
Practical Computer
Vision Applications
Using Deep Learning
with CNNs

With Detailed Examples in Python
Using TensorFlow and Kivy
—
Ahmed Fawzy Gad

Practical Computer Vision
Applications Using Deep

Learning with CNNs
With Detailed Examples in Python

Using TensorFlow and Kivy

Ahmed Fawzy Gad

Practical Computer Vision Applications Using Deep Learning with CNNs

ISBN-13 (pbk): 978-1-4842-4166-0 ISBN-13 (electronic): 978-1-4842-4167-7
https://doi.org/10.1007/978-1-4842-4167-7

Library of Congress Control Number: 2018964710

Copyright © 2018 by Ahmed Fawzy Gad

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484241660. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ahmed Fawzy Gad
Menoufia, Egypt

https://doi.org/10.1007/978-1-4842-4167-7

I dedicate this book to those looking to cause peace to prevail all over
the world and laboring to stop further killing of children and innocent
people just because of religious racism. For every human should want
to restore rights to their proper owners, do good for others seeking the

pleasure of Allah, and leave the world better after death.

v

Table of Contents

Chapter 1: Recognition in Computer Vision �� 1

Image Recognition Pipeline �� 2

Feature Extraction ��� 4

Color Histogram ��� 5

GLCM ��� 11

HOG �� 17

LBP �� 36

Feature Selection & Reduction�� 39

Filter �� 40

Wrapper ��� 41

Embedded ��� 43

Regularization�� 43

Chapter 2: Artificial Neural Networks ��� 45

Introduction to ANNs ��� 46

Linear Models Are the Base of ANNs ��� 47

Graphing ANNs �� 52

Adjusting Learning Rate for Training ANN ��� 57

Filter Example �� 57

Learning Rate �� 62

Testing the Network �� 63

About the Author ��� xi

About the Technical Reviewers ��� xiii

Acknowledgments ���xv

Introduction ���xvii

vi

Weight Optimization Using Backpropagation �� 64

Backpropagation for NN Without Hidden Layer ��� 64

Weights Update Equation �� 67

Why Is the Backpropagation Algorithm Important? ��� 69

Forward vs� Backward Passes �� 69

Backpropagation for NN with Hidden Layer �� 77

Overfitting ��� 89

Understand Regularization Based on a Regression Example �� 91

Model Capacity/Complexity ��� 94

L1 Regularization ��� 95

Designing ANN �� 97

Example 1: ANN Without Hidden Layer �� 98

Example 2: ANN with a Single Hidden Layer ��� 102

Chapter 3: Recognition Using ANN with Engineered Features ������������������������������ 107

Fruits 360 Dataset Feature Mining �� 107

Feature Mining �� 108

Feature Reduction ��� 115

Filtering Using ANN �� 118

ANN Implementation ��� 120

Engineered Feature Limitations �� 126

Not the End of Engineered Features ��� 127

Chapter 4: ANN Optimization �� 129

Introduction to Optimization �� 130

Single- vs� Multiobjective Optimization ��� 130

GA �� 134

Best-Parents Selection �� 137

Variation Operators �� 138

Python Implementation of an Example �� 140

NSGA-II �� 151

NSGA-II Steps �� 152

Dominance �� 154

Table of ConTenTs

vii

Crowding Distance �� 162

Tournament Selection �� 165

Crossover ��� 166

Mutation �� 167

Optimizing ANN Using GA �� 168

Complete Python Implementation ��� 173

Chapter 5: Convolutional Neural Networks ��� 183

From ANN to CNN �� 183

The Intuition Behind DL ��� 184

Derivation of Convolution �� 188

Designing a CNN �� 198

Pooling Operation for Parameter Reduction �� 202

Convolution Operation Example ��� 204

Max Pooling Operation Example �� 206

Building a CNN Using NumPy from Scratch �� 207

Reading the Input Image ��� 208

Preparing Filters �� 209

Conv Layer ��� 209

ReLU Layer �� 215

Max Pooling Layer ��� 216

Stacking Layers ��� 218

Complete Code �� 220

Chapter 6: TensorFlow Recognition Application ��� 229

Introduction to TF �� 229

Tensor �� 231

TF Core �� 231

Dataflow Graph �� 232

Graph Visualization Using TB ��� 245

Linear Model �� 248

Table of ConTenTs

viii

Building FFNN ��� 255

Linear Classification �� 256

Nonlinear Classification ��� 265

CIFAR10 Recognition Using CNN ��� 270

Preparing Training Data ��� 271

Building the CNN ��� 273

Training CNN �� 278

Saving the Trained Model �� 281

Complete Code to Build and Train CNN �� 282

Preparing Test Data ��� 292

Testing the Trained CNN Model �� 293

Chapter 7: Deploying Pretrained Models �� 295

Application Overview �� 295

Introduction to Flask ��� 296

route() Decorator ��� 298

add_rule_url Method ��� 301

Variable Rules �� 301

Endpoint �� 303

HTML Form �� 305

File Upload ��� 307

HTML Inside Flask Application ��� 309

Static Files ��� 314

Deploying Trained Model Using Fruits 360 Dataset ��� 317

Deploying Trained Model Using CIFAR10 Dataset ��� 326

Chapter 8: Cross-Platform Data Science Applications ��� 339

Introduction to Kivy ��� 340

Basic Application Using BoxLayout�� 341

Kivy Application Life Cycle ��� 342

Widget Size �� 346

GridLayout ��� 348

More Widgets ��� 350

Table of ConTenTs

ix

Widget Tree �� 351

Handling Events ��� 354

KV Language �� 356

P4A �� 361

Installing Buildozer �� 361

Preparing buildozer�spec File �� 362

Building Android Application Using Buildozer �� 365

Image Recognition on Android �� 367

CNN on Android ��� 373

 Appendix A: Installing Your Own Projects Using pip Installer ������������������������������ 381

 Creating a Simple Python Project ��� 382

 Project Structure ��� 382

 Project Implementation ��� 382

 Running the Project �� 383

 Importing the Module into a File Inside Its Directory �� 384

 Importing the Module into a File Outside Its Directory�� 384

 How Does Python Locate Libraries? ��� 386

 Manual Installation by Copying Project Files to Site- Packages �� 387

 How Do Python Installers Locate Libraries? ��� 388

 Preparing the Package and Its Files (__init__�py and setup�py) ��� 388

 __init__�py �� 389

 setup�py �� 390

 Distributing the Package ��� 391

 Uploading the Distribution Files Online to Test PyPI �� 393

 Installing the Distributed Package from Test PyPI �� 395

 Importing and Using the Installed Package �� 396

 Using PyPI Rather Than Test PyPI �� 396

 Index ��� 397

Table of ConTenTs

xi

About the Author

Ahmed Fawzy Gad is an Egyptian teaching assistant who

received his M.Sc. degree in 2018 after receiving his 2015

excellent with honors B.Sc. in information technology from

the Faculty of Computers and Information (FCI), Menoufia

University, Egypt. Ahmed is interested in deep learning,

machine learning, computer vision, and Python. He has

worked as a software engineer and consultant for machine

learning projects. His aim is to add value to the data

science community by sharing his writings and preparing

recorded tutorials on his YouTube channel (youtube.com/

AhmedGadFCIT).

Ahmed has a number of published research papers. He authored a book published

in 2017 titled TensorFlow: A Guide to Build Artificial Neural Networks using Python

(Lambert, 2017). Ahmed is always looking to share experience with other experts in his

fields of interest. You are welcome to get connected with him using LinkedIn (linkedin.

com/in/AhmedFGad), Facebook (facebook.com/AhmedFGadd), and e-mail (ahmed.fawzy@

ci.menofia.edu.eg).

http://youtube.com/AhmedGadFCIT
http://youtube.com/AhmedGadFCIT
https://www.amazon.com/TensorFlow-Artificial-Networks-artificial-explanation/dp/6202073128
http://www.linkedin.com/in/AhmedFGad
http://www.linkedin.com/in/AhmedFGad
https://www.facebook.com/ahmed.f.gadd
http://www.ahmed.fawzy@ci.menofia.edu.eg/
http://www.ahmed.fawzy@ci.menofia.edu.eg/

xiii

About the Technical Reviewers

Leonardo De Marchi holds a Masters in artificial

intelligence and has worked as a data scientist in the

sports world, with clients such as the New York Knicks and

Manchester United, and also has worked with large social

networks like Justgiving.

He now works as lead data scientist at Badoo, the world’s

largest dating site with over 360 million users. He is also

the lead instructor at ideai.io, a company specializing in deep learning and machine

learning training and a contractor for the European Commission.

Lentin Joseph is an author and robotics entrepreneur from

India. He runs Qbotics Labs (http://qboticslabs.com),

a robotics software company in India.

He has eight years of experience in the robotics domain,

especially in robotics software development using the Robot

Operating System (ROS), Open-CV, and PCL.

He has authored seven books on ROS: Learning Robotics

Using Python (two editions; Packt), Mastering ROS for

Robotics Programming (two editions; Packt), ROS Robotics

Projects (Packt), Robot Operating System for Absolute

Beginners (Apress), and ROS Programming: Building Powerful Robots (Packt).

He has also reviewed three books related to robotics and ROS. The first was Effective

Robotics Programming Using ROS (Packt), followed by Raspberry Pi Image Processing

(Apress) and Raspberry Pi Supercomputer (Apress).

Lentin and his team were winners of the HRATC 2016 challenge conducted as a part

of ICRA 2016, and he was also a finalist in the HRATC challenge from ICRA 2015.

He completed his masters in robotics and automation in India and has had research

experience at the Robotics Institute, Carnegie Mellon University.

https://na01.safelinks.protection.outlook.com/?url=http://ideai.io/&data=02|01|ramuta@microsoft.com|0830e57e19e04655cabc08d5b7f283fa|72f988bf86f141af91ab2d7cd011db47|1|1|636617174593178026&sdata=VLM3mIavpY3grHU9ZVQzxqsg1Z7N8/5dN9aBMiIUWA0=&reserved=0
http://qboticslabs.com

xv

Acknowledgments

I would like to thank Allah for giving me the knowledge and ability to prepare this book.

As Allah says in the Noble Quran in Surah Al-Nahl Ayah 53, “And whatever you have of

favor - it is from Allah.” I believe that without his help, this work would not have been

possible.

Allah saves me from dangers, secures my heart, and makes me stronger. He granted

me success in my different educational levels, as I was ranked top among my colleagues.

This reminds me of Ayah 15 from Surah Al-Naml in the Noble Quran, “And We had

certainly given to David and Solomon knowledge, and they said, ‘Praise [is due] to Allah,

who has favored us over many of His believing servants.’”

I am grateful to the Apress team formed by Welmoed, Celestin, Divya, Matthew,

Leonardo, Lentin, Sherly, Nirmal, and Joseph for giving me the chance to prepare this

work for readers all over the world. This is a milestone in my life.

Thanks to my social media followers for their feedback regarding my work. Your

comments greatly encouraged me to go forward.

Thanks to my mother and my family members for doing their best for supporting

me after my father’s death during my childhood. My teachers played a critical role in

building my character. Thanks to everyone who has done good to me throughout my life.

I remember you all and ask Allah to do the same for you.

xvii

Introduction

Artificial intelligence (AI for short) is the field of embedding human thinking into

computers In other words, creating an artificial brain that mimics the functions of the

biological brain. Whatever the human can do intelligently is now required to be moved

into machines. First-generation AI focuses on problems that can be formally described

by humans. Using AI, steps for doing something intelligent are described in a form of

instructions that machines follow. Machines follow the human without changes. These

features are characteristic of the first era of AI.

Humans can fully describe only simple problems such as Tic-Tac-Toe or even

chess and fail to describe the more complicated problems. In chess, the problem can

be simply explained by representing the board as a matrix of size 8×8, describing each

piece and how it moves, and describing the goals. Machines will be restricted to those

tasks formally described by humans. By programming such instructions, machines can

play chess intelligently. Machine intelligence is now artificial. The machine itself is not

intelligent, but humans have transferred their intelligence to the machine in the form of

several static lines of code. By static, it is meant that the behavior is the same in all cases.

The machine, in this case, is tied to the human and can’t work on its own. This is like

a master-slave relationship. The human is the master and the machine is the slave, which

just follows the human’s orders and no more.

Embedding intelligent behavior inside chunks of code can’t handle all intelligent

behaviors of humans. Some simple tasks, such as sorting numbers or playing some

games, can be described by humans and then handled by the machine with 100%

of human intelligence. However, some complex tasks, such as speech-to-text, image

recognition, sentiment analysis, and others, can’t be solved by just code. Such problems

could not be described by the human as done with chess. It is impossible to write code

to recognize image objects such as cats. Such intelligent behavior of recognizing objects

simply can’t be solved using a static code because there is no single rule for classifying

objects. There is no rule to recognize cats, for instance. Even if a rule is successfully

created to recognize cats in one environment, it will definitely fail when applied in

another. So how can we make machines intelligent in such tasks? This is machine

learning (ML), in which rules are learned by machines.

xviii

To make the machine able to recognize objects, we can give it previous knowledge

from experts in a way the machine can understand. Such knowledge-based systems

form the second era of AI. One of the challenges in such systems is how to handle

uncertainty and unknowns. Humans can recognize objects even in different and

complex environments and are able to handle uncertainty and unknowns intelligently,

but machines can’t.

In ML, the human is responsible to do the complex task of investigating the data

to find what types of features are able to categorize objects accurately. Unfortunately,

it is a challenging task to find the best types of features to use. This is the question that

researchers are trying to answer for different applications. For example, to diagnose a

disease, the expert human starts by collecting data for both affected and nonaffected

persons, labels such data well, and finds some types of features that are robust in

discriminating between people with the disease and those without it. Such features may

be age, gender, blood sugar, and blood pressure. This is a very challenging task because

the larger the dataset, the more complex for humans to find features working across all

samples.

These days, however, ML models can be trained to identify how to discriminate

between the different classes. The ML algorithm is what finds the suitable mathematical

function that creates the most robust relationship between the inputs and their outputs.

ML algorithms are not doing everything; the key intelligence is still found in the

human expert, not in the machine. The human collects and labels the data, extracts the

most suitable features, and selects the best ML algorithm. After that, the ML algorithm

just learns what the human has told it. Still, the machine plays an important role in

finding the rule by which the inputs are mapped to the outputs.

Usually, ML algorithms trained with data from a certain environment(s) can’t

work with other environments. This is a key limitation. There are huge amounts of

data existing all over the world. Day after day, the data increases and traditional ML

techniques are not suitable for its manipulation. For instance, images are complex to

describe using a set of engineered features due to the variations even within the same

environment. The work (i.e., feature engineering) should be repeated to make the ML

algorithm suited to work with other environments.

If the human ability to find good discriminating features decreases as the number

of classes increases, we can avoid depending on humans and leave that task for the

machine. The machine itself will try to explore the data and find suitable features to

discriminate the classes. Just give the machine the data and it will find what features to

InTroduCTIon

xix

use in order to make a classifier. This is deep learning (DL). The convolutional neural

network (CNN) DL model is the trend for working with large amounts of images.

The field of DL focuses on learning how to draw conclusions from raw data without

the need of the in-between step of feature engineering. This is why DL can be practically

called “automated feature engineering.” It is tiresome in its processing and memory

requirements and may take weeks to discriminate between different classes.

This book targets those of tomorrow’s data scientists who would like to start

understanding the basic concepts of DL for computer vision. Readers should have

a basic understanding of image processing and Python. Here is an overview of the

chapters.

Chapter 1 selects the most suitable set of features for classifying the Fruits 360

dataset based on a review of some commonly used feature descriptors in computer

vision. Such features are implemented in Python. By filtering such features in the

preprocessing step, the minimum number of elements are used for classification. This

chapter concludes that traditional handcrafted features are not suitable for complex

problems. DL is the alternative for working with millions of samples and thousands of

classes.

Chapter 2 discusses the artificial neural network (ANN), which is the base of DL

models. It starts by explaining how the ANN is just a combination of linear models. ANN

architecture is designed for some simple examples by specifying the best number of

layers and neurons. Based on both numerical and Python examples, it will be clear how

ANN works for both forward and backward passes.

Chapter 3 uses the feature set from Chapter 2 to implement the ANN for classifying

a subset of the Fruits 360 dataset. Because no optimization technique is used within the

implementation, the classification accuracy is low.

Chapter 4 gives an introduction to single- and multiobjective optimization

techniques. It uses the genetic algorithm random-based technique for optimizing the

ANN weights. This increases the classification accuracy to more than 97%.

Chapter 5 discusses CNNs for recognizing multidimensional signals. The chapter

starts by highlighting the differences between fully connected neural networks (FCNNs)

and CNNs and how CNN is derived from FCNN. Based on numerical examples, the two

basic operations in CNN, namely, convolution and pooling, will be clear. CNN layers are

implemented in NumPy for understanding how things work in detail.

Chapter 6 introduces the TensorFlow DL library, which is used to build DL

models for parallel and distributed processing of large amounts of data. TensorFlow

InTroduCTIon

xx

placeholders, variables, dataflow graphs, and TensorBoard are discussed based on some

examples building a simple linear model and an ANN for simulating the XOR gate. By

the end of this chapter, a CNN is created using tensorflow.nn module for classifying the

CIFAR10 dataset.

Chapter 7 deploys the trained models into a web server for being accessed by

Internet users using a web browser. A web application is created using the Flask

microframework. HTML, CSS, and JavaScript are used to build the front pages for

accessing the web server. The HTML pages send HTTP requests to the server with an

image, and the server responds to such requests with the predicted class.

Chapter 8 builds cross-platform applications using the Kivy open source library.

By linking Kivy to NumPy, it is possible to build data science applications that work

unchanged on different platforms. This removes the overhead of customizing the code

for a specific platform. An Android application is created to read an image and execute

the CNN layers implemented using NumPy in Chapter 5.

To benefit from the projects created, it is preferred to push them online for other

people to use and benefit from. An appendix discusses how to package Python projects

and distribute them into the Python package index (PyPI) repository.

Before starting, let’s take a brief overview of the Python environment used in the

book.

All code in the book is implemented using Python. Because native Python is

complex for handling images, multiple libraries are used to help to produce an efficient

implementation for applications across the chapters.

At first, native Python could be downloaded from this link (www.python.org/

downloads). The book uses Python 3. Just install the version of Python that is suitable

for your system. The next step is to prepare all libraries required across the entire book.

Rather than installing individual libraries, it is recommended to use Anaconda Python

distribution. It is available for download from this link (www.anaconda.com/download).

It supports Windows, Mac, and Linux and packages more than 1,400 data science

libraries. A list of all supported packages can be accessed from this page (https://repo.

anaconda.com/pkgs). By just installing Anaconda on your machine, all of the supported

libraries will be ready for use. This is helpful to avoid the challenges of preparing the

Python environment.

The required libraries in this book are NumPy, SciPy, Matplotlib, scikit-image,

scikit-learn, TensorFlow, Flask, Werkzeug, Jinja, Pickle, Pillow, and Kivy. All of these

libraries, except for Kivy, are supported by Anaconda. Later in this chapter, we will

InTroduCTIon

http://www.python.org/downloads
http://www.python.org/downloads
http://www.anaconda.com/download
https://repo.anaconda.com/pkgs
https://repo.anaconda.com/pkgs

xxi

see the function of each of them. Note that such libraries can be installed easily. After

installing the native Python, we can use the pip installer to download and install a library

based on this command: “pip install <lib-name>”. Just type the name of the library. Some

installations are not straightforward and might change if the system changes. Thus,

we can’t cover the different installations. For such reasons, Anaconda is better than

installing each library individually. Let’s discuss the libraries needed.

Python supports a number of built-in data structures: list, tuple, dictionary, set, and

string. Unfortunately, no data structure provides flexibility in data science applications.

These data structures support working with different data types at the same time.

The same data structure might contain numbers, characters, objects, and more. String

is an exception, in which only characters are supported. Moreover, string and tuple are

immutable, which means it is impossible to change their values after they are created.

Dictionary adds a key to each item. Saving image pixels using a dictionary requires

adding a key to each pixel which enlarges the amount of data saved. Set is restricted to

just set operations and images are not restricted to just such operations.

Talking about images, which are the main concern of the book, list is the suitable

data structure. It is a mutable data type that is able to hold matrices. Unfortunately,

working with lists makes the process complex. We have to make sure everything is

numeric, of a certain specific type because different numeric data types can be saved

in the same list. To apply a simple operation such as adding a number to the image, we

have to write loops for visiting each element and apply such operations individually.

In data science applications, it is recommended to use the tools that make applying

the operations easier. There are some challenging tasks to conquer when building an

application, and we do not need to add another challenge in programming such tasks.

For such reasons, the NumPy (Numeric Python) library is used. Its basic role is to

support a new data structure in Python, which is array. Working with NumPy arrays is

simpler than working with lists. For example, using just the addition operator (+), we

can add a number to each element in the image after it is converted into a NumPy array.

Many other libraries have their functions accept and return a NumPy array.

Some operations are supported inside the NumPy array, but it is not meant to apply

operations. The SciPy (Scientific Python) library supports the same operations in the

NumPy arrays and more. It also supports working with the n-dimensional NumPy arrays

(e.g., images) using the scipy.ndimage submodule. For more advanced operations on

images, the scikit-image library is used. For example, image features can be extracted

using this library.

InTroduCTIon

xxii

After reading the image and applying some operations, Matplotlib is used for

displaying the images. It is mainly used for 2D visualization, but it also supports some 3D

features.

After reading the images, extracting features, and making visualizations, we can start

building ML models using the scikit-learn library. It supports different types of models

that are ready for use. Just feed it with inputs, outputs, and their parameters to have a

trained model.

After training a ML model, we can save it for later use using the pickle library, which

serializes and deserializes the objects. Up to this point, we can build and save an ML

model. We then move to building and saving a DL model using TensorFlow. It is the

most commonly used DL library, as it supports different APIs that match the needs

of professionals and beginners alike. TensorFlow has its own ways to save the trained

models.

In order to deploy the trained models, Flask is used. It is a microframework for

building web applications. By deploying the trained models to the web server, clients can

access such applications using a web browser. They can upload test images to the server

and receive the classification label. Flask uses the Jinja2 template engine and WSGI for

building the applications. For such reasons, the libraries Jinja and werkzeug must be

installed.

In order to build a data science mobile application that runs on-device, Kivy is used.

It is a Python library that allows the Python code to run cross-platform. In this book, Kivy

is used to build rich data science applications running for Android. The APK generated

by Kivy can be used in the market exactly as if it were created normally using Android

Studio.

Kivy uses the python-for-android packager, which allows adding the required

dependencies in the Android application. Because scikit-image is not supported by

python-for-android, images are read using Pillow, which is supported to run on Android

devices.

Implementations of the projects are available at this GitHub account: github.com/

AhmedFGad

InTroduCTIon

http://github.com/ahmedfgad/
http://github.com/ahmedfgad/

1
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_1

CHAPTER 1

Recognition in Computer
Vision
Most computer science research tries to build a human-like robot that is able to function

exactly as humans. Even emotional properties are not impossible for such robots. Using

a sensor, the robot feels the temperature in the surrounding environment. Using facial

expressions, it is possible to know whether a person is sad or happy. Even things that

seem impossible might eventually only be challenging.

At the current time, a very challenging application is object recognition. Recognition

can be based on different types of data such as audio, image, and text. But image

recognition is a very efficient way due to the plenitude of information that can be helpful

in the task. Thus, it is regarded as the most popular application in computer vision.

There is a massive number of objects existing in the world, and differentiating them

is a complex task. Different objects might have similar visual appearance except for subtle

details. Moreover, the same object appears differently based on its surrounding environment.

For example, based on the light, viewing angle, distortion, and occlusion, the same object

appears differently in the image. Depending on the native image, pixels may not be a good

option for image recognition. This is because a minor change in each pixel leads to a major

change in the image, and thus the system is unable to recognize the objects correctly. The

target is to find a set of unique properties or features that do not change even with changing

pixel locations or values, as long as the structure of the object appears somewhere in the

image. Manually extracting features from images is a big challenge in image recognition.

This is why automatic approaches to feature extraction are becoming the alternative.

Because recognition of any object in any environment is complex at the current time,

the alternative way is to restrict the environment or the objects targeted. For example,

rather than recognizing all types of animals, we can just target a group of them. Rather than

working indoors and outdoors, we might restrict the environment to just indoor images.

2

Rather than recognizing objects in different views, we might only work with some views.

Generally, creating a narrow artificial intelligence application, while challenging, is easier

and has fewer difficulties than general artificial intelligence application.

This chapter discusses how to build a recognition application to classify fruit

images. It starts by presenting some types of features that are useful generally with

different types of applications and then finds the best of such features for use with our

target application. By the end of this chapter, we will find why manually extracting

features is challenging and why automatic feature mining using convolutional neural

networks (CNNs) is preferred.

 Image Recognition Pipeline
Similar to most traditional recognition applications, image recognition is likely to follow

some predefined steps, from accepting an input to returning the desired results. A

summary of such steps is presented in Figure 1-1.

Figure 1-1. General recognition pipeline

Chapter 1 reCognition in Computer Vision

3

Sometimes the input image is not suitable in its current form for processing. For

example, if we are to build a face recognition application that captures images in a

complex environment to recognize the people inside it, then it is preferred to remove

the background before starting to recognize the target object. Background removal, in

this case, is a type of preprocessing. Generally, any step preceding the actual work is

called preprocessing. Preprocessing is a step that maximizes the probability of successful

recognition.

After preparing the inputs, we come to the actual work, which starts with feature

extraction or mining. This is the critical step in most recognition applications. The target

is to find a set of representative features that accurately describes each input. Such a set

of features should maximize the probability of mapping each input to its correct output

and also minimize the probability of assigning each input a wrong label. As a result,

there should be an analysis of the types of features to be used.

The application and the set of features used are related. The features are selected

based on the application. By understanding the nature of the application, the type

of features required will be easily detected. For an application such as human face

detection, what are the features to be extracted? Human faces have skin of various colors,

and thus we can determine that skin color is the feature to be used. Knowing that the

application is to detect human faces in grayscale outdoor images, low lighting, and in a

moving environment helps to select the appropriate features. If you are asked to build

an application to recognize oranges and bananas, you can benefit from the fact that

oranges and bananas have different colors and thus decide that only color features are

enough. But they are not enough to recognize different types of skin cancer, for instance.

More work must be done to find the most suitable set of features. The next section titled

Feature Extraction discusses some features helpful in image recognition applications.

After creating a feature vector holding the features that are likely to be useful in the

recognition application, we come to other steps that add further enhancement, namely,

feature selection and reduction. The primary goal of feature selection and reduction can

be defined as obtaining an optimal feature subset from a set of features that enhances

the learning algorithm performance or accuracy by reducing the number of irrelevant,

correlated, and noise features. The section titled Feature Selection & Reduction

discusses the approaches for reducing the feature vector length by removing such

features.

Chapter 1 reCognition in Computer Vision

4

 Feature Extraction
It is unusual to apply the image in its native form as input to the training model.

There are different reasons why extracting features is a better way. One reason is

that images, even small ones, have a very large number of pixels, where each pixel is

applied as an input to the model. For a grayscale image of size 100×100 pixels, there are

100×100 = 10,000 input variables to be applied to the model. For a small dataset of 100

samples, there will be a total of 100×10,000 = 1,000,000 inputs across the entire dataset. If

the image is Red-Green-Blue (RGB), the total number is multiplied by 3. This requires a

large memory in addition to being computationally intensive.

Another reason why feature extraction is preferred before training is that the input

image has different types of objects with different properties, and we just want to target a

single object. For example, Figure 1-2(a) shows an image of a dog from the “Dogs Vs. Cats

Kaggle” competition. Our goal is to detect the dog, and we do not care about either the

wood or the grass. If the complete image is used as the input to the model, the wood and

the grass will affect the results. It is better to just use features exclusive to the dog. It is clear

that the dog color is different from other colors in the image, according to Figure 1-2(b).

Figure 1-2. Targeting a specific object inside the image is easier when using features

Generally, successful modeling of the problem is tied to the selection of the best

features. The data scientist should select the most representative set of features for the

problem being solved. There are different types of features to be used to describe the

images. These features can be categorized in different ways. One way is to examine

whether they are extracted globally or locally from specific regions in the image. Local

Chapter 1 reCognition in Computer Vision

5

features are those such as edge and keypoints. Global features are those such as color

histogram and pixel count. By global, it is meant that the feature describes the entire

image. Saying that the color histogram is centered at the left region means that the entire

image is dark. The description is not just for a specific region of the image. Local features

are focused on a specific something within the image such as the edges.

Subsequent subsections discuss the following features:

• Color Histogram

• Edge

• HOG

• Texture

• GLCM

• GLGCM

• LBP

 Color Histogram
The color histogram represents the distribution of the colors across the image. It is

usually used with gray images, but there are modifications to use it with color images.

For simplicity, let’s calculate the color histogram for the 5×5 2-bit image in Figure 1-3.

The image has just 4 grayscale levels. The image is randomly generated using NumPy.

Figure 1-3. Two-bit grayscale image of size 5×5

Chapter 1 reCognition in Computer Vision

6

By calculating the frequency of each grayscale level, the histogram is presented in

Figure 1-4. Based on the histogram, it is obvious that the high-frequency bins are located

to the right and thus the image is bright because most of its pixels are high.

Figure 1-4. Histogram of a 2-bit 5×5 grayscale image

Listing 1-1 gives the Python code used to randomly generate the previous tiny image

in addition to calculating and displaying the histogram.

Listing 1-1. Histogram for a Tiny Randomly Generated Image

import matplotlib.pyplot

import numpy

rand_img = numpy.random.uniform(low=0, high=3, size=(5,5))

rand_img = numpy.uint8(rand_img)

hist = numpy.histogram(rand_img, bins=4)

matplotlib.pyplot.bar(left=[0,1,2,3], height=hist[0], align="center",

width=0.3)

matplotlib.pyplot.xticks([0,1,2,3], fontsize=20)

matplotlib.pyplot.yticks(numpy.arange(0, 15, 2), fontsize=20)

Chapter 1 reCognition in Computer Vision

7

The numpy.random.uniform() accepts the size of the array to be returned in addition

to the lower and higher bounds of the range from which image pixels will be assigned

values. The lower bound is 0 and the higher bound is 3 because we are looking to create

a 2-bit image. numpy.uint8() is used to convert the values from floating-point to integer.

Then, the histogram is calculated using numpy.histogram(), which accepts the image and

number of bins and returns the frequency of each level. Finally, matplotlib.pyplot.bar()

is used to return a bar graph showing each level on the x axis and its frequency on the y

axis. matplotlib.pyplot.xticks() and matplotlib.pyplot.yticks() are used to change

the range of the x axis and y axis in addition to the display font size.

 Histogram of a Real-World Image

Let’s calculate the histogram on a real-world image as in Figure 1-2(a) after converting it

to black-and-white. Both the grayscale image and the histogram are shown in Figure 1-5.

It seems that the histogram is mostly concentrated in the left part, which means the

image is generally dark. Because the dog’s body is white, part of the histogram is located

at the rightmost part of the histogram distribution.

Figure 1-5. Grayscale image histogram

Chapter 1 reCognition in Computer Vision

8

Listing 1-2 gives the Python code for reading the color image, converting it to

grayscale, calculating its histogram, and finally plotting the histogram as a bar graph.

Listing 1-2. Histogram for a Real-World Image

import matplotlib.pyplot

import numpy

import skimage.io

im = skimage.io.imread("69.jpg", as_grey=True)

im = numpy.uint8(im*255)

hist = numpy.histogram(im, bins=256)

matplotlib.pyplot.bar(left=numpy.arange(256), height= hist[0],

align="center", width=0.1)

Using the skimage.io.imread() function, the image is both read and converted

to grayscale using the as_grey attribute. When set to True, the image is returned as

grayscale. The returned image data type is float64. To convert it to an unsigned integer

that ranges from 0 to 255, the numpy.uint8() is used. The image is firstly multiplied by

255 before conversion because numpy.uint8() does not rescale the inputs. It just makes

sure the numbers are integers represented by 8 bits. For example, applying a number

equal to 0.7 to this function, the result is 0. We want to rescale 0.4 from the 0–1 range to

the 0–255 range and then convert it into uint8. Without multiplying the inputs by 255, all

values will be just 0 or 1. Note that the number of histogram bins is set to 256 rather than

4 in the previous example because the image is represented as 8-bit.

 HSV Color Space

Color histogram means that the image pixels are represented in one of the color

spaces, and then the frequency of the levels existing in such color spaces are counted.

Previously, the image was represented in the RGB color space, which ranges from 0 to

255 to each channel. But this is not the only existing color space.

Another color space that we will cover is HSV (Hue-Saturation-Value). The

advantage of this color space is the separation of color and illumination information.

The hue channel holds the color information and the other channels (saturaiton and

value) specifies the lightness of the color. It is useful to target the color rather than the

illumination and creating illumination-invariant features. We will not cover the HSV

Chapter 1 reCognition in Computer Vision

9

color space in this book, but it is fine to read more about how colors are generated using

HSV. What is worth mentioning is that the hue channel represents a circle with its values

ranging from 0 to 360, where a degree of 0 represents red, 120 for green, 240 for blue, and

back to red at degree 360. So, it starts and ends at a red color.

For the image in Figure 1-2(a), the hue channel and its histogram are shown

in Figure 1-6. When the hue channel gets represented as the grayscale image as in

Figure 1-6(a), the red color will be given a high value (white), as shown in the dog collar.

Because the blue is given a high hue value of 240, it is lighter in the grayscale image.

The green color with a hue value of 140 is nearer to 0 than to 360; thus, it has a dark color.

Note that the dog’s body, which is white in RGB color space, looks black in the HSV.

The reason is that HSV is not responsible for the intensity but just the color. It will be

white in the value channel.

Figure 1-6. Hue channel of a color image represented in HSV and its histogram

According to Listing 1-3, the RGB image is converted into HSV color space and its

hue channel histogram is displayed.

Listing 1-3. Displaying the Image Histogram Using Matplotlib

import matplotlib.pyplot

import numpy

import skimage.io

import skimage.color

Chapter 1 reCognition in Computer Vision

10

im = skimage.io.imread("69.jpg", as_grey=False)

im_HSV = skimage.color.rgb2hsv(im)

Hue = im_HSV[:, :, 0]

hist = numpy.histogram(Hue, bins=360)

matplotlib.pyplot.bar(left=numpy.arange(360), height=hist[0],

align="center", width=0.1)

Because the hue channel is the first channel in the HSV color space, it is given the

index 0 to get returned.

Features are expected to be unique for different images. If different images have the

same features, the results will not be accurate. The color histogram has such a drawback,

as it could be identical for different images. The reason is that the color histogram just

counts the frequency of colors, whatever their arrangement in the image. Figure 1-7(a)

transposed the image in Figure 1-3. Based on Figure 1-7(b), the histograms of the image

before and after transposition are identical despite the pixel locations being different.

Figure 1-7. Changing pixel locations does not change the color histogram

One may think that this is not a problem, as a good feature descriptor should

remain persistent even with changes to the image such as rotation and scale. The color

histogram is not able to meet this property, as it returns the same histogram even if

the images are completely different. To solve this problem, both the pixel intensity and

location should be considered to return a more representative feature. Examples of such

features are texture features such as GLCM.

Chapter 1 reCognition in Computer Vision

11

 GLCM
One of the popular statistical texture analysis methods depends on the second-order

statistics extracted from the spatial relationship between pairs of pixels. The most

popular of such features are ones extracted from the co-occurrence matrix (CM). One of

the CMs is the gray-level co-occurrence matrix (GLCM). Based on its name, it accepts a

grayscale image as input and returns GLCM matrix as output.

GLCM can be described as a two-dimensional histogram that counts the number of

co-occurrences between each pair of grayscale levels according to the distance between

them. What makes GLCM different from the first-order histogram is that GLCM depends

not just on the intensity but also on the spatial relationship of the pixels. For every two

pixels, one is called reference and the other is called neighbor. GLCM finds how many

times two intensity levels co-occur when the distance between them is D and the angle

is θ. GLCM(1, 3),D = 1,θ = 0° refers to how many times the reference pixel with the intensity

value of 1 co-occurs with its neighbor with intensity 3 when they are separated by

distance D = 1 and angle θ = 0°. When θ = 0, this means they are on the same horizontal

line. θ specifies the direction and D specifies the distance in that direction. Note that the

reference exists to the left side of the neighbor.

The steps to calculate the GLCM are as follows:

 1. If the input image was grayscale or binary, use it directly. If it was

a color image, convert it into the grayscale image or use just one of

its channels if appropriate.

 2. Find the total number of intensity levels in the image. If the

number is L, then number these levels from 0 to L − 1.

 3. Create an LxL matrix, where both rows and columns are

numbered from 0 to L − 1.

 4. Select the appropriate parameters of the GLCM (D, θ).

 5. Find the co-occurrence between every two pairs of intensity

levels.

Chapter 1 reCognition in Computer Vision

12

 D Values

Research studies showed that the best values for D are ones ranging from 1 to 10. Larger

values will yield GLCMs that don’t capture the detailed textural information. So, the

results are accurate for D=1, 2, 4, 8, with D=1, 2 being the best. Normally, a pixel is likely

to be more correlated with pixels near to it. Decreasing the distance yields better results

than higher distances.

 θ Values

For a 3×3 matrix, the center pixel has 8 neighboring pixels. Between such center pixel

and all other 8 pixels, there are 8 possible values for θ as described in Figure 1-8.

Figure 1-8. Values of θ between the center pixel and its eight neighboring pixels

Because the co-occurring pairs obtained by choosing θ set to 0° and 180° are equal

(i.e., GLCM(1, 3),θ = 0° = GLCM(3, 1),θ = 180°), only one angle is sufficient. Generally, angles

separated by 180° return the same results. This applies to angles (45°, 225°), (135°, 315°),

and (90°, 270°).

Let’s start to calculate the GLCM for the previous matrix in Figure 1-3, repeated

again in the matrix below, when D=1 and θ=0. Because that image has four intensity

levels, then the available pairs when the reference intensity is 0 are (0,0), (0,1), (0,2), and

(0,3). When the reference intensity is 1, then the pairs are (1,0), (1,1), (1,2), and (1,3).

This continues for 2 and 3.

3 2 2 0 3

1 3 0 2 2

2 2 2 2 3

3 3 3 2 3

0 2 3 2 2

Chapter 1 reCognition in Computer Vision

13

Calculating GLCM(0, 0),D = 1,θ = 0°, the value will be 0. This is because there is no pixel with

intensity 0 that is 1 pixel away horizontally from another pixel with intensity 0. The result

is also 0 for pairs (0,1), (1,0), (1,1), (1,2), (2,1), and (3,1).

For GLCM(0, 2),D = 1,θ = 0°, the result is 2 because there are three times when the intensity

3 is located 1 pixel away from intensity 0 horizontally (i.e., θ = 0°). The result is also

2 for GLCM(3, 3),D = 1,θ = 0°. For GLCM(0, 3),D = 1,θ = 0°, the result is 1 because there is only one

occurrence of the intensity 3 with distance 1 and angle 0 from intensity 0. This is located

in the top right of the original matrix.

The complete GLCM is available in Figure 1-9. The matrix is of size 4×4 because it

has 4 intensity levels numbered from 0 to 3. The row and column labels are added to

make it easier to know which intensity level co-occurs with another.

Figure 1-9. GLCM of the matrix in Figure 1-3 where distance is 1 and angle is 0

The Python code used to return the preceding GLCM is given in Listing 1-4.

Listing 1-4. GLCM Matrix Calculation

import numpy

import skimage.feature

arr = numpy.array([[3, 2, 2, 0, 3],

 [1, 3, 0, 2, 2],

 [2, 2, 2, 2, 3],

 [3, 3, 3, 2, 3],

 [0, 2, 3, 2, 2]])

co_mat = skimage.feature.greycomatrix(image=arr, distances=[1], angles=[0],

levels=4)

Chapter 1 reCognition in Computer Vision

14

The skimage.feature.greycomatrix() is used to calculate the GLCM. It accepts

the input image, distances, angles at which the matrix will be calculated, and finally, the

number of levels used. The number of levels is important, as the default is 256.

Note that there is a matrix for each unique pair of angles and distances. There is just

a single angle and distance used and thus a single GLCM matrix returned. The shape of

the returned output has four numbers as follows:

co_mat.shape = (4, 4, 1, 1)

The first two numbers represent the number of rows and columns, respectively. The

third number represents the number of used distances. The last one is the number of

angles. If the matrix is to be calculated for more distances and angles, then specify them

in skimage.feature.greycomatrix(). The next line calculates the GLCM using two

distances and three angles.

co_mat = skimage.feature.greycomatrix(image=arr, distances=[1, 4],

angles=[0, 45, 90], levels=4)

The shape of the returned matrix is

co_mat.shape = (4, 4, 2, 3)

Because there are two distances and three angles, the total number of returned

GLCMs is 2×3 = 6. To return the GLCM at distance 1 and angle 0°, the indexing will be as

follows:

co_mat[:, :, 0, 0]

This returns the complete 4×4 GLCM, but only for the first distance (1) and first angle

(0) according to their order in the skimage.feature.greycomatrix() function. To return

the GLCM corresponding to distance 4 and angle 90°, the indexing will be as follows:

co_mat[:, :, 1, 2]

 GLCM Normalization

The previously calculated GLCMs are useful for learning how many times each intensity

level co-occurs with each other. We can benefit from such information to predict

the probability of co-occurrence between each two intensity levels. The GLCM can

be converted into a probability matrix, and thus we can know the probability of

co- occurrence between each of two intensity levels l1 and l2 when separated by distance

Chapter 1 reCognition in Computer Vision

15

D and angle θ. This is done by dividing each element in the matrix by the sum of matrix

elements. The resulting matrix is called the normalized or probability matrix. Based

on Figure 1-9, the sum of all elements is 20. After dividing each element by that, the

normalized matrix is shown in Figure 1-10.

Figure 1-10. Normalized GLCM matrix with distance 1 and angle 0

One benefit from normalizing the GLCM is that all elements in the output matrix

are in the same scale from 0.0 to 1.0. Moreover, the results are independent of the image

size. For example, the highest frequency according to Figure 1-9 of size 5×5 is 6 for the

pair (2,2). If a new image is larger (e.g., 100×100), the highest frequency will not be 6

but a larger value such as 2,000. We can’t compare 6 by 2,000 because such numbers

are relevant to the image size. By normalizing the matrix, the elements of the GLCM are

independent of the image size and thus we can compare them correctly. In Figure 1-10,

the pair (2,2) is given a probability of 0.3, which is comparable with the probability of co-

occurrence from any image of any size.

Normalizing the GLCM in Python is very simple. Based on a boolean parameter

called “normed”, if set to True the result will be normalized. It is set to False by default.

The normalized matrix is calculated according to this line:

co_mat_normed = skimage.feature.greycomatrix(image=arr, distances=[1],

angles=[0], levels=4, normed=True)

The GLCM is of size 4×4 because we are using a 2-bit image with just 4 levels. For

the 8-bit grayscale image in Figure 1-2(a), there are 256 levels and thus the matrix size

is 256×256. The normalized GLCM is shown in Figure 1-11. The probabilities are large

for two regions. The first one is at the top left (low intensity) as the background has dark

colors. The other region is at the bottom right (high intensity) for the dog’s body, because

its color is white.

Chapter 1 reCognition in Computer Vision

16

As the number of levels increases, the size of the matrix will increase. The GLCM

in Figure 1-11 has 256×256 = 65,536 elements. Using all elements in the matrix in the

feature vector will increase its length greatly. We can reduce this number by extracting

some features from the matrix, including dissimilarity, correlation, homogeneity, energy,

contrast, and ASM (angular second moment). Listing 1-5 gives the Python code required

to extract such features.

Listing 1-5. Extracting GLCM Features

import skimage.io, skimage.feature

import numpy

img = skimage.io.imread('im.jpg', as_grey=True);

img = numpy.uint8(img*255)

Figure 1-11. GLCM matrix of a grayscale image with 256 levels with distance 6
and angle 0

Chapter 1 reCognition in Computer Vision

17

glcm = skimage.feature.greycomatrix(img, distances=[6], angles=[0],

levels=256, normed=True)

dissimilarity = skimage.feature.greycoprops(P=glcm, prop='dissimilarity')

correlation = skimage.feature.greycoprops(P=glcm, prop='correlation')

homogeneity = skimage.feature.greycoprops(P=glcm, prop='homogeneity')

energy = skimage.feature.greycoprops(P=glcm, prop='energy')

contrast = skimage.feature.greycoprops(P=glcm, prop='contrast')

ASM = skimage.feature.greycoprops(P=glcm, prop='ASM')

glcm_props = [dissimilarity, correlation, homogeneity, energy, contrast, ASM]

print('Dissimilarity',dissimilarity,'\nCorrelation',correlation,

'\nHomogeneity',homogeneity,'\nEnergy',energy,'\nContrast',contrast,

'\nASM',ASM)

One drawback of GLCM is being dependent on the grayscale values. Just a small

change in the illumination affects the resulting GLCM. One solution is to build the

CM using gradients rather than intensities. Such a matrix is called gray-level gradient-

based co-occurrence matrix (GLGCM) . By using gradients, GLGCM is invariant to the

illumination changes.

Both GLCM and GLGCM are variant to image transformations. That is, if the same

grayscale image is affected by a transformation such as rotation, the descriptor will yield

different features. A good feature descriptor should be invariant to such effects.

 HOG
GLCM is used to describe the image texture but it can’t describe the abrupt changes in

image intensities (i.e., edges). Sometimes texture is not the suitable feature to use in a

problem, and we have to look for another feature. One category of feature descriptors is

used to describe the image edges. Such features describe different aspects of the edges

such as edge direction or orientation, edge position, and edge strength or magnitude.

This subsection discusses a descriptor called histogram of oriented gradients (HOG)

that describes the edge orientations. Sometimes, the target objects have a unique

direction of movement, and thus HOG is a suitable feature. HOG creates a histogram

of a number of bins representing the frequency of the edge orientations. Let’s see how

HOG works.

Chapter 1 reCognition in Computer Vision

18

 Image Gradients

There are changes in intensities between every pair of neighboring pixels within the image.

To measure that change, the gradient vector for every pixel is calculated to measure how

the intensity changes from this pixel to its neighboring pixels. That vector’s magnitude is

the difference in intensities between two pixels. The vector also reflects the direction of

change in terms of X direction and Y direction. For the grayscale image in Figure 1-12, let’s

calculate the change in the intensity in both X and Y directions for pixel 21 in the third row

and the fourth column.

Figure 1-12. Grayscale image to calculate its gradients

Figure 1-13. Masks to calculate the horizontal and vertical gradients

Masks to use to find the gradient magnitude in X and Y directions are in Figure 1-13.

Let’s start calculating the gradients.

By centering the horizontal mask on the target pixel, we can calculate the gradient

in the X direction. In this case, the neighboring pixels are 83 and 98. By subtracting these

values, either subtract the left pixel from the pixel to the right or right from left but be

consistent across the entire image: the amount of change at this pixel is 98 − 83 = 15. The

angle used in this case is 0°.

Chapter 1 reCognition in Computer Vision

19

To get the amount of change at that pixel in the Y direction, the vertical mask is

centered at the target pixel. Then, the top and left pixels for that pixel are subtracted to

return 63 − 53 = 10. The angle used in this case is 90°.

After calculating the change in both X and Y directions, next is to calculate the final

gradient magnitude according to Equation 1-1 and also the gradient direction according

to Equation 1-2.

 Z X Y= +2 2 (Equation 1-1)

 Angle
Y

X
= -tan 1 (Equation 1-2)

The gradient magnitude is equal to 15 10 18 032 2+ = . .

 Gradient Direction

Regarding the gradient direction, one might say that the direction of change for that pixel

is at 0° because the magnitude at the 0° is higher than the vector at 90°. Others might

say, however, that the pixel doesn’t change at either 0° or 90° but at an in-between angle.

Such an angle is calculated by taking both X and Y directions into regard. The direction

of that vector is tan .- °=1 15

10
56 31 . As a result, that pixel direction of change is at 56.31°.

After calculating the angles for all images, the next step is to create a histogram for

such angles. To make the histogram smaller, not all angles are used but just a set of

predefined angles. The most common angles to use are horizontal (0°), vertical (90°),

and diagonal (45° and 135°). Each angle contributes by a value equal to its gradient

magnitude calculated according to Equation 1-3. For example, if the current pixel

contributes to the Z bin, it adds a value of 18.03 to it.

 Contributing to Histogram Bins

The angle we previously calculated is 56.31°. It is not one of the previously selected

angles. The solution is to assign that angle to the nearest histogram bin. 56.31° is located

between bins 45° and 90°. Because 56.31° is nearer to 45° than 90°, it will be assigned to

the bin 45°. A better way is to split the contribution of that pixel to both of these angles

(45° and 90°).

Chapter 1 reCognition in Computer Vision

20

The distance between the angles 45° and 90° is 45°. The distance between the angle

56.31° and 45° is just ∣56.31° − 45° ∣ = 11.31. That means the angle of 56.31° is far away

from 45° by a percentage equal to
11 32

45
25

.
% %° = . In other words, 56.31° is 75% near to 45°.

Similarly, the distance between the angle 56.31° and 95° is just ∣56.31° − 90° ∣ = 33.69.

That means the angle of 56.31° is far away from 90° by a percentage equal to
33 69

45
75

.
% %° = . The value by which the angle adds to a bin is calculated according to

Equation 1-3.

 contribution
abs pixel bin

bin
pixelvalue

angle angle

spacing
g=

-()
rradientMagnitude() (Equation 1-3)

Where pixelangle is the direction of the current pixel, pixelgradientMagnitude is the current

pixel gradient magnitude, binangle is the histogram bin value, and binspacing is the amount

of space between every two bins.

As a result, the angle of 56.31° adds to 45° a percentage of 75% of its gradient

magnitude, which is equal to
75

100
18 03 13 5x . .= . It adds just 25% of its gradient

magnitude to 45° to 90°, which is equal to
25

100
18 03 4 5x . .= .

A more practical histogram contains nine angles starting from 0° and ending at 180°.

The difference between every pair of angles will be 180/9=20. Thus the angles used are

0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°, and 180°. The bins are not these angles but the

center of each range. For the 0°–20° range, the bin used is 10°. For 20°–40°, the bin is 30°,

and so on. The final histogram bins are 10°, 30°, 50°, 70°, 90°, 110°, 130°, 150°, and 170°.

If an angle is 25°, it adds to the bins it is located between. That is, it adds to bins 10°

(by 0.25) and 30° (by 0.75).

By repeating the preceding steps on pixel 68 located at the second row and the

second column, the result of applying the horizontal mask is 97 − 50 = 47, which is

the gradient change in the X direction. After applying the vertical mask, the result is

43 − 23 = 20. The direction of change is calculated as follows based on Equation 1-2:

Angle = = =- - °tan tan1 1 20

47
23

Y

X

Chapter 1 reCognition in Computer Vision

21

Again, the resultant angle is not equal to any of the histogram bins. Thus the

contribution of this angle is split across the bins it falls in between, which are 15° and 45°.

It adds 0.27 to 45° and 0.73 to 45°.

For the pixel located at the fourth row and the second column with intensity value

88, the change in in the X direction is 0. Applying Equation 1-2, the result will be

divided by 0. To avoid dividing by zeros, add a very small value such as 0.0000001 to the

denominator.

 HOG Steps

By this point, we have learned how to calculate the gradient magnitude and direction

for any pixel. But there is still some work to be done before and after calculating these

values. A summary of HOG steps is as follows:

 1. Split the input image into patches with aspect ratio 1:2. For

example, the patch size might be 64×128, 100×200, and so on.

 2. Divide patches into blocks (e.g., four blocks).

 3. Divide each block into cells. Cell size within the block is not fixed.

• For example, if the block size is 16×16 and we determined to

divide it into four cells, the size of each cell is 8×8. Note also

that blocks might overlap with each other and one cell might be

available in multiple blocks.

 4. For each cell within each block, calculate the gradient magnitude

and direction for all pixels.

• Gradients are calculated based on the masks in Figure 1-13.

• Gradient magnitude and direction are calculated according to

Equations 1-1 and 1-2, respectively.

 5. Based on the gradient magnitudes and directions, build the

histogram for each cell. If the number of angles used to constitute

the histogram is nine, then a 9×1 feature vector is returned by

each cell. The histogram is calculated according to our previous

discussion.

Chapter 1 reCognition in Computer Vision

22

 6. Concatenate all histograms of all cells within the same block and

return just a single histogram for the entire block. If each cell

histogram is represented by nine bins and each block has four

cells, then the concatenated histogram length is 4×9=36. This 36×1

is vector is the result of each block.

 7. The vector is normalized to make it robust against illumination

changes.

 8. Concatenate the normalized vectors for all blocks within the

image patch to return the final feature vector.

Figure 1-14 shows a patch from the image in Figure 1-5(a) of size 64×128.

Figure 1-14. Image patch to calculate its HOG

Before creating the histogram, the vertical and horizontal gradients are calculated

according to the vertical and horizontal masks. The gradients are shown in Figure 1-15.

Chapter 1 reCognition in Computer Vision

23

The Python code used to calculate such gradients is given in Listing 1-6.

Listing 1-6. Calculating Gradients

import skimage.io, skimage.color

import numpy

import matplotlib

def calculate_gradient(img, template):

 ts = template.size #Number of elements in the template (3).

 #New padded array to hold the resultant gradient image.

 new_img = numpy.zeros((img.shape[0]+ts-1,

 img.shape[1]+ts-1))

 new_img[numpy.uint16((ts-1)/2.0):img.shape[0]+numpy.uint16((ts-1)/2.0),

 numpy.uint16((ts-1)/2.0):img.shape[1]+

numpy.uint16((ts-1)/2.0)] = img

 result = numpy.zeros((new_img.shape))

Figure 1-15. Vertical and horizontal gradients for the 64×128 image patch

Chapter 1 reCognition in Computer Vision

24

 for r in numpy.uint16(numpy.arange((ts-1)/2.0,

img.shape[0]+(ts-1)/2.0)):

 for c in numpy.uint16(numpy.arange((ts-1)/2.0,

 img.shape[1]+(ts-1)/2.0)):

 curr_region = new_img[r-numpy.uint16((ts-1)/2.0):r+numpy.

uint16((ts-1)/2.0)+1,

 c-numpy.uint16((ts-1)/2.0):c+numpy.

uint16((ts-1)/2.0)+1]

 curr_result = curr_region * template

 score = numpy.sum(curr_result)

 result[r, c] = score

 #Result of the same size as the original image after removing the

padding.

 result_img = result[numpy.uint16((ts-1)/2):result.shape[0]-numpy.

uint16((ts-1)/2),numpy.uint16((ts-1)/2):result.shape[1]-numpy.

uint16((ts-1)/2)]

 return result_img

Based on the calculate_gradient(img, template) function, which accepts a

grayscale image and a mask, the image is filtered based on the mask and then it is

returned. By calling it two times with different masks (vertical and horizontal), the

vertical and horizontal gradients are returned.

The vertical and horizontal gradients are then used to calculate the gradient

magnitude according to gradient_magnitude() function in Listing 1-7.

Listing 1-7. Gradient Magnitude

def gradient_magnitude(horizontal_gradient, vertical_gradient):

 horizontal_gradient_square = numpy.power(horizontal_gradient, 2)

 vertical_gradient_square = numpy.power(vertical_gradient, 2)

 sum_squares = horizontal_gradient_square + vertical_gradient_square

 grad_magnitude = numpy.sqrt(sum_squares)

 return grad_magnitude

Chapter 1 reCognition in Computer Vision

25

That function just applies the Equation 1-1 for the previously calculated vertical and

horizontal gradients. The gradient magnitude for the patch image is shown in Figure 1- 16.

