, we start from the inputs, 

until calculating the prediction errors. But in the backward pass, we start from the errors 

until reaching the inputs. The goal of this pass is to learn how each weight affects the 

total error. Knowing the relationship between the weight and the error allows us to 

modify network weights to decrease the error. For example, in the backward pass, we can 

get useful information, such as that increasing the current value of W1 by 1.0 will increase 

the prediction error by 0.07. This helps us understand how to select the new value of W1 

in order to minimize the error (W1 should not be increased).

 Partial Derivative

One important operation used in the backward pass is to calculate derivatives. Before 

getting into the calculations of derivatives in the backward pass, we can start with a 

simple example to make things easier.

For a multivariate function such as Y = X 2Z + H, what is the effect on the output Y 

given a change in variable X? This question is answered using the partial derivative. It is 

written as follows:

¶¶
¶¶

¶¶
¶¶

Y
X X

X Z H= +( )2

¶¶
¶¶
Y
X

XZ= +2 0

¶¶
¶¶
Y
X

XZ=2

Note that everything except X is regarded as a constant. This is why H is replaced by 

0 after calculating the partial derivative. Here, ∂X means a tiny change of variable X and 

∂Y means a tiny change of Y. The change of Y is the result of changing X. By making a 

very small change in X, what is the effect on Y? The small change can be an increase or 

decrease by a tiny value such as 0.01. By substituting different values of X, we can find 

how Y changes with respect to X.

The same procedure will be followed in order to learn how the NN prediction error 

changes with respect to (wrt) changes in network weights. So, our target is to calculate 
¶
¶
E

W1

 and 
¶
¶
E

W2

, as we have just two weights: W1 and W2. Let’s calculate them.
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Change in Prediction Error wrt Weights

Looking at this equation, Y = X 2Z + H, it seems straightforward to calculate the partial 

derivate 
¶
¶
Y

X
 because there is an equation relating both Y and X. But there is no direct 

equation between the prediction error and the weights. This is why we are going to use 

the multivariate chain rule to find the partial derivative of Y wrt X.

Prediction Error to Weights Chain

Let us try to find the chain relating the prediction error to the weights. The prediction 

error is calculated based on Equation 2-10.

But this equation doesn’t have any weights. No problem: we can follow the 

calculations for each input of the previous equation until we reach the weights. The 

desired output is a constant, and thus there is no chance of reaching the weights through 

it. The predicted output is calculated based on the sigmoid function, as in Equation 2-8.

Again, the equation for calculating the predicted output doesn’t have any weight. 

But there is still variable s (SOP), which already depends on weights for its calculation 

according to Equation 2-11.

 s = X1 ∗ W1 + X2 ∗ W2 + b (Equation 2-11)

Figure 2-13 presents the chain of calculations to be followed to reach the weights.

Figure 2-13. Chain of calculations to reach the weights starting from the error of 
prediction
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As a result, to know how the prediction error changes wrt changes in the weights, 

we should do some intermediate operations, including finding how the prediction error 

changes wrt changes in the predicted output. Then, we need to find the relation between 

the predicted output and the SOP. Finally, we will find how the SOP change by changing 

the weights. There are four intermediate partial derivatives as follows:

¶¶
¶¶

E
Predicted

, 
¶¶

¶¶
Predicted

s
, 
¶¶
¶¶

s
W1

, and 
¶¶
¶¶

s
W2

This chain will finally tell how the prediction error changes wrt changes in each 

weight, which is our goal, by multiplying all individual partial derivatives as follows:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
Predicted

Predicted
s

s
W1 1

= * *

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

=
E

Predicted
Predicted

s
s
W2 2

* *

Important note Currently, there is no equation directly relating prediction error 
to network weights, but we can create one relating them and apply a partial 
derivative directly to it. here it is in equation 2-12.

 E desired
e X W X W b

= -
+

æ
è
ç

ö
ø
÷- * + * +( )

1
2

1

1 1 1 2 2

2
 (Equation 2-12)

Because this equation seems complex, we can use the multivariate chain rule for 

simplicity.
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 Calculating Chain Partial Derivatives

Let us calculate the partial derivatives of each part of the chain previously created.

Error - Predicted Output Partial Derivative:

¶¶
¶¶

¶¶
¶¶

E
Predicted Predicted

desired predicted= -( )æ
è
ç

ö
ø
÷

1
2

2

= * -( ) * -( )-
2

1
2

0 1
2 1

desired predicted

= -( )* -( )desired predicted 1

= -predicted desired

By value substitution,

¶¶
¶¶

E
Predicted

predicted desired= - = -0 874352143 0 03. .

¶¶
¶¶

E
Predicted

=0 844352143.

Predicted Output - SOP Partial Derivative:

¶¶
¶¶

¶¶
¶¶

Predicted
s s e s=

+
æ
è
ç

ö
ø
÷-

1
1

Remember that the quotient rule can be used to find the derivative of the sigmoid 

function as follows:

¶¶
¶¶

Predicted
s e es s=

+
-

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

1
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By value substitution,

¶¶
¶¶

Predicted
s e e e es s=

+
-

+
æ
è
ç

ö
ø
÷ = +

-
+

æ
è
ç

ö
- - - -

1
1

1
1

1
1

1
1

1
11 94 1 94. . øø

÷

=
+

-
+

æ
è
ç

ö
ø
÷

1
1 0 143703949

1
1

1 0 143703949. .

= -æ
è
ç

ö
ø
÷

1
1 143703949

1
1

1 143703949. .

= -( )0 874352143 1 0 874352143. .

= ( )0 874352143 0 125647857. .

¶¶
¶¶

Predicted
s

=0 109860473.

SOP - W1 Partial Derivative:

¶¶
¶¶

¶¶
¶¶

s
W W

X W X W b
1 1

1 1 2 2= * + * +( )

= * *( ) + +-( )1 0 01 1
1 1

X W

= *( )( )X W1 1
0

= ( )X1 1

¶¶
¶¶

s
W

X
1

1=

By value substitution,

¶¶
¶¶

s
W

X
1

1 0 1= = .
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SOP - W2 Partial Derivative:

¶¶
¶¶

¶¶
¶¶

s
W W

X W X W b
2 2

1 1 2 2= * + * +( )

= + * *( ) +-( )0 1 02 2
1 1

X W

= *( )( )X W2 2
0

= ( )X2 1

¶¶
¶¶

s
W

X
2

2=

By value substitution,

 

¶¶
¶¶

s
W

X
2

2 0 3= = .
 

After calculating each individual derivative, we can multiply all of them to get the 

desired relationship between the prediction error and each weight.

Prediction Error -W1 Partial Derivative:

¶¶
¶¶
E
W1

0 844352143 0 109860473 0 1= * *. . .

¶¶
¶¶
E
W1

0 009276093= .

Prediction Error - W2 Partial Derivative:

¶¶
¶¶
E
W2

0 844352143 0 109860473 0 3= * *. . .

¶¶
¶¶
E
W2

0 027828278= .

Finally, there are two values reflecting how the prediction error changes with respect 

to the weights (0.009276093 for W1 and 0.027828278 for W2). But what does that mean? 

The results need interpretation.
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 Interpreting Results of Backpropagation

There are two useful conclusions from each of the last two derivatives obtained from the 

following:

• Derivative sign

• Derivative magnitude (DM)

If the derivative is positive, that means increasing the weight will increase the error, 

and likewise, decreasing the weight will decrease the error. If the derivative is negative, 

then increasing the weight will decrease the error, and correspondingly, decreasing the 

weight will increase the error.

But by how much will the error increase or decrease? The DM can tell us. For a 

positive derivative, increasing the weight by p will increase the error by DM ∗ p. For a 

negative derivative, increasing the weight by p will decrease the error by DM ∗ p.

Because the result of the 
¶¶
¶¶
E
W1

 derivative is positive, this means that if W1 increased 

by 1 then the total error will increase by 0.009276093. Also, because the result of the 
¶¶
¶¶
E
W2

 derivative is positive, this means that if W2 increases by 1 then the total error will 

increase by 0.027828278.

 Updating Weights

After successfully calculating the derivatives of the error with respect to each individual 

weight, we can update the weights in order to enhance the prediction. Each weight will 

be updated based on its derivative as follows:

W W
E
Wnew1 1

1

= - *hh
¶¶
¶¶

= - *0 5 0 009276093. .0.01

W new1 0 49990723907= .
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For the second weight,

W W
E
Wnew2 2

2

= - *hh
¶¶
¶¶

= - *0 2 0 027828278. .0.01

W new2 0 1997217172= .

Note that the derivative is subtracted rather than added to the weight because it is 

positive.

Then, continue the process of prediction and updating the weights until the desired 

outputs are generated with an acceptable error.

 Backpropagation for NN with Hidden Layer
To make the ideas more clear, we can apply the backpropagation algorithm over the 

following NN after adding one hidden layer with two neurons. The new network is 

shown in Figure 2-14.

Figure 2-14. The network architecture of the second backpropagation 
example
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The same inputs, output, activation function, and learning rate used previously will 

also be applied in this example. Here are the complete weights of the network:

W1 W2 W3 W4 W5 W6 b1 b2 b3

0.5 0.1 0.62 0.2 −0.2 0.3 0.4 −0.1 1.83

Figure 2-15 shows the previous network with all inputs and weights added.

Figure 2-15. The network architecture of the second backpropagation example 
after adding the values of the inputs and the parameters

At first, we should go through the forward pass to get the predicted output. If there 

was an error in prediction, then we should go through the backward pass to update the 

weights according to the backpropagation algorithm. Let us calculate the inputs to the 

first neuron in the hidden layer (h1):

 h X W X W bin1 1 1 2 2 1= * + * +  

 = * + * +0 1 0 5 0 3 0 1 0 4. . . . .  

 h in1 0 48= .  
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The input to the second neuron in the hidden layer (h2):

 h X W X W bin2 1 3 2 4 2= * + * +  

 = * + * -0 1 0 62 0 3 0 2 0 1. . . . .  

 = 0 022.  

The output of the first neuron of the hidden layer:

 
h

eou h in1

1
1 1

=
+ -  

 
=

+ -

1
1 0 48e .  

 
=

+
1

1 0 619.  

 
=

1
1 619.  

 h out1 0 618= .  

And the output of the second neuron of the hidden layer:

 
h

eout h in2

1
1 2

=
+ -  

 
=

+ -

1
1 0 022e .  

 
=

+
1

1 0 978.  

 
=

1
1 978.  

 h out2 0 506= .  

The next step is to calculate the input of the output neuron:

 out h W h W bin out out= * + * +1 5 2 6 3  

 = *- + * +0 618 0 2 0 506 0 3 1 83. . . . .  

 outin =1 858.  
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And the output of the output neuron:

 
out

eout outin
=

+ -

1
1  

 
=

+ -

1
1 1 858e .  

 
=

+
1

1 0 156.  

 
=

1
1 156.  

 outout = 0 865.  

Thus, the expected output of our NN based on the current weights is 0.865. We can 

then calculate the prediction error according to the following equation:

 
E desired outout= -( )1

2
2

 

 
= -( )1
2

0 03 0 865
2

. .  

 
= -( )1
2

0 835
2

.  

 
= ( )1
2

0 697.  

 E = 0 349.  

The error seems very high, and thus we should update the network weights using the 

backpropagation algorithm.

 Partial Derivatives

Our goal is to get how the total error E changes wrt each of the six weights (W1 : W6):

¶¶
¶¶
E
W1

, 
¶¶
¶¶
E
W2

, ¶¶
¶¶
E
W3

, 
¶¶
¶¶
E
W4

, 
¶¶
¶¶
E
W5

, 
¶¶
¶¶
E
W6
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Let us start by calculating the partial derivative of the output wrt the hidden-output 

layers weights (W5 and W6).

E−W5 Partial Derivative:
Starting with W5, we will follow that chain:

 

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

5 5

= * *
 

We can calculate each individual part at first and then combine them to get the 

desired derivative.

For the first derivative 
¶

¶
E

outout
:

 

¶¶
¶¶

¶¶
¶¶

E
out out

desired out
out out

out= -( )æ
è
ç

ö
ø
÷

1
2

2

 

 
= * -( ) * -( )-
2

1
2

0 1
2 1

desired outout  

 = - * -( )desired outout 1  

 = -out desiredout  

By substituting with the values of these variables,

 = - = -out desiredout 0 865 0 03. .  

 

¶¶
¶¶

E
outout

=0 835.
 

For the second derivative 
¶
¶
out

out
out

in

:

 

¶¶
¶¶

¶¶
¶¶

out
out out e

out

in in
outin

=
+

æ
è
ç

ö
ø
÷-

1
1  

 
=

+
æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

1e eout outin in  

 
=

+
æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

11 858 1 858e e. .  
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= æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷

1
1 56

1
1

1 56. .  

 = ( ) -( ) = ( )( )0 865 1 0 865 0 865 0 135. . . .  

 

¶¶
¶¶
out
out

out

in

=0 117.
 

For the last derivative 
¶
¶
out

W
in

5

:

 

¶¶
¶¶

¶¶
¶¶

out
W W

h W h W bin
out out

5 5
1 5 2 6 3= * + * +( )

 

 = * *( ) + +-
1 0 01 5

1 1
h Wout  

 =h out1  

 

¶¶
¶¶
out
W

in

5

0 618= .
 

After calculating all three required derivatives, we can calculate the target derivative 

as follows:

 

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

5 5

= * *
 

 

¶¶
¶¶
E
W5

0 835 0 23 0 618= * *. . .
 

 

¶¶
¶¶
E
W5

0 119= .
 

E−W6 Partial Derivative:

For calculating 
¶
¶
E

W6

, we will use the following chain:

 

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

6 6

= * *
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The same calculations will be repeated with just a change in the last derivative 
¶
¶
out

W
in

6

. It can be calculated as follows:

¶¶
¶¶

¶¶
¶¶

out
W W

h W h W bin
out out

6 6
1 5 2 6 3= * + * +( )

 = + * *( ) +-
0 1 02 6

1 1
h Wout  

 =h out2  

 

¶¶
¶¶
out
W

in

6

0 506= .
 

Finally, the derivative 
¶
¶
E

W6

 can be calculated:

 

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

6 6

= * *
 

 = * *0 835 0 23 0 506. . .  

 

¶¶
¶¶
E
W6

0 097= .
 

This is for W5 and W6. Let’s calculate the derivative wrt to W1 to W4.

E−W1 Partial Derivative:
Starting with W1, we will follow that chain:

 

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in1 1
1
1

1
= * * * * iin

W¶¶ 1  

We will follow the previous procedure by calculating each individual derivative and 

finally combining all of them. The first two derivatives 
¶

¶
¶
¶

E

out

out

outout

out

in

and  have already 

been calculated previously, and their results are as follows:

 

¶¶
¶¶

E
outout

=0 835.
 

 

¶¶
¶¶
out
out

out

in

=0 23.
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For the next derivative 
¶
¶
out

h
in

out1
:

¶¶
¶¶

¶¶
¶¶

out
h h

h W h W bin

out out
out out1 1 1 5 2 6 3= * + * +( )

= ( ) * + +-
h Wout1

1 1
5 0 0

=W5

¶¶
¶¶
out
h

in

out1
0 2= - .

For 
¶
¶
h

h
out

in

1

1
:

¶¶
¶¶

¶¶
¶¶

h
h h e

out

in in
h in

1
1

1
11

1
=

+
æ
è
ç

ö
ø
÷-

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

11 1e eh hin in

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

10 48 0 48e e. .

= æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷

1
1 619

1
1

1 619. .

= ( ) -( ) = *0 618 1 0 618 0 618 0 382. . . .

¶¶
¶¶
h
h

out

in

2

2

0 236= .

For 
¶
¶
h

W
in1

1

:

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin1

1 1
1 1 2 2 1= * + * +( )

= *( ) + +-
X W1 1

1 1
0 0

= X1

¶¶
¶¶
h
W

in1 0 1
1

= .

Chapter 2  artifiCial Neural Networks



85

Finally, the target derivative can be calculated:

¶¶
¶¶
E
W1

0 835 0 23 0 2 0 236 0 1= * *- * *. . . . .

¶¶
¶¶
E
W1

0 001= - .

E−W2 Partial Derivative:

Similar to the method of calculating 
¶
¶
E

W1

, we can calculate 
¶
¶
E

W2

. The only change 

will be in the last derivative 
¶
¶
h

W
in1

2

.

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in2 1
1
1

1
= * * * * iin

W¶¶ 2

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin1

2 2
1 1 2 2 1= * + * +( )

= + *( ) +-
0 02 2

1 1
X W

= X2

¶¶
¶¶
h
W

in1 0 3
2

= .

Then:

¶¶
¶¶
E
W2

0 835 0 23 0 2 0 236 0 3= * *- * *. . . . .

¶¶
¶¶
E
W2

003= -.

The last two weights (W3 and W4) can be calculated similarly to W1 and W2.
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E−W3 Partial Derivative:

Starting with W3, we should follow this chain:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in3 2
2
2

2
= * * * * iin

W¶¶ 3

The missing derivatives to be calculated are 
¶
¶

¶
¶

¶
¶

out

h

h

h

h

W
in

out

out

in

in

2

2

2

2

3

, and .

¶¶
¶¶

¶¶
¶¶

out
h h

h W h W bin

out out
out out2 2 1 5 2 6 3= * + * +( )

= + ( ) * +-
0 02

1 1
6h Wout

=W6

¶¶
¶¶
out
h

in

out2
0 3= .

For 
¶
¶
h

h
out

in

2

2
:

¶¶
¶¶

¶¶
¶¶

h
h h e

out

in in
h in

2
2

1
12

2
=

+
æ
è
ç

ö
ø
÷-

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

12 2e eh hin in

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

10 022 0 022e e. .

= æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷

1
1 978

1
1

1 978. .

= ( ) -( )0 506 1 0 506. .

¶¶
¶¶
h
h

out

in

2

2

0 25= .
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For 
¶
¶
h

W
in2

3

:

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin2

3 3
1 3 2 4 2= * + * +( )

= * + * +X W X W b1 3 2 4 2

= ( ) * + +-
X X1

1 1
1 0 0

= X1

= 0 1.

Finally, we can calculate the desired derivative as follows:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in3 2
2
2

2
= * * * * iin

W¶¶ 3

¶¶
¶¶
E
W3

0 835 0 23 0 3 0 25 0 1= * * * *. . . . .

¶¶
¶¶
E
W3

0 00014= .

E−W4 Partial Derivative:

We can now calculate 
¶
¶
E

W4

 similarly:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in4 2
2
2

2
= * * * * iin

W¶¶ 4

We should calculate the missing derivative 
¶
¶
h

W
in2

4

:

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin2

4 4
1 3 2 4 2= * + * +( )

= * + * +X W X W b1 3 2 4 2

= + ( ) * +-
0 02

1 1
4X W

=W4

= 0 2.

Chapter 2  artifiCial Neural Networks



88

Then calculate 
¶
¶
E

W4

:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in4 2
2
2

2
= * * * * iin

W¶¶ 4

¶¶
¶¶
E
W4

0 835 0 23 0 3 0 25 0 2= * * * *. . . . .

¶¶
¶¶
E
W4

003= .

 Updating Weights

At this point, we have successfully calculated the derivative of the total error according 

to each weight in the network. Next is to update the weights according to the derivatives 

and retrain the network. The updated weights will be calculated as follows:

W W
E
Wnew1 1

1

0 5 01 0 001 0 50001= - * = - *- =hh
¶¶
¶¶

. . . .

W W
E
Wnew2 2

2

0 1 01 0 003 0 10003= - * = - *- =hh
¶¶
¶¶

. . . .

W W
E
Wnew3 3

3

0 62 01 0 00014 0 6199= - * = - * =hh
¶¶
¶¶

. . . .

W W
E
Wnew4 4

4

0 2 01 0 003 0 1997= - * = - * =hh
¶
¶

. . . .

W W
E
Wnew5 5

5

0 2 01 0 618 0 20618= - * = - - * = -hh
¶¶
¶¶

. . . .

W W
E
Wnew6 6

6

0 3 01 0 097 0 29903= - * = - * =hh
¶¶
¶¶

. . . .
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 Overfitting
Have you ever created a ML model that is perfect for the training samples but gives 

very bad predictions with unseen samples? Did you ever wonder why this happens? 

The reason might be due to overfitting. A model with the problem of overfitting 

makes great predictions for training samples but poor ones for validation data. This is 

because the model adapted itself to every piece of information in the training data until 

collecting some properties that could be found only within the training data. Let’s try to 

understand this problem.

The focus of ML is to train an algorithm with training data in order to create a 

model that is able to make the correct predictions for unseen data (test data). To create 

a classifier, for example, a human expert will start by collecting the data required to 

train the ML algorithm. The human is responsible for finding the best types of features 

which are the things capable of discriminating between the different classes in order to 

represent each class. These features will be used to train the ML algorithm. Suppose we 

are to build a ML model that classifies the images in Figure 2-16 as containing cats or not.

Figure 2-16. Images of cats to train a model

The first question we have to answer is “what are the best features to use?” This 

is a critical question in ML, as the better the features used, the better the predictions 

the trained ML model makes, and vice versa. Let us try to visualize these images and 

extract some features that are representative of cats. Some of the representative features 

may be the existence of two dark eye pupils and two ears with a diagonal direction. 

Let’s assume that we have extracted the features somehow from the preceding training 

images and that a trained ML model has been created. This model can work with a wide 

range of cat images because the features used exist in most cats. We can test the model 

using some unseen data as in Figure 2-17. Assume that the classification accuracy of 

the test data is x%.
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One may want to increase the classification accuracy. The first thing to think 

of is using more features than the two used previously. This is because the more 

discriminative features used, the better the accuracy. By inspecting the training data 

again, we can find more features, such as the overall image color, as all training cat 

samples are white, and the iris color in the training data is yellow. The feature vector will 

have these four features:

 1. Dark Eye Pupils

 2. Diagonal Ears

 3. White Fur

 4. Yellow Irises

They will be used to retrain the ML model.

After creating the trained model, the next step is to test it. The expected result after 

using the new feature vector is that the classification accuracy will decrease to be less 

than x%. But why? The cause of the drop in accuracy is the use of some features that 

already exist in the training data but not generally in all cat images. The features are not 

general across all cat images. In the testing data, some cats have black or yellow fur, not 

the white fur used in training.

Our case, in which the features used are powerful for the training samples but very 

poor for the testing samples, can be described as overfitting. The model is trained with 

some features that are exclusive to the training data but do not exist in the testing data.

The goal of the previous discussion is to make the idea of overfitting simple by use 

of a high-level example. To get into the details, it is preferable to work with a simpler 

example. That is why the rest of the discussion will be based on a regression example.

Figure 2-17. Test images of cats
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 Understand Regularization Based on a Regression 
Example
Assume we want to create a regression model that fits the data shown in Figure 2-18. We 

can use polynomial regression.

Figure 2-19. An initial model to fit the data using a model of the first degree

Figure 2-18. Data to fit a regression model

The simplest model that we can start with is the linear model with a first-degree 

polynomial equation, as in Equation 2-13.

 y1 = f1(x) = Θ1x + Θ0
 (Equation 2-13)

Where Θ0 and Θ1 are the model parameters and x is the only feature used.

The plot of the previous model is shown in Figure 2-19.
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Based on a loss function such as the one in Equation 2-14, we can conclude that the 

model is not fitting the data well.

 L
f x d

=
( )-

=å i

N

N
0 1 i i  (Equation 2-14)

Where fi(xi) is the expected output for sample i and di is the desired output for the 

same sample.

The model is too simple and there are many predictions that are not accurate. For 

this reason, we should create a more complex model that can fit the data well, and we 

can increase the degree of the equation from one to two, as in Equation 2-15.

 y2 = f1(x) = Θ2x2 + Θ1x + Θ0
 (Equation 2-15)

By using the same feature x after being raised to power 2 (x2), we created a new 

feature and we will capture not only the linear properties of the data, but also some 

nonlinear properties. The graph of the new model will be as in Figure 2-20.

Figure 2-20. Using more features to create a model of the second degree

The graph shows that the second-degree polynomial fits the data better than the first 

degree. But the quadratic equation also does not fit some of the data samples well. This 

is why we can create a more complex model of the third degree with Equation 2-16. The 

graph is in Figure 2-21.

 y3 = f3(x) = Θ3x3 + Θ2x2 + Θ1x + Θ0
 (Equation 2-16)
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It may be noted that the model fits the data better after a new feature that captures 

the data properties of the third degree is added. To fit the data better than before, we can 

increase the degree of the equation to be of the fourth degree, as in Equation 2-17. The 

graph is in Figure 2-22.

 y4 = f4(x) = Θ4x4 + Θ3x3 + Θ2x2 + Θ1x + Θ0
 (Equation 2-17)

Figure 2-21. Model of the third degree

Figure 2-22. Model of the fourth degree

It seems that the higher the degree of the polynomial equation, the better it fits 

the data. But there are some important questions to be answered. If increasing the 

degree of the polynomial equation by adding new features enhances the results, why 

shouldn’t a very high degree, such as 100th degree, be used? What is the best degree to 

use for a problem?
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 Model Capacity/Complexity
The term “model capacity/complexity” refers to the level of variation that the model can 

work with. The higher the capacity, the more variation the model can cope with. The 

first model y1 is said to be of a small capacity compared to y4. In our case, the capacity 

increases by increasing the polynomial degree.

For sure, the higher the degree of the polynomial equation, the better fit it will be for 

the data. But remember that increasing the polynomial degree increases the complexity 

of the model. Using a model with a capacity higher than required may lead to overfitting. 

The model becomes very complex and fits the training data very well but unfortunately 

is very weak for unseen data. The goal of ML is creating a model that is robust not only 

with the training data but also with unseen data samples.

The model of the fourth degree (y4) is very complex. Yes, it fits the seen data well 

but it will not do so for unseen data. For this case, the newly used feature in y4, namely 

x4, captures more details than required. Because that new feature makes the model too 

complex, we should get rid of it.

In this example, we actually know which features to remove. So, we can remove them 

and return back to the previous model of the third degree (Θ4x4 + Θ3x3 + Θ2x2 + Θ1x + Θ0). 

But in actual work, we do not know which features to remove. Moreover, assume that the 

new feature is not too bad and we do not want to completely remove it and just want to 

penalize it. What should we do?

Looking back at the loss function, the only goal is to minimize/penalize the 

prediction error. We can set a new objective to minimize/penalize the effect of the new 

feature x4 as much as possible. After modifying the loss function to penalize x3, the new 

one is in Equation 2-18.

 L
f x d x

new

i i
=

( )- +é
ë

ù
û=å i

N

N
0 4 4

4Q
 (Equation 2-18)

Our objective now is to minimize the loss function. We are now just interested in 

minimizing this term Θ4x4. It is obvious that to minimize Θ4x4 we should minimize Θ4, as it 

is the only free parameter we can change. We can set its value to a value equal to zero if we 

want to remove that feature completely in case it is a very bad one, as in Equation 2-19.

 L
f x d x

new

i i
=

( )- + *é
ë

ù
û=å i

N

N
0 4

40
 (Equation 2-19)
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By removing it, we go back to the third-degree polynomial equation (y3). y3 does 

not fit the seen data perfectly as in y4, but generally, it will give better performance for 

unseen data than y4 would.

But in case x4 is a relatively good feature and we just want to penalize it rather than 

removing it completely, we can set it to a value close to but not zero (say 0.1), as in 

Equation 2-20. By doing that, we limit the effect of x4. As a result, the new model will not 

be as complex as before.
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 (Equation 2-20)

Going back to y2, it seems that it is simpler than y3. It can work well with both seen 

and unseen data samples. So, we should remove the new feature used in y3, which is x3, 

or just penalize it if it does relatively well. We can modify the loss function to do that, as 

in Equation 2-21.
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 (Equation 2-21)

 L1 Regularization
Note that we actually knew that y2 is the best model to fit the data because the data 

graph is available for us. It is a very simple task that we can solve manually. But if such 

information is not available to us and as the number of samples and data complexity 

increase, we will not be able to reach such conclusions easily. There must be something 

automatic to tell us which degree will fit the data and tell us which features to penalize to 

get the best predictions for unseen data. This is regularization.

Regularization helps us to select the model complexity to fit the data. It is useful 

to automatically penalize features that make the model too complex. Remember 

that regularization is useful if the features are not bad and will help us to get good 

predictions in a relative sense; we just need to penalize but not remove them completely. 

Regularization penalizes all used features, not a selected subset. Previously, we 

penalized just two features, x4 and x3, not all features. But this is not the case with 

regularization.
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Using regularization, a new term is added to the loss function to penalize the 

features, so the loss function will be as in Equation 2-22.

 L
f x d

N

new

i i j j
=

( )- +é
ë

ù
û= =å åi

N

N
0 4 1

lQ
 (Equation 2-22)

It can also be written as in Equation 2-23 after moving Λ outside the summation.
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The newly added term l Q
j

N

j
=
å

1

 is used to penalize the features to control the level 

of model complexity. Our previous goal before adding the regularization term is to 

minimize the prediction error as much as possible. Now our goal is to minimize the error 

but to be careful of making the model too complex and to avoid overfitting.

There is a regularization parameter called lambda (λ) that controls how to penalize 

the features. It is a hyperparameter with no fixed value. Its value is variable based on 

the task at hand. As its value increases, there will be higher penalization for the features. 

As a result, the model becomes simpler. When its value decreases, there will be lower 

penalization of the features and thus the model complexity increases. A value of zero 

means no removal of features at all.

When λ is zero, then the values of Θj will not be penalized at all, as shown in the 

next equation. This is because setting λ to zero means the removal of the regularization 

term and just leaving the error term. So, our objective will return back to just minimize 

the error to be close to zero. When error minimization is the objective, the model may 

overfit.
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But when the value of the penalization parameter λ is very high (say 109), then there 

must be a very high penalization for the parameters Θj in order to keep the loss at its 

minimum value. As a result, the parameters Θj will be zeros. As a result, the model (y4) 

will have its Θi pruned as shown in the following.

y4 4 4
4

3
3

2
2

1 0= ( ) = + + + +f x x x x xQ Q Q Q Q

y4
4 3 2

00 0 0 0= * + * + * + * +x x x x Q

y4 0=Q

Please note that the regularization term starts its index j from 1 not zero. Actually, 

we use the regularization term to penalize features (xi). Because Θ0 has no associated 

feature, there is no reason to penalize it. In this case, the model will be y4 = Θ0 with the 

graph shown in Figure 2-23.

Figure 2-23. Model parallel to the x axis after penalizing all features

 Designing ANN
Beginners in ANNs are likely to ask some questions, including the following: What is the 

correct number of hidden layers to use? How many hidden neurons are in each hidden 

layer? What is the purpose of using hidden layers/neurons? Does increasing the number 

of hidden layers/neurons always give better results? I am pleased to say that we can 

answer these questions. To be clear, answering such questions might be too complex if 

the problem being solved is complicated. By the end of this section, you might at least 

get an idea of how these questions can be answered and be able to test yourself based on 

simple examples. Let’s start.
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ANN is inspired by the biological neural network. For simplicity, in computer 

science, it is represented as a set of layers. These layers are categorized into three classes: 

input, hidden, and output.

Knowing the number of input and output layers and the number of their neurons 

is the easiest part. Every network has single input and output layers. The number 

of neurons in the input layer equals the number of input variables in the data being 

processed. The number of neurons in the output layer equals the number of outputs 

associated with each input. But the challenge is knowing the number of hidden layers 

and their neurons.

Here are some guidelines to learning the number of hidden layers and neurons in 

each hidden layer in a classification problem:

• Based on the data, draw an expected decision boundary to separate 

the classes.

• Express the decision boundary as a set of lines. Note that the 

combination of these lines must yield to the decision boundary.

• The number of selected lines represents the number of hidden 

neurons in the first hidden layer.

• To connect the lines created by the previous layer, a new hidden layer 

is added. Note that a new hidden layer is added each time you need 

to create connections among the lines in the previous hidden layer.

• The number of hidden neurons in each new hidden layer equals the 

number of connections to be made.

To make things clearer, let’s apply the previous guidelines to a couple of examples.

 Example 1: ANN Without Hidden Layer
Let’s start with a simple example of a classification problem with two classes, as shown 

in Figure 2-24. Each sample has two inputs and one output that represents the class 

label. It is quite similar to the XOR problem.
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The first question to answer is whether hidden layers are required or not. A rule to 

follow in order to determine this is as follows:

In ANNs, hidden layers are required if and only if the data must 
be separated nonlinearly.

Looking at Figure 2-25, it seems that the classes must be nonlinearly separated. A 

single line will not work. As a result, we must use hidden layers in order to get the best 

decision boundary. In this case, we may still not use hidden layers, but this will affect the 

classification accuracy. So, it is better to use hidden layers.

Knowing that we need hidden layers then requires us to answer two important 

questions. These questions are as follows:

 1. What is the required number of hidden layers?

 2. What is the number of the hidden neurons across each hidden 

layer?

Following the previous procedure, the first step is to draw a decision boundary that 

splits the two classes. There is more than one possible decision boundary that splits the 

data correctly, as shown in Figure 2-25. The one we will use for further discussion is in 

Figure 2-25(a).

Figure 2-24. Two-class classification problem
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Following the guidelines, the next step is to express the decision boundary by a set of 

lines.

The idea of representing the decision boundary using a set of lines comes from 

the fact that any ANN is built using the single layer perceptron as a building block. The 

single layer perceptron is a linear classifier that separates the classes using a line created 

according to Equation 2-24.

 y = w1x1 + w2x2 + … + wixi + b (Equation 2-24)

Where xi is the ith input, wi is its weight, b is the bias, and y is the output. Because 

each hidden neuron added will increase the number of weights, it is recommended 

to use the lowest number of hidden neurons that accomplishes the task. Using more 

hidden neurons than required will add more complexity.

Returning back to our example, saying that the ANN is built using multiple 

perceptron networks is identical to saying that the network is built using multiple lines.

In this example, the decision boundary is replaced by a set of lines. The lines start 

from the points at which the boundary curve changes direction. At this point, two lines 

are placed, each in a different direction.

Because there is just one point at which the boundary curve changes direction, as 

shown in Figure 2-26 by a gray circle, then there will be just two lines required. In other 

words, there are two single layer perceptron networks. Each perceptron produces a line.

a b

Figure 2-25. Nonlinear classification problem cannot be solved using a single line
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Figure 2-27. Two lines connected to each other using a hidden neuron

Figure 2-26. Two lines required to classify the problem

Knowing that there are just two lines required to represent the decision boundary 

tells us that the first hidden layer will have two hidden neurons.

Up to this point, we have a single hidden layer with two hidden neurons. Each 

hidden neuron could be regarded as a linear classifier that is represented as a line, as 

in Figure 2-26. There will be two outputs, one from each classifier (i.e., hidden neuron). 

But we are to build a single classifier with one output representing the class label, not 

two classifiers. As a result, the outputs of the two hidden neurons are to be merged into a 

single output. In other words, the two lines are to be connected by another neuron. The 

result is shown in Figure 2-27.

Chapter 2  artifiCial Neural Networks



102

Fortunately, we do not need to add another hidden layer with a single neuron to do 

that job. The output layer neuron will do the task. This neuron will merge the two lines 

generated previously so that there is only one output from the network.

After learning the number of hidden layers and their neurons, the network 

architecture is now complete, as shown in Figure 2-28.

Input Layer Hidden Layer

Output Layer
out

X1

X2

Figure 2-28. Network structure for a classification problem with a curve created 
by connecting two lines, each one created using a hidden layer neuron

 Example 2: ANN with a Single Hidden Layer
Another classification example is shown in Figure 2-29. It is similar to the previous 

example, in which there are two classes where each sample has two inputs and one 

output. The difference is in the decision boundary. The boundary in this example is 

more complex than the one in the previous example.
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According to the guidelines, the first step is to draw the decision boundary. The 

decision boundary to be used in our discussion is shown in Figure 2-30(a).

The next step is to split the decision boundary into a set of lines; each line will be 

modeled as a perceptron in the ANN. Before drawing lines, the points at which the 

boundary change direction should be marked as shown in Figure 2-30(b).

a b

Figure 2-30. Decision boundary to classify the second example

Figure 2-29. A more complex classification problem to find the best network 
architecture
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The question is how many lines are required. Each of the top and bottom points 

will have two lines associated with them, for a total of four lines. The in-between point 

will have its two lines shared from the other points. The lines to be created are shown in 

Figure 2-31.

Figure 2-31. Lines required to create the decision boundary of the second example

Because the first hidden layer will have hidden layer neurons equal to the number 

of lines, the first hidden layer will have four neurons. In other words, there are four 

classifiers each created by a single layer perceptron. At the current time, the network 

will generate four outputs, one from each classifier. The next step is to connect these 

classifiers together in order to make the network generating just a single output. In other 

words, the lines are to be connected together by other hidden layers to generate just a 

single curve.

It is up to the model designer to choose the layout of the network. One feasible 

network architecture is to build a second hidden layer with two hidden neurons. The first 

hidden neuron will connect the first two lines, and the last hidden neuron will connect 

the last two lines. The result of the second hidden layer is shown in Figure 2-32.
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Up to this point, there have been two separated curves. Thus, there are two outputs 

from the network. The next step is to connect these curves together in order to have just 

a single output from the entire network. In this case, the output layer neuron could be 

used to do the final connection rather than adding a new hidden layer. The final result is 

shown in Figure 2-33.

Figure 2-32. Connecting lines to create a single decision boundary

Figure 2-33. Connecting the outputs of the hidden layer using the output layer
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The network design is now complete, and the complete network architecture is 

shown in Figure 2-34.

Input Layer Hidden Layer

Output Layer

out

X1

X2

Figure 2-34. The network architecture to classify the second example
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CHAPTER 3

Recognition Using ANN 
with Engineered Features
The three pillars for a successful ML application are the data, features, and model. 

They should cope with each other. The most relevant features that differentiate among 

the different cases existing in the data are used. Representative features are critical in 

building an accurate ML application. They should be accurate enough to work well 

under different conditions such as a change in scale and rotation. Such features should 

work well with the selected ML model. You shouldn’t use more features than needed, 

because this adds more complexity to the model. Feature selection and reduction 

techniques are used to find the minimum set of features to build an accurate model.

This chapter explores the feature categories presented in Chapter 2 to find the 

suitable set of hand-engineered features for the Fruits 360 dataset. Feature reduction is 

applied to minimize the feature vector length and just use the most relevant features. 

ANN is implemented to map the image features to their output labels. By the end of 

the chapter, we will recognize how it is complex to manually find features for complex 

problems with multiple variations among samples even within the same class.

 Fruits 360 Dataset Feature Mining
The Fruits 360 dataset is used to find a suitable set of features to train the ANN in order to 

achieve high classification performance. It is a high-quality dataset of images collected 

from 60 fruits including apple, guava, avocado, banana, cherry, date, kiwi, peach, and 

more. On average, each fruit has around 491 training and 162 test images for a total 

of 28,736 for training and 9,673 for testing. The size of each image is 100×100 pixels. 

Working with a dataset in which all images are of equal size saves one preprocessing step 

of resizing them.
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 Feature Mining
For making things simple at the beginning, just four classes are selected: Braeburn 

apple, Meyer lemon, mango, and raspberry. Based on the feature categories presented in 

Chapter 2 (color, texture, and edge), we need to find the most suitable set of features to 

differentiate these classes.

Based on our knowledge about these four fruits, we know that they have different 

colors. Apple is red, lemon is orange, mango is green, and raspberry is magenta. As a 

result, the color category is the first one that comes to our minds.

We can start by using each pixel as input to the ANN. Each image size is 100×100 

pixels. Because the image is color, then there are three existing channels based on the 

RGB color space: red, green, and blue. Thus, the total number of inputs to the ANN is 

100×100×3=30,000. Based on these inputs, an ANN is to be created.

Also, these inputs will make the ANN huge, with a large number of parameters. 

The network will have 30,000 inputs and 4 outputs. Assuming there is a single hidden 

layer of 10,000 neurons, then the total number of parameters in the network is 

30,000×10,000+10,000×4, which is more than 300 million parameters. Optimizing such 

a network is complex. We should find a way to reduce this number of input features in 

order to reduce the number of parameters.

One way is by using a single channel rather than using all three RGB channels. The 

selected channel should be able to capture the color changes among the used classes. 

The three channels for each image in addition to their histograms are available in 

Figure 3-1. A histogram helps us to visualize the intensity values easier than looking at 

the image would.
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Figure 3-1. Red, green, and blue channels in addition to their histograms for a 
single sample from the four classes of the Fruits 360 dataset used
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The Python code used to read the images, along with creating and visualizing their 

histogram, is available in Listing 3-1.

Listing 3-1. RGB Channel Histogram

import numpy

import skimage.io

import matplotlib.pyplot

raspberry = skimage.io.imread(fname="raspberry.jpg", as_grey=False)

apple = skimage.io.imread(fname="apple.jpg", as_grey=False)

mango = skimage.io.imread(fname="mango.jpg", as_grey=False)

lemon = skimage.io.imread(fname="lemon.jpg", as_grey=False)

fruits_data = [apple, raspberry, mango, lemon]

fruits = ["apple", "raspberry", "mango", "lemon"]

idx = 0

for fruit_data in fruits_data:

    fruit = fruits[idx]

    for ch_num in range(3):

        hist = numpy.histogram(a=fruit_data[:, :, ch_num], bins=256)

        matplotlib.pyplot.bar(left=numpy.arange(256), height=hist[0])

         matplotlib.pyplot.savefig(fruit+"-histogram-channel-"+ 

str(ch_num)+".jpg", bbox_inches="tight")

        matplotlib.pyplot.close("all")

    idx = idx + 1

It seems that it is difficult to find the best channel to use. According to the histogram 

for any channel, there is overlap in some regions across the images. The only metric 

to differentiate the different images in such a case is the intensity values. For example, 

Braeburn apple and Meyer lemon have values for all bins according to the blue channel 

histogram, but their values differ. Apple has small values compared to lemon in the 

rightmost part. According to illumination changes, the intensity values will change and 

we might have a case in which both apple and lemon have close values to each other in 

the histogram. We should add a margin between the different classes. Even with little 

changes, there is no ambiguity in making the decision.
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We can benefit from the fact that the four fruits used have different colors. A color 

space that decouples illumination channels from color channels is a good option. 

Figure 3-2 shows the hue channel from the HSV color space from the four samples used 

previously in addition to their histograms.

Figure 3-2. Hue channel from the HSV color space with its histograms

The Python code used to return the histogram of the hue channel of all samples is in 

Listing 3-2.

Listing 3-2. Hue Channel Histograms

import numpy

import skimage.io, skimage.color

import matplotlib.pyplot

raspberry = skimage.io.imread(fname="raspberry.jpg", as_grey=False)

apple = skimage.io.imread(fname="apple.jpg", as_grey=False)

mango = skimage.io.imread(fname="mango.jpg", as_grey=False)

lemon = skimage.io.imread(fname="lemon.jpg", as_grey=False)

apple_hsv = skimage.color.rgb2hsv(rgb=apple)

mango_hsv = skimage.color.rgb2hsv(rgb=mango)

raspberry_hsv = skimage.color.rgb2hsv(rgb=raspberry)

lemon_hsv = skimage.color.rgb2hsv(rgb=lemon)
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fruits = ["apple", "raspberry", "mango", "lemon"]

hsv_fruits_data = [apple_hsv, raspberry_hsv, mango_hsv, lemon_hsv]

idx = 0

for hsv_fruit_data in hsv_fruits_data:

    fruit = fruits[idx]

    hist = numpy.histogram(a=hsv_fruit_data[:, :, 0], bins=360)

    matplotlib.pyplot.bar(left=numpy.arange(360), height=hist[0])

     matplotlib.pyplot.savefig(fruit+"-hue-histogram.jpg", bbox_

inches="tight")

    matplotlib.pyplot.close("all")

    idx = idx + 1

Using a 360-bin histogram for the hue channel, it seems that each different type of 

fruit votes specific bins within the histogram. There is little overlap among the different 

classes compared to using any of the RGB channels. For example, the highest bins in the 

apple histogram range from 0 to 10 compared to mango, whose bins range from 90 to 

110. The margin between each of the classes makes it easier to reduce the ambiguity in 

classification and thus increases the prediction accuracy.

Based on the previous simple experiments on the four classes selected, the hue 

channel histogram can classify the data correctly. The umber of features, in this case, 

is just 360 rather than 30,000. This helps very much to reduce the number of ANN 

parameters.

A feature vector of 360 elements is small compared to the previous one, but we 

can also minimize it. However, some elements in the feature vector might not be 

representative enough to separate between the different classes. They might reduce the 

accuracy of the classification model. Thus, it is better to remove them to keep the best set 

of features.

This is not the end. If we are to add more classes, is the hue channel histogram 

enough for accurate classification? Let’s see how things work after using an additional 

two fruits (strawberry and mandarin).

Based on our knowledge about these two fruits, strawberry is red, which is similar to 

apple, while mandarin is orange, which is similar to Meyer lemon. Figure 3-3 shows the 

hue channel of the selected samples from these classes in addition to their histogram.
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The histograms of both strawberry and apple are similar as they share the same 

bins ranging from 1 to 10. Also, both mandarin and lemon histograms are similar. How 

to differentiate among the different classes that share the same color? The answer is to 

search for another type of feature.

Fruits that are similar in color likely have different textures. Using a texture 

descriptor such as GLCM or LBP, we can capture these differences. The previous process 

is repeated until the best set of features that can increase the classification accuracy as 

much as possible is selected.

LBP produces a matrix with a size equal to that of the input image. To avoid 

increasing the feature vector length, a 10-bin histogram is created based on the LBP 

matrix as in Figure 3-4. It seems that there is a difference in the bin values.

Figure 3-3. Samples from new two classes that share some similarities among the 
previously used samples
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Listing 3-3 lists the Python code that generates the LBP histogram.

Listing 3-3. LBP Histogram

import numpy

import skimage.io, skimage.color, skimage.feature

import matplotlib.pyplot

apple = skimage.io.imread(fname="apple.jpg", as_grey=True)

strawberry = skimage.io.imread(fname="strawberry.jpg", as_grey=True)

fig, ax = matplotlib.pyplot.subplots(nrows=1, ncols=2)

apple_lbp = skimage.feature.local_binary_pattern(image=apple, P=7, R=1)

hist1 = numpy.histogram(a=apple_lbp, bins=10)

ax[0].bar(left=numpy.arange(10), height=hist1[0])

strawberry_lbp = skimage.feature.local_binary_pattern(image=strawberry, 

P=7, R=1)

hist = numpy.histogram(a=strawberry_lbp, bins=10)

ax[1].bar(left=numpy.arange(10), height=hist[0])

The data scientist has to search for the best type of discriminating feature, which 

is not easily accomplished when the complexity increases due to the number of 

overlapping classes. Even with the simple high-quality Fruits 360 dataset, there is the 

challenge of discriminating between different classes. Working with a dataset such 

Figure 3-4. LBP histogram of apple and strawberry

Chapter 3  reCognition Using ann with engineered FeatUres



115

as ImageNet, with thousands of classes with a difference between samples within the 

same class, finding the best features is a complex task to be done manually. Automatic 

approaches are preferred for cases in which there is plenty of data.

 Feature Reduction
This subsection will work on the feature vector consisting of the hue channel 

histogram based on the first four fruits. Looking at the histograms in Figure 3-2, it 

is obvious that there are too many bins with almost zero value. This means they are 

not used by any class. It is better to remove such elements, as this helps to reduce the 

feature vector length.

According to the feature reduction techniques presented in Chapter 2, wrapper and 

embedded categories are used when it is difficult to know what element to remove. For 

example, some elements might be doing well with some classes but very badly with 

others. Thus, we have to remove them. Wrapper and embedded approaches depend on a 

model to train with multiple feature sets in order to know what elements help to increase 

the classification accuracy. In our case, we do not have to use them. The reason is that 

some elements are bad across all classes, and thus it is obvious what we should remove. 

Thus, the filter approach is a good option.

In turn, STD is a good option for filtering elements. The good elements are those that 

have high values for STD. A sigh STD value means that the element is discriminative for 

the different classes. An element with a low STD value has almost identical values across 

all different classes. This means it is unable to differentiate between the different classes.

STD is calculated for a given element according to Equation 3-1.

 STD
X X

n
=

-
-

ˆ

1
 (Equation 3-1)

Where X is the element value for a given sample, X ̂ is the mean of the element across 

all samples in the dataset, and n is the number of samples.