Figure 1-16. Gradient magnitude based on the previously calculated vertical and
horizontal gradients for the 64×128 image patch

Using the function gradient_direction() in Listing 1-8, the gradient direction is

calculated.

Listing 1-8. Gradient Direction

def gradient_direction(horizontal_gradient, vertical_gradient):

 grad_direction = numpy.arctan(vertical_gradient/(horizontal_

gradient+0.00000001))

 grad_direction = numpy.rad2deg(grad_direction)

 # Some angles are outside the 0-180 range. Next line makes all results

fall within the 0-180 range.

 grad_direction = grad_direction % 180

 return grad_direction

Note the small value (0.00000001) added to the denominator. This avoids dividing

by zero. Ignoring that, some outputs values will be NaN (Not a Number).

Chapter 1 reCognition in Computer Vision

26

Figure 1-17 shows the image patch after being split into 16×8 cells. Each cell has 8×8

pixels and each block has 4 cells (i.e., each block has 16×16 pixels).

Figure 1-17. Image divided into 16×8 cells

Based on the previously calculated gradient magnitude and direction, we can just

return the results of the first 8×8 cell in the image patch (top-left cell) as in Figure 1-18.

Chapter 1 reCognition in Computer Vision

27

44.41 88.69 91.57 89.74 84.94 84.98 88.62 91.62

0.26 15.95 165.96 63.43 1.97 178.15173.66 15.26

0.77 29.74 159.44116.57 2.05 0.0 0.0 168.69

1.02 45.0 161.57153.43 0.0 0.0 0.0 146.31

0.75 38.66 160.02 135.0 4.4 1.97 172.87153.43

0.5 36.87 165.96 135.0 4.57 2.05 171.87 53.13

0.25 14.04 0.0 0.0 0.0 0.0 0.0 33.69

179.25 135.0 10.3 26.57 2.29 5.91 35.54 158.96

a (Gradient Direc�on)

207.19219.06219.08 219. 226.88239.92249.07248.1

222.0 7.28 8.25 2.24 29.02 31.02 9.06 11.4

223.02 8.06 8.54 2.24 28.02 30.0 9.0 10.2

225.04 7.07 9.49 2.24 27.0 30.0 9.0 7.21

228.02 6.4 11.7 4.24 26.08 29.02 8.06 2.24

230.01 5.0 12.37 4.24 25.08 28.02 7.07 5.0

231.0 4.12 12.0 3.0 24.0 27.0 6.0 10.82

230.02 5.66 11.18 2.24 25.02 29.15 8.6 13.93

b (Gradient Magnitude)

Figure 1-18. Gradient magnitude and direction of the top-left 8×8 cell

Chapter 1 reCognition in Computer Vision

28

The histogram will be created based on the simple examples we previously

discussed. There are 9 histogram bins covering the range of angles from 0 to 180.

Representing such range using just a limited number of bins makes each bin cover more

than one angle. Using just 9 bins, then each one will cover 20 angles. The first bin covers

angles from 0 (inclusive) to 20 (exclusive). The second one from 20 (inclusive) to 40

(exclusive), until the last bin that covers angles from 160 (inclusive) to 180 (inclusive).

The bin for each range will be given a number equal to the center of each range. That is

the first bin is given 10, second bin 20, and so on until the last bin which is given 170. We

can say that the bins starts from 10 to 170 with step 20. For each angle in Figure 1-18(a),

the two histogram bins it falls within are found. Starting with the top-left element with

value 44.41, it falls between bins 30 and 50. That value contributes to both of these bins

according to Equation 1-3. The contribution value for bin 30 is calculated as follows:

contribution
abs

value =
-() () = ´ =

44 41 30

20
207 19 0 72 207 19 149

.
. . . .228

Regarding bin 50, the contribution value is calculated as follows:

contribution
abs

value =
-() () = ´ =

44 41 50

20
207 19 0 28 207 19 57 9

.
. . . . 11

The process continues for all 8×8 pixels in the current cell. The histogram for the

top-left cell is shown in Figure 1-19(a). Assuming that each block contains 2×2 cells, the

9-bin histograms of the three remaining cells in the top-left block marked in bright color

in Figure 1-17 are also shown in Figure 1-19. By calculating all histograms for a given

block, its feature vector is the concatenation of these four 9-bin histograms. The length of

the feature vector is 9×4 = 36.

Chapter 1 reCognition in Computer Vision

29

Figure 1-19. Nine-bin histograms of the four cells inside the top-left block of the
current image patch

Chapter 1 reCognition in Computer Vision

30

After calculating the feature vector of the first block, the next block with four cells is

selected as marked with bright color in Figure 1-20.

Figure 1-20. The second block within the image patch highlighted in bright color

Again, the nine-bin histograms for each of the four cells inside that block are

calculated as in Figure 1-21, and their results will be concatenated to return the 36×1

feature vector.

Chapter 1 reCognition in Computer Vision

31

The histogram of each cell is calculated using the HOG_cell_histogram() function

in Listing 1-9. This function accepts the direction and magnitude about a given cell and

returns its histogram.

Listing 1-9. Cell Histogram

def HOG_cell_histogram(cell_direction, cell_magnitude):

 HOG_cell_hist = numpy.zeros(shape=(hist_bins.size))

 cell_size = cell_direction.shape[0]

 for row_idx in range(cell_size):

 for col_idx in range(cell_size):

First Cell at Location (0,0) Second Cell at Location (0,1)

Third Cell at Location (1,0) Fourth Cell at Location (1,1)

Figure 1-21. Nine-bin histograms of the four cells inside the second block marked
with a bright color in Figure 1-20 of the current image patch

Chapter 1 reCognition in Computer Vision

32

 curr_direction = cell_direction[row_idx, col_idx]

 curr_magnitude = cell_magnitude[row_idx, col_idx]

 diff = numpy.abs(curr_direction - hist_bins)

 if curr_direction < hist_bins[0]:

 first_bin_idx = 0

 second_bin_idx = hist_bins.size-1

 elif curr_direction > hist_bins[-1]:

 first_bin_idx = hist_bins.size-1

 second_bin_idx = 0

 else:

 first_bin_idx = numpy.where(diff == numpy.min(diff))[0][0]

 temp = hist_bins[[(first_bin_idx-1)%hist_bins.size, (first_

bin_idx+1)%hist_bins.size]]

 temp2 = numpy.abs(curr_direction - temp)

 res = numpy.where(temp2 == numpy.min(temp2))[0][0]

 if res == 0 and first_bin_idx != 0:

 second_bin_idx = first_bin_idx-1

 else:

 second_bin_idx = first_bin_idx+1

 first_bin_value = hist_bins[first_bin_idx]

 second_bin_value = hist_bins[second_bin_idx]

 HOG_cell_hist[first_bin_idx] = HOG_cell_hist[first_bin_idx] +

(numpy.abs(curr_direction - first_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

 HOG_cell_hist[second_bin_idx] = HOG_cell_hist[second_bin_idx] +

(numpy.abs(curr_direction - second_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

 return HOG_cell_hist

Listing 1-10 gives the complete code used to read an image patch and returns the

histogram for the top-left cell in the first block. Note that the code works with grayscale

images. If the input image is grayscale it will have just two dimensions. If the input image

is color, then it will have a third dimension representing the channels. In this case, just

one grayscale channel is used. The number of dimensions of a NumPy array is returned

using the ndim property.

Chapter 1 reCognition in Computer Vision

33

Listing 1-10. Complete Implementation for Calculating Histogram for the

Top-Left Cell

import skimage.io, skimage.color

import numpy

import matplotlib.pyplot

def calculate_gradient(img, template):

 ts = template.size #Number of elements in the template (3).

 #New padded array to hold the resultant gradient image.

 new_img = numpy.zeros((img.shape[0]+ts-1,

 img.shape[1]+ts-1))

 new_img[numpy.uint16((ts-1)/2.0):img.shape[0]+numpy.uint16((ts-1)/2.0),

 numpy.uint16((ts-1)/2.0):img.shape[1]+numpy.uint16((ts-1)/2.0)]

= img

 result = numpy.zeros((new_img.shape))

 for r in numpy.uint16(numpy.arange((ts-1)/2.0,

img.shape[0]+(ts-1)/2.0)):

 for c in numpy.uint16(numpy.arange((ts-1)/2.0,

 img.shape[1]+(ts-1)/2.0)):

 curr_region = new_img[r-numpy.uint16((ts-1)/2.0):r+numpy.

uint16((ts-1)/2.0)+1,

 c-numpy.uint16((ts-1)/2.0):c+numpy.

uint16((ts-1)/2.0)+1]

 curr_result = curr_region * template

 score = numpy.sum(curr_result)

 result[r, c] = score

 #Result of the same size as the original image after removing the

padding.

 result_img = result[numpy.uint16((ts-1)/2.0):result.shape[0]-numpy.

uint16((ts-1)/2.0), numpy.uint16((ts-1)/2.0):result.

shape[1]-numpy.uint16((ts-1)/2.0)]

 return result_img

def gradient_magnitude(horizontal_gradient, vertical_gradient):

 horizontal_gradient_square = numpy.power(horizontal_gradient, 2)

Chapter 1 reCognition in Computer Vision

34

 vertical_gradient_square = numpy.power(vertical_gradient, 2)

 sum_squares = horizontal_gradient_square + vertical_gradient_square

 grad_magnitude = numpy.sqrt(sum_squares)

 return grad_magnitude

def gradient_direction(horizontal_gradient, vertical_gradient):

 grad_direction = numpy.arctan(vertical_gradient/(horizontal_

gradient+0.00000001))

 grad_direction = numpy.rad2deg(grad_direction)

 grad_direction = grad_direction%180

 return grad_direction

def HOG_cell_histogram(cell_direction, cell_magnitude):

 HOG_cell_hist = numpy.zeros(shape=(hist_bins.size))

 cell_size = cell_direction.shape[0]

 for row_idx in range(cell_size):

 for col_idx in range(cell_size):

 curr_direction = cell_direction[row_idx, col_idx]

 curr_magnitude = cell_magnitude[row_idx, col_idx]

 diff = numpy.abs(curr_direction - hist_bins)

 if curr_direction < hist_bins[0]:

 first_bin_idx = 0

 second_bin_idx = hist_bins.size-1

 elif curr_direction > hist_bins[-1]:

 first_bin_idx = hist_bins.size-1

 second_bin_idx = 0

 else:

 first_bin_idx = numpy.where(diff == numpy.min(diff))[0][0]

 temp = hist_bins[[(first_bin_idx-1)%hist_bins.size, (first_

bin_idx+1)%hist_bins.size]]

 temp2 = numpy.abs(curr_direction - temp)

 res = numpy.where(temp2 == numpy.min(temp2))[0][0]

 if res == 0 and first_bin_idx != 0:

 second_bin_idx = first_bin_idx-1

Chapter 1 reCognition in Computer Vision

35

 else:

 second_bin_idx = first_bin_idx+1

 first_bin_value = hist_bins[first_bin_idx]

 second_bin_value = hist_bins[second_bin_idx]

 HOG_cell_hist[first_bin_idx] = HOG_cell_hist[first_bin_idx] +

(numpy.abs(curr_direction - first_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

 HOG_cell_hist[second_bin_idx] = HOG_cell_hist[second_bin_idx] +

(numpy.abs(curr_direction - second_bin_value)/(180.0/hist_bins.

size)) * curr_magnitude

 return HOG_cell_hist

img = skimage.io.imread("im_patch.jpg")

if img.ndim >2:

 img = img[:, :, 0]

horizontal_mask = numpy.array([-1, 0, 1])

vertical_mask = numpy.array([[-1],

 [0],

 [1]])

horizontal_gradient = calculate_gradient(img, horizontal_mask)

vertical_gradient = calculate_gradient(img, vertical_mask)

grad_magnitude = gradient_magnitude(horizontal_gradient, vertical_gradient)

grad_direction = gradient_direction(horizontal_gradient, vertical_gradient)

grad_direction = grad_direction % 180

hist_bins = numpy.array([10,30,50,70,90,110,130,150,170])

cell_direction = grad_direction[:8, :8]

cell_magnitude = grad_magnitude[:8, :8]

HOG_cell_hist = HOG_cell_histogram(cell_direction, cell_magnitude)

matplotlib.pyplot.bar(left=numpy.arange(9), height=HOG_cell_hist,

align="center", width=0.8)

matplotlib.pyplot.show()

Chapter 1 reCognition in Computer Vision

36

After calculating the feature vector for a block, the next step is to normalize that

vector. The motivation to feature normalization is that the feature vector is dependent on

the image intensity levels, and it is better to make it robust against illumination changes.

Normalization takes place by dividing each element in the vector by the vector length

calculated according to Equation 1-4.

 vector X X Xlength n= + +¼+1 2
 (Equation 1-4)

Where Xi represents the vector element number i. The normalized vector is the result

of the first block. The process continues until returning all 36×1 feature vectors for all

blocks. These vectors are then concatenated for the entire image patch being processed.

Based on the preceding discussion, HOG has the following parameters to be

specified before its calculation:

 1. Number of orientations.

 2. Number of pixels per cell.

 3. Number of cells per block.

HOG is already implemented in Python in the skimage.feature module and could

be easily used according to the skimage.feature.hog() function. The preceding

three parameters have default values that could be changed to meet your goals. If the

normalized parameter is set to True then the normalized HOG is returned.

skimage.feature.hog(image, orientations=9, pixels_per_cell=(8, 8),

cells_per_block=(3, 3), visualise=False, transform_sqrt=False, feature_

vector=True, normalise=None)

 LBP
LBP stands for local binary patterns, which is another second-order texture descriptor.

The steps to extract the LBP features are as follows:

 1. Divide the image into blocks (e.g., 16×16 blocks).

 2. For each block, a 3×3 window gets centered over each pixel.

Chapter 1 reCognition in Computer Vision

37

The selected central pixel Pcentral is compared to each of its surrounding 8 neighbors

Pneighbor according to Equation 1-5. From the eight comparisons, there will be eight binary

digits.

 P
P P

otherwiseneighbor
neighbor central=

>ì
í
î

1

0

,

,
 (Equation 1-5)

 3. The 8-bit binary code is converted into an integer. The integer

ranges from 0 to 28 = 255.

 4. Replace the Pcentral value with the calculated integer.

 5. After calculating the new values for all pixels within the same

block, the histogram is calculated.

 6. After calculating the histograms across all blocks, they get

concatenated.

Assuming that the block we are currently working on is in Figure 1-12, we can start

calculating the basic LBP based on it.

By working on the pixel at the third row and the fourth column, the center pixel is

compared to each of the eight neighbors. Figure 1-22 shows the results of the comparison.

Figure 1-22. The result of comparing the central pixel to its eight neighbors

Next is to return the binary code. You can start from any position in the 3×3 matrix

but you must be consistent across the entire image. For example, starting from the top-

left position and moving clockwise, the code is 11011101. You can either move clockwise

or counterclockwise, but be consistent.

After that, the binary code is converted into a decimal by summing the

multiplications of each binary by a weight corresponding to its position in the binary

code. The result is 128 + 64 + 16 + 8 + 4 + 1 = 221.

After calculating the binary code for each pixel in the block and returning its

decimal, the histogram is created. The process is repeated for all image blocks, and

histograms from all blocks are concatenated as in the case of HOG.

Chapter 1 reCognition in Computer Vision

38

Figure 1-23. The output of applying LBP over a grayscale image with P-9 and R=3

This is the basic implementation of LBP, but such a feature descriptor has multiple

variations that make it robust against illumination changes, scale, and rotation.

It could be implemented easily in Python using the skimage.feature.local_

binary_pattern() function that accepts three parameters:

• Input image.

• Number of neighboring points in a circle (P). This parameter helps to

achieve rotation invariance.

• Radius of the circle (R). Such parameter helps to achieve scale

invariance.

Here is an example of LBP applied to the grayscale image in Figure 1-2(a).

import skimage.feature

import skimage.io

import matplotlib.pyplot

im = skimage.io.imread("69.jpg", as_grey=True)

lbp = skimage.feature.local_binary_pattern(image=im, P=9, R=3)

matplotlib.pyplot.imshow(lbp, cmap="gray")

matplotlib.pyplot.xticks([])

matplotlib.pyplot.yticks([])

The output image is given in Figure 1-23.

Chapter 1 reCognition in Computer Vision

39

 Feature Selection & Reduction
Assuming that after a discussion with the experts in a given field, you deduced that

features X, Y, and Z are suitable. These features are just selected initially, and there is a

probability that some of these features might not be helpful. You decide whether each

feature is good or bad based on some experimentation. After training a model based on

these three features, the recognition rate is low and something must be changed in the

feature vector. To know the reason, you conducted some experiments by training the

model for each individual feature. You found that the correlation between feature Z and

the target is low and thus decided not to use this feature. Eliminating certain features

completely from the feature vector and keeping others is called feature selection.

Selection techniques classify the feature as either bad or good. Bad features are

eliminated completely while the good features are used exclusively.

In fact, some elements inside each feature might not be suitable for the type of

application being analyzed. Assume that a feature X is used within the feature vector

and that this feature has a set of 10 elements. One or more of these elements might not

be helpful in the task. For example, some features are redundant. That is some features

may be optimally correlated with each other, and thus only one feature is sufficient in

describing the data and there is no need to use multiple features that work the same.

Due to correlated features, there might not exist a unique optimal feature subset. This is

because there may be more than one perfectly correlated feature, so one can replace the

other and create a new feature subset.

Another type is the irrelevant features. Some features have no correlation with the

predictions required and they are regarded as noise. Such features won’t enhance but

rather degrade the results. So, it is preferred to detect such features and remove them so

they don’t affect the learning process. Removing just a subset of elements and keeping

the others is called feature reduction.

Another motivation behind reducing the length of the feature vector by removing

bad features as much as possible is that the longer the feature vector length the more

computational time is consumed in training and testing the models.

To classify features as relevant or irrelevant, some metrics are required to show the

relevance of each feature with the output classes or how well each feature predicts the

desired outputs. Feature relevance is the ability of a feature to discriminate the different

classes. After the selection of the metrics, they will be used to create good feature

subsets by eliminating bad features. The feature elimination methods are classified into

supervised and unsupervised methods. Supervised methods include filter and wrapper,

and unsupervised methods include embedded.

Chapter 1 reCognition in Computer Vision

40

 Filter
The filter approach adds an additional preprocessing step to apply variable ranking

techniques for ranking features based on different criteria calculated for each feature to

measure the feature’s relevance. These criteria include standard deviation (STD), energy,

entropy, correlation, and mutual information (MI). Based on a threshold, the highly

ranked features are selected to train the model. The filter methods are very fast and not

time-consuming compared to other selection approaches. They are also simple in their

calculations, scalable, able to avoid overfitting, and independent of the learning model.

For training different models, the selection is done just once and then the training

models can use the selected features. But filter methods have a number of critical drawbacks

that affect their performance heavily compared to other approaches to feature selection. The

filter/ranking approach doesn’t model feature dependencies. It selects each variable/feature

independently from the other features/variables in the same subset. A feature is selected

when being highly ranked according to the selected criterion. The criterion used for ranking

doesn’t take into consideration the relationship among multiple features. Ignoring feature

dependencies can damage the entire selected subset because features that are significant by

themselves in increasing the learning rate are not guaranteed to be so when combined with

other features. There are some cases in which useful variables by themselves are still useful

when combined together, but this is not always the case.

If the usefulness of two features f1 and f2 are x1 and x2 respectively, this doesn’t

mean that their usefulness will be x1 + x2 when combined together. Also, ignoring

feature dependencies makes it prone to redundant and correlated features. This is

because there may be two or more features that perfectly satisfy the criterion but each

of them is a perfect reflection of all the others doing the same task. So it is not required

to use multiples of the same thing; just one is sufficient. Correlation is another form

of redundancy in which features may not be identical but are dependent and always

work the same (can be represented as two parallel lines). Perfectly correlated variables

are truly redundant as they add no additional information. The use of redundant

and correlated features leads to a large feature vector, and thus the benefits of feature

selection to reduce the feature vector length is not achieved. Filter methods don’t

interact with the learning model, as they are not relying on the learning algorithm

performance due to decoupling the feature selection from the performance. Instead,

these just consider a single criterion between the feature and the class label but not

information to indicate how well the feature is working with the learning algorithm.

A good feature selector should take into account how both the learning algorithm and

Chapter 1 reCognition in Computer Vision

41

the training data set interact. Finally, it is not an easy task to calculate the threshold used

to classify features as selected or not. All of these reasons lead to the use of other feature

selection approaches that overcome these problems.

 Wrapper
The wrapper approach is the second approach that solves some of the problems with the

filter methods. The wrapper methods try to interact with the learning model by creating

a subset of selected features that maximize the performance. The wrapper approach

creates all possible subsets of features to find the best subset. The wrapper approach is

called so because it is wrapping around the learning algorithm. It uses the induction or

learning algorithm as a black box to measure how well the selected feature subset works

by training the algorithm with the selected subsets and then to use the one that maximizes

its performance. When talking about the wrapper approach, multiple points should be

covered well, including selecting feature subset length, creating the feature subset space,

searching the feature subset space, assessing the performance of the learning algorithms,

stopping search criteria, and determining which learning algorithms to use. The goal of

any feature reduction/selection algorithm is to create all possible feature combinations

of length L features from an original complete feature vector of length N that maximizes

the performance where <N. For a normal feature vector length of =30, there is a large

number of combinations to create subsets of length L = 10. For this reason, a search

strategy is applied to search for the best subsets with an evaluation function penalizing bad

subsets. The objective function, in this case, is the model performance. So, the problem is

transformed from a learning problem to a search problem. The exhaustive search is not

applicable for such problem, because it visits and train a learning model with all subsets,

which is intensive in terms of calculations. So, evolutionary algorithms (EAs) are used

to avoid exploring all subsets, and these can be categorized into two classes: sequential

selection algorithms (deterministic) and heuristic search algorithms (random).

The deterministic search algorithms are further classified into two categories that

are actually pretty similar, namely, forward selection and backward selection. In forward

selection, the algorithm starts from a root representing an empty set of features and then

adds feature by feature while training the learning model for each change. In backward

selection, the root of the search is the complete set of features, and the algorithm then

removes features one by one while training the learning model for each change. Examples

of such algorithms include sequential feature selection (SFS), sequential backward

selection (SBS), sequential forward floating selection (SFFS), adaptive SFFS (ASFFS),

Chapter 1 reCognition in Computer Vision

42

and beam search. To prevent the search from being exhaustive, a stopping criterion is

added to prevent exploring all possible combinations. The criterion can be a maximum

feature vector length for forward selection or minimum length for backward selection.

It can also be a maximum performance, so after reaching the selected performance, the

search stops.

The second category of search algorithms, random algorithms, are informed

searches that use a heuristic evaluation function, generating a heuristic value telling

how close each subset is to the maximum performance. Examples of such search

algorithms include genetic algorithm (GA), particle swarm optimization (PSO),

simulated annealing (SA), and randomized hill climbing. GA will be discussed in

detail in Chapter 5.

A question that must be answered is what is the optimal value for L (number of

features)? Wrapper methods have different approaches to answer that question. One

way is to select a fixed number of features to create the feature vector, and by using

combinations, it is possible to get all possibilities to select just L features from N features.

But unfortunately, the selected fixed value for L may not be the optimal one and there

is no guarantee that the L selected features are the ones that give the best performance

for the learning model. So, another way is to make the number of features to be selected

variable and dynamically changing. This is by trying a different number of features and

selecting the best number of features that maximize the performance as in the sequential

selection algorithms. The drawback of making the number of features dynamically

changing is adding more and more computational time by creating different features

combinations of different lengths and training the model with them. To reduce this

time, a criterion can be added to make the learning stop earlier after reaching a target

performance or after the number of selected features reaches a maximum length.

Comparing the wrapper approach to the filter approach, there are a number of

advantages. The wrapper approach interacts with the learning model as it uses the learning

algorithm performance as a metric to select the best feature subsets. It also models feature

dependencies, as features are not selected individually or independently from each other,

and monitors how combining features together affects the performance. Finally, it is robust

against redundant and correlated features. But there are a number of drawbacks to the

various wrapper methods. They are time- consuming, as each model has to be trained

multiple times. Some models are very time- consuming and may take hours to be trained

once. As a result, wrapper methods are not the option for such models. Moreover, wrapper

methods are affected by overfitting as the selection is dependent on the learning model and

thus can’t generalize selected features across different models.

Chapter 1 reCognition in Computer Vision

43

 Embedded
Both filter and wrapper approaches to feature selection have their own advantages and

disadvantages. The embedded methods try to combine the advantages of both filter

and wrapper approaches. Such methods are not time-consuming, as they avoid the

retraining of the learning algorithm that is seen in the filter and wrapper approaches.

They maximize the performance by interacting with the learning model, as in the

wrapper approach. The feature is selected only if it is correlated with the output class

labels m. It is called embedded because it works by embedding feature selection within

the training step.

Categories of the embedded approach are as follows: pruning, built-in, and

regularization (penalization). Pruning methods start by training the learning model with

the complete set of features and then calculate a correlation coefficient for each feature.

Such coefficients are used to rank the importance of the features according to the model

used. High values for coefficients reflect strong correlation. The built-in approach

for embedded feature selection calculates an information gain for each feature as in

decision tree learning (ID3).

In machine learning (ML), some models are trained very well and can make the

correct predictions for any sample in the training data but unfortunately can’t make

correct predictions for other samples outside the training samples. This problem

is called overfitting. Regularization is a technique used to avoid this problem.

Regularization is to tune or select the best model complexity to fit the training data

while being able to predict unseen samples. Without regularization, the model may be

very simple and underfit (can’t make correct predictions for both training and testing

samples) or be very complex and overfit (correct predictions for training samples but

wrong for testing samples). Both underfit and overfit make the model too weak and

unable to be generalized to any sample. So, regularization is a way of generalizing the

model to predict any sample, whether training or testing.

 Regularization
In order to find the best model, the common method in ML is to define a loss or cost

function that describes how well the model fits the data. The goal is to find the model

that minimizes this loss function. Normally, the objective function in any learning model

has only a single criterion, which is maximizing the performance. The regularization

Chapter 1 reCognition in Computer Vision

44

approach adds another criterion to the objective function to control the level of

complexity, as shown in Equation 1-6.

L = min error(Ypredict, Ycorrect) + λ penalty(Wi) (Equation 1-6)

Where Ypredict is the predicted class label, Ycorrect is the correct class label, error(.)

calculates the prediction error, Wi is the weight for the feature element Xi, and λ is the

regularization parameter controlling the model complexity. This parameter is used to

control the trade-off between the objective function and the penalty. The penalty is

defined according to Equation 1-7.

 penalty w W
i

i() =
=
å

1

 (Equation 1-7)

By changing λ values, the model complexity changes. This is by penalizing some

features by setting their weights close or equal to zero. The magnitude of coefficients is

a significant factor in determining the model complexity. Feature selection is indirectly

achieved by selecting features with high weight magnitudes. The higher the weights, the

more relevant is the feature in predicting the correct class. This is why the regularization

approach is called penalization.

The goal of the regularization parameter λ is to minimize the loss L and keep it to

a minimum. For a very large value for λ approaching ∞, the coefficients must be small

and approach zero to make the total value as small as possible. This makes most of

the coefficient zero and thus remove them. For a value of 0 < ʎ < ∞, there will be some

coefficients equal to zero, which will be removed, but not many of them equal to zero.

What is the best value for λ? There is no fixed value for λ and its value can be efficiently

calculated using cross-validation (CV).

Combining the advantages of filter and wrapper approaches makes the embedded

approach the most recent research trend for feature selection. It interacts with the

learning model because it uses the training model performance as a metric like the

wrapper methods, is not time-consuming like the filter methods because it doesn’t

require retraining the model, and also models feature dependencies to avoid redundant

and correlated features. Selecting features while training is efficient in terms of data use,

as it is not required to split the data into training and validation sets. However, while

features selected by embedded methods do well for the learning model used to select the

features, the selected features may be dependent on such model and won’t work as well

across different models as what is produced with the filter approach.

Chapter 1 reCognition in Computer Vision

45
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_2

CHAPTER 2

Artificial Neural Networks
Machine learning (ML) problems can be divided into three categories: supervised,

unsupervised, and reinforcement. In supervised learning, a human expert conducts

some experiments in a restricted environment and notices their results. The supervised

learning algorithm explores the data collected from experiments to map inputs to

outputs. For example, a restricted environment might have a robot that wants to go

from one side of a small room to another. There are some obstacles in the room that

may make the robot fall. The supervisor provides guidance about how to reach the wall

without falling. This is done by giving the robot knowledge in the form of examples

to help it learn how to pass obstacles. The robot uses this knowledge to increase the

probability of passing the obstacle without falling. In such a case, the knowledge of the

robot is completely dependent on the human.

In reinforcement learning, the human gives the robot a metric to evaluate its

performance. The robot has to maximize this metric to reach its goal. It does not know

when to move to the right. Based on the metric, the robot will try different locations

to move and calculates the metric. If the robot fell at a given location, then it has to

avoid it next time. In this way, the robot will find the way that makes it reach the goal

without falling.

Compared to supervised and semisupervised learning, unsupervised learning will

not be given the results of the experiments nor a metric. There is no human to guide it at

all. This is very challenging.

An artificial neural network (ANN for short) is a kind of algorithm that works in all

of these problems. This book only discusses supervised learning using ANN. ANN is

a biologically inspired ML model that mimics the operation of the human brain. It is

one of the most important topics to be covered when talking about deep learning (DL).

Understanding the operation of simple ANNs with few layers and neurons makes it

easier to understand how complex models work.

46

In this chapter, prerequests to learn how CNNs work will be presented. It starts by

exploring ANN at a beginner level. Starting by knowing that it is a collection of linear

models, you will find that it is not a strange concept at all; in fact, you already know

about it. The chapter discusses some concepts related to ANN, such as learning rate,

backpropagation, and overfitting. This chapter will help you understand why we need

the learning rate in ANNs and whether it is useful or not for training. Using a very simple

Python code for a single-layer perceptron, the learning rate value will get changed

to catch its idea and notice how changing the learning rate affects the results. It also

discusses how the backpropagation algorithm is useful in updating the ANN weights.

This chapter also explains overfitting, which is one of the reasons for poor predictions

for unseen samples. A regularization technique based on regression is presented by

simple steps to make it clear how to avoid overfitting. ANN has a special graph to make

interpretation of its results easier. This chapter maps the mathematical representation

and its graph and explores one of the points that make beginners struggle, which is

how to determine the best number of neurons and hidden layers. Finally, a Python

classification example using ANN is given.

 Introduction to ANNs
Supervised learning problems are divided into two main categories: classification

and regression. Regression outputs are continuous numbers, while classification

outputs are categorical labels. Each type of these problems can use either a linear or a

nonlinear model. Classification problems can also be divided into binary or multiclass

classification problems. All of these types of problems can be solved using neural

networks. That is, a neural network can be made to produce continuous or discrete

outputs. It can work with binary or multiclass problems and model linear and nonlinear

functions. ANN is a general function approximator (i.e., ANN can simulate the operation

of any linear and nonlinear functions). ANN is a parametric model that has a set of

parameters that are learned from the problem, such as weights and bias. It also has a

number of hyperparameters that can be tuned by the engineer, such as learning rate and

the number of hidden layers.

ANNs actually consist of linear models that are grouped together to solve complex

problems. The next subsection discusses how the basic building block of ANN is actually

a linear model.

Chapter 2 artifiCial Neural Networks

47

 Linear Models Are the Base of ANNs
The simplest types of models for beginners to start with are the linear models. Of course,

everyone knows about linear models, and this makes the next explanation easier. We can

start with a simple regression problem in which we are looking to create a linear model

for the sample shown in Table 2-1. What is the best linear model to fit such data? Let’s see.

Table 2-1. Simple Regression Problem

Input (X) Output (Y)

2 6

“Linear model” means a line that maps each input to its corresponding output. We

will start with the simplest linear model, as in Equation 2-1. The model equalizes the

input and the output together without having any other parameters in the equation.

After doing that, then we create our first model. One may wonder, where is the

training part of building any model? The answer is that this model is a nonparametric

model. “Nonparametric” means that the model has no parameters to learn from the

data. Thus, no training is required to do the job. Later in this chapter, some parameters

will be added.

 Y = X (Equation 2-1)

In a regular ML pipeline, after building a model we have to test it. In traditional

problems, there will be more samples and the data will be divided into training and

testing sets. After training the model, testing starts based on the training data. If it did

well on the training data, then we can step through testing it over the unseen test data.

This is because if a model is not working well on the data it is trained by, then it will likely

to be worse for the unseen data. At all, our example takes us off such work, as it just has

one sample and no training required. But the lack of training phase does not mean that

there is no testing phase. Let’s test our model based on such a sample.

The testing phase checks how accurate the model for predicting the outputs for

unseen samples rather than ones using in training. Based on our sample with X=2,

when applied to the model it will also return 2. This is because the input always equals

the output. The linear model, in addition to the positions of the predicted and desired

outputs, is shown in Figure 2-1.

Chapter 2 artifiCial Neural Networks

48

We can simply take the difference between the desired and the predicted outputs as

in Equation 2-2. The difference will be 2 − 6 = − 4.

 error = predicted − desired (Equation 2-2)

The existence of an error means we have to change something in the model in

order to reduce it. Looking back at the model in Equation 2-1, we see that there is no

parameter that we could change. The equation just has the input and the output that we

could not change. As a result, we could add a parameter a to this equation, which helps

in the mapping between the input and the output. Equation 2-3 shows the modified

model equation.

 Y = aX (Equation 2-3)

Let’s say that a has an initial value of 1.5. The equation is given in Equation 2-3 .́
Such a linear model is shown in Figure 2-2.

 Y = 1.5X (Equation 2-3′)

Figure 2-1. The nonparametric linear model’s predicted and desired outputs

Chapter 2 artifiCial Neural Networks

49

Note that after adding the parameter, the model is now a parametric model. This is

because there is at least one parameter to be learned from the data. Now, after building

the new model, we could predict the output of our sample. The predicted output is

Ypredicted = 1.5(2) = 3. Then we can measure the error. According to Equation 2-2, the

error is 3 − 6 = − 3. Compared to the previous error, it seems that the new model

with parameter a = 1.5 enhances the results compared to the previous model with no

parameter. But there still error in the prediction that we need to reduce.

We can imagine that the first model in Equation 2-1 is actually represented by

Equation 2-3, but the parameter a is always set to 1. Comparing the error produced

when a = 1 to the error when a = 1.5, which is −4, it seems that the error reduced when

a = 1.5 to be −3. One might wonder how the value −3 is less than −4. The answer is that

the negative sign in the error just says the predicted output is lower than the desired

output. The amount of difference is the absolute value of the error. That is, an error of −4

means that there is a difference of 4 between the desired and the predicted outputs and

that the desired output is lower than the predicted output because the error is negative.

Note that changing the positions of the predicted and desired outputs in Equation 2-2

will change the sign of the error. Let’s now return to our problem.

Figure 2-2. Parametric linear model

Chapter 2 artifiCial Neural Networks

50

When a = 1.5, the results are better compared to a = 1.0, and that means increasing

the value of this parameter will reduce the error. Thus, we know the direction of change.

Let’s try using a = 2.0. The predicted output will beYpredicted = 2.0(2) = 4. The error in this

case will be equal to 4 − 6 = − 2. The error reduced more than before.

Based on the previous results, we might deduce a relationship between the

parameter and the error. Using a = 1, the error is −4. Adding 0.5 to the parameter

(a = 1.5), the error got reduced by 1.0 to be −3. Adding another 0.5 to the parameter

(a = 2.0), the error got reduced by 1.0 to be −2. So, adding 0.5 to the parameter reduces

the error by 1.0. Thus, we could add 1.0 to the parameter to eliminate it completely, and

the parameter will be a = 3.0. The predicted output in this case is Ypredicted = 3.0(2) = 6. The

error will be 6 − 6 = 0. The error is now 0 and we reached the best results when a = 3.0.

Let’s make a change to the sample in Table 2-1 by changing the output of the

output to be 6.5 rather than 6 in addition to using a new sample. Based on Equation 2-3

with a = 3.0, the predicted output is Ypredicted = (3.0)2 = 6.0 for the first sample

and Ypredicted = (3.0)3 = 9.0 for the second one. Thus, there is a total error equal to

(6.0 − 6.5) + (9.0 − 9.5) = − 1.0 (Table 2-2). How can this type of error be reduced?

Table 2-2. Regression Problem with Two Samples

Input (X) Output (Y)

2 6.5

3 9.5

Table 2-3. Regression Problem with Two Samples

Parameter Output (Y) Predicted Error Total Error

3.5
6.5 7.0 7.0−6.5=1.0

2.0
9.5 10.5 10.5−9.5=1.0

2.5
6.5 5.0 5.0−6.5=−1.5

−4.0
9.5 7.5 7.5−9.5=−2.5

The procedure we are following is to change the value of the parameter until

reducing the error to 0. Table 2-3 shows the total error for the two values of the

parameter. It seems that neither 3.0 nor a value greater than or equal to it eliminates the

error. The models corresponding to a = 2.5, a = 3.0, and a = 3.5 are shown in Figure 2-3

along with the desired outputs.

Chapter 2 artifiCial Neural Networks

51

The truth is that there is no value for the parameter that makes the error equal 0 for

our example. We want a value that when multiplied by 2 gives 6.5 and when multiplied

by 3 gives 9.5. It is impossible to find such a value. The value of the parameter that

satisfies the first sample is a = 3.25, while it is a = 3.17 for the second sample. Thus,

reaching an error of 0 is not possible on the current form of the model. For this reason,

the bias plays an important role in solving such situations.

We can add a bias b to Equation 2-3 as in Equation 2-4. This bias is able to fix our

problem.

 Y = aX + b (Equation 2-4)

But the problem’s complexity now increases. We are trying to find the values for two

parameters (a, b). Based on the previous results when a = 3.0, the predicted outputs for

the two samples are 6.0 and 9.0, respectively. The predicted outputs are less than the

correct outputs by 0.5. As a result, the value of b = 0.5 is what we are looking for. As a

result, a = 3.0 and b = 0.5 will give an error of 0. This is why the bias is important.

Figure 2-3. Multiple parametric linear models. The dotted line corresponds to
model with a=2.5, starred line to a=3.5, and solid line to a=3.0.

Chapter 2 artifiCial Neural Networks

52

Bias allows us to freely move the linear model on the y axis while increasing the

likelihood of fitting the data more than just moving it only on the x axis. Note that it is

very useful in our example because there are fewer parameters. When the model has

more parameters, bias might be omitted.

Extending the example in Table 2-2, there is a new input Z added to the problem and

the new data is in Table 2-4. Because there are two inputs and one output, the previous

model in Equation 2-4 will not work and we have to add the new input and its associated

parameter. Equation 2-5 represents the new model.

Table 2-4. Regression Problem with Two Inputs

and One Output

Input (X) Input (Z) Output (Y)

2 1.1 6.5

3 0.8 9.5

 Y = aX + cZ + b (Equation 2-5)

Now, we have to find the best values for the two parameters a and c in addition to the

bias b. The same procedure used before will be applied to this problem to find the best

values for these variables.

By creating simple linear models, we have successfully learned how the building

blocks of ANNs work. ANNs consist of multiple of such linear models that are connected

together in order to fit a problem. The following sections will explain how to design a

network by connecting linear models together. The next subsection discusses how to

draw an ANN for the previously created models.

 Graphing ANNs
ANNs are built by connecting multiple linear models together. As the number of

parameters required in each model increases, the complete equation of the network

becomes too complex. Thus, it is difficult to represent the problem as an equation, but

a more simple way is to visualize the network as a graph. The network graph is simpler

to understand and design. Here we are going to learn how to build the network graph,

starting with a linear model.

Chapter 2 artifiCial Neural Networks

53

ANN is an artificial representation of biological neural networks. We can start by

saying that the basic building block in an ANN is the artificial neuron. Previously in

this chapter, we said also that the basic block of ANN is the linear model. Thus, we

can deduce that the neuron is actually a linear model. As in linear models, the neuron

accepts inputs, makes some types of processing such as multiplication and summation,

and finally returns an output. Figure 2-4 shows the mapping between the linear model in

Equation 2-4 and the artificial neuron. It is noted that all variables existing in the linear

model also exist in the ANN graph. This kind of ANN is called a single-layer perceptron.

Figure 2-4. Mapping from a linear model with one input to ANN graph

We can start from the core of the graph, which is the circle with text “Math”. This

circle represents the neuron of the neural networks. The neuron is a computational

unit, and the type of computation it does is to multiply each input by its corresponding

parameter, sum all results, and then return the output that represents the sum of

products (SOP). For this reason, the input X is connected to that neuron.

Because each parameter must be associated with its input to calculate the SOP,

the parameter a for the input X is written above the arrow connecting it to the neuron.

Making each parameter near to its input helps in finding the parameter associated with

Chapter 2 artifiCial Neural Networks

54

each input. This is for the inputs and their parameters. The idea might not be clear based

on the current example because there is just one input, but it will be clearer later. Let’s

move to the bias.

A new block is used after the neuron to add the bias b to the SOP. After adding b to

the SOP, the output Y is produced. Up to this point, everything works well, but we can

still make the graph simpler.

In our previous discussion, we treated the bias differently from the inputs. Each

parameter is multiplied by its input, but the bias does not have an input to get multiplied

by. We can assume that the bias has an input that is always equal to +1. This eases the

process too much, as we could eliminate the bias block added after the neuron as in

Figure 2-5. The neuron will multiply each parameter by its associated input and treat

the bias the same. It will be regarded as a parameter that has an input of +1. To make

the bias different from the regular parameters, it could be added vertically while other

parameters are added horizontally in the graph.

Figure 2-5. Mapping from a linear model with one input to the ANN graph with
bias treated the same as regular parameters by associating it to an input of +1

Chapter 2 artifiCial Neural Networks

55

Based on the previous example, we know how to graph a linear equation from the

neural network perspective. Now, we can work with Equation 2-5, in which there are

two inputs. The only change is to add the new input Z and its associated parameter c to

the graph, similar to what we did with the input X and its parameter a. The new graph is

shown in Figure 2-6. The process repeats itself for each new input.

Figure 2-6. Mapping from a linear model with two inputs to the ANN graph

In summary, a neuron in an ANN accepts a set of inputs, multiplies each of them

by their associated parameters, adds the results of multiplication together, and finally

returns the output. In ANNs, neurons are arranged into three types of layers: input,

hidden, and output. Such arrangement doesn’t exist in biological neural networks but

it helps us organize the network. Figure 2-7 shows the architecture of a general fully

connected (FC) ANN with such three layers. The network is organized according to the

three layers. The network only has a single input and output layer, but it could have

more than one hidden layer. Note that neurons within each layer are named according

to it. That is, a neuron within the input layer is said to be an input neuron, and a hidden

neuron is a neuron within a hidden layer.

Chapter 2 artifiCial Neural Networks

56

For simplicity, all inputs are given the symbol X and all outputs are given the symbol

O with a subscript that defines the index of either the input or the output. The network

has n inputs, where X1 is the first input, X5 is the fifth input, and so on up to Xn. It also

has m inputs, where O1 is the first input, O5 is the fifth input, and so on up to Om.

The neurons in the hidden layers are given symbols with two indices to reflect its

layer index and also the location within its layer. For example, the first hidden layer has

k neurons, where h1
1 is the first hidden neuron in the first hidden layer, h5

2 is the fifth

hidden neuron in the second hidden layer, and so on up to Xp
r , which is the pth hidden

neuron in the rth hidden layer.

Between every two layers, there are a number of parameters that are equal to the

multiplication of the number of neurons within the two layers. For example, if the

input layer has n neurons and the first hidden layer has k neurons, then the number of

parameters required for connecting them is equal to n × k, where the parameter Wnk
1

refers to the parameter between the nth neuron in the input layer and the kth neuron

in the first hidden layer. This parameter could also be called weights, because each

parameter reflects the importance of its associated input. The larger the value of a

parameter, the more important its associated input will be.

Up to this point, a basic understanding of ANN is expected, but there is more to know

about it. The next sections cover some important concepts about ANN that are critical in

the successful building of ANN.

Figure 2-7. General FC artificial network architecture

Chapter 2 artifiCial Neural Networks

57

 Adjusting Learning Rate for Training ANN
An obstacle for newbies to ANNs is the learning rate. I have been asked many times

about the effect of the learning rate on the training of ANNs. Why do we use learning

rate? What is the best value for the learning rate? In this section, I will try to make things

simpler using an example that shows how learning rate is useful in order to train an

ANN. Let’s start by explaining the used example.

 Filter Example
A very simple example is used to get us out of complexity to just focus on our goal, which

is the learning rate. The example is represented by Equation 2-6.

 Y activation X
X

X X
= () = ìí

î

250 250

250

,

,

³³
<<

 (Equation 2-6)

If the input is 250 or smaller, then the output will be identical to the input. If the

input is larger than 250, then it will be clipped and the output will be 250. It works like

a filter that only passes inputs below 250 and cuts others to 250. Its graph is available in

Figure 2-8.

Figure 2-8. The activation function of the filter example

Chapter 2 artifiCial Neural Networks

58

The data with six samples is shown in Table 2-5.

Figure 2-9. ANN architecture used with the filter example

Table 2-5. Data to Train a Network to Filter Inputs to

See How Learning Rate Affects the Training Process

Input (X) Output (Y)

60 60

40 40

400 250

300 250

-50 -50

-10 -10

 ANN Architecture

The architecture of the ANN used is shown in Figure 2-9. There are just input and output

layers. The input layer has just a single neuron for our single input. The output layer has

just a single neuron for generating the output. The output layer neuron is responsible for

mapping the input to the correct output. There is also a bias applied to the output layer

neuron with value b and input +1. There is also a weight W for the input.

Chapter 2 artifiCial Neural Networks

59

 Activation Function

Based on the previously discussed networks, we can only approximate linear functions,

as in Figure 2-1. But our problem uses a nonlinear function, as in Figure 2-8. How can

we use an ANN to represent this type of network? The solution in this example is to use a

function such as an activation function in ANN.

ANNs can approximate both linear and nonlinear functions. The way that ANN

incorporates nonlinearity in its calculations is via the activation functions. The location of the

activation function within the graph of an ANN is after the calculating of the SOP. The output

of the neuron in this case will be the activation function output, not just the SOP. This is why

the network output is set equal to the activation function output in Equation 2-6.

 Python Implementation

The Python code implementing the entire network is given in Listing 2-1. After

discussing each of its parts and making it as easy as possible, we will focus on how

changing the learning rate affects the network training.

Listing 2-1. Adjusting Learning Rate for Successful ANN Training

 1 import numpy

 2

 3 def activation_function(inpt):

 4 if(inpt > 250):

 5 return 250 # clip the result to 250

 6 else:

 7 return inpt # just return the input

 8

 9 def prediction_error(desired, expected):

10 return numpy.abs(numpy.mean(desired-expected)) # absolute error

11

12 def update_weights(weights, predicted, idx):

13 weights = weights + 0.00001*(desired_output[idx] -

predicted)*inputs[idx] # updating weights

14 return weights # new updated weights

15

16 weights = numpy.array([0.05, .1]) #bias & weight of input

Chapter 2 artifiCial Neural Networks

60

17 inputs = numpy.array([60, 40, 100, 300, -50, 310]) # training inputs

18 desired_output = numpy.array([60, 40, 150, 250, -50, 250]) # training

outputs

19

20 def training_loop(inpt, weights):

21 error = 1

22 idx = 0 # start by the first training sample

23 iteration = 0 #loop iteration variable

24 while(iteration < 2000 or error >= 0.01): #while(error >= 0.1):

25 predicted = activation_function(weights[0]*1+weights[1]*

inputs[idx])

26 error = prediction_error(desired_output[idx], predicted)

27 weights = update_weights(weights, predicted, idx)

28 idx = idx + 1 # go to the next sample

29 idx = idx % inputs.shape[0] # restricts the index to the range

of our samples

30 iteration = iteration + 1 # next iteration

31 return error, weights

32

33 error, new_weights = training_loop(inputs, weights)

34 print('--------------Final Results----------------')

35 print('Learned Weights : ', new_weights)

36 new_inputs = numpy.array([10, 240, 550, -160])

37 new_outputs = numpy.array([10, 240, 250, -160])

38 for i in range(new_inputs.shape[0]):

39 print('Sample ', i+1, '. Expected = ', new_outputs[i], ' ,

Predicted = ', activation_function(new_weights[0]*1+new_

weights[1]*new_inputs[i]))

Lines 17 and 18 are responsible for creating two arrays (inputs and desired_output)

holding the training input and output data of our example. Line 16 creates an array of the

network parameters, which are the input parameter and the bias. They were randomly

initialized to 0.05 for the bias and 0.1 for the input. The activation function itself is

implemented using the activation_function(inpt) method from line 3 to line 7. It accepts

a single argument, which is the input, and returns a single value, which is the predicted

output of the network.

Chapter 2 artifiCial Neural Networks

61

Because there may be an error in the prediction, we need to measure it to know how

far we are from the correct prediction. For that reason, there is a method implemented

in lines 9 and 10 called prediction_error(desired, expected), which accepts two inputs:

the desired and predicted outputs. That method just calculates the absolute difference

between each desired and predicted output. The best value for any error is for sure 0.

This is the optimal value.

What if there is a prediction error? In this case, we must make a change to the network.

But what exactly to change? It is the network parameters that must be changed. For updating

the network parameters, there is a method called update_weights(weights, predicted, idx)

defined in lines 13 and 14. It accepts three inputs: old weights, predicted output, and the

index of the input that has a false prediction. Equation 2-7 is used to update the weights.

 W n W n d n Y n X n+() = () + () - ()éë ùû ()1 h (Equation 2-7)

Where

• η – learning rate

• d – desired output

• Y – predicted output

• X – input

• W(n)– current weights

• W(n + 1)– updated weights

The equation uses the weights of the current step n to generate the weights of the

next step (n + 1). This equation helps us understand how the learning rate affects the

learning process.

Finally, we need to concatenate all of these together to make the network learn. This

is done using the training_loop(inpt, weights) method defined from line 20 to line 31.

It goes into a training loop. The loop is used to map the inputs to their outputs with the

least possible prediction error. The loop does three operations:

 1. Output Prediction.

 2. Error Calculation.

 3. Updating Weights.

Since we’ve gotten an idea about the example and its Python code, let us now see

how the learning rate is useful in order to get the best results.

Chapter 2 artifiCial Neural Networks

62

 Learning Rate
In the previously discussed example in Listing 2-1, line 13 has the weights update

equation, in which the learning rate is used. Let’s remove the learning rate from that

equation. It will be as follows:

 weights = weights + (desired_output[idx] - predicted)*inputs[idx]

Let’s see the effect of removing the learning rate. In the first iteration of the training

loop, the network has initial values for bias and weight of 0.05 and 0.1, respectively.

The input is 60 and the desired output is 60. The expected output of line 25, namely,

the result of the activation function, will be activation_function(0.05(+1)+0.1(60)).

The predicted output is be 6.05. In line 26, the prediction error is calculated by

getting the difference between the desired and the predicted output. The error is

abs(60 − 6.05)=53.95. Then in line 27, the weights will get updated according to the

preceding equation. The new weights are [0.05, 0.1] + (53.95)*60 = [0.05, 0.1] + 3237

= [3237.05, 3237.1]. It seems that the new weights are too different from the previous

weights. Each weight got increased by 3,237, which is too large. But let us continue

making the next prediction.

In the next iteration, the network will have this data (b=3237.05 and W=3237.1,

Input = 40, and desired output=40). The expected output will be activation_function

((3237.05 + 3237.1(40))= 250. The prediction error will be abs(40 − 250) = 210. The error

is very large. It is larger than the previous error, which was just 53.95. Thus, we have to

update the weights again. According to the preceding equation, the new weights will be

[3237.05, 3237.1] + (−210)*40 = [3237.05, 3237.1] + −8400 = [−5162.95,−5162.9]. Table 2-6

summarizes the results of the first three iterations.

Table 2-6. Results of the First Three Iterations of Training the Filter Network

Prediction Error Update Value New Weights

6.05 53.95 3237.0 [3237.05, 3237.1]

250 210 −8400 [–5162.95, –5162.9]

−521452.95 521552.95 52155295.0 [52150132.04999999,

52150132.09999999]

−2555356472.95 2555356422.95 −127767821147.0 [–1.27715671e+11,

–1.27715671e+11]

Chapter 2 artifiCial Neural Networks

63

As we go into more iterations, the results get worse. The magnitudes of the weights

are changing rapidly, sometimes even changing their signs. They are moving from very

large positive values to very large negative values. How can we stop these large and

abrupt changes in the weights? How to scale down the value by which the weights are

updated?

If we looked at the value by which the weights are changing from Table 2-6, it seems

that the value is very large. This means that the network changes its weights at high

speed. We just need to make it slower. If we are able to scale down this value, then

everything will be alright. But how? Getting back to the code, it looks like the update

equation is what generates such large values, specifically this part:

(desired_output[idx] - predicted)*inputs[idx]

We can scale this part by multiplying it by a small value such as 0.1. So, rather than

generating 3237.0 as the update value in the first iteration, it will be reduced to just 323.7.

We can even reduce this value to 0.001. Using 0.001, the update value is just 3.327.

We can catch it now. This value is the learning rate. Choosing small values for the

learning rate makes the rate of weights update smaller and avoids abrupt changes. As the

value gets larger, the changes become faster, and this creates bad results.

But what is the best value for the learning rate?
There is no particular value that we can say is the best value for the learning rate.

The learning rate is a hyperparameter. A hyperparameter has its value determined by

experiments. We try different values and use the value that gives the best results.

 Testing the Network
For our problem, using a value of .00001 works fine. After training the network with

that learning rate, we can make a test. Table 2-7 shows the results of the prediction

of four new testing samples. It seems that results are now much better after using the

learning rate.

Chapter 2 artifiCial Neural Networks

64

Now we are able to understand that learning rate determines the steps by which we

move. The larger the step, the more abrupt the changes. We might be near to the best

solution and just need to change our parameters a bit to reach it, but omitting or using a

bad value for the learning rate gets us away from the solution.

 Weight Optimization Using Backpropagation
In the previous section, we used the learning rate to update the weights of the ANN. In

this section, we will use the backpropagation algorithm to do that job and deduce

how it is better than just using the learning rate. Two examples are used to explain the

algorithm numerically.

This section won’t dive directly into the details of the backpropagation algorithm but

starts by training a very simple network. This is because the backpropagation algorithm

is meant to be applied over a network after training. As a result, we should train the

network before applying it to catch the benefits of the backpropagation algorithm and

how to use it. Readers should have a basic understanding of how ANNs work, partial

derivatives, and multivariate chain rule.

 Backpropagation for NN Without Hidden Layer
Starting with a simple example, Figure 2-10 shows its network structure, which we

will use to explain how the backpropagation algorithm works. It has just two inputs,

symbolized as X1 and X2. The output layer has just a single neuron, and there are no

hidden layers. Each input has a corresponding weight where W1 and W2 are the weights

for X1 and X2, respectively. There is a bias for the output layer neuron with a value of b

and a fixed input value of +1.