Before deciding which element to remove, we have to extract the feature vector from 

all samples within the dataset. Listing 3-4 extracts the feature vector from each sample 

across the four fruits used.
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Listing 3-4. Feature Vector Extraction from All Samples

import numpy

import skimage.io, skimage.color, skimage.feature

import os

import pickle

fruits = ["apple", "raspberry", "mango", "lemon"]

#492+490+490+490=1,962

dataset_features = numpy.zeros(shape=(1962, 360))

outputs = numpy.zeros(shape=(1962))

idx = 0

class_label = 0

for fruit_dir in fruits:

    curr_dir = os.path.join(os.path.sep,'train', fruit_dir)

    all_imgs = os.listdir(os.getcwd()+curr_dir)

    for img_file in all_imgs:

         fruit_data = skimage.io.imread(fname=os.getcwd()+curr_dir+img_file, 

as_grey=False)

        fruit_data_hsv = skimage.color.rgb2hsv(rgb=fruit_data)

        hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

        dataset_features[idx, :] = hist[0]

        outputs[idx] = class_label

        idx = idx + 1

    class_label = class_label + 1

with open("dataset_features.pkl", "wb") as f:

    pickle.dump("dataset_features.pkl", f)

with open("outputs.pkl", "wb") as f:

    pickle.dump(outputs, f)

The array named “dataset_features” holds all features. It is given a size of 1,962×360, 

where 360 is the number of histogram bins and 1,962 refers to the number of samples 

(492 apple + 490 for the other three fruits). The class labels are saved into the “outputs” 

array, where apple is given label 0, 1 for raspberry, 2 for mango, and 3 for lemon. At the 

end of the code, the features and the output labels are saved in order to reuse them later.
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This code assumes that there are four folders named according to each fruit. It loops 

through these folders, reads all of their images, calculates the histogram, and returns it 

into the “dataset_features” variable. After that, we are ready to calculate the STD. The 

STD for all features is calculated according to this line:

features_STDs = numpy.std(a=dataset_features, axis=0)

This returns a vector of length 360, where an element in a given position refers to the 

STD of the element of the feature vector at that position. The distribution of the 360 STDs 

is in Figure 3-5.

Figure 3-5. Distribution of the STDs for all elements of the feature vector across all 
samples

Based on this distribution, the minimum, maximum, and mean values for the STD 

are 0.53, 549.13, and 44.22, respectively. Features with small STD values should be 

removed because they cannot differentiate between the different classes. We have to 

select a threshold that splits the features into bad (below-threshold) and good (above- 

threshold) ones.
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 Filtering Using ANN
One way to select the threshold is trial and error. Try different values for the threshold. 

By the reduced feature vector returned by each threshold, train a classification model 

and notice the accuracy. Use the reduced feature vector that maximizes the accuracy.

Listing 3-5 gives the Python code to create and train an ANN using the scikit- learn 

library with a set of features generated by using a threshold.

Listing 3-5. Building ANN Using scikit-learn Trained with STD Thresholded 

Features

import sklearn.neural_network

import numpy

import pickle

with open("dataset_features.pkl", "rb") as f:

    dataset_features = pickle.load(f)

with open("outputs.pkl", "rb") as f:

    outputs = pickle.load(f)

threshold = 50

features_STDs = numpy.std(a=dataset_features, axis=0)

dataset_features2 = dataset_features[:, features_STDs>threshold]

ANN = sklearn.neural_network.MLPClassifier(hidden_layer_sizes=[150, 60],

                                           activation="relu",

                                           solver="sgd",

                                           learning_rate="adaptive",

                                           max_iter=300,

                                           shuffle=True)

ANN.fit(X=dataset_features2, y=outputs)

predictions = ANN.predict(X=dataset_features2)

num_flase_predictions = numpy.where(predictions != outputs)[0]

The features and the outputs are loaded in order to calculate their STDs and filter the 

features based on a predefined threshold. A multilayer perceptron classifier is created 

with two hidden layers, where the first hidden layer has 150 neurons and the second one 

has 60 neurons. Some properties of this classifier are specified: the activation function 
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is set to the rectified linear unit (ReLU) function, the stochastic gradient descent (GD) is 

the learning algorithm, the learning rate is selected automatically by the learner, there 

are 300 maximum iterations to train the network, and finally the network is set to True in 

order to select different training samples in each iteration.

With a threshold of 50, the remaining features have the distribution in Figure 3-6. All 

low-quality elements are removed and thus the best set of elements is used. This reduces 

the amount of data used to train the network; thus, faster training. It also prevents bad 

feature elements from reducing the accuracy. When using all the elements in the feature 

vector, there are 490 false predictions. After thresholding, with the feature elements using 

an STD threshold of 50, the number of false predictions dropped to zero.

Figure 3-6. Distribution of STDs after removing elements with STD lower 
than 50

Reduction of the classification errors is not the only benefit; the ANN parameters are 

also reduced. After using only the feature elements with an STD of greater than 50, the 

number of remaining elements is just 102. According to the ANN structure in Listing 3-5, 

the number of parameters in the input layer and the first hidden layer will be 102×150= 

15,300 compared to 54,000 parameters when the complete feature vector of length 360 is 

used. There is a reduction of 38,700 parameters.
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 ANN Implementation
This section implements an ANN in Python. The ANN is made to accept the network 

structure in terms of the number of neurons in each layer (input, hidden, and output), 

and then it trains the network in a number of iterations. For getting familiar with the 

steps of implementation, Figure 3-7 visualizes the ANN structure. There is an input layer 

with 102 inputs, two hidden layers with 150 and 60 neurons, and an output layer with 4 

outputs (one for each fruit class).

Figure 3-7. The architecture of the ANN to be implemented

The input vector at any layer is multiplied (matrix multiplication) by the weights 

matrix connecting it to the next layer to produce an output vector. The output vector is 

again multiplied by the weights matrix connecting its layer to the next layer. The process 

continues until reaching the output layer. A summary of the matrix multiplications is in 

Figure 3-8.
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The input vector of size 1×102 is to be multiplied by the weights matrix of the first 

hidden layer of size 102×150. This is matrix multiplication. Thus, the output size is 1×150. 

The output is then used as the input to the second hidden layer, where it is multiplied by 

a weights matrix of size 150×60. The result size is 1×60. Finally, the output is multiplied 

by the weights between the second hidden layer and the output layer of size 60×4. The 

result has a final size of 1×4. Every element in the resulting vector refers to an output 

class. The input sample is labeled according to the class with the highest score.

The Python code for implementing such multiplications is in Listing 3-6.

Figure 3-8. Matrix multiplications between inputs and weights
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Listing 3-6. ANN Matrix Multiplications

import numpy

import pickle

def sigmoid(inpt):

    return 1.0/(1+numpy.exp(-1*inpt))

f = open("dataset_features.pkl", "rb")

data_inputs2 = pickle.load(f)

f.close()

features_STDs = numpy.std(a=data_inputs2, axis=0)

data_inputs = data_inputs2[:, features_STDs>50]

f = open("outputs.pkl", "rb")

data_outputs = pickle.load(f)

f.close()

HL1_neurons = 150

input_HL1_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                          size=(data_inputs.shape[1],  

HL1_neurons))

HL2_neurons = 60

HL1_HL2_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                         size=(HL1_neurons, HL2_neurons))

output_neurons = 4

HL2_output_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                           size=(HL2_neurons,  

output_neurons))

H1_outputs = numpy.matmul(a=data_inputs[0, :], b=input_HL1_weights)

H1_outputs = sigmoid(H1_outputs)

H2_outputs = numpy.matmul(a=H1_outputs, b=HL1_HL2_weights)

H2_outputs = sigmoid(H2_outputs)

out_outputs = numpy.matmul(a=H2_outputs, b=HL2_output_weights)

predicted_label = numpy.where(out_outputs == numpy.max(out_outputs))[0][0]

print("Predicted class : ", predicted_label)
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After reading the previously saved features and their output labels and filtering 

the features with an STD threshold equal to 50, the weights matrices of the layers are 

defined. They are randomly given values from –0.1 to 0.1. For example, the variable 

“input_HL1_weights” holds the weights matrix between the input layer and the first 

hidden layer. The size of this matrix is defined according to the number of feature 

elements and the number of neurons in the hidden layer.

After creating the weights matrices, the next step is to apply matrix multiplications. 

For example, the variable “H1_outputs” holds the output of multiplying the feature 

vector of a given sample to the weights matrix between the input layer and the first 

hidden layer.

Usually, an activation function is applied to the outputs of each hidden layer to 

create a nonlinear relationship between the inputs and the outputs. For example, 

outputs of the matrix multiplications are applied to the sigmoid activation function as in 

Equation 3-2.

 sigmoid x
e x( ) =

+ -( )
1

1
 (Equation 3-2)

After generating the output layer outputs, prediction takes place. The predicted class 

label is saved into the “predicted_label” variable.

These steps are repeated for each input sample. The complete code that works across 

all samples is in Listing 3-7.

Listing 3-7. Complete Code for ANN

import numpy

import pickle

def sigmoid(inpt):

    return 1.0/(1+numpy.exp(-1*inpt))

def relu(inpt):

    result = inpt

    result[inpt<0] = 0

    return result

def update_weights(weights, learning_rate):

    new_weights = weights - learning_rate*weights

    return new_weights
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def train_network(num_iterations, weights, data_inputs, data_outputs, 

learning_rate, activation="relu"):

    for iteration in range(num_iterations):

        print("Itreation ", iteration)

        for sample_idx in range(data_inputs.shape[0]):

            r1 = data_inputs[sample_idx, :]

            for idx in range(len(weights)-1):

                curr_weights = weights[idx]

                r1 = numpy.matmul(a=r1, b=curr_weights)

                if activation == "relu":

                    r1 = relu(r1)

                elif activation == "sigmoid":

                    r1 = sigmoid(r1)

            curr_weights = weights[-1]

            r1 = numpy.matmul(a=r1, b=curr_weights)

            predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

            desired_label = data_outputs[sample_idx]

            if predicted_label != desired_label:

                weights = update_weights(weights,

                                         learning_rate=0.001)

    return weights

def predict_outputs(weights, data_inputs, activation="relu"):

    predictions = numpy.zeros(shape=(data_inputs.shape[0]))

    for sample_idx in range(data_inputs.shape[0]):

        r1 = data_inputs[sample_idx, :]

        for curr_weights in weights:

            r1 = numpy.matmul(a=r1, b=curr_weights)

            if activation == "relu":

                r1 = relu(r1)

            elif activation == "sigmoid":

                r1 = sigmoid(r1)

        predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

        predictions[sample_idx] = predicted_label

    return predictions
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f = open("dataset_features.pkl", "rb")

data_inputs2 = pickle.load(f)

f.close()

features_STDs = numpy.std(a=data_inputs2, axis=0)

data_inputs = data_inputs2[:, features_STDs>50]

f = open("outputs.pkl", "rb")

data_outputs = pickle.load(f)

f.close()

HL1_neurons = 150

input_HL1_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                          size=(data_inputs.shape[1],  

HL1_neurons))

HL2_neurons = 60

HL1_HL2_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                         size=(HL1_neurons, HL2_neurons))

output_neurons = 4

HL2_output_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                           size=(HL2_neurons,  

output_neurons))

weights = numpy.array([input_HL1_weights,

                       HL1_HL2_weights,

                       HL2_output_weights])

weights = train_network(num_iterations=2,

                        weights=weights,

                        data_inputs=data_inputs,

                        data_outputs=data_outputs,

                        learning_rate=0.01,

                        activation="relu")

predictions = predict_outputs(weights, data_inputs)

num_flase = numpy.where(predictions != data_outputs)[0]

print("num_flase ", num_flase.size)
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The “weights” variables hold all weights across the entire network. Based on the size 

of each weight matrix, the network structure is dynamically specified. For example, if 

the size of the “input_HL1_weights” variable is 102×80, then we can deduce that the first 

hidden layer has 80 neurons.

The “train_network” is the core function, as it trains the network by looping through 

all samples. For each sample, the steps discussed in Listing 3-6 are applied. It accepts 

the number of training iterations, features, output labels, weights, the learning rate, and 

the activation function. There are two options for the activation functions: either ReLU 

or sigmoid. ReLU is a thresholding function that returns the same input as long as it is 

greater than zero. Otherwise, it returns zero.

If the network made a false prediction for a given sample, then weights are updated 

using the “update_weights” function. No optimization algorithm is used to update the 

weights; they are simply updated according to the learning rate. The accuracy does not 

exceed 45%. The next chapter discusses using the GA optimization technique for this 

task, which increases the classification accuracy.

After the specified number of training iterations, the network is tested according 

to the training data to see if the network is working well on the training samples. If the 

accuracy is acceptable based on the training data, then we can test the model based on 

new unseen data.

 Engineered Feature Limitations
Fruits 360 dataset images are captured in a restricted environment with many details 

available about each fruit. This makes mining the data for finding the best features much 

easier. Unfortunately, real-world applications are not easy that way. There are many 

variations among the samples within the same class, such as different viewing angles, 

perspective distortion, illumination changes, occlusion, and more. Creating a feature 

vector for such data is a complex task.

Figure 3-9 gives some samples from the MNIST (Modified National Institute of 

Standards and Technology) dataset for handwritten number recognition. It consists of 

70,000 samples. The images are binary and thus color feature category is not applicable. 

Looking for another feature, it seems that there is no single feature able to work across 

the entire dataset. Thus, we have to use multiple features to cover all variations existing 

in the dataset. This will definitely create a huge feature vector.
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Assuming that we are able to find a good feature, there is also another problem. A 

single-layer ANN resulted in a 12.0% error rate. Thus, we could increase the depth of the 

ANN. Unfortunately, large feature vectors used with deep ANN architectures are very 

tiresome to compute, but this is the way to work with complex problems.

The alternative approach is to avoid manual feature mining approaches. Start 

looking for an automatic feature mining that searches for the best set of features in terms 

of maximizing accuracy.

 Not the End of Engineered Features
Engineered features are not legacy and can still do great with some problems. It is not a 

good option when working with some complex datasets.

Every data scientist would have used a calculator for doing mathematical 

calculations. After the invention and evolution of the mobile phone, smartphones with 

different applications for operations previously done on the calculator came out. Here 

is the question: does the appearance of a new technology (smartphones) mean that the 

previous technology (calculator) gets destroyed and will not be used anymore?

Figure 3-9. Samples from the CIFAR10 (Canadian Institute for Advanced 
Research) dataset
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Calculators were dedicated just to mathematical operations, but smartphones are 

not. Smartphones have many features not existing in the calculator. Is the availability of 

many features rather than limited ones a disadvantage? In some cases, the fewer features 

in the tool, the better its performance; also, the more features, the more overhead. It is 

simple to do an operation using a calculator but there is overhead when doing the same 

operation with a smartphone.

The phone might ring for an incoming call, which breaks into whatever you were 

doing. It might be connected to the Internet and thus may also beep for an e-mail. This 

might take you away from doing the operations. As a result, one using a smartphone 

should care about all such effects in order to do the math operations nicely. Using 

calculators with limited features compared to smartphones has the advantage of being 

simple and focused on the task, even if it is an old technology. Indeed, the newest is not 

always the best. According to your needs, the old technology may be better or worse than 

a newer technology. The same holds from a data science perspective.

There are different types of learning algorithms and features to be used for different 

tasks, such as classification and regression. Some of them may go back to 1950 while 

others are recent. But we can’t say that the old models are always worse than the recent 

ones. We can’t absolutely conclude that DL models such as CNN are better than previous 

models. This depends on your needs.

Many researchers tend to use DL blindly just because it is the state-of-the-art 

method. Some problems are simple, and using DL may add more complexity. For 

example, using DL with just 100 images divided across 10 classes is not a good option. 

Shallow learning is sufficient in this case. If a classifier is to be created to discriminate 

among the four types of fruits used previously, DL is not mandatory and previous 

handcrafted/engineered features are sufficient.

If CNN is to be used in this case, some overhead is added that makes the task 

complex. There are different parameters to be specified, such as the types of layers, the 

number of layers, activation function, learning rate, and others. In comparison, using a 

hue channel histogram is sufficient for achieving a very high accuracy. It is like getting 

to the top of a wall using a ladder. If you reached the top of the wall after climbing five 

stairs, you do not need to go up another stair in the ladder. Similarly, if you can get the 

best results using hand-engineered features, you do not have to use automatic feature 

learning.
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CHAPTER 4

ANN Optimization
Before the innovation of automatic feature learning approaches, a data scientist was 

asked to know what features to use, which model to use, how to optimize the result, 

and more. With the existence of huge amounts of data and high-speed devices, DL 

is available to automatically deduce the best features. Two of the core tasks of a data 

scientist are model design and optimization.

Model optimization is as important as building the model itself if not more. The 

previously created DL models that proved their accuracy could be reused and thus 

model design is solved. The remaining task is optimization. We are in the era of 

optimization, in which operation research (OR) scientists play a critical role. The field of 

optimization is closely related to artificial intelligence.

Selection of the optimal parameters for ML tasks is challenging. Some results may 

be bad not because the data is noisy or the used learning algorithm is weak, but due to 

the bad selection of the parameter values. Ideally, optimization guarantees returning 

the best solution by looking at different solutions and selecting the best. The more 

metrics defining the solution goodness, the harder it is to find the best solution. This 

chapter gives an introduction to optimization and discusses a simple optimization 

technique called GA. Based on the examples given, it will become clear how to use it in 

both single- and multiobjective optimization problems (MOOPs) based on the concept 

of dominance. This algorithm is used with ANN to produce better weights, helping to 

increase the classification accuracy.
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 Introduction to Optimization
Suppose that a data scientist has an image dataset divided into a number of classes and 

an image classifier is to be created. After the data scientist investigated the dataset, the 

K-nearest neighbor (KNN) seems to be a good option. To use the KNN algorithm, there 

is an important parameter to use, which is K, referring to the number of neighbors. 

Suppose that an initial value of 3 is selected.

The scientist starts the learning process of the KNN algorithm with the selected 

K=3. The trained model reached a classification accuracy of 85%. Is that percentage 

acceptable? In another way, can we get a better classification accuracy than what 

we currently reached? We cannot say that 85% is the best possible accuracy before 

conducting different experiments. But to do another experiment, we definitely must 

change something in the experiment, such as changing the K value used in the KNN 

algorithm. We cannot definitely say 3 is the best value to use in this experiment 

unless we try different values for K and notice how the classification accuracy varies. 

The question is how to find the best value for K that maximizes the classification 

performance. This is called hyperparameter optimization.

In optimization, we start with some kind of initial values for the variables used in 

the experiment. Because these values may not be the best ones, we have to change 

them until getting the best ones. In some cases, these values are generated by 

complex functions that we cannot solve manually easily. But it is very important to 

do optimization because a classifier may produce a bad classification accuracy. The 

reason might not be that the data is noisy or the used learning algorithm is weak, but 

that the selection of the parameters is bad. As a result, there are different optimization 

techniques suggested by OR researchers to do such work.

 Single- vs. Multiobjective Optimization
One way to categorize optimization problems is based on whether it is a single- or 

multiobjective problem. Let’s differentiate between them in this subsection.

Assume there is a book publisher that would like to maximize its profit from selling 

books. They are using Equation 4-1 to calculate their profit per day, where X represents 

the number of books and Y represents the profit. The question to ask yourself when 

optimizing something is what to change in order to make the results better.

 Y =  − (X − 2)3 + 3 (Equation 4-1)
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We could backtrack to the preceding problem. In order to optimize the preceding 

problem, we want to reach the best values for the output variables. Here, we have just a 

single output variable, which is Y.

To get the best value for the output variable Y, what could we change in the problem 

in order to change the variable Y? In other words, what are the variables that Y depends 

on? Looking at Equation 4-1, there is only a single variable that Y depends on, which is 

the input variable X. By changing X we could change Y to a better value. As a result, the 

previous question could be adapted to this specific problem to be as follows: what is the 

best value for the input variable X that returns the best value for the output variable Y?

Assume that the range of the input variable X is 1 to 3, inclusive. Which value gives 

the highest profit? If there is no information to direct us toward the best solution, 

we have to try all possible solutions (i.e., all possible values of the input variable X) 

and select the one that maximizes the profit (i.e., the solution corresponding to the 

largest value for the output variable Y). Table 4-1 shows all possible X values and their 

corresponding Y values. Based on it, the best solution is Y=4, which corresponds to X=1.

Table 4-1. All Possible Solutions to 

a Single-Variable Problem

X Y

1 4

2 3

3 2

Let us make the problem a bit complex. Assume that the problem has another 

factor to use in profit calculation, which is the number of visitors to its online site. It 

is represented as the variable Z, with a range of values from 1 to 2. The modification 

is in Equation 4-2. Following the previous procedure, we need to try all possible 

combinations of the inputs X and Z as in Table 4-2. The best solution corresponds to X=2 

and Z=2.

 Y = Z3 − (X − 2)3 + 3 (Equation 4-2)
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Sometimes the range of the input variable is unbounded and we cannot try all of its 

values. For example, the range of the inputs X and Z might be all real numbers. Following 

the previous procedure of trying all possible values, we will fail in that case. There must 

be something to guide us toward the best solution without trying all possible values for 

the inputs.

The previous optimization problem has only one objective, which is maximizing 

the profit. Another objective might be minimizing the wastepaper represented by 

Equation 4-3, where W represents the amount of wastepaper, with a range from 2 to 4 

tons. As a result, the problem becomes a MOOP, as shown in Equation 4-4.

 K = (X − 2)2 + 1 (Equation 4-3)

MaxY

Min K
ü
ý
þ

Where

Y = Z 3 − (X − 2)2 + 3

K = (X − 2)2 + 1

Subject to

1 ≤ X ≤ 3   &   1 ≤ Z ≤ 2

(Equation 4-4)

Table 4-2. All Possible Solutions 

to the Problem with Two Input 

Variables

X Z Y

1 1 5

1 2 6

2 1 4

2 2 11

3 1 3

3 2 10
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Our goal is not only maximizing the profit but also minimizing the amounts of 

wastepaper. This makes the problem more complex, because we have to keep in mind 

that the selected value for X should meet two objectives rather than one, especially 

when the two objectives are conflicting. This is because a value reducing the amounts of 

wastepaper might decrease the profit. There must be a trade-off between the objectives, 

as one solution might be better in one objective while worse in another. Note that for 

simplicity, maximization objectives are translated into minimization ones.

As the number of objectives and variables increases, the complexity also increases, 

and the problem becomes difficult to solve manually. That is why we are in need of 

automatic optimization techniques to solve such problems for us.

This chapter discusses the GA, which is a simple technique for solving single- and 

multiobjective optimization problems. Nondominated sorting GA-II (NSGA-II) is a 

multiobjective EA (MOEA) based on GA that finds feasible solutions satisfying multiple 

objectives. Because MOOPs might have multiple solutions, NSGA-II could return the 

possible feasible solutions for all objectives. Based on user preference, the best single 

solution could then be filtered.

Looking at various natural species, we can note how they evolve and adapt to their 

environments. We can benefit from these already existing natural systems and their 

natural evolution to create our artificial systems doing the same job. This is called 

bionics. For example, the plane is based on how birds fly, radar comes from bats, the 

submarine was invented based on fish, and so on. As a result, the principles of some 

optimization algorithms come from nature. For example, GA has its core idea from 

Charles Darwin’s theory of natural evolution: “survival of the fittest.”

We can say that optimization is performed using EAs. The difference between 

traditional algorithms and EAs is that EAs are not static but dynamic, as they can evolve 

over time.

EAs have three main characteristics:

 1. Population-Based: EAs are to optimize a process in which current 

solutions are bad to generate new and better solutions. The set of 

current solutions from which new solutions are to be generated is 

called the population.

 2. Fitness-Oriented: If there are several solutions, how can we say 

that one solution is better than another? There is a fitness value 

associated with each individual solution calculated from a fitness 

function. Such a fitness value reflects how good the solution is.
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 3. Variation-Driven: If there is no acceptable solution in the current 

population according to the fitness function calculated from each 

individual, we should make something to generate new better 

solutions. As a result, individual solutions will undergo a number 

of variations to generate new solutions.

We will now start discussing GA to apply these concepts.

 GA
GA is a randomly based optimization technique. By “random,” it is meant that in order 

to find a solution using GA, random changes are applied to the current solutions to 

generate new ones. GA is based on Darwin’s theory of evolution. It is a slow, gradual 

process that works by making slight changes to its solutions until better ones are found. 

By evolving the solutions across a number of generations, it is expected that the new 

solutions will be better than the old ones.

GA works on a population consisting of multiple solutions. The population size is the 

number of solutions. Each solution is called individual. Each individual is represented 

as a chromosome. The chromosome is represented as a set of genes that defines the 

features or parameters of the individual. There are different ways to represent the 

genes, such as binary or decimal. Figure 4-1 gives an example of a population with four 

individuals (chromosomes) where each chromosome has four genes and each gene is 

represented as a binary digit.

Figure 4-1. Population, chromosome, and gene for the GA
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After building the population of the first generation (generation 0), next is to select 

the best solutions for mating and producing new better solutions. To select the best 

solutions, a fitness function is used. The result of the fitness function is the fitness value 

representing the quality of the solution. The higher the fitness value, the higher the 

quality of the solution. Solutions with the highest fitness values are selected within the 

mating pool. Such solutions will mate to produce new solutions.

Solutions inside the mating pool are called parents. Parents mate together for 

generating offspring (children). Just by mating high-quality individuals, it is expected to 

get offspring of better quality than its parents. This stops bad individuals from generating 

more bad individuals. Keeping selecting and mating high-quality individuals, there 

is a higher chance to enhance the quality of the solutions by just keeping the good 

properties and removing the bad ones. Finally, this will end up with the desired optimal 

or acceptable solution.

When the parents are simply mated, the offspring have only the characteristics of the 

parents; no new property is added. Assuming that all parents suffer from a limitation, 

mating them together will definitely produce offspring with the same limitation. 

To overcome this problem, some changes are applied to each offspring to create 

new individuals with new properties. The new offspring will be the solutions in the 

population of the next generation.

Because changes applied to the offspring are random, we are not sure that the new 

offspring will be better than the parents. There is a chance that the solutions within 

the current generation are worse than those of their parents. For this reason, the new 

population will consist of both the parents and the offspring. Half of it is the parents 

and the other half is the new offspring. If the population size is eight, then the new 

population will consist of the previous four parents and four offspring. In the worst case, 

when all offspring are worse than the parents, the quality will not decrease, as we have 

kept the parents. Figure 4-1 summarizes the steps of GA.

There are two questions to be answered to get the full idea about GA:

 1. How are the two offspring generated from the two parents?

 2. How does each offspring get slightly changed?

We will answer these questions later.

There are different representations available for the chromosome, and the selection 

of the proper representation is problem specific. A good representation is one that makes 

the search space smaller and thus easier to search.
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The representations available for the chromosome include the following:

• Binary: Each chromosome is represented as a string of zeros and 

ones.

• Permutation: Useful for ordering problems such as the traveling 

salesman problem.

• Value: The actual value is encoded as it is.

For example, if we are to encode the number 5 in binary, it might look like the first 

chromosome in Figure 4-2.

Figure 4-2. GA steps

Each part of the preceding chromosome is called a gene. Each gene has two 

properties. The first one is its value (allele) and the second one is the location (locus) 

within the chromosome. The rightmost location of each chromosome in Figure 4-1 

represents location 0 and the leftmost location represents location 3.
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Each chromosome has two representations:

 1. Genotype: The set of genes representing the chromosome.

 2. Phenotype: The actual physical representation of the 

chromosome.

The binary number 01012 is the genotype and 510 is the phenotype representation. 

Binary representation might not be the best way to represent solutions for a given 

problem, especially when the number of bits to represent the genes is not fixed.

After representing each chromosome the right way, next is to calculate the fitness 

value of each individual.

 Best-Parents Selection
Assume that Equation 4-5 is the fitness function used in our example in Figure 4-1, 

where x is the chromosome decimal value.

 f  (x) = 2x − 2 (Equation 4-5)

The fitness value of the first solution is with decimal value 5 and is calculated as follows:

 f 5 2 5 2 8( ) = ( ) - =  

The process of calculating the fitness value of a chromosome is called evaluation. 

The fitness values of all solutions are given in Table 4-3.

Table 4-3. Fitness Value of Each Solution

Solution Number Decimal Value Fitness Value

1 5 8

2 11 20

3 12 22

4 2 2

The best individuals from the current population are selected in the mating pool. 

After that step, we will end up selecting a subset of the population in the mating pool. 

But what is the number of parents to choose? It depends on the problem being solved. 
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In our example, we can select just two parents. These two parents will mate to produce 

two offspring. The combination of the parents and the offspring will create a new 

population of four parents. According to Table 4-3, the best two solutions are solutions 

with numbers 2 and 3.

 Variation Operators
The two parents selected are applied to variation operators to produce the offspring. The 

operators are crossover and mutation.

 Crossover

Using the crossover operation, genes from both parents are selected to create the new 

child. As a result, the child will carry properties from both parents. The amount of genes 

carried by each parent is not fixed. Sometimes the offspring takes half of its genes from 

one parent and the other half from the other parent, and sometimes these percentages 

change.

For every two parents, crossover takes place by selecting a random point in the 

chromosome and exchanging genes before and after this point from the two parents. 

The resulting chromosomes are offspring. Because we used a single point to split the 

chromosome, this operator is called single-point crossover. There are different types of 

operators, such as blend, two points, and uniform. Figure 4-3 shows how crossover is 

applied between the two parents to produce the two offspring.

Figure 4-3. Single-point crossover between two parents to produce two offspring

Chapter 4  aNN OptimizatiON



139

 Mutation

Based on the crossover operation, there is no new property added to the gene other 

than ones existing in the parents. This is because all genes are taken from the parents. 

Mutation is applied by selecting a percentage of genes from each chromosome 

and changing their values randomly. Mutation varies based on the chromosome 

representation. If binary encoding is used (i.e., the value spaces of each gene are just 0 

and 1), then flip the bit value of each gene participating in the mutation operation. Other 

types of mutation include swap, inverse, uniform, nonuniform, Gaussian, and shrink.

The percentage of genes to which mutation is applied should be small because 

changes are random. We shouldn’t take the risk of losing much of the existing 

information due to random changes that do not guarantee better results. For our 

problem, we can just select one gene for random flipping of its value. Figure 4-4 shows 

the result when the leftmost gene at location 0 is selected for mutation. Note that 

mutation is applied over the crossover result.

Figure 4-4. Bit-flip mutation over the crossover result

By applying crossover and mutation, the new offspring are completely prepared. 

We can measure whether they are better or worse than the parents based on the fitness 

value. The fitness values for the two offspring are 16 for the first offspring and 26 for the 

second one. Compared to the fitness values of the parents (20 and 22), one of the second 

offspring is better than all parents, and GA is able to evolve the solutions to produce a 

better one. But the first offspring with fitness value 16 is worse than all parents. Keeping 

the parents selected within the new populations ensures that such a bad solution will 
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not be selected as a parent in the next generation. Thus, we are sure that the quality 

of solutions in the next generations will not be worse than the quality in the previous 

generations.

In some problems, the gene is not represented in binary, and thus mutation differs. 

If the gene value comes from a space of more than two values such as (1, 2, 3, 4, 5), then 

the bit-flip mutation is not applicable. One way is by randomly selecting a value from 

this set. Figure 4-5 gives an example of a solution represented by limited values for its 

genes (more than two values). The gene selected for mutation has its value changed to 

one of the other values randomly.

Figure 4-5. Uniform mutation for a solution with more than two values for its 
genes

Sometimes the solution is represented by an unlimited set of values. For example, 

if the range of values is between –1.0 and 1.0, we can select any value in that range to 

replace the old value.

 Python Implementation of an Example
Now that we’ve looked at the concepts of GA, let’s implement it in Python in order 

to optimize a simple example, in which we are going to maximize the output of 

Equation 4-6. This is the fitness function. Decimal representation, one-point 

crossover, and uniform mutation are used in the implementation.

 Y = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6
 (Equation 4-6)

The equation has six inputs (x1 to x6) and six weights (w _ 1 to w6) as shown, and 

input values are (x1,x2,x3,x4,x5,x6)=(4,–2,7,5,11,1). We are looking to find the parameters 

(weights) that maximize this equation. The idea of maximizing this equation seems 

simple. The positive input is to be multiplied by the largest possible positive number and 

the negative number is to be multiplied by the smallest possible negative number. But 
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the idea we are looking to implement is how to make GA do that on its own. GA should 

know itself that it is better to use positive weights with positive inputs and negative 

weights with negative inputs. Let’s start implementing GA.

According to Listing 4-1, a list is created that holds the six inputs in addition to a 

variable that holds the number of weights.

Listing 4-1. Inputs of the Function to Optimize

# Inputs of the equation.

equation_inputs = [4,-2,3.5,5,-11,-4.7]

# Number of the weights we are looking to optimize.

num_weights = 6

The next step is to define the initial population. Based on the number of weights, 

each chromosome (solution or individual) in the population will definitely have six 

genes, one gene for each weight. But the question is, how many solutions are there per 

population? There is no fixed value for that, and we can select the value that fits well 

with our problem. But we could leave it generic so that it can be changed in the code. 

In Listing 4-2, a variable is created to hold the number of solutions per population, 

another to hold the size of the population, and finally, a variable to hold the actual initial 

population.

Listing 4-2. Creating the Initial Population

import numpy

sol_per_pop = 8

# Defining the population size.

pop_size = (sol_per_pop,num_weights) # The population will have sol_per_pop 

chromosome where each chromosome has num_weights genes.

#Creating the initial population.

new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)

After importing the numpy library, we are able to create the initial population 

randomly using the numpy.random.uniform function. According to the selected 

parameters, its shape is (8, 6). That is, there are eight chromosomes and each one has 

six genes, one for each weight. Table 4-4 presents the solutions of the population after 

running the previous code. Note that it is generated randomly by the code and thus it 

will definitely change when you run it.
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After preparing the population, next is to follow the steps of GA as in Figure 4-2. 

Based on the fitness function, we are going to select the best individuals within the 

current population as parents for mating. Next is to apply the GA variants (crossover and 

mutation) to produce the offspring of the next generation, creating the new population 

by appending both parents and offspring, and repeating these steps for a number of 

iterations/generations. Listing 4-3 applies these steps.

Listing 4-3. Iterating Through GA Steps

import GA

num_generations = 10,000

num_parents_mating = 4

for generation in range(num_generations):

    # Measuring the fitness of each chromosome in the population.

    fitness = GA.cal_pop_fitness(equation_inputs, new_population)

    # Selecting the best parents in the population for mating.

    parents = GA.select_mating_pool(new_population, fitness,

                                      num_parents_mating)

    # Generating next generation using crossover.

    offspring_crossover = GA.crossover(parents,

                                        offspring_size=(pop_size[0]-parents.

shape[0], num_weights))

Table 4-4. Initial Population

W1 W2 W3 W4 W5 W6

Solution 1 –2.19 –2.89 2.02 –3.97 3.45 2.06

Solution 2 2.13 2.97 3.6 3.79 0.29 3.52

Solution 3 1.81 0.35 1.03 –0.33 3.53 2.54

Solution 4 –0.64 –2.86 2.93 –1.4 –1.2 0.31

Solution 5 –1.49 –1.54 1.12 –3.68 1.33 2.86

Solution 6 1.14 2.88 1.75 –3.46 0.96 2.99

Solution 7 1.97 0.51 0.53 –1.57 –2.36 2.3

Solution 8 3.01 –2.75 3.27 –0.72 0.75 0.01
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    # Adding some variations to the offspring using mutation.

    offspring_mutation = GA.mutation(offspring_crossover)

    # Creating the new population based on the parents and offspring.

    new_population[0:parents.shape[0], :] = parents

    new_population[parents.shape[0]:, :] = offspring_mutation

A module named “GA” holds the implementation of the functions used in 

Listing 4-3. The first function called, GA.cal_pop_fitness, finds the fitness value of 

each solution within the population. This function is defined inside the GA module 

according to Listing 4-4.

Listing 4-4. GA Fitness Function

def cal_pop_fitness(equation_inputs, pop):

     # Calculating the fitness value of each solution in the current 

population.

     # The fitness function calculates the SOP between each input and its 

corresponding weight.

    fitness = numpy.sum(pop*equation_inputs, axis=1)

    return fitness

The fitness function accepts the equation input values (x_1 to x_6) in addition to 

the population. The fitness value is calculated as the SOP between each input and 

its corresponding gene (weight) according to Equation 4-6. Based on the number of 

solutions per population, there will be an equal number of SOPs as in Table 4-5. Note 

that the higher the fitness value, the better the solution.

Table 4-5. Fitness Values of the Initial Population Solutions

Solution1 Solution2 Solution3 Solution4 Solution5 Solution6 Solution7 Solution8

Fitness 63.41 14.40 –42.23 18.24 –45.44 –37.0 16.0 17.07

After calculating the fitness values for all solutions, the next step is to select the best of 

them as parents in the mating pool according to the GA.select_mating_pool function. This 

function accepts the population, fitness values, and the number of parents needed, and it 

returns the parents selected. Its implementation inside the GA module is in Listing 4-5.
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Listing 4-5. Selecting the Best Parents According to Fitness Values

def select_mating_pool(pop, fitness, num_parents):

# Selecting the best individuals in the current generation as parents for 

producing the offspring of the next generation.

    parents = numpy.empty((num_parents, pop.shape[1]))

    for parent_num in range(num_parents):

        max_fitness_idx = numpy.where(fitness == numpy.max(fitness))

        max_fitness_idx = max_fitness_idx[0][0]

        parents[parent_num, :] = pop[max_fitness_idx, :]

        fitness[max_fitness_idx] = -99999999999

    return parents

Based on the number of parents required as defined in the variable num_parents_

mating, the “parents” empty array is created to hold them. Inside the loop, the function 

iterates through the solutions in the current population to get the index of the solution 

with highest fitness value because it is the best solution to be selected. The index 

is stored into the “max_fitness_idx” variable. Based on this index, the solution that 

corresponds to it is returned to the “parents” array. To avoid selecting this solution again, 

its fitness value is set to –99999999999, which is a very small value. This value makes the 

solution unlikely to be selected again. After selecting the number of parents needed, 

the parents array is returned as in Table 4-6. Note that these three parents are the best 

individuals within the current population based on their fitness values, which are 63.41, 

18.24, 17.07, and 16.0, respectively.

Table 4-6. Selected Parents from the First Population

W1 W2 W3 W4 W5 W6

parent 1 –0.64 –2.86 2.93 –1.4 –1.2 0.31

parent 2 3.01 –2.75 3.27 –0.72 0.75 0.01

parent 3 1.97 0.51 0.53 –1.57 –2.36 2.3

parent 4 2.13 2.97 3.6 3.79 0.29 3.52
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The next step is to use the selected parents for mating in order to generate the 

offspring. The mating starts with the crossover operation according to the GA.crossover 

function. This function accepts the parents and the offspring size. It uses the offspring 

size to learn the number of offspring to produce from the parents. This function is 

implemented according to Listing 4-6 inside the GA module.

Listing 4-6. Crossover

def crossover(parents, offspring_size):

    offspring = numpy.empty(offspring_size)

     # The point at which crossover takes place between two parents. 

Usually, it is at the center.

    crossover_point = numpy.uint8(offspring_size[1]/2)

    for k in range(offspring_size[0]):

        # Index of the first parent to mate.

        parent1_idx = k%parents.shape[0]

        # Index of the second parent to mate.

        parent2_idx = (k+1)%parents.shape[0]

         # The new offspring will have its first half of its genes taken 

from the first parent.

         offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_

point]

         # The new offspring will have its second half of its genes taken 

from the second parent.

         offspring[k, crossover_point:] = parents[parent2_idx, crossover_

point:]

    return offspring

Because we are using single-point crossover, we need to specify the point at which 

crossover takes place. The point is selected to divide the solution into two equal halves. 

Then we need to select the two parents to cross over. The indices of these parents are 

stored into parent1_idx and parent2_idx. The parents are selected in a way similar to a 

ring. Indices 0 and 1 are selected at first to produce two offspring. If there still remaining 

offspring to produce, then we select parents 1 and 2 to produce the other two offspring. 

If we are in need of more offspring, then we select the next two parents with indices 2 

and 3. By index 3, we reach the last parent. If we need to produce more offspring, then 
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we select the parent with index 3 and go back to the parent with index 0, and so on. The 

offspring after applying crossover are stored into the offspring variable. Table 4-7 shows 

the contents of this variable.

Table 4-7. Offspring After Crossover

W1 W2 W3 W4 W5 W6

Offspring 1 –0.64 –2.86 2.93 –0.72 0.75 0.01

Offspring 2 3.01 –2.75 3.27 –1.57 –2.36 2.3

Offspring 3 1.97 0.51 0.53 3.79 0.29 3.52

Offspring 4 2.13 2.97 3.6 –1.4 –1.2 0.31

Next is to apply the second GA variant, mutation, to the results of the crossover using 

the mutation function inside the GA module implemented in Listing 4-7. This function 

accepts the crossover offspring and returns them after applying uniform mutation.

Listing 4-7. Mutation

def mutation(offspring_crossover):

# Mutation changes a single gene in each offspring randomly.

    for idx in range(offspring_crossover.shape[0]):

        # The random value to be added to the gene.

        random_value = numpy.random.uniform(-1.0, 1.0, 1)

         offspring_crossover[idx, 4] = offspring_crossover[idx, 4] + random_

value

    return offspring_crossover

It loops through each offspring and adds a uniformly generated random number, 

say in the range from –1.0 to 1.0. This random number is then added to the gene with 

one randomly chosen index (e.g., index 4) of the offspring. Note that the index could be 

changed to any other index. Results are stored into the variable “offspring_crossover” 

and get returned by the function as in Table 4-8. At this point, we have successfully 

produced four offspring from the four selected parents and are ready to create the new 

population of the next generation.
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Note that GA is a randomly based optimization technique. It tries to enhance the 

current solutions by applying some random changes to them. Because these changes 

are random, we are not sure that they will produce better solutions. For this reason, it 

is preferred to keep the previous best solutions (parents) in the new population. In the 

worst case, when all the new offspring are worse than the parents, we will continue using 

these parents. As a result, we guarantee that the new generation will at least preserve 

the previous good results and will not get worse. The new population will have its first 

four solutions from the previous parents. The last four solutions come from the offspring 

created after applying crossover and mutation.

Table 4-9 presents the fitness of all solutions (parents and offspring) of the first 

generation. The highest fitness previously was 18.24112489 but now it is 31.7328971158. 

That means that the random changes moved toward a better solution. This is great. But 

these results could be enhanced by going through more generations. After going through 

10,000 iterations, the result reached a value of more than 40,000 as in Figure 4-6.

Table 4-8. The Results of Mutation

W1 W2 W3 W4 W5 W6

Offspring 1 –0.64 –2.86 2.93 –0.72 1.66 0.01

Offspring 2 3.01 –2.75 3.27 –1.57 –1.95 2.3

Offspring 3 1.97 0.51 0.53 3.79 0.45 3.52

Offspring 4 2.13 2.97 3.6 –1.4 –1.58 0.31

Table 4-9. Fitness Values of All Solutions in the New Population

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 Solution 7 Solution 8

Fitness 18.24 17.07 16.0 14.4 –8.46 31.73 6.1 24.09
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 Complete Implementation

The complete code that implements the GA is given in Listing 4-8.

Listing 4-8. The Complete Code for Optimizing a Linear Equation with Six 

Parameters

import numpy

import GA

#The y=target is to maximize this equation ASAP:

#    y = w1x1+w2x2+w3x3+w4x4+w5x5+6wx6

#    where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7)

#    What are the best values for the 6 weights w1 to w6?

#     We are going to use the GA for the best possible values #after a 

number of generations.

# Inputs of the equation.

equation_inputs = [4,-2,3.5,5,-11,-4.7]

# Number of the weights we are looking to optimize.

num_weights = 6

Figure 4-6. Fitness values vs. 10,000 iterations
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#GA parameters:

#    Mating pool size

#    Population size

sol_per_pop = 8

num_parents_mating = 4

# Defining the population size.

pop_size = (sol_per_pop,num_weights) # The population will have sol_per_pop 

chromosome where each chromosome has num_weights genes.

#Creating the initial population.

new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)

print(new_population)

num_generations = 10,000

for generation in range(num_generations):

    print("Generation : ", generation)

    # Measuring the fitness of each chromosome in the population.

    fitness = GA.cal_pop_fitness(equation_inputs, new_population)

# Selecting the best parents in the population for mating.

    parents = GA.select_mating_pool(new_population, fitness,

                                      num_parents_mating)

    # Generating next generation using crossover.

    offspring_crossover = GA.crossover(parents,

                                        offspring_size=(pop_size[0]-parents.

shape[0], num_weights))

    # Adding some variations to the offspring using mutation.

    offspring_mutation = GA.mutation(offspring_crossover)

    # Creating the new population based on the parents and offspring.

    new_population[0:parents.shape[0], :] = parents

    new_population[parents.shape[0]:, :] = offspring_mutation

    # The best result in the current iteration.

     print("Best result : ", numpy.max(numpy.sum(new_population*equation_

inputs, axis=1)))
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# Getting the best solution after iterating finishing all generations.

#At first, the fitness is calculated for each solution in the final 

generation.

fitness = GA.cal_pop_fitness(equation_inputs, new_population)

# Then return the index of that solution corresponding to the best fitness.

best_match_idx = numpy.where(fitness == numpy.max(fitness))

print("Best solution : ", new_population[best_match_idx, :])

print("Best solution fitness : ", fitness[best_match_idx])

The GA module implementation is in Listing 4-9.

Listing 4-9. GA Module

import numpy

def cal_pop_fitness(equation_inputs, pop):

# Calculating the fitness value of each solution in the current population.

     # The fitness function calcuates the SOP between each input and its 

corresponding weight.

    fitness = numpy.sum(pop*equation_inputs, axis=1)

    return fitness

def select_mating_pool(pop, fitness, num_parents):

     # Selecting the best individuals in the current generation as parents 

for producing the offspring of the next generation.

    parents = numpy.empty((num_parents, pop.shape[1]))

    for parent_num in range(num_parents):

        max_fitness_idx = numpy.where(fitness == numpy.max(fitness))

        max_fitness_idx = max_fitness_idx[0][0]

        parents[parent_num, :] = pop[max_fitness_idx, :]

        fitness[max_fitness_idx] = -99999999999

    return parents

def crossover(parents, offspring_size):

    offspring = numpy.empty(offspring_size)

     # The point at which crossover takes place between two parents. Usually 

it is at the center.

    crossover_point = numpy.uint8(offspring_size[1]/2)
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    for k in range(offspring_size[0]):

        # Index of the first parent to mate.

        parent1_idx = k%parents.shape[0]

        # Index of the second parent to mate.

        parent2_idx = (k+1)%parents.shape[0]

         # The new offspring will have its first half of its genes taken 

from the first parent.

         offspring[k, 0:crossover_point] = parents[parent1_idx, 0: 

crossover_point]

         # The new offspring will have its second half of its genes taken 

from the second parent.

         offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:]

    return offspring

def mutation(offspring_crossover):

    # Mutation changes a single gene in each offspring randomly.

    for idx in range(offspring_crossover.shape[0]):

        # The random value to be added to the gene.

        random_value = numpy.random.uniform(-1.0, 1.0, 1)

         offspring_crossover[idx, 4] = offspring_crossover[idx, 4] +  

random_value

    return offspring_crossover

 NSGA-II
The main difference between GA and NSGA-II is the way of selecting the best individuals 

within a given population (i.e., parents of the new generation). In GA, a single value is 

used for selecting the best individuals. This is the fitness value generated from a fitness 

function. The higher the fitness value is, the better the solution/individual. For NSGA-II, 

there is no single value but multiple values generated from multiple objective functions. 

How do we make the selection based on these multiple values, keeping in mind that all 

of these objectives have equal importance? There must be a different way than the one 

used in regular GA for selecting the best individuals. NSGA-II selects its parents or best 

individuals based on two metrics:

 1. Dominance.

 2. Crowding Distance.
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The example we will use in the discussion is about a person that would like to buy a 

shirt. That person has two objectives that are to be satisfied in the shirt:

 1. Low cost (between $0 and $85).

 2. Bad feedback from previous buyers (between 0 and 5).

Cost is measured in USD and feedback is measured as a real number between 0 and 

5 inclusive, where 0 is the best feedback and 5 is the worst feedback. This means that the 

two objective functions are minimization. Assume that there are just eight samples of 

data as in Table 4-10; we will use them to start.

Table 4-10. Data Samples

ID Cost $ Bad Feedback

a 20 2.2

B 60 4.4

C 65 3.5

D 15 4.4

e 55 4.5

F 50 1.8

G 80 4.0

h 25 4.6

 NSGA-II Steps
NSGA-II follows the general steps in the traditional GA. The change is not using a 

fitness value to select the best solutions (parents) for the next generation; rather, it uses 

dominance and crowding distance. Here are the general stops of NSGA-II:

 1. Select the initial population solutions of generation 0 from the data.

 2. Split the solutions into levels using nondominant sorting.

 3. Select the best solutions at the level 1 nondominated front 

as parents for mating and producing offspring for the next 

generation. (If all solutions inside the last-used level are selected 

completely without remainders, then go directly to step 5.)
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 4. If a subset of solutions is selected as parents from the last-

used level, then you have to calculate the crowding distance 

for solutions in this level, sort these solutions in worse order 

according to the crowding distance, and select the number of 

remaining solutions from the top.

 5. Use the selected parents to produce the offspring.

 a. Tournament selection on the selected parents.

 b. GA variants (i.e., crossover and mutation) on the results of the 

tournament. This will produce the new offspring of the next 

generation.

 6. Repeat steps 2 to 5 until reaching a maximum number of 

iterations.

Note that you shouldn’t expect to understand all of these steps at the current time. 

But don’t worry: when you go through the details of each step, things will become easier 

and clearer. These steps are summarized in Figure 4-7.

Figure 4-7. NSGA-II steps

Chapter 4  aNN OptimizatiON



154

NSGA is not different from GA but adds some operations to make it suitable 

for multiobjective problems. Figure 4-8 highlights the difference between GA and 

NSGA. The step of calculating the fitness values in GA is extended to multiple steps in 

NSGA starting from nondominated sorting until tournament selection. After determining 

what solutions will be used in the mating pool, the two algorithms are similar.

Figure 4-8. GA vs. NSGA

The first step generally in the GA is to select the solutions/individuals of the initial 

population. Assume that the size of the population is eight, meaning there are eight 

samples to be used in the population. This means that all samples in Table 4-10 will 

be used inside the initial population. The next step is to select the best solutions in 

this population as parents for generating the offspring of the next generation using the 

concept of dominance.

 Dominance
Dominance in NSGA-II helps us to select the best set of solutions as parents. These 

solutions are said to dominate the other solutions. That is, they are better than all other 

solutions.
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Realistically, the solutions are not always bad or worse than other solutions across all 

objectives. How do we find the best set of solutions in the data? Here is the rule to use in 

order to say that one solution dominates another solution:

Solution X is said to dominate solution Y if and only if

 1. Solution X is no worse than solution Y in all objective functions 

and

 2. Solution X is better than solution Y in at least one objective 

function.

Besides saying solution X dominates solution Y, we could say the following:

• Solution X is nondominated by solution Y.

• Solution Y is dominated by solution X.

• Solution Y nondominates solution X.

Note that if any of the preceding conditions are not met, then solution X does not 

dominate solution Y. That means no solution is better than another, and there is a trade- 

off between them. Note also that when solution X dominates solution Y, it means that 

solution X is better than solution Y.

The set of all solutions not satisfying at least one of the preceding two conditions is 

called the nondominant set. It is called so because no solution in that set dominates (i.e., 

is better than) another. The steps to find the nondominated set are as follows:

 1. Select a solution with index i, where i starts from 1 corresponding 

to the first solution.

 2. Check the dominance of that solution against all other solutions 

in the data.

 3. If a solution is found to dominate that solution, then stop, as it is 

impossible to be in the nondominant set. Go to step 5 directly.

 4. If no solution dominates that solution, then add it to the 

nondominant set.

 5. Increment i by 1 and repeat steps 2 to 4.
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Using nondominated sorting, the solutions are split into multiple sets. Each 

set is called a nondominated front. These fronts are sorted in levels, where the first 

nondominated front is at level 1, the second nondominated front is at level 2, and so on. 

Let us apply these steps in order to find the nondominant front at level 1 based on our 

example in Table 4-10.

 1. Starting with solution A and comparing it to solution B, we find 

that A is better than B in the first objective (cost), as A’s cost is $20, 

which is less (i.e., better) than B’s cost of $60. Also, A is better than 

B in the second objective (feedback), as A’s feedback is 2.2, which 

is less (i.e., better) than B’s feedback of 4.4. As a result, A is better 

than B across all objectives. The conditions that make solution A 

dominate solution B are met. But we cannot conclude that A is a 

member of the nondominant set, and we still have to wait until 

checking A against all other solutions.

 2. Comparing A to C, it is clear that A is better than C in all 

objectives, as A’s cost and feedback are smaller than C’s. As a 

result, C does not dominate A (i.e., A dominates C). We still have 

to explore the next solutions to decide whether A is a member of 

the nondominant set or not.

 3. Comparing A to D, we find A’s feedback of 2.2 is better than D’s 

feedback of 4.4. But A’s cost of $20 is worse than D’s cost of $15. 

Thus, each solution is better than the other in just one objective. 

As a result, the two conditions of dominance are not met for 

solution D. As a result, we can conclude that D does not dominate 

A and also that A does not dominate D. We again have to check A 

against the remaining solutions to learn its decision.

 4. Comparing A and E, it is obvious that A is better than E in all 

objectives. Thus, A dominates E. Let’s compare A to the next 

solution, F.

 5. Comparing A and F, neither solution is better than the other. 

This is identical to the case of comparing A to D. Thus, F does not 

dominate A and we have to compare A to the other solutions.
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 6. Comparing A to G, A is better than G in all objectives, as A’s cost 

($20) is less than G’s cost ($80), and also A’s feedback (2.2) is better 

than G’s feedback (4.0). Let’s move to the final solution.

 7. Comparing A to H, A is better than H across all solutions. As a 

result, H does not dominate A. After checking the dominance of 

A across all solutions, it seems that no solution dominates A. So, 

A is regarded as a member of the nondominant set. The current 

nondominant set is P={A}. Let us move to the next solution.

 8. Regarding solutions B and C, it is clear that solution A dominates 

them. As a result, we can go directly into checking dominance for 

solution D.

 9. Comparing D by A, we find that D is better than D in the first 

objective (cost) because D’s cost is $15, which is smaller than A’s 

cost, which is $20. Regarding the second objective, D is worse 

than A because D’s feedback of 4.4 is larger than A’s feedback of 

2.2. Because solution A does not dominate solution D, we have to 

compare D to the next solution.

 10. Comparing D to B, we find that D is better than B in the first 

objective and they are equal in the second objective. As a result, 

B does not dominate D and we have to check D against the 

remaining solutions to learn its decision.

 11. Comparing D to C, D is better than C in the first objective but D 

is worse than C in the second objective. Conditions that make C 

dominate D are not met. As a result, C does not dominate D and 

we have to check D against the next solution.

 12. Comparing D to E, we find that D is better than E across 

all objectives. We can conclude that E does not dominate 

D. Continue comparing D to the next solution.

 13. Comparing D to F, D’s cost of $15 is smaller (better) than F’s cost 

of $50. Because solution F is worse than D in at least one objective, 

we can stop and conclude that F does not dominate D. Let us 

compare D to the next solution.
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 14. Comparing D to G, the same scenario with F repeats itself. D’s cost 

of 15$ is smaller (better) than G’s cost of 80$. Because solution G 

is worse than D in at least one objective, we can conclude that G 

does not dominate D. Let us compare D to the next solution.

 15. Comparing D to H, H is worse than D across all objectives and 

thus H does not dominate D. At this point, we can conclude 

that no solution dominates solution D and it is included in the 

nondominant set. The current nondominant set is P={A, D}. Let us 

move to the next solution.

 16. Working with E, comparing it to A we find that A is better than E 

across all objectives because A’s cost of $20 is smaller than E’s cost 

of $55, and also A’s feedback of 2.2 is better than E’s feedback of 

4.5. Thus, we can stop and conclude that A dominates E; E cannot 

be included in the nondominant set.

 17. Working with F, comparing it to A we find that A is better than 

F in just the first objective and F is better than A in the second 

objective. Thus, no solution dominates the other. We still need to 

compare F with the remaining solutions to make the decision.

 18. After comparing F with all solutions, there is no solution 

dominating solution F. Thus, F is included in the nondominant 

set. The current nondominant set is P={A, D, F}. Let us move to the 

next solution.

 19. Working with G and comparing it to all solutions, we find that 

solutions A, C, and F dominate it. Thus, G cannot be included 

within the nondominant set. Let us move to the final solution.

 20. Working with the final solution H, by comparing it to all solutions 

we find that solutions A and D dominate it. Thus, H cannot be 

included within the nondominant set. At this point, we have 

checked the dominance of all solutions.

After comparing each pair of solutions together, the final nondominant set is  

P={A, D, F}. This is the level 1 nondominated front. No solution in the same front is better 

than any other solution within the same front across all objectives. This is why it is called 

the nondominant set as no solution dominates another.
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The Python code for checking dominance of a given solution is in Listing 4-10. 

Given an index of a solution, it returns the IDs of solutions dominating it. It uses pandas 

DataFrame (DF) for sorting the objective values for each solution in addition to their 

IDs. This helps to refer back to the solution ID. A simple way to create this DF is to insert 

the data into a Python dictionary and then convert it into a pandas DF.

Listing 4-10. Returning Dominating Solutions

import numpy

import pandas

d = {'A': [20, 2.2],

     'B': [60, 4.4],

     'C': [65, 3.5],

     'D': [15, 4.4],

     'E': [55, 4.5],

     'F': [50, 1.8],

     'G': [80, 4.0],

     'H': [25, 4.6]}

df = pandas.DataFrame(data=d).T

data_labels = list(df.index)

data_array = numpy.array(df).T

# ****Specify the index of the solution here****

sol_idx = 1

sol = data_array[:, sol_idx]

obj1_not_worse = numpy.where(sol[0] >= data_array[0, :])[0]

obj2_not_worse = numpy.where(sol[1] >= data_array[1, :])[0]

not_worse_candidates = set.intersection(set(obj1_not_worse),  

set(obj2_not_worse))

obj1_better = numpy.where(sol[0] > data_array[0, :])[0]

obj2_better = numpy.where(sol[1] > data_array[1, :])[0]

better_candidates = set.union(set(obj1_better), set(obj2_better))

dominating_solutions = list(set.intersection(not_worse_candidates,

                                             better_candidates))
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if len(dominating_solutions) == 0:

    print("No solution dominates solution", data_labels[sol_idx], ".")

else:

     print("Labels of one or more solutions dominating this solution : ", 

end="")

    for k in dominating_solutions:

        print(data_labels[k], end=",")

For a given solution, the conditions of dominance are checked. For the first condition, 

the indices of solutions not worse than the current solutions across all objectives are 

returned in the “not_worse_candidates” variable. The second condition searches for 

solutions that are better than the current solution in at least one objective. Solutions 

satisfying the second condition are returned in the “better_candidates” solutions. For a 

given solution to dominate another, both conditions must be met. For this reason, the 

“dominating_solutions” variable just returns solutions meeting both conditions.

The previous three solutions are better than all five remaining solutions. In other 

words, solutions at the level 1 nondominated front are better than any solution on all 

remaining fronts. What about the other five solutions that are not selected in the first 

nondominated front at level 1? We will continue using the remaining samples from the 

population to further find the next nondominance levels.

The steps to find the nondominant set will be repeated to find the nondominated 

front at level 2 but after removing the three solutions selected previously in level 1 

of the population. The set of remaining solutions is {B, C, E, G, H}. Let’s find the next 

nondominated front:

 1. Starting with solution B and checking its dominance to C, B’s 

feedback of 4.4 is worse than C’s feedback of 3.5. According to the 

first objective, B’s cost of $60 is better than C’s cost of $65. As a 

result, solution C nondominates solution B. We still have to wait 

until we compare B to the remaining solutions.

 2. Comparing B to E, B is better than E in the second objective, as 

B’s feedback is 4.4 and E’s feedback is 4.5. As a result, solution E 

nondominates solution B. Let us check the next solution.

 3. Comparing B to G, we find that B is better than G in the first 

objective, as B’s cost is $60 and G’s cost is $80. As a result, solution 

G nondominates solution B. Let us check the next solution.
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 4. Comparing B to H, we find that B is better than H in the second 

objective, as B’s feedback is 4.4 and H’s feedback is 4.6. As a 

result, solution H nondominates solution B. After comparing B 

to all solutions and finding that no solution dominates it, we can 

conclude that B is included in the nondominated front at level 2. 

The level 2 set is now P’={B}. Let us move to check the dominance 

of the second solution in the remaining set of solutions.

 5. Comparing the next solution C to B, C is better than B in the 

second objective, as C’s feedback is 3.5 and B’s feedback is 4.4. As 

a result, solution B nondominates solution C.

 6. Comparing C with the remaining solutions, there is no solution 

dominating C and it will be included in the nondominated front at 

level 2, which will be P’={B, C}. Let us move to the next solution.

 7. Comparing the next solution E to all the remaining solutions 

from the population, we find that no solution dominates solution 

E. Thus, E will be included in the nondominated front at level 2, 

which is P’={B, C, E}. Let us move to the next solution.

 8. Comparing the next solution G to all the remaining solutions 

from the population, we find that solution C dominates solution 

G because C is better than G across all objectives. As a result, 

solution G is not included in the level 2 nondominated front. Let 

us move to the next solution.

 9. Comparing the last solution H to all the remaining solutions from 

the population, we find that no solution dominates solution H. As 

a result, it will be included in the nondominated front at level 2, 

which will be P’={B, C, E, H}.

This is the end of the nondominated front at level 2. The set of remaining solutions 

is {G}. This set will be used to find the level 3 nondominated front. Because there is just 

one remaining solution, it will be added alone into the nondominated front at level 3 to 

be P“={G}. At this point, we successfully split the data into three nondominance levels, as 

shown in Table 4-11.
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Note that the solutions in level i are better than the solutions in level i + 1. That is, 

the solutions in level 1 are better than the solutions in level 2, the level 2 solutions are 

better than the level 3 solutions, and so on. As a result, when selecting the best solutions 

for being parents, we will start selection from the first level. If the number of available 

solutions in the first level is less than the number of required parents, then we select the 

remaining parents from the second level, and so on.

In our problem, the population size is eight. For producing a new generation of the 

same size, we need to select half of its population as parents; the remaining half is the 

offspring produced by mating the parents. At first, we need to select the best four parents.

The first nondominance level has just three solutions. Because we are in need of four 

parents, then we will select all of these three solutions. As a result, the current parents 

are {A, D, F}. There is a remaining parent that we should select from level 2.

Level 2 has four solutions, and we need to select just one. The important question 

is, which solution should we select from level 2? The metric used to evaluate solutions 

inside the same nondominated front is the crowding distance. Next, we will learn how to 

calculate the crowding distance to solutions inside the level 2 front.

 Crowding Distance
Crowding distance is the metric used to prioritize solutions within the same 

nondominated front. Here are the steps for calculating and using the crowding distance:

 1. For each objective function, sort the set of solutions within the 

level in worse order.

 2. For the two solutions at outliers (i.e., rightmost and leftmost 

solutions), set their crowding distance to infinity.

 3. For the in-between solutions, the crowding distance is calculated 

according to Equation 4-7.

Table 4-11. Results of Splitting the Data 

into Three Nondominance Levels

Level Solutions

1 {a, D, F}

2 {B, C, e, h}

3 {G}
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 4. For each solution, take the summation of the crowding distances 

across all objectives.

 5. Sort solutions in descending order to select the solutions from 

highest to lowest crowding distance.

 d
S S

O Om
n m

n
m
n

m m

=
-
-

+ -1 1

max min
 (Equation 4-7)

After sorting the solutions according to one objective function, n refers to its 

position. m refers to the number of the objective function being used for calculating the 

crowding distance. dm
n  is the crowding distance of solution n according to objective m, 

Sm
n  refers to the value of the objective m for solution n, Om

max  is the maximum value for 

objective m, and Om
min  is the minimum value for objective m.

For a minimization objective, sorting solutions in worse order refers to sorting in 

descending order in which the smallest (i.e., best) solution, according to the objective, is 

in the leftmost position and the largest (i.e., worst) is on the rightmost.

Because the two solutions at outliers will be given crowding distance equal to 

infinity, then we can start calculating the crowding distance for in-between solutions.

The data of the problem in Table 4-10 is available in the following for making it easier 

to calculate the crowding distance.

ID Cost $ Bad Feedback

a 20 2.2

B 60 4.4

C 65 3.5

D 15 4.4

e 55 4.5

F 50 1.8

G 80 4.0

h 25 4.6

Figure 4-9 summarizes the values of the parameters for calculating the crowding 

distance for solutions E and B according to the cost objective.
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Figure 4-9. First objective crowding distance for level 2 solutions

In the same way, Figure 4-10 shows how the crowding distance is calculated for 

solutions B and E according to the feedback objective.

Figure 4-10. First objective crowding distance for level 2 solutions
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By summing the crowding distances of the two objectives and sorting the result in 

descending order, the result is shown in Table 4-12. If we are in need of just one solution 

from level 2 as a parent, then it will be the first solution in Table 4-12 after sorting the 

summation of the crowding distances in descending order. That solution is solution C.  

As a result, the set of selected solutions will be {A, D, F, C}. Note that not all of these 

solutions will be used for generating the new offspring because they might be filtered 

by tournament selection. But all of these solutions will be used to form the first half of 

the solutions in the new generation. The second half will come from mating the parents 

selected from the tournament.

Table 4-12. Summation of the Crowding 

Distances of Level 2 Solutions from the 

Two Objective Functions

ID Summation

C infinity

h infinity

e 0.44

B 0.3

 Tournament Selection
In the tournament selection, we create pairs of solutions from the selected parents. From 

each pair, a tournament made between them and the winner will be used further in 

crossover and mutation. All possible pairs are (A, D), (A, F), (A, C), (D, C), and (F, C).

Here is how the winners of the tournament are selected:

• If the two solutions are from different nondominance levels, then the 

solution coming from the high-priority level will be the winner.

• If the two solutions are from the same nondominance level, then the 

winner will be the one corresponding to higher crowding distance.

Let’s consider the first pair (A, D). Because they are coming from the same level, we 

will use their crowding distance to learn the winner. Because we have not calculated the 

crowding distance of the first level, we need to first calculate it.
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Figure 4-11 shows the final crowding distance for solutions in level 1 according to 

both objectives. Regarding the first pair (A, D), the winner is D because it has higher 

crowding distance than A. For the remaining tournaments, the winners are F, A, D, and F. 

These three unique solutions, A, D, and F, are used to generate four offspring.

Figure 4-11. Summation of the crowding distances of level 1 solutions from the 
two objective functions

 Crossover
Assume we choose four new solutions from the pairs (A, D), (A, F), (D, F), and (F, A), 

where the first and last half of the genes of the offspring are taken from the first and last 

solution in each pair, respectively. The result of the crossover is in Table 4-13.

Table 4-13. Crossover Between 

Tournament Winners

Offspring Cost $ Feedback

(a, D) 20 4.4

(a, F) 20 1.8

(D, F) 15 1.8
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 Mutation
Mutation will be applied to the result of the crossover. Assume we applied mutation by 

randomly adding a number between –10 and 10 to the first half of each solution. The 

result of the mutation operation is as shown in Table 4-14.

Table 4-14. Mutation on the Outputs of Crossover

Offspring Cost $ Feedback

(B, D) 27 4.4

(B, e) 25 1.8

(D, e) 10 1.8

Table 4-15. Solutions of Generation 1

ID Cost $ Feedback

a 20 2.2

D 15 4.4

F 50 1.8

C 65 3.5

K 27 4.4

L 25 1.8

m 10 1.8

N 45 2.2

After that, we have successfully produced the eight solutions of the next generation 

1. The first four solutions are those produced by nondominated sorting and crowding 

distance. The remaining four solutions are what we just produced by tournament 

selection, crossover, and mutation as in Table 4-14. Solutions of the new population in 

generation 1 are in Table 4-15.
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At this point, we have completed all steps involved in the NSGA-II multiobjective EA.  

Next is to repeat steps 2 to 5 of NSGA-II until a number of predefined generations/

iterations. After the first generation, the algorithm found solution M, which is better 

than all solutions in the previous population. Going through multiple generations, the 

algorithm is likely to find a better solution.

 Optimizing ANN Using GA
In Chapter 4, the ANN is trained using four classes of the Fruits 360 dataset without using 

a learning algorithm. Thus, the accuracy is low, not exceeding 45%. After understanding 

how GA works based on numerical examples in addition to implementation using 

Python, this section uses GA to optimize the ANN by updating its weights (parameters).

GA creates multiple solutions to a given problem and evolves them through a 

number of generations. Each solution holds all parameters that might help to enhance 

the results. For ANN, weights in all layers help achieve high accuracy. Thus, a single 

solution in GA will contain all weights in the ANN. According to Figure 4-7, the ANN 

has four layers (one input, two hidden, and one output). Any weight in any layer will be 

part of the same solution. A single solution to this network will contain a total number 

of weights equal to 102×150+150×60+60×4=24,540. If the population has eight solutions 

with 24,540 parameters per solution, then the total number of parameters in the entire 

population is 24,540×8=196,320.

Looking at Figure 4-8, the parameters of the network are in matrix form, because this 

makes calculations of ANN much easier. For each layer, there is an associated weights 

matrix. Just multiply the inputs matrix by the parameters matrix of a given layer to 

return the outputs in this layer. Chromosomes in GA are 1D vectors, and thus we have to 

convert the weights matrices into 1D vectors.

Because matrix multiplication is a good option to work with ANN, we will still 

represent the ANN parameters in the matrix form when using the ANN. Figure 4-12 

summarizes the steps of using GA with ANN.
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Each solution in the population will have two representations. First is a 1D vector 

for working with GA and second is a matrix to work with ANN. Because there are three 

weights matrices for the three layers (two hidden + one output), there will be three 

vectors, one for each matrix. Because a solution in GA is represented as a single 1D 

vector, these three individual 1D vectors will be concatenated into a single 1D vector. 

Each solution will be represented as a vector of length 24,540. Listing 4-11 holds the 

Python code of the “mat_to_vector” function, which converts the parameters of all 

solutions within the population from matrix to vector.

Figure 4-12. Using GA to optimize ANN parameters
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An empty list variable named “pop_weights_vector” is created to hold the vectors 

of all solutions. The function accepts a population of solutions and loops through them. 

For each solution, there is an inner loop that loops through its three matrices. For each 

matrix, it is converted into a vector using the “numpy.reshape” function, which accepts 

the input matrix and the output size to which the matrix will be reshaped. The variable 

“curr_vector” accepts all vectors for a single solution. After all vectors are generated, they 

get appended into the “pop_weights_vector” variable.

Note that we used the “numpy.extend” function for vectors belonging to the same 

solution and “numpy.append” for vectors belonging to different solutions. The reason is 

that “numpy.extend” takes the numbers within the three vectors belonging to the same 

solution and concatenate them together. In other words, calling this function for two lists 

returns a new single list with numbers from both lists. This is suitable in order to create 

just a 1D chromosome for each solution. But “numpy.append” will return three lists for 

each solution. Calling it for two lists, it returns a new list, which is split into two sublists. 

This is not our objective. Finally, the function “mat_to_vector” returns the population 

solutions as a NumPy array for easy manipulation later.

Listing 4-11. Parameters Matrix Conversion into Vector

def mat_to_vector(mat_pop_weights):

    pop_weights_vector = []

    for sol_idx in range(mat_pop_weights.shape[0]):

        curr_vector = []

        for layer_idx in range(mat_pop_weights.shape[1]):

             vector_weights = numpy.reshape(mat_pop_weights[sol_idx,  

layer_idx], newshape=(mat_pop_weights[sol_idx, layer_idx].

size))

            curr_vector.extend(vector_weights)

        pop_weights_vector.append(curr_vector)

    return numpy.array(pop_weights_vector)

After converting all solutions from matrices to vectors and concatenating them 

together, we are ready to go through the GA steps according to Figure 4-2. All steps in 

Figure 4-2 except for the fitness values calculation are similar to the previously discussed 

GA implementation.
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One of the common fitness functions for a classifier such as ANN is the accuracy. It 

is the ratio between the correctly classified samples and the total number of samples. It 

is calculated according to Equation 4-8. The classification accuracy of each solution is 

calculated according to the steps in Figure 4-12.

 Accuracy
NumCorrectClassify

TotalNumSamples
=  (Equation 4-8)

The single 1D vector of each solution is converted back into three matrices, one 

matrix for each layer (two hidden and one output). Conversion takes place using the 

“vector_to_mat” function defined in Listing 4-12. It reverses the work done previously. 

But there is an important question: if the vector of a given solution is just one piece, how 

we can split it into three different parts, each part representing a matrix? The size of the 

first parameters matrix between the input layer and the hidden layer is 102×150. When 

being converted into a vector, its length will be 15,300. Because it is the first vector to be 

inserted in the “curr_vector” variable according to Listing 4-11, then it will start from 

index 0 and end at index 15,299. The “mat_pop_weights” is used as an argument for the 

“vector_to_mat” function in order to learn the size of each matrix. It is not required to 

contain the recent weights; just the sizes of the matrices are used from it.

Listing 4-12. Solution Vector Conversion into Matrices

def vector_to_mat(vector_pop_weights, mat_pop_weights):

    mat_weights = []

    for sol_idx in range(mat_pop_weights.shape[0]):

        start = 0

        end = 0

        for layer_idx in range(mat_pop_weights.shape[1]):

            end = end + mat_pop_weights[sol_idx, layer_idx].size

            curr_vector = vector_pop_weights[sol_idx, start:end]

             mat_layer_weights = numpy.reshape(curr_vector, newshape= 

(mat_pop_weights[sol_idx, layer_idx].shape))

            mat_weights.append(mat_layer_weights)

            start = end

    return numpy.reshape(mat_weights, newshape=mat_pop_weights.shape)
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For the second vector in the same solution, it’s the result of converting a matrix of 

size 150×60. Thus, the vector length is 9,000. This vector is inserted into the “curr_vector” 

variable just before the previous vector of length 15,300. As a result, it will start from 

index 15,300 and ends at index 15,300+9,000–1=24,299. The –1 is used because Python 

starts indexing at 0. For the last vector created from the parameters matrix of size 60×4, 

its length is 240. Because it is added into the “curr_vector” variable exactly after the 

previous vector of length 9,000, then its index will start after it. That is, its start index 

is 24,300 and its end index is 24,300+240–1=24,539. So, we can successfully restore the 

vector into the original three matrices.

The matrices returned for each solution are used to predict the class label for each 

of the 1,962 samples in the used dataset to calculate the accuracy. This is done using two 

functions (“predict_outputs” and “fitness”) according to Listing 4-13.

Listing 4-13. Predicting Class Labels for Calculating Accuracy

def predict_outputs(weights_mat, data_inputs, data_outputs, 

activation="relu"):

    predictions = numpy.zeros(shape=(data_inputs.shape[0]))

    for sample_idx in range(data_inputs.shape[0]):

        r1 = data_inputs[sample_idx, :]

        for curr_weights in weights_mat:

            r1 = numpy.matmul(a=r1, b=curr_weights)

            if activation == "relu":

                r1 = relu(r1)

            elif activation == "sigmoid":

                r1 = sigmoid(r1)

        predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

        predictions[sample_idx] = predicted_label

    correct_predictions = numpy.where(predictions == data_outputs)[0].size

    accuracy = (correct_predictions/data_outputs.size)*100

    return accuracy, predictions

def fitness(weights_mat, data_inputs, data_outputs, activation="relu"):

    accuracy = numpy.empty(shape=(weights_mat.shape[0]))

    for sol_idx in range(weights_mat.shape[0]):

        curr_sol_mat = weights_mat[sol_idx, :]
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         accuracy[sol_idx], _ = predict_outputs(curr_sol_mat, data_inputs, 

data_outputs, activation=activation)

    return accuracy

The “predict_outputs” function accepts the weights of a single solution, inputs and 

outputs of the training data, and an optional parameter that specifies which activation 

function to use. It is similar to the previous function created in Listing 4-7, but the 

difference is being adapted to return the accuracy of the solution. But it returns the 

accuracy of just one solution, not all solutions within the population. This is the role 

of the “fitness” function to loop through each solution, pass it to the “predict_outputs” 

function, store the accuracy of all solutions into the “accuracy” array, and finally return 

the array.

After calculating the fitness value (i.e., accuracy) for each solution, the remaining 

steps of GA in Figure 4-12 are applied the same way as done previously. The best 

parents are selected, based on their accuracy, into the mating pool. Then mutation and 

crossover variants are applied in order to produce the offspring. The population of the 

new generation is created using both offspring and parents. These steps are repeated for 

a number of generations.

 Complete Python Implementation
The Python implementation for this project has three Python files:

 1. GA.py for implementing GA functions.

 2. ANN.py for implementing ANN functions.

 3. Third file for calling such functions through a number of 

generations.

The third file is the main file because it connects all functions. It reads the features and 

the class label files, filters features based on STD value 50, creates the ANN architecture, 

generates the initial solutions, loops through a number of generations by calculating the 

fitness values for all solutions, selects the best parents, applies crossover and mutation, 

and finally creates the new population. Its implementation is in Listing 4-14. This file 

defines the GA parameters, such as the number of solutions per population, number of 

selected parents, mutation percentage, and number of generations. You can try different 

values for them.
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Listing 4-14. The Main File Connecting GA and ANN Together

import numpy

import GA

import pickle

import ANN

import matplotlib.pyplot

f = open("dataset_features.pkl", "rb")

data_inputs2 = pickle.load(f)

f.close()

features_STDs = numpy.std(a=data_inputs2, axis=0)

data_inputs = data_inputs2[:, features_STDs>50]

f = open("outputs.pkl", "rb")

data_outputs = pickle.load(f)

f.close()

#GA parameters:

#    Mating Pool Size (Number of Parents)

#    Population Size

#    Number of Generations

#    Mutation Percent

sol_per_pop = 8

num_parents_mating = 4

num_generations = 1000

mutation_percent = 10

#Creating the initial population.

initial_pop_weights = []

for curr_sol in numpy.arange(0, sol_per_pop):

    HL1_neurons = 150

    input_HL1_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                              size=(data_inputs.shape[1], 

HL1_neurons))

    HL2_neurons = 60
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    HL1_HL2_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                              size=(HL1_neurons, HL2_

neurons))

    output_neurons = 4

    HL2_output_weights = numpy.random.uniform(low=-0.1, high=0.1,

                                               size=(HL2_neurons, output_

neurons))

    initial_pop_weights.append(numpy.array([input_HL1_weights,

                                                HL1_HL2_weights,

                                                HL2_output_weights]))

pop_weights_mat = numpy.array(initial_pop_weights)

pop_weights_vector = GA.mat_to_vector(pop_weights_mat)

best_outputs = []

accuracies = numpy.empty(shape=(num_generations))

for generation in range(num_generations):

    print("Generation : ", generation)

    # converting the solutions from being vectors to matrices.

    pop_weights_mat = GA.vector_to_mat(pop_weights_vector,

                                       pop_weights_mat)

    # Measuring the fitness of each chromosome in the population.

    fitness = ANN.fitness(pop_weights_mat,

                          data_inputs,

                          data_outputs,

                          activation="sigmoid")

    accuracies[generation] = fitness[0]

    print("Fitness")

    print(fitness)

    # Selecting the best parents in the population for mating.

    parents = GA.select_mating_pool(pop_weights_vector,

                                    fitness.copy(),

                                    num_parents_mating)

    print("Parents")

    print(parents)
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    # Generating next generation using crossover.

    offspring_crossover = GA.crossover(parents,

                                        offspring_size=(pop_weights_vector.

shape[0]-parents.shape[0],  

pop_weights_vector.shape[1]))

    print("Crossover")

    print(offspring_crossover)

    # Adding some variations to the offspring using mutation.

    offspring_mutation = GA.mutation(offspring_crossover,

                                     mutation_percent=mutation_percent)

    print("Mutation")

    print(offspring_mutation)

    # Creating the new population based on the parents and offspring.

    pop_weights_vector[0:parents.shape[0], :] = parents

    pop_weights_vector[parents.shape[0]:, :] = offspring_mutation

pop_weights_mat = GA.vector_to_mat(pop_weights_vector, pop_weights_mat)

best_weights = pop_weights_mat [0, :]

acc, predictions = ANN.predict_outputs(best_weights, data_inputs, data_

outputs, activation="sigmoid")

print("Accuracy of the best solution is : ", acc)

matplotlib.pyplot.plot(accuracies, linewidth=5, color="black")

matplotlib.pyplot.xlabel("Iteration", fontsize=20)

matplotlib.pyplot.ylabel("Fitness", fontsize=20)

matplotlib.pyplot.xticks(numpy.arange(0, num_generations+1, 100), 

fontsize=15)

matplotlib.pyplot.yticks(numpy.arange(0, 101, 5), fontsize=15)

f = open("weights_"+str(num_generations)+"_iterations_"+str(mutation_

percent)+"%_mutation.pkl", "wb")

pickle.dump(pop_weights_mat, f)

f.close()
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Based on 1,000 generations, a plot is created at the end of this file using Matplotlib 

visualization library, which shows how the accuracy changes across each generation. 

It is shown in Figure 4-13. After 1,000 iterations, the accuracy is more than 97%. This is 

compared to 45% without using an optimization technique. This is an evidence about 

why results might be bad, not because there is something wrong in the model or the data 

but because no optimization technique is used. Of course, using different values for the 

parameters such as 10,000 generations might increase the accuracy. At the end of this 

file, it saves the parameters in matrix form to the disk for use later.

Figure 4-13. Classification accuracy evolution according to 1,000 iterations

The GA.py file implementation is in Listing 4-15. Note that the “mutation” function 

accepts the “mutation_percent” parameter, which defines the number of genes to 

change their values randomly. It is set to 10% in the main file in Listing 4-14. This file 

holds the two new functions “mat_to_vector” and “vector_to_mat”.
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Listing 4-15. GA.py File Holding the Functions of GA

import numpy

import random

# Converting each solution from matrix to vector.

def mat_to_vector(mat_pop_weights):

    pop_weights_vector = []

    for sol_idx in range(mat_pop_weights.shape[0]):

        curr_vector = []

        for layer_idx in range(mat_pop_weights.shape[1]):

             vector_weights = numpy.reshape(mat_pop_weights[sol_idx,  

layer_idx], newshape=(mat_pop_weights[sol_idx, layer_idx].size))

            curr_vector.extend(vector_weights)

        pop_weights_vector.append(curr_vector)

    return numpy.array(pop_weights_vector)

# Converting each solution from vector to matrix.

def vector_to_mat(vector_pop_weights, mat_pop_weights):

    mat_weights = []

    for sol_idx in range(mat_pop_weights.shape[0]):

        start = 0

        end = 0

        for layer_idx in range(mat_pop_weights.shape[1]):

            end = end + mat_pop_weights[sol_idx, layer_idx].size

            curr_vector = vector_pop_weights[sol_idx, start:end]

             mat_layer_weights = numpy.reshape(curr_vector, newshape=(mat_

pop_weights[sol_idx, layer_idx].shape))

            mat_weights.append(mat_layer_weights)

            start = end

    return numpy.reshape(mat_weights, newshape=mat_pop_weights.shape)

def select_mating_pool(pop, fitness, num_parents):

    # Selecting the best individuals in the current generation as parents 

for producing the offspring of the next generation.

    parents = numpy.empty((num_parents, pop.shape[1]))

    for parent_num in range(num_parents):
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        max_fitness_idx = numpy.where(fitness == numpy.max(fitness))

        max_fitness_idx = max_fitness_idx[0][0]

        parents[parent_num, :] = pop[max_fitness_idx, :]

        fitness[max_fitness_idx] = -99999999999

    return parents

def crossover(parents, offspring_size):

    offspring = numpy.empty(offspring_size)

     # The point at which crossover takes place between two parents. 

Usually, it is at the center.

    crossover_point = numpy.uint8(offspring_size[1]/2)

    for k in range(offspring_size[0]):

        # Index of the first parent to mate.

        parent1_idx = k%parents.shape[0]

        # Index of the second parent to mate.

        parent2_idx = (k+1)%parents.shape[0]

         # The new offspring will have its first half of its genes taken 

from the first parent.

         offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_

point]

         # The new offspring will have its second half of its genes taken 

from the second parent.

         offspring[k, crossover_point:] = parents[parent2_idx,  crossover_

point:]

    return offspring

def mutation(offspring_crossover, mutation_percent):

     num_mutations = numpy.uint8((mutation_percent*offspring_crossover.

shape[1])/100)

     mutation_indices = numpy.array(random.sample(range(0, offspring_

crossover.shape[1]), num_mutations))

    # Mutation changes a single gene in each offspring randomly.

    for idx in range(offspring_crossover.shape[0]):

        # The random value to be added to the gene.

        random_value = numpy.random.uniform(-1.0, 1.0, 1)

Chapter 4  aNN OptimizatiON



180

         offspring_crossover[idx, mutation_indices] = offspring_

crossover[idx, mutation_indices] + random_value

    return offspring_crossover

Finally, the ANN.py is implemented according to Listing 4-16. It contains the 

implementation of the activation functions (sigmoid and ReLU) in addition to the 

“fitness” and “predict_outputs” functions to calculate the accuracy.

Listing 4-16. ANN.py File Implementing the ANN

import numpy

def sigmoid(inpt):

    return 1.0/(1.0+numpy.exp(-1*inpt))

def relu(inpt):

    result = inpt

    result[inpt<0] = 0

    return result

def predict_outputs(weights_mat, data_inputs, data_outputs, 

activation="relu"):

    predictions = numpy.zeros(shape=(data_inputs.shape[0]))

    for sample_idx in range(data_inputs.shape[0]):

        r1 = data_inputs[sample_idx, :]

        for curr_weights in weights_mat:

            r1 = numpy.matmul(a=r1, b=curr_weights)

            if activation == "relu":

                r1 = relu(r1)

            elif activation == "sigmoid":

                r1 = sigmoid(r1)

        predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

        predictions[sample_idx] = predicted_label

    correct_predictions = numpy.where(predictions == data_outputs)[0].size

    accuracy = (correct_predictions/data_outputs.size)*100

    return accuracy, predictions

Chapter 4  aNN OptimizatiON



181

def fitness(weights_mat, data_inputs, data_outputs, activation="relu"):

    accuracy = numpy.empty(shape=(weights_mat.shape[0]))

    for sol_idx in range(weights_mat.shape[0]):

        curr_sol_mat = weights_mat[sol_idx, :]

         accuracy[sol_idx], _ = predict_outputs(curr_sol_mat, data_inputs, 

data_outputs, activation=activation)

    return accuracy
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CHAPTER 5

Convolutional Neural 
Networks
The previously discussed architecture of ANNs is called FC neural networks (FCNNs). 

The reason is that each neuron in a layer i is connected to all neurons in layers i-1 
and i+1. Each connection between two neurons has two parameters: the weight and 

the bias. Adding more layers and neurons increases the number of parameters. As a 

result, it is very time-consuming to train such networks even on devices on multiple 

graphics processing units (GPUs) and multiple central processing units (CPUs). It 

becomes impossible to train such networks on PCs with limited processing and memory 

capabilities.

In the analysis of multidimensional data such as images, CNNs (also known as 

ConvNets) are more time and memory efficient than FC networks. But why? What are the 

advantages of ConvNets over FC networks in image analysis? How is ConvNet derived 

from FC networks? Where does the term convolution in CNNs come from? These 

questions are to be answered in this chapter. To have a better understanding of how 

everything works, this chapter implements the CNN using the NumPy library by working 

through all steps required to build the different layers in these networks, including 

convolution, pooling, activation, and FC. Finally, a project called NumPyCNN will be 

created to help create a CNN easily and then learn how to deploy it in Appendix A.

 From ANN to CNN
ANN is the base of the CNN, with some changes added to make it suitable for analyzing 

large amounts of data. Connecting all neurons together increases the number of 

parameters even when analyzing very small images (e.g., one of 150×150 pixels). The 

input layer in this case will have 22,500 neurons. Connecting it to another hidden 
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layer with 500 neurons, the number of parameters required is 22,500×500=11,250,000. 

Real-world applications might work with high-dimensionality images where the least 

dimension might have 1,000 pixels and more. For an input image of size 1,000×1,000 and 

a hidden layer of 2,000 neurons, the number of parameters equals 2 billion. Note that the 

input image is gray.

The next subsections cover the following questions: What is the intuition behind 

using CNN over ANN? Do we really need all of the parameters used in traditional ANN? 

How is CNN different from ANN, and how is it derived from ANN? Finally, what is the 

source of the term convolution used in CNN? Let’s start answering these questions.

 The Intuition Behind DL
In Chapter 1, we handled the task of feature extraction. This is the traditional approach 

to perform image analysis tasks, which involve using a set of features that are 

representative for the problem being solved. This might require the help of experts in the 

field being studied, because one feature might be robust for a given problem but weak 

for another. Selecting the best features to a given problem is the challenge. Starting from 

a very large number of features, how can they be reduced to the best minimum set?

We might be able to find a set of features when working with a small amount of data 

in which there is a slight variation. The more variations existing in the data, the more 

difficult it is to find a set of features covering all of them.

In a traditional classification problem, the goal is to find the best set of features 

that separate the classes used. After calculating feature 1 based on the f1() function, the 

samples from each class are given in Figure 5-1. The function did well for the left part of 

the first class, but it is very bad for the part to the right of the same class. There is overlap 

between the two classes in this part, and thus classification accuracy is very bad. Even 

the most complex ML models cannot fit this data. This is because many samples almost 

have the same value as f1(). The function f1() needs some changes in order to enhance 

the classification performance.
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To solve that problem, the result of f1() will be used as inputs for another function f2().  

As a result, for an input sample s1, the final features for it will be the result of a chain 

of functions f2(f1(s1)). The data distribution is as shown in Figure 5-2. It seems that the 

results enhanced more than the previous one. The percentage of overlap compared to 

the first case is reduced as some samples in the second class are clearly away from the 

first class. Still, there is overlap between the two classes. We aim to split the data so that 

each sample is near from the samples within its class and also far away from the samples 

in the other class.

Figure 5-1. Two-class data distribution using f1(). Class 1 samples are represented 
as filled circles and class 2 samples as empty circles.
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To enhance the results of classification, we can use the outputs of the f2() as input to 

another function f3() so that the chain of functions is f3(f2(f1())). According to Figure 5-3, 

the results are better than the previous two cases.

Figure 5-2. Data distribution using f2( f1())

Figure 5-3. Data distribution using f3( f2( f1()))
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By working the same way and using a fourth function f4(), we can find an acceptable 

result as in Figure 5-4. At that point, we can build a very simple linear classifier that splits 

the data. We might note that after building a robust feature function, the classification 

becomes very easy. This is compared to a bad feature function, as in Figure 5-1, which 

requires the use of a very complex classifier.

Figure 5-4. Linear classification after separating the data correctly

The previous discussion summarizes the target of DL models, which is automatic 

feature transformation. The goal is to create a feature transformation function that 

transforms the data samples from a bad state in which performing the ML task is 

complex to another state in which the task is simpler.

CNNs, which are the focus of this book, accept the pure image pixels and find by 

themselves the best set of features that classify the data correctly. Each layer within the 

CNN transforms the data from one state to another for enhancing the performance. The 

beauty of the ANN is that it is a universal function approximator that can approximate any 

type of function. Each function will have a set of parameters, which are the weights and 

bias. The output of one function (i.e., layer) is the input to another function (i.e., layer). 

The ANN architecture is extended until the classification performance is the best. For 

example, we can associate each step discussed previously with a hidden layer, and thus 

the network will have the architecture shown in Figure 5-5. This gives an understanding 

of the usefulness of hidden layers, which is a trouble for newbies in ANN.
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The next section discusses how CNN is derived from ANN and how it is more 

efficient in image analysis than traditional ANN.

 Derivation of Convolution
Image analysis has a number of challenges, such as classification, object detection, 

recognition, description, and so forth. If an image classifier, for example, is to be created, 

it should be able to work with a high accuracy even with variations such as occlusion, 

illumination changes, viewing angles, and others. The traditional pipeline of image 

classification with its main step of feature engineering is not suitable for working in 

rich environments. Even experts in the field won’t be able to give a single or a group 

of features that are able to reach high accuracy under different variations. From this 

problem, the idea of feature learning came out. The suitable features to work with images 

are learned automatically. This is why ANN is one of the most robust ways of performing 

image analysis. Based on a learning algorithm such as GD, ANN learns the image 

features automatically. The raw image is applied to the ANN and ANN is responsible for 

generating the features describing it.

Figure 5-5. ANN required to transform the data for separation of the class by 
using a linear classifier
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 Image Analysis Using FC Network

Let’s see how ANN works with images and why CNN is efficient in its time and memory 

requirements with respect to the 3×3 gray image in Figure 5-6. The example given uses a 

small image size and a lower number of neurons for simplicity.
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Figure 5-6. Tiny image as input to an FCNN

The inputs of the ANN input layer are the image pixels. Each pixel represents an 

input. Because the ANN works with 1D vectors, not 2D matrices, it is better to convert 

the preceding 2D image into a 1D vector, as in Figure 5-7.

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

15

Figure 5-7. 2D image to 1D vector

Each pixel is mapped to an element in the vector. Each element in the vector 

represented a neuron in ANN. Because the image has 3×3=9 pixels, then there will 

be nine neurons in the input layer. Representing the vector as row or column doesn’t 

matter, but ANN usually extends horizontally, and each of its layers is represented as a 

column vector.
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After preparing the input of the ANN, next is to add the hidden layer(s) that learns 

how to convert the image pixels into representative features. Assume that there is a single 

hidden layer with 16 neurons, as in Figure 5-8.

Input image Input layer

Hidden layer with 16 neurons

Each pixel is connected to all
neurons. There are 16 connection
for each input. Each connection
has a weight/parameter.

There are 16 parameters for
each input.

For all 9 inputs, there are
a total of 9 x 16 = 144 parameters.9 Pixels
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Figure 5-8. Connections from a single input neuron to all hidden layer neurons

Because the network is FC, this means that each neuron in layer i is connected to 

all neurons in layer i-1. As a result, each neuron in the hidden layer is connected to all 9 

pixels in the input layer. In other words, each input pixel is connected to the 16 neurons 

in the hidden layer, where each connection has a corresponding unique parameter. 

By connecting each pixel to all neurons in the hidden layer, there will be 9×16=144 

parameters or weights for a tiny network such as that shown in Figure 5-9.
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 Large Number of Parameters

The number of parameters in this FC network seems acceptable. But this number greatly 

increases as the number of image pixels and hidden layers increases.

For example, if this network has two hidden layers with 90 and 50 neurons, 

respectively, then the number of parameters between the input layer and the first 

hidden layer is 9×90=810. The number of parameters between the two hidden layers is 

90×50=4,500. The total number of parameters in this network is 810+4,500=5,310. This 

is a large number for such a network. Another case of a very small image of size 32×32 

(1,024 pixels). If the network operates with a single hidden layer of 500 neurons, there are 

a total of 1,024*500=512,000 parameters (weight). This is a huge number for a network 

with just a single hidden layer working with a small image. There must be a solution to 

decrease this number of parameters. This is where CNN has a critical role. It creates a 

very large network but with fewer parameters than FC networks.
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Figure 5-9. Connecting all input neurons to all hidden layer neurons
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 Neuron Grouping

The problem that makes the number of parameters get very large even for small 

networks is that FC networks add a parameter between every two neurons in the 

successive layers. Rather than assigning a single parameter between every two neurons, 

a single parameter may be given to a block or group of neurons as in Figure 5-10. The 

pixel with index 0 in Figure 5-8 is connected to the first four neurons with indices (0, 1, 

2, and 3) with four different weights. If the neurons are grouped in groups of four as in 

Figure 5-10, then all neurons inside the same group will be assigned a single parameter.
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Figure 5-10. Grouping every four hidden neurons to use the same weight

As a result, the pixel with index 0 in Figure 5-10 will be connected to the first four 

neurons with the same weight as in Figure 5-11. The same parameter is assigned to 

every four successive neurons. As a result, the number of parameters is reduced by a 

factor of 4. Each input neuron will have 16/4=4 parameters. The entire network will have 

144/4=36 parameters. It is a 75% reduction of the parameters. This is fine, but it is still 

possible to reduce more parameters.
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Because there are four groups of neurons, that means there are four filters in this 

layer. As a result, the output of this layer will have its third dimension equal to 3, which 

means three filtered images will be returned. The goal of CNN is to find the best values 

for such filters that make each input image associated with its class label.

Figure 5-12 shows the unique connections from each pixel to the first neuron of 

each group. That is, all missing connections are just duplicates of the existing ones. 

Hypothetically, there is a connection from each pixel to each neuron in each group, as in 

Figure 5-9, because the network is still FC.
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Figure 5-11. All neurons in the same group are using the same weight
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To make it simple, all connections are omitted except for the connections between 

all pixels to just the first neuron in the first group, as shown in Figure 5-13. It seems 

that each group is still connected to all 9 pixels, and thus it will have 9 parameters. It is 

possible to reduce the number of pixels that this neuron is connected to.
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Each pixel is connected to all
groups of neurons. In other
words, each group of neurons
is connected to all pixels. As a
result, each group will have
16 parameters. Total number of
parameters will be  9 x 4 = 36.

Figure 5-12. Fewer unique connections between the input layer and the hidden 
layer after hidden neurons grouping
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Each neuron in each group works
on all pixels. This assumes there
are same types of correlation among
all image pixels. But in fact, as the
pixels become spatially away from
each other as there will be less
correlation among them.

Rather than working with all
pixels, each neuron will accept
just same pixels that are
spatially correlated.

Figure 5-13. Connections between all neurons in the input layer to the first group 
of neurons within the hidden layer
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 Pixel Spatial Correlation

Current configuration makes each neuron accepts all pixels. If there is a function 

f(x1, x2, x3, x4) that accepts four inputs, that means the decision is to be taken based on 

all four of these inputs. If the function with just two inputs gives the same results as using 

all four inputs, then we do not have to use all of these four inputs. The two inputs giving 

the required results are sufficient. This is similar to the preceding case. Each neuron 

accepts all 9 pixels as inputs. If the same or better results will be returned by using fewer 

pixels, then we should go through it.

Usually, in image analysis, each pixel is highly correlated to pixels surrounding 

it (i.e., neighbors). The higher the distance between two pixels, the more they will be 

uncorrelated. For example, in the cameraman image shown in Figure 5-14, a pixel inside 

the face is correlated to the surrounding face pixels around it. But it is less correlated to 

far pixels such as sky or ground.