Table 2-7. Test Sample Prediction Results

Input Desired Output Predicted Output

10 10 10.87

240 240 239.13

550 250 250

–160 –160 –157.85

Chapter 2 artifiCial Neural Networks

65

The output layer neuron uses the sigmoid activation function defined by Equation 2-8:

 f s
e s() =

+ -

1
1

 (Equation 2-8)

Where s is the SOP between each input and its corresponding weight. s is the input to

the activation function, which in this example, is defined as in Equation 2-9.

 s = X1 ∗ W1 + X2 ∗ W2 + b (Equation 2-9)

Table 2-8 shows a single input and its corresponding desired output used

as the training data. The basic target of this example is not training the network

but understanding how the weights are updated using backpropagation. Now, to

concentrate on backpropagation, we will analyze a single record of data.

Figure 2-10. Network structure to train and apply backpropagation

Table 2-8. Training Data for the

First Backpropagation Example

X1 X2 Desired Output

0.1 0.3 0.03

Table 2-9. Initial Parameters of the Network

W1 W2 b

0.5 0.2 1.83

Assume the initial values for both weights and bias are as in Table 2-9.

Chapter 2 artifiCial Neural Networks

66

For simplicity, the values for all inputs, weights, and bias will be added to the

network diagram to look as in Figure 2-11.

Figure 2-11. The network of the first backpropagation example with inputs and
parameters added

Now, let us train the network and see whether the desired output will be returned

based on the current weights and bias. The input of the activation function will be the SOP

between each input and its weight. Then, the bias will be added to the total as follows:

s X W X W b= * + * +1 1 2 2

s = * + * +0 1 0 5 0 3 0 2 1 83.

s =1 94.

The output of the activation function will be calculated by applying the previously

calculated SOP to the used function (sigmoid) as follows:

f s
e s() =

+ -

1
1

f s
e

() =
+ -

1
1 1 94.

f s() =
+

1
1 0 143703949.

f s() = 1
1 143703949.

f s() = 0 874352143.

Chapter 2 artifiCial Neural Networks

67

The output of the activation function reflects the predicted output for the current

inputs. It is obvious that there is a difference between the desired and the expected

output. But what are the sources for that difference? How should the predicted output be

changed to get closer to the desired result? These questions will be answered later. But at

least, let us see the error of our neural network based on an error function.

The error functions tell how close the predicted outputs are to the desired outputs.

The optimal value for the error is zero, meaning that there is no error at all and that the

desired and predicted results are identical. One of the error functions is the squared

error function, as in Equation 2-10.

 E desired predicted= -()1
2

2
 (Equation 2-10)

Note that the
1
2

 added to the equation is for simplifying derivatives later. We can

measure the error of our network as follows:

E = -()1
2

0 03 0 874352143
2

. .

E = -()1
2

0 844352143
2

.

E = ()1
2

0 712930542.

E = 0 356465271.

The result ensures the existence of a large error (~0.357). This is what the error tells.

It just gives us an indication of how far the predicted results are from the desired results.

Now that we know how to measure the error, we need to find a way to minimize it. The

only playable parameter we have is the weight. We can try different weights and then test

our network.

 Weights Update Equation
The weights can be changed according to Equation 2-7 (used in the previous section) where

• n: training step (0, 1, 2, …).

• W(n): weights in the current training step.

W(n) = [b(n), W1(n), W2(n), W3(n),..., Wm(n)]

• η: network learning rate.

Chapter 2 artifiCial Neural Networks

68

• d(n): desired output.

• Y(n): predicted output.

• X(n): current input at which the network made the false prediction.

For our network, these parameters have the following values:

• n: 0

• W(n): [1.83, 0.5, 0.2]

• η: hyperparameter. We can choose 0.01, for example.

• d(n): [0.03].

• Y(n): [0.874352143].

• X(n): [+1, 0.1, 0.3]. First value (+1) is for the bias.

We can update our neural network weights based on the previous equation:

W n W n d n Y n X n++ == ++ --1() () () ()éë ùû ()hh

= 1.83,0.5,0.2 +0.01 0.03 0.874352143 +1,0.1,0.3[] [][]--

== ++ -- ++1 83 0 5 0 2 0 844352143 1 0 1 0 3., , , ,[] [][]0.01

== ++ -- ++1 83 0 5 0 2 0 00844352143 1 0 1 0 3., , , ,[] []

== ++ -- -- --1 83 0 5 0 2 0 008443521 0 000844352 0 002533056., , , ,[] []

== 1 821556479 0 499155648 0 197466943. . ., ,[]

The new weights are given in Table 2-10.

Table 2-10. Updated Weights for the Network

of the First Backpropagation Example

W1new W2new bnew

0.197466943 0.499155648 1.821556479

Based on the new weights, we will recalculate the predicted output and continue

updating weights and calculating the predicted output until reaching an acceptable

value for the error for the problem at hand.

Chapter 2 artifiCial Neural Networks

69

Here we successfully updated the weights without using the backpropagation

algorithm. Are we still in need of that algorithm? Yes. The reasons will be explained next.

 Why Is the Backpropagation Algorithm Important?
Suppose, for the optimal case, that the weight update equation generated the best

weights; it is still unclear what this function actually did. It is like a black box in that

we don’t understand its internal operations. All we know is that we should apply

this equation in case there is a classification error. Then the function will generate

new weights to be used in the next training steps. But why are new weights better

at prediction? What is the effect of each weight on the prediction error? How does

increasing or decreasing one or more weights affect the prediction error?

It is required to have a better understanding of how the best weights are calculated.

To do that, we should use the backpropagation algorithm. It helps us to understand how

each weight affects the NN total error and tells us how to minimize the error to a value

very close to zero.

 Forward vs. Backward Passes
When training a neural network, there are two passes, namely, forward and backward, as

in Figure 2-12. The first pass is always the forward pass, in which the inputs are applied

to the input layer and move toward the output layer, calculating the SOP between inputs

and weights, applying activation functions to generate outputs, and finally calculating

the prediction error to know how accurate the current network is.

Figure 2-12. Forward and backward passes of training an ANN

Chapter 2 artifiCial Neural Networks

70

But what if there is a prediction error? We should modify the network to reduce that

error. This is done in the backward pass. In the forward pass, we start from the inputs,

until calculating the prediction errors. But in the backward pass, we start from the errors

until reaching the inputs. The goal of this pass is to learn how each weight affects the

total error. Knowing the relationship between the weight and the error allows us to

modify network weights to decrease the error. For example, in the backward pass, we can

get useful information, such as that increasing the current value of W1 by 1.0 will increase

the prediction error by 0.07. This helps us understand how to select the new value of W1

in order to minimize the error (W1 should not be increased).

 Partial Derivative

One important operation used in the backward pass is to calculate derivatives. Before

getting into the calculations of derivatives in the backward pass, we can start with a

simple example to make things easier.

For a multivariate function such as Y = X 2Z + H, what is the effect on the output Y

given a change in variable X? This question is answered using the partial derivative. It is

written as follows:

¶¶
¶¶

¶¶
¶¶

Y
X X

X Z H= +()2

¶¶
¶¶
Y
X

XZ= +2 0

¶¶
¶¶
Y
X

XZ=2

Note that everything except X is regarded as a constant. This is why H is replaced by

0 after calculating the partial derivative. Here, ∂X means a tiny change of variable X and

∂Y means a tiny change of Y. The change of Y is the result of changing X. By making a

very small change in X, what is the effect on Y? The small change can be an increase or

decrease by a tiny value such as 0.01. By substituting different values of X, we can find

how Y changes with respect to X.

The same procedure will be followed in order to learn how the NN prediction error

changes with respect to (wrt) changes in network weights. So, our target is to calculate
¶
¶
E

W1

 and
¶
¶
E

W2

, as we have just two weights: W1 and W2. Let’s calculate them.

Chapter 2 artifiCial Neural Networks

71

Change in Prediction Error wrt Weights

Looking at this equation, Y = X 2Z + H, it seems straightforward to calculate the partial

derivate
¶
¶
Y

X
 because there is an equation relating both Y and X. But there is no direct

equation between the prediction error and the weights. This is why we are going to use

the multivariate chain rule to find the partial derivative of Y wrt X.

Prediction Error to Weights Chain

Let us try to find the chain relating the prediction error to the weights. The prediction

error is calculated based on Equation 2-10.

But this equation doesn’t have any weights. No problem: we can follow the

calculations for each input of the previous equation until we reach the weights. The

desired output is a constant, and thus there is no chance of reaching the weights through

it. The predicted output is calculated based on the sigmoid function, as in Equation 2-8.

Again, the equation for calculating the predicted output doesn’t have any weight.

But there is still variable s (SOP), which already depends on weights for its calculation

according to Equation 2-11.

 s = X1 ∗ W1 + X2 ∗ W2 + b (Equation 2-11)

Figure 2-13 presents the chain of calculations to be followed to reach the weights.

Figure 2-13. Chain of calculations to reach the weights starting from the error of
prediction

Chapter 2 artifiCial Neural Networks

72

As a result, to know how the prediction error changes wrt changes in the weights,

we should do some intermediate operations, including finding how the prediction error

changes wrt changes in the predicted output. Then, we need to find the relation between

the predicted output and the SOP. Finally, we will find how the SOP change by changing

the weights. There are four intermediate partial derivatives as follows:

¶¶
¶¶

E
Predicted

,
¶¶

¶¶
Predicted

s
,
¶¶
¶¶

s
W1

, and
¶¶
¶¶

s
W2

This chain will finally tell how the prediction error changes wrt changes in each

weight, which is our goal, by multiplying all individual partial derivatives as follows:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
Predicted

Predicted
s

s
W1 1

= * *

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

=
E

Predicted
Predicted

s
s
W2 2

* *

Important note Currently, there is no equation directly relating prediction error
to network weights, but we can create one relating them and apply a partial
derivative directly to it. here it is in equation 2-12.

 E desired
e X W X W b

= -
+

æ
è
ç

ö
ø
÷- * + * +()

1
2

1

1 1 1 2 2

2
 (Equation 2-12)

Because this equation seems complex, we can use the multivariate chain rule for

simplicity.

Chapter 2 artifiCial Neural Networks

73

 Calculating Chain Partial Derivatives

Let us calculate the partial derivatives of each part of the chain previously created.

Error - Predicted Output Partial Derivative:

¶¶
¶¶

¶¶
¶¶

E
Predicted Predicted

desired predicted= -()æ
è
ç

ö
ø
÷

1
2

2

= * -() * -()-
2

1
2

0 1
2 1

desired predicted

= -()* -()desired predicted 1

= -predicted desired

By value substitution,

¶¶
¶¶

E
Predicted

predicted desired= - = -0 874352143 0 03. .

¶¶
¶¶

E
Predicted

=0 844352143.

Predicted Output - SOP Partial Derivative:

¶¶
¶¶

¶¶
¶¶

Predicted
s s e s=

+
æ
è
ç

ö
ø
÷-

1
1

Remember that the quotient rule can be used to find the derivative of the sigmoid

function as follows:

¶¶
¶¶

Predicted
s e es s=

+
-

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

1

Chapter 2 artifiCial Neural Networks

74

By value substitution,

¶¶
¶¶

Predicted
s e e e es s=

+
-

+
æ
è
ç

ö
ø
÷ = +

-
+

æ
è
ç

ö
- - - -

1
1

1
1

1
1

1
1

1
11 94 1 94. . øø

÷

=
+

-
+

æ
è
ç

ö
ø
÷

1
1 0 143703949

1
1

1 0 143703949. .

= -æ
è
ç

ö
ø
÷

1
1 143703949

1
1

1 143703949. .

= -()0 874352143 1 0 874352143. .

= ()0 874352143 0 125647857. .

¶¶
¶¶

Predicted
s

=0 109860473.

SOP - W1 Partial Derivative:

¶¶
¶¶

¶¶
¶¶

s
W W

X W X W b
1 1

1 1 2 2= * + * +()

= * *() + +-()1 0 01 1
1 1

X W

= *()()X W1 1
0

= ()X1 1

¶¶
¶¶

s
W

X
1

1=

By value substitution,

¶¶
¶¶

s
W

X
1

1 0 1= = .

Chapter 2 artifiCial Neural Networks

75

SOP - W2 Partial Derivative:

¶¶
¶¶

¶¶
¶¶

s
W W

X W X W b
2 2

1 1 2 2= * + * +()

= + * *() +-()0 1 02 2
1 1

X W

= *()()X W2 2
0

= ()X2 1

¶¶
¶¶

s
W

X
2

2=

By value substitution,

¶¶
¶¶

s
W

X
2

2 0 3= = .

After calculating each individual derivative, we can multiply all of them to get the

desired relationship between the prediction error and each weight.

Prediction Error -W1 Partial Derivative:

¶¶
¶¶
E
W1

0 844352143 0 109860473 0 1= * *. . .

¶¶
¶¶
E
W1

0 009276093= .

Prediction Error - W2 Partial Derivative:

¶¶
¶¶
E
W2

0 844352143 0 109860473 0 3= * *. . .

¶¶
¶¶
E
W2

0 027828278= .

Finally, there are two values reflecting how the prediction error changes with respect

to the weights (0.009276093 for W1 and 0.027828278 for W2). But what does that mean?

The results need interpretation.

Chapter 2 artifiCial Neural Networks

76

 Interpreting Results of Backpropagation

There are two useful conclusions from each of the last two derivatives obtained from the

following:

• Derivative sign

• Derivative magnitude (DM)

If the derivative is positive, that means increasing the weight will increase the error,

and likewise, decreasing the weight will decrease the error. If the derivative is negative,

then increasing the weight will decrease the error, and correspondingly, decreasing the

weight will increase the error.

But by how much will the error increase or decrease? The DM can tell us. For a

positive derivative, increasing the weight by p will increase the error by DM ∗ p. For a

negative derivative, increasing the weight by p will decrease the error by DM ∗ p.

Because the result of the
¶¶
¶¶
E
W1

 derivative is positive, this means that if W1 increased

by 1 then the total error will increase by 0.009276093. Also, because the result of the
¶¶
¶¶
E
W2

 derivative is positive, this means that if W2 increases by 1 then the total error will

increase by 0.027828278.

 Updating Weights

After successfully calculating the derivatives of the error with respect to each individual

weight, we can update the weights in order to enhance the prediction. Each weight will

be updated based on its derivative as follows:

W W
E
Wnew1 1

1

= - *hh
¶¶
¶¶

= - *0 5 0 009276093. .0.01

W new1 0 49990723907= .

Chapter 2 artifiCial Neural Networks

77

For the second weight,

W W
E
Wnew2 2

2

= - *hh
¶¶
¶¶

= - *0 2 0 027828278. .0.01

W new2 0 1997217172= .

Note that the derivative is subtracted rather than added to the weight because it is

positive.

Then, continue the process of prediction and updating the weights until the desired

outputs are generated with an acceptable error.

 Backpropagation for NN with Hidden Layer
To make the ideas more clear, we can apply the backpropagation algorithm over the

following NN after adding one hidden layer with two neurons. The new network is

shown in Figure 2-14.

Figure 2-14. The network architecture of the second backpropagation
example

Chapter 2 artifiCial Neural Networks

78

The same inputs, output, activation function, and learning rate used previously will

also be applied in this example. Here are the complete weights of the network:

W1 W2 W3 W4 W5 W6 b1 b2 b3

0.5 0.1 0.62 0.2 −0.2 0.3 0.4 −0.1 1.83

Figure 2-15 shows the previous network with all inputs and weights added.

Figure 2-15. The network architecture of the second backpropagation example
after adding the values of the inputs and the parameters

At first, we should go through the forward pass to get the predicted output. If there

was an error in prediction, then we should go through the backward pass to update the

weights according to the backpropagation algorithm. Let us calculate the inputs to the

first neuron in the hidden layer (h1):

 h X W X W bin1 1 1 2 2 1= * + * +

 = * + * +0 1 0 5 0 3 0 1 0 4.

 h in1 0 48= .

Chapter 2 artifiCial Neural Networks

79

The input to the second neuron in the hidden layer (h2):

 h X W X W bin2 1 3 2 4 2= * + * +

 = * + * -0 1 0 62 0 3 0 2 0 1.

 = 0 022.

The output of the first neuron of the hidden layer:

h

eou h in1

1
1 1

=
+ -

=

+ -

1
1 0 48e .

=

+
1

1 0 619.

=

1
1 619.

 h out1 0 618= .

And the output of the second neuron of the hidden layer:

h

eout h in2

1
1 2

=
+ -

=

+ -

1
1 0 022e .

=

+
1

1 0 978.

=

1
1 978.

 h out2 0 506= .

The next step is to calculate the input of the output neuron:

 out h W h W bin out out= * + * +1 5 2 6 3

 = *- + * +0 618 0 2 0 506 0 3 1 83.

 outin =1 858.

Chapter 2 artifiCial Neural Networks

80

And the output of the output neuron:

out

eout outin
=

+ -

1
1

=

+ -

1
1 1 858e .

=

+
1

1 0 156.

=

1
1 156.

 outout = 0 865.

Thus, the expected output of our NN based on the current weights is 0.865. We can

then calculate the prediction error according to the following equation:

E desired outout= -()1

2
2

= -()1
2

0 03 0 865
2

. .

= -()1
2

0 835
2

.

= ()1
2

0 697.

 E = 0 349.

The error seems very high, and thus we should update the network weights using the

backpropagation algorithm.

 Partial Derivatives

Our goal is to get how the total error E changes wrt each of the six weights (W1 : W6):

¶¶
¶¶
E
W1

,
¶¶
¶¶
E
W2

, ¶¶
¶¶
E
W3

,
¶¶
¶¶
E
W4

,
¶¶
¶¶
E
W5

,
¶¶
¶¶
E
W6

Chapter 2 artifiCial Neural Networks

81

Let us start by calculating the partial derivative of the output wrt the hidden-output

layers weights (W5 and W6).

E−W5 Partial Derivative:
Starting with W5, we will follow that chain:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

5 5

= * *

We can calculate each individual part at first and then combine them to get the

desired derivative.

For the first derivative
¶

¶
E

outout
:

¶¶
¶¶

¶¶
¶¶

E
out out

desired out
out out

out= -()æ
è
ç

ö
ø
÷

1
2

2

= * -() * -()-
2

1
2

0 1
2 1

desired outout

 = - * -()desired outout 1

 = -out desiredout

By substituting with the values of these variables,

 = - = -out desiredout 0 865 0 03. .

¶¶
¶¶

E
outout

=0 835.

For the second derivative
¶
¶
out

out
out

in

:

¶¶
¶¶

¶¶
¶¶

out
out out e

out

in in
outin

=
+

æ
è
ç

ö
ø
÷-

1
1

=

+
æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

1e eout outin in

=

+
æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

11 858 1 858e e. .

Chapter 2 artifiCial Neural Networks

82

= æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷

1
1 56

1
1

1 56. .

 = () -() = ()()0 865 1 0 865 0 865 0 135. . . .

¶¶
¶¶
out
out

out

in

=0 117.

For the last derivative
¶
¶
out

W
in

5

:

¶¶
¶¶

¶¶
¶¶

out
W W

h W h W bin
out out

5 5
1 5 2 6 3= * + * +()

 = * *() + +-
1 0 01 5

1 1
h Wout

 =h out1

¶¶
¶¶
out
W

in

5

0 618= .

After calculating all three required derivatives, we can calculate the target derivative

as follows:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

5 5

= * *

¶¶
¶¶
E
W5

0 835 0 23 0 618= * *. . .

¶¶
¶¶
E
W5

0 119= .

E−W6 Partial Derivative:

For calculating
¶
¶
E

W6

, we will use the following chain:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

6 6

= * *

Chapter 2 artifiCial Neural Networks

83

The same calculations will be repeated with just a change in the last derivative
¶
¶
out

W
in

6

. It can be calculated as follows:

¶¶
¶¶

¶¶
¶¶

out
W W

h W h W bin
out out

6 6
1 5 2 6 3= * + * +()

 = + * *() +-
0 1 02 6

1 1
h Wout

 =h out2

¶¶
¶¶
out
W

in

6

0 506= .

Finally, the derivative
¶
¶
E

W6

 can be calculated:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

E
W

E
out

out
out

out
Wout

out

in

in

6 6

= * *

 = * *0 835 0 23 0 506. . .

¶¶
¶¶
E
W6

0 097= .

This is for W5 and W6. Let’s calculate the derivative wrt to W1 to W4.

E−W1 Partial Derivative:
Starting with W1, we will follow that chain:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in1 1
1
1

1
= * * * * iin

W¶¶ 1

We will follow the previous procedure by calculating each individual derivative and

finally combining all of them. The first two derivatives
¶

¶
¶
¶

E

out

out

outout

out

in

and have already

been calculated previously, and their results are as follows:

¶¶
¶¶

E
outout

=0 835.

¶¶
¶¶
out
out

out

in

=0 23.

Chapter 2 artifiCial Neural Networks

84

For the next derivative
¶
¶
out

h
in

out1
:

¶¶
¶¶

¶¶
¶¶

out
h h

h W h W bin

out out
out out1 1 1 5 2 6 3= * + * +()

= () * + +-
h Wout1

1 1
5 0 0

=W5

¶¶
¶¶
out
h

in

out1
0 2= - .

For
¶
¶
h

h
out

in

1

1
:

¶¶
¶¶

¶¶
¶¶

h
h h e

out

in in
h in

1
1

1
11

1
=

+
æ
è
ç

ö
ø
÷-

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

11 1e eh hin in

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

10 48 0 48e e. .

= æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷

1
1 619

1
1

1 619. .

= () -() = *0 618 1 0 618 0 618 0 382. . . .

¶¶
¶¶
h
h

out

in

2

2

0 236= .

For
¶
¶
h

W
in1

1

:

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin1

1 1
1 1 2 2 1= * + * +()

= *() + +-
X W1 1

1 1
0 0

= X1

¶¶
¶¶
h
W

in1 0 1
1

= .

Chapter 2 artifiCial Neural Networks

85

Finally, the target derivative can be calculated:

¶¶
¶¶
E
W1

0 835 0 23 0 2 0 236 0 1= * *- * *.

¶¶
¶¶
E
W1

0 001= - .

E−W2 Partial Derivative:

Similar to the method of calculating
¶
¶
E

W1

, we can calculate
¶
¶
E

W2

. The only change

will be in the last derivative
¶
¶
h

W
in1

2

.

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in2 1
1
1

1
= * * * * iin

W¶¶ 2

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin1

2 2
1 1 2 2 1= * + * +()

= + *() +-
0 02 2

1 1
X W

= X2

¶¶
¶¶
h
W

in1 0 3
2

= .

Then:

¶¶
¶¶
E
W2

0 835 0 23 0 2 0 236 0 3= * *- * *.

¶¶
¶¶
E
W2

003= -.

The last two weights (W3 and W4) can be calculated similarly to W1 and W2.

Chapter 2 artifiCial Neural Networks

86

E−W3 Partial Derivative:

Starting with W3, we should follow this chain:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in3 2
2
2

2
= * * * * iin

W¶¶ 3

The missing derivatives to be calculated are
¶
¶

¶
¶

¶
¶

out

h

h

h

h

W
in

out

out

in

in

2

2

2

2

3

, and .

¶¶
¶¶

¶¶
¶¶

out
h h

h W h W bin

out out
out out2 2 1 5 2 6 3= * + * +()

= + () * +-
0 02

1 1
6h Wout

=W6

¶¶
¶¶
out
h

in

out2
0 3= .

For
¶
¶
h

h
out

in

2

2
:

¶¶
¶¶

¶¶
¶¶

h
h h e

out

in in
h in

2
2

1
12

2
=

+
æ
è
ç

ö
ø
÷-

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

12 2e eh hin in

=
+

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷- -

1
1

1
1

10 022 0 022e e. .

= æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷

1
1 978

1
1

1 978. .

= () -()0 506 1 0 506. .

¶¶
¶¶
h
h

out

in

2

2

0 25= .

Chapter 2 artifiCial Neural Networks

87

For
¶
¶
h

W
in2

3

:

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin2

3 3
1 3 2 4 2= * + * +()

= * + * +X W X W b1 3 2 4 2

= () * + +-
X X1

1 1
1 0 0

= X1

= 0 1.

Finally, we can calculate the desired derivative as follows:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in3 2
2
2

2
= * * * * iin

W¶¶ 3

¶¶
¶¶
E
W3

0 835 0 23 0 3 0 25 0 1= * * * *.

¶¶
¶¶
E
W3

0 00014= .

E−W4 Partial Derivative:

We can now calculate
¶
¶
E

W4

 similarly:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in4 2
2
2

2
= * * * * iin

W¶¶ 4

We should calculate the missing derivative
¶
¶
h

W
in2

4

:

¶¶
¶¶

¶¶
¶¶

h
W W

X W X W bin2

4 4
1 3 2 4 2= * + * +()

= * + * +X W X W b1 3 2 4 2

= + () * +-
0 02

1 1
4X W

=W4

= 0 2.

Chapter 2 artifiCial Neural Networks

88

Then calculate
¶
¶
E

W4

:

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶
¶¶

¶¶E
W

E
out

out
out

out
h

h
h

h

out

out

in

in

out

out

in4 2
2
2

2
= * * * * iin

W¶¶ 4

¶¶
¶¶
E
W4

0 835 0 23 0 3 0 25 0 2= * * * *.

¶¶
¶¶
E
W4

003= .

 Updating Weights

At this point, we have successfully calculated the derivative of the total error according

to each weight in the network. Next is to update the weights according to the derivatives

and retrain the network. The updated weights will be calculated as follows:

W W
E
Wnew1 1

1

0 5 01 0 001 0 50001= - * = - *- =hh
¶¶
¶¶

. . . .

W W
E
Wnew2 2

2

0 1 01 0 003 0 10003= - * = - *- =hh
¶¶
¶¶

. . . .

W W
E
Wnew3 3

3

0 62 01 0 00014 0 6199= - * = - * =hh
¶¶
¶¶

. . . .

W W
E
Wnew4 4

4

0 2 01 0 003 0 1997= - * = - * =hh
¶
¶

. . . .

W W
E
Wnew5 5

5

0 2 01 0 618 0 20618= - * = - - * = -hh
¶¶
¶¶

. . . .

W W
E
Wnew6 6

6

0 3 01 0 097 0 29903= - * = - * =hh
¶¶
¶¶

. . . .

Chapter 2 artifiCial Neural Networks

89

 Overfitting
Have you ever created a ML model that is perfect for the training samples but gives

very bad predictions with unseen samples? Did you ever wonder why this happens?

The reason might be due to overfitting. A model with the problem of overfitting

makes great predictions for training samples but poor ones for validation data. This is

because the model adapted itself to every piece of information in the training data until

collecting some properties that could be found only within the training data. Let’s try to

understand this problem.

The focus of ML is to train an algorithm with training data in order to create a

model that is able to make the correct predictions for unseen data (test data). To create

a classifier, for example, a human expert will start by collecting the data required to

train the ML algorithm. The human is responsible for finding the best types of features

which are the things capable of discriminating between the different classes in order to

represent each class. These features will be used to train the ML algorithm. Suppose we

are to build a ML model that classifies the images in Figure 2-16 as containing cats or not.

Figure 2-16. Images of cats to train a model

The first question we have to answer is “what are the best features to use?” This

is a critical question in ML, as the better the features used, the better the predictions

the trained ML model makes, and vice versa. Let us try to visualize these images and

extract some features that are representative of cats. Some of the representative features

may be the existence of two dark eye pupils and two ears with a diagonal direction.

Let’s assume that we have extracted the features somehow from the preceding training

images and that a trained ML model has been created. This model can work with a wide

range of cat images because the features used exist in most cats. We can test the model

using some unseen data as in Figure 2-17. Assume that the classification accuracy of

the test data is x%.

Chapter 2 artifiCial Neural Networks

90

One may want to increase the classification accuracy. The first thing to think

of is using more features than the two used previously. This is because the more

discriminative features used, the better the accuracy. By inspecting the training data

again, we can find more features, such as the overall image color, as all training cat

samples are white, and the iris color in the training data is yellow. The feature vector will

have these four features:

 1. Dark Eye Pupils

 2. Diagonal Ears

 3. White Fur

 4. Yellow Irises

They will be used to retrain the ML model.

After creating the trained model, the next step is to test it. The expected result after

using the new feature vector is that the classification accuracy will decrease to be less

than x%. But why? The cause of the drop in accuracy is the use of some features that

already exist in the training data but not generally in all cat images. The features are not

general across all cat images. In the testing data, some cats have black or yellow fur, not

the white fur used in training.

Our case, in which the features used are powerful for the training samples but very

poor for the testing samples, can be described as overfitting. The model is trained with

some features that are exclusive to the training data but do not exist in the testing data.

The goal of the previous discussion is to make the idea of overfitting simple by use

of a high-level example. To get into the details, it is preferable to work with a simpler

example. That is why the rest of the discussion will be based on a regression example.

Figure 2-17. Test images of cats

Chapter 2 artifiCial Neural Networks

91

 Understand Regularization Based on a Regression
Example
Assume we want to create a regression model that fits the data shown in Figure 2-18. We

can use polynomial regression.

Figure 2-19. An initial model to fit the data using a model of the first degree

Figure 2-18. Data to fit a regression model

The simplest model that we can start with is the linear model with a first-degree

polynomial equation, as in Equation 2-13.

 y1 = f1(x) = Θ1x + Θ0
 (Equation 2-13)

Where Θ0 and Θ1 are the model parameters and x is the only feature used.

The plot of the previous model is shown in Figure 2-19.

Chapter 2 artifiCial Neural Networks

92

Based on a loss function such as the one in Equation 2-14, we can conclude that the

model is not fitting the data well.

 L
f x d

=
()-

=å i

N

N
0 1 i i (Equation 2-14)

Where fi(xi) is the expected output for sample i and di is the desired output for the

same sample.

The model is too simple and there are many predictions that are not accurate. For

this reason, we should create a more complex model that can fit the data well, and we

can increase the degree of the equation from one to two, as in Equation 2-15.

 y2 = f1(x) = Θ2x2 + Θ1x + Θ0
 (Equation 2-15)

By using the same feature x after being raised to power 2 (x2), we created a new

feature and we will capture not only the linear properties of the data, but also some

nonlinear properties. The graph of the new model will be as in Figure 2-20.

Figure 2-20. Using more features to create a model of the second degree

The graph shows that the second-degree polynomial fits the data better than the first

degree. But the quadratic equation also does not fit some of the data samples well. This

is why we can create a more complex model of the third degree with Equation 2-16. The

graph is in Figure 2-21.

 y3 = f3(x) = Θ3x3 + Θ2x2 + Θ1x + Θ0
 (Equation 2-16)

Chapter 2 artifiCial Neural Networks

93

It may be noted that the model fits the data better after a new feature that captures

the data properties of the third degree is added. To fit the data better than before, we can

increase the degree of the equation to be of the fourth degree, as in Equation 2-17. The

graph is in Figure 2-22.

 y4 = f4(x) = Θ4x4 + Θ3x3 + Θ2x2 + Θ1x + Θ0
 (Equation 2-17)

Figure 2-21. Model of the third degree

Figure 2-22. Model of the fourth degree

It seems that the higher the degree of the polynomial equation, the better it fits

the data. But there are some important questions to be answered. If increasing the

degree of the polynomial equation by adding new features enhances the results, why

shouldn’t a very high degree, such as 100th degree, be used? What is the best degree to

use for a problem?

Chapter 2 artifiCial Neural Networks

94

 Model Capacity/Complexity
The term “model capacity/complexity” refers to the level of variation that the model can

work with. The higher the capacity, the more variation the model can cope with. The

first model y1 is said to be of a small capacity compared to y4. In our case, the capacity

increases by increasing the polynomial degree.

For sure, the higher the degree of the polynomial equation, the better fit it will be for

the data. But remember that increasing the polynomial degree increases the complexity

of the model. Using a model with a capacity higher than required may lead to overfitting.

The model becomes very complex and fits the training data very well but unfortunately

is very weak for unseen data. The goal of ML is creating a model that is robust not only

with the training data but also with unseen data samples.

The model of the fourth degree (y4) is very complex. Yes, it fits the seen data well

but it will not do so for unseen data. For this case, the newly used feature in y4, namely

x4, captures more details than required. Because that new feature makes the model too

complex, we should get rid of it.

In this example, we actually know which features to remove. So, we can remove them

and return back to the previous model of the third degree (Θ4x4 + Θ3x3 + Θ2x2 + Θ1x + Θ0).

But in actual work, we do not know which features to remove. Moreover, assume that the

new feature is not too bad and we do not want to completely remove it and just want to

penalize it. What should we do?

Looking back at the loss function, the only goal is to minimize/penalize the

prediction error. We can set a new objective to minimize/penalize the effect of the new

feature x4 as much as possible. After modifying the loss function to penalize x3, the new

one is in Equation 2-18.

 L
f x d x

new

i i
=

()- +é
ë

ù
û=å i

N

N
0 4 4

4Q
 (Equation 2-18)

Our objective now is to minimize the loss function. We are now just interested in

minimizing this term Θ4x4. It is obvious that to minimize Θ4x4 we should minimize Θ4, as it

is the only free parameter we can change. We can set its value to a value equal to zero if we

want to remove that feature completely in case it is a very bad one, as in Equation 2-19.

 L
f x d x

new

i i
=

()- + *é
ë

ù
û=å i

N

N
0 4

40
 (Equation 2-19)

Chapter 2 artifiCial Neural Networks

95

By removing it, we go back to the third-degree polynomial equation (y3). y3 does

not fit the seen data perfectly as in y4, but generally, it will give better performance for

unseen data than y4 would.

But in case x4 is a relatively good feature and we just want to penalize it rather than

removing it completely, we can set it to a value close to but not zero (say 0.1), as in

Equation 2-20. By doing that, we limit the effect of x4. As a result, the new model will not

be as complex as before.

 L
f x d x

new

i i
=

()- + *é
ë

ù
û=å i

N

N
0 4

40 1.
 (Equation 2-20)

Going back to y2, it seems that it is simpler than y3. It can work well with both seen

and unseen data samples. So, we should remove the new feature used in y3, which is x3,

or just penalize it if it does relatively well. We can modify the loss function to do that, as

in Equation 2-21.

L

f x d x x
new

i i
=

()- + * +é
ë

ù
û=å i

N

N
0 4

4
3

30 1. Q

 L
f x d x x

new

i i
=

()- + * + *é
ë

ù
û=å i

N

N
0 4

4 30 1 0 04. .
 (Equation 2-21)

 L1 Regularization
Note that we actually knew that y2 is the best model to fit the data because the data

graph is available for us. It is a very simple task that we can solve manually. But if such

information is not available to us and as the number of samples and data complexity

increase, we will not be able to reach such conclusions easily. There must be something

automatic to tell us which degree will fit the data and tell us which features to penalize to

get the best predictions for unseen data. This is regularization.

Regularization helps us to select the model complexity to fit the data. It is useful

to automatically penalize features that make the model too complex. Remember

that regularization is useful if the features are not bad and will help us to get good

predictions in a relative sense; we just need to penalize but not remove them completely.

Regularization penalizes all used features, not a selected subset. Previously, we

penalized just two features, x4 and x3, not all features. But this is not the case with

regularization.

Chapter 2 artifiCial Neural Networks

96

Using regularization, a new term is added to the loss function to penalize the

features, so the loss function will be as in Equation 2-22.

 L
f x d

N

new

i i j j
=

()- +é
ë

ù
û= =å åi

N

N
0 4 1

lQ
 (Equation 2-22)

It can also be written as in Equation 2-23 after moving Λ outside the summation.

 L
f x d

N

new

i i j j
=

()- +é
ë

ù
û= =å åi

N

N
0 4 1

l Q
 (Equation 2-23)

The newly added term l Q
j

N

j
=
å

1

 is used to penalize the features to control the level

of model complexity. Our previous goal before adding the regularization term is to

minimize the prediction error as much as possible. Now our goal is to minimize the error

but to be careful of making the model too complex and to avoid overfitting.

There is a regularization parameter called lambda (λ) that controls how to penalize

the features. It is a hyperparameter with no fixed value. Its value is variable based on

the task at hand. As its value increases, there will be higher penalization for the features.

As a result, the model becomes simpler. When its value decreases, there will be lower

penalization of the features and thus the model complexity increases. A value of zero

means no removal of features at all.

When λ is zero, then the values of Θj will not be penalized at all, as shown in the

next equation. This is because setting λ to zero means the removal of the regularization

term and just leaving the error term. So, our objective will return back to just minimize

the error to be close to zero. When error minimization is the objective, the model may

overfit.

L
f x d

new

i i j

N

j
=

()- + *é
ë

ù
û= =å åi

N

N
0 4 1

0 Q

L
f x d

new

i i
=

()- +é
ë

ù
û=å i

N

N
0 4 0

L
f x d

new

i i=
()-

=å i

N

N
0 4

Chapter 2 artifiCial Neural Networks

97

But when the value of the penalization parameter λ is very high (say 109), then there

must be a very high penalization for the parameters Θj in order to keep the loss at its

minimum value. As a result, the parameters Θj will be zeros. As a result, the model (y4)

will have its Θi pruned as shown in the following.

y4 4 4
4

3
3

2
2

1 0= () = + + + +f x x x x xQ Q Q Q Q

y4
4 3 2

00 0 0 0= * + * + * + * +x x x x Q

y4 0=Q

Please note that the regularization term starts its index j from 1 not zero. Actually,

we use the regularization term to penalize features (xi). Because Θ0 has no associated

feature, there is no reason to penalize it. In this case, the model will be y4 = Θ0 with the

graph shown in Figure 2-23.

Figure 2-23. Model parallel to the x axis after penalizing all features

 Designing ANN
Beginners in ANNs are likely to ask some questions, including the following: What is the

correct number of hidden layers to use? How many hidden neurons are in each hidden

layer? What is the purpose of using hidden layers/neurons? Does increasing the number

of hidden layers/neurons always give better results? I am pleased to say that we can

answer these questions. To be clear, answering such questions might be too complex if

the problem being solved is complicated. By the end of this section, you might at least

get an idea of how these questions can be answered and be able to test yourself based on

simple examples. Let’s start.

Chapter 2 artifiCial Neural Networks

98

ANN is inspired by the biological neural network. For simplicity, in computer

science, it is represented as a set of layers. These layers are categorized into three classes:

input, hidden, and output.

Knowing the number of input and output layers and the number of their neurons

is the easiest part. Every network has single input and output layers. The number

of neurons in the input layer equals the number of input variables in the data being

processed. The number of neurons in the output layer equals the number of outputs

associated with each input. But the challenge is knowing the number of hidden layers

and their neurons.

Here are some guidelines to learning the number of hidden layers and neurons in

each hidden layer in a classification problem:

• Based on the data, draw an expected decision boundary to separate

the classes.

• Express the decision boundary as a set of lines. Note that the

combination of these lines must yield to the decision boundary.

• The number of selected lines represents the number of hidden

neurons in the first hidden layer.

• To connect the lines created by the previous layer, a new hidden layer

is added. Note that a new hidden layer is added each time you need

to create connections among the lines in the previous hidden layer.

• The number of hidden neurons in each new hidden layer equals the

number of connections to be made.

To make things clearer, let’s apply the previous guidelines to a couple of examples.

 Example 1: ANN Without Hidden Layer
Let’s start with a simple example of a classification problem with two classes, as shown

in Figure 2-24. Each sample has two inputs and one output that represents the class

label. It is quite similar to the XOR problem.

Chapter 2 artifiCial Neural Networks

99

The first question to answer is whether hidden layers are required or not. A rule to

follow in order to determine this is as follows:

In ANNs, hidden layers are required if and only if the data must
be separated nonlinearly.

Looking at Figure 2-25, it seems that the classes must be nonlinearly separated. A

single line will not work. As a result, we must use hidden layers in order to get the best

decision boundary. In this case, we may still not use hidden layers, but this will affect the

classification accuracy. So, it is better to use hidden layers.

Knowing that we need hidden layers then requires us to answer two important

questions. These questions are as follows:

 1. What is the required number of hidden layers?

 2. What is the number of the hidden neurons across each hidden

layer?

Following the previous procedure, the first step is to draw a decision boundary that

splits the two classes. There is more than one possible decision boundary that splits the

data correctly, as shown in Figure 2-25. The one we will use for further discussion is in

Figure 2-25(a).

Figure 2-24. Two-class classification problem

Chapter 2 artifiCial Neural Networks

100

Following the guidelines, the next step is to express the decision boundary by a set of

lines.

The idea of representing the decision boundary using a set of lines comes from

the fact that any ANN is built using the single layer perceptron as a building block. The

single layer perceptron is a linear classifier that separates the classes using a line created

according to Equation 2-24.

 y = w1x1 + w2x2 + … + wixi + b (Equation 2-24)

Where xi is the ith input, wi is its weight, b is the bias, and y is the output. Because

each hidden neuron added will increase the number of weights, it is recommended

to use the lowest number of hidden neurons that accomplishes the task. Using more

hidden neurons than required will add more complexity.

Returning back to our example, saying that the ANN is built using multiple

perceptron networks is identical to saying that the network is built using multiple lines.

In this example, the decision boundary is replaced by a set of lines. The lines start

from the points at which the boundary curve changes direction. At this point, two lines

are placed, each in a different direction.

Because there is just one point at which the boundary curve changes direction, as

shown in Figure 2-26 by a gray circle, then there will be just two lines required. In other

words, there are two single layer perceptron networks. Each perceptron produces a line.

a b

Figure 2-25. Nonlinear classification problem cannot be solved using a single line

Chapter 2 artifiCial Neural Networks

101

Figure 2-27. Two lines connected to each other using a hidden neuron

Figure 2-26. Two lines required to classify the problem

Knowing that there are just two lines required to represent the decision boundary

tells us that the first hidden layer will have two hidden neurons.

Up to this point, we have a single hidden layer with two hidden neurons. Each

hidden neuron could be regarded as a linear classifier that is represented as a line, as

in Figure 2-26. There will be two outputs, one from each classifier (i.e., hidden neuron).

But we are to build a single classifier with one output representing the class label, not

two classifiers. As a result, the outputs of the two hidden neurons are to be merged into a

single output. In other words, the two lines are to be connected by another neuron. The

result is shown in Figure 2-27.

Chapter 2 artifiCial Neural Networks

102

Fortunately, we do not need to add another hidden layer with a single neuron to do

that job. The output layer neuron will do the task. This neuron will merge the two lines

generated previously so that there is only one output from the network.

After learning the number of hidden layers and their neurons, the network

architecture is now complete, as shown in Figure 2-28.

Input Layer Hidden Layer

Output Layer
out

X1

X2

Figure 2-28. Network structure for a classification problem with a curve created
by connecting two lines, each one created using a hidden layer neuron

 Example 2: ANN with a Single Hidden Layer
Another classification example is shown in Figure 2-29. It is similar to the previous

example, in which there are two classes where each sample has two inputs and one

output. The difference is in the decision boundary. The boundary in this example is

more complex than the one in the previous example.

Chapter 2 artifiCial Neural Networks

103

According to the guidelines, the first step is to draw the decision boundary. The

decision boundary to be used in our discussion is shown in Figure 2-30(a).

The next step is to split the decision boundary into a set of lines; each line will be

modeled as a perceptron in the ANN. Before drawing lines, the points at which the

boundary change direction should be marked as shown in Figure 2-30(b).

a b

Figure 2-30. Decision boundary to classify the second example

Figure 2-29. A more complex classification problem to find the best network
architecture

Chapter 2 artifiCial Neural Networks

104

The question is how many lines are required. Each of the top and bottom points

will have two lines associated with them, for a total of four lines. The in-between point

will have its two lines shared from the other points. The lines to be created are shown in

Figure 2-31.

Figure 2-31. Lines required to create the decision boundary of the second example

Because the first hidden layer will have hidden layer neurons equal to the number

of lines, the first hidden layer will have four neurons. In other words, there are four

classifiers each created by a single layer perceptron. At the current time, the network

will generate four outputs, one from each classifier. The next step is to connect these

classifiers together in order to make the network generating just a single output. In other

words, the lines are to be connected together by other hidden layers to generate just a

single curve.

It is up to the model designer to choose the layout of the network. One feasible

network architecture is to build a second hidden layer with two hidden neurons. The first

hidden neuron will connect the first two lines, and the last hidden neuron will connect

the last two lines. The result of the second hidden layer is shown in Figure 2-32.

Chapter 2 artifiCial Neural Networks

105

Up to this point, there have been two separated curves. Thus, there are two outputs

from the network. The next step is to connect these curves together in order to have just

a single output from the entire network. In this case, the output layer neuron could be

used to do the final connection rather than adding a new hidden layer. The final result is

shown in Figure 2-33.

Figure 2-32. Connecting lines to create a single decision boundary

Figure 2-33. Connecting the outputs of the hidden layer using the output layer

Chapter 2 artifiCial Neural Networks

106

The network design is now complete, and the complete network architecture is

shown in Figure 2-34.

Input Layer Hidden Layer

Output Layer

out

X1

X2

Figure 2-34. The network architecture to classify the second example

Chapter 2 artifiCial Neural Networks

107
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_3

CHAPTER 3

Recognition Using ANN
with Engineered Features
The three pillars for a successful ML application are the data, features, and model.

They should cope with each other. The most relevant features that differentiate among

the different cases existing in the data are used. Representative features are critical in

building an accurate ML application. They should be accurate enough to work well

under different conditions such as a change in scale and rotation. Such features should

work well with the selected ML model. You shouldn’t use more features than needed,

because this adds more complexity to the model. Feature selection and reduction

techniques are used to find the minimum set of features to build an accurate model.

This chapter explores the feature categories presented in Chapter 2 to find the

suitable set of hand-engineered features for the Fruits 360 dataset. Feature reduction is

applied to minimize the feature vector length and just use the most relevant features.

ANN is implemented to map the image features to their output labels. By the end of

the chapter, we will recognize how it is complex to manually find features for complex

problems with multiple variations among samples even within the same class.

 Fruits 360 Dataset Feature Mining
The Fruits 360 dataset is used to find a suitable set of features to train the ANN in order to

achieve high classification performance. It is a high-quality dataset of images collected

from 60 fruits including apple, guava, avocado, banana, cherry, date, kiwi, peach, and

more. On average, each fruit has around 491 training and 162 test images for a total

of 28,736 for training and 9,673 for testing. The size of each image is 100×100 pixels.

Working with a dataset in which all images are of equal size saves one preprocessing step

of resizing them.

108

 Feature Mining
For making things simple at the beginning, just four classes are selected: Braeburn

apple, Meyer lemon, mango, and raspberry. Based on the feature categories presented in

Chapter 2 (color, texture, and edge), we need to find the most suitable set of features to

differentiate these classes.

Based on our knowledge about these four fruits, we know that they have different

colors. Apple is red, lemon is orange, mango is green, and raspberry is magenta. As a

result, the color category is the first one that comes to our minds.

We can start by using each pixel as input to the ANN. Each image size is 100×100

pixels. Because the image is color, then there are three existing channels based on the

RGB color space: red, green, and blue. Thus, the total number of inputs to the ANN is

100×100×3=30,000. Based on these inputs, an ANN is to be created.

Also, these inputs will make the ANN huge, with a large number of parameters.

The network will have 30,000 inputs and 4 outputs. Assuming there is a single hidden

layer of 10,000 neurons, then the total number of parameters in the network is

30,000×10,000+10,000×4, which is more than 300 million parameters. Optimizing such

a network is complex. We should find a way to reduce this number of input features in

order to reduce the number of parameters.

One way is by using a single channel rather than using all three RGB channels. The

selected channel should be able to capture the color changes among the used classes.

The three channels for each image in addition to their histograms are available in

Figure 3-1. A histogram helps us to visualize the intensity values easier than looking at

the image would.

Chapter 3 reCognition Using ann with engineered FeatUres

109

Figure 3-1. Red, green, and blue channels in addition to their histograms for a
single sample from the four classes of the Fruits 360 dataset used

Chapter 3 reCognition Using ann with engineered FeatUres

110

The Python code used to read the images, along with creating and visualizing their

histogram, is available in Listing 3-1.

Listing 3-1. RGB Channel Histogram

import numpy

import skimage.io

import matplotlib.pyplot

raspberry = skimage.io.imread(fname="raspberry.jpg", as_grey=False)

apple = skimage.io.imread(fname="apple.jpg", as_grey=False)

mango = skimage.io.imread(fname="mango.jpg", as_grey=False)

lemon = skimage.io.imread(fname="lemon.jpg", as_grey=False)

fruits_data = [apple, raspberry, mango, lemon]

fruits = ["apple", "raspberry", "mango", "lemon"]

idx = 0

for fruit_data in fruits_data:

 fruit = fruits[idx]

 for ch_num in range(3):

 hist = numpy.histogram(a=fruit_data[:, :, ch_num], bins=256)

 matplotlib.pyplot.bar(left=numpy.arange(256), height=hist[0])

 matplotlib.pyplot.savefig(fruit+"-histogram-channel-"+

str(ch_num)+".jpg", bbox_inches="tight")

 matplotlib.pyplot.close("all")

 idx = idx + 1

It seems that it is difficult to find the best channel to use. According to the histogram

for any channel, there is overlap in some regions across the images. The only metric

to differentiate the different images in such a case is the intensity values. For example,

Braeburn apple and Meyer lemon have values for all bins according to the blue channel

histogram, but their values differ. Apple has small values compared to lemon in the

rightmost part. According to illumination changes, the intensity values will change and

we might have a case in which both apple and lemon have close values to each other in

the histogram. We should add a margin between the different classes. Even with little

changes, there is no ambiguity in making the decision.

Chapter 3 reCognition Using ann with engineered FeatUres

111

We can benefit from the fact that the four fruits used have different colors. A color

space that decouples illumination channels from color channels is a good option.

Figure 3-2 shows the hue channel from the HSV color space from the four samples used

previously in addition to their histograms.

Figure 3-2. Hue channel from the HSV color space with its histograms

The Python code used to return the histogram of the hue channel of all samples is in

Listing 3-2.

Listing 3-2. Hue Channel Histograms

import numpy

import skimage.io, skimage.color

import matplotlib.pyplot

raspberry = skimage.io.imread(fname="raspberry.jpg", as_grey=False)

apple = skimage.io.imread(fname="apple.jpg", as_grey=False)

mango = skimage.io.imread(fname="mango.jpg", as_grey=False)

lemon = skimage.io.imread(fname="lemon.jpg", as_grey=False)

apple_hsv = skimage.color.rgb2hsv(rgb=apple)

mango_hsv = skimage.color.rgb2hsv(rgb=mango)

raspberry_hsv = skimage.color.rgb2hsv(rgb=raspberry)

lemon_hsv = skimage.color.rgb2hsv(rgb=lemon)

Chapter 3 reCognition Using ann with engineered FeatUres

112

fruits = ["apple", "raspberry", "mango", "lemon"]

hsv_fruits_data = [apple_hsv, raspberry_hsv, mango_hsv, lemon_hsv]

idx = 0

for hsv_fruit_data in hsv_fruits_data:

 fruit = fruits[idx]

 hist = numpy.histogram(a=hsv_fruit_data[:, :, 0], bins=360)

 matplotlib.pyplot.bar(left=numpy.arange(360), height=hist[0])

 matplotlib.pyplot.savefig(fruit+"-hue-histogram.jpg", bbox_

inches="tight")

 matplotlib.pyplot.close("all")

 idx = idx + 1

Using a 360-bin histogram for the hue channel, it seems that each different type of

fruit votes specific bins within the histogram. There is little overlap among the different

classes compared to using any of the RGB channels. For example, the highest bins in the

apple histogram range from 0 to 10 compared to mango, whose bins range from 90 to

110. The margin between each of the classes makes it easier to reduce the ambiguity in

classification and thus increases the prediction accuracy.

Based on the previous simple experiments on the four classes selected, the hue

channel histogram can classify the data correctly. The umber of features, in this case,

is just 360 rather than 30,000. This helps very much to reduce the number of ANN

parameters.

A feature vector of 360 elements is small compared to the previous one, but we

can also minimize it. However, some elements in the feature vector might not be

representative enough to separate between the different classes. They might reduce the

accuracy of the classification model. Thus, it is better to remove them to keep the best set

of features.

This is not the end. If we are to add more classes, is the hue channel histogram

enough for accurate classification? Let’s see how things work after using an additional

two fruits (strawberry and mandarin).

Based on our knowledge about these two fruits, strawberry is red, which is similar to

apple, while mandarin is orange, which is similar to Meyer lemon. Figure 3-3 shows the

hue channel of the selected samples from these classes in addition to their histogram.

Chapter 3 reCognition Using ann with engineered FeatUres

113

The histograms of both strawberry and apple are similar as they share the same

bins ranging from 1 to 10. Also, both mandarin and lemon histograms are similar. How

to differentiate among the different classes that share the same color? The answer is to

search for another type of feature.

Fruits that are similar in color likely have different textures. Using a texture

descriptor such as GLCM or LBP, we can capture these differences. The previous process

is repeated until the best set of features that can increase the classification accuracy as

much as possible is selected.

LBP produces a matrix with a size equal to that of the input image. To avoid

increasing the feature vector length, a 10-bin histogram is created based on the LBP

matrix as in Figure 3-4. It seems that there is a difference in the bin values.

Figure 3-3. Samples from new two classes that share some similarities among the
previously used samples

Chapter 3 reCognition Using ann with engineered FeatUres

114

Listing 3-3 lists the Python code that generates the LBP histogram.

Listing 3-3. LBP Histogram

import numpy

import skimage.io, skimage.color, skimage.feature

import matplotlib.pyplot

apple = skimage.io.imread(fname="apple.jpg", as_grey=True)

strawberry = skimage.io.imread(fname="strawberry.jpg", as_grey=True)

fig, ax = matplotlib.pyplot.subplots(nrows=1, ncols=2)

apple_lbp = skimage.feature.local_binary_pattern(image=apple, P=7, R=1)

hist1 = numpy.histogram(a=apple_lbp, bins=10)

ax[0].bar(left=numpy.arange(10), height=hist1[0])

strawberry_lbp = skimage.feature.local_binary_pattern(image=strawberry,

P=7, R=1)

hist = numpy.histogram(a=strawberry_lbp, bins=10)

ax[1].bar(left=numpy.arange(10), height=hist[0])

The data scientist has to search for the best type of discriminating feature, which

is not easily accomplished when the complexity increases due to the number of

overlapping classes. Even with the simple high-quality Fruits 360 dataset, there is the

challenge of discriminating between different classes. Working with a dataset such

Figure 3-4. LBP histogram of apple and strawberry

Chapter 3 reCognition Using ann with engineered FeatUres

115

as ImageNet, with thousands of classes with a difference between samples within the

same class, finding the best features is a complex task to be done manually. Automatic

approaches are preferred for cases in which there is plenty of data.

 Feature Reduction
This subsection will work on the feature vector consisting of the hue channel

histogram based on the first four fruits. Looking at the histograms in Figure 3-2, it

is obvious that there are too many bins with almost zero value. This means they are

not used by any class. It is better to remove such elements, as this helps to reduce the

feature vector length.

According to the feature reduction techniques presented in Chapter 2, wrapper and

embedded categories are used when it is difficult to know what element to remove. For

example, some elements might be doing well with some classes but very badly with

others. Thus, we have to remove them. Wrapper and embedded approaches depend on a

model to train with multiple feature sets in order to know what elements help to increase

the classification accuracy. In our case, we do not have to use them. The reason is that

some elements are bad across all classes, and thus it is obvious what we should remove.

Thus, the filter approach is a good option.

In turn, STD is a good option for filtering elements. The good elements are those that

have high values for STD. A sigh STD value means that the element is discriminative for

the different classes. An element with a low STD value has almost identical values across

all different classes. This means it is unable to differentiate between the different classes.