Figure 5-14. Cameraman image

Based on this assumption, each neuron in the preceding example will accept just 

pixels that are spatially correlated to each other, because working on all of them is 

reasonable. Rather than applying all 9 pixels to each neuron as input, it is possible to 

just select 4 spatially correlated pixels as in Figure 5-15. The first pixel of index 0 in the 

column vector located at (0,0) in the image will be applied as an input to the first neuron 
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with its 3 most spatially correlated pixels. Based on the input image, the 3 most spatially 

correlated pixels to that pixel are pixels with indices (0,1), (1,0), and (1,1). As a result, 

the neuron will accept just 4 pixels rather than 9. Because all neurons in the same group 

share the same parameters, then the 4 neurons in each group will have just 4 parameters 

rather than 9. As a result, the total number of parameters will be 4×4=16. Compared to 

the FC network in Figure 5-9, there is a reduction of a 144–16=128 parameter (i.e., 88.89% 

reduction).
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Each neuron in each group can
work with just 4 pixels rather
than all 9 pixels.

The pixels are selected to
be neighbour of each others.

Doing that reduces the number
of parameter required for
each group of neuron.

Now there are 4 parameters for
each group rather than 9.

Total number of parameter is
reduced from 9 x 4 = 36 to just
4 x 4 = 16.

Figure 5-15. Connecting the first group of correlated pixels to the first group

 Convolution in CNN

At this point, the question of why CNN is more time and memory efficient than the FC 

network is answered. Using fewer parameters allows the increase of a deep CNN with a 

huge number of layers and neurons, which is not possible in the FC network. Next is to 

get the idea of convolution in CNN.

Now there are just four weights assigned to all neurons in the same block. How will 

these four weights cover all 9 pixels? Let’s see how this works.

Figure 5-16 shows the previous network in Figure 5-15 but after adding the weight 

labels to the connections. Inside the neuron, each of the 4 input pixels is multiplied by 
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its corresponding weight. The equation is shown in Figure 5-16. The four pixels and 

weights would be better visualized as matrices as in Figure 5-16. The previous result will 

be achieved by multiplying the weights matrix to the current set of 4 pixels element by 

element. In practice, the size of the convolution mask should be odd, such as 3×3. For 

easier presentation, a 2×2 mask is used in this example.
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Figure 5-16. Adding weights of each connection and visualizing them as a matrix

Moving to the next neuron of index 1, it will work with another set of spatially 

correlated pixels with the same weights used by the neuron with index 0. Also, neurons 

with indices 2 and 3 will work with other two sets of spatially correlated pixels. This is 

shown in Figure 5-17. It seems that the first neuron in the group starts from the top- 

left pixel and chooses a number of pixels surrounding it. The last neuron in the group 

works on the bottom-right pixel and its surrounding pixels. The in-between neurons are 

adjusted to select in-between pixels. Such behavior is identical to convolution between 

the set of weights of the group and the image. This is why CNN has the term convolution.
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The same procedure happens for the remaining groups of neurons. The first neuron 

of each group starts from the top-left corner and its surrounding pixels. The last neuron 

of each group works with the bottom-right corner and its surrounding pixels. The in- 

between neurons work on the in-between pixels.

After understanding how CNN is derived from ANN, we can take an example that 

performs convolution between an input image and a filter (i.e., a set of weights) and 

produces its result.

 Designing a CNN
In the example we are going to design using CNN, there are three shapes: rectangle, 

triangle, and circle. Each one of them is represented by a 4×4 matrix as in Figure 5-18, 

where 1 represents white and 0 represents black. The goal is to build a CNN to return 1 

when there is a rectangle and 0 otherwise. How can we do that?

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0 This can be visualized as follows

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15

Figure 5-17. Highlighting each set of correlated pixels along with their weights as 
a matrix
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When starting to design a CNN, the first step is to determine the number of layers 

and number of filters within each layer. Usually, CNN has more than just a convolution 

(conv for short) layer, but we will start only using this layer. You can test yourself to solve 

such a problem.

First, the convolution layer investigates the building blocks of the shape structure we 

are looking for. So, the first question to ask yourself is what is special about a rectangle 

compared to a triangle and a circle. The rectangular shape has four edges, two vertical 

and two horizontal. We can benefit from such information. But also note that properties 

existing in the rectangle should not exist in the other shapes. Other shapes already have 

different properties. Neither of the two other shapes have two horizontal edges and two 

vertical edges. This is great.

The next question is how to make the convolution layer recognize the existence of 

the edges. Remember that CNN starts by recognizing the individual elements of the 

shape and then connects these elements together. So, we are not looking to find the four 

edges nor looking to find two parallel vertical edges and two parallel horizontal edges, 

but instead to recognize any vertical or horizontal edge. So, the question becomes more 

specific. How can we to recognize vertical or horizontal edges? This can be simply done 

using gradients.

The first layer will have a filter that looks for horizontal edges and another filter for 

vertical edges. These filters are shown in Figure 5-19 as 3×3 matrices. So, we know how 

many filters to use in the first conv layer and also what these filters are. The size of 3×3 is 

chosen for the filters because it is a good size at which the structure of the horizontal and 

vertical edges is clear.

Figure 5-18. Rectangle, triangle, and circle represented by 4×4 matrices. Pixel of 1 
is white and pixel of 0 is black.
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After applying these filters over the matrices in Figure 5-19, the conv layer will be able 

to recognize the vertical edges in Figure 5-20 and the horizontal edges in Figure 5- 21. 

The layer is able to recognize the horizontal and vertical edges in the rectangle. It also 

recognized the horizontal edge at the triangle base. But there is no edge in the circle. At the 

current time, the CNN has two candidates to be a rectangle, which are the shapes having at 

least one edge. Despite being sure that the third shape could not be a rectangle, the CNN 

has to propagate it to the other layers until making its decision at the final layer. Because of 

using two filters in the first conv layer, it results in two outputs, one for each filter.

Figure 5-19. Filters for recognizing horizontal and vertical edges of size 3×3

Figure 5-20. Recognized vertical edges in black

Figure 5-21. Recognized horizontal edges in black
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The next convolution layer will accept the results of the first convolution layer and 

continue based on it. Let’s repeat the same questions asked in the first layer. What is the 

number of filters to use and what is their structure? Based on the rectangle structure, 

we find that each horizontal edge is connected to a vertical edge. Because there are two 

horizontal edges, this requires the use of the two filters in Figure 5-22 of size 3×3.

Figure 5-22. Filters for recognizing connected horizontal and vertical  
edges of size 3×3

Figure 5-23. Result of the first filter in the second layer in black

Figure 5-24. Result of the second filter in the second layer in black

After applying those filters to the results of conv layer 1, the results of the filters 

used in the second conv layer are shown in Figure 5-23 and Figure 5-24, respectively. 

Regarding the rectangle, the filters are able to find the two required edges and connect 

them together. In the triangle, there is just a single horizontal edge with no vertical edge 

connected to it. As a result, there are no positive outputs for the triangle.
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By the current result, we have not recognized that rectangle, but we have 

nevertheless done a nice job so far. We connected the individual edges to more 

meaningful structures. Now, there is just a single step toward recognizing the complete 

shape, which is connecting the recognized edges in Figures 5-23 and 5-24. The result is 

in Figure 5-25. This is great.

Figure 5-25. Results of connecting recognized shapes by the second conv layer

But we did the work manually, not automatically. We guided the CNN by telling it 

the filters to use. But this is not the case in regular problems. The CNN will find the filters 

itself. We just tried to simplify things by using the correct filters. Remember that these 

filters and the weights of connections between the different layers are automatically 

adjusted by the CNN. So, finding the correct filters means finding the correct weights. 

This links what we have learned now to what we got before.

 Pooling Operation for Parameter Reduction
The convolution operation just finds the dot product between a mask and an image 

portion of the same size as the filter. If the filter matches a portion of the image, then the 

SOP will be high. Assume that the output of applying the convolution operation is as 

shown in Figure 5-26.

Figure 5-26. Results of a convolution operation
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The shaded regions are the ones at which there is a high match between the image 

portions and the used filter. Note that there are two pieces of information here:

 1. The existence of high scores means that the region of interest 

(ROI) exists in the image.

 2. The location of the high scores tells the location in the image at 

which match occurs between the filter and the image portion.

But are we interested in both these pieces of information? The answer is no. We are 

just interested in the second piece. This is because the only goal of CNN is to tell whether 

the target object exists in the image or not. We are not interested in localizing it.

As a result, if the exact location is not of concern for us, we can avoid storing such 

spatial information. For example, we can say that the ROI exists in the image but avoid 

storing its exact location. The previous matrix size will be reduced if we do so, as shown 

in Figure 5-27.

Figure 5-27. Results of a convolution operation

We can get rid of the extra information that tells the exact location of the image 

portion with a match because it is not important for us. We just kept the information that 

tells that a match occurred. This is by keeping the maximum values of the convolution 

output matrix. Finding high scores tells us that there is a match.

But how did we reduce the matrix size? This is by just keeping the maximum value of 

each 2×2 region for example. This operation is called max pooling.

By applying the max pooling operation, there is a very important improvement over 

the computational time and memory requirements. Rather than keeping a matrix of size 

4×4 in the memory, it is reduced to half size (2×2). This saves memory by just keeping 

4 values compared to 16. Moreover, the time is reduced because the output of that max 

pooling operation will be the input of another convolution operation. This convolution 

operation will work on a matrix of size 2×2 rather than 4×4.

Finally, applying the max pooling operation helps us reduce the computational time 

and memory requirements by removing the spurious features that have no importance 

for us in CNN (this is the exact location at which match occurred). This operation makes 

the CNN translation invariance.
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 Convolution Operation Example
This subsection gives an example of how to apply the convolution operation over a 

sample of size 8×8 from a 2D image shown in Figure 5-28. A single filter will be used in 

the convolution, which is the horizontal gradient detector in Figure 5-19. Convolution is 

applied by centering the filter over each pixel, multiplying each element in the filter by 

its corresponding pixel in the image, returning the sum of these multiplications within a 

new image.

Figure 5-28. Image sample of size 8×8 to apply the convolution operation

Because the filter size is 3×3 and each of its elements is multiplied by an element 

within the image, then after centering the filter over any pixel there must be an element 

corresponding to each element in the filter. It is obvious that this does not work for the 

border of the image (i.e., leftmost and rightmost columns in addition to top and bottom 

rows), as marked by gray in Figure 5-28. There are two solutions in such a case. The first 

is to keep working with the pixels by padding extra rows and columns with zeros, or in 

other words, multiplying any element if the filter doesn’t have a corresponding image 

pixel by zero. This will produce an output image of equal size to the original image.

In this case, the number of rows required for padding at the top and bottom borders 

is calculated according to Equation 5-1. The number of padded columns to the left and 

right is calculated according to Equation 5-2. For our example with a filter size of 3×3, 

there are two rows and two columns to be padded.
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 Paddingrows = floor(Filterrows/2) (Equation 5-1)

 Paddingcols = floor(Filtercols/2) (Equation 5-2)

In most cases, the number of rows and columns in the filter is an odd number. This 

helps localize a center pixel at which the SOP will be inserted.

The second solution is to avoid working with the image borders. In this case, the 

resulting image will have a size less than that of the original image. The number of rows 

and columns in the output image is calculated according to Equations 5.3 and 5.4, 

respectively. For our input image of size 8×8, the size of the resultant image is 6×6.

 NewSizerows = OldSizerows − 2xPaddingrows
 (Equation 5-3)

 NewSizecols = OldSizecols − 2xPaddingcols
 (Equation 5-4)

Assuming that no padding is used, then the first pixel to work with is the pixel 

located in the second row and second column with value 103. Centering the filter at this 

pixel and multiplying each element by its corresponding pixels, the SOP is as follows:

 sop = ( )+ ( ) + -( )+ ( ) + ( ) + -( )+ ( ) + ( ) +65 1 84 0 215 1 162 1 103 0 70 1 150 1 40 0 1106 1 14-( ) = -  

This result is inserted in a new image at the pixel located at the top-left row and top- 

left column. After calculating the output for one pixel, the next step is to shift the filter 

to get another pixel. The number of shifts required is called stride. A stride of 1 shifts 

the filter one column/row at a time. In the current step, it will move the filter to the right 

just one column and center the filter over the pixel in the second row and third column 

with a value of 70. A stride of 2 shifts the filter two columns/rows at a time, and thus the 

current pixel will be 97.

Using a stride of 1, we will continue calculating the SOP for all pixels in the first row 

starting from column 2 to column 7, each time calculating the SOP. After that, the filter 

is shifted one row down, and thus the current pixel will be 40 located at the third row 

and second column. The final result without padding and using a stride of 1 is shown in 

Figure 5-29.
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 Max Pooling Operation Example
Assuming that there is a conv layer that produced the previous result in Figure 5-29 and 

that this layer is connected with a max pooling layer, let’s work on calculating its output.

The max pooling layer selects a group of pixels to summarize into a single pixel by 

just keeping their maximum value. If a mask of size 2×2 is used, it will start from the 

top-left 4 pixels marked in gray in Figure 5-29. Their maximum value is 94, which is the 

output. Similar to convolution, max pooling will shift the mask to work on another 4 

pixels, and thus it needs a stride. The stride value for the pooling layer is equal to 2 at the 

minimum. The reason is that a stride of 1 will duplicate values without the output, which 

is not helpful. In the highlighted pixels in black in Figure 5-29, the result of the max 

pooling operation for the first two columns will be 30. Using a stride of 1 and shifting the 

mask to the right by one column, the result of this operation for the last two columns 

highlighted in black is also 30. As a result, a value of 30 appeared twice. Is it helpful to 

return the same value more than once? A value of 30 returned the first time means that 

there is a match between the convolution filter and the image that equals 30. So, we got 

that information. There is no need to repeat it again. Working with a stride of 1 will use 

more parameters to return repeated results we are not interested in. As a result, a stride 

of 2 will be helpful.

The result of applying the max pooling operation over the convolution result in 

Figure 5-29 is shown in Figure 5-30.

Figure 5-29. Convolution output between an image of size 8×8 and a 3×3 filter
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 Building a CNN Using NumPy from Scratch
CNN is the state-of-the-art technique for analyzing multidimensional signals such as 

images. There are different libraries that already implement CNN such as TensorFlow 

(TF) and Keras. These libraries isolate the developer from some details and just give an 

abstract application program interface (API) to make life easier and avoid complexity in 

the implementation. But in practice, such details might make a difference. Sometimes, 

the data scientist has to go through such details to enhance the performance. The 

solution in this situation is to build every piece of the model yourself. This gives the 

highest possible level of control over the network.

It is recommended to implement such models to have a better understanding 

of them. Some ideas seem to be clear, but that may not actually be the case until 

programming. It will be easy to do that after learning how CNNs work. This section 

shows how a CNN is implemented from scratch just using NumPy. So, let’s implement it 

and compare its outputs with TF to validate the implementation.

In this section, a CNN is created using only the NumPy library. Three layers are 

created: convolution (conv for short), ReLU, and max/average pooling. The major steps 

involved are as follows:

 1. Reading the input image.

 2. Preparing the filters.

 3. Conv layer: Convolving each filter with the input image.

 4. ReLU layer: Applying the ReLU activation function on the feature 

maps (output of conv layer).

 5. Max pooling layer: Applying the pooling operation on the output 

of ReLU layer.

 6. Stacking conv, ReLU, and max pooling layers.

Figure 5-30. Max pooling output using a mask of size 2×2
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 Reading the Input Image
Listing 5-1 reads an already existing image from the skimage Python library and converts 

it into gray.

Listing 5-1. Reading an Image

import skimage.data

# Reading the image

img = skimage.data.chelsea()

# Converting the image into gray.

img = skimage.color.rgb2gray(img)

This example uses an already existing image within the skimage Python library. The 

image is called using skimage.data.chelsea(). Note that this call implicitly reads an 

image file named “chelsea.png” within the skimage library installation directory. The 

image could also be read by passing its path to the skimage.data.imread(fname). For 

example, if the library is located in “Lib\site-packages\skimage\data\”, then we could 

read it as follows:

img =  skimage.data.chelsea("\AhmedGad\Anaconda3\Lib\site-packages\skimage\

data\chelsea.png")

Reading image is the first step because the next steps depend on the input size. The 

image after being converted into gray is in Figure 5-31.

Figure 5-31. Original gray image read using skimage.data.chelsea()
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 Preparing Filters
The following line prepares the filter bank for the first conv layer (l1 for short):

l1_filter = numpy.zeros((2,3,3))

A zero array is created according to the number of filters and the size of each filter. 

Two filters of size 3×3 are created; that is why the zero array is of size (2=num_filters, 

3=num_rows_filter, 3=num_columns_filter). The size of the filter is selected to be a 2D 

array without depth because the input image is gray and has no depth (i.e., 2D). If the 

image is RGB with three channels, the filter size must be (3, 3, 3=depth).

The size of the filter bank is specified by the preceding zero array but not the actual 

values of the filters. It is possible to override the values as follows to detect vertical and 

horizontal edges.

l1_filter[0, :, :] = numpy.array([[[-1, 0, 1],

                                   [-1, 0, 1],

                                   [-1, 0, 1]]])

l1_filter[1, :, :] = numpy.array([[[1,   1,  1],

                                   [0,   0,  0],

                                   [-1, -1, -1]]])

 Conv Layer
After preparing the filters, the next step is to convolve the input image by them. The next 

line convolves the image with the filter bank using a function called conv:

l1_feature_map = conv(img, l1_filter)

This function accepts just two arguments, the image and the filter bank, as 

implemented in Listing 5-2.

Listing 5-2. Convolving the Image by a Single Filter

def conv(img, conv_filter):

     if len(img.shape) > 2 or len(conv_filter.shape) > 3: # Check if number 

of image channels matches the filter depth.
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        if img.shape[-1] != conv_filter.shape[-1]:

             print("Error: Number of channels in both image and filter must 

match.")

            sys.exit()

    if conv_filter.shape[1] != conv_filter.shape[2]:

         print('Error: Filter must be a square matrix, i.e., number of rows 

and columns must match.')

        sys.exit()

    if conv_filter.shape[1]%2==0: # Check if filter dimensions are odd.

         print('Error: Filter must have an odd size, i.e., number of rows 

and columns must be odd.')

        sys.exit()

     # An empty feature map to hold the output of convolving the filter(s) 

with the image.

    feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,

                                img.shape[1]-conv_filter.shape[1]+1,

                                conv_filter.shape[0]))

    # Convolving the image by the filter(s).

    for filter_num in range(conv_filter.shape[0]):

        print("Filter ", filter_num + 1)

         curr_filter = conv_filter[filter_num, :] # getting a filter from 

the bank.

        # Checking if there are multiple channels for the single filter.

        # If so, then each channel will convolve the image.

         # The result of all convolutions is summed to return a single 

feature map.

        if len(curr_filter.shape) > 2:

             conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array 

holding the sum of all feature maps.

             for ch_num in range(1, curr_filter.shape[-1]): # Convolving 

each channel with the image and summing the results.

                conv_map = conv_map + conv_(img[:, :, ch_num],

                                  curr_filter[:, :, ch_num])
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        else: # There is just a single channel in the filter.

            conv_map = conv_(img, curr_filter)

         feature_maps[:, :, filter_num] = conv_map # Holding feature map 

with the current filter.

    return feature_maps # Returning all feature maps.

The function starts by ensuring that the depth of each filter is equal to the number of 

image channels. In the following code, the outer if checks if the channel and the filter 

have a depth. If a depth already exists, then the inner if checks their inequality. If there 

is no match, then the script will exit.

if len(img.shape) > 2 or len(conv_filter.shape) > 3: # Check if number of 

image channels matches the filter depth.

        if img.shape[-1] != conv_filter.shape[-1]:

             print("Error: Number of channels in both image and filter must 

match.")

            sys.exit()

Moreover, the size of the filter should be odd and filter dimensions should be equal 

(i.e., number of rows and columns are odd and equal). This is checked according to the 

following two if blocks. If these conditions don’t meet, the script will exit.

if conv_filter.shape[1] != conv_filter.shape[2]: # Check if filter 

dimensions are equal.

     print('Error: Filter must be a square matrix, i.e., number of rows and 

columns must match.')

    sys.exit()

if conv_filter.shape[1]%2==0:

     print('Error: Filter must have an odd size, i.e., number of rows and 

columns must be odd.')

    sys.exit()

Not satisfying any of the conditions in the preceding is a proof that the filter depth is 

suitable with the image, and convolution is ready to be applied. Convolving the image 

by the filter starts by initializing an array to hold the outputs of convolution (i.e., feature 

maps) by specifying its size according to the following code:
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# An empty feature map to hold the output of convolving the filter(s) with 

the image.

feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,

                            img.shape[1]-conv_filter.shape[1]+1,

                            conv_filter.shape[0]))

Because there is no stride or padding, the feature map size will be equal to (img_

rows-filter_rows+1, image_columns-filter_columns+1, num_filters) as in the preceding 

code. Note that there is an output feature map for every filter in the bank. That is why the 

number of filters in the filter bank (conv_filter.shape[0]) is used to specify the size as a 

third argument. After preparing the inputs and outputs of the convolution operation, the 

next step is to apply it according to Listing 5-3.

Listing 5-3. Convolving the Image by Filters

    # Convolving the image by the filter(s).

    for filter_num in range(conv_filter.shape[0]):

        print("Filter ", filter_num + 1)

         curr_filter = conv_filter[filter_num, :] # getting a filter from 

the bank.

        # Checking if there are multiple channels for the single filter.

        # If so, then each channel will convolve the image.

         # The result of all convolutions is summed to return a single 

feature map.

        if len(curr_filter.shape) > 2:

             conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array 

holding the sum of all feature maps.

             for ch_num in range(1, curr_filter.shape[-1]): # Convolving 

each channel with the image and summing the results.

                conv_map = conv_map + conv_(img[:, :, ch_num],

                                  curr_filter[:, :, ch_num])

        else: # There is just a single channel in the filter.

            conv_map = conv_(img, curr_filter)

         feature_maps[:, :, filter_num] = conv_map # Holding feature map 

with the current filter.

    return feature_maps # Returning all feature maps.
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The outer loop iterates over each filter in the filter bank and returns it for further 

steps according to this line:

curr_filter = conv_filter[filter_num, :] # getting a filter from the bank.

If the image to be convolved has more than one channel, then the filter must have a 

depth equal to this number of channels. Convolution, in this case, is done by convolving 

each image channel with its corresponding channel in the filter. Finally, the sum of 

the results will be the output feature map. If the image has just a single channel, then 

convolution will be straightforward. Determining this behavior is done in an if-else block:

if len(curr_filter.shape) > 2:

      conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array holding 

the sum of all feature map

      for ch_num in range(1, curr_filter.shape[-1]): # Convolving each 

channel with the image and summing the results.

        conv_map = conv_map + conv_(img[:, :, ch_num],

                                   curr_filter[:, :, ch_num])

else: # There is just a single channel in the filter.

    conv_map = conv_(img, curr_filter)

You might notice that the convolution is applied by a function called conv_, which 

is different from the conv function. The function conv just accepts the input image and 

the filter bank but doesn’t apply convolution its own. It just passes each set of input-filter 

pairs to be convolved to the conv_ function. This is just for making the code simpler to 

investigate. Listing 5-4 gives the implementation of the conv_ function.

Listing 5-4. Convolving the Image by All Filters

def conv_(img, conv_filter):

    filter_size = conv_filter.shape[1]

    result = numpy.zeros((img.shape))

    #Looping through the image to apply the convolution operation.

    for r in numpy.uint16(numpy.arange(filter_size/2.0,

                          img.shape[0]-filter_size/2.0+1)):

        for c in numpy.uint16(numpy.arange(filter_size/2.0,

                                            img.shape[1]-filter_

size/2.0+1)):
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            # Getting the current region to get multiplied with the filter.

            # How to loop through the image and get the region based on

             # the image and filer sizes is the most tricky part of 

convolution.

             curr_region = img[r-numpy.uint16(numpy.floor(filter_

size/2.0)):r+numpy.uint16(numpy.ceil(filter_size/2.0)),

                               c-numpy.uint16(numpy.floor(filter_

size/2.0)):c+numpy.uint16(numpy.ceil(filter_

size/2.0))]

             #Element-wise multiplication between the current region and the 

filter.

            curr_result = curr_region * conv_filter

             conv_sum = numpy.sum(curr_result) #Summing the result of 

multiplication.

             result[r, c] = conv_sum #Saving the summation in the 

convolution layer feature map.

    #Clipping the outliers of the result matrix.

     final_result = result[numpy.uint16(filter_size/2.0):result.shape[0]-

numpy.uint16(filter_size/2.0),

                           numpy.uint16(filter_size/2.0):result.shape[1]-

numpy.uint16(filter_size/2.0)]

    return final_result

It iterates over the image and extracts regions of equal size to the filter according to 

this line:

curr_region =  img[r-numpy.uint16(numpy.floor(filter_size/2.0)):r+numpy.

uint16(numpy.ceil(filter_size/2.0)),

                               c-numpy.uint16(numpy.floor(filter_

size/2.0)):c+numpy.uint16(numpy.ceil(filter_

size/2.0))]
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Then it applies element-wise multiplication between the region and the filter and 

sums them to get a single value as the output according to these lines:

#Element-wise multiplication between the current region and the filter.

curr_result = curr_region * conv_filter

conv_sum = numpy.sum(curr_result)

result[r, c] = conv_sum

After convolving each filter by the input, the feature maps are returned by the conv 

function. Figure 5-32 shows the feature maps returned by this conv layer. At the end of 

this chapter, Listing 5-9 shows the results of all layers discussed in the code.

Figure 5-32. Output feature maps of the first conv layer

The output of such a layer will be applied to the ReLU layer.

 ReLU Layer
The ReLU layer applies the ReLU activation function over each feature map returned by 

the conv layer. It is called using the relu function according to the following line of code:

l1_feature_map_relu = relu(l1_feature_map)

The relu function is implemented in Listing 5-5.

Listing 5-5. ReLU Implementation

def relu(feature_map):

    #Preparing the output of the ReLU activation function.

    relu_out = numpy.zeros(feature_map.shape)

    for map_num in range(feature_map.shape[-1]):
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        for r in numpy.arange(0,feature_map.shape[0]):

            for c in numpy.arange(0, feature_map.shape[1]):

                 relu_out[r, c, map_num] = numpy.max([feature_map[r, c, map_

num], 0])

    return relu_out

It is very simple. Just loop through each element in the feature map and return the 

original value in the feature map if it is larger than 0. Otherwise, return 0. The outputs of 

the ReLU layer are shown in Figure 5-33.

Figure 5-33. ReLU layer output applied to the output of the first conv layer

The output of the ReLU layer is applied to the max pooling layer.

 Max Pooling Layer
The max pooling layer accepts the output of the ReLU layer and applies the max pooling 

operation according to the following line:

l1_feature_map_relu_pool = pooling(l1_feature_map_relu, 2, 2)

It is implemented using the pooling function according to Listing 5-6.

Listing 5-6. Max Pooling Implementation

def pooling(feature_map, size=2, stride=2):

    #Preparing the output of the pooling operation.

     pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/

stride+1), numpy.uint16((feature_map.shape[1]-size+1)/stride+1), 

feature_map.shape[-1]))
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    for map_num in range(feature_map.shape[-1]):

        r2 = 0

        for r in numpy.arange(0,feature_map.shape[0]-size+1, stride):

            c2 = 0

            for c in numpy.arange(0, feature_map.shape[1]-size+1, stride):

                 pool_out[r2, c2, map_num] = numpy.max([feature_

map[r:r+size,  c:c+size]])

                c2 = c2 + 1

            r2 = r2 +1

    return pool_out

The function accepts three inputs: the output of the ReLU layer, pooling mask size, 

and stride. It simply creates an empty array, as previously, that holds the output of the 

layer. The size of the array is specified according to the size and stride arguments, as in 

the following line:

pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/

stride+1),

                         numpy.uint16((feature_map.shape[1]-size+1)/

stride+1),

                        feature_map.shape[-1]))

Then it loops through the input channel by channel according to the outer loop, 

which uses the looping variable map_num. For each channel in the input, max pooling 

operation is applied. According to the stride and size used, the region is clipped and the 

max of it is returned in the output array according to this line:

pool_out[r2, c2, map_num] = numpy.max(feature_map[r:r+size,  c:c+size])

The outputs of the pooling layer are shown in Figure 5-34. Note that the size of the 

pooling layer output is smaller than its input even if they seem identical in their graphs.

Chapter 5  Convolutional neural networks



218

 Stacking Layers
Up to this point, the CNN architecture with conv, ReLU, and max pooling layers is 

complete. There might be some other layers to be stacked in addition to the previous 

ones, as given in Listing 5-7.

Listing 5-7. Building CNN Architecture

# Second conv layer

l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 2**")

l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)

print("\n**ReLU**")

l2_feature_map_relu = relu(l2_feature_map)

print("\n**Pooling**")

l2_feature_map_relu_pool = pooling(l2_feature_map_relu, 2, 2)

print("**End of conv layer 2**\n")

The previous conv layer uses three filters, with their values generated randomly. 

That is why there will be three feature maps resulting from the conv layer. This is also 

the same for the successive ReLU and pooling layers. Outputs of the layers are shown in 

Figure 5-35.

Figure 5-34. Pooling layer output applied to the output of the first ReLU layer
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The CNN architecture is extended by adding extra conv, ReLU, and pooling layers 

according to Listing 5-8. Figure 5-36 shows the outputs of these layers. The conv layer 

accepts just a single filter. That is why there is only one feature map as output.

Figure 5-36. Outputs of the third conv-ReLU-pooling layers

Figure 5-35. The output of the second conv-ReLU-pooling layers
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Listing 5-8. Continue Building CNN Architecture

# Third conv layer

l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 3**")

l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)

print("\n**ReLU**")

l3_feature_map_relu = relu(l3_feature_map)

print("\n**Pooling**")

l3_feature_map_relu_pool = pooling(l3_feature_map_relu, 2, 2)

print("**End of conv layer 3**\n")

But remember, the output of each previous layer is the input to the next layer. For 

example, these lines accept the previous outputs as their inputs.

l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)

l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)

 Complete Code
The presented code discusses and gives an example of implementing a CNN with 

visualizing the results of each layer. The code contains the visualization of the outputs 

from each layer using the Matplotlib library. The complete code of this project is 

available at GitHub (https://github.com/ahmedfgad/NumPyCNN).

Listing 5-9. Complete Code for Implementing CNN

import skimage.data

import numpy

import matplotlib

import sys

def conv_(img, conv_filter):

    filter_size = conv_filter.shape[1]

    result = numpy.zeros((img.shape))

    #Looping through the image to apply the convolution operation.

    for r in numpy.uint16(numpy.arange(filter_size/2.0,

                          img.shape[0]-filter_size/2.0+1)):
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        for c in numpy.uint16(numpy.arange(filter_size/2.0,

                                            img.shape[1]-filter_

size/2.0+1)):

            # Getting the current region to get multiplied with the filter.

            # How to loop through the image and get the region based on

             # the image and filer sizes is the most tricky part of 

convolution.

             curr_region = img[r-numpy.uint16(numpy.floor(filter_

size/2.0)):r+numpy.uint16(numpy.ceil(filter_size/2.0)),

                               c-numpy.uint16(numpy.floor(filter_

size/2.0)):c+numpy.uint16(numpy.ceil(filter_

size/2.0))]

             #Element-wise multiplication between the current region and the 

filter.

            curr_result = curr_region * conv_filter

             conv_sum = numpy.sum(curr_result) #Summing the result of 

multiplication.

             result[r, c] = conv_sum #Saving the summation in the 

convolution layer feature map.

    #Clipping the outliers of the result matrix.

     final_result =  result[numpy.uint16(filter_size/2.0):result.shape[0]-

numpy.uint16(filter_size/2.0), numpy.uint16(filter_

size/2.0):result.shape[1]-numpy.uint16(filter_size/2.0)]

    return final_result

def conv(img, conv_filter):

    if len(img.shape) > 2 or len(conv_filter.shape) > 3:

        if img.shape[-1] != conv_filter.shape[-1]:

             print("Error: Number of channels in both image and filter must 

match.")

            sys.exit()

    if conv_filter.shape[1] != conv_filter.shape[2]:

         print('Error: Filter must be a square matrix, i.e., number of rows 

and columns must match.')

        sys.exit()
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    if conv_filter.shape[1]%2==0:

         print('Error: Filter must have an odd size, i.e., number of rows 

and columns must be odd.')

        sys.exit()

     # An empty feature map to hold the output of convolving the filter(s) 

with the image.

    feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,

                                img.shape[1]-conv_filter.shape[1]+1,

                                conv_filter.shape[0]))

    # Convolving the image by the filter(s).

    for filter_num in range(conv_filter.shape[0]):

        print("Filter ", filter_num + 1)

         curr_filter = conv_filter[filter_num, :] # getting a filter from 

the bank.

        # Checking if there are multiple channels for the single filter.

        # If so, then each channel will convolve the image.

         # The result of all convolutions is summed to return a single 

feature map.

        if len(curr_filter.shape) > 2:

             conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array 

holding the sum of all feature maps.

             for ch_num in range(1, curr_filter.shape[-1]): # Convolving 

each channel with the image and summing the results.

                conv_map = conv_map + conv_(img[:, :, ch_num],

                                  curr_filter[:, :, ch_num])

        else: # There is just a single channel in the filter.

            conv_map = conv_(img, curr_filter)

         feature_maps[:, :, filter_num] = conv_map # Holding feature map 

with the current filter.

    return feature_maps # Returning all feature maps.

def pooling(feature_map, size=2, stride=2):

    #Preparing the output of the pooling operation.
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     pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/

stride+1), numpy.uint16((feature_map.shape[1]-size+1)/stride+1), 

feature_map.shape[-1]))

    for map_num in range(feature_map.shape[-1]):

        r2 = 0

        for r in numpy.arange(0,feature_map.shape[0]-size+1, stride):

            c2 = 0

            for c in numpy.arange(0, feature_map.shape[1]-size+1, stride):

                 pool_out[r2, c2, map_num] = numpy.max([feature_

map[r:r+size,  c:c+size]])

                c2 = c2 + 1

            r2 = r2 +1

    return pool_out

def relu(feature_map):

    #Preparing the output of the ReLU activation function.

    relu_out = numpy.zeros(feature_map.shape)

    for map_num in range(feature_map.shape[-1]):

        for r in numpy.arange(0,feature_map.shape[0]):

            for c in numpy.arange(0, feature_map.shape[1]):

                 relu_out[r, c, map_num] = numpy.max([feature_map[r, c, map_

num], 0])

    return relu_out

# Reading the image

#img = skimage.io.imread("fruits2.png")

img = skimage.data.chelsea()

# Converting the image into gray.

img = skimage.color.rgb2gray(img)

# First conv layer

#l1_filter = numpy.random.rand(2,7,7)*20 # Preparing the filters randomly.

l1_filter = numpy.zeros((2,3,3))

l1_filter[0, :, :] = numpy.array([[[-1, 0, 1],

                                   [-1, 0, 1],

                                   [-1, 0, 1]]])
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l1_filter[1, :, :] = numpy.array([[[1,   1,  1],

                                   [0,   0,  0],

                                   [-1, -1, -1]]])

print("\n**Working with conv layer 1**")

l1_feature_map = conv(img, l1_filter)

print("\n**ReLU**")

l1_feature_map_relu = relu(l1_feature_map)

print("\n**Pooling**")

l1_feature_map_relu_pool = pooling(l1_feature_map_relu, 2, 2)

print("**End of conv layer 1**\n")

# Second conv layer

l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 2**")

l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)

print("\n**ReLU**")

l2_feature_map_relu = relu(l2_feature_map)

print("\n**Pooling**")

l2_feature_map_relu_pool = pooling(l2_feature_map_relu, 2, 2)

print("**End of conv layer 2**\n")

# Third conv layer

l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 3**")

l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)

print("\n**ReLU**")

l3_feature_map_relu = relu(l3_feature_map)

print("\n**Pooling**")

l3_feature_map_relu_pool = pooling(l3_feature_map_relu, 2, 2)

print("**End of conv layer 3**\n")

# Graphing results

fig0, ax0 = matplotlib.pyplot.subplots(nrows=1, ncols=1)

ax0.imshow(img).set_cmap("gray")

ax0.set_title("Input Image")
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ax0.get_xaxis().set_ticks([])

ax0.get_yaxis().set_ticks([])

matplotlib.pyplot.savefig("in_img.png", bbox_inches="tight")

matplotlib.pyplot.close(fig0)

# Layer 1

fig1, ax1 = matplotlib.pyplot.subplots(nrows=3, ncols=2)

ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")

ax1[0, 0].get_xaxis().set_ticks([])

ax1[0, 0].get_yaxis().set_ticks([])

ax1[0, 0].set_title("L1-Map1")

ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")

ax1[0, 1].get_xaxis().set_ticks([])

ax1[0, 1].get_yaxis().set_ticks([])

ax1[0, 1].set_title("L1-Map2")

ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")

ax1[1, 0].get_xaxis().set_ticks([])

ax1[1, 0].get_yaxis().set_ticks([])

ax1[1, 0].set_title("L1-Map1ReLU")

ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")

ax1[1, 1].get_xaxis().set_ticks([])

ax1[1, 1].get_yaxis().set_ticks([])

ax1[1, 1].set_title("L1-Map2ReLU")

ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax1[2, 0].get_xaxis().set_ticks([])

ax1[2, 0].get_yaxis().set_ticks([])

ax1[2, 0].set_title("L1-Map1ReLUPool")

ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")

ax1[2, 0].get_xaxis().set_ticks([])

ax1[2, 0].get_yaxis().set_ticks([])

ax1[2, 1].set_title("L1-Map2ReLUPool")

matplotlib.pyplot.savefig("L1.png", bbox_inches="tight")

matplotlib.pyplot.close(fig1)
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# Layer 2

fig2, ax2 = matplotlib.pyplot.subplots(nrows=3, ncols=3)

ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")

ax2[0, 0].get_xaxis().set_ticks([])

ax2[0, 0].get_yaxis().set_ticks([])

ax2[0, 0].set_title("L2-Map1")

ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")

ax2[0, 1].get_xaxis().set_ticks([])

ax2[0, 1].get_yaxis().set_ticks([])

ax2[0, 1].set_title("L2-Map2")

ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")

ax2[0, 2].get_xaxis().set_ticks([])

ax2[0, 2].get_yaxis().set_ticks([])

ax2[0, 2].set_title("L2-Map3")

ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")

ax2[1, 0].get_xaxis().set_ticks([])

ax2[1, 0].get_yaxis().set_ticks([])

ax2[1, 0].set_title("L2-Map1ReLU")

ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")

ax2[1, 1].get_xaxis().set_ticks([])

ax2[1, 1].get_yaxis().set_ticks([])

ax2[1, 1].set_title("L2-Map2ReLU")

ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")

ax2[1, 2].get_xaxis().set_ticks([])

ax2[1, 2].get_yaxis().set_ticks([])

ax2[1, 2].set_title("L2-Map3ReLU")

ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax2[2, 0].get_xaxis().set_ticks([])

ax2[2, 0].get_yaxis().set_ticks([])

ax2[2, 0].set_title("L2-Map1ReLUPool")

ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")

ax2[2, 1].get_xaxis().set_ticks([])
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ax2[2, 1].get_yaxis().set_ticks([])

ax2[2, 1].set_title("L2-Map2ReLUPool")

ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")

ax2[2, 2].get_xaxis().set_ticks([])

ax2[2, 2].get_yaxis().set_ticks([])

ax2[2, 2].set_title("L2-Map3ReLUPool")

matplotlib.pyplot.savefig("L2.png", bbox_inches="tight")

matplotlib.pyplot.close(fig2)

# Layer 3

fig3, ax3 = matplotlib.pyplot.subplots(nrows=1, ncols=3)

ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")

ax3[0].get_xaxis().set_ticks([])

ax3[0].get_yaxis().set_ticks([])

ax3[0].set_title("L3-Map1")

ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")

ax3[1].get_xaxis().set_ticks([])

ax3[1].get_yaxis().set_ticks([])

ax3[1].set_title("L3-Map1ReLU")

ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax3[2].get_xaxis().set_ticks([])

ax3[2].get_yaxis().set_ticks([])

ax3[2].set_title("L3-Map1ReLUPool")

There are more layers available in CNN, and it is easy to add them to the preceding 

layers. For example, a dropout layer could be implemented by dropping a percentage of 

the neurons in the last layer. An FC layer is just converting the results of the last layer into 

a 1D vector.

Now that the chapter is complete, it is expected that you have good background 

information about CNN.

Chapter 5  Convolutional neural networks



229
© Ahmed Fawzy Gad 2018 
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,  
https://doi.org/10.1007/978-1-4842-4167-7_6

CHAPTER 6

TensorFlow Recognition 
Application
Building a DL model such as CNN from scratch using NumPy as we did helps us have a 

better understanding of how each layer works in detail. For practical applications, it is 

not recommended to use such implementation. One reason is that it is computationally 

intensive in its calculations and needs efforts to optimize the code. Another is that it does 

not support distributed processing, GPUs, and many more features. On the other hand, 

there are different already existing libraries that support these features in a time-efficient 

manner. These libraries include TF, Keras, Theano, PyTorch, Caffe, and more.

This chapter starts with introducing the TF DL library from scratch by building and 

visualizing the computational graph for a simple linear model and a two-class classifier 

using ANN. The computational graph is visualized using TensorBoard (TB). Using 

TF-Layers API, a CNN model is created to apply the concepts previously discussed for 

recognizing images from the CIFAR10 dataset.

 Introduction to TF
There are different programming paradigms or styles for building software programs. 

They include sequential, which builds the programs as a set of sequential lines that 

the program follows from the beginning until the end; functional, which organizes the 

code into a set of functions that can be called multiple times; imperative, which tells 

the computer about every detailed step about how the program works; and more. One 

programming language might support different paradigms. But these paradigms have 

the disadvantage of being dependent on the language being written in.
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Another paradigm is dataflow. Dataflow languages represent their programs as text 

instructions that describe computational steps from receiving the data until returning 

the results. A dataflow program could be visualized as a graph that shows the operations 

in addition to their inputs and outputs. Dataflow languages support parallel processing 

because it is much easier to deduce the independent operations that could be executed 

at the same time.

The name “TensorFlow” consists of two words. The first is “tensor,” which is the data 

unit that TF uses in its computations. The second word is “flow,” reflecting that it uses 

the dataflow paradigm. As a result, TF builds a computational graph that consists of 

data represented as tensors and the operations applied to them. To make things easier 

to understand, just remember that rather than using variables and methods, TF uses 

tensors and operations.

Here are some advantages of using dataflow with TF:

• Parallelism: It is easier to identify the operations that can be 

executed in parallel.

• Distributed Execution: The TF program can be partitioned across 

multiple devices (CPUs, GPUs, and TF Processing Units [TPUs]). 

TF itself handles the necessary work for communication and 

cooperation between the devices.

• Portability: The dataflow graph is a language-independent 

representation of the code of the model. The dataflow graph can be 

created using Python, get saved, and then be restored in the C++ 

program.

TF provides multiple APIs; each supports a different level of control. The lowest-level 

API is called TF Core, which gives the programmer the ability to control every piece of 

code and have much better control over the created models.

But there are also a number of higher-level APIs in TF that make things easier by just 

providing a simple interface for frequently used tasks, such as Estimators, TF-Layers, and 

TF-Learn. All higher-level APIs are built on top of TF Core. For example, TF Estimators is 

a high-level API in TF that creates models much easier than TF Core.
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 Tensor
Tensor is the basic data unit in TF; it is similar to arrays in NumPy. Tensor consists of a 

set of primitive data types, such as integer, floating point, character, and string, which are 

shaped into an array.

A tensor has both rank and shape. Table 6-1 gives some tensor examples showing 

their ranks and shapes.

Table 6-1. Ranks and Shapes of TF Tensors

Tensor Rank Shape

5 0 ()

[4, 8] 1 (2)

[[3, 1, 7], [1, 5, 2]] 2 (2,2)

[[[8, 3]], [[11, 9]]]] 2 (2,1,2)

The rank of a tensor is the number of dimensions. The tensor shape is similar to 

NumPy array shape. The NumPy array shape returns the number of elements within 

each dimension, and this is how tensor shape works. But tensor rank returns just the 

number of dimensions, which is similar to the ndim property of a NumPy array. Tensor 

rank is just a scalar value representing the number of dimensions in the tensor, while the 

shape is a tuple such as (4, 3) representing an array with two dimensions, where the sizes 

of these dimensions are 4 and 3, respectively.

Let’s get started in TF Core.

 TF Core
In order to create TF Core programs, there are two steps:

 1. Building the computational graph.

 2. Running the computational graph.

TF uses a dataflow graph to represent the computations in the program. After 

specifying the sequence of computations, it gets executed within a TF session on local or 

remote machines. Assume that Figure 6-1 represents a graph that has four operations, A, 

B, C, and D, where the inputs are fed into operation A and then propagated to operation D.  
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It is possible for the graph to just execute a selected part of it, and it is not required to 

run the complete graph. For example, by specifying that the target of session execution 

is operation C, then the program will run until reaching the operation C result only. That 

way will not execute operation D. Also, if operation B is the target, then operations C and 

D will not get executed.

Figure 6-1. A graph with four operations

Working with TF Core API requires understanding of how dataflow graphs and 

sessions work. Working with high-level APIs such as Estimators hides some of the 

overhead from the user. But understanding how graphs and sessions work is useful for 

understanding in turn how such high-level APIs are implemented.

 Dataflow Graph
A dataflow graph consists of nodes and edges. Nodes represent units of operation. Edges 

represent inputs to and outputs from an operation node. For example, the method 

tensorflow.matmul() accepts two input tensors, multiples them, and returns an output 

tensor. The operation itself is represented with a single node connected to two edges, 

one for each input tensor. There is also an edge that represents the output tensor. Later, 

we will see how to build the computational graph using TB.

A special kind of node is the constant, which accepts zero tensors as input. The 

output that the constant node returns is a value stored internally. Listing 6-1 creates a 

single constant node of type float32 and prints it.

Listing 6-1. Constant Node

import tensorflow

tensor1 = tensorflow.constant(3.7, dtype=tensorflow.float32)

print(tensor1)
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When printing the constant node, the result is

Tensor("Const:0", shape=(), dtype=float32)

Based on the output of the print statement, there are three things to note:

• The shape is (), which means that the tensor is of rank 0.

• The output tensor has a string equal to “Const:0”. This string is the 

name of the tensor. The tensor name is an important property because 

it is used to retrieve the tensor value from the graph. It is also the 

label printed in the TF graph. The default name for constant tensors 

is “Const”. The 0 appended to this string defines it as the first output 

returned. There are some operations that return more than one 

output. The first output is given 0, the second one is given 1, and so on.

• The print statement does not print the value 3.7 but prints the node 

itself. The value will get printed only after evaluating the nodes.

 Tensor Names

There might be multiple constant tensors within the graph. For this reason, TF appends 

the string “Const” with a number that identifies the constant among all constants in the 

graph. Listing 6-2 gives an example of three constants and prints them.

Listing 6-2. Creating Three Constants

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32)

tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32)

print(tensor1)

print(tensor2)

print(tensor3)

Here is the result of the three print statements:

Tensor("Const:0", shape=(), dtype=float32)

Tensor("Const_1:0", shape=(2, 1), dtype=float32)

Tensor("Const_2:0", shape=(1, 2), dtype=float32)
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The first tensor name is “Const:0”. To differentiate it from other tensors, the string 

“Const” is appended by an underscore and a number. For example, the second tensor 

name is “Const_1:0”. The number “1” is the identifier to that constant in the graph. But 

we can change the name of a tensor by using the name attribute as in Listing 6-3.

Listing 6-3. Setting Names of the Tensors Using the Name Attribute

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32, 

name"firstConstant")

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32, 

name"secondConstant")

tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32, 

name"thirdConstant")

print(tensor1)

print(tensor2)

print(tensor3)

The results of the three print statements are as follows:

Tensor("firstConstant:0", shape=(), dtype=float32)

Tensor("secondConstant:0", shape=(2, 1), dtype=float32)

Tensor("thirdConstant:0", shape=(1, 2), dtype=float32)

Because each tensor is given a unique name, there are no appended numbers to 

the string. If the same value of the name attribute is used for more than one tensor, 

the number will be used as in Listing 6-4. The first two tensors are given the value 

myConstant and thus the second tensor is appended by a number “1”.

Listing 6-4. Two Tensors with the Same Value for the Name Attribute

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32, 

name”myConstant”)

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32, 

name”myConstant”)
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tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32, 

name"thirdConstant")

print(tensor1)

print(tensor2)

print(tensor3)

The results of Listing 6-4 are as follows:

Tensor("myConstant:0", shape=(), dtype=float32)

Tensor("myConstant_1:0", shape=(2, 1), dtype=float32)

Tensor("thirdConstant:0", shape=(1, 2), dtype=float32)

In Listing 6-5, the operation tensorflow.nn.top_k is used to return the largest K 

values for a vector. In other words, this operation returns multiple values as outputs. 