STD is calculated for a given element according to Equation 3-1.

 STD
X X

n
=

-
-

ˆ

1
 (Equation 3-1)

Where X is the element value for a given sample, X ̂ is the mean of the element across

all samples in the dataset, and n is the number of samples.

Before deciding which element to remove, we have to extract the feature vector from

all samples within the dataset. Listing 3-4 extracts the feature vector from each sample

across the four fruits used.

Chapter 3 reCognition Using ann with engineered FeatUres

116

Listing 3-4. Feature Vector Extraction from All Samples

import numpy

import skimage.io, skimage.color, skimage.feature

import os

import pickle

fruits = ["apple", "raspberry", "mango", "lemon"]

#492+490+490+490=1,962

dataset_features = numpy.zeros(shape=(1962, 360))

outputs = numpy.zeros(shape=(1962))

idx = 0

class_label = 0

for fruit_dir in fruits:

 curr_dir = os.path.join(os.path.sep,'train', fruit_dir)

 all_imgs = os.listdir(os.getcwd()+curr_dir)

 for img_file in all_imgs:

 fruit_data = skimage.io.imread(fname=os.getcwd()+curr_dir+img_file,

as_grey=False)

 fruit_data_hsv = skimage.color.rgb2hsv(rgb=fruit_data)

 hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

 dataset_features[idx, :] = hist[0]

 outputs[idx] = class_label

 idx = idx + 1

 class_label = class_label + 1

with open("dataset_features.pkl", "wb") as f:

 pickle.dump("dataset_features.pkl", f)

with open("outputs.pkl", "wb") as f:

 pickle.dump(outputs, f)

The array named “dataset_features” holds all features. It is given a size of 1,962×360,

where 360 is the number of histogram bins and 1,962 refers to the number of samples

(492 apple + 490 for the other three fruits). The class labels are saved into the “outputs”

array, where apple is given label 0, 1 for raspberry, 2 for mango, and 3 for lemon. At the

end of the code, the features and the output labels are saved in order to reuse them later.

Chapter 3 reCognition Using ann with engineered FeatUres

117

This code assumes that there are four folders named according to each fruit. It loops

through these folders, reads all of their images, calculates the histogram, and returns it

into the “dataset_features” variable. After that, we are ready to calculate the STD. The

STD for all features is calculated according to this line:

features_STDs = numpy.std(a=dataset_features, axis=0)

This returns a vector of length 360, where an element in a given position refers to the

STD of the element of the feature vector at that position. The distribution of the 360 STDs

is in Figure 3-5.

Figure 3-5. Distribution of the STDs for all elements of the feature vector across all
samples

Based on this distribution, the minimum, maximum, and mean values for the STD

are 0.53, 549.13, and 44.22, respectively. Features with small STD values should be

removed because they cannot differentiate between the different classes. We have to

select a threshold that splits the features into bad (below-threshold) and good (above-

threshold) ones.

Chapter 3 reCognition Using ann with engineered FeatUres

118

 Filtering Using ANN
One way to select the threshold is trial and error. Try different values for the threshold.

By the reduced feature vector returned by each threshold, train a classification model

and notice the accuracy. Use the reduced feature vector that maximizes the accuracy.

Listing 3-5 gives the Python code to create and train an ANN using the scikit- learn

library with a set of features generated by using a threshold.

Listing 3-5. Building ANN Using scikit-learn Trained with STD Thresholded

Features

import sklearn.neural_network

import numpy

import pickle

with open("dataset_features.pkl", "rb") as f:

 dataset_features = pickle.load(f)

with open("outputs.pkl", "rb") as f:

 outputs = pickle.load(f)

threshold = 50

features_STDs = numpy.std(a=dataset_features, axis=0)

dataset_features2 = dataset_features[:, features_STDs>threshold]

ANN = sklearn.neural_network.MLPClassifier(hidden_layer_sizes=[150, 60],

 activation="relu",

 solver="sgd",

 learning_rate="adaptive",

 max_iter=300,

 shuffle=True)

ANN.fit(X=dataset_features2, y=outputs)

predictions = ANN.predict(X=dataset_features2)

num_flase_predictions = numpy.where(predictions != outputs)[0]

The features and the outputs are loaded in order to calculate their STDs and filter the

features based on a predefined threshold. A multilayer perceptron classifier is created

with two hidden layers, where the first hidden layer has 150 neurons and the second one

has 60 neurons. Some properties of this classifier are specified: the activation function

Chapter 3 reCognition Using ann with engineered FeatUres

119

is set to the rectified linear unit (ReLU) function, the stochastic gradient descent (GD) is

the learning algorithm, the learning rate is selected automatically by the learner, there

are 300 maximum iterations to train the network, and finally the network is set to True in

order to select different training samples in each iteration.

With a threshold of 50, the remaining features have the distribution in Figure 3-6. All

low-quality elements are removed and thus the best set of elements is used. This reduces

the amount of data used to train the network; thus, faster training. It also prevents bad

feature elements from reducing the accuracy. When using all the elements in the feature

vector, there are 490 false predictions. After thresholding, with the feature elements using

an STD threshold of 50, the number of false predictions dropped to zero.

Figure 3-6. Distribution of STDs after removing elements with STD lower
than 50

Reduction of the classification errors is not the only benefit; the ANN parameters are

also reduced. After using only the feature elements with an STD of greater than 50, the

number of remaining elements is just 102. According to the ANN structure in Listing 3-5,

the number of parameters in the input layer and the first hidden layer will be 102×150=

15,300 compared to 54,000 parameters when the complete feature vector of length 360 is

used. There is a reduction of 38,700 parameters.

Chapter 3 reCognition Using ann with engineered FeatUres

120

 ANN Implementation
This section implements an ANN in Python. The ANN is made to accept the network

structure in terms of the number of neurons in each layer (input, hidden, and output),

and then it trains the network in a number of iterations. For getting familiar with the

steps of implementation, Figure 3-7 visualizes the ANN structure. There is an input layer

with 102 inputs, two hidden layers with 150 and 60 neurons, and an output layer with 4

outputs (one for each fruit class).

Figure 3-7. The architecture of the ANN to be implemented

The input vector at any layer is multiplied (matrix multiplication) by the weights

matrix connecting it to the next layer to produce an output vector. The output vector is

again multiplied by the weights matrix connecting its layer to the next layer. The process

continues until reaching the output layer. A summary of the matrix multiplications is in

Figure 3-8.

Chapter 3 reCognition Using ann with engineered FeatUres

121

The input vector of size 1×102 is to be multiplied by the weights matrix of the first

hidden layer of size 102×150. This is matrix multiplication. Thus, the output size is 1×150.

The output is then used as the input to the second hidden layer, where it is multiplied by

a weights matrix of size 150×60. The result size is 1×60. Finally, the output is multiplied

by the weights between the second hidden layer and the output layer of size 60×4. The

result has a final size of 1×4. Every element in the resulting vector refers to an output

class. The input sample is labeled according to the class with the highest score.

The Python code for implementing such multiplications is in Listing 3-6.

Figure 3-8. Matrix multiplications between inputs and weights

Chapter 3 reCognition Using ann with engineered FeatUres

122

Listing 3-6. ANN Matrix Multiplications

import numpy

import pickle

def sigmoid(inpt):

 return 1.0/(1+numpy.exp(-1*inpt))

f = open("dataset_features.pkl", "rb")

data_inputs2 = pickle.load(f)

f.close()

features_STDs = numpy.std(a=data_inputs2, axis=0)

data_inputs = data_inputs2[:, features_STDs>50]

f = open("outputs.pkl", "rb")

data_outputs = pickle.load(f)

f.close()

HL1_neurons = 150

input_HL1_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(data_inputs.shape[1],

HL1_neurons))

HL2_neurons = 60

HL1_HL2_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(HL1_neurons, HL2_neurons))

output_neurons = 4

HL2_output_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(HL2_neurons,

output_neurons))

H1_outputs = numpy.matmul(a=data_inputs[0, :], b=input_HL1_weights)

H1_outputs = sigmoid(H1_outputs)

H2_outputs = numpy.matmul(a=H1_outputs, b=HL1_HL2_weights)

H2_outputs = sigmoid(H2_outputs)

out_outputs = numpy.matmul(a=H2_outputs, b=HL2_output_weights)

predicted_label = numpy.where(out_outputs == numpy.max(out_outputs))[0][0]

print("Predicted class : ", predicted_label)

Chapter 3 reCognition Using ann with engineered FeatUres

123

After reading the previously saved features and their output labels and filtering

the features with an STD threshold equal to 50, the weights matrices of the layers are

defined. They are randomly given values from –0.1 to 0.1. For example, the variable

“input_HL1_weights” holds the weights matrix between the input layer and the first

hidden layer. The size of this matrix is defined according to the number of feature

elements and the number of neurons in the hidden layer.

After creating the weights matrices, the next step is to apply matrix multiplications.

For example, the variable “H1_outputs” holds the output of multiplying the feature

vector of a given sample to the weights matrix between the input layer and the first

hidden layer.

Usually, an activation function is applied to the outputs of each hidden layer to

create a nonlinear relationship between the inputs and the outputs. For example,

outputs of the matrix multiplications are applied to the sigmoid activation function as in

Equation 3-2.

 sigmoid x
e x() =

+ -()
1

1
 (Equation 3-2)

After generating the output layer outputs, prediction takes place. The predicted class

label is saved into the “predicted_label” variable.

These steps are repeated for each input sample. The complete code that works across

all samples is in Listing 3-7.

Listing 3-7. Complete Code for ANN

import numpy

import pickle

def sigmoid(inpt):

 return 1.0/(1+numpy.exp(-1*inpt))

def relu(inpt):

 result = inpt

 result[inpt<0] = 0

 return result

def update_weights(weights, learning_rate):

 new_weights = weights - learning_rate*weights

 return new_weights

Chapter 3 reCognition Using ann with engineered FeatUres

124

def train_network(num_iterations, weights, data_inputs, data_outputs,

learning_rate, activation="relu"):

 for iteration in range(num_iterations):

 print("Itreation ", iteration)

 for sample_idx in range(data_inputs.shape[0]):

 r1 = data_inputs[sample_idx, :]

 for idx in range(len(weights)-1):

 curr_weights = weights[idx]

 r1 = numpy.matmul(a=r1, b=curr_weights)

 if activation == "relu":

 r1 = relu(r1)

 elif activation == "sigmoid":

 r1 = sigmoid(r1)

 curr_weights = weights[-1]

 r1 = numpy.matmul(a=r1, b=curr_weights)

 predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

 desired_label = data_outputs[sample_idx]

 if predicted_label != desired_label:

 weights = update_weights(weights,

 learning_rate=0.001)

 return weights

def predict_outputs(weights, data_inputs, activation="relu"):

 predictions = numpy.zeros(shape=(data_inputs.shape[0]))

 for sample_idx in range(data_inputs.shape[0]):

 r1 = data_inputs[sample_idx, :]

 for curr_weights in weights:

 r1 = numpy.matmul(a=r1, b=curr_weights)

 if activation == "relu":

 r1 = relu(r1)

 elif activation == "sigmoid":

 r1 = sigmoid(r1)

 predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

 predictions[sample_idx] = predicted_label

 return predictions

Chapter 3 reCognition Using ann with engineered FeatUres

125

f = open("dataset_features.pkl", "rb")

data_inputs2 = pickle.load(f)

f.close()

features_STDs = numpy.std(a=data_inputs2, axis=0)

data_inputs = data_inputs2[:, features_STDs>50]

f = open("outputs.pkl", "rb")

data_outputs = pickle.load(f)

f.close()

HL1_neurons = 150

input_HL1_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(data_inputs.shape[1],

HL1_neurons))

HL2_neurons = 60

HL1_HL2_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(HL1_neurons, HL2_neurons))

output_neurons = 4

HL2_output_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(HL2_neurons,

output_neurons))

weights = numpy.array([input_HL1_weights,

 HL1_HL2_weights,

 HL2_output_weights])

weights = train_network(num_iterations=2,

 weights=weights,

 data_inputs=data_inputs,

 data_outputs=data_outputs,

 learning_rate=0.01,

 activation="relu")

predictions = predict_outputs(weights, data_inputs)

num_flase = numpy.where(predictions != data_outputs)[0]

print("num_flase ", num_flase.size)

Chapter 3 reCognition Using ann with engineered FeatUres

126

The “weights” variables hold all weights across the entire network. Based on the size

of each weight matrix, the network structure is dynamically specified. For example, if

the size of the “input_HL1_weights” variable is 102×80, then we can deduce that the first

hidden layer has 80 neurons.

The “train_network” is the core function, as it trains the network by looping through

all samples. For each sample, the steps discussed in Listing 3-6 are applied. It accepts

the number of training iterations, features, output labels, weights, the learning rate, and

the activation function. There are two options for the activation functions: either ReLU

or sigmoid. ReLU is a thresholding function that returns the same input as long as it is

greater than zero. Otherwise, it returns zero.

If the network made a false prediction for a given sample, then weights are updated

using the “update_weights” function. No optimization algorithm is used to update the

weights; they are simply updated according to the learning rate. The accuracy does not

exceed 45%. The next chapter discusses using the GA optimization technique for this

task, which increases the classification accuracy.

After the specified number of training iterations, the network is tested according

to the training data to see if the network is working well on the training samples. If the

accuracy is acceptable based on the training data, then we can test the model based on

new unseen data.

 Engineered Feature Limitations
Fruits 360 dataset images are captured in a restricted environment with many details

available about each fruit. This makes mining the data for finding the best features much

easier. Unfortunately, real-world applications are not easy that way. There are many

variations among the samples within the same class, such as different viewing angles,

perspective distortion, illumination changes, occlusion, and more. Creating a feature

vector for such data is a complex task.

Figure 3-9 gives some samples from the MNIST (Modified National Institute of

Standards and Technology) dataset for handwritten number recognition. It consists of

70,000 samples. The images are binary and thus color feature category is not applicable.

Looking for another feature, it seems that there is no single feature able to work across

the entire dataset. Thus, we have to use multiple features to cover all variations existing

in the dataset. This will definitely create a huge feature vector.

Chapter 3 reCognition Using ann with engineered FeatUres

127

Assuming that we are able to find a good feature, there is also another problem. A

single-layer ANN resulted in a 12.0% error rate. Thus, we could increase the depth of the

ANN. Unfortunately, large feature vectors used with deep ANN architectures are very

tiresome to compute, but this is the way to work with complex problems.

The alternative approach is to avoid manual feature mining approaches. Start

looking for an automatic feature mining that searches for the best set of features in terms

of maximizing accuracy.

 Not the End of Engineered Features
Engineered features are not legacy and can still do great with some problems. It is not a

good option when working with some complex datasets.

Every data scientist would have used a calculator for doing mathematical

calculations. After the invention and evolution of the mobile phone, smartphones with

different applications for operations previously done on the calculator came out. Here

is the question: does the appearance of a new technology (smartphones) mean that the

previous technology (calculator) gets destroyed and will not be used anymore?

Figure 3-9. Samples from the CIFAR10 (Canadian Institute for Advanced
Research) dataset

Chapter 3 reCognition Using ann with engineered FeatUres

128

Calculators were dedicated just to mathematical operations, but smartphones are

not. Smartphones have many features not existing in the calculator. Is the availability of

many features rather than limited ones a disadvantage? In some cases, the fewer features

in the tool, the better its performance; also, the more features, the more overhead. It is

simple to do an operation using a calculator but there is overhead when doing the same

operation with a smartphone.

The phone might ring for an incoming call, which breaks into whatever you were

doing. It might be connected to the Internet and thus may also beep for an e-mail. This

might take you away from doing the operations. As a result, one using a smartphone

should care about all such effects in order to do the math operations nicely. Using

calculators with limited features compared to smartphones has the advantage of being

simple and focused on the task, even if it is an old technology. Indeed, the newest is not

always the best. According to your needs, the old technology may be better or worse than

a newer technology. The same holds from a data science perspective.

There are different types of learning algorithms and features to be used for different

tasks, such as classification and regression. Some of them may go back to 1950 while

others are recent. But we can’t say that the old models are always worse than the recent

ones. We can’t absolutely conclude that DL models such as CNN are better than previous

models. This depends on your needs.

Many researchers tend to use DL blindly just because it is the state-of-the-art

method. Some problems are simple, and using DL may add more complexity. For

example, using DL with just 100 images divided across 10 classes is not a good option.

Shallow learning is sufficient in this case. If a classifier is to be created to discriminate

among the four types of fruits used previously, DL is not mandatory and previous

handcrafted/engineered features are sufficient.

If CNN is to be used in this case, some overhead is added that makes the task

complex. There are different parameters to be specified, such as the types of layers, the

number of layers, activation function, learning rate, and others. In comparison, using a

hue channel histogram is sufficient for achieving a very high accuracy. It is like getting

to the top of a wall using a ladder. If you reached the top of the wall after climbing five

stairs, you do not need to go up another stair in the ladder. Similarly, if you can get the

best results using hand-engineered features, you do not have to use automatic feature

learning.

Chapter 3 reCognition Using ann with engineered FeatUres

129
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_4

CHAPTER 4

ANN Optimization
Before the innovation of automatic feature learning approaches, a data scientist was

asked to know what features to use, which model to use, how to optimize the result,

and more. With the existence of huge amounts of data and high-speed devices, DL

is available to automatically deduce the best features. Two of the core tasks of a data

scientist are model design and optimization.

Model optimization is as important as building the model itself if not more. The

previously created DL models that proved their accuracy could be reused and thus

model design is solved. The remaining task is optimization. We are in the era of

optimization, in which operation research (OR) scientists play a critical role. The field of

optimization is closely related to artificial intelligence.

Selection of the optimal parameters for ML tasks is challenging. Some results may

be bad not because the data is noisy or the used learning algorithm is weak, but due to

the bad selection of the parameter values. Ideally, optimization guarantees returning

the best solution by looking at different solutions and selecting the best. The more

metrics defining the solution goodness, the harder it is to find the best solution. This

chapter gives an introduction to optimization and discusses a simple optimization

technique called GA. Based on the examples given, it will become clear how to use it in

both single- and multiobjective optimization problems (MOOPs) based on the concept

of dominance. This algorithm is used with ANN to produce better weights, helping to

increase the classification accuracy.

130

 Introduction to Optimization
Suppose that a data scientist has an image dataset divided into a number of classes and

an image classifier is to be created. After the data scientist investigated the dataset, the

K-nearest neighbor (KNN) seems to be a good option. To use the KNN algorithm, there

is an important parameter to use, which is K, referring to the number of neighbors.

Suppose that an initial value of 3 is selected.

The scientist starts the learning process of the KNN algorithm with the selected

K=3. The trained model reached a classification accuracy of 85%. Is that percentage

acceptable? In another way, can we get a better classification accuracy than what

we currently reached? We cannot say that 85% is the best possible accuracy before

conducting different experiments. But to do another experiment, we definitely must

change something in the experiment, such as changing the K value used in the KNN

algorithm. We cannot definitely say 3 is the best value to use in this experiment

unless we try different values for K and notice how the classification accuracy varies.

The question is how to find the best value for K that maximizes the classification

performance. This is called hyperparameter optimization.

In optimization, we start with some kind of initial values for the variables used in

the experiment. Because these values may not be the best ones, we have to change

them until getting the best ones. In some cases, these values are generated by

complex functions that we cannot solve manually easily. But it is very important to

do optimization because a classifier may produce a bad classification accuracy. The

reason might not be that the data is noisy or the used learning algorithm is weak, but

that the selection of the parameters is bad. As a result, there are different optimization

techniques suggested by OR researchers to do such work.

 Single- vs. Multiobjective Optimization
One way to categorize optimization problems is based on whether it is a single- or

multiobjective problem. Let’s differentiate between them in this subsection.

Assume there is a book publisher that would like to maximize its profit from selling

books. They are using Equation 4-1 to calculate their profit per day, where X represents

the number of books and Y represents the profit. The question to ask yourself when

optimizing something is what to change in order to make the results better.

 Y = − (X − 2)3 + 3 (Equation 4-1)

Chapter 4 aNN OptimizatiON

131

We could backtrack to the preceding problem. In order to optimize the preceding

problem, we want to reach the best values for the output variables. Here, we have just a

single output variable, which is Y.

To get the best value for the output variable Y, what could we change in the problem

in order to change the variable Y? In other words, what are the variables that Y depends

on? Looking at Equation 4-1, there is only a single variable that Y depends on, which is

the input variable X. By changing X we could change Y to a better value. As a result, the

previous question could be adapted to this specific problem to be as follows: what is the

best value for the input variable X that returns the best value for the output variable Y?

Assume that the range of the input variable X is 1 to 3, inclusive. Which value gives

the highest profit? If there is no information to direct us toward the best solution,

we have to try all possible solutions (i.e., all possible values of the input variable X)

and select the one that maximizes the profit (i.e., the solution corresponding to the

largest value for the output variable Y). Table 4-1 shows all possible X values and their

corresponding Y values. Based on it, the best solution is Y=4, which corresponds to X=1.

Table 4-1. All Possible Solutions to

a Single-Variable Problem

X Y

1 4

2 3

3 2

Let us make the problem a bit complex. Assume that the problem has another

factor to use in profit calculation, which is the number of visitors to its online site. It

is represented as the variable Z, with a range of values from 1 to 2. The modification

is in Equation 4-2. Following the previous procedure, we need to try all possible

combinations of the inputs X and Z as in Table 4-2. The best solution corresponds to X=2

and Z=2.

 Y = Z3 − (X − 2)3 + 3 (Equation 4-2)

Chapter 4 aNN OptimizatiON

132

Sometimes the range of the input variable is unbounded and we cannot try all of its

values. For example, the range of the inputs X and Z might be all real numbers. Following

the previous procedure of trying all possible values, we will fail in that case. There must

be something to guide us toward the best solution without trying all possible values for

the inputs.

The previous optimization problem has only one objective, which is maximizing

the profit. Another objective might be minimizing the wastepaper represented by

Equation 4-3, where W represents the amount of wastepaper, with a range from 2 to 4

tons. As a result, the problem becomes a MOOP, as shown in Equation 4-4.

 K = (X − 2)2 + 1 (Equation 4-3)

MaxY

Min K
ü
ý
þ

Where

Y = Z 3 − (X − 2)2 + 3

K = (X − 2)2 + 1

Subject to

1 ≤ X ≤ 3 & 1 ≤ Z ≤ 2

(Equation 4-4)

Table 4-2. All Possible Solutions

to the Problem with Two Input

Variables

X Z Y

1 1 5

1 2 6

2 1 4

2 2 11

3 1 3

3 2 10

Chapter 4 aNN OptimizatiON

133

Our goal is not only maximizing the profit but also minimizing the amounts of

wastepaper. This makes the problem more complex, because we have to keep in mind

that the selected value for X should meet two objectives rather than one, especially

when the two objectives are conflicting. This is because a value reducing the amounts of

wastepaper might decrease the profit. There must be a trade-off between the objectives,

as one solution might be better in one objective while worse in another. Note that for

simplicity, maximization objectives are translated into minimization ones.

As the number of objectives and variables increases, the complexity also increases,

and the problem becomes difficult to solve manually. That is why we are in need of

automatic optimization techniques to solve such problems for us.

This chapter discusses the GA, which is a simple technique for solving single- and

multiobjective optimization problems. Nondominated sorting GA-II (NSGA-II) is a

multiobjective EA (MOEA) based on GA that finds feasible solutions satisfying multiple

objectives. Because MOOPs might have multiple solutions, NSGA-II could return the

possible feasible solutions for all objectives. Based on user preference, the best single

solution could then be filtered.

Looking at various natural species, we can note how they evolve and adapt to their

environments. We can benefit from these already existing natural systems and their

natural evolution to create our artificial systems doing the same job. This is called

bionics. For example, the plane is based on how birds fly, radar comes from bats, the

submarine was invented based on fish, and so on. As a result, the principles of some

optimization algorithms come from nature. For example, GA has its core idea from

Charles Darwin’s theory of natural evolution: “survival of the fittest.”

We can say that optimization is performed using EAs. The difference between

traditional algorithms and EAs is that EAs are not static but dynamic, as they can evolve

over time.

EAs have three main characteristics:

 1. Population-Based: EAs are to optimize a process in which current

solutions are bad to generate new and better solutions. The set of

current solutions from which new solutions are to be generated is

called the population.

 2. Fitness-Oriented: If there are several solutions, how can we say

that one solution is better than another? There is a fitness value

associated with each individual solution calculated from a fitness

function. Such a fitness value reflects how good the solution is.

Chapter 4 aNN OptimizatiON

134

 3. Variation-Driven: If there is no acceptable solution in the current

population according to the fitness function calculated from each

individual, we should make something to generate new better

solutions. As a result, individual solutions will undergo a number

of variations to generate new solutions.

We will now start discussing GA to apply these concepts.

 GA
GA is a randomly based optimization technique. By “random,” it is meant that in order

to find a solution using GA, random changes are applied to the current solutions to

generate new ones. GA is based on Darwin’s theory of evolution. It is a slow, gradual

process that works by making slight changes to its solutions until better ones are found.

By evolving the solutions across a number of generations, it is expected that the new

solutions will be better than the old ones.

GA works on a population consisting of multiple solutions. The population size is the

number of solutions. Each solution is called individual. Each individual is represented

as a chromosome. The chromosome is represented as a set of genes that defines the

features or parameters of the individual. There are different ways to represent the

genes, such as binary or decimal. Figure 4-1 gives an example of a population with four

individuals (chromosomes) where each chromosome has four genes and each gene is

represented as a binary digit.

Figure 4-1. Population, chromosome, and gene for the GA

Chapter 4 aNN OptimizatiON

135

After building the population of the first generation (generation 0), next is to select

the best solutions for mating and producing new better solutions. To select the best

solutions, a fitness function is used. The result of the fitness function is the fitness value

representing the quality of the solution. The higher the fitness value, the higher the

quality of the solution. Solutions with the highest fitness values are selected within the

mating pool. Such solutions will mate to produce new solutions.

Solutions inside the mating pool are called parents. Parents mate together for

generating offspring (children). Just by mating high-quality individuals, it is expected to

get offspring of better quality than its parents. This stops bad individuals from generating

more bad individuals. Keeping selecting and mating high-quality individuals, there

is a higher chance to enhance the quality of the solutions by just keeping the good

properties and removing the bad ones. Finally, this will end up with the desired optimal

or acceptable solution.

When the parents are simply mated, the offspring have only the characteristics of the

parents; no new property is added. Assuming that all parents suffer from a limitation,

mating them together will definitely produce offspring with the same limitation.

To overcome this problem, some changes are applied to each offspring to create

new individuals with new properties. The new offspring will be the solutions in the

population of the next generation.

Because changes applied to the offspring are random, we are not sure that the new

offspring will be better than the parents. There is a chance that the solutions within

the current generation are worse than those of their parents. For this reason, the new

population will consist of both the parents and the offspring. Half of it is the parents

and the other half is the new offspring. If the population size is eight, then the new

population will consist of the previous four parents and four offspring. In the worst case,

when all offspring are worse than the parents, the quality will not decrease, as we have

kept the parents. Figure 4-1 summarizes the steps of GA.

There are two questions to be answered to get the full idea about GA:

 1. How are the two offspring generated from the two parents?

 2. How does each offspring get slightly changed?

We will answer these questions later.

There are different representations available for the chromosome, and the selection

of the proper representation is problem specific. A good representation is one that makes

the search space smaller and thus easier to search.

Chapter 4 aNN OptimizatiON

136

The representations available for the chromosome include the following:

• Binary: Each chromosome is represented as a string of zeros and

ones.

• Permutation: Useful for ordering problems such as the traveling

salesman problem.

• Value: The actual value is encoded as it is.

For example, if we are to encode the number 5 in binary, it might look like the first

chromosome in Figure 4-2.

Figure 4-2. GA steps

Each part of the preceding chromosome is called a gene. Each gene has two

properties. The first one is its value (allele) and the second one is the location (locus)

within the chromosome. The rightmost location of each chromosome in Figure 4-1

represents location 0 and the leftmost location represents location 3.

Chapter 4 aNN OptimizatiON

137

Each chromosome has two representations:

 1. Genotype: The set of genes representing the chromosome.

 2. Phenotype: The actual physical representation of the

chromosome.

The binary number 01012 is the genotype and 510 is the phenotype representation.

Binary representation might not be the best way to represent solutions for a given

problem, especially when the number of bits to represent the genes is not fixed.

After representing each chromosome the right way, next is to calculate the fitness

value of each individual.

 Best-Parents Selection
Assume that Equation 4-5 is the fitness function used in our example in Figure 4-1,

where x is the chromosome decimal value.

 f (x) = 2x − 2 (Equation 4-5)

The fitness value of the first solution is with decimal value 5 and is calculated as follows:

 f 5 2 5 2 8() = () - =

The process of calculating the fitness value of a chromosome is called evaluation.

The fitness values of all solutions are given in Table 4-3.

Table 4-3. Fitness Value of Each Solution

Solution Number Decimal Value Fitness Value

1 5 8

2 11 20

3 12 22

4 2 2

The best individuals from the current population are selected in the mating pool.

After that step, we will end up selecting a subset of the population in the mating pool.

But what is the number of parents to choose? It depends on the problem being solved.

Chapter 4 aNN OptimizatiON

138

In our example, we can select just two parents. These two parents will mate to produce

two offspring. The combination of the parents and the offspring will create a new

population of four parents. According to Table 4-3, the best two solutions are solutions

with numbers 2 and 3.

 Variation Operators
The two parents selected are applied to variation operators to produce the offspring. The

operators are crossover and mutation.

 Crossover

Using the crossover operation, genes from both parents are selected to create the new

child. As a result, the child will carry properties from both parents. The amount of genes

carried by each parent is not fixed. Sometimes the offspring takes half of its genes from

one parent and the other half from the other parent, and sometimes these percentages

change.

For every two parents, crossover takes place by selecting a random point in the

chromosome and exchanging genes before and after this point from the two parents.

The resulting chromosomes are offspring. Because we used a single point to split the

chromosome, this operator is called single-point crossover. There are different types of

operators, such as blend, two points, and uniform. Figure 4-3 shows how crossover is

applied between the two parents to produce the two offspring.

Figure 4-3. Single-point crossover between two parents to produce two offspring

Chapter 4 aNN OptimizatiON

139

 Mutation

Based on the crossover operation, there is no new property added to the gene other

than ones existing in the parents. This is because all genes are taken from the parents.

Mutation is applied by selecting a percentage of genes from each chromosome

and changing their values randomly. Mutation varies based on the chromosome

representation. If binary encoding is used (i.e., the value spaces of each gene are just 0

and 1), then flip the bit value of each gene participating in the mutation operation. Other

types of mutation include swap, inverse, uniform, nonuniform, Gaussian, and shrink.

The percentage of genes to which mutation is applied should be small because

changes are random. We shouldn’t take the risk of losing much of the existing

information due to random changes that do not guarantee better results. For our

problem, we can just select one gene for random flipping of its value. Figure 4-4 shows

the result when the leftmost gene at location 0 is selected for mutation. Note that

mutation is applied over the crossover result.

Figure 4-4. Bit-flip mutation over the crossover result

By applying crossover and mutation, the new offspring are completely prepared.

We can measure whether they are better or worse than the parents based on the fitness

value. The fitness values for the two offspring are 16 for the first offspring and 26 for the

second one. Compared to the fitness values of the parents (20 and 22), one of the second

offspring is better than all parents, and GA is able to evolve the solutions to produce a

better one. But the first offspring with fitness value 16 is worse than all parents. Keeping

the parents selected within the new populations ensures that such a bad solution will

Chapter 4 aNN OptimizatiON

140

not be selected as a parent in the next generation. Thus, we are sure that the quality

of solutions in the next generations will not be worse than the quality in the previous

generations.

In some problems, the gene is not represented in binary, and thus mutation differs.

If the gene value comes from a space of more than two values such as (1, 2, 3, 4, 5), then

the bit-flip mutation is not applicable. One way is by randomly selecting a value from

this set. Figure 4-5 gives an example of a solution represented by limited values for its

genes (more than two values). The gene selected for mutation has its value changed to

one of the other values randomly.

Figure 4-5. Uniform mutation for a solution with more than two values for its
genes

Sometimes the solution is represented by an unlimited set of values. For example,

if the range of values is between –1.0 and 1.0, we can select any value in that range to

replace the old value.

 Python Implementation of an Example
Now that we’ve looked at the concepts of GA, let’s implement it in Python in order

to optimize a simple example, in which we are going to maximize the output of

Equation 4-6. This is the fitness function. Decimal representation, one-point

crossover, and uniform mutation are used in the implementation.

 Y = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6
 (Equation 4-6)

The equation has six inputs (x1 to x6) and six weights (w _ 1 to w6) as shown, and

input values are (x1,x2,x3,x4,x5,x6)=(4,–2,7,5,11,1). We are looking to find the parameters

(weights) that maximize this equation. The idea of maximizing this equation seems

simple. The positive input is to be multiplied by the largest possible positive number and

the negative number is to be multiplied by the smallest possible negative number. But

Chapter 4 aNN OptimizatiON

141

the idea we are looking to implement is how to make GA do that on its own. GA should

know itself that it is better to use positive weights with positive inputs and negative

weights with negative inputs. Let’s start implementing GA.

According to Listing 4-1, a list is created that holds the six inputs in addition to a

variable that holds the number of weights.

Listing 4-1. Inputs of the Function to Optimize

Inputs of the equation.

equation_inputs = [4,-2,3.5,5,-11,-4.7]

Number of the weights we are looking to optimize.

num_weights = 6

The next step is to define the initial population. Based on the number of weights,

each chromosome (solution or individual) in the population will definitely have six

genes, one gene for each weight. But the question is, how many solutions are there per

population? There is no fixed value for that, and we can select the value that fits well

with our problem. But we could leave it generic so that it can be changed in the code.

In Listing 4-2, a variable is created to hold the number of solutions per population,

another to hold the size of the population, and finally, a variable to hold the actual initial

population.

Listing 4-2. Creating the Initial Population

import numpy

sol_per_pop = 8

Defining the population size.

pop_size = (sol_per_pop,num_weights) # The population will have sol_per_pop

chromosome where each chromosome has num_weights genes.

#Creating the initial population.

new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)

After importing the numpy library, we are able to create the initial population

randomly using the numpy.random.uniform function. According to the selected

parameters, its shape is (8, 6). That is, there are eight chromosomes and each one has

six genes, one for each weight. Table 4-4 presents the solutions of the population after

running the previous code. Note that it is generated randomly by the code and thus it

will definitely change when you run it.

Chapter 4 aNN OptimizatiON

142

After preparing the population, next is to follow the steps of GA as in Figure 4-2.

Based on the fitness function, we are going to select the best individuals within the

current population as parents for mating. Next is to apply the GA variants (crossover and

mutation) to produce the offspring of the next generation, creating the new population

by appending both parents and offspring, and repeating these steps for a number of

iterations/generations. Listing 4-3 applies these steps.

Listing 4-3. Iterating Through GA Steps

import GA

num_generations = 10,000

num_parents_mating = 4

for generation in range(num_generations):

 # Measuring the fitness of each chromosome in the population.

 fitness = GA.cal_pop_fitness(equation_inputs, new_population)

 # Selecting the best parents in the population for mating.

 parents = GA.select_mating_pool(new_population, fitness,

 num_parents_mating)

 # Generating next generation using crossover.

 offspring_crossover = GA.crossover(parents,

 offspring_size=(pop_size[0]-parents.

shape[0], num_weights))

Table 4-4. Initial Population

W1 W2 W3 W4 W5 W6

Solution 1 –2.19 –2.89 2.02 –3.97 3.45 2.06

Solution 2 2.13 2.97 3.6 3.79 0.29 3.52

Solution 3 1.81 0.35 1.03 –0.33 3.53 2.54

Solution 4 –0.64 –2.86 2.93 –1.4 –1.2 0.31

Solution 5 –1.49 –1.54 1.12 –3.68 1.33 2.86

Solution 6 1.14 2.88 1.75 –3.46 0.96 2.99

Solution 7 1.97 0.51 0.53 –1.57 –2.36 2.3

Solution 8 3.01 –2.75 3.27 –0.72 0.75 0.01

Chapter 4 aNN OptimizatiON

143

 # Adding some variations to the offspring using mutation.

 offspring_mutation = GA.mutation(offspring_crossover)

 # Creating the new population based on the parents and offspring.

 new_population[0:parents.shape[0], :] = parents

 new_population[parents.shape[0]:, :] = offspring_mutation

A module named “GA” holds the implementation of the functions used in

Listing 4-3. The first function called, GA.cal_pop_fitness, finds the fitness value of

each solution within the population. This function is defined inside the GA module

according to Listing 4-4.

Listing 4-4. GA Fitness Function

def cal_pop_fitness(equation_inputs, pop):

 # Calculating the fitness value of each solution in the current

population.

 # The fitness function calculates the SOP between each input and its

corresponding weight.

 fitness = numpy.sum(pop*equation_inputs, axis=1)

 return fitness

The fitness function accepts the equation input values (x_1 to x_6) in addition to

the population. The fitness value is calculated as the SOP between each input and

its corresponding gene (weight) according to Equation 4-6. Based on the number of

solutions per population, there will be an equal number of SOPs as in Table 4-5. Note

that the higher the fitness value, the better the solution.

Table 4-5. Fitness Values of the Initial Population Solutions

Solution1 Solution2 Solution3 Solution4 Solution5 Solution6 Solution7 Solution8

Fitness 63.41 14.40 –42.23 18.24 –45.44 –37.0 16.0 17.07

After calculating the fitness values for all solutions, the next step is to select the best of

them as parents in the mating pool according to the GA.select_mating_pool function. This

function accepts the population, fitness values, and the number of parents needed, and it

returns the parents selected. Its implementation inside the GA module is in Listing 4-5.

Chapter 4 aNN OptimizatiON

144

Listing 4-5. Selecting the Best Parents According to Fitness Values

def select_mating_pool(pop, fitness, num_parents):

Selecting the best individuals in the current generation as parents for

producing the offspring of the next generation.

 parents = numpy.empty((num_parents, pop.shape[1]))

 for parent_num in range(num_parents):

 max_fitness_idx = numpy.where(fitness == numpy.max(fitness))

 max_fitness_idx = max_fitness_idx[0][0]

 parents[parent_num, :] = pop[max_fitness_idx, :]

 fitness[max_fitness_idx] = -99999999999

 return parents

Based on the number of parents required as defined in the variable num_parents_

mating, the “parents” empty array is created to hold them. Inside the loop, the function

iterates through the solutions in the current population to get the index of the solution

with highest fitness value because it is the best solution to be selected. The index

is stored into the “max_fitness_idx” variable. Based on this index, the solution that

corresponds to it is returned to the “parents” array. To avoid selecting this solution again,

its fitness value is set to –99999999999, which is a very small value. This value makes the

solution unlikely to be selected again. After selecting the number of parents needed,

the parents array is returned as in Table 4-6. Note that these three parents are the best

individuals within the current population based on their fitness values, which are 63.41,

18.24, 17.07, and 16.0, respectively.

Table 4-6. Selected Parents from the First Population

W1 W2 W3 W4 W5 W6

parent 1 –0.64 –2.86 2.93 –1.4 –1.2 0.31

parent 2 3.01 –2.75 3.27 –0.72 0.75 0.01

parent 3 1.97 0.51 0.53 –1.57 –2.36 2.3

parent 4 2.13 2.97 3.6 3.79 0.29 3.52

Chapter 4 aNN OptimizatiON

145

The next step is to use the selected parents for mating in order to generate the

offspring. The mating starts with the crossover operation according to the GA.crossover

function. This function accepts the parents and the offspring size. It uses the offspring

size to learn the number of offspring to produce from the parents. This function is

implemented according to Listing 4-6 inside the GA module.

Listing 4-6. Crossover

def crossover(parents, offspring_size):

 offspring = numpy.empty(offspring_size)

 # The point at which crossover takes place between two parents.

Usually, it is at the center.

 crossover_point = numpy.uint8(offspring_size[1]/2)

 for k in range(offspring_size[0]):

 # Index of the first parent to mate.

 parent1_idx = k%parents.shape[0]

 # Index of the second parent to mate.

 parent2_idx = (k+1)%parents.shape[0]

 # The new offspring will have its first half of its genes taken

from the first parent.

 offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_

point]

 # The new offspring will have its second half of its genes taken

from the second parent.

 offspring[k, crossover_point:] = parents[parent2_idx, crossover_

point:]

 return offspring

Because we are using single-point crossover, we need to specify the point at which

crossover takes place. The point is selected to divide the solution into two equal halves.

Then we need to select the two parents to cross over. The indices of these parents are

stored into parent1_idx and parent2_idx. The parents are selected in a way similar to a

ring. Indices 0 and 1 are selected at first to produce two offspring. If there still remaining

offspring to produce, then we select parents 1 and 2 to produce the other two offspring.

If we are in need of more offspring, then we select the next two parents with indices 2

and 3. By index 3, we reach the last parent. If we need to produce more offspring, then

Chapter 4 aNN OptimizatiON

146

we select the parent with index 3 and go back to the parent with index 0, and so on. The

offspring after applying crossover are stored into the offspring variable. Table 4-7 shows

the contents of this variable.

Table 4-7. Offspring After Crossover

W1 W2 W3 W4 W5 W6

Offspring 1 –0.64 –2.86 2.93 –0.72 0.75 0.01

Offspring 2 3.01 –2.75 3.27 –1.57 –2.36 2.3

Offspring 3 1.97 0.51 0.53 3.79 0.29 3.52

Offspring 4 2.13 2.97 3.6 –1.4 –1.2 0.31

Next is to apply the second GA variant, mutation, to the results of the crossover using

the mutation function inside the GA module implemented in Listing 4-7. This function

accepts the crossover offspring and returns them after applying uniform mutation.

Listing 4-7. Mutation

def mutation(offspring_crossover):

Mutation changes a single gene in each offspring randomly.

 for idx in range(offspring_crossover.shape[0]):

 # The random value to be added to the gene.

 random_value = numpy.random.uniform(-1.0, 1.0, 1)

 offspring_crossover[idx, 4] = offspring_crossover[idx, 4] + random_

value

 return offspring_crossover

It loops through each offspring and adds a uniformly generated random number,

say in the range from –1.0 to 1.0. This random number is then added to the gene with

one randomly chosen index (e.g., index 4) of the offspring. Note that the index could be

changed to any other index. Results are stored into the variable “offspring_crossover”

and get returned by the function as in Table 4-8. At this point, we have successfully

produced four offspring from the four selected parents and are ready to create the new

population of the next generation.

Chapter 4 aNN OptimizatiON

147

Note that GA is a randomly based optimization technique. It tries to enhance the

current solutions by applying some random changes to them. Because these changes

are random, we are not sure that they will produce better solutions. For this reason, it

is preferred to keep the previous best solutions (parents) in the new population. In the

worst case, when all the new offspring are worse than the parents, we will continue using

these parents. As a result, we guarantee that the new generation will at least preserve

the previous good results and will not get worse. The new population will have its first

four solutions from the previous parents. The last four solutions come from the offspring

created after applying crossover and mutation.

Table 4-9 presents the fitness of all solutions (parents and offspring) of the first

generation. The highest fitness previously was 18.24112489 but now it is 31.7328971158.

That means that the random changes moved toward a better solution. This is great. But

these results could be enhanced by going through more generations. After going through

10,000 iterations, the result reached a value of more than 40,000 as in Figure 4-6.

Table 4-8. The Results of Mutation

W1 W2 W3 W4 W5 W6

Offspring 1 –0.64 –2.86 2.93 –0.72 1.66 0.01

Offspring 2 3.01 –2.75 3.27 –1.57 –1.95 2.3

Offspring 3 1.97 0.51 0.53 3.79 0.45 3.52

Offspring 4 2.13 2.97 3.6 –1.4 –1.58 0.31

Table 4-9. Fitness Values of All Solutions in the New Population

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 Solution 7 Solution 8

Fitness 18.24 17.07 16.0 14.4 –8.46 31.73 6.1 24.09

Chapter 4 aNN OptimizatiON

148

 Complete Implementation

The complete code that implements the GA is given in Listing 4-8.

Listing 4-8. The Complete Code for Optimizing a Linear Equation with Six

Parameters

import numpy

import GA

#The y=target is to maximize this equation ASAP:

y = w1x1+w2x2+w3x3+w4x4+w5x5+6wx6

where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7)

What are the best values for the 6 weights w1 to w6?

We are going to use the GA for the best possible values #after a

number of generations.

Inputs of the equation.

equation_inputs = [4,-2,3.5,5,-11,-4.7]

Number of the weights we are looking to optimize.

num_weights = 6

Figure 4-6. Fitness values vs. 10,000 iterations

Chapter 4 aNN OptimizatiON

149

#GA parameters:

Mating pool size

Population size

sol_per_pop = 8

num_parents_mating = 4

Defining the population size.

pop_size = (sol_per_pop,num_weights) # The population will have sol_per_pop

chromosome where each chromosome has num_weights genes.

#Creating the initial population.

new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)

print(new_population)

num_generations = 10,000

for generation in range(num_generations):

 print("Generation : ", generation)

 # Measuring the fitness of each chromosome in the population.

 fitness = GA.cal_pop_fitness(equation_inputs, new_population)

Selecting the best parents in the population for mating.

 parents = GA.select_mating_pool(new_population, fitness,

 num_parents_mating)

 # Generating next generation using crossover.

 offspring_crossover = GA.crossover(parents,

 offspring_size=(pop_size[0]-parents.

shape[0], num_weights))

 # Adding some variations to the offspring using mutation.

 offspring_mutation = GA.mutation(offspring_crossover)

 # Creating the new population based on the parents and offspring.

 new_population[0:parents.shape[0], :] = parents

 new_population[parents.shape[0]:, :] = offspring_mutation

 # The best result in the current iteration.

 print("Best result : ", numpy.max(numpy.sum(new_population*equation_

inputs, axis=1)))

Chapter 4 aNN OptimizatiON

150

Getting the best solution after iterating finishing all generations.

#At first, the fitness is calculated for each solution in the final

generation.

fitness = GA.cal_pop_fitness(equation_inputs, new_population)

Then return the index of that solution corresponding to the best fitness.

best_match_idx = numpy.where(fitness == numpy.max(fitness))

print("Best solution : ", new_population[best_match_idx, :])

print("Best solution fitness : ", fitness[best_match_idx])

The GA module implementation is in Listing 4-9.

Listing 4-9. GA Module

import numpy

def cal_pop_fitness(equation_inputs, pop):

Calculating the fitness value of each solution in the current population.

 # The fitness function calcuates the SOP between each input and its

corresponding weight.

 fitness = numpy.sum(pop*equation_inputs, axis=1)

 return fitness

def select_mating_pool(pop, fitness, num_parents):

 # Selecting the best individuals in the current generation as parents

for producing the offspring of the next generation.

 parents = numpy.empty((num_parents, pop.shape[1]))

 for parent_num in range(num_parents):

 max_fitness_idx = numpy.where(fitness == numpy.max(fitness))

 max_fitness_idx = max_fitness_idx[0][0]

 parents[parent_num, :] = pop[max_fitness_idx, :]

 fitness[max_fitness_idx] = -99999999999

 return parents

def crossover(parents, offspring_size):

 offspring = numpy.empty(offspring_size)

 # The point at which crossover takes place between two parents. Usually

it is at the center.

 crossover_point = numpy.uint8(offspring_size[1]/2)

Chapter 4 aNN OptimizatiON

151

 for k in range(offspring_size[0]):

 # Index of the first parent to mate.

 parent1_idx = k%parents.shape[0]

 # Index of the second parent to mate.

 parent2_idx = (k+1)%parents.shape[0]

 # The new offspring will have its first half of its genes taken

from the first parent.

 offspring[k, 0:crossover_point] = parents[parent1_idx, 0:

crossover_point]

 # The new offspring will have its second half of its genes taken

from the second parent.

 offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:]

 return offspring

def mutation(offspring_crossover):

 # Mutation changes a single gene in each offspring randomly.

 for idx in range(offspring_crossover.shape[0]):

 # The random value to be added to the gene.

 random_value = numpy.random.uniform(-1.0, 1.0, 1)

 offspring_crossover[idx, 4] = offspring_crossover[idx, 4] +

random_value

 return offspring_crossover

 NSGA-II
The main difference between GA and NSGA-II is the way of selecting the best individuals

within a given population (i.e., parents of the new generation). In GA, a single value is

used for selecting the best individuals. This is the fitness value generated from a fitness

function. The higher the fitness value is, the better the solution/individual. For NSGA-II,

there is no single value but multiple values generated from multiple objective functions.

How do we make the selection based on these multiple values, keeping in mind that all

of these objectives have equal importance? There must be a different way than the one

used in regular GA for selecting the best individuals. NSGA-II selects its parents or best

individuals based on two metrics:

 1. Dominance.

 2. Crowding Distance.

Chapter 4 aNN OptimizatiON

152

The example we will use in the discussion is about a person that would like to buy a

shirt. That person has two objectives that are to be satisfied in the shirt:

 1. Low cost (between $0 and $85).

 2. Bad feedback from previous buyers (between 0 and 5).

Cost is measured in USD and feedback is measured as a real number between 0 and

5 inclusive, where 0 is the best feedback and 5 is the worst feedback. This means that the

two objective functions are minimization. Assume that there are just eight samples of

data as in Table 4-10; we will use them to start.

Table 4-10. Data Samples

ID Cost $ Bad Feedback

a 20 2.2

B 60 4.4

C 65 3.5

D 15 4.4

e 55 4.5

F 50 1.8

G 80 4.0

h 25 4.6

 NSGA-II Steps
NSGA-II follows the general steps in the traditional GA. The change is not using a

fitness value to select the best solutions (parents) for the next generation; rather, it uses

dominance and crowding distance. Here are the general stops of NSGA-II:

 1. Select the initial population solutions of generation 0 from the data.

 2. Split the solutions into levels using nondominant sorting.

 3. Select the best solutions at the level 1 nondominated front

as parents for mating and producing offspring for the next

generation. (If all solutions inside the last-used level are selected

completely without remainders, then go directly to step 5.)

Chapter 4 aNN OptimizatiON

153

 4. If a subset of solutions is selected as parents from the last-

used level, then you have to calculate the crowding distance

for solutions in this level, sort these solutions in worse order

according to the crowding distance, and select the number of

remaining solutions from the top.

 5. Use the selected parents to produce the offspring.

 a. Tournament selection on the selected parents.

 b. GA variants (i.e., crossover and mutation) on the results of the

tournament. This will produce the new offspring of the next

generation.

 6. Repeat steps 2 to 5 until reaching a maximum number of

iterations.

Note that you shouldn’t expect to understand all of these steps at the current time.

But don’t worry: when you go through the details of each step, things will become easier

and clearer. These steps are summarized in Figure 4-7.

Figure 4-7. NSGA-II steps

Chapter 4 aNN OptimizatiON

154

NSGA is not different from GA but adds some operations to make it suitable

for multiobjective problems. Figure 4-8 highlights the difference between GA and

NSGA. The step of calculating the fitness values in GA is extended to multiple steps in

NSGA starting from nondominated sorting until tournament selection. After determining

what solutions will be used in the mating pool, the two algorithms are similar.

Figure 4-8. GA vs. NSGA

The first step generally in the GA is to select the solutions/individuals of the initial

population. Assume that the size of the population is eight, meaning there are eight

samples to be used in the population. This means that all samples in Table 4-10 will

be used inside the initial population. The next step is to select the best solutions in

this population as parents for generating the offspring of the next generation using the

concept of dominance.

 Dominance
Dominance in NSGA-II helps us to select the best set of solutions as parents. These

solutions are said to dominate the other solutions. That is, they are better than all other

solutions.

Chapter 4 aNN OptimizatiON

155

Realistically, the solutions are not always bad or worse than other solutions across all

objectives. How do we find the best set of solutions in the data? Here is the rule to use in

order to say that one solution dominates another solution:

Solution X is said to dominate solution Y if and only if

 1. Solution X is no worse than solution Y in all objective functions

and

 2. Solution X is better than solution Y in at least one objective

function.

Besides saying solution X dominates solution Y, we could say the following:

• Solution X is nondominated by solution Y.

• Solution Y is dominated by solution X.

• Solution Y nondominates solution X.

Note that if any of the preceding conditions are not met, then solution X does not

dominate solution Y. That means no solution is better than another, and there is a trade-

off between them. Note also that when solution X dominates solution Y, it means that

solution X is better than solution Y.

The set of all solutions not satisfying at least one of the preceding two conditions is

called the nondominant set. It is called so because no solution in that set dominates (i.e.,

is better than) another. The steps to find the nondominated set are as follows:

 1. Select a solution with index i, where i starts from 1 corresponding

to the first solution.

 2. Check the dominance of that solution against all other solutions

in the data.

 3. If a solution is found to dominate that solution, then stop, as it is

impossible to be in the nondominant set. Go to step 5 directly.

 4. If no solution dominates that solution, then add it to the

nondominant set.

 5. Increment i by 1 and repeat steps 2 to 4.

Chapter 4 aNN OptimizatiON

156

Using nondominated sorting, the solutions are split into multiple sets. Each

set is called a nondominated front. These fronts are sorted in levels, where the first

nondominated front is at level 1, the second nondominated front is at level 2, and so on.

Let us apply these steps in order to find the nondominant front at level 1 based on our

example in Table 4-10.

 1. Starting with solution A and comparing it to solution B, we find

that A is better than B in the first objective (cost), as A’s cost is $20,

which is less (i.e., better) than B’s cost of $60. Also, A is better than

B in the second objective (feedback), as A’s feedback is 2.2, which

is less (i.e., better) than B’s feedback of 4.4. As a result, A is better

than B across all objectives. The conditions that make solution A

dominate solution B are met. But we cannot conclude that A is a

member of the nondominant set, and we still have to wait until

checking A against all other solutions.

 2. Comparing A to C, it is clear that A is better than C in all

objectives, as A’s cost and feedback are smaller than C’s. As a

result, C does not dominate A (i.e., A dominates C). We still have

to explore the next solutions to decide whether A is a member of

the nondominant set or not.

 3. Comparing A to D, we find A’s feedback of 2.2 is better than D’s

feedback of 4.4. But A’s cost of $20 is worse than D’s cost of $15.

Thus, each solution is better than the other in just one objective.

As a result, the two conditions of dominance are not met for

solution D. As a result, we can conclude that D does not dominate

A and also that A does not dominate D. We again have to check A

against the remaining solutions to learn its decision.

 4. Comparing A and E, it is obvious that A is better than E in all

objectives. Thus, A dominates E. Let’s compare A to the next

solution, F.

 5. Comparing A and F, neither solution is better than the other.

This is identical to the case of comparing A to D. Thus, F does not

dominate A and we have to compare A to the other solutions.

Chapter 4 aNN OptimizatiON

157

 6. Comparing A to G, A is better than G in all objectives, as A’s cost

($20) is less than G’s cost ($80), and also A’s feedback (2.2) is better

than G’s feedback (4.0). Let’s move to the final solution.

 7. Comparing A to H, A is better than H across all solutions. As a

result, H does not dominate A. After checking the dominance of

A across all solutions, it seems that no solution dominates A. So,

A is regarded as a member of the nondominant set. The current

nondominant set is P={A}. Let us move to the next solution.

 8. Regarding solutions B and C, it is clear that solution A dominates

them. As a result, we can go directly into checking dominance for

solution D.