Based on the output string, the two outputs are given the string “TopKV2” but with a 

different number after the colon. The first output is given number “0” and the second 

output is given “1”.

Listing 6-5. Operation Returning Multiple Outputs

import tensorflow

aa = tensorflow.nn.top_k([1, 2, 3, 4], 2)

print(aa)

The print output is

TopKV2(values=<tf.Tensor 'TopKV2:0' shape=(2,) dtype=int32>, indices=<tf.

Tensor 'TopKV2:1' shape=(2,) dtype=int32>)

Up to this point, we have been able to print the tensor but not evaluate its result. Let’s 

create a TF session for evaluating the operations.

 Creating a TF Session

TF uses the tensorflow.Session class to represent a connection between the client 

program (typically a Python program) and the runtime environment. A  tensorflow.

Session object provides access to devices in the local machine and to remote devices 

using the distributed TF runtime environment. It also caches information about the 

tensorflow.Graph so that we can efficiently rerun the same graph. Listing 6-6 creates 

Chapter 6  tensorFlow reCognition appliCation



236

a TF session for evaluating the results of a single constant tensor. The tensor to be 

evaluated is assigned to the fetches attribute.

The session is created and returned into a variable named sess. After running the 

session using the tensorflow.Session.run() method to evaluate the tensor tensor1, 

the result will be 3.7, which is the constant value. This method runs the tensorflow.

Operation and evaluates the tensorflow.Tensor. This method could accept more than 

one tensor for evaluation by typing them in a list and assigning this list to the fetches 

attribute.

Listing 6-6. Evaluating a Single Constant Tensor

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

sess = tensorflow.Session()

print(sess.run(fetches=tensor1))

sess.close()

As the tensorflow.Session owns physical resources such as CPUs, GPUs, and 

network connections, it must free these resources after finishing execution. According 

to Listing 6-6, we have to manually exit the session using the tensorflow.Session.

close() to free resources. There is also another way to create a session, in which it gets 

closed automatically. This is by creating it using the with block as in Listing 6-7. When 

the session is created within the with block, it will get closed automatically after getting 

outside the block.

Listing 6-7. Creating a Session Using the With Block

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

with tensorflow.Session() as sess:

    print(sess.run(fetches=tensor1))

We can also specify more than one tensor in the tensorflow.Session.run() method 

to get their outputs, as in Listing 6-8.
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Listing 6-8. Evaluating More Than One Tensor

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32)

tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32)

with tensorflow.Session() as sess:

    print(sess.run(fetches=[tensor1, tensor2, tensor3]))

Here are the outputs of the three evaluated tensors.

3.7

array([[ 0.5], [7.]], dtype=float32)

array([[ 12.,   9.]], dtype=float32)

The previous examples just print the evaluated results for tensors. It is possible to 

store such values and reuse them in the program. Listing 6-9 returns the evaluation 

results in the results tensor.

Listing 6-9. Evaluating More Than One Tensor

import tensorflow

node1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

node2 = tensorflow.constant(value=7.7, dtype=tensorflow.float32)

node3 = tensorflow.constant(value=9.1, dtype=tensorflow.float32)

with tensorflow.Session() as sess:

    results = sess.run(fetches=[node1, node2, node3])

vIDX = 0

for value in results:

    print("Value ", vIDX, " : ", value)

    vIDX = vIDX + 1
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Because there are three tensors to be evaluated, all three outputs will be stored into 

the results tensor, which is a list. Using for loop, we can iterate and print each output 

separately. The outputs are as follows:

Value  0  :  3.7

Value  1  :  7.7

Value  2  :  9.1

The previous examples just evaluated the value of constant tensors without applying 

any operation. We can apply some operations over such tensors. Listing 6-10 creates two 

tensors and adds them together using the tensorflow.add operation. This operation 

accepts two tensors and adds them together. Both tensors must have the same data type 

(i.e., dtype attribute). It returns a new tensor of the same type as the input tensors. Using 

the + operator is identical to using the tensorflow.add() method.

Listing 6-10. Adding Two Tensors Using the tensorflow.add Operation

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

tensor2 = tensorflow.constant(value=7.7, dtype=tensorflow.float32)

add_op = tensorflow.add(tensor1, tensor2)

with tensorflow.Session() as sess:

    add_result = sess.run(fetches=[add_op])

print("Result of addition : ", add_result)

The output of the print statement is

Result of addition :  [11.4]

In Figure 6-2, the graph of the program in Listing 6-10 is visualized using TB. Note 

that all nodes and edges are given labels. These labels are the name of each tensor 

and operation. The default values are used. Later in this chapter, we will learn how to 

visualize graphs in TB.
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The name of the operation is descriptive and reflects its job, but the names of the 

tensors are not. We can change them to num1 and num2 and visualize the graph as in 

Figure 6-3.

Figure 6-2. Visualization of the graph using TB

Figure 6-3. Changing the name of the tensors

 Parameterized Graph Using Placeholder

The previous graph is static because it uses constant tensors. It always accepts the same 

inputs and generates the same output each time it gets evaluated. To be able to modify 

the inputs each time the program runs, we can use tensorflow.placeholder. In other 

words, for evaluating the same operation but using different inputs, you should use 

tensorflow.placeholder. Note that placeholder can get its value changed only by 

rerunning the graph.

The tensorflow.placeholderaccepts three arguments as follows:

• dtype: Data type of elements the tensor will accept.

• shape (Optional – default None): Shape of the array within the tensor. 

If not specified, then you can feed the tensor with any shape.

• name (Optional – default None): Name for the operation.

It returns a tensor with these specifications.

We can modify the previous example in Listing 6-10 to use tensorflow.placeholder 

as in Listing 6-11. When running the session previously, the tensorflow.Session.run() 

accepts only the operations to be evaluated. When using placeholders, this method 

will also accept the initial values of the placeholders in the feed_dict argument. The 

feed_dict argument accepts the values as a dictionary that maps the name of each 

placeholder to its value.
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Listing 6-11. Parameterized Graph Using a Placeholder

import tensorflow

tensor1 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(), 

name="num1")

tensor2 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(), 

name="num2")

add_op = tensorflow.add(tensor1, tensor2, name="Add_Op")

with tensorflow.Session() as sess:

     add_result = sess.run(fetches=[add_op], feed_dict={tensor1: 3.7, 

tensor2: 7.7})

print("Result of addition : ", add_result)

Assigning the placeholders the same values used by the constants in Listing 6-10, the 

same result will be returned. The benefit of using placeholders is that their values can be 

changed even within the program, but constants cannot be changed once created.

After using a third placeholder and a multiply operation, Listing 6-12 runs the 

session multiple times with different values for placeholders. It uses a for loop iterating 

through a list of five numbers returned by the range() native Python function. Values of 

all tensors are set equal to the list values, one value at each iteration. Values of the first 

two tensors are added using the tensorflow.add operation. The result of the addition 

is returned into the add_op tensor. Its value is then multiplied by the third tensor using 

the tensorflow.multiply operation. The multiplication result is returned in the mul_op 

tensor. Using the * operator is identical to using the tensorflow.add() method. The 

fetches argument in Listing 6-11 is a set of add_op compared to mul_op in Listing 6-12.

Listing 6-12. Running the Session for Different Values for the Placeholders

import tensorflow

tensor1 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(), 

name="num1")

tensor2 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(), 

name="num2")

tensor3 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(), 

name="num3")
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add_op = tensorflow.add(tensor1, tensor2, name="Add_Op")

mul_op = tensorflow.multiply(add_op, tensor3, name="Add_Op")

with tensorflow.Session() as sess:

    for num in range(5):

result = sess.run(fetches=[mul_op], feed_dict={tensor1: num, tensor2: num, 

tensor3: num})

        print("Result at iteration ", num, " : ", result)

The output of the print statement is as follows:

Result at iteration  0  :  [0.0]

Result at iteration  1  :  [2.0]

Result at iteration  2  :  [8.0]

Result at iteration  3  :  [18.0]

Result at iteration  4  :  [32.0]

A visualization of the previous graph is given in Figure 6-4. Note that all operations 

and tensors are renamed. The first two tensors num1 and num2 are connected with the 

first operation Add_Op. The result of this operation is used as input, with the third tensor 

num3 as input to the second operation Mul_Op.

Figure 6-4. Visualization of the graph in Listing 6-12 using TB
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The mul_op tensor is selected to be a member of the fetches list in Listing 6-12. 

Why not just select just add_op? The answer is that the last tensor in the graph chain is 

selected for evaluation. Evaluating mul_op will implicitly evaluate all other tensors in the 

graph. If “add_op” is selected for evaluation, then mul_op will not be evaluated because 

add_op doesn’t depend on mul_op, and we have nothing to do for evaluating it. But 

mul_op is what depends on add_mul and all other tensors. Thus, mul_op is selected for 

evaluation. Remember that it is possible to use more than one tensor for evaluation.

 TF Variables

Placeholders are used to allocate memory for future use. Their main use is for feeding 

input data for a model to get trained with. If the same operation is to be applied for 

different input data, then place the input data into a placeholder and run the session by 

assigning different values to the placeholder.

Placeholders are not initialized and their value is assigned only during runtime; 

in other words, only after calling the tensorflow.Session.run() are the placeholders 

assigned values. A placeholder allows the creation of an unconstrained shape tensor, 

which makes it suitable for use to hold the training data.

Suppose that you want to assign the training data to the placeholder and you just 

know that each sample gets described by 35 features. We have not decided yet how many 

samples to use for training. We can create a placeholder that accepts a tensor with an 

unspecified number of samples but a specific number of features (columns) per sample 

as follows:

data_tensor = tensorflow.placeholder(dtype=tensorflow.float16,  

shape=[None, 35])

The placeholder just accepts the value and cannot get changed after being assigned. 

Remember that in Listing 6-12 we changed the value of the placeholders only by 

rebuilding the graph with the new values. In the same graph, it is not possible to change 

the placeholder value.

ML models have a number of trainable parameters that are changed multiple times 

until reaching their best values. How do we allow a tensor to change its values multiple 

times? This is not provided by constants and placeholders, but by variables (tensorflow.

Variable()).

TF variables are identical to the normal variables used in other languages. They 

are assigned initial values, and such a value can be updated during the execution of 
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the program based on the operations applied to it. A placeholder doesn’t allow data 

modifications once assigned during execution time.

Constant tensors have their values initialized once the tensorflow.constant() is called, 

but variables won’t be initialized after calling tensorflow.Variable(). There is an easy way 

to initialize all global variables within the program by running the tensorflow.global_

variables_initializer() operation within the session. Note that initializing the variable 

does not mean it is evaluated. The variable needs to be evaluated after being initialized. 

Listing 6-13 gives an example of creating a single variable named “Var1” where its value 

is initialized, then the variable is evaluated, and finally, its value is printed.

Listing 6-13. Creating, Initializing, and Evaluating the Variable

import tensorflow

var1 = tensorflow.Variable(initial_value=5.8, dtype=tensorflow.float32, 

name="Var1")

with tensorflow.Session() as sess:

    init = tensorflow.global_variables_initializer()

    sess.run(fetches=init)

    var_value = sess.run(fetches=var1)

    print("Variable value : ", var_value)

The print statement will return:

Variable value :5.8

Note that there are two runs to the session: the first for initializing all variables and 

the second for evaluating the variable. Remember that placeholder is a function but 

variable is a class, and thus its name starts with uppercase.

Variables can be initialized by a tensor of any type and shape. The type and shape of 

this tensor will define the type and shape of the variable, which cannot be changed. The 

variable value can be changed. Working with a distributed environment, variables can be 

stored once and get shared across all devices. They have a state that helps in debugging. 

Moreover, the variable value can be saved and restored when required.
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 Variable Initialization

There are different ways to initialize a variable. All variable initialization methods have 

can set both the shape and data type of the variable. One way is by using the initial value 

of a previously initialized variable. For example, the variable named “Var1” in Listing 6-13  

is initialized by a rank 0 tensor of value 5.8. This initialized variable can be used to 

initialize other variables. Note that the initial value of a variable can be returned using 

the initialized_value() method of the tensorflow.Variable class. The initial value can 

be assigned to another variable as in the following. The variable “var3” is initialized by 

multiplying the initial value of “var1” by 5.

var2 = tensorflow.Variable(initial_value=var1.initialized_value(), 

dtype=tensorflow.float32)

var3 = tensorflow.Variable(initial_value=var1.initialized_value()*5, 

dtype=tensorflow.float32)

A variable can be initialized based on another tensor created by one of the build- 

in operations in TF. There are different operations to generate tensors, including the 

following:

• tensorflow.lin_space(start, stop, num, name=None)

• tensorflow.range(start, limit=None, delta=1, dtype=None, 

name='range')

• tensorflow.zeros(shape, dtype=tf.float32, name=None)

• tensorflow.ones(shape, dtype=tf.float32, name=None)

• tensorflow.constant(value, dtype=None, shape=None, name='Const', 

verify_shape=False)

They have the same meaning as their corresponding methods in NumPy. All of 

these operations return the tensor of the specified data type and shape. For example, we 

can create a tensorflow.Variable() whose values are initialized using tensorflow.zeros(), 

which returns a 1D row vector with 12 elements as follows:

var1 = tensorflow.Variable(tensorflow.zeros([12]))
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 Graph Visualization Using TB
TF is designed to work with deep models trained with large amounts of data. TF supports 

a suite of visualization tools called TB to help to optimize and to debug TF programs 

easier. The computational dataflow graph is visualized as a set of nodes representing the 

operations, which are connected together with edges representing the input and output 

tensors.

Here are the summarized steps for visualizing a simple graph using TB:

 1. Build the dataflow graph.

 2. Write the graph in a directory using tensorflow.summary.

FileWriter.

 3. Launch TB within the directory of the saved graph.

 4. Access TB from a web browser.

 5. Visualize the graph.

Let’s use the code in Listing 6-14 for visualization. This code creates six variables that 

are fed into nine operations. After writing the instructions for building the graph, next is 

to save it using FileWriter. The tensorflow.summary.FileWriter() constructor accepts two 

important arguments: “graph” and “logdir”. The “graph” argument accepts the session 

graph, which is returned by “sess.graph” assuming that the session variable is named 

“sess”. The graph is exported into the directory specified using the “logdir” argument. 

Change the “logdir” to match your system. Note that we do not have to initialize the 

variables nor run the session because our target is not to execute the graph but just to 

visualize it.

Listing 6-14. Saving Dataflow Graph for Visualization Using TB

import tensorflow

tensor1 = tensorflow.Variable(initial_value=4, dtype=tensorflow.float32, 

name="Var1")

tensor2 = tensorflow.Variable(initial_value=15, dtype=tensorflow.float32, 

name="Var2")

tensor3 = tensorflow.Variable(initial_value=-2, dtype=tensorflow.float32, 

name="Var3")
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tensor4 = tensorflow.Variable(initial_value=1.8, dtype=tensorflow.float32, 

name="Var4")

tensor5 = tensorflow.Variable(initial_value=14, dtype=tensorflow.float32, 

name="Var5")

tensor6 = tensorflow.Variable(initial_value=8, dtype=tensorflow.float32, 

name="Var6")

op1 = tensorflow.add(x=tensor1, y=tensor2, name="Add_Op1")

op2 = tensorflow.subtract(x=op1, y=tensor1, name="Subt_Op1")

op3 = tensorflow.divide(x=op2, y=tensor3, name="Divide_Op1")

op4 = tensorflow.multiply(x=op3, y=tensor4, name="Mul_Op1")

op5 = tensorflow.multiply(x=op4, y=op1, name="Mul_Op2")

op6 = tensorflow.add(x=op5, y=2, name="Add_Op2")

op7 = tensorflow.subtract(x=op6, y=op2, name="Subt_Op2")

op8 = tensorflow.multiply(x=op7, y=tensor6, name="Mul_Op3")

op9 = tensorflow.multiply(x=op8, y=tensor5, name="Mul_Op4")

with tensorflow.Session() as sess:

    writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

    writer.close()

After exporting the graph, the next step is to launch TB to access the graph. 

Launching TB differs a bit based on whether TF is installed in a separate virtual 

environment (venv) or as a regular library within the site-packages directory.

If it is installed into a venv, then TF must be activated using the activate.bat file 

located under the Scripts directory of the Python installation. Assuming that the Scripts 

directory is added to either the user or system PATH variable environment and the 

venv folder is named “tensorflow”, then TF will be activated according to the following 

command:

activate tensorflow

After activating TF, next is to launch TB into the directory at which the graph is saved 

according to this command:

tensorBoard --logdir=\\AhmedGad\\TensorBoard\\
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In case the TF is installed within the site-packages directory, then it can be activated 

by issuing this command:

python -m tensorboard.main --logdir="\\AhmedGad\\TensorBoard\\"

This will activate TB, and we will then be ready to visualize the graph by navigating to 

“http://localhost:6006” from a web browser. The graph is shown in Figure 6-5. It is easier 

to debug the graph in this case. For example, an isolated node that is not connected to 

any other node of the graph is easily detected in the graph than the code.

Figure 6-5. Visualization of a dataflow graph using TB

Chapter 6  tensorFlow reCognition appliCation



248

 Linear Model
A linear model has the general form in Equation 6-1. There are n input variables xn, and 

each variable is assigned a weight wn for a total of n weights. A bias b is added to the SOP 

of each input and its corresponding bias.

 y = w1x1+w2x2+…+wnxn+b (Equation 6-1)

For a simple linear model, there are input data, weights, and biases. Which is 

the most suitable option between placeholders and variables to hold each of these? 

Generally, the placeholder is used when applying the same operation multiple times 

over different inputs. The inputs will be assigned for the placeholder one by one and 

the operation will get applied to each one. Variables are used for storing trainable 

parameters. As a result, the input data is to be assigned to a placeholder, but weights and 

biases are stored in variables. Remember to use tensorflow.global_variables_initializer() 

for initializing the variables.

The code that prepares the placeholder and the two variables is given in Listing 6-15. 

The input samples have just one input x1 and one output y. The placeholder “data_input_

placeholder” represents the input, and the placeholder “data_output_placeholder” 

represents the output.

Because there is only one input variable per sample, there will be a single weight w1. 

The weight is represented as the “weight_variable” variable and assigned an initial value 

of 0.2. The bias, represented as the “bias_variable” variable, is assigned an initial value 

of 0.1. Note that the placeholder is assigned a value inside the tensorflow.Session.run() 

method using the “feed_dict” argument. The input placeholder is assigned 2.0 and the 

output placeholder is assigned 5.0. The visualization of the graph is in Figure 6-6.

Note that the “fetches” argument of the run() method is set to a list of three elements: 

“loss”, “error”, and “output”. The “loss” tensor representing the loss function is fetched 

because it is the target tensor in the graph. All other tensors will be evaluated once it is 

evaluated. The “error” and “output” tensors are fetched just to print the prediction error 

in addition to the predicted output as in the print statement at the end of the code.

Note the difference between the tensors “error” and “loss”. The “error” tensor 

calculates the square error between the predicted and desired outputs for each sample. 

To just summarize all errors in a single value, the tensor “loss” is used. It calculates the 

summation of all square errors.
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Listing 6-15. Preparing Inputs, Weight, and Bias for a Linear Model

import tensorflow

data_input_placeholder = tensorflow.placeholder(dtype=tensorflow.float32, 

name="DataInput")

data_output_placeholder = tensorflow.placeholder(dtype=tensorflow.float32, 

name="DataOutput")

weight_variable = tensorflow.Variable(initial_value=0.1, dtype=tensorflow.

float32, name="Weight")

bias_variable = tensorflow.Variable(initial_value=0.2, dtype=tensorflow.

float32, name="Bias")

output = tensorflow.multiply(x=data_input_placeholder, y=weight_variable)

output = tensorflow.add(x=output, y=bias_variable)

diff = tensorflow.subtract(x=output, y=data_output_placeholder, 

name="Diff")

error = tensorflow.square(x=diff, name="PredictError")

loss = tensorflow.reduce_sum(input_tensor=error, name="Loss")

with tensorflow.Session() as sess:

     writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

    init = tensorflow.global_variables_initializer()

     sess.run(fetches=init)

loss, predict_error, predicted_output = sess.run(fetches=[loss, error, 

output], feed_dict={data_input_placeholder: 2.0,data_output_placeholder: 

5.0})

     print("Loss : ", loss, "\nPredicted output : ", predicted_output,"\

nPrediction error : ", predict_error)

    writer.close()

Based on the values assigned to the placeholders and the variables, the output of the 

print message is as follows:

Loss :  21.16

Predicted output :  0.4

Prediction error :  21.16
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The predicted output is 0.4 and the desired output is 5.0. There is an error equal to 

21.16. There is only one value returned in the fetched tensors because the program is 

working with just one sample. Also, the loss value is equal to the error value because 

there is just one sample. We can run the program for multiple samples.

Figure 6-6. Visualization of a dataflow graph of a linear model with one input

Rather than assigning just a single value to the placeholder “data_input_placeholder”, 

we can assign multiple values enclosed in a list. This also applies to the “data_output_

placeholder” placeholder. Note that they must have identical shapes. The modified 

program after using two samples is in Listing 6-16. The print message is as follows:

Loss :  51.41

Predicted output :  [ 0.4  0.5]

Prediction error :  [21.16  30.25]

Chapter 6  tensorFlow reCognition appliCation



251

This means the prediction errors are 21.16 and 30.25 for the first and second 

samples, respectively. The sum of all square errors is 51.41. Because there is a high value 

for the loss function, we have to update the parameters (weights and bias) in order to 

minimize the prediction error.

Listing 6-16. Running the TF Program for Multiple Samples

import tensorflow

data_input_placeholder = tensorflow.placeholder(dtype=tensorflow.float32, 

name="DataInput")

data_output_placeholder = tensorflow.placeholder(dtype=tensorflow.float32, 

name="DataOutput")

weight_variable = tensorflow.Variable(initial_value=0.1, dtype=tensorflow.

float32, name="Weight")

bias_variable = tensorflow.Variable(initial_value=0.2, dtype=tensorflow.

float32, name="Bias")

output = tensorflow.multiply(x=data_input_placeholder, y=weight_variable)

output = tensorflow.add(x=output, y=bias_variable)

diff = tensorflow.subtract(x=output, y=data_output_placeholder, 

name="Diff")

error = tensorflow.square(x=diff, name="PredictError")

loss = tensorflow.reduce_sum(input_tensor=error, name="Loss")

with tensorflow.Session() as sess:

    init = tensorflow.global_variables_initializer()

    sess.run(fetches=init)

loss, predict_error, predicted_output = sess.run(fetches=[loss, error, 

output], feed_dict={data_input_placeholder: [2.0, 3.0],data_output_

placeholder: [5.0, 6.0]})

     print("Loss : ", loss, "\nPredicted output : ", predicted_output, 

"\nPrediction error : ", predict_error)

Currently, there is no way to update the parameters. A number of optimizers already 

exist in TF for doing that job.

Chapter 6  tensorFlow reCognition appliCation



252

 GD Optimizer from TF Train API

There are a number of optimizers that TF provides for optimizing model parameters 

automatically. GD is an example that changes the values of each parameter slowly until 

reaching the value that minimizes the loss. GD modifies each variable according to the 

magnitude of the derivative of loss with respect to the variable. This is identical to what is 

discussed in Chapter 3 in the backward pass of training ANN. The “tensorflow.train” API 

has a class called “GradientDescentOptimizer” that can both calculate the derivatives 

and optimize the parameters. The program after using “GradientDescentOptimizer” is in 

Listing 6-17.

Listing 6-17. Using GD for Optimizing the Model Parameters

import tensorflow

data_input_placeholder = tensorflow.placeholder(dtype=tensorflow.float32, 

name="DataInput")

data_output_placeholder = tensorflow.placeholder(dtype=tensorflow.float32, 

name="DataOutput")

weight_variable = tensorflow.Variable(initial_value=0.1, dtype=tensorflow.

float32, name="Weight")

bias_variable = tensorflow.Variable(initial_value=0.2, dtype=tensorflow.

float32, name="Bias")

output = tensorflow.multiply(x=data_input_placeholder, y=weight_variable, 

name="Multiply")

output = tensorflow.add(x=output, y=bias_variable, name="Add")

diff = tensorflow.subtract(x=output, y=data_output_placeholder, 

name="Diff")

error = tensorflow.square(x=diff, name="PredictError")

loss = tensorflow.reduce_sum(input_tensor=error, name="Loss")

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.01, 

name="Optimizer")

minimizer = train_optim.minimize(loss=loss, name="Minimizer")

with tensorflow.Session() as sess:
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     writer = tensorflow.summary.FileWriter(graph=sess.graph, logdir= 

"\\AhmedGad\\TensorBoard\\")

    init = tensorflow.global_variables_initializer()

    sess.run(fetches=init)

    for k in range(1000):

         _, data_loss, predict_error, predicted_output = sess.

run(fetches=[minimizer,loss, error, output], feed_dict={data_input_

placeholder: [1.0, 2.0],data_output_placeholder: [5.0, 6.0]})

     print("Loss : ", data_loss,"\nPredicted output : ", predicted_output, 

"\nPrediction error : ", predict_error)

    writer.close()

The program uses a loop that iterates through 1,000 iterations. For each iteration, the 

current parameters are used for predicting the outputs, the loss is calculated, and the 

GD optimizer updates the parameters to minimize the loss. Note that the “minimize()” 

operation returns an operation that minimizes the loss.

After the end of the iterations, the print statement is executed. Here are its outputs:

Loss :  0.00323573

Predicted output :  [ 4.951612    6.02990532]

Prediction error :  [ 0.0023414   0.00089433]

Thanks to GD, the loss is reduced from 51.41 to just 0.0032. The graph of the previous 

program in Listing 6-17 is available in Figure 6-7.
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 Locating Parameters to Optimize

An important question now arises: How does the optimizer know the parameters to 

change their values? Let’s see how it knows that.

After running the session, the “minimizer” operation will be executed. TF will follow 

the chain of graph nodes to evaluate such an operation. TF found that the “minimizer” 

operation depends on a single argument, which is the “loss” tensor. Thus, our goal is 

Figure 6-7. Dataflow graph of a linear model optimized using GD
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to minimize the value of such a tensor. How can we minimize that tensor? We have to 

follow the graph back.

The “loss” tensor is evaluated using the “tensorflow.reduce_sum()” operation. As a 

result, our goal is to minimize the result of the “tensorflow.reduce_sum()” operation.

Stepping back, this operation is evaluated using the “error” tensor. As a result, 

our goal now is to minimize the “error” tensor. Stepping back again, we find that the 

“error” tensor depends on the “tensorflow.square()” operation. As a result, we have to 

minimize “tensorflow.square()” the operation. The input tensor to this operation is the 

“diff” tensor. Thus, our goal is to minimize the “diff” tensor. Because the “diff” tensor 

is the result of the “tensorflow.subtract()” operation, then our goal is to minimize this 

operation.

Minimizing the “tensorflow.subtract()” asks us to minimize its input tensors, which 

are “output” and “data_output_placeholder”. Looking at these two tensors, which one 

can be modified? Only the variable tensors can be modified. Because “data_output_

placeholder” is not a variable but a placeholder, we can’t modify it. Thus, we have only 

the “output” tensor to minimize in order to minimize the result.

The “output” tensor is calculated according to Equation 6-1. It has three inputs: 

input, weight, and bias, which are represented by the tensors “data_input_placeholder”, 

“weight_variable”, and “bias_variable”, respectively. Looking for these three tensors, 

only “weight_variable” and “bias_variable” can be changed because they are variables. 

Thus, finally we know that our goal is to minimize “weight_variable” and “bias_variable” 

tensors.

In order to minimize the “tensorflow.train.GradientDescentOptimizer.minimize()” 

operation, we have to change the values of the “weight_variable” and “bias_variable” 

tensors. This is how TF deduced that to minimize the loss it should minimize the weight 

and bias parameters.

 Building FFNN
In this section, two basic feed-forward ANNs (FFNNs) will be created for classification 

using TF Core API. We will follow the same steps used previously to build an ANN using 

NumPy but with changes.
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The summarized steps are as follows:

 1. Reading the training data (inputs and outputs).

 2. Building the neural network layers and preparing their parameters 

(weights, biases, and activation functions).

 3. Building a loss function to assess the prediction error.

 4. Create a training loop for training the network and updating its 

parameters.

 5. Assessing the accuracy of the trained ANN using new unseen test 

data.

We will start by building a single-layer FFANN.

 Linear Classification
Table 6-2 gives the data of the first classification problem. It is a binary classification 

problem to classify the RGB colors into either red or blue based on the color channels 

red, green, and blue.

Table 6-2. RGB Color Classification Problem

Class Red Green Blue

Red 255 0 0

248 80 68

Blue 0 9 255

67 15 210

According to Listing 6-18, two placeholders (“training_inputs” and “training_

outputs”) are created for holding the training data inputs and outputs. Their data type is 

set to “float32” but they do not have a specific shape. The shape of the “training_inputs” 

placeholder is N×3. What does that mean?

Regularly, placeholders are used to hold the training data of the model. The size of 

the training data is not always fixed. There might be a change in the number of samples, 

the number of features, or both. For example, we might train a model with 100 samples, 
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where each sample is represented by 15 features. The shape of the placeholder, in this 

case, is 100×15. Assume that we later decided to change the number of training samples 

to be 50. The shape of the placeholder must get changed to be 50×15.

Listing 6-18. Placeholders for the Training Data Inputs and Outputs

import tensorflow

training_inputs = tensorflow.placeholder(shape=[None, 3], dtype=tensorflow.

float32)

training_outputs = tensorflow.placeholder(shape=[None, 1], 

dtype=tensorflow.float32)

To make life easier, TF supports creating placeholders of variable shape. The 

placeholder shape is determined based on the data assigned to it. The shape might be 

variable across all dimensions or for just some dimensions. If we decided to use 30 features 

but had not decided on the number of training samples, then the shape is N×15, where N 

is the number of samples. Feeding 20 samples to the placeholder, N will be set to 20. This 

is the case for the two placeholders in Listing 6-18. To leave the placeholder generic for 

holding any number of training samples, its shape is set to (None, 3). None means that this 

dimension (representing the number of samples) does not have a static size.

After preparing the inputs and the outputs, the next step is to decide the network 

architecture for preparing their parameters (weights and bias). Because the data is 

simple, we could plot it. Listing 6-19 gives the code used to plot the data. Note that the 

data has three dimensions, and thus the plot is 3D as in Figure 6-8.

Listing 6-19. 3D Scatter Plot of the Training Data

import matplotlib.pyplot

import mpl_toolkits.mplot3d

figure3D = matplotlib.pyplot.figure()

axis3D = mpl_toolkits.mplot3d.Axes3D(figure3D)

red = [255, 248, 0, 67]

green = [0, 80, 9, 15]

blue = [0, 68, 255, 210]

axis3D.scatter(red, green, blue, color="black")

axis3D.set_xlabel(xlabel="Red")
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axis3D.set_ylabel(ylabel="Green")

axis3D.set_zlabel(zlabel="Blue")

matplotlib.pyplot.show()

Figure 6-8. 3D scatter plot of the training data

Based on Figure 6-8, it is obvious that the two classes can be separated linearly. The 

two samples of the class red are located on the right of the plot, and the blue samples are 

on the left. Knowing it is a linear problem guides us to not use any hidden layer. Thus, 

the network architecture will just have input and output layers. Because each sample is 

represented using three features, then the input layer will have just three inputs, one for 

each feature. The network architecture is in Figure 6-9, where X0 = 1.0 is the bias input 

and W0 is the bias. W1, W2, and W3 are the weights for the three inputs R (Red), G (Green), 

and B (Blue).
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Listing 6-20 prepares the variables holding these parameters. Because there are 

three inputs and each input has a weight, the shape of the weights is 3×1 according to the 

“weights” variable. The shape is 3×1 to make matrix multiplication between the inputs 

and the weights valid. The input data of shape N×3 could be multiplied by the weights 

of shape 3×1, and the result will be N×1. There is just one bias according to the “bias” 

variable.

Listing 6-20. Preparing ANN Parameter Variables

import tensorflow

weights = tensorflow.Variable(initial_value=[[0.003], [0.001], [0.008]], 

dtype=tensorflow.float32)

bias = tensorflow.Variable(initial_value=[0.001], dtype=tensorflow.float32)

After preparing the data, network architecture, and the parameters, next is to feed 

the training input data into the network, predict their outputs, and calculate the loss 

according to Listing 6-21. The input data matrix is multiplied by the weights vector 

using the “matmul()” operation and the result is stored in the “sop” tensor. According 

to Equation 6-1, the result of the multiplication is added to the bias. The result of the 

addition is stored in the “sop_bias” tensor. The result is then applied to the sigmoid 

function defined by the “tensorflow.nn.sigmoid()” operation and returned into the 

“predictions” tensor.

Figure 6-9. ANN architecture for classifying RGB colors linearly
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Listing 6-21. Using the Network Parameters to Predict the Outputs of the 

Training Data

import tensorflow

sop = tensorflow.matmul(a=training_inputs, b=weights, name="SOPs")

sop_bias = tensorflow.add(x=sop, y=bias)

predictions = tensorflow.nn.sigmoid(x=sop_bias, name="Sigmoid")

error = tensorflow.subtract(x=training_outputs, y=predictions, 

name="Error")

square_error = tensorflow.square(x=error, name="SquareError")

loss = tensorflow.reduce_sum(square_error, name="Loss")

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.05, 

name="GradientDescent")

minimizer = train_op.minimize(loss, name="Minimizer")

After predicting the outputs, next is to measure the loss. At first, the difference 

between the predicted and the correct outputs are calculated using the “subtract()” 

operation, and the result is stored in the “error” tensor. The square of that error is then 

calculated using the “square” tensor and the result is stored into the “square_error” 

tensor. Finally, the squared errors are reduced into a single value by summing them all. 

The result is stored into the “loss” tensor.

The loss is calculated to learn how we far we currently are from the optimal results 

where the loss is 0. Based on the loss, the GD optimizer is initialized in the “train_optim” 

tensor to update the network parameters in order to minimize the loss. The update 

operation is returned into the “minimizer” tensor.

Up to this point, the network architecture is complete and ready for training using 

the input and output data. Two Python lists are created in Listing 6-22 to hold the 

training data inputs and outputs. Note that the red class label is “1.0” and the blue one is 

“0.0”. The lists are assigned to the placeholders “training_inputs” and “training_outputs” 

using the “feed_dict” argument inside the “tensorflow.Session.run()” operation. Note 

that the target of execution is the “minimizer” operation. The session goes through a 

number of iterations to update the ANN parameters.
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Listing 6-22. Training Data Inputs and Outputs

training_inputs_data = [[255, 0, 0],

                        [248, 80, 68],

                        [0, 0, 255],

                        [67, 15, 210]]

training_outputs_data = [[1.0],

                         [1.0],

                         [0.0],

                         [0.0]]

with tensorflow.Session() as sess:

    init = tensorflow.global_variables_initializer()

    sess.run(init)

    for step in range(10):

         sess.run(fetches=minimizer, feed_dict={training_inputs: training_

inputs_data, training_outputs: training_outputs_data})

The complete code for building a single-layer ANN for classifying the two-class 

problem in Table 6-2 is in Listing 6-23.

Listing 6-23. The Complete Code for Classifying the Two-Class RGB Color 

Problem

import tensorflow

# Preparing a placeholder for the training data inputs of shape (N, 3)

training_inputs = tensorflow.placeholder(shape=[None, 3], dtype=tensorflow.

float32, name="Inputs")

# Preparing a placeholder for the training data outputs of shape (N, 1)

training_outputs = tensorflow.placeholder(shape=[None, 1], 

dtype=tensorflow.float32, name="Outputs")

# Initializing neural network weights of shape (3, 1)

weights = tensorflow.Variable(initial_value=[[0.003], [0.001], [0.008]], 

dtype=tensorflow.float32, name="Weights")
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# Initializing the ANN bias

bias = tensorflow.Variable(initial_value=[0.001], dtype=tensorflow.float32, 

name="Bias")

# Calculating the SOPs by multiplying the weights matrix by the data inputs 

matrix

sop = tensorflow.matmul(a=training_inputs, b=weights, name="SOPs")

# Adding the bias to the SOPs

sop_bias = tensorflow.add(x=sop, y=bias, name="AddBias")

# Sigmoid activation function of the output layer neuron

predictions = tensorflow.nn.sigmoid(x=sop_bias, name="Sigmoid")

# Calculating the difference (error) between the ANN predictions and the 

correct outputs

error = tensorflow.subtract(x=training_outputs, y=predictions, 

name="Error")

# Square error.

square_error = tensorflow.square(x=error, name="SquareError")

# Measuring the prediction error of the network after being trained

loss = tensorflow.reduce_sum(square_error, name="Loss")

# Minimizing the prediction error using gradient descent optimizer

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.05, 

name="GradientDescent")

minimizer = train_optim.minimize(loss, name="Minimizer")

# Training data inputs of shape (N, 3)

training_inputs_data = [[255, 0, 0],

                        [248, 80, 68],

                        [0, 0, 255],

                        [67, 15, 210]]

# Training data desired outputs

training_outputs_data = [[1.0],

                         [1.0],

                         [0.0],

                         [0.0]]
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# Creating a TensorFlow Session

with tensorflow.Session() as sess:

     writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

    # Initializing the TensorFlow Variables (weights and bias)

    init = tensorflow.global_variables_initializer()

    sess.run(init)

    # Training loop of the neural network

    for step in range(10):

         sess.run(fetches=minimizer, feed_dict={training_inputs: training_

inputs_data, training_outputs: training_outputs_data})

    # Class scores of training data

     print("Expected Outputs for Train Data:\n", sess.

run(fetches=[predictions, weights, bias], feed_dict={training_inputs: 

training_inputs_data}))

    # Class scores of new test data

     print("Expected Outputs for Test Data:\n", sess.

run(fetches=predictions, feed_dict={training_inputs: [[230, 60, 76], 

[93, 52, 180]]}))

    writer.close()

After all training iterations, the trained network is used to predict the output of 

both the training samples and the two other unseen test samples. The following is the 

output of the print statements at the end of Listing 6-23. The network is able to predict all 

training and test samples correctly.

Expected Outputs for Train Data:

 [[ 1.]

 [ 1.]

 [ 0.]

 [ 0.]]

Expected Outputs for Test Data:

 [[ 1.]

 [ 0.]]
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The weighs and bias after training the network are as follows:

Weights:[[1.90823114], [0.11530305], [-4.13670015]],

Bias: [-0.00771546].

Figure 6-10 visualizes the graph created in Listing 6-23.

Figure 6-10. Graph of ANN with a single layer
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 Nonlinear Classification
Now we are going to build an ANN that simulates the operation of an XOR gate with two 

inputs. The truth table for the problem is in Table 6-3. Because the problem is simple, 

we can plot it as in Figure 6-11 to know whether the classes are linearly or nonlinearly 

separable.

Figure 6-11. Graph of two-input XOR gate

Table 6-3. The Truth Table of Two-Input XOR Gate

Output A B

1 1 0

0 1

0 0 0

1 1

Based on the graph, it is obvious that the classes are nonlinearly separable. Thus, we 

have to use hidden layers. According to the first example in section Designing ANN of 

Chapter 3, we know that just a single hidden layer with two neurons is sufficient.
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The network architecture is in Figure 6-12. That hidden layer accepts the inputs from 

the input layer. Based on its weights and biases, its two activation functions will produce 

two outputs. The outputs of the hidden layer will be regarded as the inputs to the output 

layer. Using its activation function, the output layer produces the final expected class of 

the input sample.

Figure 6-12. Network architecture for XOR gate with two inputs

The complete code is in Listing 6-24. There are some changes compared to the 

previous example. The initial parameters are randomly generated using “tensorflow.

truncated_normal()” operation. The output tensor of the hidden layer “hidden_sigmoid” 

is used as input to the output layer. The output tensor of the output layer is the predicted 

outputs. The remaining code is similar to the previous example.

Listing 6-24. The Complete Code for ANN Simulating XOR Gate with Two Inputs

import tensorflow

# Preparing a placeholder for the training data inputs of shape (N, 3)

training_inputs = tensorflow.placeholder(shape=[4, 2], dtype=tensorflow.

float32, name="Inputs")

# Preparing a placeholder for the training data outputs of shape (N, 1)

training_outputs = tensorflow.placeholder(shape=[4, 1], dtype=tensorflow.

float32, name="Outputs")

# Initializing the weights of the hidden layer of shape (2, 2)

hidden_weights = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(2,2), name="HiddenRandomWeights"), dtype=tensorflow.float32, 

name="HiddenWeights")
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# Initializing the bias of the hidden layer of shape (1,2)

hidden_bias = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(1,2), name="HiddenRandomBias"), dtype=tensorflow.float32, 

name="HiddenBias")

# Calculating the SOPs by multiplying the weights matrix of the hidden 

layer by the data inputs matrix

hidden_sop = tensorflow.matmul(a=training_inputs, b=hidden_weights, 

name="HiddenSOPs")

# Adding the bias to the SOPs of the hidden layer

hidden_sop_bias = tensorflow.add(x=hidden_sop, y=hidden_bias, 

name="HiddenAddBias")

# Sigmoid activation function of the hidden layer outputs

hidden_sigmoid = tensorflow.nn.sigmoid(x=hidden_sop_bias, 

name="HiddenSigmoid")

# Initializing the weights of the output layer of shape (2, 1)

output_weights = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(2,1), name="OutputRandomWeights"), dtype=tensorflow.float32, 

name="OutputWeights")

# Initializing the bias of the output layer of shape (1,1)

output_bias = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(1,1), name="OutputRandomBias"), dtype=tensorflow.float32, 

name="OutputBias")

# Calculating the SOPs by multiplying the weights matrix of the hidden 

layer by the outputs of the hidden layer

output_sop = tensorflow.matmul(a=hidden_sigmoid, b=output_weights, 

name="Output_SOPs")

# Adding the bias to the SOPs of the hidden layer

output_sop_bias = tensorflow.add(x=output_sop, y=output_bias, 

name="OutputAddBias")

# Sigmoid activation function of the output layer outputs. These are the 

predictions.
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predictions = tensorflow.nn.sigmoid(x=output_sop_bias, 

name="OutputSigmoid")

# Calculating the difference (error) between the ANN predictions and the 

correct outputs

error = tensorflow.subtract(x=training_outputs, y=predictions, 

name="Error")

# Square error.

square_error = tensorflow.square(x=error, name="SquareError")

# Measuring the prediction error of the network after being trained

loss = tensorflow.reduce_sum(square_error, name="Loss")

# Minimizing the prediction error using gradient descent optimizer

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.01, 

name="GradientDescent")

minimizer = train_optim.minimize(loss, name="Minimizer")

# Training data inputs of shape (4, 2)

training_inputs_data = [[1, 0],

                        [0, 1],

                        [0, 0],

                        [1, 1]]

# Training data desired outputs

training_outputs_data = [[1.0],

                         [1.0],

                         [0.0],

                         [0.0]]

# Creating a TensorFlow Session

with tensorflow.Session() as sess:

     writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

    # Initializing the TensorFlow Variables (weights and bias)

    init = tensorflow.global_variables_initializer()

    sess.run(init)
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    # Training loop of the neural network

    for step in range(100000):

         print(sess.run(fetches=minimizer, feed_dict={training_inputs: 

training_inputs_data, training_outputs: training_outputs_data}))

    # Class scores of training data

     print("Expected Outputs for Train Data:\n", sess.

run(fetches=[predictions, hidden_weights, output_weights, hidden_bias, 

output_bias], feed_dict={training_inputs: training_inputs_data}))

    writer.close()

After completing the training process, the samples are correctly classified. Here are 

the predicted outputs:

[[0.96982265],

 [0.96998841],

 [0.0275135],

 [0.0380362]]

The parameters of the network after training are as follows:

• Hidden layer weights: [–6.27943468, –4.30125761], [–6.38489389, 

–4.31706429]]

• Hidden layer bias: [[–8.8601017], [8.70441246]]

• Output layer weights: [[2.49879336, 6.37831974]]

• Output layer bias: [[–4.06760359]]

Figure 6-13 visualizes the graph of Listing 6-24.
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 CIFAR10 Recognition Using CNN
The previous examples we discussed help us learn the basics of TF and build good 

knowledge. This section extends this knowledge by using TF to build a CNN to recognize 

images from the CIFAR10 dataset.

Figure 6-13. Graph of ANN simulating XOR gate with two inputs
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 Preparing Training Data
The binary data of the CIFAR10 dataset is available for download for Python from this 

page: www.cs.toronto.edu/~kriz/cifar.html. The dataset has 60,000 images split 

into training and testing sets. There are five binary files containing the training data, 

where each file has 10,000 images. The images are RGB of size 32×32×3. The training 

files are named “data_batch_1”, “data_batch_2”, and so on. There is a single file for the 

test data named “test_batch” with 10,000 images. A metadata file named “batches.meta” 

is available, giving details about the dataset such as the class labels, which are airplane, 

automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Because each file in the dataset is binary, we have to decode it in order to retrieve 

the actual image data. To do this job, a function called “unpickle_patch” is created, as 

defined in Listing 6-25.

Listing 6-25. Decoding the CIFAR10 Binary Data

def unpickle_patch(file):

    patch_bin_file = open(file, 'rb')#Reading the binary file.

     patch_dict = pickle.load(patch_bin_file, encoding='bytes')#Loading the 

details of the binary file into a dictionary.

    return patch_dict#Returning the dictionary.

The method accepts the binary file path and returns the details about this file into 

the “patch_dict” dictionary. The dictionary has the image data for all 10,000 samples 

within the file in addition to their class labels.

There are five training data files. In order to decode the entire training data, a new 

function called “get_dataset_images” is created as in Listing 6-26. That function accepts 

the dataset path and decodes the data of just the five training files. Firstly, it lists all files 

under the dataset directory using the “os.listdir()” function. All file names are returned 

into the “files_names” list.

Because all train and test files are located within the same directory, this function 

filters the files under this path to just return the training files. The function uses an “if” 

statement to just return files starting with “data_batch_” as it is discriminative to the train 

file names. Note that the test data is prepared later after building and training the CNN.
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Listing 6-26. Decoding All Training Files

def get_dataset_images(dataset_path, im_dim=32, num_channels=3):

    num_files = 5#Number of training binary files in the CIFAR10 dataset.

    images_per_file = 10000#Number of samples within each binary file.

     files_names = os.listdir(patches_dir)#Listing the binary files in the 

dataset path.

     dataset_array = numpy.zeros(shape=(num_files * images_per_file, im_dim, 

im_dim, num_channels))

     dataset_labels = numpy.zeros(shape=(num_files * images_per_file), 

dtype=numpy.uint8)

     index = 0#Index variable to count number of training binary files being 

processed.

    for file_name in files_names:

        if file_name[0:len(file_name) - 1] == "data_batch_":

            print("Working on : ", file_name)

            data_dict = unpickle_patch(dataset_path+file_name)

            images_data = data_dict[b"data"]

             #Reshaping all samples in the current binary file to be of 

32x32x3 shape.

             images_data_reshaped = numpy.reshape(images_data, 

newshape=(len(images_data), im_dim, im_dim, num_channels))

            #Appending the data of the current file after being reshaped.

             dataset_array[index * images_per_file:(index + 1) * images_per_

file, :, :, :] = images_data_reshaped

            #Appending the labels of the current file.

             dataset_labels[index * images_per_file:(index + 1) * images_

per_file] = data_dict[b"labels"]

             index = index + 1#Incrementing the counter of the processed 

training files by 1 to accept new file.

     return dataset_array, dataset_labels#Returning the training input data 

and output labels.
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Each training file is decoded by calling the “unpickle_patch” function, and its 

image data and their labels are returned into the “data_dict” dictionary. There are five 

training files, and thus there are five classes to such a function, where each call returns a 

dictionary.

Based on the dictionary returned by this function, the “get_dataset_images” function 

concatenates the details (image data and class labels) of all files into a NumPy array. The 

image data could be retrieved from that dictionary using the “data” key and stored into 

the “dataset_array” NumPy array, which stores all decoded images across all training 

files. Class labels are retrieved using the “labels” key and returned into the “dataset_

labels” NumPy array, which stores all labels across all images in the training data. The 

“dataset_array” and “dataset_labels” are returned by the function.

When decoded, the data of each image returns as a 1D vector of length 

32×32×3=3,072 pixels. This vector should be reshaped of the original shape with three 

dimensions. This is because CNN layers created in TF accepts the images of this shape. 

For this reason, the “get_dataset_images” function has arguments for accepting the 

size of each dimension for the dataset images. The first one is “im_dim” representing 

the number of rows/columns (they are equal) in addition to the “num_channels” 

representing the number of channels.

After preparing the training data, we can build and train the CNN model using TF.

 Building the CNN
The dataflow graph of the CNN is created inside a function called “create_CNN” as in 

Listing 6-27. It creates a stack of convolution (conv), ReLU, max pooling, dropout, and FC 

layers. The architecture of the CNN is illustrated in Figure 6-14. It has three conv-relu- 

pool groups followed by a dropout layer and finally two FC layers.

Figure 6-14. CNN architecture
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The function returns the results of the last FC layer. As regularly, the output of 

each layer is the input to the next layer. This requires consistency between the sizes of 

the outputs and inputs of neighboring layers. Note that for each conv, ReLU, and max 

pooling layer, there are some parameters to get specified, such as strides across each 

dimension and padding.