 9. Comparing D by A, we find that D is better than D in the first

objective (cost) because D’s cost is $15, which is smaller than A’s

cost, which is $20. Regarding the second objective, D is worse

than A because D’s feedback of 4.4 is larger than A’s feedback of

2.2. Because solution A does not dominate solution D, we have to

compare D to the next solution.

 10. Comparing D to B, we find that D is better than B in the first

objective and they are equal in the second objective. As a result,

B does not dominate D and we have to check D against the

remaining solutions to learn its decision.

 11. Comparing D to C, D is better than C in the first objective but D

is worse than C in the second objective. Conditions that make C

dominate D are not met. As a result, C does not dominate D and

we have to check D against the next solution.

 12. Comparing D to E, we find that D is better than E across

all objectives. We can conclude that E does not dominate

D. Continue comparing D to the next solution.

 13. Comparing D to F, D’s cost of $15 is smaller (better) than F’s cost

of $50. Because solution F is worse than D in at least one objective,

we can stop and conclude that F does not dominate D. Let us

compare D to the next solution.

Chapter 4 aNN OptimizatiON

158

 14. Comparing D to G, the same scenario with F repeats itself. D’s cost

of 15$ is smaller (better) than G’s cost of 80$. Because solution G

is worse than D in at least one objective, we can conclude that G

does not dominate D. Let us compare D to the next solution.

 15. Comparing D to H, H is worse than D across all objectives and

thus H does not dominate D. At this point, we can conclude

that no solution dominates solution D and it is included in the

nondominant set. The current nondominant set is P={A, D}. Let us

move to the next solution.

 16. Working with E, comparing it to A we find that A is better than E

across all objectives because A’s cost of $20 is smaller than E’s cost

of $55, and also A’s feedback of 2.2 is better than E’s feedback of

4.5. Thus, we can stop and conclude that A dominates E; E cannot

be included in the nondominant set.

 17. Working with F, comparing it to A we find that A is better than

F in just the first objective and F is better than A in the second

objective. Thus, no solution dominates the other. We still need to

compare F with the remaining solutions to make the decision.

 18. After comparing F with all solutions, there is no solution

dominating solution F. Thus, F is included in the nondominant

set. The current nondominant set is P={A, D, F}. Let us move to the

next solution.

 19. Working with G and comparing it to all solutions, we find that

solutions A, C, and F dominate it. Thus, G cannot be included

within the nondominant set. Let us move to the final solution.

 20. Working with the final solution H, by comparing it to all solutions

we find that solutions A and D dominate it. Thus, H cannot be

included within the nondominant set. At this point, we have

checked the dominance of all solutions.

After comparing each pair of solutions together, the final nondominant set is

P={A, D, F}. This is the level 1 nondominated front. No solution in the same front is better

than any other solution within the same front across all objectives. This is why it is called

the nondominant set as no solution dominates another.

Chapter 4 aNN OptimizatiON

159

The Python code for checking dominance of a given solution is in Listing 4-10.

Given an index of a solution, it returns the IDs of solutions dominating it. It uses pandas

DataFrame (DF) for sorting the objective values for each solution in addition to their

IDs. This helps to refer back to the solution ID. A simple way to create this DF is to insert

the data into a Python dictionary and then convert it into a pandas DF.

Listing 4-10. Returning Dominating Solutions

import numpy

import pandas

d = {'A': [20, 2.2],

 'B': [60, 4.4],

 'C': [65, 3.5],

 'D': [15, 4.4],

 'E': [55, 4.5],

 'F': [50, 1.8],

 'G': [80, 4.0],

 'H': [25, 4.6]}

df = pandas.DataFrame(data=d).T

data_labels = list(df.index)

data_array = numpy.array(df).T

****Specify the index of the solution here****

sol_idx = 1

sol = data_array[:, sol_idx]

obj1_not_worse = numpy.where(sol[0] >= data_array[0, :])[0]

obj2_not_worse = numpy.where(sol[1] >= data_array[1, :])[0]

not_worse_candidates = set.intersection(set(obj1_not_worse),

set(obj2_not_worse))

obj1_better = numpy.where(sol[0] > data_array[0, :])[0]

obj2_better = numpy.where(sol[1] > data_array[1, :])[0]

better_candidates = set.union(set(obj1_better), set(obj2_better))

dominating_solutions = list(set.intersection(not_worse_candidates,

 better_candidates))

Chapter 4 aNN OptimizatiON

160

if len(dominating_solutions) == 0:

 print("No solution dominates solution", data_labels[sol_idx], ".")

else:

 print("Labels of one or more solutions dominating this solution : ",

end="")

 for k in dominating_solutions:

 print(data_labels[k], end=",")

For a given solution, the conditions of dominance are checked. For the first condition,

the indices of solutions not worse than the current solutions across all objectives are

returned in the “not_worse_candidates” variable. The second condition searches for

solutions that are better than the current solution in at least one objective. Solutions

satisfying the second condition are returned in the “better_candidates” solutions. For a

given solution to dominate another, both conditions must be met. For this reason, the

“dominating_solutions” variable just returns solutions meeting both conditions.

The previous three solutions are better than all five remaining solutions. In other

words, solutions at the level 1 nondominated front are better than any solution on all

remaining fronts. What about the other five solutions that are not selected in the first

nondominated front at level 1? We will continue using the remaining samples from the

population to further find the next nondominance levels.

The steps to find the nondominant set will be repeated to find the nondominated

front at level 2 but after removing the three solutions selected previously in level 1

of the population. The set of remaining solutions is {B, C, E, G, H}. Let’s find the next

nondominated front:

 1. Starting with solution B and checking its dominance to C, B’s

feedback of 4.4 is worse than C’s feedback of 3.5. According to the

first objective, B’s cost of $60 is better than C’s cost of $65. As a

result, solution C nondominates solution B. We still have to wait

until we compare B to the remaining solutions.

 2. Comparing B to E, B is better than E in the second objective, as

B’s feedback is 4.4 and E’s feedback is 4.5. As a result, solution E

nondominates solution B. Let us check the next solution.

 3. Comparing B to G, we find that B is better than G in the first

objective, as B’s cost is $60 and G’s cost is $80. As a result, solution

G nondominates solution B. Let us check the next solution.

Chapter 4 aNN OptimizatiON

161

 4. Comparing B to H, we find that B is better than H in the second

objective, as B’s feedback is 4.4 and H’s feedback is 4.6. As a

result, solution H nondominates solution B. After comparing B

to all solutions and finding that no solution dominates it, we can

conclude that B is included in the nondominated front at level 2.

The level 2 set is now P’={B}. Let us move to check the dominance

of the second solution in the remaining set of solutions.

 5. Comparing the next solution C to B, C is better than B in the

second objective, as C’s feedback is 3.5 and B’s feedback is 4.4. As

a result, solution B nondominates solution C.

 6. Comparing C with the remaining solutions, there is no solution

dominating C and it will be included in the nondominated front at

level 2, which will be P’={B, C}. Let us move to the next solution.

 7. Comparing the next solution E to all the remaining solutions

from the population, we find that no solution dominates solution

E. Thus, E will be included in the nondominated front at level 2,

which is P’={B, C, E}. Let us move to the next solution.

 8. Comparing the next solution G to all the remaining solutions

from the population, we find that solution C dominates solution

G because C is better than G across all objectives. As a result,

solution G is not included in the level 2 nondominated front. Let

us move to the next solution.

 9. Comparing the last solution H to all the remaining solutions from

the population, we find that no solution dominates solution H. As

a result, it will be included in the nondominated front at level 2,

which will be P’={B, C, E, H}.

This is the end of the nondominated front at level 2. The set of remaining solutions

is {G}. This set will be used to find the level 3 nondominated front. Because there is just

one remaining solution, it will be added alone into the nondominated front at level 3 to

be P“={G}. At this point, we successfully split the data into three nondominance levels, as

shown in Table 4-11.

Chapter 4 aNN OptimizatiON

162

Note that the solutions in level i are better than the solutions in level i + 1. That is,

the solutions in level 1 are better than the solutions in level 2, the level 2 solutions are

better than the level 3 solutions, and so on. As a result, when selecting the best solutions

for being parents, we will start selection from the first level. If the number of available

solutions in the first level is less than the number of required parents, then we select the

remaining parents from the second level, and so on.

In our problem, the population size is eight. For producing a new generation of the

same size, we need to select half of its population as parents; the remaining half is the

offspring produced by mating the parents. At first, we need to select the best four parents.

The first nondominance level has just three solutions. Because we are in need of four

parents, then we will select all of these three solutions. As a result, the current parents

are {A, D, F}. There is a remaining parent that we should select from level 2.

Level 2 has four solutions, and we need to select just one. The important question

is, which solution should we select from level 2? The metric used to evaluate solutions

inside the same nondominated front is the crowding distance. Next, we will learn how to

calculate the crowding distance to solutions inside the level 2 front.

 Crowding Distance
Crowding distance is the metric used to prioritize solutions within the same

nondominated front. Here are the steps for calculating and using the crowding distance:

 1. For each objective function, sort the set of solutions within the

level in worse order.

 2. For the two solutions at outliers (i.e., rightmost and leftmost

solutions), set their crowding distance to infinity.

 3. For the in-between solutions, the crowding distance is calculated

according to Equation 4-7.

Table 4-11. Results of Splitting the Data

into Three Nondominance Levels

Level Solutions

1 {a, D, F}

2 {B, C, e, h}

3 {G}

Chapter 4 aNN OptimizatiON

163

 4. For each solution, take the summation of the crowding distances

across all objectives.

 5. Sort solutions in descending order to select the solutions from

highest to lowest crowding distance.

 d
S S

O Om
n m

n
m
n

m m

=
-
-

+ -1 1

max min
 (Equation 4-7)

After sorting the solutions according to one objective function, n refers to its

position. m refers to the number of the objective function being used for calculating the

crowding distance. dm
n is the crowding distance of solution n according to objective m,

Sm
n refers to the value of the objective m for solution n, Om

max is the maximum value for

objective m, and Om
min is the minimum value for objective m.

For a minimization objective, sorting solutions in worse order refers to sorting in

descending order in which the smallest (i.e., best) solution, according to the objective, is

in the leftmost position and the largest (i.e., worst) is on the rightmost.

Because the two solutions at outliers will be given crowding distance equal to

infinity, then we can start calculating the crowding distance for in-between solutions.

The data of the problem in Table 4-10 is available in the following for making it easier

to calculate the crowding distance.

ID Cost $ Bad Feedback

a 20 2.2

B 60 4.4

C 65 3.5

D 15 4.4

e 55 4.5

F 50 1.8

G 80 4.0

h 25 4.6

Figure 4-9 summarizes the values of the parameters for calculating the crowding

distance for solutions E and B according to the cost objective.

Chapter 4 aNN OptimizatiON

164

Figure 4-9. First objective crowding distance for level 2 solutions

In the same way, Figure 4-10 shows how the crowding distance is calculated for

solutions B and E according to the feedback objective.

Figure 4-10. First objective crowding distance for level 2 solutions

Chapter 4 aNN OptimizatiON

165

By summing the crowding distances of the two objectives and sorting the result in

descending order, the result is shown in Table 4-12. If we are in need of just one solution

from level 2 as a parent, then it will be the first solution in Table 4-12 after sorting the

summation of the crowding distances in descending order. That solution is solution C.

As a result, the set of selected solutions will be {A, D, F, C}. Note that not all of these

solutions will be used for generating the new offspring because they might be filtered

by tournament selection. But all of these solutions will be used to form the first half of

the solutions in the new generation. The second half will come from mating the parents

selected from the tournament.

Table 4-12. Summation of the Crowding

Distances of Level 2 Solutions from the

Two Objective Functions

ID Summation

C infinity

h infinity

e 0.44

B 0.3

 Tournament Selection
In the tournament selection, we create pairs of solutions from the selected parents. From

each pair, a tournament made between them and the winner will be used further in

crossover and mutation. All possible pairs are (A, D), (A, F), (A, C), (D, C), and (F, C).

Here is how the winners of the tournament are selected:

• If the two solutions are from different nondominance levels, then the

solution coming from the high-priority level will be the winner.

• If the two solutions are from the same nondominance level, then the

winner will be the one corresponding to higher crowding distance.

Let’s consider the first pair (A, D). Because they are coming from the same level, we

will use their crowding distance to learn the winner. Because we have not calculated the

crowding distance of the first level, we need to first calculate it.

Chapter 4 aNN OptimizatiON

166

Figure 4-11 shows the final crowding distance for solutions in level 1 according to

both objectives. Regarding the first pair (A, D), the winner is D because it has higher

crowding distance than A. For the remaining tournaments, the winners are F, A, D, and F.

These three unique solutions, A, D, and F, are used to generate four offspring.

Figure 4-11. Summation of the crowding distances of level 1 solutions from the
two objective functions

 Crossover
Assume we choose four new solutions from the pairs (A, D), (A, F), (D, F), and (F, A),

where the first and last half of the genes of the offspring are taken from the first and last

solution in each pair, respectively. The result of the crossover is in Table 4-13.

Table 4-13. Crossover Between

Tournament Winners

Offspring Cost $ Feedback

(a, D) 20 4.4

(a, F) 20 1.8

(D, F) 15 1.8

Chapter 4 aNN OptimizatiON

167

 Mutation
Mutation will be applied to the result of the crossover. Assume we applied mutation by

randomly adding a number between –10 and 10 to the first half of each solution. The

result of the mutation operation is as shown in Table 4-14.

Table 4-14. Mutation on the Outputs of Crossover

Offspring Cost $ Feedback

(B, D) 27 4.4

(B, e) 25 1.8

(D, e) 10 1.8

Table 4-15. Solutions of Generation 1

ID Cost $ Feedback

a 20 2.2

D 15 4.4

F 50 1.8

C 65 3.5

K 27 4.4

L 25 1.8

m 10 1.8

N 45 2.2

After that, we have successfully produced the eight solutions of the next generation

1. The first four solutions are those produced by nondominated sorting and crowding

distance. The remaining four solutions are what we just produced by tournament

selection, crossover, and mutation as in Table 4-14. Solutions of the new population in

generation 1 are in Table 4-15.

Chapter 4 aNN OptimizatiON

168

At this point, we have completed all steps involved in the NSGA-II multiobjective EA.

Next is to repeat steps 2 to 5 of NSGA-II until a number of predefined generations/

iterations. After the first generation, the algorithm found solution M, which is better

than all solutions in the previous population. Going through multiple generations, the

algorithm is likely to find a better solution.

 Optimizing ANN Using GA
In Chapter 4, the ANN is trained using four classes of the Fruits 360 dataset without using

a learning algorithm. Thus, the accuracy is low, not exceeding 45%. After understanding

how GA works based on numerical examples in addition to implementation using

Python, this section uses GA to optimize the ANN by updating its weights (parameters).

GA creates multiple solutions to a given problem and evolves them through a

number of generations. Each solution holds all parameters that might help to enhance

the results. For ANN, weights in all layers help achieve high accuracy. Thus, a single

solution in GA will contain all weights in the ANN. According to Figure 4-7, the ANN

has four layers (one input, two hidden, and one output). Any weight in any layer will be

part of the same solution. A single solution to this network will contain a total number

of weights equal to 102×150+150×60+60×4=24,540. If the population has eight solutions

with 24,540 parameters per solution, then the total number of parameters in the entire

population is 24,540×8=196,320.

Looking at Figure 4-8, the parameters of the network are in matrix form, because this

makes calculations of ANN much easier. For each layer, there is an associated weights

matrix. Just multiply the inputs matrix by the parameters matrix of a given layer to

return the outputs in this layer. Chromosomes in GA are 1D vectors, and thus we have to

convert the weights matrices into 1D vectors.

Because matrix multiplication is a good option to work with ANN, we will still

represent the ANN parameters in the matrix form when using the ANN. Figure 4-12

summarizes the steps of using GA with ANN.

Chapter 4 aNN OptimizatiON

169

Each solution in the population will have two representations. First is a 1D vector

for working with GA and second is a matrix to work with ANN. Because there are three

weights matrices for the three layers (two hidden + one output), there will be three

vectors, one for each matrix. Because a solution in GA is represented as a single 1D

vector, these three individual 1D vectors will be concatenated into a single 1D vector.

Each solution will be represented as a vector of length 24,540. Listing 4-11 holds the

Python code of the “mat_to_vector” function, which converts the parameters of all

solutions within the population from matrix to vector.

Figure 4-12. Using GA to optimize ANN parameters

Chapter 4 aNN OptimizatiON

170

An empty list variable named “pop_weights_vector” is created to hold the vectors

of all solutions. The function accepts a population of solutions and loops through them.

For each solution, there is an inner loop that loops through its three matrices. For each

matrix, it is converted into a vector using the “numpy.reshape” function, which accepts

the input matrix and the output size to which the matrix will be reshaped. The variable

“curr_vector” accepts all vectors for a single solution. After all vectors are generated, they

get appended into the “pop_weights_vector” variable.

Note that we used the “numpy.extend” function for vectors belonging to the same

solution and “numpy.append” for vectors belonging to different solutions. The reason is

that “numpy.extend” takes the numbers within the three vectors belonging to the same

solution and concatenate them together. In other words, calling this function for two lists

returns a new single list with numbers from both lists. This is suitable in order to create

just a 1D chromosome for each solution. But “numpy.append” will return three lists for

each solution. Calling it for two lists, it returns a new list, which is split into two sublists.

This is not our objective. Finally, the function “mat_to_vector” returns the population

solutions as a NumPy array for easy manipulation later.

Listing 4-11. Parameters Matrix Conversion into Vector

def mat_to_vector(mat_pop_weights):

 pop_weights_vector = []

 for sol_idx in range(mat_pop_weights.shape[0]):

 curr_vector = []

 for layer_idx in range(mat_pop_weights.shape[1]):

 vector_weights = numpy.reshape(mat_pop_weights[sol_idx,

layer_idx], newshape=(mat_pop_weights[sol_idx, layer_idx].

size))

 curr_vector.extend(vector_weights)

 pop_weights_vector.append(curr_vector)

 return numpy.array(pop_weights_vector)

After converting all solutions from matrices to vectors and concatenating them

together, we are ready to go through the GA steps according to Figure 4-2. All steps in

Figure 4-2 except for the fitness values calculation are similar to the previously discussed

GA implementation.

Chapter 4 aNN OptimizatiON

171

One of the common fitness functions for a classifier such as ANN is the accuracy. It

is the ratio between the correctly classified samples and the total number of samples. It

is calculated according to Equation 4-8. The classification accuracy of each solution is

calculated according to the steps in Figure 4-12.

 Accuracy
NumCorrectClassify

TotalNumSamples
= (Equation 4-8)

The single 1D vector of each solution is converted back into three matrices, one

matrix for each layer (two hidden and one output). Conversion takes place using the

“vector_to_mat” function defined in Listing 4-12. It reverses the work done previously.

But there is an important question: if the vector of a given solution is just one piece, how

we can split it into three different parts, each part representing a matrix? The size of the

first parameters matrix between the input layer and the hidden layer is 102×150. When

being converted into a vector, its length will be 15,300. Because it is the first vector to be

inserted in the “curr_vector” variable according to Listing 4-11, then it will start from

index 0 and end at index 15,299. The “mat_pop_weights” is used as an argument for the

“vector_to_mat” function in order to learn the size of each matrix. It is not required to

contain the recent weights; just the sizes of the matrices are used from it.

Listing 4-12. Solution Vector Conversion into Matrices

def vector_to_mat(vector_pop_weights, mat_pop_weights):

 mat_weights = []

 for sol_idx in range(mat_pop_weights.shape[0]):

 start = 0

 end = 0

 for layer_idx in range(mat_pop_weights.shape[1]):

 end = end + mat_pop_weights[sol_idx, layer_idx].size

 curr_vector = vector_pop_weights[sol_idx, start:end]

 mat_layer_weights = numpy.reshape(curr_vector, newshape=

(mat_pop_weights[sol_idx, layer_idx].shape))

 mat_weights.append(mat_layer_weights)

 start = end

 return numpy.reshape(mat_weights, newshape=mat_pop_weights.shape)

Chapter 4 aNN OptimizatiON

172

For the second vector in the same solution, it’s the result of converting a matrix of

size 150×60. Thus, the vector length is 9,000. This vector is inserted into the “curr_vector”

variable just before the previous vector of length 15,300. As a result, it will start from

index 15,300 and ends at index 15,300+9,000–1=24,299. The –1 is used because Python

starts indexing at 0. For the last vector created from the parameters matrix of size 60×4,

its length is 240. Because it is added into the “curr_vector” variable exactly after the

previous vector of length 9,000, then its index will start after it. That is, its start index

is 24,300 and its end index is 24,300+240–1=24,539. So, we can successfully restore the

vector into the original three matrices.

The matrices returned for each solution are used to predict the class label for each

of the 1,962 samples in the used dataset to calculate the accuracy. This is done using two

functions (“predict_outputs” and “fitness”) according to Listing 4-13.

Listing 4-13. Predicting Class Labels for Calculating Accuracy

def predict_outputs(weights_mat, data_inputs, data_outputs,

activation="relu"):

 predictions = numpy.zeros(shape=(data_inputs.shape[0]))

 for sample_idx in range(data_inputs.shape[0]):

 r1 = data_inputs[sample_idx, :]

 for curr_weights in weights_mat:

 r1 = numpy.matmul(a=r1, b=curr_weights)

 if activation == "relu":

 r1 = relu(r1)

 elif activation == "sigmoid":

 r1 = sigmoid(r1)

 predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

 predictions[sample_idx] = predicted_label

 correct_predictions = numpy.where(predictions == data_outputs)[0].size

 accuracy = (correct_predictions/data_outputs.size)*100

 return accuracy, predictions

def fitness(weights_mat, data_inputs, data_outputs, activation="relu"):

 accuracy = numpy.empty(shape=(weights_mat.shape[0]))

 for sol_idx in range(weights_mat.shape[0]):

 curr_sol_mat = weights_mat[sol_idx, :]

Chapter 4 aNN OptimizatiON

173

 accuracy[sol_idx], _ = predict_outputs(curr_sol_mat, data_inputs,

data_outputs, activation=activation)

 return accuracy

The “predict_outputs” function accepts the weights of a single solution, inputs and

outputs of the training data, and an optional parameter that specifies which activation

function to use. It is similar to the previous function created in Listing 4-7, but the

difference is being adapted to return the accuracy of the solution. But it returns the

accuracy of just one solution, not all solutions within the population. This is the role

of the “fitness” function to loop through each solution, pass it to the “predict_outputs”

function, store the accuracy of all solutions into the “accuracy” array, and finally return

the array.

After calculating the fitness value (i.e., accuracy) for each solution, the remaining

steps of GA in Figure 4-12 are applied the same way as done previously. The best

parents are selected, based on their accuracy, into the mating pool. Then mutation and

crossover variants are applied in order to produce the offspring. The population of the

new generation is created using both offspring and parents. These steps are repeated for

a number of generations.

 Complete Python Implementation
The Python implementation for this project has three Python files:

 1. GA.py for implementing GA functions.

 2. ANN.py for implementing ANN functions.

 3. Third file for calling such functions through a number of

generations.

The third file is the main file because it connects all functions. It reads the features and

the class label files, filters features based on STD value 50, creates the ANN architecture,

generates the initial solutions, loops through a number of generations by calculating the

fitness values for all solutions, selects the best parents, applies crossover and mutation,

and finally creates the new population. Its implementation is in Listing 4-14. This file

defines the GA parameters, such as the number of solutions per population, number of

selected parents, mutation percentage, and number of generations. You can try different

values for them.

Chapter 4 aNN OptimizatiON

174

Listing 4-14. The Main File Connecting GA and ANN Together

import numpy

import GA

import pickle

import ANN

import matplotlib.pyplot

f = open("dataset_features.pkl", "rb")

data_inputs2 = pickle.load(f)

f.close()

features_STDs = numpy.std(a=data_inputs2, axis=0)

data_inputs = data_inputs2[:, features_STDs>50]

f = open("outputs.pkl", "rb")

data_outputs = pickle.load(f)

f.close()

#GA parameters:

Mating Pool Size (Number of Parents)

Population Size

Number of Generations

Mutation Percent

sol_per_pop = 8

num_parents_mating = 4

num_generations = 1000

mutation_percent = 10

#Creating the initial population.

initial_pop_weights = []

for curr_sol in numpy.arange(0, sol_per_pop):

 HL1_neurons = 150

 input_HL1_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(data_inputs.shape[1],

HL1_neurons))

 HL2_neurons = 60

Chapter 4 aNN OptimizatiON

175

 HL1_HL2_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(HL1_neurons, HL2_

neurons))

 output_neurons = 4

 HL2_output_weights = numpy.random.uniform(low=-0.1, high=0.1,

 size=(HL2_neurons, output_

neurons))

 initial_pop_weights.append(numpy.array([input_HL1_weights,

 HL1_HL2_weights,

 HL2_output_weights]))

pop_weights_mat = numpy.array(initial_pop_weights)

pop_weights_vector = GA.mat_to_vector(pop_weights_mat)

best_outputs = []

accuracies = numpy.empty(shape=(num_generations))

for generation in range(num_generations):

 print("Generation : ", generation)

 # converting the solutions from being vectors to matrices.

 pop_weights_mat = GA.vector_to_mat(pop_weights_vector,

 pop_weights_mat)

 # Measuring the fitness of each chromosome in the population.

 fitness = ANN.fitness(pop_weights_mat,

 data_inputs,

 data_outputs,

 activation="sigmoid")

 accuracies[generation] = fitness[0]

 print("Fitness")

 print(fitness)

 # Selecting the best parents in the population for mating.

 parents = GA.select_mating_pool(pop_weights_vector,

 fitness.copy(),

 num_parents_mating)

 print("Parents")

 print(parents)

Chapter 4 aNN OptimizatiON

176

 # Generating next generation using crossover.

 offspring_crossover = GA.crossover(parents,

 offspring_size=(pop_weights_vector.

shape[0]-parents.shape[0],

pop_weights_vector.shape[1]))

 print("Crossover")

 print(offspring_crossover)

 # Adding some variations to the offspring using mutation.

 offspring_mutation = GA.mutation(offspring_crossover,

 mutation_percent=mutation_percent)

 print("Mutation")

 print(offspring_mutation)

 # Creating the new population based on the parents and offspring.

 pop_weights_vector[0:parents.shape[0], :] = parents

 pop_weights_vector[parents.shape[0]:, :] = offspring_mutation

pop_weights_mat = GA.vector_to_mat(pop_weights_vector, pop_weights_mat)

best_weights = pop_weights_mat [0, :]

acc, predictions = ANN.predict_outputs(best_weights, data_inputs, data_

outputs, activation="sigmoid")

print("Accuracy of the best solution is : ", acc)

matplotlib.pyplot.plot(accuracies, linewidth=5, color="black")

matplotlib.pyplot.xlabel("Iteration", fontsize=20)

matplotlib.pyplot.ylabel("Fitness", fontsize=20)

matplotlib.pyplot.xticks(numpy.arange(0, num_generations+1, 100),

fontsize=15)

matplotlib.pyplot.yticks(numpy.arange(0, 101, 5), fontsize=15)

f = open("weights_"+str(num_generations)+"_iterations_"+str(mutation_

percent)+"%_mutation.pkl", "wb")

pickle.dump(pop_weights_mat, f)

f.close()

Chapter 4 aNN OptimizatiON

177

Based on 1,000 generations, a plot is created at the end of this file using Matplotlib

visualization library, which shows how the accuracy changes across each generation.

It is shown in Figure 4-13. After 1,000 iterations, the accuracy is more than 97%. This is

compared to 45% without using an optimization technique. This is an evidence about

why results might be bad, not because there is something wrong in the model or the data

but because no optimization technique is used. Of course, using different values for the

parameters such as 10,000 generations might increase the accuracy. At the end of this

file, it saves the parameters in matrix form to the disk for use later.

Figure 4-13. Classification accuracy evolution according to 1,000 iterations

The GA.py file implementation is in Listing 4-15. Note that the “mutation” function

accepts the “mutation_percent” parameter, which defines the number of genes to

change their values randomly. It is set to 10% in the main file in Listing 4-14. This file

holds the two new functions “mat_to_vector” and “vector_to_mat”.

Chapter 4 aNN OptimizatiON

178

Listing 4-15. GA.py File Holding the Functions of GA

import numpy

import random

Converting each solution from matrix to vector.

def mat_to_vector(mat_pop_weights):

 pop_weights_vector = []

 for sol_idx in range(mat_pop_weights.shape[0]):

 curr_vector = []

 for layer_idx in range(mat_pop_weights.shape[1]):

 vector_weights = numpy.reshape(mat_pop_weights[sol_idx,

layer_idx], newshape=(mat_pop_weights[sol_idx, layer_idx].size))

 curr_vector.extend(vector_weights)

 pop_weights_vector.append(curr_vector)

 return numpy.array(pop_weights_vector)

Converting each solution from vector to matrix.

def vector_to_mat(vector_pop_weights, mat_pop_weights):

 mat_weights = []

 for sol_idx in range(mat_pop_weights.shape[0]):

 start = 0

 end = 0

 for layer_idx in range(mat_pop_weights.shape[1]):

 end = end + mat_pop_weights[sol_idx, layer_idx].size

 curr_vector = vector_pop_weights[sol_idx, start:end]

 mat_layer_weights = numpy.reshape(curr_vector, newshape=(mat_

pop_weights[sol_idx, layer_idx].shape))

 mat_weights.append(mat_layer_weights)

 start = end

 return numpy.reshape(mat_weights, newshape=mat_pop_weights.shape)

def select_mating_pool(pop, fitness, num_parents):

 # Selecting the best individuals in the current generation as parents

for producing the offspring of the next generation.

 parents = numpy.empty((num_parents, pop.shape[1]))

 for parent_num in range(num_parents):

Chapter 4 aNN OptimizatiON

179

 max_fitness_idx = numpy.where(fitness == numpy.max(fitness))

 max_fitness_idx = max_fitness_idx[0][0]

 parents[parent_num, :] = pop[max_fitness_idx, :]

 fitness[max_fitness_idx] = -99999999999

 return parents

def crossover(parents, offspring_size):

 offspring = numpy.empty(offspring_size)

 # The point at which crossover takes place between two parents.

Usually, it is at the center.

 crossover_point = numpy.uint8(offspring_size[1]/2)

 for k in range(offspring_size[0]):

 # Index of the first parent to mate.

 parent1_idx = k%parents.shape[0]

 # Index of the second parent to mate.

 parent2_idx = (k+1)%parents.shape[0]

 # The new offspring will have its first half of its genes taken

from the first parent.

 offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_

point]

 # The new offspring will have its second half of its genes taken

from the second parent.

 offspring[k, crossover_point:] = parents[parent2_idx, crossover_

point:]

 return offspring

def mutation(offspring_crossover, mutation_percent):

 num_mutations = numpy.uint8((mutation_percent*offspring_crossover.

shape[1])/100)

 mutation_indices = numpy.array(random.sample(range(0, offspring_

crossover.shape[1]), num_mutations))

 # Mutation changes a single gene in each offspring randomly.

 for idx in range(offspring_crossover.shape[0]):

 # The random value to be added to the gene.

 random_value = numpy.random.uniform(-1.0, 1.0, 1)

Chapter 4 aNN OptimizatiON

180

 offspring_crossover[idx, mutation_indices] = offspring_

crossover[idx, mutation_indices] + random_value

 return offspring_crossover

Finally, the ANN.py is implemented according to Listing 4-16. It contains the

implementation of the activation functions (sigmoid and ReLU) in addition to the

“fitness” and “predict_outputs” functions to calculate the accuracy.

Listing 4-16. ANN.py File Implementing the ANN

import numpy

def sigmoid(inpt):

 return 1.0/(1.0+numpy.exp(-1*inpt))

def relu(inpt):

 result = inpt

 result[inpt<0] = 0

 return result

def predict_outputs(weights_mat, data_inputs, data_outputs,

activation="relu"):

 predictions = numpy.zeros(shape=(data_inputs.shape[0]))

 for sample_idx in range(data_inputs.shape[0]):

 r1 = data_inputs[sample_idx, :]

 for curr_weights in weights_mat:

 r1 = numpy.matmul(a=r1, b=curr_weights)

 if activation == "relu":

 r1 = relu(r1)

 elif activation == "sigmoid":

 r1 = sigmoid(r1)

 predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

 predictions[sample_idx] = predicted_label

 correct_predictions = numpy.where(predictions == data_outputs)[0].size

 accuracy = (correct_predictions/data_outputs.size)*100

 return accuracy, predictions

Chapter 4 aNN OptimizatiON

181

def fitness(weights_mat, data_inputs, data_outputs, activation="relu"):

 accuracy = numpy.empty(shape=(weights_mat.shape[0]))

 for sol_idx in range(weights_mat.shape[0]):

 curr_sol_mat = weights_mat[sol_idx, :]

 accuracy[sol_idx], _ = predict_outputs(curr_sol_mat, data_inputs,

data_outputs, activation=activation)

 return accuracy

Chapter 4 aNN OptimizatiON

183
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_5

CHAPTER 5

Convolutional Neural
Networks
The previously discussed architecture of ANNs is called FC neural networks (FCNNs).

The reason is that each neuron in a layer i is connected to all neurons in layers i-1
and i+1. Each connection between two neurons has two parameters: the weight and

the bias. Adding more layers and neurons increases the number of parameters. As a

result, it is very time-consuming to train such networks even on devices on multiple

graphics processing units (GPUs) and multiple central processing units (CPUs). It

becomes impossible to train such networks on PCs with limited processing and memory

capabilities.

In the analysis of multidimensional data such as images, CNNs (also known as

ConvNets) are more time and memory efficient than FC networks. But why? What are the

advantages of ConvNets over FC networks in image analysis? How is ConvNet derived

from FC networks? Where does the term convolution in CNNs come from? These

questions are to be answered in this chapter. To have a better understanding of how

everything works, this chapter implements the CNN using the NumPy library by working

through all steps required to build the different layers in these networks, including

convolution, pooling, activation, and FC. Finally, a project called NumPyCNN will be

created to help create a CNN easily and then learn how to deploy it in Appendix A.

 From ANN to CNN
ANN is the base of the CNN, with some changes added to make it suitable for analyzing

large amounts of data. Connecting all neurons together increases the number of

parameters even when analyzing very small images (e.g., one of 150×150 pixels). The

input layer in this case will have 22,500 neurons. Connecting it to another hidden

184

layer with 500 neurons, the number of parameters required is 22,500×500=11,250,000.

Real-world applications might work with high-dimensionality images where the least

dimension might have 1,000 pixels and more. For an input image of size 1,000×1,000 and

a hidden layer of 2,000 neurons, the number of parameters equals 2 billion. Note that the

input image is gray.

The next subsections cover the following questions: What is the intuition behind

using CNN over ANN? Do we really need all of the parameters used in traditional ANN?

How is CNN different from ANN, and how is it derived from ANN? Finally, what is the

source of the term convolution used in CNN? Let’s start answering these questions.

 The Intuition Behind DL
In Chapter 1, we handled the task of feature extraction. This is the traditional approach

to perform image analysis tasks, which involve using a set of features that are

representative for the problem being solved. This might require the help of experts in the

field being studied, because one feature might be robust for a given problem but weak

for another. Selecting the best features to a given problem is the challenge. Starting from

a very large number of features, how can they be reduced to the best minimum set?

We might be able to find a set of features when working with a small amount of data

in which there is a slight variation. The more variations existing in the data, the more

difficult it is to find a set of features covering all of them.

In a traditional classification problem, the goal is to find the best set of features

that separate the classes used. After calculating feature 1 based on the f1() function, the

samples from each class are given in Figure 5-1. The function did well for the left part of

the first class, but it is very bad for the part to the right of the same class. There is overlap

between the two classes in this part, and thus classification accuracy is very bad. Even

the most complex ML models cannot fit this data. This is because many samples almost

have the same value as f1(). The function f1() needs some changes in order to enhance

the classification performance.

Chapter 5 Convolutional neural networks

185

To solve that problem, the result of f1() will be used as inputs for another function f2().

As a result, for an input sample s1, the final features for it will be the result of a chain

of functions f2(f1(s1)). The data distribution is as shown in Figure 5-2. It seems that the

results enhanced more than the previous one. The percentage of overlap compared to

the first case is reduced as some samples in the second class are clearly away from the

first class. Still, there is overlap between the two classes. We aim to split the data so that

each sample is near from the samples within its class and also far away from the samples

in the other class.

Figure 5-1. Two-class data distribution using f1(). Class 1 samples are represented
as filled circles and class 2 samples as empty circles.

Chapter 5 Convolutional neural networks

186

To enhance the results of classification, we can use the outputs of the f2() as input to

another function f3() so that the chain of functions is f3(f2(f1())). According to Figure 5-3,

the results are better than the previous two cases.

Figure 5-2. Data distribution using f2(f1())

Figure 5-3. Data distribution using f3(f2(f1()))

Chapter 5 Convolutional neural networks

187

By working the same way and using a fourth function f4(), we can find an acceptable

result as in Figure 5-4. At that point, we can build a very simple linear classifier that splits

the data. We might note that after building a robust feature function, the classification

becomes very easy. This is compared to a bad feature function, as in Figure 5-1, which

requires the use of a very complex classifier.

Figure 5-4. Linear classification after separating the data correctly

The previous discussion summarizes the target of DL models, which is automatic

feature transformation. The goal is to create a feature transformation function that

transforms the data samples from a bad state in which performing the ML task is

complex to another state in which the task is simpler.

CNNs, which are the focus of this book, accept the pure image pixels and find by

themselves the best set of features that classify the data correctly. Each layer within the

CNN transforms the data from one state to another for enhancing the performance. The

beauty of the ANN is that it is a universal function approximator that can approximate any

type of function. Each function will have a set of parameters, which are the weights and

bias. The output of one function (i.e., layer) is the input to another function (i.e., layer).

The ANN architecture is extended until the classification performance is the best. For

example, we can associate each step discussed previously with a hidden layer, and thus

the network will have the architecture shown in Figure 5-5. This gives an understanding

of the usefulness of hidden layers, which is a trouble for newbies in ANN.

Chapter 5 Convolutional neural networks

188

The next section discusses how CNN is derived from ANN and how it is more

efficient in image analysis than traditional ANN.

 Derivation of Convolution
Image analysis has a number of challenges, such as classification, object detection,

recognition, description, and so forth. If an image classifier, for example, is to be created,

it should be able to work with a high accuracy even with variations such as occlusion,

illumination changes, viewing angles, and others. The traditional pipeline of image

classification with its main step of feature engineering is not suitable for working in

rich environments. Even experts in the field won’t be able to give a single or a group

of features that are able to reach high accuracy under different variations. From this

problem, the idea of feature learning came out. The suitable features to work with images

are learned automatically. This is why ANN is one of the most robust ways of performing

image analysis. Based on a learning algorithm such as GD, ANN learns the image

features automatically. The raw image is applied to the ANN and ANN is responsible for

generating the features describing it.

Figure 5-5. ANN required to transform the data for separation of the class by
using a linear classifier

Chapter 5 Convolutional neural networks

189

 Image Analysis Using FC Network

Let’s see how ANN works with images and why CNN is efficient in its time and memory

requirements with respect to the 3×3 gray image in Figure 5-6. The example given uses a

small image size and a lower number of neurons for simplicity.

Input image
3

3

15 8 9

100

200

17

150

22

30

Figure 5-6. Tiny image as input to an FCNN

The inputs of the ANN input layer are the image pixels. Each pixel represents an

input. Because the ANN works with 1D vectors, not 2D matrices, it is better to convert

the preceding 2D image into a 1D vector, as in Figure 5-7.

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

15

Figure 5-7. 2D image to 1D vector

Each pixel is mapped to an element in the vector. Each element in the vector

represented a neuron in ANN. Because the image has 3×3=9 pixels, then there will

be nine neurons in the input layer. Representing the vector as row or column doesn’t

matter, but ANN usually extends horizontally, and each of its layers is represented as a

column vector.

Chapter 5 Convolutional neural networks

190

After preparing the input of the ANN, next is to add the hidden layer(s) that learns

how to convert the image pixels into representative features. Assume that there is a single

hidden layer with 16 neurons, as in Figure 5-8.

Input image Input layer

Hidden layer with 16 neurons

Each pixel is connected to all
neurons. There are 16 connection
for each input. Each connection
has a weight/parameter.

There are 16 parameters for
each input.

For all 9 inputs, there are
a total of 9 x 16 = 144 parameters.9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

Input (pixel) index
Neuron index

W
y
x

W
0
0

W
0
1

W
0
2

W
0
3

W
0
4

W
0
5

W
0
6

W
0
7

W
0
8

W
0
9

W
0
10

W
0
11

W
0
12

W
0
13

W
0
14

W
0
15

15

Figure 5-8. Connections from a single input neuron to all hidden layer neurons

Because the network is FC, this means that each neuron in layer i is connected to

all neurons in layer i-1. As a result, each neuron in the hidden layer is connected to all 9

pixels in the input layer. In other words, each input pixel is connected to the 16 neurons

in the hidden layer, where each connection has a corresponding unique parameter.

By connecting each pixel to all neurons in the hidden layer, there will be 9×16=144

parameters or weights for a tiny network such as that shown in Figure 5-9.

Chapter 5 Convolutional neural networks

191

 Large Number of Parameters

The number of parameters in this FC network seems acceptable. But this number greatly

increases as the number of image pixels and hidden layers increases.

For example, if this network has two hidden layers with 90 and 50 neurons,

respectively, then the number of parameters between the input layer and the first

hidden layer is 9×90=810. The number of parameters between the two hidden layers is

90×50=4,500. The total number of parameters in this network is 810+4,500=5,310. This

is a large number for such a network. Another case of a very small image of size 32×32

(1,024 pixels). If the network operates with a single hidden layer of 500 neurons, there are

a total of 1,024*500=512,000 parameters (weight). This is a huge number for a network

with just a single hidden layer working with a small image. There must be a solution to

decrease this number of parameters. This is where CNN has a critical role. It creates a

very large network but with fewer parameters than FC networks.

Input image Input layer

Hidden layer 16 Neurons

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

30

150

200

22

17

100

9

8

15

Figure 5-9. Connecting all input neurons to all hidden layer neurons

Chapter 5 Convolutional neural networks

192

 Neuron Grouping

The problem that makes the number of parameters get very large even for small

networks is that FC networks add a parameter between every two neurons in the

successive layers. Rather than assigning a single parameter between every two neurons,

a single parameter may be given to a block or group of neurons as in Figure 5-10. The

pixel with index 0 in Figure 5-8 is connected to the first four neurons with indices (0, 1,

2, and 3) with four different weights. If the neurons are grouped in groups of four as in

Figure 5-10, then all neurons inside the same group will be assigned a single parameter.

Input image Input layer

Hidden layer 16 neurons

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

Input (pixel) index
Group index

W
y
x

W
0
0

W
1
0

W
2
0

W
3
0

15

Figure 5-10. Grouping every four hidden neurons to use the same weight

As a result, the pixel with index 0 in Figure 5-10 will be connected to the first four

neurons with the same weight as in Figure 5-11. The same parameter is assigned to

every four successive neurons. As a result, the number of parameters is reduced by a

factor of 4. Each input neuron will have 16/4=4 parameters. The entire network will have

144/4=36 parameters. It is a 75% reduction of the parameters. This is fine, but it is still

possible to reduce more parameters.

Chapter 5 Convolutional neural networks

193

Because there are four groups of neurons, that means there are four filters in this

layer. As a result, the output of this layer will have its third dimension equal to 3, which

means three filtered images will be returned. The goal of CNN is to find the best values

for such filters that make each input image associated with its class label.

Figure 5-12 shows the unique connections from each pixel to the first neuron of

each group. That is, all missing connections are just duplicates of the existing ones.

Hypothetically, there is a connection from each pixel to each neuron in each group, as in

Figure 5-9, because the network is still FC.

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

W
0
0

W
0
0

W
0
0

W
0
0

W
0
0

W
1
0

W
2
0

W
3
0

15 W
1
0

W
1
0

W
1
0

W
1
0

W
2
0

W
2
0

W
2
0

W
2
0

W
3
0

W
3
0

W
3
0

W
3
0

Figure 5-11. All neurons in the same group are using the same weight

Chapter 5 Convolutional neural networks

194

To make it simple, all connections are omitted except for the connections between

all pixels to just the first neuron in the first group, as shown in Figure 5-13. It seems

that each group is still connected to all 9 pixels, and thus it will have 9 parameters. It is

possible to reduce the number of pixels that this neuron is connected to.

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

15

Each pixel is connected to all
groups of neurons. In other
words, each group of neurons
is connected to all pixels. As a
result, each group will have
16 parameters. Total number of
parameters will be 9 x 4 = 36.

Figure 5-12. Fewer unique connections between the input layer and the hidden
layer after hidden neurons grouping

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

15

Each neuron in each group works
on all pixels. This assumes there
are same types of correlation among
all image pixels. But in fact, as the
pixels become spatially away from
each other as there will be less
correlation among them.

Rather than working with all
pixels, each neuron will accept
just same pixels that are
spatially correlated.

Figure 5-13. Connections between all neurons in the input layer to the first group
of neurons within the hidden layer

Chapter 5 Convolutional neural networks

195

 Pixel Spatial Correlation

Current configuration makes each neuron accepts all pixels. If there is a function

f(x1, x2, x3, x4) that accepts four inputs, that means the decision is to be taken based on

all four of these inputs. If the function with just two inputs gives the same results as using

all four inputs, then we do not have to use all of these four inputs. The two inputs giving

the required results are sufficient. This is similar to the preceding case. Each neuron

accepts all 9 pixels as inputs. If the same or better results will be returned by using fewer

pixels, then we should go through it.

Usually, in image analysis, each pixel is highly correlated to pixels surrounding

it (i.e., neighbors). The higher the distance between two pixels, the more they will be

uncorrelated. For example, in the cameraman image shown in Figure 5-14, a pixel inside

the face is correlated to the surrounding face pixels around it. But it is less correlated to

far pixels such as sky or ground.

Figure 5-14. Cameraman image

Based on this assumption, each neuron in the preceding example will accept just

pixels that are spatially correlated to each other, because working on all of them is

reasonable. Rather than applying all 9 pixels to each neuron as input, it is possible to

just select 4 spatially correlated pixels as in Figure 5-15. The first pixel of index 0 in the

column vector located at (0,0) in the image will be applied as an input to the first neuron

Chapter 5 Convolutional neural networks

196

with its 3 most spatially correlated pixels. Based on the input image, the 3 most spatially

correlated pixels to that pixel are pixels with indices (0,1), (1,0), and (1,1). As a result,

the neuron will accept just 4 pixels rather than 9. Because all neurons in the same group

share the same parameters, then the 4 neurons in each group will have just 4 parameters

rather than 9. As a result, the total number of parameters will be 4×4=16. Compared to

the FC network in Figure 5-9, there is a reduction of a 144–16=128 parameter (i.e., 88.89%

reduction).

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0

15

Each neuron in each group can
work with just 4 pixels rather
than all 9 pixels.

The pixels are selected to
be neighbour of each others.

Doing that reduces the number
of parameter required for
each group of neuron.

Now there are 4 parameters for
each group rather than 9.

Total number of parameter is
reduced from 9 x 4 = 36 to just
4 x 4 = 16.

Figure 5-15. Connecting the first group of correlated pixels to the first group

 Convolution in CNN

At this point, the question of why CNN is more time and memory efficient than the FC

network is answered. Using fewer parameters allows the increase of a deep CNN with a

huge number of layers and neurons, which is not possible in the FC network. Next is to

get the idea of convolution in CNN.

Now there are just four weights assigned to all neurons in the same block. How will

these four weights cover all 9 pixels? Let’s see how this works.

Figure 5-16 shows the previous network in Figure 5-15 but after adding the weight

labels to the connections. Inside the neuron, each of the 4 input pixels is multiplied by

Chapter 5 Convolutional neural networks

197

its corresponding weight. The equation is shown in Figure 5-16. The four pixels and

weights would be better visualized as matrices as in Figure 5-16. The previous result will

be achieved by multiplying the weights matrix to the current set of 4 pixels element by

element. In practice, the size of the convolution mask should be odd, such as 3×3. For

easier presentation, a 2×2 mask is used in this example.

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

15 8 9

100

200

17

150

22
W0 W1

W2 W330

30

150

200

22

15 x W0 + 8 x W1 + 100 x W2 + 17 x W3

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0 This can be visualized as follows

It is a convolution between the
image and the weights of
the block.

*

15

W0

W1

W2

W3

Figure 5-16. Adding weights of each connection and visualizing them as a matrix

Moving to the next neuron of index 1, it will work with another set of spatially

correlated pixels with the same weights used by the neuron with index 0. Also, neurons

with indices 2 and 3 will work with other two sets of spatially correlated pixels. This is

shown in Figure 5-17. It seems that the first neuron in the group starts from the top-

left pixel and chooses a number of pixels surrounding it. The last neuron in the group

works on the bottom-right pixel and its surrounding pixels. The in-between neurons are

adjusted to select in-between pixels. Such behavior is identical to convolution between

the set of weights of the group and the image. This is why CNN has the term convolution.

Chapter 5 Convolutional neural networks

198

The same procedure happens for the remaining groups of neurons. The first neuron

of each group starts from the top-left corner and its surrounding pixels. The last neuron

of each group works with the bottom-right corner and its surrounding pixels. The in-

between neurons work on the in-between pixels.

After understanding how CNN is derived from ANN, we can take an example that

performs convolution between an input image and a filter (i.e., a set of weights) and

produces its result.

 Designing a CNN
In the example we are going to design using CNN, there are three shapes: rectangle,

triangle, and circle. Each one of them is represented by a 4×4 matrix as in Figure 5-18,

where 1 represents white and 0 represents black. The goal is to build a CNN to return 1

when there is a rectangle and 0 otherwise. How can we do that?

Input image Input layer

9 Pixels

3

3

15 8 9

100

200

17

150

22

30

30

150

200

22

17

100

9

8

8

7

6

5

4

3

2

1

0

8

9

10

11

12

13

14

15

7

6

5

4

3

2

1

0 This can be visualized as follows

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15 8 9

100

200

17

150

22
W0 W1

W2 W330
*

15

Figure 5-17. Highlighting each set of correlated pixels along with their weights as
a matrix

Chapter 5 Convolutional neural networks

199

When starting to design a CNN, the first step is to determine the number of layers

and number of filters within each layer. Usually, CNN has more than just a convolution

(conv for short) layer, but we will start only using this layer. You can test yourself to solve

such a problem.

First, the convolution layer investigates the building blocks of the shape structure we

are looking for. So, the first question to ask yourself is what is special about a rectangle

compared to a triangle and a circle. The rectangular shape has four edges, two vertical

and two horizontal. We can benefit from such information. But also note that properties

existing in the rectangle should not exist in the other shapes. Other shapes already have

different properties. Neither of the two other shapes have two horizontal edges and two

vertical edges. This is great.

The next question is how to make the convolution layer recognize the existence of

the edges. Remember that CNN starts by recognizing the individual elements of the

shape and then connects these elements together. So, we are not looking to find the four

edges nor looking to find two parallel vertical edges and two parallel horizontal edges,

but instead to recognize any vertical or horizontal edge. So, the question becomes more

specific. How can we to recognize vertical or horizontal edges? This can be simply done

using gradients.

The first layer will have a filter that looks for horizontal edges and another filter for

vertical edges. These filters are shown in Figure 5-19 as 3×3 matrices. So, we know how

many filters to use in the first conv layer and also what these filters are. The size of 3×3 is

chosen for the filters because it is a good size at which the structure of the horizontal and

vertical edges is clear.

Figure 5-18. Rectangle, triangle, and circle represented by 4×4 matrices. Pixel of 1
is white and pixel of 0 is black.

Chapter 5 Convolutional neural networks

200

After applying these filters over the matrices in Figure 5-19, the conv layer will be able

to recognize the vertical edges in Figure 5-20 and the horizontal edges in Figure 5- 21.

The layer is able to recognize the horizontal and vertical edges in the rectangle. It also

recognized the horizontal edge at the triangle base. But there is no edge in the circle. At the

current time, the CNN has two candidates to be a rectangle, which are the shapes having at

least one edge. Despite being sure that the third shape could not be a rectangle, the CNN

has to propagate it to the other layers until making its decision at the final layer. Because of

using two filters in the first conv layer, it results in two outputs, one for each filter.

Figure 5-19. Filters for recognizing horizontal and vertical edges of size 3×3

Figure 5-20. Recognized vertical edges in black

Figure 5-21. Recognized horizontal edges in black

Chapter 5 Convolutional neural networks

201

The next convolution layer will accept the results of the first convolution layer and

continue based on it. Let’s repeat the same questions asked in the first layer. What is the

number of filters to use and what is their structure? Based on the rectangle structure,

we find that each horizontal edge is connected to a vertical edge. Because there are two

horizontal edges, this requires the use of the two filters in Figure 5-22 of size 3×3.

Figure 5-22. Filters for recognizing connected horizontal and vertical
edges of size 3×3

Figure 5-23. Result of the first filter in the second layer in black

Figure 5-24. Result of the second filter in the second layer in black

After applying those filters to the results of conv layer 1, the results of the filters

used in the second conv layer are shown in Figure 5-23 and Figure 5-24, respectively.

Regarding the rectangle, the filters are able to find the two required edges and connect

them together. In the triangle, there is just a single horizontal edge with no vertical edge

connected to it. As a result, there are no positive outputs for the triangle.

Chapter 5 Convolutional neural networks

202

By the current result, we have not recognized that rectangle, but we have

nevertheless done a nice job so far. We connected the individual edges to more

meaningful structures. Now, there is just a single step toward recognizing the complete

shape, which is connecting the recognized edges in Figures 5-23 and 5-24. The result is

in Figure 5-25. This is great.

Figure 5-25. Results of connecting recognized shapes by the second conv layer

But we did the work manually, not automatically. We guided the CNN by telling it

the filters to use. But this is not the case in regular problems. The CNN will find the filters

itself. We just tried to simplify things by using the correct filters. Remember that these

filters and the weights of connections between the different layers are automatically

adjusted by the CNN. So, finding the correct filters means finding the correct weights.

This links what we have learned now to what we got before.

 Pooling Operation for Parameter Reduction
The convolution operation just finds the dot product between a mask and an image

portion of the same size as the filter. If the filter matches a portion of the image, then the

SOP will be high. Assume that the output of applying the convolution operation is as

shown in Figure 5-26.

Figure 5-26. Results of a convolution operation

Chapter 5 Convolutional neural networks

203

The shaded regions are the ones at which there is a high match between the image

portions and the used filter. Note that there are two pieces of information here:

 1. The existence of high scores means that the region of interest

(ROI) exists in the image.

 2. The location of the high scores tells the location in the image at

which match occurs between the filter and the image portion.

But are we interested in both these pieces of information? The answer is no. We are

just interested in the second piece. This is because the only goal of CNN is to tell whether

the target object exists in the image or not. We are not interested in localizing it.

As a result, if the exact location is not of concern for us, we can avoid storing such

spatial information. For example, we can say that the ROI exists in the image but avoid

storing its exact location. The previous matrix size will be reduced if we do so, as shown

in Figure 5-27.

Figure 5-27. Results of a convolution operation

We can get rid of the extra information that tells the exact location of the image

portion with a match because it is not important for us. We just kept the information that

tells that a match occurred. This is by keeping the maximum values of the convolution

output matrix. Finding high scores tells us that there is a match.

But how did we reduce the matrix size? This is by just keeping the maximum value of

each 2×2 region for example. This operation is called max pooling.