Listing 6-27. Building the CNN Structure

def create_CNN(input_data, num_classes, keep_prop):

     filters1, conv_layer1 = create_conv_layer(input_data=input_data, 

filter_size=7, num_filters=4)

    relu_layer1 = tensorflow.nn.relu(conv_layer1)

    max_pooling_layer1 = tensorflow.nn.max_pool(value=relu_layer1,

                                                ksize=[1, 2, 2, 1],

                                                strides=[1, 1, 1, 1],

                                                padding="VALID")

     filters2, conv_layer2 = create_conv_layer(input_data=max_pooling_

layer1, filter_size=5, num_filters=3)

    relu_layer2 = tensorflow.nn.relu(conv_layer2)

    max_pooling_layer2 = tensorflow.nn.max_pool(value=relu_layer2,

                                                ksize=[1, 2, 2, 1],

                                                strides=[1, 1, 1, 1],

                                                padding="VALID")

     filters3, conv_layer3 = create_conv_layer(input_data=max_pooling_

layer2, filter_size=3, num_filters=2)

    relu_layer3 = tensorflow.nn.relu(conv_layer3)

    max_pooling_layer3 = tensorflow.nn.max_pool(value=relu_layer3,

                                                ksize=[1, 2, 2, 1],

                                                strides=[1, 1, 1, 1],

                                                padding="VALID")

     flattened_layer = dropout_flatten_layer(previous_layer=max_pooling_

layer3, keep_prop=keep_prop)
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     fc_result1 = fc_layer(flattened_layer=flattened_layer, num_

inputs=flattened_layer.get_shape()[1:].num_elements(),

                          num_outputs=200)

     fc_result2 = fc_layer(flattened_layer=fc_result1, num_inputs=fc_

result1.get_shape()[1:].num_elements(),

                          num_outputs=num_classes)

    print("Fully connected layer results : ", fc_result2)

    return fc_result2#Returning the result of the last FC layer.

The first layer in the CNN works directly on the input data. Thus, the “create_CNN” 

function accepts the input data as an input argument called “input_data”. This data is 

what returned by the “get_dataset_images” function. The first layer is a convolution layer, 

which is created using the “create_conv_layer” function according to Listing 6-28.

The “create_conv_layer” function accepts the input data, filter size, and the number 

of filters. It returns the result of convolving the input data with the set of filters. The filters 

in the set have their depth set according to the number of channels of the input data. 

Because the number of channels is the last element in a NumPy array, index –1 is used to 

return the number of channels. The set of filters are returned into the “filters” variable.

Listing 6-28. Building Convolution Layer

def create_conv_layer(input_data, filter_size, num_filters):

     filters = tensorflow.Variable(tensorflow.truncated_

normal(shape=(filter_size, filter_size, tensorflow.cast(input_data.

shape[-1], dtype=tensorflow.int32), num_filters), stddev=0.05))

    conv_layer = tensorflow.nn.conv2d(input=input_data,

                                      filter=filters,

                                      strides=[1, 1, 1, 1],

                                      padding="VALID")

     return filters, conv_layer#Returning the filters and the convolution 

layer result.

The convolution layer is built by specifying the input data, filters, and strides along 

each of the four dimensions, and the padding to the “tensorflow.nn.conv2D” operation. 

A padding value of “VALID” means that some borders of the input image will be lost in 

the result, based on the filter size.
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The result of any conv layer is fed into a ReLU layer created using the “tensorflow.

nn.relu” operation. It accepts the conv layer output and returns a tensor of the same 

number of features after applying the ReLU activation function. Remember that 

activation functions help to create a nonlinear relationship between the inputs and the 

outputs. The result of the ReLU layer is then fed to a max pooling layer created using 

the “tensorflow.nn.max_pool” operation. Remember that the goal of pooling layers is to 

make the recognition translation invariant.

The “create_CNN” function accepts an argument named “keep_prop” representing 

the probability of keeping neurons in the dropout layer, which helps to avoid overfitting. 

The dropout layer is implemented using the “dropout_flatten_layer” function, as in Listing 

6-29. This function returns a flattened array that is used as the input to the FC layers.

Listing 6-29. Building Dropout Layer

def dropout_flatten_layer(previous_layer, keep_prop):

    dropout = tensorflow.nn.dropout(x=previous_layer, keep_prob=keep_prop)

    num_features = dropout.get_shape()[1:].num_elements()

     layer = tensorflow.reshape(previous_layer, shape=(-1, num_

features))#Flattening the results.

    return layer

Because the last FC layer should have a number of output neurons equal to the 

number of dataset classes, the number of dataset classes is used as another input 

argument named “num_classes” to the “create_CNN” function. The FC layer is created 

using the “fc_layer” function, defined according to Listing 6-30. This function accepts 

the flattened result of the dropout layer, the number of features in the flattened result, 

and the number of output neurons from the FC layer. Based on the number of inputs 

and outputs, a tensor named “fc_weights” represents the weights for the FC layer that is 

created. It gets multiplied by the flattened layer to get the returned result of the FC layer.

Listing 6-30. Building FC Layer

def fc_layer(flattened_layer, num_inputs, num_outputs):

     fc_weights = tensorflow.Variable(tensorflow.truncated_

normal(shape=(num_inputs, num_outputs), stddev=0.05))
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    fc_result1 = tensorflow.matmul(flattened_layer, fc_weights)

     return fc_result1#Output of the FC layer (result of matrix 

multiplication).

The computational graph after being visualized using TB is shown in Figure 6-15. 

Part a gives the architecture of the CNN until the final max pooling layer, while part b 

shows the remaining steps.

Figure 6-15. Graph of the CNN used to classify the CIFAR10 dataset
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 Training CNN
After building the computational graph of the CNN, next is to train it against the 

previously prepared training data. The training is done according to Listing 6-31. The 

code starts by preparing the path of the dataset and the data placeholders. Note that 

the path should be changed to be suitable for your system. Then it calls the previously 

discussed functions. The predictions of the trained CNN are used to measure the cost of 

the network, which is to be minimized using the GD optimizer. Some of the tensors have 

descriptive names to make it easier to retrieve them later when testing the CNN.

Listing 6-31. Training CNN

#Number of classes in the dataset. Used to specify the number of outputs in 

the last fully connected layer.

num_dataset_classes = 10

#Number of rows & columns in each input image. The image is expected to be 

rectangular Used to reshape the images and specify the input tensor shape.

im_dim = 32

#Number of channels in each input image. Used to reshape the images and 

specify the input tensor shape.

num_channels = 3

#Directory at which the training binary files of the CIFAR10 dataset are 

saved.

patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"

#Reading the CIFAR10 training binary files and returning the input data and 

output labels. Output labels are used to test the CNN prediction accuracy.

dataset_array, dataset_labels = get_dataset_images(dataset_path=patches_

dir, im_dim=im_dim, num_channels=num_channels)

print("Size of data : ", dataset_array.shape)

# Input tensor to hold the data read in the preceding. It is the entry 

point of the computational graph.

# The given name of 'data_tensor' is useful for retrieving it when 

restoring the trained model graph for testing.
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data_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None, im_

dim, im_dim, num_channels], name='data_tensor')

# Tensor to hold the outputs label.

# The name "label_tensor" is used for accessing the tensor when testing the 

saved trained model after being restored.

label_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None], 

name='label_tensor')

#The probability of dropping neurons in the dropout layer. It is given a 

name for accessing it later.

keep_prop = tensorflow.Variable(initial_value=0.5, name="keep_prop")

#Building the CNN architecture and returning the last layer which is the 

fully connected layer.

fc_result2 = create_CNN(input_data=data_tensor, num_classes=num_dataset_

classes, keep_prop=keep_prop)

# Predictions propabilities of the CNN for each training sample.

# Each sample has a probability for each of the 10 classes in the dataset.

# Such a tensor is given a name for accessing it later.

softmax_propabilities = tensorflow.nn.softmax(fc_result2, name="softmax_

probs")

# Predictions labels of the CNN for each training sample.

# The input sample is classified as the class of the highest probability.

# axis=1 indicates that maximum of values in the second axis is to be 

returned. This returns that maximum class probability of each sample.

softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

#Cross entropy of the CNN based on its calculated propabilities.

cross_entropy = tensorflow.nn.softmax_cross_entropy_with_

logits(logits=tensorflow.reduce_max(input_tensor=softmax_propabilities, 

reduction_indices=[1]), labels=label_tensor)
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#Summarizing the cross entropy into a single value (cost) to be minimized 

by the learning algorithm.

cost = tensorflow.reduce_mean(cross_entropy)

#Minimizing the network cost using the Gradient Descent optimizer with a 

learning rate is 0.01.

error = tensorflow.train.GradientDescentOptimizer(learning_rate=.01).

minimize(cost)

#Creating a new TensorFlow Session to process the computational graph.

sess = tensorflow.Session()

#Writing summary of the graph to visualize it using TensorBoard.

tensorflow.summary.FileWriter(logdir="\\AhmedGad\\TensorBoard\\", 

graph=sess.graph)

#Initializing the variables of the graph.

sess.run(tensorflow.global_variables_initializer())

# Because it may be impossible to feed the complete data to the CNN on 

normal machines, it is recommended to split the data into a number of 

patches.

# A subset of the training samples is used to create each path. Samples for 

each path can be randomly selected.

num_patches = 5#Number of patches

for patch_num in numpy.arange(num_patches):

    print("Patch : ", str(patch_num))

    percent = 80 #percent of samples to be included in each path.

    #Getting the input-output data of the current path.

     shuffled_data, shuffled_labels = get_patch(data=dataset_array, 

labels=dataset_labels, percent=percent)

     #Data required for cnn operation. 1)Input Images, 2)Output Labels, and 

3)Dropout probability

    cnn_feed_dict = {data_tensor: shuffled_data,

                     label_tensor: shuffled_labels,

                     keep_prop: 0.5}
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# Training the CNN based on the current patch.

# CNN error is used as input in the run to minimize it.

# SoftMax predictions are returned to compute the classification accuracy.

     softmax_predictions_, _ = sess.run([softmax_predictions, error], feed_

dict=cnn_feed_dict)

    #Calculating number of correctly classified samples.

     correct = numpy.array(numpy.where(softmax_predictions_ == shuffled_

labels))

    correct = correct.size

    print("Correct predictions/", str(percent * 50000/100), ' : ', correct)

#Closing the session

sess.close()

Rather than feeding the entire training data to the CNN, just a subset of the data is 

returned. This helps adjust the data to the amount of memory available. The subset is 

returned using the “get_patch” function according to Listing 6-32. This function accepts 

the input data, labels, and percentage of samples to be returned from the data. It then 

returns a subset of the data according to the specified percentage.

Listing 6-32. Splitting Dataset into Patches

def get_patch(data, labels, percent=70):

    num_elements = numpy.uint32(percent*data.shape[0]/100)

     shuffled_labels = labels#Temporary variable to hold the data after 

being shuffled.

    numpy.random.shuffle(shuffled_labels)#Randomly reordering the labels.

     return data[shuffled_labels[:num_elements], :, :, :], shuffled_

labels[:num_elements]

 Saving the Trained Model
After training the CNN, the model is saved for reuse later for testing according to 

Listing 6-33. You should also change the path where the model is saved to be suitable 

for your system.
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Listing 6-33. Saving the Trained CNN Model

#Saving the model after being trained.

saver = tensorflow.train.Saver()

save_model_path = "\\AhmedGad\\model\\"

save_path = saver.save(sess=sess, save_path=save_model_path+"model.ckpt")

print("Model saved in : ", save_path)

 Complete Code to Build and Train CNN
After going through all parts of the project from reading the data until saving the trained 

model, a summary of the steps is given in Figure 6-16. Listing 6-34 gives the complete 

code for training the CNN. After saving the trained model, it will be used to predict the 

class labels of the test data.

Figure 6-16. Summary of steps for building a CNN trained using CIFAR10 
dataset
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Listing 6-34. Complete Code to Train CNN for CIFAR10 Dataset

import pickle

import tensorflow

import numpy

import matplotlib.pyplot

import scipy.misc

import os

def get_dataset_images(dataset_path, im_dim=32, num_channels=3):

    """

     This function accepts the dataset path, reads the data, and returns it 

after being reshaped to match the requirements of the CNN.

    :param dataset_path:Path of the CIFAR10 dataset binary files.

     :param im_dim:Number of rows and columns in each image. The image is 

expected to be rectangular.

    :param num_channels:Number of color channels in the image.

    :return:Returns the input data after being reshaped and output labels.

    """

    num_files = 5#Number of training binary files in the CIFAR10 dataset.

    images_per_file = 10000#Number of samples within each binary file.

     files_names = os.listdir(patches_dir)#Listing the binary files in the 

dataset path.

# Creating an empty array to hold the entire training data after being 

reshaped. The dataset has 5 binary files holding the data. Each binary 

file has 10,000 samples. Total number of samples in the dataset is 

5*10,000=50,000.

# Each sample has a total of 3,072 pixels. These pixels are reshaped to 

form a RGB image of shape 32x32x3.

# Finally, the entire dataset has 50,000 samples and each sample of shape 

32x32x3 (50,000x32x32x3).

     dataset_array = numpy.zeros(shape=(num_files * images_per_file, im_dim, 

im_dim, num_channels))

     #Creating an empty array to hold the labels of each input sample. Its 

size is 50,000 to hold the label of each sample in the dataset.
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     dataset_labels = numpy.zeros(shape=(num_files * images_per_file), 

dtype=numpy.uint8)

     index = 0#Index variable to count number of training binary files being 

processed.

    for file_name in files_names:

# Because the CIFAR10 directory does not only contain the desired training 

files and has some  other files, it is required to filter the required 

files. Training files start by 'data_batch_' which is used to test whether 

the file is for training or not.

        if file_name[0:len(file_name) - 1] == "data_batch_":

            print("Working on : ", file_name)

# Appending the path of the binary files to the name of the current file.

# Then the complete path of the binary file is used to decoded the file and 

return the actual pixels values.

             data_dict = unpickle_patch(dataset_path+file_name)

# Returning the data using its key 'data' in the dictionary.

# Character b is used before the key to tell it is binary string.

            images_data = data_dict[b"data"]

             #Reshaping all samples in the current binary file to be of 

32x32x3 shape.

             images_data_reshaped = numpy.reshape(images_data, 

newshape=(len(images_data), im_dim, im_dim, num_channels))

            #Appending the data of the current file after being reshaped.

             dataset_array[index * images_per_file:(index + 1) * images_per_

file, :, :, :] = images_data_reshaped

            #Appending the labels of the current file.

             dataset_labels[index * images_per_file:(index + 1) * images_

per_file] = data_dict[b"labels"]

             index = index + 1#Incrementing the counter of the processed 

training files by 1 to accept new file.

     return dataset_array, dataset_labels#Returning the training input data 

and output labels.

def unpickle_patch(file):

    """
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    Decoding the binary file.

    :param file:File path to decode its data.

     :return: Dictionary of the file holding details including input data 

and output labels.

    """

    patch_bin_file = open(file, 'rb')#Reading the binary file.

     patch_dict = pickle.load(patch_bin_file, encoding='bytes')#Loading the 

details of the binary file into a dictionary.

    return patch_dict#Returning the dictionary.

def get_patch(data, labels, percent=70):

    """

    Returning patch to train the CNN.

    :param data: Complete input data after being encoded and reshaped.

    :param labels: Labels of the entire dataset.

    :param percent: Percent of samples to get returned in each patch.

    :return: Subset of the data (patch) to train the CNN model.

    """

     #Using the percent of samples per patch to return the actual number of 

samples to get returned.

    num_elements = numpy.uint32(percent*data.shape[0]/100)

     shuffled_labels = labels#Temporary variable to hold the data after 

being shuffled.

    numpy.random.shuffle(shuffled_labels)#Randomly reordering the labels.

# The previously specified percent of the data is returned starting from 

the beginning until meeting the required number of samples.

# The labels indices are also used to return their corresponding input 

images samples.

     return data[shuffled_labels[:num_elements], :, :, :], shuffled_

labels[:num_elements]

def create_conv_layer(input_data, filter_size, num_filters):

    """

    Builds the CNN convolution (conv) layer.

    :param input_data:patch data to be processed.
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     :param filter_size:#Number of rows and columns of each filter. It is 

expected to have a rectangular filter.

    :param num_filters:Number of filters.

    :return:The last fully connected layer of the network.

    """

# Preparing the filters of the conv layer by specifying  its shape.

# Number of channels in both input image and each filter must match.

# Because number of channels is specified in the shape of the input image 

as the last value, index of -1 works fine.

     filters = tensorflow.Variable(tensorflow.truncated_

normal(shape=(filter_size, filter_size, tensorflow.cast(input_data.

shape[-1], dtype=tensorflow.int32), num_filters), stddev=0.05))

    print("Size of conv filters bank : ", filters.shape)

# Building the convolution layer by specifying the input data, filters, 

strides along each of the 4 dimensions, and the padding.

# Padding value of 'VALID' means the some borders of the input image will 

be lost in the result based on the filter size.

    conv_layer = tensorflow.nn.conv2d(input=input_data,

                                      filter=filters,

                                      strides=[1, 1, 1, 1],

                                      padding="VALID")

    print("Size of conv result : ", conv_layer.shape)

     return filters, conv_layer#Returning the filters and the convolution 

layer result.

def create_CNN(input_data, num_classes, keep_prop):

    """

     Builds the CNN architecture by stacking conv, relu, pool, dropout, and 

fully connected layers.

    :param input_data:patch data to be processed.

     :param num_classes:Number of classes in the dataset. It helps to 

determine the number of outputs in the last fully connected layer.

    :param keep_prop:probability of keeping neurons in the dropout layer.

    :return: last fully connected layer.

    """
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    #Preparing the first convolution layer.

     filters1, conv_layer1 = create_conv_layer(input_data=input_data, 

filter_size=7, num_filters=4)

# Applying ReLU activation function over the conv layer output.

# It returns a new array of the same shape as the input array.

    relu_layer1 = tensorflow.nn.relu(conv_layer1)

     print("Size of relu1 result : ", relu_layer1.shape)

# Max-pooling is applied to the ReLU layer result to achieve translation 

invariance. It returns a new array of a different shape from the input 

array relative to the strides and kernel size used.

    max_pooling_layer1 = tensorflow.nn.max_pool(value=relu_layer1,

                                                ksize=[1, 2, 2, 1],

                                                strides=[1, 1, 1, 1],

                                                padding="VALID")

    print("Size of maxpool1 result : ", max_pooling_layer1.shape)

     #Similar to the previous conv-relu-pool layers, new layers are just 

stacked to complete the CNN architecture.

    #Conv layer with 3 filters and each filter is of size 5x5.

     filters2, conv_layer2 = create_conv_layer(input_data=max_pooling_

layer1, filter_size=5, num_filters=3)

    relu_layer2 = tensorflow.nn.relu(conv_layer2)

    print("Size of relu2 result : ", relu_layer2.shape)

    max_pooling_layer2 = tensorflow.nn.max_pool(value=relu_layer2,

                                                ksize=[1, 2, 2, 1],

                                                strides=[1, 1, 1, 1],

                                                padding="VALID")

    print("Size of maxpool2 result : ", max_pooling_layer2.shape)

    #Conv layer with 2 filters and a filter size of 5x5.

     filters3, conv_layer3 = create_conv_layer(input_data=max_pooling_

layer2, filter_size=3, num_filters=2)

    relu_layer3 = tensorflow.nn.relu(conv_layer3)

    print("Size of relu3 result : ", relu_layer3.shape)
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    max_pooling_layer3 = tensorflow.nn.max_pool(value=relu_layer3,

                                                ksize=[1, 2, 2, 1],

                                                strides=[1, 1, 1, 1],

                                                padding="VALID")

    print("Size of maxpool3 result : ", max_pooling_layer3.shape)

     #Adding dropout layer before the fully connected layers to avoid 

overfitting.

     flattened_layer = dropout_flatten_layer(previous_layer=max_pooling_

layer3, keep_prop=keep_prop)

     #First fully connected (FC) layer. It accepts the result of the dropout 

layer after being flattened (1D).

     fc_result1 = fc_layer(flattened_layer=flattened_layer, num_

inputs=flattened_layer.get_shape()[1:].num_elements(),

                          num_outputs=200)

     #Second fully connected layer accepting the output of the previous 

fully connected layer. Number of outputs is equal to the number of 

dataset classes.

     fc_result2 = fc_layer(flattened_layer=fc_result1, num_inputs=fc_

result1.get_shape()[1:].num_elements(),

                          num_outputs=num_classes)

    print("Fully connected layer results : ", fc_result2)

    return fc_result2#Returning the result of the last FC layer.

def dropout_flatten_layer(previous_layer, keep_prop):

    """

    Applying the dropout layer.

     :param previous_layer: Result of the previous layer to the dropout 

layer.

    :param keep_prop: Probability of keeping neurons.

    :return: flattened array.

    """

    dropout = tensorflow.nn.dropout(x=previous_layer, keep_prob=keep_prop)

    num_features = dropout.get_shape()[1:].num_elements()

Chapter 6  tensorFlow reCognition appliCation



289

     layer = tensorflow.reshape(previous_layer, shape=(-1, num_features)) 

#Flattening the results.

    return layer

def fc_layer(flattened_layer, num_inputs, num_outputs):

    """

    building a fully connected (FC) layer.

    :param flattened_layer: Previous layer after being flattened.

    :param num_inputs: Number of inputs in the previous layer.

    :param num_outputs: Number of outputs to be returned in such FC layer.

    :return:

    """

     #Preparing the set of weights for the FC layer. It depends on the 

number of inputs and number of outputs.

     fc_weights = tensorflow.Variable(tensorflow.truncated_

normal(shape=(num_inputs, num_outputs), stddev=0.05))

     #Matrix multiplication between the flattened array and the set of 

weights.

    fc_result1 = tensorflow.matmul(flattened_layer, fc_weights)

     return fc_result1#Output of the FC layer (result of matrix 

multiplication).

#***********************************************************

#Number of classes in the dataset. Used to specify number of outputs in the 

last FC layer.

num_dataset_classes = 10

#Number of rows & columns in each input image. The image is expected to be 

rectangular Used to reshape the images and specify the input tensor shape.

im_dim = 32

# Number of channels in each input image. Used to reshape the images and 

specify the input tensor shape.

num_channels = 3

#Directory at which the training binary files of the CIFAR10 dataset are 

saved.

patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"
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#Reading the CIFAR10 training binary files and returning the input data and 

output labels. Output labels are used to test the CNN prediction accuracy.

dataset_array, dataset_labels = get_dataset_images(dataset_path=patches_

dir, im_dim=im_dim, num_channels=num_channels)

print("Size of data : ", dataset_array.shape)

# Input tensor to hold the data read in the preceding. It is the entry 

point of the computational graph.

# The given name of 'data_tensor' is useful for retrieving it when 

restoring the trained model graph for testing.

data_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None, im_

dim, im_dim, num_channels], name='data_tensor')

# Tensor to hold the outputs label.

# The name "label_tensor" is used for accessing the tensor when testing the 

saved trained model after being restored.

label_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None], 

name='label_tensor')

#The probability of dropping neurons in the dropout layer. It is given a 

name for accessing it later.

keep_prop = tensorflow.Variable(initial_value=0.5, name="keep_prop")

#Building the CNN architecture and returning the last layer which is the FC 

layer.

fc_result2 = create_CNN(input_data=data_tensor, num_classes=num_dataset_

classes, keep_prop=keep_prop)

# Predictions propabilities of the CNN for each training sample.

# Each sample has a probability for each of the 10 classes in the dataset.

# Such a tensor is given a name for accessing it later.

softmax_propabilities = tensorflow.nn.softmax(fc_result2, name="softmax_

probs")

# Predictions labels of the CNN for each training sample.

# The input sample is classified as the class of the highest probability.

# axis=1 indicates that maximum of values in the second axis is to be 

returned. This returns that maximum class probability of each sample.
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softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

#Cross entropy of the CNN based on its calculated propabilities.

cross_entropy = tensorflow.nn.softmax_cross_entropy_with_

logits(logits=tensorflow.reduce_max(input_tensor=softmax_propabilities, 

reduction_indices=[1]),labels=label_tensor)

#Summarizing the cross entropy into a single value (cost) to be minimized 

by the learning algorithm.

cost = tensorflow.reduce_mean(cross_entropy)

#Minimizing the network cost using the Gradient Descent optimizer with a 

learning rate is 0.01.

ops = tensorflow.train.GradientDescentOptimizer(learning_rate=.01).

minimize(cost)

#Creating a new TensorFlow Session to process the computational graph.

sess = tensorflow.Session()

#Writing summary of the graph to visualize it using TensorBoard.

tensorflow.summary.FileWriter(logdir="\\AhmedGad\\TensorBoard\\", 

graph=sess.graph)

#Initializing the variables of the graph.

sess.run(tensorflow.global_variables_initializer())

# Because it may be impossible to feed the complete data to the CNN on 

normal machines, it is recommended to split the data into a number of 

patches. A subset of the training samples is used to create each path. 

Samples for each path can be randomly selected.

num_patches = 5#Number of patches

for patch_num in numpy.arange(num_patches):

    print("Patch : ", str(patch_num))

    percent = 80 #percent of samples to be included in each path.

    #Getting the input-output data of the current path.

     shuffled_data, shuffled_labels = get_patch(data=dataset_array, 

labels=dataset_labels, percent=percent)

     #Data required for cnn operation. 1)Input Images, 2)Output Labels,  

and 3)Dropout probability
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    cnn_feed_dict = {data_tensor: shuffled_data,

                     label_tensor: shuffled_labels,

                     keep_prop: 0.5}

# Training the CNN based on the current patch.

# CNN error is used as input in the run to minimize it.

# SoftMax predictions are returned to compute the classification accuracy.

     softmax_predictions_, _ = sess.run([softmax_predictions, ops], feed_

dict=cnn_feed_dict)

    #Calculating number of correctly classified samples.

     correct = numpy.array(numpy.where(softmax_predictions_ == shuffled_

labels))

    correct = correct.size

    print("Correct predictions/", str(percent * 50000/100), ' : ', correct)

#Closing the session

sess.close()

#Saving the model after being trained.

saver = tensorflow.train.Saver()

save_model_path = " \\AhmedGad\\model\\"

save_path = saver.save(sess=sess, save_path=save_model_path+"model.ckpt")

print("Model saved in : ", save_path)

 Preparing Test Data
Before testing the trained model, it is required to prepare the test data and restore the 

previously trained model. Test data preparation is similar to what happened with the 

training data except that there is just a single binary file to be decoded. The test file is 

decoded according to the modified “get_dataset_images” function according to Listing 

6-35. Note that it has the same name as the function used to decode the training data 

because it is assumed that there are two separate scripts, one for training and another 

for testing. This function calls the “unpickle_patch” function exactly as done before with 

training data.
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Listing 6-35. Saving the Trained CNN Model

def get_dataset_images(test_path_path, im_dim=32, num_channels=3):

    data_dict = unpickle_patch(test_path_path)

    images_data = data_dict[b"data"]

     dataset_array = numpy.reshape(images_data, newshape=(len(images_data), 

im_dim, im_dim, num_channels))

    return dataset_array, data_dict[b"labels"]

 Testing the Trained CNN Model
According to Figure 6-16, the saved model will be used to predict the labels for the test 

data. After preparing the test data and restoring the trained model, we can start testing 

the model according to Listing 6-36. It’s worth mentioning that when training the CNN, 

the session runs to minimize the cost. In testing, we are not interested in minimizing 

the cost anymore and just we would like to return the predictions for the data samples. 

This is why the TF session runs to return just the predictions by fetching the “softmax_

propabilities” and “softmax_predictions” tensors.

When the graph is restored, the tensor named “data_tensor” in the training phase 

will be assigned the testing data, while the tensor named “label_tensor” will be assigned 

the sample labels.

Another interesting point is that the keep probability “keep_prop” of the dropout 

layer is now set to 1.0. That means do not drop any neuron (i.e., use all neurons). This 

is because we are just using the pretrained model after settling on what neurons to 

drop. Now we just use what the model did before and are not interested in making any 

modifications.

Listing 6-36. Testing the Trained CNN

#Dataset path containing the testing binary file to be decoded.

patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"

dataset_array, dataset_labels = get_dataset_images(test_path_path=patches_

dir + "test_batch", im_dim=32, num_channels=3)

print("Size of data : ", dataset_array.shape)

sess = tensorflow.Session()
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#Restoring the previously saved trained model.

saved_model_path = '\\AhmedGad\\model\\'

saver = tensorflow.train.import_meta_graph(saved_model_path+'model.ckpt.meta')

saver.restore(sess=sess, save_path=saved_model_path+'model.ckpt')

#Initializing the variables.

sess.run(tensorflow.global_variables_initializer())

graph = tensorflow.get_default_graph()

softmax_propabilities = graph.get_tensor_by_name(name="softmax_probs:0")

softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

data_tensor = graph.get_tensor_by_name(name="data_tensor:0")

label_tensor = graph.get_tensor_by_name(name="label_tensor:0")

keep_prop = graph.get_tensor_by_name(name="keep_prop:0")

#keep_prop is equal to 1 because there is no more interest to remove 

neurons in the testing phase.

feed_dict_testing = {data_tensor: dataset_array,

                     label_tensor: dataset_labels,

                     keep_prop: 1.0}

#Running the session to predict the outcomes of the testing samples.

softmax_propabilities_, softmax_predictions_ = sess.run([softmax_

propabilities, softmax_predictions], feed_dict=feed_dict_testing)

#Assessing the model accuracy by counting number of correctly classified 

samples.

correct = numpy.array(numpy.where(softmax_predictions_ == dataset_labels))

correct = correct.size

print("Correct predictions/10,000 : ", correct)

#Closing the session

sess.close()

At this point, we have successfully built the CNN model for classifying images of the 

CIFAR10 dataset. In the next chapter, the saved trained CNN model is deployed to a web 

server created using Flask for being accessed from Internet users.
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CHAPTER 7

Deploying Pretrained 
Models
In the pipeline of building DL models, creating the model is the hardest step, but it is not 

the end. In order to benefit from the created models, users should remotely access them. 

Users’ feedback will help improve the model performance.

This chapter discusses how to deploy pretrained models online to be accessed by 

Internet users. Using Flask micro web framework, a web application is created using 

Python. Using HTML (HyperText Markup Language), CSS (Cascading Style Sheet), 

and JavaScript, simple web pages are built to allow the user to send and receive HTTP 

(HyperText Transfer Protocol) requests to the server. Using a web browser, the user 

accesses the application and is able to upload an image to the server. Based on the 

deployed model, the image is classified and its class label is returned back to the user. 

Moreover, an Android application is created to access the web server. This chapter 

assumes the reader has a basic knowledge of HTML, CSS, JavaScript, and Android. 

Readers can follow the instructions in this link for installing Flask (http://flask.pocoo.

org/docs/1.0/installation/).

 Application Overview
The target application of this chapter is summarized in Figure 7-1 which extends the 

steps in Chapter 6: the dataflow graph of a CNN using TF is built and then trained using 

the CIFAR10 dataset; finally, the trained model is saved to be ready for deployment. 

Using Flask, a web application that listens to HTTP requests from clients is created. 

Clients access the web application from web pages created using HTML, CSS, and 

JavaScript.

http://flask.pocoo.org/docs/1.0/installation/
http://flask.pocoo.org/docs/1.0/installation/
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The server loads the saved model, opens a session, and waits for incoming requests 

from the clients. The client uses a web browser to open a web page that allows uploading 

an image to the server for classification. The server ensures that the image belongs to 

the CIFAR10 dataset based on the size. After that, the image is fed into the model for 

classification. The predicted label by the model is returned in a response to the client. 

Finally, the client displays the label on the web page. For being customized to Android 

devices, an Android application to send HTTP requests to the server and receive the 

classification label is created.

In this chapter, each of the steps involved in the application will be covered until 

successful completion.

 Introduction to Flask
Flask is a microframework for building web applications. Despite being micro, it does 

not support some functionalities that other frameworks do. It is called “micro” because 

it comes with the core requirements required to build an application. Later using 

extensions, you can add the functionalities needed. Flask gives the user the decision 

about what to use. For example, it does not come with a specific database and gives the 

user the freedom about which database to use.

Figure 7-1. Overview of the application
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Flask uses the WSGI (Web Server Gateway Interface). WSGI is how the server 

handles requests from the Python web applications. It is regarded as the communication 

channel between the server and the application. After the server receives a request, the 

WSGI processes the request and sends it to the application written in Python. WSGI 

receives the response of the application and returns it to the server. The server then 

responds to the client. Flask uses Werkzeug, which is an SWGI utility for implementing 

the requests and responses. Flask also uses jinja2, which is the template engine used to 

build template web pages that are later filled dynamically with data.

In order to get started in Flask, let’s discusses the minimal Flask application 

according to Listing 7-1. The first thing to do in order to build a Flask application is 

to create an instance from the Flask class. The app instance is created using the class 

constructor. The mandatory import_name parameter of the constructor is very important. 

It is used to locate application resources. If the application is found in FlaskApp\

firstApp.py, then set this argument to FlaskApp. For example, if there is a CSS file to be 

located under the application directory, this parameter is used to locate the file.

Listing 7-1. Minimal Flask Application

import flask

app = flask.Flask(import_name="FlaskApp")

@app.route(rule="/")

def testFunc():

    return "Hello"

app.run()

The Flask application consists of a set of functions, each associated with a URL 

(Universal Resource Locator). When the client navigates to a URL, the server sends a 

request to the applications to respond to the client. The application uses a view function 

associated with that URL to respond. The return of the view function is the response 

rendered on the web page. This leaves a question: How do we associate a function with a 

URL? Fortunately, the answer is simple.
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 route() Decorator
At first, the function is a regular Python function that can accept arguments. In Listing 

7-1, the function is called testFunc() but is not accepting any arguments yet. It returns 

the string Hello. This means that when the client visits the URL associated with that 

function, the string Hello will be rendered on the screen. The URL is associated with the 

function using the route() decorator. It is called “route” because it works like a router.  

A router receives an input message and decides which output interface to follow. Also, 

the decorator receives an input URL and decides which function to call.

The route() decorator accepts an argument named rule representing the URL 

associated with the view function exactly below the decorator. According to Listing 7-1, 

the route() decorator associates the URL / representing the homepage to the view 

function named testFunc().

After completing this simple application, the next step is to make it active by  

running the script using the run() method of the Flask class. The result of running the 

application is in Figure 7-2. According to the output, the server by default listens to  

the IP (Internet Protocol) address 127.0.0.1, which is a loopback address. This means 

the server is just listening to requests from the local host on port 5000.

Figure 7-2. Console output after running the first Flask app

When visiting the server at the 127.0.0.1:5000/ address using a web browser, the 

testFunc() function will be called. Its output is rendered on the web browser according 

to Figure 7-3.
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We can override the default values of the IP and port using the host and port 

arguments of the run() method. The run() method is as follows after overriding the 

default values of these arguments:

app.run(host="127.0.0.5", port=6500)

Figure 7-4 shows the result after setting the host to 127.0.0.5 and the port number 

to 6500. Just make sure no application is using the port selected.

Figure 7-3. Visiting the URL associated with the testFunc() function

Figure 7-4. Listening to a different host and port by overriding the default values 
of the run() method

For each request received by the server, the method of the HTTP request, URL, and 

the response code are printed on the console. For example, when visiting the homepage, 

the request returned 200, which means the page was successfully located. Visiting a 

page that does not exist such as 127.0.0.5:6500/abc returns 404 as the response code, 

meaning that the page was not found. This helps in debugging the application.
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Another useful argument to the run() method is named debug. It is a boolean 

argument used to decide whether to print debugging information or not. It defaults to 

False. When such an argument is set to True, then we do not have to restart the server 

for each change in the code. This is useful in the development of the application. Just 

save the Python file of the application after each change and the server will reload itself 

automatically. According to Figure 7-6, the server started using port number 6500. After 

it is changed to 6300, the server reloaded itself automatically to listen for the new port.

Figure 7-5. Requests received by the server

Figure 7-6. Automatic reload of the server after each change when debugging is 
active
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 add_rule_url Method
Previously, the URL has been bound to the function using the route() decorator.  

The decorator internally calls the add_url_rule() method inside the Flask class.  

This method does the same job as any other decorator. We can directly use this method 

according to Listing 7-2. It accepts the rule argument as before but in addition to the 

view_func argument. It specifies which view function is associated with that rule. It is  

set to the function name, which is testFunc. When we used the route() decorator,  

the function is implicitly known. The function is exactly below the decorator. Note that 

the call to this method does not have to be exactly below the function. Running this code 

returns the same results as before.

Listing 7-2. Using the add_url_rule() Method

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc():

    return "Hello"

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

 Variable Rules
The previous rules are static. It is possible to add a variable part to the rule. It is regarded 

as a parameter. The variable part is added after the static part of the rule between two 

angle brackets <>. We can modify the previous code to accept a variable parameter 

representing the name according to Listing 7-3. The rule for the homepage is now 

/<name> rather than just /. If the client navigates to the URL 127.0.0.5:6300/Gad, then 

the name is set to Gad.
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Listing 7-3. Adding Variable Part to the Rule

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc(name):

    return "Hello : " + name

app.add_url_rule(rule="/<name>", view_func=testFunc, endpoint="home")

app.run(host="127.0.0.5", port=6300, debug=True)

Note that there must be an argument in the view function to accept the variable part 

of the URL. For this reason, the testFunc() is modified to accept an argument named 

the same as defined in the rule. The return of the function is modified to also return the 

value of the name argument. Figure 7-7 shows the result after using the variable rule. 

Changing the variable part and visiting the homepage will change the output.

Figure 7-7. Using variable part in the rule

It is possible to use multiple variable parts in the rule. According to Listing 7-4, the 

rule accepts two parameters representing the first and last names separated by -.

Listing 7-4. Using More Than One Variable Part

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc(fname, lname):

    return "Hello : " + fname + " " + lname
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app.add_url_rule(rule="/<fname>-<lname>", view_func=testFunc, 

endpoint="home")

app.run(host="127.0.0.5", port=6300, debug=True)

Visiting the URL 127.0.0.5:6300/Ahmed-Gad sets the fname to Ahmed and lname to 

Gad. The result is shown in Figure 7-8.

Figure 7-8. More than one variable part in the rule

 Endpoint
The add_url_rule() method accepts a third argument named endpoint. It is an 

identifier to the rule and helps reuse the same rule multiple times. Note that this 

argument also exists in the route() decorator. The value of the endpoint is set to the 

view function by default. Here is a scenario in which the endpoint is important.

Assume that the website has two pages with one rule assigned to each page. The 

first rule is / and the second rule is /addNums/<num1>-<num2>. The second page has 

two parameters representing two numbers. These numbers are added together, and the 

result is returned to the homepage for rendering it. Listing 7-5 gives the code for creating 

these rules and their view functions. The testFunc() view function is given an endpoint 

value equal to home.

The add_func() view function accepts two arguments, which are the variable 

parts of the rule it is associated with. Because the values of these arguments come as 

strings, their values are converted into integers using the int() function. Then they get 

added together into the num3 variable. The return of this function is not the number but 

redirection to another page using the redirect() method. Such a method accepts the 

redirect location.
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Listing 7-5. Using Endpoint to Redirect Between Pages

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc(result):

    return "Result is : " + result

app.add_url_rule(rule="/<result>", view_func=testFunc, endpoint="home")

def add_func(num1, num2):

    num3 = int(num1) + int(num2)

    return flask.redirect(location=flask.url_for("home", result=num3))

app.add_url_rule(rule="/addNums/<num1>-<num2>", view_func=add_func)

app.run(host="127.0.0.5", port=6300, debug=True)

Rather than hard-coding the URL, we can simply use the endpoint to return it. 

The URL is returned from the endpoint using the from_url() method. It accepts the 

endpoint of a rule in addition to any variables accepted by that rule. Because the 

homepage rule accepts a variable named result, then we have to add an argument 

named result inside the from_url() method and assign a value to it. The value assigned 

to such a variable is num3. By navigating to the URL 127.0.0.5:6300/addNums/1-2, 

the numbers 1 and 2 are added, and the result is 3. The function then redirects to the 

homepage, where the result variable of the rule is set equal to 3.

Using endpoints makes life easier than hard-coding the URLs. We can simply 

assign the location argument of the redirect() method to the rule / but this is not 

recommended. Assume that the URL of the homepage changed from / to /home, then we 

have to apply that change in every reference to the homepage. Moreover, assume that the 

URL is long, such as 127.0.0.5:6300/home/page1. Typing this URL each time we need to 

reference it is tiresome. The endpoints are regarded as an abstraction to the URL.

Another case that proves the importance of using endpoints it that the site 

administrator might decide to change the address of a page. If the page is referenced 

multiple times by copying and pasting its URL, then we have to change the URL 

everywhere. Using endpoints avoids that problem. The endpoint is not as frequently 

changed as the URLs are, and thus the site will remain active even with changes to the 

pages’ URLs. Note that redirecting without using the endpoint makes it difficult to pass 

the variable parts to the rule.
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The code in Listing 7-5 accepts the input numbers to be added from the URL. We can 

create a simple HTML form allowing the user to enter these numbers.

 HTML Form
The add_url_rule() method (and of course route() decorator) accepts another 

argument called methods. It accepts a list specifying the HTTP methods the rule 

responds to. The rule can respond to multiple types of methods.

There are two common HTTP methods: GET and POST. The GET method is the 

default method and sends the data unencrypted. The POST method is used to send the 

HTML form data to the server. Let’s create a simple form that accepts two numbers and 

send them to the Flask application for addition and rendering.

Listing 7-6 gives the HTML code that creates a form with two inputs of type number 

in addition to an input of type submit. The form method is set to post. Its action is the 

URL http://127.0.0.5:6300/form. The action represents the page to which the form 

data will be sent. There is a rule that associates that URL with a view function that fetches 

the numbers from the form, adds them, and renders the result. The names of the form 

elements are very important because only elements with name attribute are sent to 

the server after the form gets submitted. The element names are used as identifiers to 

retrieve the element data within the Flask application.

Listing 7-6. HTML Form

<html>

<header>

<title>HTML Form</title>

</header>

<body>

<form method="post" action="http://127.0.0.5:6300/form">

<span>Num1 </span>

<input type="number" name="num1"><br>

<span>Num2 </span>

<input type="number" name="num2"><br>
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<input type="submit" name="Add">

</form>

</body>

</html>

The HTML form is shown in Figure 7-9.

Figure 7-9. HTML form with two numeric inputs

After submitting the form, the Flask application in Listing 7-7 retrieves the form data. 

The rule /form is associated with the handle_form() function. The rule just responds 

to HTTP messages of type POST. Inside the function, the form elements are returned 

using the flask.request.form dictionary. The name of each HTML form element is 

used as an index to that object in order to return their values. For example, the value 

of the first form element of the name num1 is returned using by using flask.request.

form["num1"].

Listing 7-7. Flask Application to Retrieve the HTML Form Data

import flask

app = flask.Flask(import_name="FlaskApp")

def handle_form():

    num1 = flask.request.form["num1"]

    num1 = int(num1)

    num2 = flask.request.form["num2"]

    num2 = int(num2)

    result = num1 + num2

    result = str(result)
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    return "Result is : " + result

app.add_url_rule(rule="/form", view_func=handle_form, methods=["POST"])

app.run(host="127.0.0.5", port=6300, debug=True)

Because the value returned by indexing the flask.request.form object is a string, 

it must get converted into an integer using the int() function. After adding the two 

numbers, their result is stored in the result variable. This variable is converted into a 

string in order to concatenate its value with a string. The concatenated string is returned 

by the handle_form view function. The rendered result is shown in Figure 7-10.

Figure 7-10. The result of adding the two numeric HTML form elements

 File Upload
Uploading files in Flask is very simple and similar to the previous example except 

with some changes. An input of type file is created in the HTML form. Also, the form 

encryption type attribute enctype is set to multipart/form-data. The code of the 

HTML form for uploading a file is in Listing 7-8. A screenshot of the form is available in 

Figure 7-11.

Listing 7-8. HTML Form for Uploading a File

<html>

<header>

<title>HTML Form</title>

</header>

<body>

<form method="post" enctype="multipart/form-data" 

action="http://127.0.0.5:6300/form">

<span>Select File to Upload</span><br>
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<input type="file" name="fileUpload"><br>

<input type="submit" name="Add">

</form>

</body>

</html>

Figure 7-11. HTML form for uploading a file

After selecting the image to be uploaded, it is sent to the Flask application created 

according to Listing 7-9. The rule is again set to respond only to HTTP messages of type 

POST. Previously, we used the flask.request.form object to retrieve the data fields. 

Now, we use the flask.request.files to return the details of the files to be uploaded. 

The name of the form input fileUpload is used as an index to that object to return the 

file to be uploaded. Note that the flask.request is a global object that receives the data 

from the client web page.

In order to save the file, its name is retrieved using the filename property. It is 

not recommended to save the file according to its name submitted by the user. Some 

file names are set to hurt the server. To secure saving the file, the werkzeug.secure_

filename() function is used. Remember to import the werkzeug module.

Listing 7-9. Flask Application to Upload Files to the Server

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def handle_form():

    file = flask.request.files["fileUpload"]

    file_name = file.filename

    secure_file_name = werkzeug.secure_filename(file_name)

    file.save(dst=secure_file_name)
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    return "File uploaded successfully."

app.add_url_rule(rule="/form", view_func=handle_form, methods=["POST"])

app.run(host="127.0.0.5", port=6300, debug=True)

The secure file name is returned to the secure_file_name variable. Finally, the file is 

saved permanently by calling the save() method. Such a method accepts the destination 

at which the file will be saved. Because just the file name is used, it will be saved in the 

current directory of the Flask application Python file.

 HTML Inside Flask Application
The return output from the previous view function is just a text that appears on the 

web page without any formatting. Flask supports generating HTML content within the 

Python code, which helps to render the results better. Listing 7-10 gives an example in 

which the return result of the tesFunc() view function is HTML code in which the <h1> 

element renders the result. Figure 7-12 shows the result.

Listing 7-10. Generating HTML Inside Python

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc():

    return "<html><body><h1>Hello</h1></body></html>"

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

Figure 7-12. Formatting the output of the view function using HTML code
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Generating HTML within the Python code makes it difficult to debug the code. It is 

better to separate Python from HTML. This is why Flask supports templates using the 

Jinja2 template engine.

 Flask Templates

Rather than typing the HTML code within the Python file, a separate HTML file (i.e., 

template) is created. Such a template is rendered within Python using the  render_

template() method. The HTML file is called template because it is not a static file.  

The template can be used multiple times with different data inputs.

In order to locate the Flask templates within the Python code, a folder named 

templates is created holding all HTML files. Assuming that the Flask Python file is 

named firstApp.py and the HTML file is named hello.html, the project structure is 

illustrated in Figure 7-13. In Listing 7-11, the hello.html file is created to print the Hello 

message exactly the same as in Listing 7-10.

Figure 7-13. Project structure after using templates

Listing 7-11. Template to Print Hello Message

<html>

<header>

<title>HTML Template</title>

</header>

<body>

<h1>Hello</h1>

</body>

</html>
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The Python code rendering this template is given in Listing 7-12. The return result of 

the view function associated with the homepage is the output of the render_template() 

method. This method accepts an argument named template_name_or_list specifying 

the template file name. Note that the argument may accept a single name or a list of 

names. When a list is specified with multiple names, the first template existing will be 

rendered. The rendered result of this example is identical to Figure 7-12.

Listing 7-12. Python Code to Render an HTML Template

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc():

    return flask.render_template(template_name_or_list="hello.html")

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

 Dynamic Templates

The templates are currently static, as they get rendered the same each time. We can 

make them dynamic by using variable data. Jinja2 supports adding placeholders inside 

the template. When rendering the template, these placeholders are replaced by the 

output of evaluating a Python expression. At the place at which the expression output is 

to be printed, enclose the expression by {{...}}. Listing 7-13 gives the HTML code in 

which the variable name is used.

Listing 7-13. HTML Code with an Expression

<html>

<header>

<title>HTML Template with an Expression</title>

</header>

<body>

<h1>Hello {{name}}</h1>

</body>

</html>
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Next is to render that template after passing the value for the variable name according 

to Listing 7-14. The variables inside the template to be rendered are passed as arguments 

inside the render_template along with their values. The result of visiting the homepage 

is in Figure 7-14.

Listing 7-14. Rendering Flask Template with an Expression

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc():

     return flask.render_template(template_name_or_list="hello.html", 

name="Ahmed")

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

Figure 7-14. The result of rendering a template with an expression

The value of the variable name is statically typed, but it could be generated 

dynamically using either a variable rule or an HTML form. Listing 7-15 gives the code 

used to create a variable rule accepting a name. The view function must have an 

argument named according to the variable part of the rule. The value of this argument 

is then assigned to the name argument of the  render_template() method. The value is 

then passed to the template to be rendered according to Figure 7-15.
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Listing 7-15. Variable Rule to Pass Value to Flask Template

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc(name):

     return flask.render_template(template_name_or_list="hello.html", 

name=name)

app.add_url_rule(rule="/<name>", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

Figure 7-15. Passing the value received from a variable rule to Flask template

We can also insert Python statements, comments, and line statements inside the HTML 

code, each with a different placeholder. Statements are enclosed between {% ... %},  

comments are enclosed by {# ... #}, and line statements are enclosed by # ... ##. 

Listing 7-16 gives an example in which a Python for loop is inserted to print five numbers 

from 0 to 4, each inside <h1> HTML element. Each statement within the loop is enclosed 

by {%...%}.

Python uses indentation to define blocks. Because there is no indentation inside 

HTML, the end of the for loop is marked with endfor. The result of rendering this file is 

given in Figure 7-16.

Listing 7-16. Embedding a Python Loop Inside Flask Template

<html>

<header>

<title>HTML Template with Expression</title>

</header>

<body>
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{%for k in range(5):%}

<h1>{%print(k)%}</h1>

{%endfor%}

</body>

</html>

Figure 7-16. Rendering a template with a Python loop

 Static Files
Static files such as CSS and JavaScript files are used to style web pages and make them 

dynamic. Similar to the templates, there is a folder created to store the static files. The 

folder name is static. If we are to create a CSS file named style.css and a JavaScript 

file named simpeJS.js, the project structure will be as given in Figure 7-17.
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The Python code is identical to the code in Listing 7-15 without using the variable 

part of the rule. Listing 7-17 shows the content of the hello.html file. It’s worth 

mentioning how the HTML file is linked to the JavaScript and CSS files. As regularly, 

the JavaScript file is added using the <script> tag, where the type attribute is text/

javascript. Also, the CSS file is added using the <link> tag, where the rel attribute is set 

to stylesheet. What is new is how these files are located.

Listing 7-17. HTML File Linked with CSS and JavaScript Files

<html>

<header>

<title>HTML Template with Expression</title>

<script type="text/javascript" src="{{url_for(endpoint='static', 

filename='simpleJS.js')}}"></script>

<link rel="stylesheet" href="{{url_for(endpoint='static', filename='style.

css')}}">

</header>

<body>

{%for k in range(5):%}

<h1 onclick="showAlert({{k}})">{%print(k)%}</h1>

{%endfor%}

</body>

</html>

Figure 7-17. Project structure with both templates and static files
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Within the <script> and <link> tags, the url_for() method is used within an 

expression to locate the files. The endpoint attribute of the method is set to static, which 

means that you should look at the folder named static under the project structure.  

The method accepts another argument named filename, which refers to the file name of 

the static file.

The content of the CSS file is given in Listing 7-18. It just targets any <h1> elements 

and decorates their text by adding a dotted line under and over it.

Listing 7-18. Content of the CSS File

h1 {

text-decoration: underline overline;

}

Listing 7-19 gives the content of the JavaScript file. It has a single function named 

showAlert, which accepts an argument that is concatenated to a string and printed in 

an alert. When any of the <h1> elements representing the five numbers inside the HTML 

template are clicked, this function is called. The number associated with the element is 

passed as an argument to the function in order to get printed.

Listing 7-19. Content of the JavaScript File

function showAlert(num){

alert("Number is " + num)

}

When the number <h1> element with the text 1 is clicked, the output is as given in 

Figure 7-18.
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At this point, we have had an introduction to Flask, which is good enough to enable 

us to start deploying pretrained models. In the next sections, the pretrained models 

against the Fruits 360 and CIFAR10 datasets will be deployed to the web server to enable 

accessing them by Flask applications for classifying uploaded images by clients.

 Deploying Trained Model Using Fruits 360 Dataset
The first model we are going to deploy is the trained model in Chapter 5 using the Fruits 

360 dataset and optimized using the GA. The Flask application consists of two main 

pages.

The first page is the homepage. It has an HTML form that allows the user to select an 

image file. That file is uploaded to the server. The second page accomplishes most of the 

work. It follows the same steps in Chapter 5. It reads the image after being uploaded to 

the server, extracts its features, filters features using STD, predicts the image class label 

using the pretrained ANN, and finally allows the user to return back to the homepage 

to select another image for classification. The application has the structure defined in 

Figure 7-19. Let’s discuss the application in detail.

Figure 7-18. The result of clicking on the second <h1> element with the text 1
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Listing 7-20 starts the first step toward building the application. All required modules 

for the entire application are imported. An instance of the Flask class is created with 

the import_name argument of the constructor set to the name of the parent directory, 

which is FruitsApp. A single rule is created up to the current time. That rule binds the 

URL of the homepage / to the view function homepage. The application runs using host 

127.0.0.5, port number 6302, and active debug mode.

Listing 7-20. Basic Structure of the Fruits 360 Recognition Application

import flask, werkzeug, skimage.io, skimage.color, numpy, pickle

app = flask.Flask(import_name="FruitsApp")

def homepage():

    return flask.render_template(template_name_or_list="home.html")

app.add_url_rule(rule="/", view_func=homepage, endpoint="homepage")

app.run(host="127.0.0.5", port=6300, debug=True)

When the user visits the home page http://127.0.0.5:6302, the view function 

homepage() renders the home.html template using the render_template() method. 

The associated endpoint used is homepage, which is identical to the name of the view 

function. Note that omitting this endpoint will not change anything because the default 

endpoint actually equals to the view function name. The content of the home.html page 

is given in Listing 7-21.

Figure 7-19. Fruits 360 recognition application structure
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Listing 7-21. Implementation of the home.html Page

<html>

<header>

<title>Select Image</title>

<link rel="stylesheet" href="{{url_for(endpoint='static', filename='style.

css')}}">

</header>

<body>

<h1>Select an Image from the Fruits 360 Dataset</h1>

<form enctype="multipart/form-data" action="{{url_

for(endpoint='extract')}}" method="post">

<input type="file" name="img"><br>

<input type="submit">

</form>

</body>

</html>

That page creates an HTML form with an input named img representing the file to 

be uploaded. Remember that the encryption type attribute enctype of the form is set to 

multipart/form-data and the method is post. The action represents the page to which 

the form data will be submitted. After submitting the form, its data are sent to another 

page to classify the image file uploaded. To avoid hard-coding the URLs, the endpoint 

of the target rule, which is set to extract, is used to fetch its URL using the url_for() 

method. To enable running this expression from within the HTML page, it is enclosed 

between {{...}}.

In the page header, the stylesheet static file style.css is linked to the page by 

using an expression that accepts the endpoint and the filename arguments for the 

url_for() method. Remember that the endpoint for static files is set to static. The 

filename argument is set to the target static file name. The content of the CSS file is 

discussed later. Figure 7-20 presents the screen of the homepage after selecting an image 

file. After submitting the form, the selected file details are sent to the view function 

extractFeatures, which is associated with the endpoint extract for further processing.
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Listing 7-22 gives the code for the extractFeatures view function associated with 

the /extract rule. Note that this rule is made to listen only to POST HTTP methods. The 

extractFeatures view function responds to the form submitted previously. It returns 

the uploaded image file using the dictionary flask.request.files. The file name is 

returned using the filename property of the image file. To make saving the file more 

secure, the secure file name is returned using the secure_filename() function, which 

accepts the original file name and returns a secure name. The image is saved according 

to this secure name.

Listing 7-22. Python Code for the extractFeatures View Function

def extractFeatures():

    img = flask.request.files["img"]

    img_name = img.filename

    img_secure_name = werkzeug.secure_filename(img_name)

    img.save(img_secure_name)

    print("Image Uploaded successfully.")

img_features = extract_features(image_path=img_secure_name)

    print("Features extracted successfully.")

    f = open("weights_1000_iterations_10%_mutation.pkl", "rb")

    weights_mat = pickle.load(f)

    f.close()

    weights_mat = weights_mat[0, :]

     predicted_label = predict_outputs(weights_mat, img_features, 

activation="sigmoid")

Figure 7-20. Screenshot of the homepage for uploading an image from the Fruits 
360 dataset
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    class_labels = ["Apple", "Raspberry", "Mango", "Lemon"]

    predicted_class = class_labels[predicted_label]

     return flask.render_template(template_name_or_list="result.html", 

predicted_class=predicted_class)

app.add_url_rule(rule="/extract", view_func=extractFeatures, 

methods=["POST"], endpoint="extract")

After uploading the image to the server, its features are extracted using the extract_

features function defined in Listing 7-23. It accepts the image path and follows the 

steps in section Fruits 360 Dataset Feature Mining of Chapter 3 from reading the image 

file, extracting the hue channel histogram, filtering features using STD, and finally to 

returning the filtered set of features. The features are filtered according to the indices of 

the selected elements based on the experiment done on the training data. The number 

of these elements is 102. The feature vector is then returned into a row NumPy vector of 

shape 1×102. This makes it ready for matrix multiplication. After returning the feature 

vector, we can continue executing the extractFeatures view function.

Listing 7-23. Extracting Features from the Uploaded Image

def extract_features(image_path):

    f = open("select_indices.pkl", "rb")

    indices = pickle.load(f)

    f.close()

    fruit_data = skimage.io.imread(fname=image_path)

    fruit_data_hsv = skimage.color.rgb2hsv(rgb=fruit_data)

    hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

    im_features = hist[0][indices]

    img_features = numpy.zeros(shape=(1, im_features.size))

    img_features[0, :] = im_features [:im_features.size]

    return img_features

According to Listing 7-23, the next step in receiving the feature vector into the  

img_features variable is to restore the set of weights learned by the ANN trained  

using GA. The weights are returned to the weights_mat variable. Note that these weights 

represent all solutions of the population returned after the last generation. We just need 

to find the first solution in the population. This is why the index 0 is just returned from 

the weights_mat variable.
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After preparing the image features and the learned weights, the next step is to apply 

them on the ANN for producing the prediction label using the predict_outputs() 

function according to Listing 7-24. It accepts the weights, features, and activation 

functions. The activation functions are identical to what we implemented before. The 

predict_outputs() function goes through a loop that performs matrix multiplication 

between the inputs and the weights of each layer in the ANN. After reaching the result of 

the output layer, the predicted class index is returned. It corresponds to the class with the 

maximum score. This index is returned by this function.

Listing 7-24. Predicting the Class Label for the Uploaded Image

def predict_outputs(weights_mat, data_inputs, activation="relu"):

    r1 = data_inputs

    for curr_weights in weights_mat:

        r1 = numpy.matmul(a=r1, b=curr_weights)

        if activation == "relu":

            r1 = relu(r1)

        elif activation == "sigmoid":

            r1 = sigmoid(r1)

    r1 = r1[0, :]

    predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

    return predicted_label

After returning the predicted class index, we come back to Listing 7-22. The returned 

index is then converted into the string label of the corresponding class. All labels are 

saved into the class_labels list. The predicted class label is returned to the predicted_

class variable. The extractFeatures view function finally renders the result.html 

template using the render_template() method. It passes the predicted class label to 

such a template. The code of this template is available in Listing 7-25.

Listing 7-25. Content of the result.html Template

<html>

<header>

<title>Predicted Class</title>

<link rel="stylesheet" href="{{url_for(endpoint='static', filename='style.

css')}}">
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</header>

<body>

<h1>Predicted Label</h1>

<h1>{{predicted_class}}</h1>

<a href="{{url_for(endpoint='homepage')}}">Classify Another Image</a>

</body>

</html>

The template creates an expression to be able to render the predicted class 

label within the <h1> element. An anchor is created to let the user return back to the 

homepage to classify another image. The URL of the homepage is returned based on its 

endpoint. The screen of the result.html file after printing the class label is shown in 

Figure 7-21.

Figure 7-21. The result of classifying an uploaded image

Note that the application just has a single static file named style.css implemented 

according to Listing 7-26. It simply change the font size of both the <input> and <a> 

elements. It also adds decorations to the text of <h1> elements by adding a line over and 

under the text.

Listing 7-26. Static CSS File for Adding Styles

a, input{

font-size: 30px;

color: black;

}
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h1 {

text-decoration: underline overline dotted;

}

After discussing each part of the application, the complete code is available in 

Listing 7-27.

Listing 7-27. Complete Code of Flask Application for Classifying Fruits 360 

Dataset Images

import flask, werkzeug, skimage.io, skimage.color, numpy, pickle

app = flask.Flask(import_name="FruitsApp")

def sigmoid(inpt):

    return 1.0/(1.0+numpy.exp(-1*inpt))

def relu(inpt):

    result = inpt

    result[inpt<0] = 0

    return result

def extract_features(image_path):

    f = open("select_indices.pkl", "rb")

    indices = pickle.load(f)

    f.close()

    fruit_data = skimage.io.imread(fname=image_path)

    fruit_data_hsv = skimage.color.rgb2hsv(rgb=fruit_data)

    hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

    im_features = hist[0][indices]

    img_features = numpy.zeros(shape=(1, im_features.size))

    img_features[0, :] = im_features[:im_features.size]

    return img_features

def predict_outputs(weights_mat, data_inputs, activation="relu"):

    r1 = data_inputs

    for curr_weights in weights_mat:

        r1 = numpy.matmul(a=r1, b=curr_weights)
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        if activation == "relu":

            r1 = relu(r1)

        elif activation == "sigmoid":

            r1 = sigmoid(r1)

    r1 = r1[0, :]

    predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

    return predicted_label

def extractFeatures():

    img = flask.request.files["img"]

    img_name = img.filename

    img_secure_name = werkzeug.secure_filename(img_name)

    img.save(img_secure_name)

    print("Image Uploaded successfully.")

    img_features = extract_features(image_path=img_secure_name)

    print("Features extracted successfully.")

    f = open("weights_1000_iterations_10%_mutation.pkl", "rb")

    weights_mat = pickle.load(f)

    f.close()

    weights_mat = weights_mat[0, :]

     predicted_label = predict_outputs(weights_mat, img_features, 

activation="sigmoid")

    class_labels = ["Apple", "Raspberry", "Mango", "Lemon"]

    predicted_class = class_labels[predicted_label]

     return flask.render_template(template_name_or_list="result.html", 

predicted_class=predicted_class)

app.add_url_rule(rule="/extract", view_func=extractFeatures, 

methods=["POST"], endpoint="extract")

def homepage():

    return flask.render_template(template_name_or_list="home.html")

app.add_url_rule(rule="/", view_func=homepage)

app.run(host="127.0.0.5", port=6302, debug=True)
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 Deploying Trained Model Using CIFAR10 Dataset
The steps we discussed for deploying the model trained with the Fruits 360 dataset will 

be repeated but for a model created using TensorFlow trained using CIFAR10 dataset. 

There are some enhancements compared to the previous application. The structure of 

the application is given in Figure 7-22.

Figure 7-22. Application structure for deploying the pretrained model using 
CIFAR10 dataset

We will discuss each part of the application later. Let’s start with the code in  

Listing 7-28. The libraries required across the entire application are imported. It is  

preferred to make the prediction step in a separate module. This is why the 

CIFAR10Predict module is used. It has all required functions to predict the class label of 

an image from the CIFAR10 dataset. This makes the Python file of the Flask application 

focused on the view functions.

Listing 7-28. Preparing a Flask Application for Deploying the Pretrained Model 

Using CIFAR10 Dataset

import flask, werkzeug, os, scipy.misc, tensorflow

import CIFAR10Predict

app = flask.Flask("CIFARTF")

def redirect_upload():
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    return flask.render_template(template_name_or_list="upload_image.html")

app.add_url_rule(rule="/", endpoint="homepage", view_func=redirect_upload)

if __name__ == "__main__":

    prepare_TF_session(saved_model_path='\\AhmedGad\\model\\')

    app.run(host="localhost", port=7777, debug=True)

Before running the application, it is good practice to ensure it is the main file 

executed and not referenced from another file. If the file is running as the main file, the 

__name__ variable inside it will be equal to __main__. Otherwise, the __name__ variable 

is set to the module from which the file is called. The file should run only if it is the main 

file. This is why the if statement is used.

A TF session is created in order to restore the pretrained model using the prepare_

TF_session function implemented according to Listing 7-29. This function receives 

the path of the saved model in order to restore the graph and prepare the session by 

initializing the variables in the graph before making predictions.

Listing 7-29. Restoring the Pretrained TF Model

def prepare_TF_session(saved_model_path):

    global sess

    global graph

    sess = tensorflow.Session()

     saver = tensorflow.train.import_meta_graph(saved_model_path+'model.

ckpt.meta')

    saver.restore(sess=sess, save_path=saved_model_path+'model.ckpt')

    sess.run(tensorflow.global_variables_initializer())

    graph = tensorflow.get_default_graph()

    return graph

After preparing the session, the application runs with localhost as the host, port 

number 7777, and active debug mode.

There is a rule created that binds the homepage URL / to the view function 

redirect_upload(). This rule has the endpoint homepage. When the user visits the 

homepage http://localhost:777, the view function uses the render_template() 

method to render the upload_image.html template defined in Listing 7-30.
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Listing 7-30. HTML File for Uploading an Image from the CIFAR10 Dataset

<!DOCTYPE html>

<html lang="en">

<head>

<link rel="stylesheet" type="text/css" href="{{url_for(endpoint='static', 

filename='project_styles.css')}}">

<meta charset="UTF-8">

<title>Upload Image</title>

</head>

<body>

<form enctype="multipart/form-data" method="post" action="http://

localhost:7777/upload/">

<center>

<h3>Select CIFAR10 image to predict its label.</h3>

<input type="file" name="image_file" accept="image/*"><br>

<input type="submit" value="Upload">

</center>

</form>

</body>

</html>

This HTML file creates a form that allows the user to select the image to get uploaded 

to the server. A screenshot of this page is shown in Figure 7-23.

Figure 7-23. Screenshot of the HTML page used to upload a CIFAR10 image
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This page is very similar to the form created for the Fruits 360 application. After 

submitting the form, the data will be sent to the page associated with the rule specified 

by the action attribute, which is /upload. The rule in addition to its view function is 

given in Listing 7-31.

Listing 7-31. Uploading a CIFAR10 Image to the Server

def upload_image():

    global secure_filename

    if flask.request.method == "POST"

        img_file = flask.request.files["image_file"]

        secure_filename = werkzeug.secure_filename(img_file.filename

        img_file.save(secure_filename)

        print("Image uploaded successfully.")

        return flask.redirect(flask.url_for(endpoint="predict"))

    return "Image upload failed."

app.add_url_rule(rule="/upload/", endpoint="upload", view_func=upload_

image, methods=["POST"])

The /upload rule is given an endpoint named upload and just responds to the HTTP 

messages of type POST. It is associated with the upload_image view function. It retrieves 

the secure file name from the original file name and saves the image to the server. If the 

image is successfully uploaded, then it redirects the application using the redirect() 

method to the URL associated with the predict endpoint. That endpoint belongs to the 

/predict rule. The rule and its view function are given in Listing 7-32.

Listing 7-32. View Function to Predict the Class Label for CIFAR10 Image

def CNN_predict():

    global sess

    global graph

    global secure_filename

    img = scipy.misc.imread(os.path.join(app.root_path, secure_filename))
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    if(img.ndim) == 3:

        if img.shape[0] == img.shape[1] and img.shape[0] == 32:

            if img.shape[-1] == 3:

                predicted_class = CIFAR10Predict.main(sess, graph, img)

                 return flask.render_template(template_name_or_

list="prediction_result.html", predicted_class=predicted_

class)

            else:

                 return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

        else:

             return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

    return "An error occurred."

app.add_url_rule(rule="/predict/", endpoint="predict", view_func=CNN_

predict)

The function reads the image file and checks if it already belongs to the CIFAR10 

dataset based on its shape and size. Each image in such a dataset has three dimensions; 

the first two dimensions are equal in their size, which is 32. Moreover, the images are 

RGB and thus the third dimension has three channels. If these specifications are not 

found, then the application will get redirected to the error.html template implemented 

according to Listing 7-33.

Listing 7-33. Template for Indicating That the Uploaded Image Does Not Belong 

to the CIFAR10 Dataset

<!DOCTYPE html>

<html lang="en">

<head>

<link type="text/css" rel="stylesheet" href="{{url_for(endpoint='static', 

filename='project_styles.css')}}">

<meta charset="UTF-8">

<title>Error</title>

</head>

<body>

<center>
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<h1 class="error">Error</h1>

<h2 class="error-msg">Read image dimensions {{img_shape}} do not match the 

CIFAR10 specifications (32x32x3).</h2>

<a href="{{url_for(endpoint='homepage')}}"><span>Return to homepage</

span>.</a>

</center>

</body>

</html>

It uses expressions to print the size of the uploaded image in addition to the standard 

size of the CIFAR10 dataset. When uploading an image of different shapeCIFAR10 

dataset:shape and size, uploaded images, the error looks like what is shown in Figure 7- 24.

Figure 7-24. Error when uploading an image with different shape or size from the 
CIFAR10 images

If the shape and size of the uploaded images match those of the CIFAR10 images, 

then it is likely a CIFAR10 image and its label will be predicted using the module 

CIFAR10Predict. As shown in Listing 7-34, it has a function called main, which accepts 

the image after being read and returns its class label.
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Listing 7-34. Predicting the Class Label of the Image

def main(sess, graph, img):

    patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"

    dataset_array = numpy.random.rand(1, 32, 32, 3)

    dataset_array[0, :, :, :] = img

     softmax_propabilities = graph.get_tensor_by_name(name="softmax_

probs:0")

    softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

    data_tensor = graph.get_tensor_by_name(name="data_tensor:0")

    keep_prop = graph.get_tensor_by_name(name="keep_prop:0")

    feed_dict_testing = {data_tensor: dataset_array, keep_prop: 1.0}

     softmax_propabilities_, softmax_predictions_ = sess.run([softmax_

propabilities, softmax_predictions], feed_dict=feed_dict_testing)

    label_names_dict = unpickle_patch(patches_dir + "batches.meta")

    dataset_label_names = label_names_dict[b"label_names"]

    return dataset_label_names[softmax_predictions_[0]].decode('utf-8')

The function restores required tensors that help in returning the prediction label 

based on their names, such as the softmax_predictions tensor. Some other tensors 

are restored to override their values, which are the keep_prop to avoid dropping any 

neuron in the testing phase and data_tensor tensors to provide the data of the image file 

uploaded. The session then runs to return the predicted label. The label is just a number 

that is an identifier to the class. The dataset provides a metadata file in which there is a 

list containing the names of all classes. The identifier is converted into the class string 

label by indexing the list.

After prediction completes, the CNN_predict() view functions sends the predicted 

class to the prediction_result.html template for rendering. This template is 

implemented as given in Listing 7-35. It is very simple. It just uses an expression to 

print the predicted class within a <span> element. The page provides a link to return 

to the homepage based on the endpoint to select another image for classification. The 

rendered page after uploading an image is given in Figure 7-25.
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Listing 7-35. Rendering Predicted Class

<!DOCTYPE html>

<html lang="en">

<head>

<link rel="stylesheet" type="text/css" href="{{url_for(endpoint='static', 

filename='project_styles.css')}}">

<script type="text/javascript" src="{{url_for(endpoint='static', 

filename='result.js')}}"></script>

<meta charset="UTF-8">

<title>Prediction Result</title>

</head>

<body onload="show_alert('{{predicted_class}}')">

<center><h1>Predicted Class Label : <span>{{predicted_class}}</span></h1>

<br>

<a href="{{url_for(endpoint='homepage')}}"><span>Return to homepage</

span>.</a>

</center>

</body>

</html>

Note that when loading the <body> element of Listing 7-35, there is a call to a 

JavaScript function named show_alert(). It accepts the predicted class label and shows 

an alert. Its implementation is given in Listing 7-36.

Figure 7-25. The rendered result after predicting the class label
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Listing 7-36. JavaScript Alert Showing the Predicted Class

function show_alert(predicted_class){

alert("Processing Finished.\nPredicted class is *"+predicted_class+"*.")

}

Now that the individual parts of the application have been discussed, the complete 

code is given in Listing 7-37.

Listing 7-37. Complete Flask Application for CIFAR10 Dataset

import flask, werkzeug, os, scipy.misc, tensorflow

import CIFAR10Predict#Module for predicting the class label of an input 

image.

#Creating a new Flask Web application. It accepts the package name.

app = flask.Flask("CIFARTF")

def CNN_predict():

    """

     Reads the uploaded image file and predicts its label using the saved 

pretrained CNN model.

     :return: Either an error if the image is not for the CIFAR10 dataset or 

redirects the browser to a new page to show the prediction result if no 

error occurred.

    """

    global sess

    global graph

# Setting the previously created 'secure_filename' to global.

# This is because to be able to invoke a global variable created in another 

function, it must be defined global in the caller function.

    global secure_filename

    #Reading the image file from the path it was saved in previously.

    img = scipy.misc.imread(os.path.join(app.root_path, secure_filename))

# Checking whether the image dimensions match the CIFAR10 specifications.
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# CIFAR10 images are RGB (i.e. they have 3 dimensions). Its number of 

dimensions was not equal to 3, then a message will be returned.

    if(img.ndim) == 3:

# Checking if the number of rows and columns of the read image matched 

CIFAR10 (32 rows and 32 columns).

        if img.shape[0] == img.shape[1] and img.shape[0] == 32:

# Checking whether the last dimension of the image has just 3 channels 

(Red, Green, and Blue).

            if img.shape[-1] == 3:

# Passing all preceding conditions, the image is proved to be of CIFAR10.

# This is why it is passed to the predictor.

                predicted_class = CIFAR10Predict.main(sess, graph, img)

# After predicting the class label of the input image, the prediction label 

is rendered on an HTML page.

# The HTML page is fetched from the /templates directory. The HTML page 

accepts an input which is the predicted class.

                 return flask.render_template(template_name_or_

list="prediction_result.html", predicted_class=predicted_

class)

            else:

                 # If the image dimensions do not match the CIFAR10 

specifications, then an HTML page is rendered to show the 

problem.

                 return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

        else:
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             # If the image dimensions do not match the CIFAR10 

specifications, then an HTML page is rendered to show the 

problem.

             return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

     return "An error occurred."#Returned if there is a different error 

other than wrong image dimensions.

# Creating a route between the URL (http://localhost:7777/predict) to a 

viewer function that is called after navigating to such URL.

# Endpoint 'predict' is used to make the route reusable without hard-coding 

it later.

app.add_url_rule(rule="/predict/", endpoint="predict", view_func=CNN_

predict)

def upload_image():

    """

     Viewer function that is called in response to getting to the 'http://

localhost:7777/upload' URL.

    It uploads the selected image to the server.

     :return: redirects the application to a new page for predicting the 

class of the image.

    """

     #Global variable to hold the name of the image file for reuse later in 

prediction by the 'CNN_predict' viewer functions.

    global secure_filename

     if flask.request.method == "POST":#Checking of the HTTP method 

initiating the request is POST.

         img_file = flask.request.files["image_file"]#Getting the file name 

to get uploaded.

         secure_filename = werkzeug.secure_filename(img_file.

filename)#Getting a secure file name. It is a good practice to use 

it.

         img_file.save(secure_filename)#Saving the image in the specified 

path.

        print("Image uploaded successfully.")
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# After uploading the image file successfully, next is to predict the class 

label of it. The application will fetch the URL that is tied to the HTML 

page responsible for prediction and redirects the browser to it.

# The URL is fetched using the endpoint 'predict'.

        return flask.redirect(flask.url_for(endpoint="predict"))

    return "Image upload failed."

# Creating a route between the URL (http://localhost:7777/upload) to a 

viewer function that is called after navigating to such URL.

# Endpoint 'upload' is used to make the route reusable without hard-coding 

it later. The set of HTTP method the viewer function is to respond to is 

added using the ‘methods’ argument. In this case, the function will just 

respond to requests of the methods of type POST.

app.add_url_rule(rule="/upload/", endpoint="upload", view_func=upload_

image, methods=["POST"])

def redirect_upload():

    """

     A viewer function that redirects the Web application from the root to 

an HTML page for uploading an image to get classified.

     The HTML page is located under the /templates directory of the 

application.

     :return: HTML page used for uploading an image. It is 'upload_image.

html' in this example.

    """

    return flask.render_template(template_name_or_list="upload_image.html")

# Creating a route between the homepage URL (http://localhost:7777) to a 

viewer function that is called after getting to such a URL.

# Endpoint 'homepage' is used to make the route reusable without hard- 

coding it later.

app.add_url_rule(rule="/", endpoint="homepage", view_func=redirect_upload)
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def prepare_TF_session(saved_model_path):

    global sess

    global graph

    sess = tensorflow.Session()

     saver = tensorflow.train.import_meta_graph(saved_model_path+'model.

ckpt.meta')

    saver.restore(sess=sess, save_path=saved_model_path+'model.ckpt')

    #Initializing the variables.

    sess.run(tensorflow.global_variables_initializer())

    graph = tensorflow.get_default_graph()

    return graph

# To activate the web server to receive requests, the application must run.

# A good practice is to check whether the file is called from an external 

Python file or not.

# If not, then it will run.

if __name__ == "__main__":

# In this example, the app will run based on the following properties:

# host: localhost

# port: 7777

# debug: flag set to True to return debugging information.

    #Restoring the previously saved trained model.

    prepare_TF_session(saved_model_path='\\AhmedGad\\model\\')

    app.run(host="localhost", port=7777, debug=True)
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CHAPTER 8

Cross-Platform Data 
Science Applications
There are releases from the current DL libraries that support building applications for 

mobile devices. For example, TensorFlowLite, Caffe Android, and Torch Android are 

all releases from TF, Caffe, and Torch, respectively, to support mobile devices. These 

releases are based on their parents. There must be an in-between step in order to make 

the original model work on mobile devices. For example, the process of creating an 

Android application that uses TensorFlowLite has the following summarized steps:

 1. Prepare the TF Model.

 2. Convert the TF Model to TensorFlowLite Model.

 3. Create an Android Project.

 4. Import the TensorFlowLite Model Within the Project.

 5. Call the Model Within Java Code.

It is tiresome to go through these steps for building a model suitable for running on 

mobile devices. The challenging step is the second one.

TensorFlowLite is a release compatible with mobile devices. Thus, it is simplified 

compared to its ancestor TF. This means it does not support everything in its parent 

library. Some operations in TF such as tanh, image.resize_bilinear, and depth_to_space 

are not supported in TensorFlowLite to date. This adds restrictions when preparing 

a model that works on mobile devices. Moreover, the model developer has to use 

languages in order to create an Android application running a trained CNN model. 

Using Python, the model will be created using TF. After optimizing the model using 

the TF optimizing converter (TOCO), a project is created using Android Studio. Inside 

such a project, the model will be called using Java. As a result, the process is not 
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straightforward, and it is challenging to create the application. For more information 

about building mobile applications using TensorFlowLite, read the documentation at 

this link (www.tensorflow.org/lite/overview). In this chapter, we will use Kivy (KV) for 

building applications running cross-platform with minimal effort.

Kivy is an abstract and modular open source cross-platform Python framework used 

to create natural user interfaces (UIs). It decouples the developer from complex details 

by using back-end libraries for low-level access to graphics hardware and handling both 

audio and video. It just gives the developer simple APIs for doing the tasks.

This chapter gives an introduction to Kivy using a number of simple examples to 

help explain its basic program structure, UI widgets, structuring of the widgets using 

KV language, and handling actions. Kivy supports the execution of the same Python 

code on Window, Linux, Mac, and also mobile devices, which makes it cross-platform. 

Using Buildozer and Python-4-Android (P4A), the Kivy application is converted into 

an Android package. Not only executes native Python code; Kivy also supports some 

libraries to be executed on mobile devices such as NumPy and PIL (Python Image 

Library). By the end of this chapter, a cross-platform application is built to execute the 

CNN implemented in Chapter 5 using NumPy. Ubuntu is used in this chapter because 

Buildozer is currently available on Linux.

 Introduction to Kivy
In this section, Kivy basics are discussed in detail based on some examples. This helps us 

to put our hands on the way to build our own applications. Remember from Chapter 7  

that Flask application starts to create an application by instantiating the Flask class; then 

the application runs by calling the run() method. Kivy is similar but with some changes. 

We can assume that the Flask class corresponds to the App class in Kivy. There is a 

method called run() inside both Kivy and Flask. The Kivy application is created not by 

instantiating the class App but by instantiating a child class extending the App class. The 

application then runs by calling the run() method using an instance created from the 

child class.

Kivy is used to build a UI that consists of a set of visual elements called widgets. 

Between instantiating the class and running it, we have to specify which widgets are 

used and their layout. The App class supports a method called build(), which returns 

the layout widget containing all other widgets in the UI. This method can be overridden 

from the parent App class.
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 Basic Application Using BoxLayout
Let’s make things clearer by discussing a basic Kivy application in Listing 8-1. At first, the 

required modules from Kivy are imported. The kivy.app contains the App class. This 

class is used as the parent of our defined class FirstApp. The second statement imports 

kivy.uix.label, which has the label widget. This widget just displays text on the UI.

Inside the build() method, the label widget is created using the kivy.uix.label.

Label class. The class constructor accepts an argument named text, which is the text to 

be displayed on the UI. The returned label is saved as a property of the FirstApp object. 

Adding widgets as properties for the class object makes it easy to retrieve them later 

compared to saving them in separate variables.

Listing 8-1. Basic Kivy Application

import kivy.app

import kivy.uix.label

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

    def build(self):

        self.label = kivy.uix.label.Label(text="Hello Kivy")

        self.layout = kivy.uix.boxlayout.BoxLayout()

        self.layout.add_widget(widget=self.label)

        return self.layout

firstApp = FirstApp()

firstApp.run()

Widgets in Kivy are grouped into a root widget. In Listing 8-1, the BoxLayout is used 

as the root widget, which contains all other widgets. This is why the kivy.uix.boxlayout 

is imported. Based on the constructor of the kivy.uix.label.BoxLayout class, the 

BoxLayout object is saved as a property of the FirstClass object. After creating both 

the label and the layout objects, the label is added to the layout using the add_widget() 

method. This method has an argument named widget, which accepts the widget to be 

added to the layout. After adding the label into the root widget (layout), the layout is 

returned by the build() method.
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After creating the child class FirstApp and preparing its build() method, an 

instance from that class is created. The run() method is then called by that instance and 

the application window is displayed according to Figure 8-1.

Figure 8-1. Simple Kivy application with a text label

 Kivy Application Life Cycle
By just running the application, the widgets defined inside the build() method are 

rendered on the screen. Note that the Kivy life cycle is illustrated in Figure 8-2.  

It is similar to the Android application life cycle. The life cycle starts by running the 

application using the run() method. After that, the build() method is executed, 

which returns the widgets to be displayed. After executing the on_start() method, 

the application runs successfully. Also, the application might get paused or stopped. 

If paused, then the on_pause() method is called. If the application resumed, then the 

on_resume() method is called. If not resumed, then the app stops. The app might get 

stopped directly without being paused. If this case, the on_stop() method is called.
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The title at the top of the Figure 8-1 has the word First. What is that? The child class 

is named FirstApp. When the class is named with the word App at the end, Kivy uses the 

work before it as the application title. Naming the class MyApp, then the title is My. Note 

that the word App must start with a capital letter. If the class is named Firstapp, then 

the title will be also Firstapp. Note that we have the ability to set a custom name using 

the title argument of the class constructor. The constructor also accepts an argument 

named icon, which is the path of an image.

Listing 8-2 sets the application title to a custom title and also implements the 

on_start() and on_stop() methods. The window is shown in Figure 8-3. When the 

application starts, the on_start() method is called to print a message. This is the same 

for the on_stop() method.

Figure 8-2. Kivy application life cycle
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Listing 8-2. Implementing Life Cycle Methods

import kivy.app

import kivy.uix.label

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

    def build(self):

        self.label = kivy.uix.label.Label(text="Hello Kivy")

        self.layout = kivy.uix.boxlayout.BoxLayout()

        self.layout.add_widget(widget=self.label)

        return self.layout

    def on_start(self):

        print("on_start()")

    def on_stop(self):

        print("on_stop()")

firstApp = FirstApp(title="First Kivy Application.")

firstApp.run()

Figure 8-3. Channing the application title
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We can add more than one widget inside the BoxLayout. This layout widget arranges 

its child widgets either vertically or horizontally. Its constructor has an argument named 

orientation to define the arrangement. It has two values: horizontal and vertical. It 

defaults to horizontal.

If the orientation is set to vertical, then the widgets are stacked on top of each other, 

where the first widget added appears at the bottom of the window and the last widget 

added appears on the top. In this case, the window height is divided equally across all 

child widgets.

If the orientation is horizontal, then the widgets are added side by side, where the 

first widget added is the leftmost widget on the screen, while the last widget added is the 

rightmost widget on the screen. In this case, the width of the window is divided equally 

across all child widgets.

Listing 8-3 uses five button widgets with their text set to Button 1, Button 2, up to 

Button 5. These widgets are added horizontally inside a BoxLayout widget. The result is 

given in Figure 8-4.

Listing 8-3. Kivy Application using BoxLayout as the Root Widget with 

Horizontal Orientation

import kivy.app

import kivy.uix.button

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

    def build(self):

        self.button1 = kivy.uix.button.Button(text="Button 1")

        self.button2 = kivy.uix.button.Button(text="Button 2")

        self.button3 = kivy.uix.button.Button(text="Button 3")

        self.button4 = kivy.uix.button.Button(text="Button 4")

        self.button5 = kivy.uix.button.Button(text="Button 5")

         self.layout = kivy.uix.boxlayout.BoxLayout(orientation= 

"horizontal")

        self.layout.add_widget(widget=self.button1)

        self.layout.add_widget(widget=self.button2)

        self.layout.add_widget(widget=self.button3)

        self.layout.add_widget(widget=self.button4)

        self.layout.add_widget(widget=self.button5)
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        return self.layout

firstApp = FirstApp(title="Horizontal BoxLayout Orientation.")

firstApp.run()

Figure 8-4. The horizontal orientation of the BoxLayout widget

 Widget Size
The BoxLayout divides the screen equally across all widgets. Adding five widgets, then it 

splits the screen into five equal parts in both width and height. It assigns each widget a 

part of equal size. We can make the part size assigned to a widget larger or smaller using 

the size_hint argument of the widgets. It accepts a tuple with two values defining the 

width and height relative to the window size. By default, the tuple is (1,1) for all widgets. 

This means equal sizes. If this argument is set to (2, 1) for a widget, the widget width will 

be doubled compared to the default width. If it is set to (0.5,1), then the widget width will 

be half the default width.

Listing 8-4 changes the size_hint argument for some widgets. Figure 8-5 shows 

the result where the text of each button reflects its widths relative to the window size. 

Note that the widgets make a hint to the parent widget that it would like its size to be 

according to the values specified by the size_hint argument. The parent might accept 

or reject the request. This is why it has the word hint in the argument name.  
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For example, setting the col_force_default or row_force_default properties of the 

widget makes the parent completely ignore the size_hint argument. Note that the 

size_hint is an argument to the widget constructor and also available as a property for 

the instances from the widgets.

Listing 8-4. Using the size_hint Argument with theIf added “with” not OK, 

please clarify listing caption. Widgets to Change Their Relative Size

import kivy.app

import kivy.uix.button

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

    def build(self):

        self.button1 = kivy.uix.button.Button(text="2", size_hint = (2, 1))

        self.button2 = kivy.uix.button.Button(text="1")

         self.button3 = kivy.uix.button.Button(text="1.5", size_hint =  

(1.5, 1))

         self.button4 = kivy.uix.button.Button(text="0.7", size_hint =  

(0.7, 1))

        self.button5 = kivy.uix.button.Button(text="3", size_hint = (3, 1))

         self.layout = kivy.uix.boxlayout.BoxLayout(orientation="horizontal")

        self.layout.add_widget(widget=self.button1)

        self.layout.add_widget(widget=self.button2)

        self.layout.add_widget(widget=self.button3)

        self.layout.add_widget(widget=self.button4)

        self.layout.add_widget(widget=self.button5)

        return self.layout

firstApp = FirstApp(title="Horizontal BoxLayout Orientation.")

firstApp.run()
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 GridLayout
There are also layouts other than the BoxLayout. For example, the GridLayout divides 

the screen into a grid based on the specified number of rows and columns. According 

to Listing 8-5, a grid layout is created with two rows and three columns in which six 

buttons are added. The number of rows and columns are set according to the rows and 

cols properties, respectively. The first widget added appears on the top left corner, while 

the last widget added appears on the bottom right corner. The result is illustrated in 

Figure 8-6.

Listing 8-5. Dividing the Window into a Grid of Size 2×3 Using GridLayout

import kivy.app

import kivy.uix.button

import kivy.uix.gridlayout

class FirstApp(kivy.app.App):

    def build(self):

        self.button1 = kivy.uix.button.Button(text="Button 1")

        self.button2 = kivy.uix.button.Button(text="Button 2")

        self.button3 = kivy.uix.button.Button(text="Button 3")

        self.button4 = kivy.uix.button.Button(text="Button 4")

Figure 8-5. Changing the width of the widgets using size_hint argument
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        self.button5 = kivy.uix.button.Button(text="Button 5")

        self.button6 = kivy.uix.button.Button(text="Button 6")

        self.layout = kivy.uix.gridlayout.GridLayout(rows=2, cols=3)

        self.layout.add_widget(widget=self.button1)

        self.layout.add_widget(widget=self.button2)

        self.layout.add_widget(widget=self.button3)

        self.layout.add_widget(widget=self.button4)

        self.layout.add_widget(widget=self.button5)

        self.layout.add_widget(widget=self.button6)

        return self.layout

firstApp = FirstApp(title="GridLayout with 2 rows and 3 columns.")

firstApp.run()

Figure 8-6. GridLayout with two rows and three columns

Another layout that is suitable for mobile devices is the PageLayout. It actually builds 

several pages within the same layout. At the page borders, the user can drag the page left 

or right in order to navigate to another page. Creating such a layout is simple. Just create 

an instance of the kivy.uix.pagelayout.PageLayout class, which is similar to what we 

did before. Then, add widgets into the layout exactly as we did using the add_widget() 

method.

Chapter 8  Cross-platform Data sCienCe appliCations



350

 More Widgets
There are multiple widgets to use in the UI. For example, the Image widget is used to 

display an image based on its source. The TextInput widget allows the user to type 

inputs into the application. Others include CheckBox, RadioButton, Slider, and more.

Listing 8-6 gives an example with Button, Label, TextInput, and Image widgets. The 

TextInput class constructor has a property named hint_text that shows a hint message 

inside the widget to help the user know what input to enter. The image widget uses the 

source property to specify the image path. Figure 8-7 shows the result. Later, we will 

handle the actions of these widgets such as button click, changing label text, and more.

Listing 8-6. BoxLayout with Label, TextInput, Button, and Image Widgets

import kivy.app

import kivy.uix.label

import kivy.uix.textinput

import kivy.uix.button

import kivy.uix.image

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

    def build(self):

        self.label = kivy.uix.label.Label(text="Label")

         self.textinput = kivy.uix.textinput.TextInput(hint_text="Hint 

Text")

        self.button = kivy.uix.button.Button(text="Button")

        self.image = kivy.uix.image.Image(source="im.png")

        self.layout = kivy.uix.boxlayout.BoxLayout(orientation="vertical")

        self.layout.add_widget(widget=self.label)

        self.layout.add_widget(widget=self.textinput)

        self.layout.add_widget(widget=self.button)

        self.layout.add_widget(widget=self.image)

        return self.layout

firstApp = FirstApp(title="BoxLayout with Label, Button, TextInput, and 

Image")

firstApp.run()
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 Widget Tree
In the previous examples, there is a root widget (layout) with several children directly 

connected to it. The widget tree of Listing 8-6 is illustrated in Figure 8-8. The tree has 

just one level. We can create a deeper tree like the one in Figure 8-9, in which the root 

BoxLayout widget with vertical orientation has two layouts as children. The first one is 

a GridLayout widget with two rows and two columns. The second child is a horizontal 

BoxLayout widget with horizontal orientation. These child GridLayout widgets have 

their own child widgets.

Figure 8-7. Vertical BoxLayout with Label, TextInput, Button, and Image 
widgets

Figure 8-8. Widget tree of the Kivy application in Listing 8-6
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Figure 8-9. Widget tree with nested layouts

The Kivy application with the widget tree defined in Figure 8-9 is given in Listing 8-7. 

The application creates each parent followed by creating its children and finally adding 

these children into the parent. The rendered window of the application is available in 

Figure 8-10.

Listing 8-7. Kivy Application with Nested Widgets in the Widget Tree

import kivy.app

import kivy.uix.label

import kivy.uix.textinput

import kivy.uix.button

import kivy.uix.image

import kivy.uix.boxlayout

import kivy.uix.gridlayout

class FirstApp(kivy.app.App):

    def build(self):

        self.gridLayout = kivy.uix.gridlayout.GridLayout(rows=2, cols=2)

        self.image1 = kivy.uix.image.Image(source="apple.jpg")

        self.image2 = kivy.uix.image.Image(source="bear.jpg")

        self.button1 = kivy.uix.button.Button(text="Button 1")

        self.button2 = kivy.uix.button.Button(text="Button 2")

        self.gridLayout.add_widget(widget=self.image1)

        self.gridLayout.add_widget(widget=self.image2)

        self.gridLayout.add_widget(widget=self.button1)

        self.gridLayout.add_widget(widget=self.button2)
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        self.button3 = kivy.uix.button.Button(text="Button 3")

        self.button4 = kivy.uix.button.Button(text="Button 4")

         self.boxLayout = kivy.uix.boxlayout.BoxLayout(orientation= 

"horizontal")

         self.textinput = kivy.uix.textinput.TextInput(hint_text="Hint 

Text.")

        self.button5 = kivy.uix.button.Button(text="Button 5")

        self.boxLayout.add_widget(widget=self.textinput)

        self.boxLayout.add_widget(widget=self.button5)

         self.rootBoxLayout = kivy.uix.boxlayout.BoxLayout(orientation= 

"vertical")

        self.rootBoxLayout.add_widget(widget=self.gridLayout)

        self.rootBoxLayout.add_widget(widget=self.button3)

        self.rootBoxLayout.add_widget(widget=self.button4)

        self.rootBoxLayout.add_widget(widget=self.boxLayout)

        return self.rootBoxLayout

firstApp = FirstApp(title="Nested Widgets.")

firstApp.run()

Figure 8-10. Nested widgets
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 Handling Events
We can handle the events generated by the Kivy widgets using the bind() method. This 

method accepts an argument specifying the target event to be handled. This argument 

is assigned a function or method to be called for handling such an event. For example, 

when a button is pressed, the on_press event is fired. As a result, the argument used with 

the bind() method will be named on_press. Assume that we want to handle this event 

using a method called handle_press, then the on_press argument of the bind() method 

will be assigned this method name. Note that the method handling an event accepts an 

argument representing the widget that fired the event. Let’s see how things work using 

the application in Listing 8-8.

The application has two TextInput widgets, one Label, and a Button. The user 

enters a number in each of the TextInput widgets. When the button is pressed, 

the numbers are fetched and added, and then the result is rendered on the Label. 

Everything in the application is familiar to us based on the previous examples except for 

calling the bind() method for handling the press event using the add_nums() method.

Listing 8-8. Application for Adding Two Numbers and Showing Their Results on 

a Label

import kivy.app

import kivy.uix.label

import kivy.uix.textinput

import kivy.uix.button

import kivy.uix.image

import kivy.uix.boxlayout

import kivy.uix.gridlayout

class FirstApp(kivy.app.App):

    def add_nums(self, button):

        num1 = float(self.textinput1.text)

        num2 = float(self.textinput2.text)

        result = num1 + num2

        self.label.text = str(result)

    def build(self):
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         self.boxLayout = kivy.uix.boxlayout.BoxLayout(orientation= 

"horizontal")

         self.textinput1 = kivy.uix.textinput.TextInput(hint_text="Enter 

First Number.")

         self.textinput2 = kivy.uix.textinput.TextInput(hint_text="Enter 

Second Number.")

        self.boxLayout.add_widget(widget=self.textinput1)

        self.boxLayout.add_widget(widget=self.textinput2)

        self.label = kivy.uix.label.Label(text="Result of Addition.")

        self.button = kivy.uix.button.Button(text="Add Numbers.")

        self.button.bind(on_press=self.add_nums)

         self.rootBoxLayout = kivy.uix.boxlayout.BoxLayout(orientation= 

"vertical")

        self.rootBoxLayout.add_widget(widget=self.label)

        self.rootBoxLayout.add_widget(widget=self.boxLayout)

        self.rootBoxLayout.add_widget(widget=self.button)

        return self.rootBoxLayout

firstApp = FirstApp(title="Handling Actions using Bind().")

firstApp.run()

The button calls the bind() method, which is a property of any widget. For handling 

the on_press event, the method will use it as an argument. This argument is set equal 

to the custom function created with the name add_nums. This means the add_nums() 

method will be executed each time the on_press event is fired. The on_press itself is a 

method. Because it is empty by default, we need to add some logic to it. That logic may 

be a method we defined in the Python file, such as the add_nums method. Note that we 

created a method, not a function for handling the event to have access to all widgets 

within the object. If a function is used, then we have to pass the properties of the widgets 

needed for handling the event.