By applying the max pooling operation, there is a very important improvement over

the computational time and memory requirements. Rather than keeping a matrix of size

4×4 in the memory, it is reduced to half size (2×2). This saves memory by just keeping

4 values compared to 16. Moreover, the time is reduced because the output of that max

pooling operation will be the input of another convolution operation. This convolution

operation will work on a matrix of size 2×2 rather than 4×4.

Finally, applying the max pooling operation helps us reduce the computational time

and memory requirements by removing the spurious features that have no importance

for us in CNN (this is the exact location at which match occurred). This operation makes

the CNN translation invariance.

Chapter 5 Convolutional neural networks

204

 Convolution Operation Example
This subsection gives an example of how to apply the convolution operation over a

sample of size 8×8 from a 2D image shown in Figure 5-28. A single filter will be used in

the convolution, which is the horizontal gradient detector in Figure 5-19. Convolution is

applied by centering the filter over each pixel, multiplying each element in the filter by

its corresponding pixel in the image, returning the sum of these multiplications within a

new image.

Figure 5-28. Image sample of size 8×8 to apply the convolution operation

Because the filter size is 3×3 and each of its elements is multiplied by an element

within the image, then after centering the filter over any pixel there must be an element

corresponding to each element in the filter. It is obvious that this does not work for the

border of the image (i.e., leftmost and rightmost columns in addition to top and bottom

rows), as marked by gray in Figure 5-28. There are two solutions in such a case. The first

is to keep working with the pixels by padding extra rows and columns with zeros, or in

other words, multiplying any element if the filter doesn’t have a corresponding image

pixel by zero. This will produce an output image of equal size to the original image.

In this case, the number of rows required for padding at the top and bottom borders

is calculated according to Equation 5-1. The number of padded columns to the left and

right is calculated according to Equation 5-2. For our example with a filter size of 3×3,

there are two rows and two columns to be padded.

Chapter 5 Convolutional neural networks

205

 Paddingrows = floor(Filterrows/2) (Equation 5-1)

 Paddingcols = floor(Filtercols/2) (Equation 5-2)

In most cases, the number of rows and columns in the filter is an odd number. This

helps localize a center pixel at which the SOP will be inserted.

The second solution is to avoid working with the image borders. In this case, the

resulting image will have a size less than that of the original image. The number of rows

and columns in the output image is calculated according to Equations 5.3 and 5.4,

respectively. For our input image of size 8×8, the size of the resultant image is 6×6.

 NewSizerows = OldSizerows − 2xPaddingrows
 (Equation 5-3)

 NewSizecols = OldSizecols − 2xPaddingcols
 (Equation 5-4)

Assuming that no padding is used, then the first pixel to work with is the pixel

located in the second row and second column with value 103. Centering the filter at this

pixel and multiplying each element by its corresponding pixels, the SOP is as follows:

 sop = ()+ () + -()+ () + () + -()+ () + () +65 1 84 0 215 1 162 1 103 0 70 1 150 1 40 0 1106 1 14-() = -

This result is inserted in a new image at the pixel located at the top-left row and top-

left column. After calculating the output for one pixel, the next step is to shift the filter

to get another pixel. The number of shifts required is called stride. A stride of 1 shifts

the filter one column/row at a time. In the current step, it will move the filter to the right

just one column and center the filter over the pixel in the second row and third column

with a value of 70. A stride of 2 shifts the filter two columns/rows at a time, and thus the

current pixel will be 97.

Using a stride of 1, we will continue calculating the SOP for all pixels in the first row

starting from column 2 to column 7, each time calculating the SOP. After that, the filter

is shifted one row down, and thus the current pixel will be 40 located at the third row

and second column. The final result without padding and using a stride of 1 is shown in

Figure 5-29.

Chapter 5 Convolutional neural networks

206

 Max Pooling Operation Example
Assuming that there is a conv layer that produced the previous result in Figure 5-29 and

that this layer is connected with a max pooling layer, let’s work on calculating its output.

The max pooling layer selects a group of pixels to summarize into a single pixel by

just keeping their maximum value. If a mask of size 2×2 is used, it will start from the

top-left 4 pixels marked in gray in Figure 5-29. Their maximum value is 94, which is the

output. Similar to convolution, max pooling will shift the mask to work on another 4

pixels, and thus it needs a stride. The stride value for the pooling layer is equal to 2 at the

minimum. The reason is that a stride of 1 will duplicate values without the output, which

is not helpful. In the highlighted pixels in black in Figure 5-29, the result of the max

pooling operation for the first two columns will be 30. Using a stride of 1 and shifting the

mask to the right by one column, the result of this operation for the last two columns

highlighted in black is also 30. As a result, a value of 30 appeared twice. Is it helpful to

return the same value more than once? A value of 30 returned the first time means that

there is a match between the convolution filter and the image that equals 30. So, we got

that information. There is no need to repeat it again. Working with a stride of 1 will use

more parameters to return repeated results we are not interested in. As a result, a stride

of 2 will be helpful.

The result of applying the max pooling operation over the convolution result in

Figure 5-29 is shown in Figure 5-30.

Figure 5-29. Convolution output between an image of size 8×8 and a 3×3 filter

Chapter 5 Convolutional neural networks

207

 Building a CNN Using NumPy from Scratch
CNN is the state-of-the-art technique for analyzing multidimensional signals such as

images. There are different libraries that already implement CNN such as TensorFlow

(TF) and Keras. These libraries isolate the developer from some details and just give an

abstract application program interface (API) to make life easier and avoid complexity in

the implementation. But in practice, such details might make a difference. Sometimes,

the data scientist has to go through such details to enhance the performance. The

solution in this situation is to build every piece of the model yourself. This gives the

highest possible level of control over the network.

It is recommended to implement such models to have a better understanding

of them. Some ideas seem to be clear, but that may not actually be the case until

programming. It will be easy to do that after learning how CNNs work. This section

shows how a CNN is implemented from scratch just using NumPy. So, let’s implement it

and compare its outputs with TF to validate the implementation.

In this section, a CNN is created using only the NumPy library. Three layers are

created: convolution (conv for short), ReLU, and max/average pooling. The major steps

involved are as follows:

 1. Reading the input image.

 2. Preparing the filters.

 3. Conv layer: Convolving each filter with the input image.

 4. ReLU layer: Applying the ReLU activation function on the feature

maps (output of conv layer).

 5. Max pooling layer: Applying the pooling operation on the output

of ReLU layer.

 6. Stacking conv, ReLU, and max pooling layers.

Figure 5-30. Max pooling output using a mask of size 2×2

Chapter 5 Convolutional neural networks

208

 Reading the Input Image
Listing 5-1 reads an already existing image from the skimage Python library and converts

it into gray.

Listing 5-1. Reading an Image

import skimage.data

Reading the image

img = skimage.data.chelsea()

Converting the image into gray.

img = skimage.color.rgb2gray(img)

This example uses an already existing image within the skimage Python library. The

image is called using skimage.data.chelsea(). Note that this call implicitly reads an

image file named “chelsea.png” within the skimage library installation directory. The

image could also be read by passing its path to the skimage.data.imread(fname). For

example, if the library is located in “Lib\site-packages\skimage\data\”, then we could

read it as follows:

img = skimage.data.chelsea("\AhmedGad\Anaconda3\Lib\site-packages\skimage\

data\chelsea.png")

Reading image is the first step because the next steps depend on the input size. The

image after being converted into gray is in Figure 5-31.

Figure 5-31. Original gray image read using skimage.data.chelsea()

Chapter 5 Convolutional neural networks

209

 Preparing Filters
The following line prepares the filter bank for the first conv layer (l1 for short):

l1_filter = numpy.zeros((2,3,3))

A zero array is created according to the number of filters and the size of each filter.

Two filters of size 3×3 are created; that is why the zero array is of size (2=num_filters,

3=num_rows_filter, 3=num_columns_filter). The size of the filter is selected to be a 2D

array without depth because the input image is gray and has no depth (i.e., 2D). If the

image is RGB with three channels, the filter size must be (3, 3, 3=depth).

The size of the filter bank is specified by the preceding zero array but not the actual

values of the filters. It is possible to override the values as follows to detect vertical and

horizontal edges.

l1_filter[0, :, :] = numpy.array([[[-1, 0, 1],

 [-1, 0, 1],

 [-1, 0, 1]]])

l1_filter[1, :, :] = numpy.array([[[1, 1, 1],

 [0, 0, 0],

 [-1, -1, -1]]])

 Conv Layer
After preparing the filters, the next step is to convolve the input image by them. The next

line convolves the image with the filter bank using a function called conv:

l1_feature_map = conv(img, l1_filter)

This function accepts just two arguments, the image and the filter bank, as

implemented in Listing 5-2.

Listing 5-2. Convolving the Image by a Single Filter

def conv(img, conv_filter):

 if len(img.shape) > 2 or len(conv_filter.shape) > 3: # Check if number

of image channels matches the filter depth.

Chapter 5 Convolutional neural networks

210

 if img.shape[-1] != conv_filter.shape[-1]:

 print("Error: Number of channels in both image and filter must

match.")

 sys.exit()

 if conv_filter.shape[1] != conv_filter.shape[2]:

 print('Error: Filter must be a square matrix, i.e., number of rows

and columns must match.')

 sys.exit()

 if conv_filter.shape[1]%2==0: # Check if filter dimensions are odd.

 print('Error: Filter must have an odd size, i.e., number of rows

and columns must be odd.')

 sys.exit()

 # An empty feature map to hold the output of convolving the filter(s)

with the image.

 feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,

 img.shape[1]-conv_filter.shape[1]+1,

 conv_filter.shape[0]))

 # Convolving the image by the filter(s).

 for filter_num in range(conv_filter.shape[0]):

 print("Filter ", filter_num + 1)

 curr_filter = conv_filter[filter_num, :] # getting a filter from

the bank.

 # Checking if there are multiple channels for the single filter.

 # If so, then each channel will convolve the image.

 # The result of all convolutions is summed to return a single

feature map.

 if len(curr_filter.shape) > 2:

 conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array

holding the sum of all feature maps.

 for ch_num in range(1, curr_filter.shape[-1]): # Convolving

each channel with the image and summing the results.

 conv_map = conv_map + conv_(img[:, :, ch_num],

 curr_filter[:, :, ch_num])

Chapter 5 Convolutional neural networks

211

 else: # There is just a single channel in the filter.

 conv_map = conv_(img, curr_filter)

 feature_maps[:, :, filter_num] = conv_map # Holding feature map

with the current filter.

 return feature_maps # Returning all feature maps.

The function starts by ensuring that the depth of each filter is equal to the number of

image channels. In the following code, the outer if checks if the channel and the filter

have a depth. If a depth already exists, then the inner if checks their inequality. If there

is no match, then the script will exit.

if len(img.shape) > 2 or len(conv_filter.shape) > 3: # Check if number of

image channels matches the filter depth.

 if img.shape[-1] != conv_filter.shape[-1]:

 print("Error: Number of channels in both image and filter must

match.")

 sys.exit()

Moreover, the size of the filter should be odd and filter dimensions should be equal

(i.e., number of rows and columns are odd and equal). This is checked according to the

following two if blocks. If these conditions don’t meet, the script will exit.

if conv_filter.shape[1] != conv_filter.shape[2]: # Check if filter

dimensions are equal.

 print('Error: Filter must be a square matrix, i.e., number of rows and

columns must match.')

 sys.exit()

if conv_filter.shape[1]%2==0:

 print('Error: Filter must have an odd size, i.e., number of rows and

columns must be odd.')

 sys.exit()

Not satisfying any of the conditions in the preceding is a proof that the filter depth is

suitable with the image, and convolution is ready to be applied. Convolving the image

by the filter starts by initializing an array to hold the outputs of convolution (i.e., feature

maps) by specifying its size according to the following code:

Chapter 5 Convolutional neural networks

212

An empty feature map to hold the output of convolving the filter(s) with

the image.

feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,

 img.shape[1]-conv_filter.shape[1]+1,

 conv_filter.shape[0]))

Because there is no stride or padding, the feature map size will be equal to (img_

rows-filter_rows+1, image_columns-filter_columns+1, num_filters) as in the preceding

code. Note that there is an output feature map for every filter in the bank. That is why the

number of filters in the filter bank (conv_filter.shape[0]) is used to specify the size as a

third argument. After preparing the inputs and outputs of the convolution operation, the

next step is to apply it according to Listing 5-3.

Listing 5-3. Convolving the Image by Filters

 # Convolving the image by the filter(s).

 for filter_num in range(conv_filter.shape[0]):

 print("Filter ", filter_num + 1)

 curr_filter = conv_filter[filter_num, :] # getting a filter from

the bank.

 # Checking if there are multiple channels for the single filter.

 # If so, then each channel will convolve the image.

 # The result of all convolutions is summed to return a single

feature map.

 if len(curr_filter.shape) > 2:

 conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array

holding the sum of all feature maps.

 for ch_num in range(1, curr_filter.shape[-1]): # Convolving

each channel with the image and summing the results.

 conv_map = conv_map + conv_(img[:, :, ch_num],

 curr_filter[:, :, ch_num])

 else: # There is just a single channel in the filter.

 conv_map = conv_(img, curr_filter)

 feature_maps[:, :, filter_num] = conv_map # Holding feature map

with the current filter.

 return feature_maps # Returning all feature maps.

Chapter 5 Convolutional neural networks

213

The outer loop iterates over each filter in the filter bank and returns it for further

steps according to this line:

curr_filter = conv_filter[filter_num, :] # getting a filter from the bank.

If the image to be convolved has more than one channel, then the filter must have a

depth equal to this number of channels. Convolution, in this case, is done by convolving

each image channel with its corresponding channel in the filter. Finally, the sum of

the results will be the output feature map. If the image has just a single channel, then

convolution will be straightforward. Determining this behavior is done in an if-else block:

if len(curr_filter.shape) > 2:

 conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array holding

the sum of all feature map

 for ch_num in range(1, curr_filter.shape[-1]): # Convolving each

channel with the image and summing the results.

 conv_map = conv_map + conv_(img[:, :, ch_num],

 curr_filter[:, :, ch_num])

else: # There is just a single channel in the filter.

 conv_map = conv_(img, curr_filter)

You might notice that the convolution is applied by a function called conv_, which

is different from the conv function. The function conv just accepts the input image and

the filter bank but doesn’t apply convolution its own. It just passes each set of input-filter

pairs to be convolved to the conv_ function. This is just for making the code simpler to

investigate. Listing 5-4 gives the implementation of the conv_ function.

Listing 5-4. Convolving the Image by All Filters

def conv_(img, conv_filter):

 filter_size = conv_filter.shape[1]

 result = numpy.zeros((img.shape))

 #Looping through the image to apply the convolution operation.

 for r in numpy.uint16(numpy.arange(filter_size/2.0,

 img.shape[0]-filter_size/2.0+1)):

 for c in numpy.uint16(numpy.arange(filter_size/2.0,

 img.shape[1]-filter_

size/2.0+1)):

Chapter 5 Convolutional neural networks

214

 # Getting the current region to get multiplied with the filter.

 # How to loop through the image and get the region based on

 # the image and filer sizes is the most tricky part of

convolution.

 curr_region = img[r-numpy.uint16(numpy.floor(filter_

size/2.0)):r+numpy.uint16(numpy.ceil(filter_size/2.0)),

 c-numpy.uint16(numpy.floor(filter_

size/2.0)):c+numpy.uint16(numpy.ceil(filter_

size/2.0))]

 #Element-wise multiplication between the current region and the

filter.

 curr_result = curr_region * conv_filter

 conv_sum = numpy.sum(curr_result) #Summing the result of

multiplication.

 result[r, c] = conv_sum #Saving the summation in the

convolution layer feature map.

 #Clipping the outliers of the result matrix.

 final_result = result[numpy.uint16(filter_size/2.0):result.shape[0]-

numpy.uint16(filter_size/2.0),

 numpy.uint16(filter_size/2.0):result.shape[1]-

numpy.uint16(filter_size/2.0)]

 return final_result

It iterates over the image and extracts regions of equal size to the filter according to

this line:

curr_region = img[r-numpy.uint16(numpy.floor(filter_size/2.0)):r+numpy.

uint16(numpy.ceil(filter_size/2.0)),

 c-numpy.uint16(numpy.floor(filter_

size/2.0)):c+numpy.uint16(numpy.ceil(filter_

size/2.0))]

Chapter 5 Convolutional neural networks

215

Then it applies element-wise multiplication between the region and the filter and

sums them to get a single value as the output according to these lines:

#Element-wise multiplication between the current region and the filter.

curr_result = curr_region * conv_filter

conv_sum = numpy.sum(curr_result)

result[r, c] = conv_sum

After convolving each filter by the input, the feature maps are returned by the conv

function. Figure 5-32 shows the feature maps returned by this conv layer. At the end of

this chapter, Listing 5-9 shows the results of all layers discussed in the code.

Figure 5-32. Output feature maps of the first conv layer

The output of such a layer will be applied to the ReLU layer.

 ReLU Layer
The ReLU layer applies the ReLU activation function over each feature map returned by

the conv layer. It is called using the relu function according to the following line of code:

l1_feature_map_relu = relu(l1_feature_map)

The relu function is implemented in Listing 5-5.

Listing 5-5. ReLU Implementation

def relu(feature_map):

 #Preparing the output of the ReLU activation function.

 relu_out = numpy.zeros(feature_map.shape)

 for map_num in range(feature_map.shape[-1]):

Chapter 5 Convolutional neural networks

216

 for r in numpy.arange(0,feature_map.shape[0]):

 for c in numpy.arange(0, feature_map.shape[1]):

 relu_out[r, c, map_num] = numpy.max([feature_map[r, c, map_

num], 0])

 return relu_out

It is very simple. Just loop through each element in the feature map and return the

original value in the feature map if it is larger than 0. Otherwise, return 0. The outputs of

the ReLU layer are shown in Figure 5-33.

Figure 5-33. ReLU layer output applied to the output of the first conv layer

The output of the ReLU layer is applied to the max pooling layer.

 Max Pooling Layer
The max pooling layer accepts the output of the ReLU layer and applies the max pooling

operation according to the following line:

l1_feature_map_relu_pool = pooling(l1_feature_map_relu, 2, 2)

It is implemented using the pooling function according to Listing 5-6.

Listing 5-6. Max Pooling Implementation

def pooling(feature_map, size=2, stride=2):

 #Preparing the output of the pooling operation.

 pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/

stride+1), numpy.uint16((feature_map.shape[1]-size+1)/stride+1),

feature_map.shape[-1]))

Chapter 5 Convolutional neural networks

217

 for map_num in range(feature_map.shape[-1]):

 r2 = 0

 for r in numpy.arange(0,feature_map.shape[0]-size+1, stride):

 c2 = 0

 for c in numpy.arange(0, feature_map.shape[1]-size+1, stride):

 pool_out[r2, c2, map_num] = numpy.max([feature_

map[r:r+size, c:c+size]])

 c2 = c2 + 1

 r2 = r2 +1

 return pool_out

The function accepts three inputs: the output of the ReLU layer, pooling mask size,

and stride. It simply creates an empty array, as previously, that holds the output of the

layer. The size of the array is specified according to the size and stride arguments, as in

the following line:

pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/

stride+1),

 numpy.uint16((feature_map.shape[1]-size+1)/

stride+1),

 feature_map.shape[-1]))

Then it loops through the input channel by channel according to the outer loop,

which uses the looping variable map_num. For each channel in the input, max pooling

operation is applied. According to the stride and size used, the region is clipped and the

max of it is returned in the output array according to this line:

pool_out[r2, c2, map_num] = numpy.max(feature_map[r:r+size, c:c+size])

The outputs of the pooling layer are shown in Figure 5-34. Note that the size of the

pooling layer output is smaller than its input even if they seem identical in their graphs.

Chapter 5 Convolutional neural networks

218

 Stacking Layers
Up to this point, the CNN architecture with conv, ReLU, and max pooling layers is

complete. There might be some other layers to be stacked in addition to the previous

ones, as given in Listing 5-7.

Listing 5-7. Building CNN Architecture

Second conv layer

l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 2**")

l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)

print("\n**ReLU**")

l2_feature_map_relu = relu(l2_feature_map)

print("\n**Pooling**")

l2_feature_map_relu_pool = pooling(l2_feature_map_relu, 2, 2)

print("**End of conv layer 2**\n")

The previous conv layer uses three filters, with their values generated randomly.

That is why there will be three feature maps resulting from the conv layer. This is also

the same for the successive ReLU and pooling layers. Outputs of the layers are shown in

Figure 5-35.

Figure 5-34. Pooling layer output applied to the output of the first ReLU layer

Chapter 5 Convolutional neural networks

219

The CNN architecture is extended by adding extra conv, ReLU, and pooling layers

according to Listing 5-8. Figure 5-36 shows the outputs of these layers. The conv layer

accepts just a single filter. That is why there is only one feature map as output.

Figure 5-36. Outputs of the third conv-ReLU-pooling layers

Figure 5-35. The output of the second conv-ReLU-pooling layers

Chapter 5 Convolutional neural networks

220

Listing 5-8. Continue Building CNN Architecture

Third conv layer

l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 3**")

l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)

print("\n**ReLU**")

l3_feature_map_relu = relu(l3_feature_map)

print("\n**Pooling**")

l3_feature_map_relu_pool = pooling(l3_feature_map_relu, 2, 2)

print("**End of conv layer 3**\n")

But remember, the output of each previous layer is the input to the next layer. For

example, these lines accept the previous outputs as their inputs.

l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)

l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)

 Complete Code
The presented code discusses and gives an example of implementing a CNN with

visualizing the results of each layer. The code contains the visualization of the outputs

from each layer using the Matplotlib library. The complete code of this project is

available at GitHub (https://github.com/ahmedfgad/NumPyCNN).

Listing 5-9. Complete Code for Implementing CNN

import skimage.data

import numpy

import matplotlib

import sys

def conv_(img, conv_filter):

 filter_size = conv_filter.shape[1]

 result = numpy.zeros((img.shape))

 #Looping through the image to apply the convolution operation.

 for r in numpy.uint16(numpy.arange(filter_size/2.0,

 img.shape[0]-filter_size/2.0+1)):

Chapter 5 Convolutional neural networks

https://github.com/ahmedfgad/NumPyCNN

221

 for c in numpy.uint16(numpy.arange(filter_size/2.0,

 img.shape[1]-filter_

size/2.0+1)):

 # Getting the current region to get multiplied with the filter.

 # How to loop through the image and get the region based on

 # the image and filer sizes is the most tricky part of

convolution.

 curr_region = img[r-numpy.uint16(numpy.floor(filter_

size/2.0)):r+numpy.uint16(numpy.ceil(filter_size/2.0)),

 c-numpy.uint16(numpy.floor(filter_

size/2.0)):c+numpy.uint16(numpy.ceil(filter_

size/2.0))]

 #Element-wise multiplication between the current region and the

filter.

 curr_result = curr_region * conv_filter

 conv_sum = numpy.sum(curr_result) #Summing the result of

multiplication.

 result[r, c] = conv_sum #Saving the summation in the

convolution layer feature map.

 #Clipping the outliers of the result matrix.

 final_result = result[numpy.uint16(filter_size/2.0):result.shape[0]-

numpy.uint16(filter_size/2.0), numpy.uint16(filter_

size/2.0):result.shape[1]-numpy.uint16(filter_size/2.0)]

 return final_result

def conv(img, conv_filter):

 if len(img.shape) > 2 or len(conv_filter.shape) > 3:

 if img.shape[-1] != conv_filter.shape[-1]:

 print("Error: Number of channels in both image and filter must

match.")

 sys.exit()

 if conv_filter.shape[1] != conv_filter.shape[2]:

 print('Error: Filter must be a square matrix, i.e., number of rows

and columns must match.')

 sys.exit()

Chapter 5 Convolutional neural networks

222

 if conv_filter.shape[1]%2==0:

 print('Error: Filter must have an odd size, i.e., number of rows

and columns must be odd.')

 sys.exit()

 # An empty feature map to hold the output of convolving the filter(s)

with the image.

 feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,

 img.shape[1]-conv_filter.shape[1]+1,

 conv_filter.shape[0]))

 # Convolving the image by the filter(s).

 for filter_num in range(conv_filter.shape[0]):

 print("Filter ", filter_num + 1)

 curr_filter = conv_filter[filter_num, :] # getting a filter from

the bank.

 # Checking if there are multiple channels for the single filter.

 # If so, then each channel will convolve the image.

 # The result of all convolutions is summed to return a single

feature map.

 if len(curr_filter.shape) > 2:

 conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array

holding the sum of all feature maps.

 for ch_num in range(1, curr_filter.shape[-1]): # Convolving

each channel with the image and summing the results.

 conv_map = conv_map + conv_(img[:, :, ch_num],

 curr_filter[:, :, ch_num])

 else: # There is just a single channel in the filter.

 conv_map = conv_(img, curr_filter)

 feature_maps[:, :, filter_num] = conv_map # Holding feature map

with the current filter.

 return feature_maps # Returning all feature maps.

def pooling(feature_map, size=2, stride=2):

 #Preparing the output of the pooling operation.

Chapter 5 Convolutional neural networks

223

 pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/

stride+1), numpy.uint16((feature_map.shape[1]-size+1)/stride+1),

feature_map.shape[-1]))

 for map_num in range(feature_map.shape[-1]):

 r2 = 0

 for r in numpy.arange(0,feature_map.shape[0]-size+1, stride):

 c2 = 0

 for c in numpy.arange(0, feature_map.shape[1]-size+1, stride):

 pool_out[r2, c2, map_num] = numpy.max([feature_

map[r:r+size, c:c+size]])

 c2 = c2 + 1

 r2 = r2 +1

 return pool_out

def relu(feature_map):

 #Preparing the output of the ReLU activation function.

 relu_out = numpy.zeros(feature_map.shape)

 for map_num in range(feature_map.shape[-1]):

 for r in numpy.arange(0,feature_map.shape[0]):

 for c in numpy.arange(0, feature_map.shape[1]):

 relu_out[r, c, map_num] = numpy.max([feature_map[r, c, map_

num], 0])

 return relu_out

Reading the image

#img = skimage.io.imread("fruits2.png")

img = skimage.data.chelsea()

Converting the image into gray.

img = skimage.color.rgb2gray(img)

First conv layer

#l1_filter = numpy.random.rand(2,7,7)*20 # Preparing the filters randomly.

l1_filter = numpy.zeros((2,3,3))

l1_filter[0, :, :] = numpy.array([[[-1, 0, 1],

 [-1, 0, 1],

 [-1, 0, 1]]])

Chapter 5 Convolutional neural networks

224

l1_filter[1, :, :] = numpy.array([[[1, 1, 1],

 [0, 0, 0],

 [-1, -1, -1]]])

print("\n**Working with conv layer 1**")

l1_feature_map = conv(img, l1_filter)

print("\n**ReLU**")

l1_feature_map_relu = relu(l1_feature_map)

print("\n**Pooling**")

l1_feature_map_relu_pool = pooling(l1_feature_map_relu, 2, 2)

print("**End of conv layer 1**\n")

Second conv layer

l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 2**")

l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)

print("\n**ReLU**")

l2_feature_map_relu = relu(l2_feature_map)

print("\n**Pooling**")

l2_feature_map_relu_pool = pooling(l2_feature_map_relu, 2, 2)

print("**End of conv layer 2**\n")

Third conv layer

l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])

print("\n**Working with conv layer 3**")

l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)

print("\n**ReLU**")

l3_feature_map_relu = relu(l3_feature_map)

print("\n**Pooling**")

l3_feature_map_relu_pool = pooling(l3_feature_map_relu, 2, 2)

print("**End of conv layer 3**\n")

Graphing results

fig0, ax0 = matplotlib.pyplot.subplots(nrows=1, ncols=1)

ax0.imshow(img).set_cmap("gray")

ax0.set_title("Input Image")

Chapter 5 Convolutional neural networks

225

ax0.get_xaxis().set_ticks([])

ax0.get_yaxis().set_ticks([])

matplotlib.pyplot.savefig("in_img.png", bbox_inches="tight")

matplotlib.pyplot.close(fig0)

Layer 1

fig1, ax1 = matplotlib.pyplot.subplots(nrows=3, ncols=2)

ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")

ax1[0, 0].get_xaxis().set_ticks([])

ax1[0, 0].get_yaxis().set_ticks([])

ax1[0, 0].set_title("L1-Map1")

ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")

ax1[0, 1].get_xaxis().set_ticks([])

ax1[0, 1].get_yaxis().set_ticks([])

ax1[0, 1].set_title("L1-Map2")

ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")

ax1[1, 0].get_xaxis().set_ticks([])

ax1[1, 0].get_yaxis().set_ticks([])

ax1[1, 0].set_title("L1-Map1ReLU")

ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")

ax1[1, 1].get_xaxis().set_ticks([])

ax1[1, 1].get_yaxis().set_ticks([])

ax1[1, 1].set_title("L1-Map2ReLU")

ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax1[2, 0].get_xaxis().set_ticks([])

ax1[2, 0].get_yaxis().set_ticks([])

ax1[2, 0].set_title("L1-Map1ReLUPool")

ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")

ax1[2, 0].get_xaxis().set_ticks([])

ax1[2, 0].get_yaxis().set_ticks([])

ax1[2, 1].set_title("L1-Map2ReLUPool")

matplotlib.pyplot.savefig("L1.png", bbox_inches="tight")

matplotlib.pyplot.close(fig1)

Chapter 5 Convolutional neural networks

226

Layer 2

fig2, ax2 = matplotlib.pyplot.subplots(nrows=3, ncols=3)

ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")

ax2[0, 0].get_xaxis().set_ticks([])

ax2[0, 0].get_yaxis().set_ticks([])

ax2[0, 0].set_title("L2-Map1")

ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")

ax2[0, 1].get_xaxis().set_ticks([])

ax2[0, 1].get_yaxis().set_ticks([])

ax2[0, 1].set_title("L2-Map2")

ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")

ax2[0, 2].get_xaxis().set_ticks([])

ax2[0, 2].get_yaxis().set_ticks([])

ax2[0, 2].set_title("L2-Map3")

ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")

ax2[1, 0].get_xaxis().set_ticks([])

ax2[1, 0].get_yaxis().set_ticks([])

ax2[1, 0].set_title("L2-Map1ReLU")

ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")

ax2[1, 1].get_xaxis().set_ticks([])

ax2[1, 1].get_yaxis().set_ticks([])

ax2[1, 1].set_title("L2-Map2ReLU")

ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")

ax2[1, 2].get_xaxis().set_ticks([])

ax2[1, 2].get_yaxis().set_ticks([])

ax2[1, 2].set_title("L2-Map3ReLU")

ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax2[2, 0].get_xaxis().set_ticks([])

ax2[2, 0].get_yaxis().set_ticks([])

ax2[2, 0].set_title("L2-Map1ReLUPool")

ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")

ax2[2, 1].get_xaxis().set_ticks([])

Chapter 5 Convolutional neural networks

227

ax2[2, 1].get_yaxis().set_ticks([])

ax2[2, 1].set_title("L2-Map2ReLUPool")

ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")

ax2[2, 2].get_xaxis().set_ticks([])

ax2[2, 2].get_yaxis().set_ticks([])

ax2[2, 2].set_title("L2-Map3ReLUPool")

matplotlib.pyplot.savefig("L2.png", bbox_inches="tight")

matplotlib.pyplot.close(fig2)

Layer 3

fig3, ax3 = matplotlib.pyplot.subplots(nrows=1, ncols=3)

ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")

ax3[0].get_xaxis().set_ticks([])

ax3[0].get_yaxis().set_ticks([])

ax3[0].set_title("L3-Map1")

ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")

ax3[1].get_xaxis().set_ticks([])

ax3[1].get_yaxis().set_ticks([])

ax3[1].set_title("L3-Map1ReLU")

ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax3[2].get_xaxis().set_ticks([])

ax3[2].get_yaxis().set_ticks([])

ax3[2].set_title("L3-Map1ReLUPool")

There are more layers available in CNN, and it is easy to add them to the preceding

layers. For example, a dropout layer could be implemented by dropping a percentage of

the neurons in the last layer. An FC layer is just converting the results of the last layer into

a 1D vector.

Now that the chapter is complete, it is expected that you have good background

information about CNN.

Chapter 5 Convolutional neural networks

229
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_6

CHAPTER 6

TensorFlow Recognition
Application
Building a DL model such as CNN from scratch using NumPy as we did helps us have a

better understanding of how each layer works in detail. For practical applications, it is

not recommended to use such implementation. One reason is that it is computationally

intensive in its calculations and needs efforts to optimize the code. Another is that it does

not support distributed processing, GPUs, and many more features. On the other hand,

there are different already existing libraries that support these features in a time-efficient

manner. These libraries include TF, Keras, Theano, PyTorch, Caffe, and more.

This chapter starts with introducing the TF DL library from scratch by building and

visualizing the computational graph for a simple linear model and a two-class classifier

using ANN. The computational graph is visualized using TensorBoard (TB). Using

TF-Layers API, a CNN model is created to apply the concepts previously discussed for

recognizing images from the CIFAR10 dataset.

 Introduction to TF
There are different programming paradigms or styles for building software programs.

They include sequential, which builds the programs as a set of sequential lines that

the program follows from the beginning until the end; functional, which organizes the

code into a set of functions that can be called multiple times; imperative, which tells

the computer about every detailed step about how the program works; and more. One

programming language might support different paradigms. But these paradigms have

the disadvantage of being dependent on the language being written in.

230

Another paradigm is dataflow. Dataflow languages represent their programs as text

instructions that describe computational steps from receiving the data until returning

the results. A dataflow program could be visualized as a graph that shows the operations

in addition to their inputs and outputs. Dataflow languages support parallel processing

because it is much easier to deduce the independent operations that could be executed

at the same time.

The name “TensorFlow” consists of two words. The first is “tensor,” which is the data

unit that TF uses in its computations. The second word is “flow,” reflecting that it uses

the dataflow paradigm. As a result, TF builds a computational graph that consists of

data represented as tensors and the operations applied to them. To make things easier

to understand, just remember that rather than using variables and methods, TF uses

tensors and operations.

Here are some advantages of using dataflow with TF:

• Parallelism: It is easier to identify the operations that can be

executed in parallel.

• Distributed Execution: The TF program can be partitioned across

multiple devices (CPUs, GPUs, and TF Processing Units [TPUs]).

TF itself handles the necessary work for communication and

cooperation between the devices.

• Portability: The dataflow graph is a language-independent

representation of the code of the model. The dataflow graph can be

created using Python, get saved, and then be restored in the C++

program.

TF provides multiple APIs; each supports a different level of control. The lowest-level

API is called TF Core, which gives the programmer the ability to control every piece of

code and have much better control over the created models.

But there are also a number of higher-level APIs in TF that make things easier by just

providing a simple interface for frequently used tasks, such as Estimators, TF-Layers, and

TF-Learn. All higher-level APIs are built on top of TF Core. For example, TF Estimators is

a high-level API in TF that creates models much easier than TF Core.

Chapter 6 tensorFlow reCognition appliCation

231

 Tensor
Tensor is the basic data unit in TF; it is similar to arrays in NumPy. Tensor consists of a

set of primitive data types, such as integer, floating point, character, and string, which are

shaped into an array.

A tensor has both rank and shape. Table 6-1 gives some tensor examples showing

their ranks and shapes.

Table 6-1. Ranks and Shapes of TF Tensors

Tensor Rank Shape

5 0 ()

[4, 8] 1 (2)

[[3, 1, 7], [1, 5, 2]] 2 (2,2)

[[[8, 3]], [[11, 9]]]] 2 (2,1,2)

The rank of a tensor is the number of dimensions. The tensor shape is similar to

NumPy array shape. The NumPy array shape returns the number of elements within

each dimension, and this is how tensor shape works. But tensor rank returns just the

number of dimensions, which is similar to the ndim property of a NumPy array. Tensor

rank is just a scalar value representing the number of dimensions in the tensor, while the

shape is a tuple such as (4, 3) representing an array with two dimensions, where the sizes

of these dimensions are 4 and 3, respectively.

Let’s get started in TF Core.

 TF Core
In order to create TF Core programs, there are two steps:

 1. Building the computational graph.

 2. Running the computational graph.

TF uses a dataflow graph to represent the computations in the program. After

specifying the sequence of computations, it gets executed within a TF session on local or

remote machines. Assume that Figure 6-1 represents a graph that has four operations, A,

B, C, and D, where the inputs are fed into operation A and then propagated to operation D.

Chapter 6 tensorFlow reCognition appliCation

232

It is possible for the graph to just execute a selected part of it, and it is not required to

run the complete graph. For example, by specifying that the target of session execution

is operation C, then the program will run until reaching the operation C result only. That

way will not execute operation D. Also, if operation B is the target, then operations C and

D will not get executed.

Figure 6-1. A graph with four operations

Working with TF Core API requires understanding of how dataflow graphs and

sessions work. Working with high-level APIs such as Estimators hides some of the

overhead from the user. But understanding how graphs and sessions work is useful for

understanding in turn how such high-level APIs are implemented.

 Dataflow Graph
A dataflow graph consists of nodes and edges. Nodes represent units of operation. Edges

represent inputs to and outputs from an operation node. For example, the method

tensorflow.matmul() accepts two input tensors, multiples them, and returns an output

tensor. The operation itself is represented with a single node connected to two edges,

one for each input tensor. There is also an edge that represents the output tensor. Later,

we will see how to build the computational graph using TB.

A special kind of node is the constant, which accepts zero tensors as input. The

output that the constant node returns is a value stored internally. Listing 6-1 creates a

single constant node of type float32 and prints it.

Listing 6-1. Constant Node

import tensorflow

tensor1 = tensorflow.constant(3.7, dtype=tensorflow.float32)

print(tensor1)

Chapter 6 tensorFlow reCognition appliCation

233

When printing the constant node, the result is

Tensor("Const:0", shape=(), dtype=float32)

Based on the output of the print statement, there are three things to note:

• The shape is (), which means that the tensor is of rank 0.

• The output tensor has a string equal to “Const:0”. This string is the

name of the tensor. The tensor name is an important property because

it is used to retrieve the tensor value from the graph. It is also the

label printed in the TF graph. The default name for constant tensors

is “Const”. The 0 appended to this string defines it as the first output

returned. There are some operations that return more than one

output. The first output is given 0, the second one is given 1, and so on.

• The print statement does not print the value 3.7 but prints the node

itself. The value will get printed only after evaluating the nodes.

 Tensor Names

There might be multiple constant tensors within the graph. For this reason, TF appends

the string “Const” with a number that identifies the constant among all constants in the

graph. Listing 6-2 gives an example of three constants and prints them.

Listing 6-2. Creating Three Constants

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32)

tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32)

print(tensor1)

print(tensor2)

print(tensor3)

Here is the result of the three print statements:

Tensor("Const:0", shape=(), dtype=float32)

Tensor("Const_1:0", shape=(2, 1), dtype=float32)

Tensor("Const_2:0", shape=(1, 2), dtype=float32)

Chapter 6 tensorFlow reCognition appliCation

234

The first tensor name is “Const:0”. To differentiate it from other tensors, the string

“Const” is appended by an underscore and a number. For example, the second tensor

name is “Const_1:0”. The number “1” is the identifier to that constant in the graph. But

we can change the name of a tensor by using the name attribute as in Listing 6-3.

Listing 6-3. Setting Names of the Tensors Using the Name Attribute

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32,

name"firstConstant")

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32,

name"secondConstant")

tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32,

name"thirdConstant")

print(tensor1)

print(tensor2)

print(tensor3)

The results of the three print statements are as follows:

Tensor("firstConstant:0", shape=(), dtype=float32)

Tensor("secondConstant:0", shape=(2, 1), dtype=float32)

Tensor("thirdConstant:0", shape=(1, 2), dtype=float32)

Because each tensor is given a unique name, there are no appended numbers to

the string. If the same value of the name attribute is used for more than one tensor,

the number will be used as in Listing 6-4. The first two tensors are given the value

myConstant and thus the second tensor is appended by a number “1”.

Listing 6-4. Two Tensors with the Same Value for the Name Attribute

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32,

name”myConstant”)

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32,

name”myConstant”)

Chapter 6 tensorFlow reCognition appliCation

235

tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32,

name"thirdConstant")

print(tensor1)

print(tensor2)

print(tensor3)

The results of Listing 6-4 are as follows:

Tensor("myConstant:0", shape=(), dtype=float32)

Tensor("myConstant_1:0", shape=(2, 1), dtype=float32)

Tensor("thirdConstant:0", shape=(1, 2), dtype=float32)

In Listing 6-5, the operation tensorflow.nn.top_k is used to return the largest K

values for a vector. In other words, this operation returns multiple values as outputs.

Based on the output string, the two outputs are given the string “TopKV2” but with a

different number after the colon. The first output is given number “0” and the second

output is given “1”.

Listing 6-5. Operation Returning Multiple Outputs

import tensorflow

aa = tensorflow.nn.top_k([1, 2, 3, 4], 2)

print(aa)

The print output is

TopKV2(values=<tf.Tensor 'TopKV2:0' shape=(2,) dtype=int32>, indices=<tf.

Tensor 'TopKV2:1' shape=(2,) dtype=int32>)

Up to this point, we have been able to print the tensor but not evaluate its result. Let’s

create a TF session for evaluating the operations.

 Creating a TF Session

TF uses the tensorflow.Session class to represent a connection between the client

program (typically a Python program) and the runtime environment. A tensorflow.

Session object provides access to devices in the local machine and to remote devices

using the distributed TF runtime environment. It also caches information about the

tensorflow.Graph so that we can efficiently rerun the same graph. Listing 6-6 creates

Chapter 6 tensorFlow reCognition appliCation

236

a TF session for evaluating the results of a single constant tensor. The tensor to be

evaluated is assigned to the fetches attribute.

The session is created and returned into a variable named sess. After running the

session using the tensorflow.Session.run() method to evaluate the tensor tensor1,

the result will be 3.7, which is the constant value. This method runs the tensorflow.

Operation and evaluates the tensorflow.Tensor. This method could accept more than

one tensor for evaluation by typing them in a list and assigning this list to the fetches

attribute.

Listing 6-6. Evaluating a Single Constant Tensor

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

sess = tensorflow.Session()

print(sess.run(fetches=tensor1))

sess.close()

As the tensorflow.Session owns physical resources such as CPUs, GPUs, and

network connections, it must free these resources after finishing execution. According

to Listing 6-6, we have to manually exit the session using the tensorflow.Session.

close() to free resources. There is also another way to create a session, in which it gets

closed automatically. This is by creating it using the with block as in Listing 6-7. When

the session is created within the with block, it will get closed automatically after getting

outside the block.

Listing 6-7. Creating a Session Using the With Block

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

with tensorflow.Session() as sess:

 print(sess.run(fetches=tensor1))

We can also specify more than one tensor in the tensorflow.Session.run() method

to get their outputs, as in Listing 6-8.

Chapter 6 tensorFlow reCognition appliCation

237

Listing 6-8. Evaluating More Than One Tensor

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

tensor2 = tensorflow.constant(value=[[0.5], [7]], dtype=tensorflow.float32)

tensor3 = tensorflow.constant(value=[[12, 9]], dtype=tensorflow.float32)

with tensorflow.Session() as sess:

 print(sess.run(fetches=[tensor1, tensor2, tensor3]))

Here are the outputs of the three evaluated tensors.

3.7

array([[0.5], [7.]], dtype=float32)

array([[12., 9.]], dtype=float32)

The previous examples just print the evaluated results for tensors. It is possible to

store such values and reuse them in the program. Listing 6-9 returns the evaluation

results in the results tensor.

Listing 6-9. Evaluating More Than One Tensor

import tensorflow

node1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

node2 = tensorflow.constant(value=7.7, dtype=tensorflow.float32)

node3 = tensorflow.constant(value=9.1, dtype=tensorflow.float32)

with tensorflow.Session() as sess:

 results = sess.run(fetches=[node1, node2, node3])

vIDX = 0

for value in results:

 print("Value ", vIDX, " : ", value)

 vIDX = vIDX + 1

Chapter 6 tensorFlow reCognition appliCation

238

Because there are three tensors to be evaluated, all three outputs will be stored into

the results tensor, which is a list. Using for loop, we can iterate and print each output

separately. The outputs are as follows:

Value 0 : 3.7

Value 1 : 7.7

Value 2 : 9.1

The previous examples just evaluated the value of constant tensors without applying

any operation. We can apply some operations over such tensors. Listing 6-10 creates two

tensors and adds them together using the tensorflow.add operation. This operation

accepts two tensors and adds them together. Both tensors must have the same data type

(i.e., dtype attribute). It returns a new tensor of the same type as the input tensors. Using

the + operator is identical to using the tensorflow.add() method.

Listing 6-10. Adding Two Tensors Using the tensorflow.add Operation

import tensorflow

tensor1 = tensorflow.constant(value=3.7, dtype=tensorflow.float32)

tensor2 = tensorflow.constant(value=7.7, dtype=tensorflow.float32)

add_op = tensorflow.add(tensor1, tensor2)

with tensorflow.Session() as sess:

 add_result = sess.run(fetches=[add_op])

print("Result of addition : ", add_result)

The output of the print statement is

Result of addition : [11.4]

In Figure 6-2, the graph of the program in Listing 6-10 is visualized using TB. Note

that all nodes and edges are given labels. These labels are the name of each tensor

and operation. The default values are used. Later in this chapter, we will learn how to

visualize graphs in TB.

Chapter 6 tensorFlow reCognition appliCation

239

The name of the operation is descriptive and reflects its job, but the names of the

tensors are not. We can change them to num1 and num2 and visualize the graph as in

Figure 6-3.

Figure 6-2. Visualization of the graph using TB

Figure 6-3. Changing the name of the tensors

 Parameterized Graph Using Placeholder

The previous graph is static because it uses constant tensors. It always accepts the same

inputs and generates the same output each time it gets evaluated. To be able to modify

the inputs each time the program runs, we can use tensorflow.placeholder. In other

words, for evaluating the same operation but using different inputs, you should use

tensorflow.placeholder. Note that placeholder can get its value changed only by

rerunning the graph.

The tensorflow.placeholderaccepts three arguments as follows:

• dtype: Data type of elements the tensor will accept.

• shape (Optional – default None): Shape of the array within the tensor.

If not specified, then you can feed the tensor with any shape.

• name (Optional – default None): Name for the operation.

It returns a tensor with these specifications.

We can modify the previous example in Listing 6-10 to use tensorflow.placeholder

as in Listing 6-11. When running the session previously, the tensorflow.Session.run()

accepts only the operations to be evaluated. When using placeholders, this method

will also accept the initial values of the placeholders in the feed_dict argument. The

feed_dict argument accepts the values as a dictionary that maps the name of each

placeholder to its value.

Chapter 6 tensorFlow reCognition appliCation

240

Listing 6-11. Parameterized Graph Using a Placeholder

import tensorflow

tensor1 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(),

name="num1")

tensor2 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(),

name="num2")

add_op = tensorflow.add(tensor1, tensor2, name="Add_Op")

with tensorflow.Session() as sess:

 add_result = sess.run(fetches=[add_op], feed_dict={tensor1: 3.7,

tensor2: 7.7})

print("Result of addition : ", add_result)

Assigning the placeholders the same values used by the constants in Listing 6-10, the

same result will be returned. The benefit of using placeholders is that their values can be

changed even within the program, but constants cannot be changed once created.

After using a third placeholder and a multiply operation, Listing 6-12 runs the

session multiple times with different values for placeholders. It uses a for loop iterating

through a list of five numbers returned by the range() native Python function. Values of

all tensors are set equal to the list values, one value at each iteration. Values of the first

two tensors are added using the tensorflow.add operation. The result of the addition

is returned into the add_op tensor. Its value is then multiplied by the third tensor using

the tensorflow.multiply operation. The multiplication result is returned in the mul_op

tensor. Using the * operator is identical to using the tensorflow.add() method. The

fetches argument in Listing 6-11 is a set of add_op compared to mul_op in Listing 6-12.

Listing 6-12. Running the Session for Different Values for the Placeholders

import tensorflow

tensor1 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(),

name="num1")

tensor2 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(),

name="num2")

tensor3 = tensorflow.placeholder(dtype=tensorflow.float32, shape=(),

name="num3")

Chapter 6 tensorFlow reCognition appliCation

241

add_op = tensorflow.add(tensor1, tensor2, name="Add_Op")

mul_op = tensorflow.multiply(add_op, tensor3, name="Add_Op")

with tensorflow.Session() as sess:

 for num in range(5):

result = sess.run(fetches=[mul_op], feed_dict={tensor1: num, tensor2: num,

tensor3: num})

 print("Result at iteration ", num, " : ", result)

The output of the print statement is as follows:

Result at iteration 0 : [0.0]

Result at iteration 1 : [2.0]

Result at iteration 2 : [8.0]

Result at iteration 3 : [18.0]

Result at iteration 4 : [32.0]

A visualization of the previous graph is given in Figure 6-4. Note that all operations

and tensors are renamed. The first two tensors num1 and num2 are connected with the

first operation Add_Op. The result of this operation is used as input, with the third tensor

num3 as input to the second operation Mul_Op.

Figure 6-4. Visualization of the graph in Listing 6-12 using TB

Chapter 6 tensorFlow reCognition appliCation

242

The mul_op tensor is selected to be a member of the fetches list in Listing 6-12.

Why not just select just add_op? The answer is that the last tensor in the graph chain is

selected for evaluation. Evaluating mul_op will implicitly evaluate all other tensors in the

graph. If “add_op” is selected for evaluation, then mul_op will not be evaluated because

add_op doesn’t depend on mul_op, and we have nothing to do for evaluating it. But

mul_op is what depends on add_mul and all other tensors. Thus, mul_op is selected for

evaluation. Remember that it is possible to use more than one tensor for evaluation.

 TF Variables

Placeholders are used to allocate memory for future use. Their main use is for feeding

input data for a model to get trained with. If the same operation is to be applied for

different input data, then place the input data into a placeholder and run the session by

assigning different values to the placeholder.

Placeholders are not initialized and their value is assigned only during runtime;

in other words, only after calling the tensorflow.Session.run() are the placeholders

assigned values. A placeholder allows the creation of an unconstrained shape tensor,

which makes it suitable for use to hold the training data.

Suppose that you want to assign the training data to the placeholder and you just

know that each sample gets described by 35 features. We have not decided yet how many

samples to use for training. We can create a placeholder that accepts a tensor with an

unspecified number of samples but a specific number of features (columns) per sample

as follows:

data_tensor = tensorflow.placeholder(dtype=tensorflow.float16,

shape=[None, 35])

The placeholder just accepts the value and cannot get changed after being assigned.

Remember that in Listing 6-12 we changed the value of the placeholders only by

rebuilding the graph with the new values. In the same graph, it is not possible to change

the placeholder value.

ML models have a number of trainable parameters that are changed multiple times

until reaching their best values. How do we allow a tensor to change its values multiple

times? This is not provided by constants and placeholders, but by variables (tensorflow.

Variable()).

TF variables are identical to the normal variables used in other languages. They

are assigned initial values, and such a value can be updated during the execution of

Chapter 6 tensorFlow reCognition appliCation

243

the program based on the operations applied to it. A placeholder doesn’t allow data

modifications once assigned during execution time.

Constant tensors have their values initialized once the tensorflow.constant() is called,

but variables won’t be initialized after calling tensorflow.Variable(). There is an easy way

to initialize all global variables within the program by running the tensorflow.global_

variables_initializer() operation within the session. Note that initializing the variable

does not mean it is evaluated. The variable needs to be evaluated after being initialized.

Listing 6-13 gives an example of creating a single variable named “Var1” where its value

is initialized, then the variable is evaluated, and finally, its value is printed.

Listing 6-13. Creating, Initializing, and Evaluating the Variable

import tensorflow

var1 = tensorflow.Variable(initial_value=5.8, dtype=tensorflow.float32,

name="Var1")

with tensorflow.Session() as sess:

 init = tensorflow.global_variables_initializer()

 sess.run(fetches=init)

 var_value = sess.run(fetches=var1)

 print("Variable value : ", var_value)

The print statement will return:

Variable value :5.8

Note that there are two runs to the session: the first for initializing all variables and

the second for evaluating the variable. Remember that placeholder is a function but

variable is a class, and thus its name starts with uppercase.

Variables can be initialized by a tensor of any type and shape. The type and shape of

this tensor will define the type and shape of the variable, which cannot be changed. The

variable value can be changed. Working with a distributed environment, variables can be

stored once and get shared across all devices. They have a state that helps in debugging.

Moreover, the variable value can be saved and restored when required.

Chapter 6 tensorFlow reCognition appliCation

244

 Variable Initialization

There are different ways to initialize a variable. All variable initialization methods have

can set both the shape and data type of the variable. One way is by using the initial value

of a previously initialized variable. For example, the variable named “Var1” in Listing 6-13

is initialized by a rank 0 tensor of value 5.8. This initialized variable can be used to

initialize other variables. Note that the initial value of a variable can be returned using

the initialized_value() method of the tensorflow.Variable class. The initial value can

be assigned to another variable as in the following. The variable “var3” is initialized by

multiplying the initial value of “var1” by 5.

var2 = tensorflow.Variable(initial_value=var1.initialized_value(),

dtype=tensorflow.float32)

var3 = tensorflow.Variable(initial_value=var1.initialized_value()*5,

dtype=tensorflow.float32)

A variable can be initialized based on another tensor created by one of the build-

in operations in TF. There are different operations to generate tensors, including the

following:

• tensorflow.lin_space(start, stop, num, name=None)

• tensorflow.range(start, limit=None, delta=1, dtype=None,

name='range')

• tensorflow.zeros(shape, dtype=tf.float32, name=None)

• tensorflow.ones(shape, dtype=tf.float32, name=None)

• tensorflow.constant(value, dtype=None, shape=None, name='Const',

verify_shape=False)

They have the same meaning as their corresponding methods in NumPy. All of

these operations return the tensor of the specified data type and shape. For example, we

can create a tensorflow.Variable() whose values are initialized using tensorflow.zeros(),

which returns a 1D row vector with 12 elements as follows:

var1 = tensorflow.Variable(tensorflow.zeros([12]))

Chapter 6 tensorFlow reCognition appliCation

245

 Graph Visualization Using TB
TF is designed to work with deep models trained with large amounts of data. TF supports

a suite of visualization tools called TB to help to optimize and to debug TF programs

easier. The computational dataflow graph is visualized as a set of nodes representing the

operations, which are connected together with edges representing the input and output

tensors.

Here are the summarized steps for visualizing a simple graph using TB:

 1. Build the dataflow graph.

 2. Write the graph in a directory using tensorflow.summary.

FileWriter.

 3. Launch TB within the directory of the saved graph.

 4. Access TB from a web browser.

 5. Visualize the graph.

Let’s use the code in Listing 6-14 for visualization. This code creates six variables that

are fed into nine operations. After writing the instructions for building the graph, next is

to save it using FileWriter. The tensorflow.summary.FileWriter() constructor accepts two

important arguments: “graph” and “logdir”. The “graph” argument accepts the session

graph, which is returned by “sess.graph” assuming that the session variable is named

“sess”. The graph is exported into the directory specified using the “logdir” argument.

Change the “logdir” to match your system. Note that we do not have to initialize the

variables nor run the session because our target is not to execute the graph but just to

visualize it.

Listing 6-14. Saving Dataflow Graph for Visualization Using TB

import tensorflow

tensor1 = tensorflow.Variable(initial_value=4, dtype=tensorflow.float32,

name="Var1")

tensor2 = tensorflow.Variable(initial_value=15, dtype=tensorflow.float32,

name="Var2")

tensor3 = tensorflow.Variable(initial_value=-2, dtype=tensorflow.float32,

name="Var3")

Chapter 6 tensorFlow reCognition appliCation

246

tensor4 = tensorflow.Variable(initial_value=1.8, dtype=tensorflow.float32,

name="Var4")

tensor5 = tensorflow.Variable(initial_value=14, dtype=tensorflow.float32,

name="Var5")

tensor6 = tensorflow.Variable(initial_value=8, dtype=tensorflow.float32,

name="Var6")

op1 = tensorflow.add(x=tensor1, y=tensor2, name="Add_Op1")

op2 = tensorflow.subtract(x=op1, y=tensor1, name="Subt_Op1")

op3 = tensorflow.divide(x=op2, y=tensor3, name="Divide_Op1")

op4 = tensorflow.multiply(x=op3, y=tensor4, name="Mul_Op1")

op5 = tensorflow.multiply(x=op4, y=op1, name="Mul_Op2")

op6 = tensorflow.add(x=op5, y=2, name="Add_Op2")

op7 = tensorflow.subtract(x=op6, y=op2, name="Subt_Op2")

op8 = tensorflow.multiply(x=op7, y=tensor6, name="Mul_Op3")

op9 = tensorflow.multiply(x=op8, y=tensor5, name="Mul_Op4")

with tensorflow.Session() as sess:

 writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

 writer.close()

After exporting the graph, the next step is to launch TB to access the graph.

Launching TB differs a bit based on whether TF is installed in a separate virtual

environment (venv) or as a regular library within the site-packages directory.

If it is installed into a venv, then TF must be activated using the activate.bat file

located under the Scripts directory of the Python installation. Assuming that the Scripts

directory is added to either the user or system PATH variable environment and the

venv folder is named “tensorflow”, then TF will be activated according to the following

command:

activate tensorflow

After activating TF, next is to launch TB into the directory at which the graph is saved

according to this command:

tensorBoard --logdir=\\AhmedGad\\TensorBoard\\

Chapter 6 tensorFlow reCognition appliCation

247

In case the TF is installed within the site-packages directory, then it can be activated

by issuing this command:

python -m tensorboard.main --logdir="\\AhmedGad\\TensorBoard\\"

This will activate TB, and we will then be ready to visualize the graph by navigating to

“http://localhost:6006” from a web browser. The graph is shown in Figure 6-5. It is easier

to debug the graph in this case. For example, an isolated node that is not connected to

any other node of the graph is easily detected in the graph than the code.

Figure 6-5. Visualization of a dataflow graph using TB

Chapter 6 tensorFlow reCognition appliCation

248

 Linear Model
A linear model has the general form in Equation 6-1. There are n input variables xn, and

each variable is assigned a weight wn for a total of n weights. A bias b is added to the SOP

of each input and its corresponding bias.

 y = w1x1+w2x2+…+wnxn+b (Equation 6-1)

For a simple linear model, there are input data, weights, and biases. Which is

the most suitable option between placeholders and variables to hold each of these?

Generally, the placeholder is used when applying the same operation multiple times

over different inputs. The inputs will be assigned for the placeholder one by one and

the operation will get applied to each one. Variables are used for storing trainable

parameters. As a result, the input data is to be assigned to a placeholder, but weights and

biases are stored in variables. Remember to use tensorflow.global_variables_initializer()

for initializing the variables.

The code that prepares the placeholder and the two variables is given in Listing 6-15.

The input samples have just one input x1 and one output y. The placeholder “data_input_

placeholder” represents the input, and the placeholder “data_output_placeholder”

represents the output.

Because there is only one input variable per sample, there will be a single weight w1.

The weight is represented as the “weight_variable” variable and assigned an initial value

of 0.2. The bias, represented as the “bias_variable” variable, is assigned an initial value

of 0.1. Note that the placeholder is assigned a value inside the tensorflow.Session.run()

method using the “feed_dict” argument. The input placeholder is assigned 2.0 and the

output placeholder is assigned 5.0. The visualization of the graph is in Figure 6-6.

Note that the “fetches” argument of the run() method is set to a list of three elements:

“loss”, “error”, and “output”. The “loss” tensor representing the loss function is fetched

because it is the target tensor in the graph. All other tensors will be evaluated once it is

evaluated. The “error” and “output” tensors are fetched just to print the prediction error

in addition to the predicted output as in the print statement at the end of the code.

Note the difference between the tensors “error” and “loss”. The “error” tensor

calculates the square error between the predicted and desired outputs for each sample.

To just summarize all errors in a single value, the tensor “loss” is used. It calculates the

summation of all square errors.

Chapter 6 tensorFlow reCognition appliCation

249

Listing 6-15. Preparing Inputs, Weight, and Bias for a Linear Model

import tensorflow

data_input_placeholder = tensorflow.placeholder(dtype=tensorflow.float32,

name="DataInput")

data_output_placeholder = tensorflow.placeholder(dtype=tensorflow.float32,

name="DataOutput")

weight_variable = tensorflow.Variable(initial_value=0.1, dtype=tensorflow.

float32, name="Weight")

bias_variable = tensorflow.Variable(initial_value=0.2, dtype=tensorflow.

float32, name="Bias")

output = tensorflow.multiply(x=data_input_placeholder, y=weight_variable)

output = tensorflow.add(x=output, y=bias_variable)

diff = tensorflow.subtract(x=output, y=data_output_placeholder,

name="Diff")

error = tensorflow.square(x=diff, name="PredictError")

loss = tensorflow.reduce_sum(input_tensor=error, name="Loss")

with tensorflow.Session() as sess:

 writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

 init = tensorflow.global_variables_initializer()

 sess.run(fetches=init)

loss, predict_error, predicted_output = sess.run(fetches=[loss, error,

output], feed_dict={data_input_placeholder: 2.0,data_output_placeholder:

5.0})

 print("Loss : ", loss, "\nPredicted output : ", predicted_output,"\

nPrediction error : ", predict_error)

 writer.close()

Based on the values assigned to the placeholders and the variables, the output of the

print message is as follows:

Loss : 21.16

Predicted output : 0.4

Prediction error : 21.16

Chapter 6 tensorFlow reCognition appliCation

250

The predicted output is 0.4 and the desired output is 5.0. There is an error equal to

21.16. There is only one value returned in the fetched tensors because the program is

working with just one sample. Also, the loss value is equal to the error value because

there is just one sample. We can run the program for multiple samples.

Figure 6-6. Visualization of a dataflow graph of a linear model with one input

Rather than assigning just a single value to the placeholder “data_input_placeholder”,

we can assign multiple values enclosed in a list. This also applies to the “data_output_

placeholder” placeholder. Note that they must have identical shapes. The modified

program after using two samples is in Listing 6-16. The print message is as follows:

Loss : 51.41

Predicted output : [0.4 0.5]

Prediction error : [21.16 30.25]

Chapter 6 tensorFlow reCognition appliCation

251

This means the prediction errors are 21.16 and 30.25 for the first and second

samples, respectively. The sum of all square errors is 51.41. Because there is a high value

for the loss function, we have to update the parameters (weights and bias) in order to

minimize the prediction error.

Listing 6-16. Running the TF Program for Multiple Samples

import tensorflow

data_input_placeholder = tensorflow.placeholder(dtype=tensorflow.float32,

name="DataInput")

data_output_placeholder = tensorflow.placeholder(dtype=tensorflow.float32,

name="DataOutput")

weight_variable = tensorflow.Variable(initial_value=0.1, dtype=tensorflow.

float32, name="Weight")

bias_variable = tensorflow.Variable(initial_value=0.2, dtype=tensorflow.

float32, name="Bias")

output = tensorflow.multiply(x=data_input_placeholder, y=weight_variable)

output = tensorflow.add(x=output, y=bias_variable)

diff = tensorflow.subtract(x=output, y=data_output_placeholder,

name="Diff")

error = tensorflow.square(x=diff, name="PredictError")

loss = tensorflow.reduce_sum(input_tensor=error, name="Loss")

with tensorflow.Session() as sess:

 init = tensorflow.global_variables_initializer()

 sess.run(fetches=init)

loss, predict_error, predicted_output = sess.run(fetches=[loss, error,

output], feed_dict={data_input_placeholder: [2.0, 3.0],data_output_

placeholder: [5.0, 6.0]})

 print("Loss : ", loss, "\nPredicted output : ", predicted_output,

"\nPrediction error : ", predict_error)

Currently, there is no way to update the parameters. A number of optimizers already

exist in TF for doing that job.

Chapter 6 tensorFlow reCognition appliCation

252

 GD Optimizer from TF Train API

There are a number of optimizers that TF provides for optimizing model parameters

automatically. GD is an example that changes the values of each parameter slowly until

reaching the value that minimizes the loss. GD modifies each variable according to the

magnitude of the derivative of loss with respect to the variable. This is identical to what is

discussed in Chapter 3 in the backward pass of training ANN. The “tensorflow.train” API

has a class called “GradientDescentOptimizer” that can both calculate the derivatives

and optimize the parameters. The program after using “GradientDescentOptimizer” is in

Listing 6-17.

Listing 6-17. Using GD for Optimizing the Model Parameters

import tensorflow

data_input_placeholder = tensorflow.placeholder(dtype=tensorflow.float32,

name="DataInput")

data_output_placeholder = tensorflow.placeholder(dtype=tensorflow.float32,

name="DataOutput")

weight_variable = tensorflow.Variable(initial_value=0.1, dtype=tensorflow.

float32, name="Weight")

bias_variable = tensorflow.Variable(initial_value=0.2, dtype=tensorflow.

float32, name="Bias")

output = tensorflow.multiply(x=data_input_placeholder, y=weight_variable,

name="Multiply")

output = tensorflow.add(x=output, y=bias_variable, name="Add")

diff = tensorflow.subtract(x=output, y=data_output_placeholder,

name="Diff")

error = tensorflow.square(x=diff, name="PredictError")

loss = tensorflow.reduce_sum(input_tensor=error, name="Loss")

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.01,

name="Optimizer")

minimizer = train_optim.minimize(loss=loss, name="Minimizer")

with tensorflow.Session() as sess:

Chapter 6 tensorFlow reCognition appliCation

253

 writer = tensorflow.summary.FileWriter(graph=sess.graph, logdir=

"\\AhmedGad\\TensorBoard\\")

 init = tensorflow.global_variables_initializer()

 sess.run(fetches=init)

 for k in range(1000):

 _, data_loss, predict_error, predicted_output = sess.

run(fetches=[minimizer,loss, error, output], feed_dict={data_input_

placeholder: [1.0, 2.0],data_output_placeholder: [5.0, 6.0]})

 print("Loss : ", data_loss,"\nPredicted output : ", predicted_output,

"\nPrediction error : ", predict_error)

 writer.close()

The program uses a loop that iterates through 1,000 iterations. For each iteration, the

current parameters are used for predicting the outputs, the loss is calculated, and the

GD optimizer updates the parameters to minimize the loss. Note that the “minimize()”

operation returns an operation that minimizes the loss.

After the end of the iterations, the print statement is executed. Here are its outputs:

Loss : 0.00323573

Predicted output : [4.951612 6.02990532]

Prediction error : [0.0023414 0.00089433]

Thanks to GD, the loss is reduced from 51.41 to just 0.0032. The graph of the previous

program in Listing 6-17 is available in Figure 6-7.

Chapter 6 tensorFlow reCognition appliCation

254

 Locating Parameters to Optimize

An important question now arises: How does the optimizer know the parameters to

change their values? Let’s see how it knows that.

After running the session, the “minimizer” operation will be executed. TF will follow

the chain of graph nodes to evaluate such an operation. TF found that the “minimizer”

operation depends on a single argument, which is the “loss” tensor. Thus, our goal is

Figure 6-7. Dataflow graph of a linear model optimized using GD

Chapter 6 tensorFlow reCognition appliCation

255

to minimize the value of such a tensor. How can we minimize that tensor? We have to

follow the graph back.

The “loss” tensor is evaluated using the “tensorflow.reduce_sum()” operation. As a

result, our goal is to minimize the result of the “tensorflow.reduce_sum()” operation.

Stepping back, this operation is evaluated using the “error” tensor. As a result,

our goal now is to minimize the “error” tensor. Stepping back again, we find that the

“error” tensor depends on the “tensorflow.square()” operation. As a result, we have to

minimize “tensorflow.square()” the operation. The input tensor to this operation is the

“diff” tensor. Thus, our goal is to minimize the “diff” tensor. Because the “diff” tensor

is the result of the “tensorflow.subtract()” operation, then our goal is to minimize this

operation.

Minimizing the “tensorflow.subtract()” asks us to minimize its input tensors, which

are “output” and “data_output_placeholder”. Looking at these two tensors, which one

can be modified? Only the variable tensors can be modified. Because “data_output_

placeholder” is not a variable but a placeholder, we can’t modify it. Thus, we have only

the “output” tensor to minimize in order to minimize the result.

The “output” tensor is calculated according to Equation 6-1. It has three inputs:

input, weight, and bias, which are represented by the tensors “data_input_placeholder”,

“weight_variable”, and “bias_variable”, respectively. Looking for these three tensors,

only “weight_variable” and “bias_variable” can be changed because they are variables.

Thus, finally we know that our goal is to minimize “weight_variable” and “bias_variable”

tensors.

In order to minimize the “tensorflow.train.GradientDescentOptimizer.minimize()”

operation, we have to change the values of the “weight_variable” and “bias_variable”

tensors. This is how TF deduced that to minimize the loss it should minimize the weight

and bias parameters.

 Building FFNN
In this section, two basic feed-forward ANNs (FFNNs) will be created for classification

using TF Core API. We will follow the same steps used previously to build an ANN using

NumPy but with changes.

Chapter 6 tensorFlow reCognition appliCation

256

The summarized steps are as follows:

 1. Reading the training data (inputs and outputs).

 2. Building the neural network layers and preparing their parameters

(weights, biases, and activation functions).

 3. Building a loss function to assess the prediction error.

 4. Create a training loop for training the network and updating its

parameters.

 5. Assessing the accuracy of the trained ANN using new unseen test

data.

We will start by building a single-layer FFANN.

 Linear Classification
Table 6-2 gives the data of the first classification problem. It is a binary classification

problem to classify the RGB colors into either red or blue based on the color channels

red, green, and blue.

Table 6-2. RGB Color Classification Problem

Class Red Green Blue

Red 255 0 0

248 80 68

Blue 0 9 255

67 15 210

According to Listing 6-18, two placeholders (“training_inputs” and “training_

outputs”) are created for holding the training data inputs and outputs. Their data type is

set to “float32” but they do not have a specific shape. The shape of the “training_inputs”

placeholder is N×3. What does that mean?

Regularly, placeholders are used to hold the training data of the model. The size of

the training data is not always fixed. There might be a change in the number of samples,

the number of features, or both. For example, we might train a model with 100 samples,

Chapter 6 tensorFlow reCognition appliCation

257

where each sample is represented by 15 features. The shape of the placeholder, in this

case, is 100×15. Assume that we later decided to change the number of training samples

to be 50. The shape of the placeholder must get changed to be 50×15.

Listing 6-18. Placeholders for the Training Data Inputs and Outputs

import tensorflow

training_inputs = tensorflow.placeholder(shape=[None, 3], dtype=tensorflow.

float32)

training_outputs = tensorflow.placeholder(shape=[None, 1],

dtype=tensorflow.float32)

To make life easier, TF supports creating placeholders of variable shape. The

placeholder shape is determined based on the data assigned to it. The shape might be

variable across all dimensions or for just some dimensions. If we decided to use 30 features

but had not decided on the number of training samples, then the shape is N×15, where N

is the number of samples. Feeding 20 samples to the placeholder, N will be set to 20. This

is the case for the two placeholders in Listing 6-18. To leave the placeholder generic for

holding any number of training samples, its shape is set to (None, 3). None means that this

dimension (representing the number of samples) does not have a static size.

After preparing the inputs and the outputs, the next step is to decide the network

architecture for preparing their parameters (weights and bias). Because the data is

simple, we could plot it. Listing 6-19 gives the code used to plot the data. Note that the

data has three dimensions, and thus the plot is 3D as in Figure 6-8.

Listing 6-19. 3D Scatter Plot of the Training Data

import matplotlib.pyplot

import mpl_toolkits.mplot3d

figure3D = matplotlib.pyplot.figure()

axis3D = mpl_toolkits.mplot3d.Axes3D(figure3D)

red = [255, 248, 0, 67]

green = [0, 80, 9, 15]

blue = [0, 68, 255, 210]

axis3D.scatter(red, green, blue, color="black")

axis3D.set_xlabel(xlabel="Red")

Chapter 6 tensorFlow reCognition appliCation

258

axis3D.set_ylabel(ylabel="Green")

axis3D.set_zlabel(zlabel="Blue")

matplotlib.pyplot.show()

Figure 6-8. 3D scatter plot of the training data

Based on Figure 6-8, it is obvious that the two classes can be separated linearly. The

two samples of the class red are located on the right of the plot, and the blue samples are

on the left. Knowing it is a linear problem guides us to not use any hidden layer. Thus,

the network architecture will just have input and output layers. Because each sample is

represented using three features, then the input layer will have just three inputs, one for

each feature. The network architecture is in Figure 6-9, where X0 = 1.0 is the bias input

and W0 is the bias. W1, W2, and W3 are the weights for the three inputs R (Red), G (Green),

and B (Blue).

Chapter 6 tensorFlow reCognition appliCation

259

Listing 6-20 prepares the variables holding these parameters. Because there are

three inputs and each input has a weight, the shape of the weights is 3×1 according to the

“weights” variable. The shape is 3×1 to make matrix multiplication between the inputs

and the weights valid. The input data of shape N×3 could be multiplied by the weights

of shape 3×1, and the result will be N×1. There is just one bias according to the “bias”

variable.

Listing 6-20. Preparing ANN Parameter Variables

import tensorflow

weights = tensorflow.Variable(initial_value=[[0.003], [0.001], [0.008]],

dtype=tensorflow.float32)

bias = tensorflow.Variable(initial_value=[0.001], dtype=tensorflow.float32)

After preparing the data, network architecture, and the parameters, next is to feed

the training input data into the network, predict their outputs, and calculate the loss

according to Listing 6-21. The input data matrix is multiplied by the weights vector

using the “matmul()” operation and the result is stored in the “sop” tensor. According

to Equation 6-1, the result of the multiplication is added to the bias. The result of the

addition is stored in the “sop_bias” tensor. The result is then applied to the sigmoid

function defined by the “tensorflow.nn.sigmoid()” operation and returned into the

“predictions” tensor.

Figure 6-9. ANN architecture for classifying RGB colors linearly

Chapter 6 tensorFlow reCognition appliCation

260

Listing 6-21. Using the Network Parameters to Predict the Outputs of the

Training Data

import tensorflow

sop = tensorflow.matmul(a=training_inputs, b=weights, name="SOPs")

sop_bias = tensorflow.add(x=sop, y=bias)

predictions = tensorflow.nn.sigmoid(x=sop_bias, name="Sigmoid")

error = tensorflow.subtract(x=training_outputs, y=predictions,

name="Error")

square_error = tensorflow.square(x=error, name="SquareError")

loss = tensorflow.reduce_sum(square_error, name="Loss")

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.05,

name="GradientDescent")

minimizer = train_op.minimize(loss, name="Minimizer")

After predicting the outputs, next is to measure the loss. At first, the difference

between the predicted and the correct outputs are calculated using the “subtract()”

operation, and the result is stored in the “error” tensor. The square of that error is then

calculated using the “square” tensor and the result is stored into the “square_error”

tensor. Finally, the squared errors are reduced into a single value by summing them all.

The result is stored into the “loss” tensor.

The loss is calculated to learn how we far we currently are from the optimal results

where the loss is 0. Based on the loss, the GD optimizer is initialized in the “train_optim”

tensor to update the network parameters in order to minimize the loss. The update

operation is returned into the “minimizer” tensor.

Up to this point, the network architecture is complete and ready for training using

the input and output data. Two Python lists are created in Listing 6-22 to hold the

training data inputs and outputs. Note that the red class label is “1.0” and the blue one is

“0.0”. The lists are assigned to the placeholders “training_inputs” and “training_outputs”

using the “feed_dict” argument inside the “tensorflow.Session.run()” operation. Note

that the target of execution is the “minimizer” operation. The session goes through a

number of iterations to update the ANN parameters.

Chapter 6 tensorFlow reCognition appliCation

261

Listing 6-22. Training Data Inputs and Outputs

training_inputs_data = [[255, 0, 0],

 [248, 80, 68],

 [0, 0, 255],

 [67, 15, 210]]

training_outputs_data = [[1.0],

 [1.0],

 [0.0],

 [0.0]]

with tensorflow.Session() as sess:

 init = tensorflow.global_variables_initializer()

 sess.run(init)

 for step in range(10):

 sess.run(fetches=minimizer, feed_dict={training_inputs: training_

inputs_data, training_outputs: training_outputs_data})

The complete code for building a single-layer ANN for classifying the two-class

problem in Table 6-2 is in Listing 6-23.

Listing 6-23. The Complete Code for Classifying the Two-Class RGB Color

Problem

import tensorflow

Preparing a placeholder for the training data inputs of shape (N, 3)

training_inputs = tensorflow.placeholder(shape=[None, 3], dtype=tensorflow.

float32, name="Inputs")

Preparing a placeholder for the training data outputs of shape (N, 1)

training_outputs = tensorflow.placeholder(shape=[None, 1],

dtype=tensorflow.float32, name="Outputs")

Initializing neural network weights of shape (3, 1)

weights = tensorflow.Variable(initial_value=[[0.003], [0.001], [0.008]],

dtype=tensorflow.float32, name="Weights")

Chapter 6 tensorFlow reCognition appliCation

262

Initializing the ANN bias

bias = tensorflow.Variable(initial_value=[0.001], dtype=tensorflow.float32,

name="Bias")

Calculating the SOPs by multiplying the weights matrix by the data inputs

matrix

sop = tensorflow.matmul(a=training_inputs, b=weights, name="SOPs")

Adding the bias to the SOPs

sop_bias = tensorflow.add(x=sop, y=bias, name="AddBias")

Sigmoid activation function of the output layer neuron

predictions = tensorflow.nn.sigmoid(x=sop_bias, name="Sigmoid")

Calculating the difference (error) between the ANN predictions and the

correct outputs

error = tensorflow.subtract(x=training_outputs, y=predictions,

name="Error")

Square error.

square_error = tensorflow.square(x=error, name="SquareError")

Measuring the prediction error of the network after being trained

loss = tensorflow.reduce_sum(square_error, name="Loss")

Minimizing the prediction error using gradient descent optimizer

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.05,

name="GradientDescent")

minimizer = train_optim.minimize(loss, name="Minimizer")

Training data inputs of shape (N, 3)

training_inputs_data = [[255, 0, 0],

 [248, 80, 68],

 [0, 0, 255],

 [67, 15, 210]]

Training data desired outputs

training_outputs_data = [[1.0],

 [1.0],

 [0.0],

 [0.0]]

Chapter 6 tensorFlow reCognition appliCation

263

Creating a TensorFlow Session

with tensorflow.Session() as sess:

 writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

 # Initializing the TensorFlow Variables (weights and bias)

 init = tensorflow.global_variables_initializer()

 sess.run(init)

 # Training loop of the neural network

 for step in range(10):

 sess.run(fetches=minimizer, feed_dict={training_inputs: training_

inputs_data, training_outputs: training_outputs_data})

 # Class scores of training data

 print("Expected Outputs for Train Data:\n", sess.

run(fetches=[predictions, weights, bias], feed_dict={training_inputs:

training_inputs_data}))

 # Class scores of new test data

 print("Expected Outputs for Test Data:\n", sess.

run(fetches=predictions, feed_dict={training_inputs: [[230, 60, 76],

[93, 52, 180]]}))

 writer.close()

After all training iterations, the trained network is used to predict the output of

both the training samples and the two other unseen test samples. The following is the

output of the print statements at the end of Listing 6-23. The network is able to predict all

training and test samples correctly.

Expected Outputs for Train Data:

 [[1.]

 [1.]

 [0.]

 [0.]]

Expected Outputs for Test Data:

 [[1.]

 [0.]]

Chapter 6 tensorFlow reCognition appliCation

264

The weighs and bias after training the network are as follows:

Weights:[[1.90823114], [0.11530305], [-4.13670015]],

Bias: [-0.00771546].

Figure 6-10 visualizes the graph created in Listing 6-23.

Figure 6-10. Graph of ANN with a single layer

Chapter 6 tensorFlow reCognition appliCation

265

 Nonlinear Classification
Now we are going to build an ANN that simulates the operation of an XOR gate with two

inputs. The truth table for the problem is in Table 6-3. Because the problem is simple,

we can plot it as in Figure 6-11 to know whether the classes are linearly or nonlinearly

separable.

Figure 6-11. Graph of two-input XOR gate

Table 6-3. The Truth Table of Two-Input XOR Gate

Output A B

1 1 0

0 1

0 0 0

1 1

Based on the graph, it is obvious that the classes are nonlinearly separable. Thus, we

have to use hidden layers. According to the first example in section Designing ANN of

Chapter 3, we know that just a single hidden layer with two neurons is sufficient.

Chapter 6 tensorFlow reCognition appliCation

266

The network architecture is in Figure 6-12. That hidden layer accepts the inputs from

the input layer. Based on its weights and biases, its two activation functions will produce

two outputs. The outputs of the hidden layer will be regarded as the inputs to the output

layer. Using its activation function, the output layer produces the final expected class of

the input sample.

Figure 6-12. Network architecture for XOR gate with two inputs

The complete code is in Listing 6-24. There are some changes compared to the

previous example. The initial parameters are randomly generated using “tensorflow.

truncated_normal()” operation. The output tensor of the hidden layer “hidden_sigmoid”

is used as input to the output layer. The output tensor of the output layer is the predicted

outputs. The remaining code is similar to the previous example.

Listing 6-24. The Complete Code for ANN Simulating XOR Gate with Two Inputs

import tensorflow

Preparing a placeholder for the training data inputs of shape (N, 3)

training_inputs = tensorflow.placeholder(shape=[4, 2], dtype=tensorflow.

float32, name="Inputs")

Preparing a placeholder for the training data outputs of shape (N, 1)

training_outputs = tensorflow.placeholder(shape=[4, 1], dtype=tensorflow.

float32, name="Outputs")

Initializing the weights of the hidden layer of shape (2, 2)

hidden_weights = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(2,2), name="HiddenRandomWeights"), dtype=tensorflow.float32,

name="HiddenWeights")

Chapter 6 tensorFlow reCognition appliCation

267

Initializing the bias of the hidden layer of shape (1,2)

hidden_bias = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(1,2), name="HiddenRandomBias"), dtype=tensorflow.float32,

name="HiddenBias")

Calculating the SOPs by multiplying the weights matrix of the hidden

layer by the data inputs matrix

hidden_sop = tensorflow.matmul(a=training_inputs, b=hidden_weights,

name="HiddenSOPs")

Adding the bias to the SOPs of the hidden layer

hidden_sop_bias = tensorflow.add(x=hidden_sop, y=hidden_bias,

name="HiddenAddBias")

Sigmoid activation function of the hidden layer outputs

hidden_sigmoid = tensorflow.nn.sigmoid(x=hidden_sop_bias,

name="HiddenSigmoid")

Initializing the weights of the output layer of shape (2, 1)

output_weights = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(2,1), name="OutputRandomWeights"), dtype=tensorflow.float32,

name="OutputWeights")

Initializing the bias of the output layer of shape (1,1)

output_bias = tensorflow.Variable(initial_value=tensorflow.truncated_

normal(shape=(1,1), name="OutputRandomBias"), dtype=tensorflow.float32,

name="OutputBias")

Calculating the SOPs by multiplying the weights matrix of the hidden

layer by the outputs of the hidden layer

output_sop = tensorflow.matmul(a=hidden_sigmoid, b=output_weights,

name="Output_SOPs")

Adding the bias to the SOPs of the hidden layer

output_sop_bias = tensorflow.add(x=output_sop, y=output_bias,

name="OutputAddBias")

Sigmoid activation function of the output layer outputs. These are the

predictions.

Chapter 6 tensorFlow reCognition appliCation

268

predictions = tensorflow.nn.sigmoid(x=output_sop_bias,

name="OutputSigmoid")

Calculating the difference (error) between the ANN predictions and the

correct outputs

error = tensorflow.subtract(x=training_outputs, y=predictions,

name="Error")

Square error.

square_error = tensorflow.square(x=error, name="SquareError")

Measuring the prediction error of the network after being trained

loss = tensorflow.reduce_sum(square_error, name="Loss")

Minimizing the prediction error using gradient descent optimizer

train_optim = tensorflow.train.GradientDescentOptimizer(learning_rate=0.01,

name="GradientDescent")

minimizer = train_optim.minimize(loss, name="Minimizer")

Training data inputs of shape (4, 2)

training_inputs_data = [[1, 0],

 [0, 1],

 [0, 0],

 [1, 1]]

Training data desired outputs

training_outputs_data = [[1.0],

 [1.0],

 [0.0],

 [0.0]]

Creating a TensorFlow Session

with tensorflow.Session() as sess:

 writer = tensorflow.summary.FileWriter(logdir="\\AhmedGad\\

TensorBoard\\", graph=sess.graph)

 # Initializing the TensorFlow Variables (weights and bias)

 init = tensorflow.global_variables_initializer()

 sess.run(init)

Chapter 6 tensorFlow reCognition appliCation

269

 # Training loop of the neural network

 for step in range(100000):

 print(sess.run(fetches=minimizer, feed_dict={training_inputs:

training_inputs_data, training_outputs: training_outputs_data}))

 # Class scores of training data

 print("Expected Outputs for Train Data:\n", sess.

run(fetches=[predictions, hidden_weights, output_weights, hidden_bias,

output_bias], feed_dict={training_inputs: training_inputs_data}))

 writer.close()

After completing the training process, the samples are correctly classified. Here are

the predicted outputs:

[[0.96982265],

 [0.96998841],

 [0.0275135],

 [0.0380362]]

The parameters of the network after training are as follows:

• Hidden layer weights: [–6.27943468, –4.30125761], [–6.38489389,

–4.31706429]]

• Hidden layer bias: [[–8.8601017], [8.70441246]]

• Output layer weights: [[2.49879336, 6.37831974]]

• Output layer bias: [[–4.06760359]]

Figure 6-13 visualizes the graph of Listing 6-24.

Chapter 6 tensorFlow reCognition appliCation

270

 CIFAR10 Recognition Using CNN
The previous examples we discussed help us learn the basics of TF and build good

knowledge. This section extends this knowledge by using TF to build a CNN to recognize

images from the CIFAR10 dataset.

Figure 6-13. Graph of ANN simulating XOR gate with two inputs

Chapter 6 tensorFlow reCognition appliCation

271

 Preparing Training Data
The binary data of the CIFAR10 dataset is available for download for Python from this

page: www.cs.toronto.edu/~kriz/cifar.html. The dataset has 60,000 images split

into training and testing sets. There are five binary files containing the training data,

where each file has 10,000 images. The images are RGB of size 32×32×3. The training

files are named “data_batch_1”, “data_batch_2”, and so on. There is a single file for the

test data named “test_batch” with 10,000 images. A metadata file named “batches.meta”

is available, giving details about the dataset such as the class labels, which are airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Because each file in the dataset is binary, we have to decode it in order to retrieve

the actual image data. To do this job, a function called “unpickle_patch” is created, as

defined in Listing 6-25.

Listing 6-25. Decoding the CIFAR10 Binary Data

def unpickle_patch(file):

 patch_bin_file = open(file, 'rb')#Reading the binary file.

 patch_dict = pickle.load(patch_bin_file, encoding='bytes')#Loading the

details of the binary file into a dictionary.

 return patch_dict#Returning the dictionary.

The method accepts the binary file path and returns the details about this file into

the “patch_dict” dictionary. The dictionary has the image data for all 10,000 samples

within the file in addition to their class labels.

There are five training data files. In order to decode the entire training data, a new

function called “get_dataset_images” is created as in Listing 6-26. That function accepts

the dataset path and decodes the data of just the five training files. Firstly, it lists all files

under the dataset directory using the “os.listdir()” function. All file names are returned

into the “files_names” list.

Because all train and test files are located within the same directory, this function

filters the files under this path to just return the training files. The function uses an “if”

statement to just return files starting with “data_batch_” as it is discriminative to the train

file names. Note that the test data is prepared later after building and training the CNN.

Chapter 6 tensorFlow reCognition appliCation

http://www.cs.toronto.edu/~kriz/cifar.html

272

Listing 6-26. Decoding All Training Files

def get_dataset_images(dataset_path, im_dim=32, num_channels=3):

 num_files = 5#Number of training binary files in the CIFAR10 dataset.

 images_per_file = 10000#Number of samples within each binary file.

 files_names = os.listdir(patches_dir)#Listing the binary files in the

dataset path.

 dataset_array = numpy.zeros(shape=(num_files * images_per_file, im_dim,

im_dim, num_channels))

 dataset_labels = numpy.zeros(shape=(num_files * images_per_file),

dtype=numpy.uint8)

 index = 0#Index variable to count number of training binary files being

processed.

 for file_name in files_names:

 if file_name[0:len(file_name) - 1] == "data_batch_":

 print("Working on : ", file_name)

 data_dict = unpickle_patch(dataset_path+file_name)

 images_data = data_dict[b"data"]

 #Reshaping all samples in the current binary file to be of

32x32x3 shape.

 images_data_reshaped = numpy.reshape(images_data,

newshape=(len(images_data), im_dim, im_dim, num_channels))

 #Appending the data of the current file after being reshaped.

 dataset_array[index * images_per_file:(index + 1) * images_per_

file, :, :, :] = images_data_reshaped

 #Appending the labels of the current file.

 dataset_labels[index * images_per_file:(index + 1) * images_

per_file] = data_dict[b"labels"]

 index = index + 1#Incrementing the counter of the processed

training files by 1 to accept new file.

 return dataset_array, dataset_labels#Returning the training input data

and output labels.

Chapter 6 tensorFlow reCognition appliCation

273

Each training file is decoded by calling the “unpickle_patch” function, and its

image data and their labels are returned into the “data_dict” dictionary. There are five

training files, and thus there are five classes to such a function, where each call returns a

dictionary.

Based on the dictionary returned by this function, the “get_dataset_images” function

concatenates the details (image data and class labels) of all files into a NumPy array. The

image data could be retrieved from that dictionary using the “data” key and stored into

the “dataset_array” NumPy array, which stores all decoded images across all training

files. Class labels are retrieved using the “labels” key and returned into the “dataset_

labels” NumPy array, which stores all labels across all images in the training data. The

“dataset_array” and “dataset_labels” are returned by the function.

When decoded, the data of each image returns as a 1D vector of length

32×32×3=3,072 pixels. This vector should be reshaped of the original shape with three

dimensions. This is because CNN layers created in TF accepts the images of this shape.

For this reason, the “get_dataset_images” function has arguments for accepting the

size of each dimension for the dataset images. The first one is “im_dim” representing

the number of rows/columns (they are equal) in addition to the “num_channels”

representing the number of channels.

After preparing the training data, we can build and train the CNN model using TF.

 Building the CNN
The dataflow graph of the CNN is created inside a function called “create_CNN” as in

Listing 6-27. It creates a stack of convolution (conv), ReLU, max pooling, dropout, and FC

layers. The architecture of the CNN is illustrated in Figure 6-14. It has three conv-relu-

pool groups followed by a dropout layer and finally two FC layers.

Figure 6-14. CNN architecture

Chapter 6 tensorFlow reCognition appliCation

274

The function returns the results of the last FC layer. As regularly, the output of

each layer is the input to the next layer. This requires consistency between the sizes of

the outputs and inputs of neighboring layers. Note that for each conv, ReLU, and max

pooling layer, there are some parameters to get specified, such as strides across each

dimension and padding.

Listing 6-27. Building the CNN Structure

def create_CNN(input_data, num_classes, keep_prop):

 filters1, conv_layer1 = create_conv_layer(input_data=input_data,

filter_size=7, num_filters=4)

 relu_layer1 = tensorflow.nn.relu(conv_layer1)

 max_pooling_layer1 = tensorflow.nn.max_pool(value=relu_layer1,

 ksize=[1, 2, 2, 1],

 strides=[1, 1, 1, 1],

 padding="VALID")

 filters2, conv_layer2 = create_conv_layer(input_data=max_pooling_

layer1, filter_size=5, num_filters=3)

 relu_layer2 = tensorflow.nn.relu(conv_layer2)

 max_pooling_layer2 = tensorflow.nn.max_pool(value=relu_layer2,

 ksize=[1, 2, 2, 1],

 strides=[1, 1, 1, 1],

 padding="VALID")

 filters3, conv_layer3 = create_conv_layer(input_data=max_pooling_

layer2, filter_size=3, num_filters=2)

 relu_layer3 = tensorflow.nn.relu(conv_layer3)

 max_pooling_layer3 = tensorflow.nn.max_pool(value=relu_layer3,

 ksize=[1, 2, 2, 1],

 strides=[1, 1, 1, 1],

 padding="VALID")

 flattened_layer = dropout_flatten_layer(previous_layer=max_pooling_

layer3, keep_prop=keep_prop)

Chapter 6 tensorFlow reCognition appliCation

275

 fc_result1 = fc_layer(flattened_layer=flattened_layer, num_

inputs=flattened_layer.get_shape()[1:].num_elements(),

 num_outputs=200)

 fc_result2 = fc_layer(flattened_layer=fc_result1, num_inputs=fc_

result1.get_shape()[1:].num_elements(),

 num_outputs=num_classes)

 print("Fully connected layer results : ", fc_result2)

 return fc_result2#Returning the result of the last FC layer.

The first layer in the CNN works directly on the input data. Thus, the “create_CNN”

function accepts the input data as an input argument called “input_data”. This data is

what returned by the “get_dataset_images” function. The first layer is a convolution layer,

which is created using the “create_conv_layer” function according to Listing 6-28.

The “create_conv_layer” function accepts the input data, filter size, and the number

of filters. It returns the result of convolving the input data with the set of filters. The filters

in the set have their depth set according to the number of channels of the input data.

Because the number of channels is the last element in a NumPy array, index –1 is used to

return the number of channels. The set of filters are returned into the “filters” variable.

Listing 6-28. Building Convolution Layer

def create_conv_layer(input_data, filter_size, num_filters):

 filters = tensorflow.Variable(tensorflow.truncated_

normal(shape=(filter_size, filter_size, tensorflow.cast(input_data.

shape[-1], dtype=tensorflow.int32), num_filters), stddev=0.05))

 conv_layer = tensorflow.nn.conv2d(input=input_data,

 filter=filters,

 strides=[1, 1, 1, 1],

 padding="VALID")

 return filters, conv_layer#Returning the filters and the convolution

layer result.

The convolution layer is built by specifying the input data, filters, and strides along

each of the four dimensions, and the padding to the “tensorflow.nn.conv2D” operation.

A padding value of “VALID” means that some borders of the input image will be lost in

the result, based on the filter size.

Chapter 6 tensorFlow reCognition appliCation

276

The result of any conv layer is fed into a ReLU layer created using the “tensorflow.

nn.relu” operation. It accepts the conv layer output and returns a tensor of the same

number of features after applying the ReLU activation function. Remember that

activation functions help to create a nonlinear relationship between the inputs and the

outputs. The result of the ReLU layer is then fed to a max pooling layer created using

the “tensorflow.nn.max_pool” operation. Remember that the goal of pooling layers is to

make the recognition translation invariant.

The “create_CNN” function accepts an argument named “keep_prop” representing

the probability of keeping neurons in the dropout layer, which helps to avoid overfitting.

The dropout layer is implemented using the “dropout_flatten_layer” function, as in Listing

6-29. This function returns a flattened array that is used as the input to the FC layers.

Listing 6-29. Building Dropout Layer

def dropout_flatten_layer(previous_layer, keep_prop):

 dropout = tensorflow.nn.dropout(x=previous_layer, keep_prob=keep_prop)

 num_features = dropout.get_shape()[1:].num_elements()

 layer = tensorflow.reshape(previous_layer, shape=(-1, num_

features))#Flattening the results.

 return layer

Because the last FC layer should have a number of output neurons equal to the

number of dataset classes, the number of dataset classes is used as another input

argument named “num_classes” to the “create_CNN” function. The FC layer is created

using the “fc_layer” function, defined according to Listing 6-30. This function accepts

the flattened result of the dropout layer, the number of features in the flattened result,

and the number of output neurons from the FC layer. Based on the number of inputs

and outputs, a tensor named “fc_weights” represents the weights for the FC layer that is

created. It gets multiplied by the flattened layer to get the returned result of the FC layer.

Listing 6-30. Building FC Layer

def fc_layer(flattened_layer, num_inputs, num_outputs):

 fc_weights = tensorflow.Variable(tensorflow.truncated_

normal(shape=(num_inputs, num_outputs), stddev=0.05))

Chapter 6 tensorFlow reCognition appliCation

277

 fc_result1 = tensorflow.matmul(flattened_layer, fc_weights)

 return fc_result1#Output of the FC layer (result of matrix

multiplication).

The computational graph after being visualized using TB is shown in Figure 6-15.

Part a gives the architecture of the CNN until the final max pooling layer, while part b

shows the remaining steps.

Figure 6-15. Graph of the CNN used to classify the CIFAR10 dataset

Chapter 6 tensorFlow reCognition appliCation

278

 Training CNN
After building the computational graph of the CNN, next is to train it against the

previously prepared training data. The training is done according to Listing 6-31. The

code starts by preparing the path of the dataset and the data placeholders. Note that

the path should be changed to be suitable for your system. Then it calls the previously

discussed functions. The predictions of the trained CNN are used to measure the cost of

the network, which is to be minimized using the GD optimizer. Some of the tensors have

descriptive names to make it easier to retrieve them later when testing the CNN.

Listing 6-31. Training CNN

#Number of classes in the dataset. Used to specify the number of outputs in

the last fully connected layer.

num_dataset_classes = 10

#Number of rows & columns in each input image. The image is expected to be

rectangular Used to reshape the images and specify the input tensor shape.

im_dim = 32

#Number of channels in each input image. Used to reshape the images and

specify the input tensor shape.

num_channels = 3

#Directory at which the training binary files of the CIFAR10 dataset are

saved.

patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"

#Reading the CIFAR10 training binary files and returning the input data and

output labels. Output labels are used to test the CNN prediction accuracy.

dataset_array, dataset_labels = get_dataset_images(dataset_path=patches_

dir, im_dim=im_dim, num_channels=num_channels)

print("Size of data : ", dataset_array.shape)

Input tensor to hold the data read in the preceding. It is the entry

point of the computational graph.

The given name of 'data_tensor' is useful for retrieving it when

restoring the trained model graph for testing.

Chapter 6 tensorFlow reCognition appliCation

279

data_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None, im_

dim, im_dim, num_channels], name='data_tensor')

Tensor to hold the outputs label.

The name "label_tensor" is used for accessing the tensor when testing the

saved trained model after being restored.

label_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None],

name='label_tensor')

#The probability of dropping neurons in the dropout layer. It is given a

name for accessing it later.

keep_prop = tensorflow.Variable(initial_value=0.5, name="keep_prop")

#Building the CNN architecture and returning the last layer which is the

fully connected layer.

fc_result2 = create_CNN(input_data=data_tensor, num_classes=num_dataset_

classes, keep_prop=keep_prop)

Predictions propabilities of the CNN for each training sample.

Each sample has a probability for each of the 10 classes in the dataset.

Such a tensor is given a name for accessing it later.

softmax_propabilities = tensorflow.nn.softmax(fc_result2, name="softmax_

probs")

Predictions labels of the CNN for each training sample.

The input sample is classified as the class of the highest probability.

axis=1 indicates that maximum of values in the second axis is to be

returned. This returns that maximum class probability of each sample.

softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

#Cross entropy of the CNN based on its calculated propabilities.

cross_entropy = tensorflow.nn.softmax_cross_entropy_with_

logits(logits=tensorflow.reduce_max(input_tensor=softmax_propabilities,

reduction_indices=[1]), labels=label_tensor)

Chapter 6 tensorFlow reCognition appliCation

280

#Summarizing the cross entropy into a single value (cost) to be minimized

by the learning algorithm.

cost = tensorflow.reduce_mean(cross_entropy)

#Minimizing the network cost using the Gradient Descent optimizer with a

learning rate is 0.01.

error = tensorflow.train.GradientDescentOptimizer(learning_rate=.01).

minimize(cost)

#Creating a new TensorFlow Session to process the computational graph.

sess = tensorflow.Session()

#Writing summary of the graph to visualize it using TensorBoard.

tensorflow.summary.FileWriter(logdir="\\AhmedGad\\TensorBoard\\",

graph=sess.graph)

#Initializing the variables of the graph.

sess.run(tensorflow.global_variables_initializer())

Because it may be impossible to feed the complete data to the CNN on

normal machines, it is recommended to split the data into a number of

patches.

A subset of the training samples is used to create each path. Samples for

each path can be randomly selected.

num_patches = 5#Number of patches

for patch_num in numpy.arange(num_patches):

 print("Patch : ", str(patch_num))

 percent = 80 #percent of samples to be included in each path.

 #Getting the input-output data of the current path.

 shuffled_data, shuffled_labels = get_patch(data=dataset_array,

labels=dataset_labels, percent=percent)

 #Data required for cnn operation. 1)Input Images, 2)Output Labels, and

3)Dropout probability

 cnn_feed_dict = {data_tensor: shuffled_data,

 label_tensor: shuffled_labels,

 keep_prop: 0.5}

Chapter 6 tensorFlow reCognition appliCation

281

Training the CNN based on the current patch.

CNN error is used as input in the run to minimize it.

SoftMax predictions are returned to compute the classification accuracy.

 softmax_predictions_, _ = sess.run([softmax_predictions, error], feed_

dict=cnn_feed_dict)

 #Calculating number of correctly classified samples.

 correct = numpy.array(numpy.where(softmax_predictions_ == shuffled_

labels))

 correct = correct.size

 print("Correct predictions/", str(percent * 50000/100), ' : ', correct)

#Closing the session

sess.close()

Rather than feeding the entire training data to the CNN, just a subset of the data is

returned. This helps adjust the data to the amount of memory available. The subset is

returned using the “get_patch” function according to Listing 6-32. This function accepts

the input data, labels, and percentage of samples to be returned from the data. It then

returns a subset of the data according to the specified percentage.

Listing 6-32. Splitting Dataset into Patches

def get_patch(data, labels, percent=70):

 num_elements = numpy.uint32(percent*data.shape[0]/100)

 shuffled_labels = labels#Temporary variable to hold the data after

being shuffled.

 numpy.random.shuffle(shuffled_labels)#Randomly reordering the labels.

 return data[shuffled_labels[:num_elements], :, :, :], shuffled_

labels[:num_elements]

 Saving the Trained Model
After training the CNN, the model is saved for reuse later for testing according to

Listing 6-33. You should also change the path where the model is saved to be suitable

for your system.

Chapter 6 tensorFlow reCognition appliCation

282

Listing 6-33. Saving the Trained CNN Model

#Saving the model after being trained.

saver = tensorflow.train.Saver()

save_model_path = "\\AhmedGad\\model\\"

save_path = saver.save(sess=sess, save_path=save_model_path+"model.ckpt")

print("Model saved in : ", save_path)

 Complete Code to Build and Train CNN
After going through all parts of the project from reading the data until saving the trained

model, a summary of the steps is given in Figure 6-16. Listing 6-34 gives the complete

code for training the CNN. After saving the trained model, it will be used to predict the

class labels of the test data.

Figure 6-16. Summary of steps for building a CNN trained using CIFAR10
dataset

Chapter 6 tensorFlow reCognition appliCation

283

Listing 6-34. Complete Code to Train CNN for CIFAR10 Dataset

import pickle

import tensorflow

import numpy

import matplotlib.pyplot

import scipy.misc

import os

def get_dataset_images(dataset_path, im_dim=32, num_channels=3):

 """

 This function accepts the dataset path, reads the data, and returns it

after being reshaped to match the requirements of the CNN.

 :param dataset_path:Path of the CIFAR10 dataset binary files.

 :param im_dim:Number of rows and columns in each image. The image is

expected to be rectangular.

 :param num_channels:Number of color channels in the image.

 :return:Returns the input data after being reshaped and output labels.

 """

 num_files = 5#Number of training binary files in the CIFAR10 dataset.

 images_per_file = 10000#Number of samples within each binary file.

 files_names = os.listdir(patches_dir)#Listing the binary files in the

dataset path.

Creating an empty array to hold the entire training data after being

reshaped. The dataset has 5 binary files holding the data. Each binary

file has 10,000 samples. Total number of samples in the dataset is

5*10,000=50,000.

Each sample has a total of 3,072 pixels. These pixels are reshaped to

form a RGB image of shape 32x32x3.

Finally, the entire dataset has 50,000 samples and each sample of shape

32x32x3 (50,000x32x32x3).

 dataset_array = numpy.zeros(shape=(num_files * images_per_file, im_dim,

im_dim, num_channels))

 #Creating an empty array to hold the labels of each input sample. Its

size is 50,000 to hold the label of each sample in the dataset.

Chapter 6 tensorFlow reCognition appliCation

284

 dataset_labels = numpy.zeros(shape=(num_files * images_per_file),

dtype=numpy.uint8)

 index = 0#Index variable to count number of training binary files being

processed.

 for file_name in files_names:

Because the CIFAR10 directory does not only contain the desired training

files and has some other files, it is required to filter the required

files. Training files start by 'data_batch_' which is used to test whether

the file is for training or not.

 if file_name[0:len(file_name) - 1] == "data_batch_":

 print("Working on : ", file_name)

Appending the path of the binary files to the name of the current file.

Then the complete path of the binary file is used to decoded the file and

return the actual pixels values.

 data_dict = unpickle_patch(dataset_path+file_name)

Returning the data using its key 'data' in the dictionary.

Character b is used before the key to tell it is binary string.

 images_data = data_dict[b"data"]

 #Reshaping all samples in the current binary file to be of

32x32x3 shape.

 images_data_reshaped = numpy.reshape(images_data,

newshape=(len(images_data), im_dim, im_dim, num_channels))

 #Appending the data of the current file after being reshaped.

 dataset_array[index * images_per_file:(index + 1) * images_per_

file, :, :, :] = images_data_reshaped

 #Appending the labels of the current file.

 dataset_labels[index * images_per_file:(index + 1) * images_

per_file] = data_dict[b"labels"]

 index = index + 1#Incrementing the counter of the processed

training files by 1 to accept new file.

 return dataset_array, dataset_labels#Returning the training input data

and output labels.

def unpickle_patch(file):

 """

Chapter 6 tensorFlow reCognition appliCation

285

 Decoding the binary file.

 :param file:File path to decode its data.

 :return: Dictionary of the file holding details including input data

and output labels.

 """

 patch_bin_file = open(file, 'rb')#Reading the binary file.

 patch_dict = pickle.load(patch_bin_file, encoding='bytes')#Loading the

details of the binary file into a dictionary.

 return patch_dict#Returning the dictionary.

def get_patch(data, labels, percent=70):

 """

 Returning patch to train the CNN.

 :param data: Complete input data after being encoded and reshaped.

 :param labels: Labels of the entire dataset.

 :param percent: Percent of samples to get returned in each patch.

 :return: Subset of the data (patch) to train the CNN model.

 """

 #Using the percent of samples per patch to return the actual number of

samples to get returned.

 num_elements = numpy.uint32(percent*data.shape[0]/100)

 shuffled_labels = labels#Temporary variable to hold the data after

being shuffled.

 numpy.random.shuffle(shuffled_labels)#Randomly reordering the labels.

The previously specified percent of the data is returned starting from

the beginning until meeting the required number of samples.

The labels indices are also used to return their corresponding input

images samples.

 return data[shuffled_labels[:num_elements], :, :, :], shuffled_

labels[:num_elements]

def create_conv_layer(input_data, filter_size, num_filters):

 """

 Builds the CNN convolution (conv) layer.

 :param input_data:patch data to be processed.

Chapter 6 tensorFlow reCognition appliCation

286

 :param filter_size:#Number of rows and columns of each filter. It is

expected to have a rectangular filter.

 :param num_filters:Number of filters.

 :return:The last fully connected layer of the network.

 """

Preparing the filters of the conv layer by specifying its shape.

Number of channels in both input image and each filter must match.

Because number of channels is specified in the shape of the input image

as the last value, index of -1 works fine.

 filters = tensorflow.Variable(tensorflow.truncated_

normal(shape=(filter_size, filter_size, tensorflow.cast(input_data.

shape[-1], dtype=tensorflow.int32), num_filters), stddev=0.05))

 print("Size of conv filters bank : ", filters.shape)

Building the convolution layer by specifying the input data, filters,

strides along each of the 4 dimensions, and the padding.

Padding value of 'VALID' means the some borders of the input image will

be lost in the result based on the filter size.

 conv_layer = tensorflow.nn.conv2d(input=input_data,

 filter=filters,

 strides=[1, 1, 1, 1],

 padding="VALID")

 print("Size of conv result : ", conv_layer.shape)

 return filters, conv_layer#Returning the filters and the convolution

layer result.

def create_CNN(input_data, num_classes, keep_prop):

 """

 Builds the CNN architecture by stacking conv, relu, pool, dropout, and

fully connected layers.

 :param input_data:patch data to be processed.

 :param num_classes:Number of classes in the dataset. It helps to

determine the number of outputs in the last fully connected layer.

 :param keep_prop:probability of keeping neurons in the dropout layer.

 :return: last fully connected layer.

 """

Chapter 6 tensorFlow reCognition appliCation

287

 #Preparing the first convolution layer.

 filters1, conv_layer1 = create_conv_layer(input_data=input_data,

filter_size=7, num_filters=4)

Applying ReLU activation function over the conv layer output.

It returns a new array of the same shape as the input array.

 relu_layer1 = tensorflow.nn.relu(conv_layer1)

 print("Size of relu1 result : ", relu_layer1.shape)

Max-pooling is applied to the ReLU layer result to achieve translation

invariance. It returns a new array of a different shape from the input

array relative to the strides and kernel size used.

 max_pooling_layer1 = tensorflow.nn.max_pool(value=relu_layer1,

 ksize=[1, 2, 2, 1],

 strides=[1, 1, 1, 1],

 padding="VALID")

 print("Size of maxpool1 result : ", max_pooling_layer1.shape)

 #Similar to the previous conv-relu-pool layers, new layers are just

stacked to complete the CNN architecture.