Inside the add_nums() method, the text inside the two TextInput widgets is returned 

using the text property into the num1 and num2 variables. Because the result returned by 

the text property is a string, we have to convert it into a number. This is done using the 

float() function. The two numbers are added together and the result is returned to the 

result variable. Adding two numbers will return a number. Thus, the data type of the 
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result variable is numeric. Because the text property only accepts strings, we have to 

convert the result variable into a string using the str() function in order to display its 

value on the label. Figure 8-11 shows the application UI after adding two numbers and 

rendering the result on the Label widget.

Figure 8-11. Application UI that adds two numbers and displays the result on a 
Label widget

 KV Language
Enlarging the widget tree by adding more widgets makes the Python code harder to 

debug. Similar to what we did in Chapter 7 by separating the HTML code from the 

logic inside the Flask application, in this chapter we will separate the UI code from the 

application logic.

The UI will be created using a language called KV language (kvlang or Kivy 

language). This language creates files with extension .kv holding the UI widgets. Thus, 

there will be a .py file for the application logic such as handling the events, and another 

.kv file for holding the UI of the application. The KV language builds the widget tree in a 

simple way that is well read compared to adding it inside the Python code. KV language 

makes it easy to debug the UI because it is clear what children belong to a given parent.

The KV file consists of a set of rules similar to the CSS rule that defines the widgets. 

A rule consists of the widget class and a set of properties with their values. A colon is 

added after the widget class name to indicate the beginning of the widget content. The 
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content under a given widget is indented just the same as what Python does for defining 

the content of blocks. There is a colon between the property name and its value. For 

example, Listing 8-9 creates a rule for building a button widget.

The button widget is written followed by a colon. Everything indented after the colon 

belongs to that widget. The number of indentation spaces is not fixed to just four. It is 

similar to Python in that we can use any number of spaces. We find that there are three 

properties that are indented. The first one is the text property, which is separated from 

the value using a colon. Going to a new indented line, we can write the new property 

background_color, which is separated from its value using a colon. By the way, the color 

is defined using the RGBA color space, where A represents the alpha channel. Color values 

are between 0.0 and 1.0. For the third property, the same process is repeated by writing its 

name separated from its value using a colon. The color property defines the text color.

Listing 8-9. Preparing the Button Widget with Some Properties Using KV 

Language

Button:

    text: "Press Me."

   background_color: (0.5, 0.5, 0.5, 1.0)

    color: (0,0,0,1)

We can create a simple Kivy application that uses a KV file for building the 

UI. Assume we want to build a UI with the BoxLayout widget as the root with vertical 

orientation. That root widget has three children (Button, Label, and TextInput). Note 

that the KV language has only one root widget, which is defined by typing it without any 

indentation. The children of this root widget will be indented equally. The KV language 

file is given in Listing 8-10. The Button, Label, and TextInput widgets are indented 

by four spaces after the root widget. The root widget itself can have properties. The 

properties of each child widget are indented behind their widgets. It is simple enough, 

but how can we use this KV file inside the Python code?

Listing 8-10. Simple UI Created Using KV Language

BoxLayout:

    orientation: "vertical"

    Button:

        text: "Press Me."

        color: (1,1,1,1)
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    Label:

        text: "Label"

    TextInput:

        hint_text: "TextInput"

There are two ways of loading the KV file inside the Python code. The first way is to 

specify the path of the file inside the load_file() method of the kivy.lang.builder.

Builder class. This method uses its filename argument to specify the path of the file. 

The file can be located anywhere and is not required to be in the same directory as the 

Python file. Listing 8-11 shows how to locate the KV file this way.

Previously, the return of the build() method is the root widget defined within the 

Python file. Now it returns the result of the load_file() method. The Python code is 

clearer after separating the logic inside the Python file from the presentation, which is 

now inside the KV file.

Listing 8-11. Locating the LV File Using Its Path

import kivy.app

import kivy.lang.builder

class FirstApp(kivy.app.App):

    def build(self):

         return kivy.lang.builder.Builder.load_file(filename='ahmedgad/

FirstApp/first.kv')

firstApp = FirstApp(title="Importing UI from KV File.")

firstApp.run()

The code can be made clearer by using the second way of loading the KV file. This 

way depends on the name of the child class inheriting the App class. If this class is 

named FirstApp, then Kivy will look for a KV file named first.kv. That is, the App word 

is removed and the remaining text First is converted into lowercase. If there is a file 

named first.kv inside the same directory at which the Python file exists, then this file 

will be loaded automatically.

When this method is used, the Python code will be as given in Listing 8-12. The code 

is now clearer than before and simpler to debug. The pass statement is added inside the 

FirstApp class to avoid leaving it empty. Note that if Kivy could not locate a file named 

according to first.kv, the application will still run but it will show a blank window.
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Listing 8-12. Loading the KV File Named According to the Child Class Name

import kivy.app

class FirstApp(kivy.app.App):

    pass

firstApp = FirstApp(title="Importing UI from KV File.")

firstApp.run()

We can separate the UI in Listing 8-8 from the Python code and bind the event 

handler to the button inside the KV file. The KV file is given in Listing 8-13.

There are some further points worth mentioning. A widget can be given an ID 

inside the KV file using the id property. Its value does not need to be enclosed between 

quotes. The ID can be used to retrieve properties of widgets inside both the KV file and 

the Python file. According to the code, IDs are given to the elements Label and the two 

TextInput widgets. The reason is that these are the widgets we are looking to retrieve or 

change in terms of their properties.

Listing 8-13. UI of Listing 8-8 for Adding Two Numbers Separated into KV File

BoxLayout:

    orientation: "vertical"

    Label:

        text: "Result of Addition."

        id: label

    BoxLayout:

        orientation: "horizontal"

        TextInput:

            hint_text: "Enter First Number."

            id: textinput1

        TextInput:

            hint_text: "Enter Second Number."

            id: textinput2

    Button:

        text: "Add Numbers."

        on_press: app.add_nums(root)
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The button widget has the on_press property. It is used to bind the event handler 

to the on_press event. The event handler is the add_nums() method found inside the 

Python code in Listing 8-14. Thus, we want to call a Python method from the KV file. 

How can we do that?

The KV language has three helpful keywords: app, referring to the application 

instance; root, referring to the root widget in the KV file; and self, which refers to the 

current widget. The suitable keyword for use in order to call a method from the Python 

code is the app keyword. Because it refers to the entire application, then it will be able 

to refer to the methods inside the Python file. Thus, we can use it to call the add_nums() 

method using app.add_nums().

Listing 8-14. Kivy Python File for Handling the on_press Event

import kivy.app

class FirstApp(kivy.app.App):

    def add_nums(self, root):

        num1 = float(self.root.ids["textinput1"].text)

        num2 = float(self.root.ids["textinput2"].text)

        result = num1 + num2

        self.root.ids["label"].text = str(result)

firstApp = FirstApp(title="Importing UI from KV File.")

firstApp.run()

Inside this method, we want to refer to the TextInput and label widgets in order to 

fetch the numbers entered and print the result on the label. Because the self argument 

refers to what called it, which is the instance about the entire application, we can use it to 

refer to the root widget using self.root. This returns the root of the widgets, which can 

be used to access any of its child widgets based on their IDs.

All IDs inside the KF file are saved inside the ids dictionary. We can use this 

dictionary to retrieve whatever widget we want as long as it has an ID. After retrieving 

the widget itself, we can fetch its properties. This way we can return the entered numbers 

within the TextInput widgets, convert their values from string to float, add them, and 

assign the text property of the Label widget the result after being converted into a 

string.
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 P4A
At this point, we have a good overview of Kivy. We can go forward toward a building 

Android applications using Kivy. We will start by packaging the Kivy application in 

Listing 8-13 and Listing 8-14.

Without any change in the previous applications, they will run on Android after 

packaging them. The simplified steps of converting the Kivy application into an Android 

application are illustrated in Figure 8-12.

Figure 8-12. Steps for building Android applications from Kivy applications

After completing the Kivy Python application, the Buildozer tool prepares the 

required tools for creating the APK file. The most important tool is called P4A. The 

Buildozer tool creates a file named buildozer.spec for each Kivy application before 

being converted into an Android application. This file holds details about the application 

that will be discussed later in section Preparing buildozer.spec File. Let’s start by 

installing the Buildozer tool.

 Installing Buildozer
The Buildozer tool is used in this section to package the Kivy applications as Android 

applications. Once installed, Buildozer automates the process of building the 

Android applications. It prepares the environment by all requirements in order to 

build the applications successfully. These requirements include P4A, Android SDK, 

and NDK. Before installing Buildozer, some dependencies are required. They can be 

downloaded and installed automatically using the following Ubuntu commands:

ahmed-gad@ubuntu:~$ sudo pip install --upgrade cython==0.21

ahmed-gad@ubuntu:~$ sudo dpkg --add-architecture i386

ahmed-gad@ubuntu:~$ sudo apt-get update

ahmed-gad@ubuntu:~$ sudo apt-get install build-essential ccache git 

libncurses5:i386 libstdc++6:i386 libgtk2.0-0:i386 libpangox-1.0-0:i386 
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libpangoxft-1.0-0:i386 libidn11:i386 python2.7 python2.7-dev openjdk-8-jdk 

unzip zlib1g-dev zlib1g:i386

After installing these dependencies successfully, Buildozer can be installed 

according to this command:

ahmed-gad@ubuntu:~$ sudo install --upgrade buildozer

In case Buildozer is currently installed on your machine, the --upgrade option makes 

sure it is upgraded to the latest version. After installing Buildozer successfully, let us 

prepare the buildozer.spec file in order to build the Android application.

 Preparing buildozer.spec File
The project structure to be packaged into an Android application is given in Figure 8- 13. 

There is a folder named FirstApp, which contains three files. The first file is named main.

py, which is the Kivy application that was named FirstApp.py previously. The reason 

it has been renamed is that when building the Android application, there must be a file 

named main.py, which is the entrance of the application. This will not change anything 

in the application.

Figure 8-13. Project structure

It is preferred to check whether the Kivy application runs successfully before 

proceeding the next steps. Just activate the Kivy virtual environment on your machine 

and run the main.py Python file according to Figure 8-14. It is expected to work as in 

Figure 8-11.

Chapter 8  Cross-platform Data sCienCe appliCations



363

By this point, a Kivy desktop application has been created successfully. We can now 

start preparing the missing file buildozer.spec and build an Android application.

The buildozer.spec file can be simply and automatically generated using Buildozer. 

After opening the Ubuntu terminal and navigating to the FirstApp directory in which 

the application Python and KV files exist, issue the following command:

ahmed-gad@ubuntu:~/ahmedgad/FirstApp$ buildozer init

After issuing this command, a confirmation message appears, as shown in to 

Figure 8-15. Some of the important fields of that file are listed in Listing 8-15. For 

example, the title represents the application title; source directory refers to the root 

directory of the application in which the main.py file exists, which is set in this case 

as the current directory; app version; Python and Kivy versions; orientation, that is, 

whether the application appears in full screen or not; and application requirements, 

which is just set to kivy. If we use a library supported by P4A such as NumPy, then 

we need to list it beside kivy in order to load it into the application. The permissions 

property represents the requested permissions by the application. You can also hard- 

code the paths of both SKD and NDK if they already exist on your machine to save time 

downloading them. Note that the # character before a line indicates it is a comment. 

The presplash.filename property is used to specify the image path that appears when 

loading the application before being started. The icon.filename property is assigned 

the file name of an image to be used as the application icon.

Figure 8-14. Activating the Kivy virtual environment for running the Kivy 
application
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These fields are inside the [app] section of the specification file. You can also 

edit the specification file to change whatever fields you see as worth modifying. The 

package.domain property is by default set to org.test, which is used just for testing, not 

production. If this value is left as is, it will prevent the building of the application.

Listing 8-15. Some Important Fields from the buildozer.spec File

[app]

title = Simple Application

package.name = firstapp

package.domain = gad.firstapp

source.dir = .

source.include_exts = py,png,jpg,kv,atlas

version = 0.1

requirements = kivy

orientation = portrait

osx.python_version = 3

osx.kivy_version = 1.10.1

fullscreen = 0

presplash.filename = presplash.png

icon.filename = icon.png

android.permissions = INTERNET

android.api = 19

android.sdk = 20

android.ndk = 9c

android.private_storage = True

#android.ndk_path =

#android.sdk_path =

Figure 8-15. Creating the buildozer.spec file successfully
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After preparing the required files to build the Android application, the next step is to 

build it using Buildozer.

 Building Android Application Using Buildozer
After preparing all project files, Buildozer uses them to produce the APK file. For 

development, we can produce a debug version of the application using the following 

command:

ahmed-gad@ubuntu:~/ahmedgad/FirstApp$ buildozer android release

Figure 8-16 shows the response when the command is entered. When building the 

application for the first time, Buildozer has to download all of the required dependencies 

such as SDK, NDK, and P4A. Buildozer saves a lot of effort by downloading and installing 

them automatically. Based on your Internet connection, the process might take time 

before everything is up and running; be patient.

Figure 8-16. Installing dependencies required by Buildozer to build the Android 
application

After the installation has been done successfully, there are two folders created. The 

first one is named .buildozer; it represents all files downloaded by Buildozer necessary 

for building the application. The second folder is named bin; it stores the APK files 

produced after building the application. We can transfer the APK file to an Android 

device to install and test it. The screen of the Android application is shown in Figure 8- 17.
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If an Android device is connected and recognized by the machine, Buildozer could 

both produce the APK file and install it once produced on the machine according to this 

command:

ahmed-gad@ubuntu:~/ahmedgad/FirstApp$ buildozer android debug deploy run

After building a basic Android application based on the Python Kivy application, 

we can start building more advanced applications. Not all Kivy applications running on 

desktops can work directly on mobile devices. Some libraries might not be supported 

to be packaged into the mobile application. For example, P4A only supports a set of 

libraries that could be used in the Android application. If you used an unsupported 

library, the application crashes.

Kivy is supported by P4A, which can build the application UI exactly the same 

as we discussed previously. P4A also supported other libraries such as NumPy, PIL, 

dateutil, OpenCV, Pyinius, Flask, and more. The restriction when building an Android 

application using Python is to only use the set of supported libraries by P4A. In the 

Figure 8-17. Running the Android application
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next section, we will discuss how to build an Android application from the application 

created in Chapter 3 for recognizing the Fruits 360 dataset images.

 Image Recognition on Android
The application created in Chapter 3 extracts features from the Fruits 360 dataset, which 

used for training an ANN. In Chapter 7, a Flask application was created to access it from 

the Web. In this chapter, we will discuss how to package it into an Android application 

that runs offline where features are extracted on device.

The first thing to think about is whether the libraries used in this application are 

supported by P4A. The libraries used are as follows:

• scikit-image for reading the original RGB image and converting it 

into HSV.

• NumPy for extracting the features (i.e., hue histogram), building the 

ANN layers, and making predictions.

• pickle for restoring the best weights for the network trained using 

GA and indices of the selected feature elements.

From the used libraries, P4A only supports NumPy. Neither scikit-image and 

pickle are supported. As a result, we have to find alternative libraries supported by 

P4A to replace these two libraries. The available choices for replacing scikit-image are 

OpenCV and PIL. We just need a library to read the image file and convert it to HSV and 

no more. OpenCV has more features than the two required ones. Packaging this library 

into the Android application will increase its size. For this reason, PIL is used because it 

is simpler.

Regarding pickle, we can replace it with NumPy. NumPy can save and load variables in 

a file with the .npy extension. For this reason, the weights and selected element indices 

will be saved into .npy files in order to read them using NumPy.

The project structure is illustrated in Figure 8-18. The Fruits.py file contains the 

function required for extracting features from the test image, and predicting its label. 

These functions are almost identical to the previous ones in Chapter 3 except for using 

NumPy rather than pickle and PIL rather than scikit-image. The implementation of this 

file is given in Listing 8-16.
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The extract_features() function has an argument representing the image file path. 

It reads it using PIL and converts it into HSV color space using the convert method. 

This method accepts the HSV string specifying that the image is to be converted into 

HSV. After that, the extract_features() method extracts the features, filters the feature 

elements based on the selected indices’ .npy file, and finally returns them. The predict_

outputs() function is made to accept the weights .npy file path and then read it using 

NumPy, classify the image based on the ANN, and return the classification label.

Figure 8-18. Project structure for recognizing Fruits 360 dataset images on 
Android

Listing 8-16. Fruits.py Module for Extracting Features and Classifying Images

import numpy

import PIL.Image

def sigmoid(inpt):

    return 1.0/(1.0+numpy.exp(-1*inpt))

def relu(inpt):

    result = inpt

    result[inpt<0] = 0

    return result

def predict_output(weights_mat_path, data_inputs, activation="relu"):

    weights_mat = numpy.load(weights_mat_path)

    r1 = data_inputs

    for curr_weights in weights_mat:
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        r1 = numpy.matmul(a=r1, b=curr_weights)

        if activation == "relu":

            r1 = relu(r1)

        elif activation == "sigmoid":

            r1 = sigmoid(r1)

    r1 = r1[0, :]

    predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

    return predicted_label

def extract_features(img_path):

    im = PIL.Image.open(img_path).convert("HSV")

    fruit_data_hsv = numpy.asarray(im, dtype=numpy.uint8)

    indices = numpy.load(file="indices.npy")

    hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

    im_features = hist[0][indices]

    img_features = numpy.zeros(shape=(1, im_features.size))

    img_features[0, :] = im_features[:im_features.size]

    return img_features

The KV file first.kv responsible for building the UI of the application is given in 

Listing 8-17. It’s worth mentioning that the font size of both the label and button widgets 

is increased using the font_size property. Also, the classify_image() method is called 

in response to the button widget on_press event.

Listing 8-17. KV File of the Fruits Recognition Application

BoxLayout:

    orientation: "vertical"

    Label:

        text: "Predicted Class Appears Here."

        font_size: 30

        id: label

    BoxLayout:

        orientation: "horizontal"
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        Image:

            source: "apple.jpg"

            id: img

    Button:

        text: "Classify Image."

        font_size: 30

        on_press: app.classify_image()

The implementation of the classify_image() method is available inside the main.

py file according to Listing 8-18. This method loads the path of the image to be classified 

from the source property of the image widget. This path is passed to the extract_

features() function inside the Fruits module as an argument. The predict_output() 

function accepts both the extracted features, ANN weights, and the activation function. 

It returns the classification label after matrix multiplication between the inputs of each 

layer and its weights. The label is then printed on the label widget.

Listing 8-18. Implementation of the main.py File of the Fruits Recognition 

Application

import kivy.app

import Fruits

class FirstApp(kivy.app.App):

    def classify_image(self):

        img_path = self.root.ids["img"].source

        img_features = Fruits.extract_features(img_path)

         predicted_class = Fruits.predict_output("weights.npy", img_

features, activation="sigmoid")

         self.root.ids["label"].text = "Predicted Class : " + predicted_

class

firstApp = FirstApp(title="Fruits 360 Recognition.")

firstApp.run()
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Before starting to build the APK file, we can ensure that everything works as 

expected by running the Kivy application. After running the application and pressing the 

button, the image is classified; the result is shown in Figure 8-19. After making sure the 

application is running successfully, we can start building the Android application.

Figure 8-19. The result of running the Kivy application after classifying an image

Before building the application using Buildozer, the buildozer.spec file must be 

generated. You can use the buildozer init command to create it automatically. It is 

important to note that inside the application, we use two.npy files representing the 

filtered element indices and the weights. We need to include them into the APK file. 

How can we do that? Inside the buildozer.spec file, there is a property named source.

include_exts. It accepts the extensions of all files we need to include into the APK file 

separated by commas. These files are located at the root of the application. For example, 

to add the files with extensions py, npy, kv, png, and jpg, the property will be as follows:

source.include_exts = py,png,jpg,kv ,npy

Two critical steps for the successful execution of the application are converting 

the RGB image into HSV using the PIL and matrix multiplication using the matmul() 

function inside NumPy. Take care to use the versions of the libraries that offer these 

functionalities.
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Regarding the conversion from RGB to HSV, make sure to use the new version of 

PIL called Pillow. It is just an extension to PIL that could be imported and used with 

no difference. Regarding the matrix multiplication, it is only supported in NumPy 

version 1.10.0 and higher. Take care not to use a lower version. This leaves an additional 

question, which is how to tell P4A that we need to use a specific version of a library. One 

way is to specify the required version inside the P4A recipe corresponding to NumPy. 

These recipes are located in the P4A installation directory under Buildozer installation. 

For example, version 1.10.1 is used according to Figure 8-20. Based on the specified 

version, the library will be downloaded from Python package index (PyPI) and installed 

automatically when building the application. Note that preparing the environment of 

Kivy for Android is harder than its usage. We are living in an era in which preparing the 

development environment is harder than the development itself.

Figure 8-20. Specifying the version of NumPy to be installed

Now we are ready to build the Android application. We can use the command 

buildozer android debug deploy run for building, installing, the running the 

application on a connected Android device to the development machine. We can also 

use the logcat tool to print debugging information about the device. Just add this word 

at the end of the command. After the building has been done successfully, the Android 

application UI will be as shown in Figure 8-21.
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 CNN on Android
In section Building a CNN using NumPy from Scratch of Chapter 5, we created a 

project for building CNN from scratch using NumPy. In this section, this project will be 

packaged into an Android application to execute the CNN on the device. The project 

structure is illustrated in Figure 8-22. The numpycnn.py file holds all functions discussed 

in Chapter 5 for building the CNN layers. The main application file named main.py has 

its child class named NumPyCNNApp. This is why the KV file should be named numpycnn.

kv. The buildozer.spec file is similar to what we discussed previously. We will just 

discuss the main file and its KV file briefly. It is expected that most of this part of the 

project will be clear based on the previous discussion across the chapter.

Figure 8-21. UI of the Android application used to classify images of the Fruits 
360 dataset
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We will start by the KV file in Listing 8-19. The root widget is a vertical BoxLayout that 

has two child GridLayout widgets. The first GridLayout widget displays both the original 

image and the result of the last layer in the CNN. It is divided equally to hold two vertical 

child BoxLayout widgets. Each layout has label and image widgets. The label just makes 

it indicate where the original and result images are.

The second child of the root widget, GridLayout, has three widgets. The first one is a 

Button that executes the CNN when pressed by calling the start_cnn() method inside 

the main Python file. The second one is a Label that prints the size of the result after 

executing all CNN layers. Finally, the third child is a TextInput widget, which allows 

the user to specify the architecture of the CNN as a text. For example, conv2,pool,relu 

means that the network consists of three layers: the first one is a conv layer with four 

filters, the second one is an average pooling layer, and the third one is a ReLU layer. 

When the application runs, it has the UI shown in Figure 8-23.

Listing 8-19. KV File of the CNN Kivy Application

BoxLayout:

    orientation: "vertical"

    GridLayout:

        size_hint_y: 8

        cols: 3

        spacing: "5dp", "5dp"

        BoxLayout:

            orientation: "vertical"

            Label:

                id: lbl1

                size_hint_y: 1

Figure 8-22. Project structure for running CNN on Android
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                font_size: 20

                text: "Original"

                color: 0, 0, 0, 1

            Image:

                source: "input_image.jpg"

                id: img1

                size_hint_y: 5

                allow_stretch: True

        BoxLayout:

            orientation: "vertical"

            Label:

                id: lbl2

                size_hint_y: 1

                font_size: 20

                text: ""

                color: 0, 0, 0, 1

            Image:

                id: img2

                size_hint_y: 5

                allow_stretch: True

    GridLayout:

        cols: 3

        size_hint_y: 1

        Button:

            text: "Run CNN"

            on_press: app.start_cnn()

            font_size: 20

            id: btn

        Label:

            text: "Click the button & wait."

            id: lbl_details

            font_size: 20

            color: 0, 0, 0, 1
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        TextInput:

            text: "conv4,pool,relu"

            font_size: 20

            id: cnn_struct

The implementation of the main.py file is given in Listing 8-20. The entry point for 

this file is the start_cnn() method. It reads the image path from the Image widget and 

reads it using PIL as we discussed in the previous example. For simplicity, the image is 

converted into gray using the convert() method. The character L converts the image 

into gray. After pressing the Button widget, this function runs a background thread that 

executes the CNN according to the structure specified in the TextInput. The result of the 

last layer is returned to the refresh_GUI() method. This method displays the first matrix 

of the result on the UI window.

Figure 8-23. The main window of the Kivy application executing CNN

Listing 8-20. Implementation of the Main File of the Kivy Application 

Executing CNN

import kivy.app

import PIL.Image

import numpy

import numpycnn

import threading
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import kivy.clock

class NumPyCNNApp(kivy.app.App):

    def run_cnn_thread(self):

        layers = self.root.ids["cnn_struct"].text.split(",")

        self.root.ids["lbl_details.text"] = str(layers)

        for layer in layers:

            if layer[0:4] == "conv":

                if len(self.curr_img.shape) == 2:

                    l_filter = numpy.random.rand(int(layer[4:]), 3, 3)

                else:

                     l_filter = numpy.random.rand(int(layer[4:]), 3, 3, 

self.curr_img.shape[-1])

                self.curr_img = numpycnn.conv(self.curr_img, l_filter)

                print("Output Conv : ", self.curr_img.shape)

            elif layer == "relu":

                self.curr_img = numpycnn.relu(self.curr_img)

                print("Output RelU : ", self.curr_img.shape)

            elif layer == "pool":

                self.curr_img = numpycnn.avgpooling(self.curr_img)

                print("Output Pool : ", self.curr_img.shape)

            elif layer[0:2] == "fc":

                num_outputs = int(layer[2:])

                 fc_weights = numpy.random.rand(self.curr_img.size, num_

outputs)

                print("FC Weights : ", fc_weights.shape)

                 self.CNN_FC_Out = numpycnn.fc(self.curr_img, fc_weights=fc_

weights, num_out=num_outputs)

                print("FC Outputs : ", self.CNN_FC_Out)

                print("Output FC : ", self.CNN_FC_Out.shape)

            else:

                self.root.ids["lbl_details"].text = "Check input."

                break

        self.root.ids["btn.text"] = "Try Again."

        self.refresh_GUI()
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    def start_cnn(self):

        img1 = self.root.ids["img1"]#Original Image

        im = PIL.Image.open(img1.source).convert("L")

        img_arr = numpy.asarray(im, dtype=numpy.uint8)

        self.curr_img = img_arr

        im_size = str(self.curr_img.shape)

         self.root.ids["lbl_details"].text = "Original image size  

" + im_size

        threading.Thread(target=self.run_cnn_thread).start()

        self.root.ids["btn"].text = "Wait."

    @kivy.clock.mainthread

    def refresh_GUI(self):

        im = PIL.Image.fromarray(numpy.uint8(self.curr_img[:, :, 0]))

        layer_size = str(self.curr_img.shape)

        im.save("res.png")

        self.root.ids["img2"].source = "res.png"

        self.root.ids["lbl2"].text = "Last Layer Result"

        self.root.ids["lbl_details"].text = "Out size "+layer_size

if __name__ == "__main__":

    NumPyCNNApp().run()

The thread executes the run_cnn_thread() method. That method starts by splitting 

the text retrieved from the TextInput to return each layer separately. Based on if 

statements, the suitable function from the numpycnn.py file is called to build the specified 

CNN layer. For example, if the current string is relu, then the relu function will be called. 

The number appended to the conv string is used as an argument specifying the number of 

filters. The shape of all filters is 3×3. They are filled randomly. If there is an unrecognized 

string, the application displays a message on the Label to indicate there is something 

wrong with the inputs. After this function finishes execution, it returns to the refresh_

GUI() method. It displays the first matrix returned and prints its size on the Label.

A modified version of this application allows running all three successive conv, pool, 

and ReLU layers and shows results returned by all of them. Based on the first three layers 

(two filters, conv layer with two filters followed by pooling and then ReLU), all returned 

results are given in Figure 8-24.
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After making sure the application runs well on the desktop, the only file remaining 

to build the application is the buildozer.spec file. It can be prepared according to 

our previous discussion. After creating it successfully, we can start building it using 

Buildozer as we did previously. The UI of the application after running it on an Android 

device is given in Figure 8-25.

Figure 8-24. The result of all layers based on three layers CNN 
(conv2,pool,relu)
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Figure 8-25. Running Kivy application for executing CNN on Android devices
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 APPENDIX A

Installing Your Own 
Projects Using pip Installer
Most of us have worked with several languages such as Java, C++, and Python and 

created a number of projects, but unfortunately, these projects are possibly buried 

and no one knows about them. Why not make these projects live online? Distributing 

projects is very easy with Python. We can benefit from the implementation of CNN using 

NumPy in Chapter 5 to make it available for everyone looking to do the same job.

This appendix discusses the steps required to package your Python projects, 

distribute them in distribution formats using setuptools, upload them into the PyPI 

repository using twine, and finally install them using Python installers such as pip and 

conda. This appendix starts with a very simple Python project called “printmsg”, which 

has a simple function to print a message when called.

We are going to discuss the following points:

• Creating a Simple Python Project.

• How Does Python Locate Libraries?

• Manual Installation by Copying Project Files to site-packages.

• How Do Python Installers Locate Libraries?

• Preparing the Package and Its Files (__init__.py and setup.py).

• Distributing the Package.

• Uploading the Distribution Files Online to Test PyPI.

• Installing the Distributed Package from Test PyPI.

• Importing and Using the Installed Package.

• Using PyPI Rather Than Test PyPI.

https://doi.org/10.1007/978-1-4842-4167-7


382

The platform used is Linux Ubuntu 18.04 with Python 3.6.5, but you can use other 

platforms such as Windows with little or no difference in the commands used. Let’s see 

how things work.

 Creating a Simple Python Project
Let us create a very simple project and distribute it. To be able to package and distribute 

any Python project, there must be an associated folder containing all of the required files 

for the project. The folder name will later be the project name.

 Project Structure
This project will have just a single level containing a single Python file. The project 

structure is available in Figure A-1.

Figure A-1. Simple project structure

The used project/folder name is “printmsg” to reflect its use. The Python file inside it 

is named “print_msg_file.py”. The Python file contains a function and a variable. The 

function is named “print_msg_func”, and it will print a message once called. Because 

most of the existing projects contain some variables to reflect their properties such as the 

version, there is a variable named “version” that holds the version of the project.

 Project Implementation
The implementation of the “print_msg_file.py” file is given in Listing A-1. The first line 

defines the version of the project using a variable named “__version__”. The “print_
msg_func()” function prints a hello message when called. It is good practice to handle 

the situations at which the Python file is called as the main file or not. This is the job of 

the “if” statement at the end of the file using the built-in special variable “__name__”. 
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When a Python file is executed as the main program, then the “__name__” variable is set 

equal to “__main__”. In case that file is used within a module, the “__name__” variable 

is set to the module name. The if statement ensures that the file is not imported within 

another module and then calls the “print_msg_func()” to print the hello message.

Listing A-1. Implementation of print_msg_file.py

__version__ = "1.0"

def print_msg_func():

    print("Hello Python Packaging")

if __name__ == "__main__":

    print_msg_func()

 Running the Project
After completing such a simple project, the next step is to execute it to ensure that 

everything is running well. A Python file is to be executed from either the Linux terminal 

or Windows command prompt by issuing the Python command followed by the location 

of the file. Figure A-2 shows how to run the Python file using both Windows and Ubuntu. 

Note that the project folder is saved into the Desktop.

Figure A-2. Running the module as the main program

The CMD/terminal are opened in the "printmsg" directory. Its content is displayed 

using the “ls” command. Just the target file "print_msg_file.py" exists there. The 

Python command is issued to run the file.
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 Importing the Module into a File Inside Its Directory
After making sure everything is working well, it is possible to import that project into 

another Python file in order to be able to call its content. If a file to be imported into 

another, a legacy way for doing this is to create another file inside the same directory of 

that file. Note that it is not required to be in the same directory, but it will be simple in this 

case to avoid long paths. For example, another Python file named "inside_project.py" 

imports the project and calls its function according to Listing A-2.

Listing A-2. Importing a Module and Calling Its Functions

import print_msg_file

print_msg_file.print_msg_func()

The project is imported as in line 1. Then, it is used to call its function in line 2. After 

opening the terminal and setting its current directory to the “printmsg” folder, the new 

file "inside_project.py" can be executed as in Figure A-3. The function got called 

successfully.

Figure A-3. Importing the module successfully inside another file

 Importing the Module into a File Outside Its 
Directory
Because the imported module is in the same directory of the script it is called from, the 

process is straightforward. Just type the name of the module in an import statement. 

But an important question now arises: What if the script calling the file is in a different 

directory than the module it would like to import? Let us try to create another Python file 

not located in the same directory of the imported module and try to import the module 

again. The file is named “outside_project.py” and is located in the desktop. In other 
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words, that file is located one level up compared to the module. It has the same code 

used in the previous file, “inside_project.py”. After running this file from the terminal, 

the result is shown in Figure A-4.

Figure A-4. Unable to locate the module in a different directory

Figure A-5. Successfully locating the module after locating it correctly within the 
import statement

The module is not found because the file and the module to be imported are in 

different directories. The file is located in the “~/Desktop/” directory, and the module 

is located in “~/Desktop/printmsg/” directory. To solve that issue, the printmsg is 

appended to the name of the module to make the interpreter know where it can find the 

module as given in Listing A-3.

Listing A-3. Appending Module Name When Importing the Function

import printmsg.print_msg_file

printmsg.print_msg_file.print_msg_func()

The result of executing the “outside_project.py” file is shown in Figure A-5.
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But appending the folder name in the path from the file to the module it imports is 

tiresome, especially if the file is away from the module in more than one level. To solve 

this issue, let’s learn how the Python interpreter locates its imported libraries.

 How Does Python Locate Libraries?
When the Python interpreter encounters an import statement, it searches in some of its 

directories for that imported library. If it is not found in any of those directories, then it 

will raise an error as in Figure A-4.

There are multiple sources of such paths that are searched for a given library. For 

example, paths can be inside the PYTHONHOME or PYTHONPATH environment 

variables, current script directory, and the site-packages directory. The list of all 

directories that Python searches in is listed in the path property of the sys built-in 

module. It can be printed according to Listing A-4.

Listing A-4. Printing List of Search Directories

import sys

print(sys.path)

The sys.path list is printed using the terminal, and the result is shown in Figure A-6.

Figure A-6. Search paths that Python uses to locate a module

In our example, the module is not located in any of the directories listed in sys.path, 

and this is why an exception is thrown. We can fix that by moving the library into one of 

these paths. The directory that will be used is the site-packages directory. The reason is 

that the installed libraries using pip or conda are added to that directory. Let us see how 

to add our project into that directory manually.
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 Manual Installation by Copying Project Files to  
Site- Packages
In Figure A-5, the site-packages directory is listed as a search path for imported libraries. 

By simply copying and pasting the project directory “printmsg” inside the site-packages 

directory, the print_msg_file module can be imported. Figure A-7 shows that the 

printmsg project is copied into site-packages.

Figure A-7. Copying the project into the site-packages directory to make it 
locatable by Python

Based on the previous two lines in Listing A-3, the “outside_project.py” file can 

now successfully import the project and print the output as in Figure A-5. In this case, 

the imported module print_msg_file is prepended by the directory of the project 

“printmsg”, but this will be valid wherever the “outside_project.py” file is located.
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 How Do Python Installers Locate Libraries?
Up to this point, in order to import the project successfully, it should be copied manually 

inside the site-packages directory. Before doing that, the project must be copied to the 

machine in some way, such as by being downloaded from any file hosting server. But all 

of the work is manual. Some users will find such work tiresome to do for every library 

they are to install. As a result, there is an alternative way of installing libraries.

Some installers such as pip and conda are available to receive the library name and 

they take care of downloading and installing it automatically. But how can we make our 
own libraries accessible by these installers?

The installers search for the libraries inside software repositories such as PyPI. Once 

found, they download and install them automatically. Our question now should be how 

to upload our own libraries to these repositories. These software repositories accept 

distribution formats such as Wheel.

Then, the next question will be how to prepare our project into Wheel distribution 

format. In order to generate the Wheel distribution format, there are a number of 

files to be packaged together. These files include the actual project Python files, any 

supplemental files required by those files, and also some helper files to give some details 

about your project.

The sequence to be followed is to prepare the package files, generate the distribution 

files, and upload the files to the PyPI repository. These points will be covered in the next 

sections.

 Preparing the Package and Its Files (__init__.py 
and setup.py)
The first step is to structure the package and its files. The structure of the package will be 

as shown in Figure A-8.

Figure A-8. Project structure prepared for use by the Python installers
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There is a root directory holding all files and directories of the package. Inside that 

root directory, there is another directory named “printmsg” that holds the Python file to 

be imported later after being installed.

For our simple example, the minimal files required will be used; these are __init__.py  

and setup.py in addition to the actual project file print_msg_file.py. The next step is to 

prepare these files.

 __init__.py
The first file to prepare is the __init__.py file. The main use of this file is to allow Python 

to treat the directory as a package. When the package has the __init__.py file, the 

package can be imported as a regular library after being installed by either installer. Just 

its existence is enough even if empty. You might wonder why it is now required despite 

being not when the library installed manually in the “Manual Installation by Copying 

Project Files to Site-Packages” section. The answer is that the installer will not know that 

the directory is a package without the __init__.py file. That is why it will not fetch the 

library Python files (print_msg_file.py).

Assuming that the library is now accessible by Python installers and we successfully 

installed it in Windows, there are two folders generated in the site-packages directory 

(“printmsg-1.4.dist-info” and “printmsg”) as in Figure A-9 in the case of using the 

__init__.py file.

Figure A-9. Project directories created within the site-packages directory
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The “printmsg” folder is what holds the Python files to be imported later. If the __
init__.py file is not used, then the “printmsg” folder will not be found. As a result, it will 

become impossible to use the Python code because it will be missing.

Besides telling Python that the directory is a Python package, the __init__.py file is 

the first file to be loaded when the module is imported and thus can do initializations.

 setup.py
After marking the directory as a package using the __init__.py file, the next step is to 

add more details about the package. This is why the setup.py file is used. The setup.py 

script is what gives details about your project, such as what dependencies are required to 

make your project run. This script uses the setuptools distribution tool for building the 

distribution files to be uploaded later to PyPI. Listing A-5 has the content of the setup.py 

file in order to distribute the project.

Listing A-5. Content of setup.py File

import setuptools

setuptools.setup(

    name="printmsg",

    version="1.6",

    author="Ahmed Gad",

    author_email="ahmed.f.gad@gmail.com",

    description="Test Package for Printing a Message")

That file contains a number of fields that hold details such as the name of the 

package, version, author, author_email, short description to appear on PyPI, and 

others. There are many other fields that could be used based on your needs.

Note that the package name is used currently in two positions. One time for the 

module directory and another here in the setup.py file. Must they be equivalent? The 

answer is NO. Each one has its own job, but there is no dependency between them. The 

name used in the setup.py file is the name to be used when installing the package. The 

name of the directory is the name used to import the module. If they are different, then 

the package will be installed by a name and imported by a different name. There should 

be consistency between these two names to avoid confusing package users.
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 Distributing the Package
After preparing the package, we are ready to distribute it. Before actual distribution, we 

should make sure that the dependencies required are already existing. To distribute the 

project, setuptools and wheel projects are required to be installed. The wheel project 

is used to generate the wheel distribution format. Make sure they are installed and 

updated as in Figure A-10 according to this command:

ahmed-gad@ubuntu:~/Desktop/root$ pip install --user --upgrade  

setuptools wheel

Figure A-10. Install the required packages for packaging the project

Then we can distribute the package by running the setup.py file as in Figure A-11. 

After opening the terminal, make the root of the package the current directory and then 

execute the setup.py file.

ahmed-gad@ubuntu:~/Desktop/root$ python3 setup.py sdist bdist_wheel
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sdist is used to generate a source distribution format, while bdist_wheel generates 

the wheel built distribution format. Both of these distributions are provided for 

compatibility with different users.

After executing the setup.py file, you can expect to get some new directories inside 

the root of the package. The files and directories inside the root are shown in Figure A-12.

Figure A-11. Generating source and wheel distributions of the project
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Figure A-12. Generated files and directories of the project

The most important folder is the dist folder, because it contains the distribution files 

that will be uploaded to PyPI. Its content is presented in Figure A-13. It contains the .whl 
file, which is the build distribution, and also the source distribution .tar.gz file.

Figure A-13. Source and wheel distribution files of the project

After preparing the distribution files, the next step is to upload them to PyPI.

 Uploading the Distribution Files Online to Test PyPI
There are two Python package repositories to use. One of them, Test PyPI (test.pypi.
org), is for testing and experimentation, and the other, PyPI (pypi.org), is for real index. 

Their uses are similar, but we can start using Test PyPI.

Before uploading to Test PyPI, you should register yourself to get a username and 

password for uploading your packages. Just register by your active e-mail address, where 

a confirmation will be received to activate your account. The registration link is https://

test.pypi.org/account/register/.
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After registration is complete, we can use the twine utility for uploading package 

distributions to Test PyPI. You should make sure it is installed and upgraded according 

to the following command:

ahmed-gad@ubuntu:~/Desktop/root$ pip install --upgrade twine

Once it is installed, you can upload packages to Test PyPI. Open the terminal, make 

sure you are currently on the root of the package, and issue the following command:

ahmed-gad@ubuntu:~/Desktop/root$ twine upload --repository-url https://

test.pypi.org/legacy/ dist/*

You will be asked to enter your Test PyPI username and password. Once you are 

verified, the upload will start. The result is shown in Figure A-14.

Figure A-14. Uploading the project into Test PyPI using twine

After uploading the files successfully, you can open your profile at Test PyPI to 

see your uploaded projects. Figure A-15 shows that the printmsg project successfully 

becomes live. Note that the value used for the description field inside the setup.py file is 

now appearing on the repository.
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 Installing the Distributed Package from Test PyPI
By this point, you have successfully packaged and distributed your Python project. It is 

available now for download by any user connected to the Internet. To install the project 

using pip, just issue the following command. The result is shown in Figure A-16.

ahmed-gad@ubuntu:~/Desktop/root$ pip install --index-url https://test.pypi.

org/simple/ printmsg

Figure A-15. The project is successfully uploaded to Test PyPI.

Figure A-16. Installing the project uploaded to Test PyPI using pip
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 Importing and Using the Installed Package
After installing the project, it can be imported. The code in Listing A-3 can now be 

executed. The difference is using the package installed from Test PyPI repository rather 

than the one that is manually installed. The result is identical to what is shown in  

Figure A-4.

 Using PyPI Rather Than Test PyPI
If you decided to put your project into the real PyPI, then you will just repeat the 

previous steps with few changes. At first, you have to register at https://pypi.org/ and 

get a username and a password. I hate to say so, but you will have to register AGAIN 

because registration in Test PyPI is different from registration in PyPI.

The first change is not using the --repository-url option with twine because 

PyPI is the default repository for uploading packages. So, the command required  

will be as follows:

ahmed-gad@ubuntu:~/Desktop/root $ twine upload dist/*

Similarly, the second change is omitting the --index-url option with pip for the same 

reason (PyPI is the default repository when installing a package):

ahmed-gad@ubuntu:~/Desktop/root$ pip install printmsg
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C
Central processing units (CPUs), 183
CIFAR10 dataset

application structure, 326
binary data, 271
CIFAR10Predict module, 331
CNN model, TF
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coding, 283
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testing, 293–294
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rendered page, 332–333
screenshot, HTML page, 328
shape and size, uploaded  
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test data, 292
training data, 271–273
upload_image.html  

template, 327–329
view function, 329

Color histogram
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advantage, 8
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Matplotlib, 9
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real-world image, 7–8
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ConvNets, 183
Convolutional Neural Networks (CNNs)
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example, 204–206
image sample of size, 204
results, 202–203

data distribution, 184–186
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implementation, coding, 220
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NumPy library
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D
Dataflow graph

constant node, 232
linear model optimized, GD, 254
parameterized graph, placeholder, 239
print statement, 233
tensorflow.add(), 238
tensorflow.constant(), 243
tensorflow.global_variables_

initializer(), 243
tensorflow.Graph, 235
tensorflow.matmul(), 232
tensorflow.Variable(), 244
tensorflow.placeholder, 239
tensorflow.Session, 235
tensorflow.Session.run(), 236
tensor names, 233
TF variables, 242
variable initialization methods, 244
visualization, TB, 245–247

Designing ANN
hidden layers, 97–98
single hidden layer

complex classification  
problem, 102–103

connecting outputs, 105
decision boundary, 103–105
network architecture, 106

without hidden layer
boundary curve changes  

direction, 100–101
linear classifier, 101
network architecture, 102
nonlinear classification  

problem, 99–100
two-class classification  

problem, 98–99

E
Embedded approach, 43
Engineered features

ANN implementation, 120
calculators, mathematical  

operations, 127–128
classification and regression, 128
CNN, 128
Fruits 360 dataset (see Fruits 360 

dataset)
limitations, 126–127
parameters, 128
smartphones, 127–128

Evolutionary algorithms  
(EAs), 41, 133

F
FC neural networks (FCNNs), 183
Feature reduction, 115–117
feed_dict argument, 239
Feed-forward ANNs (FFNNs)
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coding, 266–270
graph, 265
network architecture, 266
network parameters, 269
truth table, 265

RGB color classification  
problem, 256

ANN architecture, 259
ANN parameter variables, 259
graph creation, single layer, 264
matmul() operation, 259
network parameters, training  

data, 260
placeholder shape, 257
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tensorflow.nn.sigmoid()  
operation, 259

tensorflow.Session.run()  
operation, 260

training data, 3D scatter  
plot, 257–258

training data inputs and  
outputs, 257, 261

two-class problem, 261–263
weighs and bias, 264

Filter approach, 39–40
Flask application, 340

add_rule_url method, 301
endpoint, 303–304
function with URL, 297
HTML

dynamic templates, 311–314
Flask templates, 310–311
form, 305–307
Python code, 309
view function, 309

minimal, 297
route() decorator

debugging, 300
host and port arguments, 299
request received by  

server, 299–300
run() method, 298
testFunc(), 298–299

static files, CSS and JavaScript, 314–317
uploading files, 307–309
variable rules, 301–303
WSGI, 297

Fruits 360 dataset
description, 107
extractFeatures view  

function, 320–321

feature mining
Braeburn apple, Meyer lemon, 

mango, and raspberry, 108, 110
hue channel histograms, 111–112
hue channel, HSV color space, 111
ImageNet, 115
LBP histogram, strawberry and 

apple, 113–114
RGB channels, 108–110

feature reduction, 115–117
filtering, ANN

classification errors, 119
distribution of STDs, 119
scikit-learn library, 118

Flask application, 317, 324–325
homepage

implementation, 318–319
screenshot, 319–320

img_features, 321
prediction label, 322
recognition application  

structure, 318
result.html template, 322–323
static CSS file, 323

G
Genetic algorithm (GA)

ANN optimization
accuracy, predict_outputs and 

fitness, 172–173
classification accuracy, 171
fitness functions, 171
Fruits 360 dataset, 168
matrix multiplication, 168
numpy.extend function, 170
parameters, 168–170
population, 169

Feed-forward ANNs (FFNNs) (cont.)
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pop_weights_vector, 170
solution vector conversion, 171–172

chromosome
binary, 136–137
fitness value, 137
genotype, 137
location, 136
permutation, 136
phenotype, 137
representations, 136
value, 136

Darwin’s theory of evolution, 134
fitness function, 135
mating pool, parents, 135
offspring, 135
operators

crossover, 138
mutation, 139–140

population, chromosome and  
gene, 134

Python implementation
ANN.py file, 180–181
best parents, fitness values, 144
classification accuracy evolution, 

iterations, 177
crossover, 145
first function, 143
fitness function, 140, 142
fitness values, 143, 147–148
GA module, 150–151
GA.py file, 177–180
initial population, 141–142
iterations/generations, 142
linear equation, parameters, 

148–149
main file, 173–176
mutation, 146–147
offspring, 146

parents from first population, 144
Python files, 173
randomly based optimization 

technique, 147
weights, 140–141

GradientDescentOptimizer, 252
Gradient direction, 19
Graphics processing units (GPUs), 183
Graph visualization, TB, 245–247
Gray-level co-occurrence  

matrix (GLCM)
calculation, 11
description, 11
D values, 12
intensity value, 11
normalization, 14–17
reference and neighbor, 11
θ values, 12–14

Gray-level gradient-based co-occurrence 
matrix (GLGCM), 17

H
Histogram of oriented gradients (HOG)

calculation, 24
description, 17
gradient direction, 19, 25–27
gradient magnitude, 23–27
histogram bins, 19–21
HOG_cell_histogram()  

function, 31
image gradients, 18–19
image patch, 22, 26, 30–31
parameters, 36
steps, 21–22
top-left cell, 28–29, 32–36
vertical and horizontal  

gradients, 22–23
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I, J
Image analysis, 188–191
Image gradients, 18–19
Image recognition

classification, 371, 373
libraries used, 367
NumPy, 372
project structure, 368

K
Kivy

Boxlayout, 341, 350–351, 374, 376
building Android  

application, 361
Buildozer tool

building Android  
application, 365–366

buildozer.spec file, 362–364
installation, 361–362
P4A, 361
preparing file, 365

conv, pool, and ReLU  
layers, 378–379

definition, 340
GridLayout, 348–349
handling events, 354–356
implementation, 376, 378
language

create button  
widget, 357
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