 #Conv layer with 3 filters and each filter is of size 5x5.

 filters2, conv_layer2 = create_conv_layer(input_data=max_pooling_

layer1, filter_size=5, num_filters=3)

 relu_layer2 = tensorflow.nn.relu(conv_layer2)

 print("Size of relu2 result : ", relu_layer2.shape)

 max_pooling_layer2 = tensorflow.nn.max_pool(value=relu_layer2,

 ksize=[1, 2, 2, 1],

 strides=[1, 1, 1, 1],

 padding="VALID")

 print("Size of maxpool2 result : ", max_pooling_layer2.shape)

 #Conv layer with 2 filters and a filter size of 5x5.

 filters3, conv_layer3 = create_conv_layer(input_data=max_pooling_

layer2, filter_size=3, num_filters=2)

 relu_layer3 = tensorflow.nn.relu(conv_layer3)

 print("Size of relu3 result : ", relu_layer3.shape)

Chapter 6 tensorFlow reCognition appliCation

288

 max_pooling_layer3 = tensorflow.nn.max_pool(value=relu_layer3,

 ksize=[1, 2, 2, 1],

 strides=[1, 1, 1, 1],

 padding="VALID")

 print("Size of maxpool3 result : ", max_pooling_layer3.shape)

 #Adding dropout layer before the fully connected layers to avoid

overfitting.

 flattened_layer = dropout_flatten_layer(previous_layer=max_pooling_

layer3, keep_prop=keep_prop)

 #First fully connected (FC) layer. It accepts the result of the dropout

layer after being flattened (1D).

 fc_result1 = fc_layer(flattened_layer=flattened_layer, num_

inputs=flattened_layer.get_shape()[1:].num_elements(),

 num_outputs=200)

 #Second fully connected layer accepting the output of the previous

fully connected layer. Number of outputs is equal to the number of

dataset classes.

 fc_result2 = fc_layer(flattened_layer=fc_result1, num_inputs=fc_

result1.get_shape()[1:].num_elements(),

 num_outputs=num_classes)

 print("Fully connected layer results : ", fc_result2)

 return fc_result2#Returning the result of the last FC layer.

def dropout_flatten_layer(previous_layer, keep_prop):

 """

 Applying the dropout layer.

 :param previous_layer: Result of the previous layer to the dropout

layer.

 :param keep_prop: Probability of keeping neurons.

 :return: flattened array.

 """

 dropout = tensorflow.nn.dropout(x=previous_layer, keep_prob=keep_prop)

 num_features = dropout.get_shape()[1:].num_elements()

Chapter 6 tensorFlow reCognition appliCation

289

 layer = tensorflow.reshape(previous_layer, shape=(-1, num_features))

#Flattening the results.

 return layer

def fc_layer(flattened_layer, num_inputs, num_outputs):

 """

 building a fully connected (FC) layer.

 :param flattened_layer: Previous layer after being flattened.

 :param num_inputs: Number of inputs in the previous layer.

 :param num_outputs: Number of outputs to be returned in such FC layer.

 :return:

 """

 #Preparing the set of weights for the FC layer. It depends on the

number of inputs and number of outputs.

 fc_weights = tensorflow.Variable(tensorflow.truncated_

normal(shape=(num_inputs, num_outputs), stddev=0.05))

 #Matrix multiplication between the flattened array and the set of

weights.

 fc_result1 = tensorflow.matmul(flattened_layer, fc_weights)

 return fc_result1#Output of the FC layer (result of matrix

multiplication).

#***

#Number of classes in the dataset. Used to specify number of outputs in the

last FC layer.

num_dataset_classes = 10

#Number of rows & columns in each input image. The image is expected to be

rectangular Used to reshape the images and specify the input tensor shape.

im_dim = 32

Number of channels in each input image. Used to reshape the images and

specify the input tensor shape.

num_channels = 3

#Directory at which the training binary files of the CIFAR10 dataset are

saved.

patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"

Chapter 6 tensorFlow reCognition appliCation

290

#Reading the CIFAR10 training binary files and returning the input data and

output labels. Output labels are used to test the CNN prediction accuracy.

dataset_array, dataset_labels = get_dataset_images(dataset_path=patches_

dir, im_dim=im_dim, num_channels=num_channels)

print("Size of data : ", dataset_array.shape)

Input tensor to hold the data read in the preceding. It is the entry

point of the computational graph.

The given name of 'data_tensor' is useful for retrieving it when

restoring the trained model graph for testing.

data_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None, im_

dim, im_dim, num_channels], name='data_tensor')

Tensor to hold the outputs label.

The name "label_tensor" is used for accessing the tensor when testing the

saved trained model after being restored.

label_tensor = tensorflow.placeholder(tensorflow.float32, shape=[None],

name='label_tensor')

#The probability of dropping neurons in the dropout layer. It is given a

name for accessing it later.

keep_prop = tensorflow.Variable(initial_value=0.5, name="keep_prop")

#Building the CNN architecture and returning the last layer which is the FC

layer.

fc_result2 = create_CNN(input_data=data_tensor, num_classes=num_dataset_

classes, keep_prop=keep_prop)

Predictions propabilities of the CNN for each training sample.

Each sample has a probability for each of the 10 classes in the dataset.

Such a tensor is given a name for accessing it later.

softmax_propabilities = tensorflow.nn.softmax(fc_result2, name="softmax_

probs")

Predictions labels of the CNN for each training sample.

The input sample is classified as the class of the highest probability.

axis=1 indicates that maximum of values in the second axis is to be

returned. This returns that maximum class probability of each sample.

Chapter 6 tensorFlow reCognition appliCation

291

softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

#Cross entropy of the CNN based on its calculated propabilities.

cross_entropy = tensorflow.nn.softmax_cross_entropy_with_

logits(logits=tensorflow.reduce_max(input_tensor=softmax_propabilities,

reduction_indices=[1]),labels=label_tensor)

#Summarizing the cross entropy into a single value (cost) to be minimized

by the learning algorithm.

cost = tensorflow.reduce_mean(cross_entropy)

#Minimizing the network cost using the Gradient Descent optimizer with a

learning rate is 0.01.

ops = tensorflow.train.GradientDescentOptimizer(learning_rate=.01).

minimize(cost)

#Creating a new TensorFlow Session to process the computational graph.

sess = tensorflow.Session()

#Writing summary of the graph to visualize it using TensorBoard.

tensorflow.summary.FileWriter(logdir="\\AhmedGad\\TensorBoard\\",

graph=sess.graph)

#Initializing the variables of the graph.

sess.run(tensorflow.global_variables_initializer())

Because it may be impossible to feed the complete data to the CNN on

normal machines, it is recommended to split the data into a number of

patches. A subset of the training samples is used to create each path.

Samples for each path can be randomly selected.

num_patches = 5#Number of patches

for patch_num in numpy.arange(num_patches):

 print("Patch : ", str(patch_num))

 percent = 80 #percent of samples to be included in each path.

 #Getting the input-output data of the current path.

 shuffled_data, shuffled_labels = get_patch(data=dataset_array,

labels=dataset_labels, percent=percent)

 #Data required for cnn operation. 1)Input Images, 2)Output Labels,

and 3)Dropout probability

Chapter 6 tensorFlow reCognition appliCation

292

 cnn_feed_dict = {data_tensor: shuffled_data,

 label_tensor: shuffled_labels,

 keep_prop: 0.5}

Training the CNN based on the current patch.

CNN error is used as input in the run to minimize it.

SoftMax predictions are returned to compute the classification accuracy.

 softmax_predictions_, _ = sess.run([softmax_predictions, ops], feed_

dict=cnn_feed_dict)

 #Calculating number of correctly classified samples.

 correct = numpy.array(numpy.where(softmax_predictions_ == shuffled_

labels))

 correct = correct.size

 print("Correct predictions/", str(percent * 50000/100), ' : ', correct)

#Closing the session

sess.close()

#Saving the model after being trained.

saver = tensorflow.train.Saver()

save_model_path = " \\AhmedGad\\model\\"

save_path = saver.save(sess=sess, save_path=save_model_path+"model.ckpt")

print("Model saved in : ", save_path)

 Preparing Test Data
Before testing the trained model, it is required to prepare the test data and restore the

previously trained model. Test data preparation is similar to what happened with the

training data except that there is just a single binary file to be decoded. The test file is

decoded according to the modified “get_dataset_images” function according to Listing

6-35. Note that it has the same name as the function used to decode the training data

because it is assumed that there are two separate scripts, one for training and another

for testing. This function calls the “unpickle_patch” function exactly as done before with

training data.

Chapter 6 tensorFlow reCognition appliCation

293

Listing 6-35. Saving the Trained CNN Model

def get_dataset_images(test_path_path, im_dim=32, num_channels=3):

 data_dict = unpickle_patch(test_path_path)

 images_data = data_dict[b"data"]

 dataset_array = numpy.reshape(images_data, newshape=(len(images_data),

im_dim, im_dim, num_channels))

 return dataset_array, data_dict[b"labels"]

 Testing the Trained CNN Model
According to Figure 6-16, the saved model will be used to predict the labels for the test

data. After preparing the test data and restoring the trained model, we can start testing

the model according to Listing 6-36. It’s worth mentioning that when training the CNN,

the session runs to minimize the cost. In testing, we are not interested in minimizing

the cost anymore and just we would like to return the predictions for the data samples.

This is why the TF session runs to return just the predictions by fetching the “softmax_

propabilities” and “softmax_predictions” tensors.

When the graph is restored, the tensor named “data_tensor” in the training phase

will be assigned the testing data, while the tensor named “label_tensor” will be assigned

the sample labels.

Another interesting point is that the keep probability “keep_prop” of the dropout

layer is now set to 1.0. That means do not drop any neuron (i.e., use all neurons). This

is because we are just using the pretrained model after settling on what neurons to

drop. Now we just use what the model did before and are not interested in making any

modifications.

Listing 6-36. Testing the Trained CNN

#Dataset path containing the testing binary file to be decoded.

patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"

dataset_array, dataset_labels = get_dataset_images(test_path_path=patches_

dir + "test_batch", im_dim=32, num_channels=3)

print("Size of data : ", dataset_array.shape)

sess = tensorflow.Session()

Chapter 6 tensorFlow reCognition appliCation

294

#Restoring the previously saved trained model.

saved_model_path = '\\AhmedGad\\model\\'

saver = tensorflow.train.import_meta_graph(saved_model_path+'model.ckpt.meta')

saver.restore(sess=sess, save_path=saved_model_path+'model.ckpt')

#Initializing the variables.

sess.run(tensorflow.global_variables_initializer())

graph = tensorflow.get_default_graph()

softmax_propabilities = graph.get_tensor_by_name(name="softmax_probs:0")

softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

data_tensor = graph.get_tensor_by_name(name="data_tensor:0")

label_tensor = graph.get_tensor_by_name(name="label_tensor:0")

keep_prop = graph.get_tensor_by_name(name="keep_prop:0")

#keep_prop is equal to 1 because there is no more interest to remove

neurons in the testing phase.

feed_dict_testing = {data_tensor: dataset_array,

 label_tensor: dataset_labels,

 keep_prop: 1.0}

#Running the session to predict the outcomes of the testing samples.

softmax_propabilities_, softmax_predictions_ = sess.run([softmax_

propabilities, softmax_predictions], feed_dict=feed_dict_testing)

#Assessing the model accuracy by counting number of correctly classified

samples.

correct = numpy.array(numpy.where(softmax_predictions_ == dataset_labels))

correct = correct.size

print("Correct predictions/10,000 : ", correct)

#Closing the session

sess.close()

At this point, we have successfully built the CNN model for classifying images of the

CIFAR10 dataset. In the next chapter, the saved trained CNN model is deployed to a web

server created using Flask for being accessed from Internet users.

Chapter 6 tensorFlow reCognition appliCation

295
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_7

CHAPTER 7

Deploying Pretrained
Models
In the pipeline of building DL models, creating the model is the hardest step, but it is not

the end. In order to benefit from the created models, users should remotely access them.

Users’ feedback will help improve the model performance.

This chapter discusses how to deploy pretrained models online to be accessed by

Internet users. Using Flask micro web framework, a web application is created using

Python. Using HTML (HyperText Markup Language), CSS (Cascading Style Sheet),

and JavaScript, simple web pages are built to allow the user to send and receive HTTP

(HyperText Transfer Protocol) requests to the server. Using a web browser, the user

accesses the application and is able to upload an image to the server. Based on the

deployed model, the image is classified and its class label is returned back to the user.

Moreover, an Android application is created to access the web server. This chapter

assumes the reader has a basic knowledge of HTML, CSS, JavaScript, and Android.

Readers can follow the instructions in this link for installing Flask (http://flask.pocoo.

org/docs/1.0/installation/).

 Application Overview
The target application of this chapter is summarized in Figure 7-1 which extends the

steps in Chapter 6: the dataflow graph of a CNN using TF is built and then trained using

the CIFAR10 dataset; finally, the trained model is saved to be ready for deployment.

Using Flask, a web application that listens to HTTP requests from clients is created.

Clients access the web application from web pages created using HTML, CSS, and

JavaScript.

http://flask.pocoo.org/docs/1.0/installation/
http://flask.pocoo.org/docs/1.0/installation/

296

The server loads the saved model, opens a session, and waits for incoming requests

from the clients. The client uses a web browser to open a web page that allows uploading

an image to the server for classification. The server ensures that the image belongs to

the CIFAR10 dataset based on the size. After that, the image is fed into the model for

classification. The predicted label by the model is returned in a response to the client.

Finally, the client displays the label on the web page. For being customized to Android

devices, an Android application to send HTTP requests to the server and receive the

classification label is created.

In this chapter, each of the steps involved in the application will be covered until

successful completion.

 Introduction to Flask
Flask is a microframework for building web applications. Despite being micro, it does

not support some functionalities that other frameworks do. It is called “micro” because

it comes with the core requirements required to build an application. Later using

extensions, you can add the functionalities needed. Flask gives the user the decision

about what to use. For example, it does not come with a specific database and gives the

user the freedom about which database to use.

Figure 7-1. Overview of the application

Chapter 7 Deploying pretraineD MoDels

297

Flask uses the WSGI (Web Server Gateway Interface). WSGI is how the server

handles requests from the Python web applications. It is regarded as the communication

channel between the server and the application. After the server receives a request, the

WSGI processes the request and sends it to the application written in Python. WSGI

receives the response of the application and returns it to the server. The server then

responds to the client. Flask uses Werkzeug, which is an SWGI utility for implementing

the requests and responses. Flask also uses jinja2, which is the template engine used to

build template web pages that are later filled dynamically with data.

In order to get started in Flask, let’s discusses the minimal Flask application

according to Listing 7-1. The first thing to do in order to build a Flask application is

to create an instance from the Flask class. The app instance is created using the class

constructor. The mandatory import_name parameter of the constructor is very important.

It is used to locate application resources. If the application is found in FlaskApp\

firstApp.py, then set this argument to FlaskApp. For example, if there is a CSS file to be

located under the application directory, this parameter is used to locate the file.

Listing 7-1. Minimal Flask Application

import flask

app = flask.Flask(import_name="FlaskApp")

@app.route(rule="/")

def testFunc():

 return "Hello"

app.run()

The Flask application consists of a set of functions, each associated with a URL

(Universal Resource Locator). When the client navigates to a URL, the server sends a

request to the applications to respond to the client. The application uses a view function

associated with that URL to respond. The return of the view function is the response

rendered on the web page. This leaves a question: How do we associate a function with a

URL? Fortunately, the answer is simple.

Chapter 7 Deploying pretraineD MoDels

298

 route() Decorator
At first, the function is a regular Python function that can accept arguments. In Listing

7-1, the function is called testFunc() but is not accepting any arguments yet. It returns

the string Hello. This means that when the client visits the URL associated with that

function, the string Hello will be rendered on the screen. The URL is associated with the

function using the route() decorator. It is called “route” because it works like a router.

A router receives an input message and decides which output interface to follow. Also,

the decorator receives an input URL and decides which function to call.

The route() decorator accepts an argument named rule representing the URL

associated with the view function exactly below the decorator. According to Listing 7-1,

the route() decorator associates the URL / representing the homepage to the view

function named testFunc().

After completing this simple application, the next step is to make it active by

running the script using the run() method of the Flask class. The result of running the

application is in Figure 7-2. According to the output, the server by default listens to

the IP (Internet Protocol) address 127.0.0.1, which is a loopback address. This means

the server is just listening to requests from the local host on port 5000.

Figure 7-2. Console output after running the first Flask app

When visiting the server at the 127.0.0.1:5000/ address using a web browser, the

testFunc() function will be called. Its output is rendered on the web browser according

to Figure 7-3.

Chapter 7 Deploying pretraineD MoDels

299

We can override the default values of the IP and port using the host and port

arguments of the run() method. The run() method is as follows after overriding the

default values of these arguments:

app.run(host="127.0.0.5", port=6500)

Figure 7-4 shows the result after setting the host to 127.0.0.5 and the port number

to 6500. Just make sure no application is using the port selected.

Figure 7-3. Visiting the URL associated with the testFunc() function

Figure 7-4. Listening to a different host and port by overriding the default values
of the run() method

For each request received by the server, the method of the HTTP request, URL, and

the response code are printed on the console. For example, when visiting the homepage,

the request returned 200, which means the page was successfully located. Visiting a

page that does not exist such as 127.0.0.5:6500/abc returns 404 as the response code,

meaning that the page was not found. This helps in debugging the application.

Chapter 7 Deploying pretraineD MoDels

300

Another useful argument to the run() method is named debug. It is a boolean

argument used to decide whether to print debugging information or not. It defaults to

False. When such an argument is set to True, then we do not have to restart the server

for each change in the code. This is useful in the development of the application. Just

save the Python file of the application after each change and the server will reload itself

automatically. According to Figure 7-6, the server started using port number 6500. After

it is changed to 6300, the server reloaded itself automatically to listen for the new port.

Figure 7-5. Requests received by the server

Figure 7-6. Automatic reload of the server after each change when debugging is
active

Chapter 7 Deploying pretraineD MoDels

301

 add_rule_url Method
Previously, the URL has been bound to the function using the route() decorator.

The decorator internally calls the add_url_rule() method inside the Flask class.

This method does the same job as any other decorator. We can directly use this method

according to Listing 7-2. It accepts the rule argument as before but in addition to the

view_func argument. It specifies which view function is associated with that rule. It is

set to the function name, which is testFunc. When we used the route() decorator,

the function is implicitly known. The function is exactly below the decorator. Note that

the call to this method does not have to be exactly below the function. Running this code

returns the same results as before.

Listing 7-2. Using the add_url_rule() Method

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc():

 return "Hello"

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

 Variable Rules
The previous rules are static. It is possible to add a variable part to the rule. It is regarded

as a parameter. The variable part is added after the static part of the rule between two

angle brackets <>. We can modify the previous code to accept a variable parameter

representing the name according to Listing 7-3. The rule for the homepage is now

/<name> rather than just /. If the client navigates to the URL 127.0.0.5:6300/Gad, then

the name is set to Gad.

Chapter 7 Deploying pretraineD MoDels

302

Listing 7-3. Adding Variable Part to the Rule

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc(name):

 return "Hello : " + name

app.add_url_rule(rule="/<name>", view_func=testFunc, endpoint="home")

app.run(host="127.0.0.5", port=6300, debug=True)

Note that there must be an argument in the view function to accept the variable part

of the URL. For this reason, the testFunc() is modified to accept an argument named

the same as defined in the rule. The return of the function is modified to also return the

value of the name argument. Figure 7-7 shows the result after using the variable rule.

Changing the variable part and visiting the homepage will change the output.

Figure 7-7. Using variable part in the rule

It is possible to use multiple variable parts in the rule. According to Listing 7-4, the

rule accepts two parameters representing the first and last names separated by -.

Listing 7-4. Using More Than One Variable Part

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc(fname, lname):

 return "Hello : " + fname + " " + lname

Chapter 7 Deploying pretraineD MoDels

303

app.add_url_rule(rule="/<fname>-<lname>", view_func=testFunc,

endpoint="home")

app.run(host="127.0.0.5", port=6300, debug=True)

Visiting the URL 127.0.0.5:6300/Ahmed-Gad sets the fname to Ahmed and lname to

Gad. The result is shown in Figure 7-8.

Figure 7-8. More than one variable part in the rule

 Endpoint
The add_url_rule() method accepts a third argument named endpoint. It is an

identifier to the rule and helps reuse the same rule multiple times. Note that this

argument also exists in the route() decorator. The value of the endpoint is set to the

view function by default. Here is a scenario in which the endpoint is important.

Assume that the website has two pages with one rule assigned to each page. The

first rule is / and the second rule is /addNums/<num1>-<num2>. The second page has

two parameters representing two numbers. These numbers are added together, and the

result is returned to the homepage for rendering it. Listing 7-5 gives the code for creating

these rules and their view functions. The testFunc() view function is given an endpoint

value equal to home.

The add_func() view function accepts two arguments, which are the variable

parts of the rule it is associated with. Because the values of these arguments come as

strings, their values are converted into integers using the int() function. Then they get

added together into the num3 variable. The return of this function is not the number but

redirection to another page using the redirect() method. Such a method accepts the

redirect location.

Chapter 7 Deploying pretraineD MoDels

304

Listing 7-5. Using Endpoint to Redirect Between Pages

import flask

app = flask.Flask(import_name="FlaskApp")

def testFunc(result):

 return "Result is : " + result

app.add_url_rule(rule="/<result>", view_func=testFunc, endpoint="home")

def add_func(num1, num2):

 num3 = int(num1) + int(num2)

 return flask.redirect(location=flask.url_for("home", result=num3))

app.add_url_rule(rule="/addNums/<num1>-<num2>", view_func=add_func)

app.run(host="127.0.0.5", port=6300, debug=True)

Rather than hard-coding the URL, we can simply use the endpoint to return it.

The URL is returned from the endpoint using the from_url() method. It accepts the

endpoint of a rule in addition to any variables accepted by that rule. Because the

homepage rule accepts a variable named result, then we have to add an argument

named result inside the from_url() method and assign a value to it. The value assigned

to such a variable is num3. By navigating to the URL 127.0.0.5:6300/addNums/1-2,

the numbers 1 and 2 are added, and the result is 3. The function then redirects to the

homepage, where the result variable of the rule is set equal to 3.

Using endpoints makes life easier than hard-coding the URLs. We can simply

assign the location argument of the redirect() method to the rule / but this is not

recommended. Assume that the URL of the homepage changed from / to /home, then we

have to apply that change in every reference to the homepage. Moreover, assume that the

URL is long, such as 127.0.0.5:6300/home/page1. Typing this URL each time we need to

reference it is tiresome. The endpoints are regarded as an abstraction to the URL.

Another case that proves the importance of using endpoints it that the site

administrator might decide to change the address of a page. If the page is referenced

multiple times by copying and pasting its URL, then we have to change the URL

everywhere. Using endpoints avoids that problem. The endpoint is not as frequently

changed as the URLs are, and thus the site will remain active even with changes to the

pages’ URLs. Note that redirecting without using the endpoint makes it difficult to pass

the variable parts to the rule.

Chapter 7 Deploying pretraineD MoDels

305

The code in Listing 7-5 accepts the input numbers to be added from the URL. We can

create a simple HTML form allowing the user to enter these numbers.

 HTML Form
The add_url_rule() method (and of course route() decorator) accepts another

argument called methods. It accepts a list specifying the HTTP methods the rule

responds to. The rule can respond to multiple types of methods.

There are two common HTTP methods: GET and POST. The GET method is the

default method and sends the data unencrypted. The POST method is used to send the

HTML form data to the server. Let’s create a simple form that accepts two numbers and

send them to the Flask application for addition and rendering.

Listing 7-6 gives the HTML code that creates a form with two inputs of type number

in addition to an input of type submit. The form method is set to post. Its action is the

URL http://127.0.0.5:6300/form. The action represents the page to which the form

data will be sent. There is a rule that associates that URL with a view function that fetches

the numbers from the form, adds them, and renders the result. The names of the form

elements are very important because only elements with name attribute are sent to

the server after the form gets submitted. The element names are used as identifiers to

retrieve the element data within the Flask application.

Listing 7-6. HTML Form

<html>

<header>

<title>HTML Form</title>

</header>

<body>

<form method="post" action="http://127.0.0.5:6300/form">

Num1

<input type="number" name="num1">

Num2

<input type="number" name="num2">

Chapter 7 Deploying pretraineD MoDels

http://127.0.0.5:6300/form

306

<input type="submit" name="Add">

</form>

</body>

</html>

The HTML form is shown in Figure 7-9.

Figure 7-9. HTML form with two numeric inputs

After submitting the form, the Flask application in Listing 7-7 retrieves the form data.

The rule /form is associated with the handle_form() function. The rule just responds

to HTTP messages of type POST. Inside the function, the form elements are returned

using the flask.request.form dictionary. The name of each HTML form element is

used as an index to that object in order to return their values. For example, the value

of the first form element of the name num1 is returned using by using flask.request.

form["num1"].

Listing 7-7. Flask Application to Retrieve the HTML Form Data

import flask

app = flask.Flask(import_name="FlaskApp")

def handle_form():

 num1 = flask.request.form["num1"]

 num1 = int(num1)

 num2 = flask.request.form["num2"]

 num2 = int(num2)

 result = num1 + num2

 result = str(result)

Chapter 7 Deploying pretraineD MoDels

307

 return "Result is : " + result

app.add_url_rule(rule="/form", view_func=handle_form, methods=["POST"])

app.run(host="127.0.0.5", port=6300, debug=True)

Because the value returned by indexing the flask.request.form object is a string,

it must get converted into an integer using the int() function. After adding the two

numbers, their result is stored in the result variable. This variable is converted into a

string in order to concatenate its value with a string. The concatenated string is returned

by the handle_form view function. The rendered result is shown in Figure 7-10.

Figure 7-10. The result of adding the two numeric HTML form elements

 File Upload
Uploading files in Flask is very simple and similar to the previous example except

with some changes. An input of type file is created in the HTML form. Also, the form

encryption type attribute enctype is set to multipart/form-data. The code of the

HTML form for uploading a file is in Listing 7-8. A screenshot of the form is available in

Figure 7-11.

Listing 7-8. HTML Form for Uploading a File

<html>

<header>

<title>HTML Form</title>

</header>

<body>

<form method="post" enctype="multipart/form-data"

action="http://127.0.0.5:6300/form">

Select File to Upload

Chapter 7 Deploying pretraineD MoDels

308

<input type="file" name="fileUpload">

<input type="submit" name="Add">

</form>

</body>

</html>

Figure 7-11. HTML form for uploading a file

After selecting the image to be uploaded, it is sent to the Flask application created

according to Listing 7-9. The rule is again set to respond only to HTTP messages of type

POST. Previously, we used the flask.request.form object to retrieve the data fields.

Now, we use the flask.request.files to return the details of the files to be uploaded.

The name of the form input fileUpload is used as an index to that object to return the

file to be uploaded. Note that the flask.request is a global object that receives the data

from the client web page.

In order to save the file, its name is retrieved using the filename property. It is

not recommended to save the file according to its name submitted by the user. Some

file names are set to hurt the server. To secure saving the file, the werkzeug.secure_

filename() function is used. Remember to import the werkzeug module.

Listing 7-9. Flask Application to Upload Files to the Server

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def handle_form():

 file = flask.request.files["fileUpload"]

 file_name = file.filename

 secure_file_name = werkzeug.secure_filename(file_name)

 file.save(dst=secure_file_name)

Chapter 7 Deploying pretraineD MoDels

309

 return "File uploaded successfully."

app.add_url_rule(rule="/form", view_func=handle_form, methods=["POST"])

app.run(host="127.0.0.5", port=6300, debug=True)

The secure file name is returned to the secure_file_name variable. Finally, the file is

saved permanently by calling the save() method. Such a method accepts the destination

at which the file will be saved. Because just the file name is used, it will be saved in the

current directory of the Flask application Python file.

 HTML Inside Flask Application
The return output from the previous view function is just a text that appears on the

web page without any formatting. Flask supports generating HTML content within the

Python code, which helps to render the results better. Listing 7-10 gives an example in

which the return result of the tesFunc() view function is HTML code in which the <h1>

element renders the result. Figure 7-12 shows the result.

Listing 7-10. Generating HTML Inside Python

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc():

 return "<html><body><h1>Hello</h1></body></html>"

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

Figure 7-12. Formatting the output of the view function using HTML code

Chapter 7 Deploying pretraineD MoDels

310

Generating HTML within the Python code makes it difficult to debug the code. It is

better to separate Python from HTML. This is why Flask supports templates using the

Jinja2 template engine.

 Flask Templates

Rather than typing the HTML code within the Python file, a separate HTML file (i.e.,

template) is created. Such a template is rendered within Python using the render_

template() method. The HTML file is called template because it is not a static file.

The template can be used multiple times with different data inputs.

In order to locate the Flask templates within the Python code, a folder named

templates is created holding all HTML files. Assuming that the Flask Python file is

named firstApp.py and the HTML file is named hello.html, the project structure is

illustrated in Figure 7-13. In Listing 7-11, the hello.html file is created to print the Hello

message exactly the same as in Listing 7-10.

Figure 7-13. Project structure after using templates

Listing 7-11. Template to Print Hello Message

<html>

<header>

<title>HTML Template</title>

</header>

<body>

<h1>Hello</h1>

</body>

</html>

Chapter 7 Deploying pretraineD MoDels

311

The Python code rendering this template is given in Listing 7-12. The return result of

the view function associated with the homepage is the output of the render_template()

method. This method accepts an argument named template_name_or_list specifying

the template file name. Note that the argument may accept a single name or a list of

names. When a list is specified with multiple names, the first template existing will be

rendered. The rendered result of this example is identical to Figure 7-12.

Listing 7-12. Python Code to Render an HTML Template

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc():

 return flask.render_template(template_name_or_list="hello.html")

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

 Dynamic Templates

The templates are currently static, as they get rendered the same each time. We can

make them dynamic by using variable data. Jinja2 supports adding placeholders inside

the template. When rendering the template, these placeholders are replaced by the

output of evaluating a Python expression. At the place at which the expression output is

to be printed, enclose the expression by {{...}}. Listing 7-13 gives the HTML code in

which the variable name is used.

Listing 7-13. HTML Code with an Expression

<html>

<header>

<title>HTML Template with an Expression</title>

</header>

<body>

<h1>Hello {{name}}</h1>

</body>

</html>

Chapter 7 Deploying pretraineD MoDels

312

Next is to render that template after passing the value for the variable name according

to Listing 7-14. The variables inside the template to be rendered are passed as arguments

inside the render_template along with their values. The result of visiting the homepage

is in Figure 7-14.

Listing 7-14. Rendering Flask Template with an Expression

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc():

 return flask.render_template(template_name_or_list="hello.html",

name="Ahmed")

app.add_url_rule(rule="/", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

Figure 7-14. The result of rendering a template with an expression

The value of the variable name is statically typed, but it could be generated

dynamically using either a variable rule or an HTML form. Listing 7-15 gives the code

used to create a variable rule accepting a name. The view function must have an

argument named according to the variable part of the rule. The value of this argument

is then assigned to the name argument of the render_template() method. The value is

then passed to the template to be rendered according to Figure 7-15.

Chapter 7 Deploying pretraineD MoDels

313

Listing 7-15. Variable Rule to Pass Value to Flask Template

import flask, werkzeug

app = flask.Flask(import_name="FlaskApp")

def testFunc(name):

 return flask.render_template(template_name_or_list="hello.html",

name=name)

app.add_url_rule(rule="/<name>", view_func=testFunc)

app.run(host="127.0.0.5", port=6300, debug=True)

Figure 7-15. Passing the value received from a variable rule to Flask template

We can also insert Python statements, comments, and line statements inside the HTML

code, each with a different placeholder. Statements are enclosed between {% ... %},

comments are enclosed by {# ... #}, and line statements are enclosed by # ... ##.

Listing 7-16 gives an example in which a Python for loop is inserted to print five numbers

from 0 to 4, each inside <h1> HTML element. Each statement within the loop is enclosed

by {%...%}.

Python uses indentation to define blocks. Because there is no indentation inside

HTML, the end of the for loop is marked with endfor. The result of rendering this file is

given in Figure 7-16.

Listing 7-16. Embedding a Python Loop Inside Flask Template

<html>

<header>

<title>HTML Template with Expression</title>

</header>

<body>

Chapter 7 Deploying pretraineD MoDels

314

{%for k in range(5):%}

<h1>{%print(k)%}</h1>

{%endfor%}

</body>

</html>

Figure 7-16. Rendering a template with a Python loop

 Static Files
Static files such as CSS and JavaScript files are used to style web pages and make them

dynamic. Similar to the templates, there is a folder created to store the static files. The

folder name is static. If we are to create a CSS file named style.css and a JavaScript

file named simpeJS.js, the project structure will be as given in Figure 7-17.

Chapter 7 Deploying pretraineD MoDels

315

The Python code is identical to the code in Listing 7-15 without using the variable

part of the rule. Listing 7-17 shows the content of the hello.html file. It’s worth

mentioning how the HTML file is linked to the JavaScript and CSS files. As regularly,

the JavaScript file is added using the <script> tag, where the type attribute is text/

javascript. Also, the CSS file is added using the <link> tag, where the rel attribute is set

to stylesheet. What is new is how these files are located.

Listing 7-17. HTML File Linked with CSS and JavaScript Files

<html>

<header>

<title>HTML Template with Expression</title>

<script type="text/javascript" src="{{url_for(endpoint='static',

filename='simpleJS.js')}}"></script>

<link rel="stylesheet" href="{{url_for(endpoint='static', filename='style.

css')}}">

</header>

<body>

{%for k in range(5):%}

<h1 onclick="showAlert({{k}})">{%print(k)%}</h1>

{%endfor%}

</body>

</html>

Figure 7-17. Project structure with both templates and static files

Chapter 7 Deploying pretraineD MoDels

316

Within the <script> and <link> tags, the url_for() method is used within an

expression to locate the files. The endpoint attribute of the method is set to static, which

means that you should look at the folder named static under the project structure.

The method accepts another argument named filename, which refers to the file name of

the static file.

The content of the CSS file is given in Listing 7-18. It just targets any <h1> elements

and decorates their text by adding a dotted line under and over it.

Listing 7-18. Content of the CSS File

h1 {

text-decoration: underline overline;

}

Listing 7-19 gives the content of the JavaScript file. It has a single function named

showAlert, which accepts an argument that is concatenated to a string and printed in

an alert. When any of the <h1> elements representing the five numbers inside the HTML

template are clicked, this function is called. The number associated with the element is

passed as an argument to the function in order to get printed.

Listing 7-19. Content of the JavaScript File

function showAlert(num){

alert("Number is " + num)

}

When the number <h1> element with the text 1 is clicked, the output is as given in

Figure 7-18.

Chapter 7 Deploying pretraineD MoDels

317

At this point, we have had an introduction to Flask, which is good enough to enable

us to start deploying pretrained models. In the next sections, the pretrained models

against the Fruits 360 and CIFAR10 datasets will be deployed to the web server to enable

accessing them by Flask applications for classifying uploaded images by clients.

 Deploying Trained Model Using Fruits 360 Dataset
The first model we are going to deploy is the trained model in Chapter 5 using the Fruits

360 dataset and optimized using the GA. The Flask application consists of two main

pages.

The first page is the homepage. It has an HTML form that allows the user to select an

image file. That file is uploaded to the server. The second page accomplishes most of the

work. It follows the same steps in Chapter 5. It reads the image after being uploaded to

the server, extracts its features, filters features using STD, predicts the image class label

using the pretrained ANN, and finally allows the user to return back to the homepage

to select another image for classification. The application has the structure defined in

Figure 7-19. Let’s discuss the application in detail.

Figure 7-18. The result of clicking on the second <h1> element with the text 1

Chapter 7 Deploying pretraineD MoDels

318

Listing 7-20 starts the first step toward building the application. All required modules

for the entire application are imported. An instance of the Flask class is created with

the import_name argument of the constructor set to the name of the parent directory,

which is FruitsApp. A single rule is created up to the current time. That rule binds the

URL of the homepage / to the view function homepage. The application runs using host

127.0.0.5, port number 6302, and active debug mode.

Listing 7-20. Basic Structure of the Fruits 360 Recognition Application

import flask, werkzeug, skimage.io, skimage.color, numpy, pickle

app = flask.Flask(import_name="FruitsApp")

def homepage():

 return flask.render_template(template_name_or_list="home.html")

app.add_url_rule(rule="/", view_func=homepage, endpoint="homepage")

app.run(host="127.0.0.5", port=6300, debug=True)

When the user visits the home page http://127.0.0.5:6302, the view function

homepage() renders the home.html template using the render_template() method.

The associated endpoint used is homepage, which is identical to the name of the view

function. Note that omitting this endpoint will not change anything because the default

endpoint actually equals to the view function name. The content of the home.html page

is given in Listing 7-21.

Figure 7-19. Fruits 360 recognition application structure

Chapter 7 Deploying pretraineD MoDels

319

Listing 7-21. Implementation of the home.html Page

<html>

<header>

<title>Select Image</title>

<link rel="stylesheet" href="{{url_for(endpoint='static', filename='style.

css')}}">

</header>

<body>

<h1>Select an Image from the Fruits 360 Dataset</h1>

<form enctype="multipart/form-data" action="{{url_

for(endpoint='extract')}}" method="post">

<input type="file" name="img">

<input type="submit">

</form>

</body>

</html>

That page creates an HTML form with an input named img representing the file to

be uploaded. Remember that the encryption type attribute enctype of the form is set to

multipart/form-data and the method is post. The action represents the page to which

the form data will be submitted. After submitting the form, its data are sent to another

page to classify the image file uploaded. To avoid hard-coding the URLs, the endpoint

of the target rule, which is set to extract, is used to fetch its URL using the url_for()

method. To enable running this expression from within the HTML page, it is enclosed

between {{...}}.

In the page header, the stylesheet static file style.css is linked to the page by

using an expression that accepts the endpoint and the filename arguments for the

url_for() method. Remember that the endpoint for static files is set to static. The

filename argument is set to the target static file name. The content of the CSS file is

discussed later. Figure 7-20 presents the screen of the homepage after selecting an image

file. After submitting the form, the selected file details are sent to the view function

extractFeatures, which is associated with the endpoint extract for further processing.

Chapter 7 Deploying pretraineD MoDels

320

Listing 7-22 gives the code for the extractFeatures view function associated with

the /extract rule. Note that this rule is made to listen only to POST HTTP methods. The

extractFeatures view function responds to the form submitted previously. It returns

the uploaded image file using the dictionary flask.request.files. The file name is

returned using the filename property of the image file. To make saving the file more

secure, the secure file name is returned using the secure_filename() function, which

accepts the original file name and returns a secure name. The image is saved according

to this secure name.

Listing 7-22. Python Code for the extractFeatures View Function

def extractFeatures():

 img = flask.request.files["img"]

 img_name = img.filename

 img_secure_name = werkzeug.secure_filename(img_name)

 img.save(img_secure_name)

 print("Image Uploaded successfully.")

img_features = extract_features(image_path=img_secure_name)

 print("Features extracted successfully.")

 f = open("weights_1000_iterations_10%_mutation.pkl", "rb")

 weights_mat = pickle.load(f)

 f.close()

 weights_mat = weights_mat[0, :]

 predicted_label = predict_outputs(weights_mat, img_features,

activation="sigmoid")

Figure 7-20. Screenshot of the homepage for uploading an image from the Fruits
360 dataset

Chapter 7 Deploying pretraineD MoDels

321

 class_labels = ["Apple", "Raspberry", "Mango", "Lemon"]

 predicted_class = class_labels[predicted_label]

 return flask.render_template(template_name_or_list="result.html",

predicted_class=predicted_class)

app.add_url_rule(rule="/extract", view_func=extractFeatures,

methods=["POST"], endpoint="extract")

After uploading the image to the server, its features are extracted using the extract_

features function defined in Listing 7-23. It accepts the image path and follows the

steps in section Fruits 360 Dataset Feature Mining of Chapter 3 from reading the image

file, extracting the hue channel histogram, filtering features using STD, and finally to

returning the filtered set of features. The features are filtered according to the indices of

the selected elements based on the experiment done on the training data. The number

of these elements is 102. The feature vector is then returned into a row NumPy vector of

shape 1×102. This makes it ready for matrix multiplication. After returning the feature

vector, we can continue executing the extractFeatures view function.

Listing 7-23. Extracting Features from the Uploaded Image

def extract_features(image_path):

 f = open("select_indices.pkl", "rb")

 indices = pickle.load(f)

 f.close()

 fruit_data = skimage.io.imread(fname=image_path)

 fruit_data_hsv = skimage.color.rgb2hsv(rgb=fruit_data)

 hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

 im_features = hist[0][indices]

 img_features = numpy.zeros(shape=(1, im_features.size))

 img_features[0, :] = im_features [:im_features.size]

 return img_features

According to Listing 7-23, the next step in receiving the feature vector into the

img_features variable is to restore the set of weights learned by the ANN trained

using GA. The weights are returned to the weights_mat variable. Note that these weights

represent all solutions of the population returned after the last generation. We just need

to find the first solution in the population. This is why the index 0 is just returned from

the weights_mat variable.

Chapter 7 Deploying pretraineD MoDels

322

After preparing the image features and the learned weights, the next step is to apply

them on the ANN for producing the prediction label using the predict_outputs()

function according to Listing 7-24. It accepts the weights, features, and activation

functions. The activation functions are identical to what we implemented before. The

predict_outputs() function goes through a loop that performs matrix multiplication

between the inputs and the weights of each layer in the ANN. After reaching the result of

the output layer, the predicted class index is returned. It corresponds to the class with the

maximum score. This index is returned by this function.

Listing 7-24. Predicting the Class Label for the Uploaded Image

def predict_outputs(weights_mat, data_inputs, activation="relu"):

 r1 = data_inputs

 for curr_weights in weights_mat:

 r1 = numpy.matmul(a=r1, b=curr_weights)

 if activation == "relu":

 r1 = relu(r1)

 elif activation == "sigmoid":

 r1 = sigmoid(r1)

 r1 = r1[0, :]

 predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

 return predicted_label

After returning the predicted class index, we come back to Listing 7-22. The returned

index is then converted into the string label of the corresponding class. All labels are

saved into the class_labels list. The predicted class label is returned to the predicted_

class variable. The extractFeatures view function finally renders the result.html

template using the render_template() method. It passes the predicted class label to

such a template. The code of this template is available in Listing 7-25.

Listing 7-25. Content of the result.html Template

<html>

<header>

<title>Predicted Class</title>

<link rel="stylesheet" href="{{url_for(endpoint='static', filename='style.

css')}}">

Chapter 7 Deploying pretraineD MoDels

323

</header>

<body>

<h1>Predicted Label</h1>

<h1>{{predicted_class}}</h1>

Classify Another Image

</body>

</html>

The template creates an expression to be able to render the predicted class

label within the <h1> element. An anchor is created to let the user return back to the

homepage to classify another image. The URL of the homepage is returned based on its

endpoint. The screen of the result.html file after printing the class label is shown in

Figure 7-21.

Figure 7-21. The result of classifying an uploaded image

Note that the application just has a single static file named style.css implemented

according to Listing 7-26. It simply change the font size of both the <input> and <a>

elements. It also adds decorations to the text of <h1> elements by adding a line over and

under the text.

Listing 7-26. Static CSS File for Adding Styles

a, input{

font-size: 30px;

color: black;

}

Chapter 7 Deploying pretraineD MoDels

324

h1 {

text-decoration: underline overline dotted;

}

After discussing each part of the application, the complete code is available in

Listing 7-27.

Listing 7-27. Complete Code of Flask Application for Classifying Fruits 360

Dataset Images

import flask, werkzeug, skimage.io, skimage.color, numpy, pickle

app = flask.Flask(import_name="FruitsApp")

def sigmoid(inpt):

 return 1.0/(1.0+numpy.exp(-1*inpt))

def relu(inpt):

 result = inpt

 result[inpt<0] = 0

 return result

def extract_features(image_path):

 f = open("select_indices.pkl", "rb")

 indices = pickle.load(f)

 f.close()

 fruit_data = skimage.io.imread(fname=image_path)

 fruit_data_hsv = skimage.color.rgb2hsv(rgb=fruit_data)

 hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

 im_features = hist[0][indices]

 img_features = numpy.zeros(shape=(1, im_features.size))

 img_features[0, :] = im_features[:im_features.size]

 return img_features

def predict_outputs(weights_mat, data_inputs, activation="relu"):

 r1 = data_inputs

 for curr_weights in weights_mat:

 r1 = numpy.matmul(a=r1, b=curr_weights)

Chapter 7 Deploying pretraineD MoDels

325

 if activation == "relu":

 r1 = relu(r1)

 elif activation == "sigmoid":

 r1 = sigmoid(r1)

 r1 = r1[0, :]

 predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

 return predicted_label

def extractFeatures():

 img = flask.request.files["img"]

 img_name = img.filename

 img_secure_name = werkzeug.secure_filename(img_name)

 img.save(img_secure_name)

 print("Image Uploaded successfully.")

 img_features = extract_features(image_path=img_secure_name)

 print("Features extracted successfully.")

 f = open("weights_1000_iterations_10%_mutation.pkl", "rb")

 weights_mat = pickle.load(f)

 f.close()

 weights_mat = weights_mat[0, :]

 predicted_label = predict_outputs(weights_mat, img_features,

activation="sigmoid")

 class_labels = ["Apple", "Raspberry", "Mango", "Lemon"]

 predicted_class = class_labels[predicted_label]

 return flask.render_template(template_name_or_list="result.html",

predicted_class=predicted_class)

app.add_url_rule(rule="/extract", view_func=extractFeatures,

methods=["POST"], endpoint="extract")

def homepage():

 return flask.render_template(template_name_or_list="home.html")

app.add_url_rule(rule="/", view_func=homepage)

app.run(host="127.0.0.5", port=6302, debug=True)

Chapter 7 Deploying pretraineD MoDels

326

 Deploying Trained Model Using CIFAR10 Dataset
The steps we discussed for deploying the model trained with the Fruits 360 dataset will

be repeated but for a model created using TensorFlow trained using CIFAR10 dataset.

There are some enhancements compared to the previous application. The structure of

the application is given in Figure 7-22.

Figure 7-22. Application structure for deploying the pretrained model using
CIFAR10 dataset

We will discuss each part of the application later. Let’s start with the code in

Listing 7-28. The libraries required across the entire application are imported. It is

preferred to make the prediction step in a separate module. This is why the

CIFAR10Predict module is used. It has all required functions to predict the class label of

an image from the CIFAR10 dataset. This makes the Python file of the Flask application

focused on the view functions.

Listing 7-28. Preparing a Flask Application for Deploying the Pretrained Model

Using CIFAR10 Dataset

import flask, werkzeug, os, scipy.misc, tensorflow

import CIFAR10Predict

app = flask.Flask("CIFARTF")

def redirect_upload():

Chapter 7 Deploying pretraineD MoDels

327

 return flask.render_template(template_name_or_list="upload_image.html")

app.add_url_rule(rule="/", endpoint="homepage", view_func=redirect_upload)

if __name__ == "__main__":

 prepare_TF_session(saved_model_path='\\AhmedGad\\model\\')

 app.run(host="localhost", port=7777, debug=True)

Before running the application, it is good practice to ensure it is the main file

executed and not referenced from another file. If the file is running as the main file, the

__name__ variable inside it will be equal to __main__. Otherwise, the __name__ variable

is set to the module from which the file is called. The file should run only if it is the main

file. This is why the if statement is used.

A TF session is created in order to restore the pretrained model using the prepare_

TF_session function implemented according to Listing 7-29. This function receives

the path of the saved model in order to restore the graph and prepare the session by

initializing the variables in the graph before making predictions.

Listing 7-29. Restoring the Pretrained TF Model

def prepare_TF_session(saved_model_path):

 global sess

 global graph

 sess = tensorflow.Session()

 saver = tensorflow.train.import_meta_graph(saved_model_path+'model.

ckpt.meta')

 saver.restore(sess=sess, save_path=saved_model_path+'model.ckpt')

 sess.run(tensorflow.global_variables_initializer())

 graph = tensorflow.get_default_graph()

 return graph

After preparing the session, the application runs with localhost as the host, port

number 7777, and active debug mode.

There is a rule created that binds the homepage URL / to the view function

redirect_upload(). This rule has the endpoint homepage. When the user visits the

homepage http://localhost:777, the view function uses the render_template()

method to render the upload_image.html template defined in Listing 7-30.

Chapter 7 Deploying pretraineD MoDels

328

Listing 7-30. HTML File for Uploading an Image from the CIFAR10 Dataset

<!DOCTYPE html>

<html lang="en">

<head>

<link rel="stylesheet" type="text/css" href="{{url_for(endpoint='static',

filename='project_styles.css')}}">

<meta charset="UTF-8">

<title>Upload Image</title>

</head>

<body>

<form enctype="multipart/form-data" method="post" action="http://

localhost:7777/upload/">

<center>

<h3>Select CIFAR10 image to predict its label.</h3>

<input type="file" name="image_file" accept="image/*">

<input type="submit" value="Upload">

</center>

</form>

</body>

</html>

This HTML file creates a form that allows the user to select the image to get uploaded

to the server. A screenshot of this page is shown in Figure 7-23.

Figure 7-23. Screenshot of the HTML page used to upload a CIFAR10 image

Chapter 7 Deploying pretraineD MoDels

329

This page is very similar to the form created for the Fruits 360 application. After

submitting the form, the data will be sent to the page associated with the rule specified

by the action attribute, which is /upload. The rule in addition to its view function is

given in Listing 7-31.

Listing 7-31. Uploading a CIFAR10 Image to the Server

def upload_image():

 global secure_filename

 if flask.request.method == "POST"

 img_file = flask.request.files["image_file"]

 secure_filename = werkzeug.secure_filename(img_file.filename

 img_file.save(secure_filename)

 print("Image uploaded successfully.")

 return flask.redirect(flask.url_for(endpoint="predict"))

 return "Image upload failed."

app.add_url_rule(rule="/upload/", endpoint="upload", view_func=upload_

image, methods=["POST"])

The /upload rule is given an endpoint named upload and just responds to the HTTP

messages of type POST. It is associated with the upload_image view function. It retrieves

the secure file name from the original file name and saves the image to the server. If the

image is successfully uploaded, then it redirects the application using the redirect()

method to the URL associated with the predict endpoint. That endpoint belongs to the

/predict rule. The rule and its view function are given in Listing 7-32.

Listing 7-32. View Function to Predict the Class Label for CIFAR10 Image

def CNN_predict():

 global sess

 global graph

 global secure_filename

 img = scipy.misc.imread(os.path.join(app.root_path, secure_filename))

Chapter 7 Deploying pretraineD MoDels

330

 if(img.ndim) == 3:

 if img.shape[0] == img.shape[1] and img.shape[0] == 32:

 if img.shape[-1] == 3:

 predicted_class = CIFAR10Predict.main(sess, graph, img)

 return flask.render_template(template_name_or_

list="prediction_result.html", predicted_class=predicted_

class)

 else:

 return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

 else:

 return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

 return "An error occurred."

app.add_url_rule(rule="/predict/", endpoint="predict", view_func=CNN_

predict)

The function reads the image file and checks if it already belongs to the CIFAR10

dataset based on its shape and size. Each image in such a dataset has three dimensions;

the first two dimensions are equal in their size, which is 32. Moreover, the images are

RGB and thus the third dimension has three channels. If these specifications are not

found, then the application will get redirected to the error.html template implemented

according to Listing 7-33.

Listing 7-33. Template for Indicating That the Uploaded Image Does Not Belong

to the CIFAR10 Dataset

<!DOCTYPE html>

<html lang="en">

<head>

<link type="text/css" rel="stylesheet" href="{{url_for(endpoint='static',

filename='project_styles.css')}}">

<meta charset="UTF-8">

<title>Error</title>

</head>

<body>

<center>

Chapter 7 Deploying pretraineD MoDels

331

<h1 class="error">Error</h1>

<h2 class="error-msg">Read image dimensions {{img_shape}} do not match the

CIFAR10 specifications (32x32x3).</h2>

Return to homepage</

span>.

</center>

</body>

</html>

It uses expressions to print the size of the uploaded image in addition to the standard

size of the CIFAR10 dataset. When uploading an image of different shapeCIFAR10

dataset:shape and size, uploaded images, the error looks like what is shown in Figure 7- 24.

Figure 7-24. Error when uploading an image with different shape or size from the
CIFAR10 images

If the shape and size of the uploaded images match those of the CIFAR10 images,

then it is likely a CIFAR10 image and its label will be predicted using the module

CIFAR10Predict. As shown in Listing 7-34, it has a function called main, which accepts

the image after being read and returns its class label.

Chapter 7 Deploying pretraineD MoDels

332

Listing 7-34. Predicting the Class Label of the Image

def main(sess, graph, img):

 patches_dir = "\\AhmedGad\\cifar-10-python\\cifar-10-batches-py\\"

 dataset_array = numpy.random.rand(1, 32, 32, 3)

 dataset_array[0, :, :, :] = img

 softmax_propabilities = graph.get_tensor_by_name(name="softmax_

probs:0")

 softmax_predictions = tensorflow.argmax(softmax_propabilities, axis=1)

 data_tensor = graph.get_tensor_by_name(name="data_tensor:0")

 keep_prop = graph.get_tensor_by_name(name="keep_prop:0")

 feed_dict_testing = {data_tensor: dataset_array, keep_prop: 1.0}

 softmax_propabilities_, softmax_predictions_ = sess.run([softmax_

propabilities, softmax_predictions], feed_dict=feed_dict_testing)

 label_names_dict = unpickle_patch(patches_dir + "batches.meta")

 dataset_label_names = label_names_dict[b"label_names"]

 return dataset_label_names[softmax_predictions_[0]].decode('utf-8')

The function restores required tensors that help in returning the prediction label

based on their names, such as the softmax_predictions tensor. Some other tensors

are restored to override their values, which are the keep_prop to avoid dropping any

neuron in the testing phase and data_tensor tensors to provide the data of the image file

uploaded. The session then runs to return the predicted label. The label is just a number

that is an identifier to the class. The dataset provides a metadata file in which there is a

list containing the names of all classes. The identifier is converted into the class string

label by indexing the list.

After prediction completes, the CNN_predict() view functions sends the predicted

class to the prediction_result.html template for rendering. This template is

implemented as given in Listing 7-35. It is very simple. It just uses an expression to

print the predicted class within a element. The page provides a link to return

to the homepage based on the endpoint to select another image for classification. The

rendered page after uploading an image is given in Figure 7-25.

Chapter 7 Deploying pretraineD MoDels

333

Listing 7-35. Rendering Predicted Class

<!DOCTYPE html>

<html lang="en">

<head>

<link rel="stylesheet" type="text/css" href="{{url_for(endpoint='static',

filename='project_styles.css')}}">

<script type="text/javascript" src="{{url_for(endpoint='static',

filename='result.js')}}"></script>

<meta charset="UTF-8">

<title>Prediction Result</title>

</head>

<body onload="show_alert('{{predicted_class}}')">

<center><h1>Predicted Class Label : {{predicted_class}}</h1>

Return to homepage</

span>.

</center>

</body>

</html>

Note that when loading the <body> element of Listing 7-35, there is a call to a

JavaScript function named show_alert(). It accepts the predicted class label and shows

an alert. Its implementation is given in Listing 7-36.

Figure 7-25. The rendered result after predicting the class label

Chapter 7 Deploying pretraineD MoDels

334

Listing 7-36. JavaScript Alert Showing the Predicted Class

function show_alert(predicted_class){

alert("Processing Finished.\nPredicted class is *"+predicted_class+"*.")

}

Now that the individual parts of the application have been discussed, the complete

code is given in Listing 7-37.

Listing 7-37. Complete Flask Application for CIFAR10 Dataset

import flask, werkzeug, os, scipy.misc, tensorflow

import CIFAR10Predict#Module for predicting the class label of an input

image.

#Creating a new Flask Web application. It accepts the package name.

app = flask.Flask("CIFARTF")

def CNN_predict():

 """

 Reads the uploaded image file and predicts its label using the saved

pretrained CNN model.

 :return: Either an error if the image is not for the CIFAR10 dataset or

redirects the browser to a new page to show the prediction result if no

error occurred.

 """

 global sess

 global graph

Setting the previously created 'secure_filename' to global.

This is because to be able to invoke a global variable created in another

function, it must be defined global in the caller function.

 global secure_filename

 #Reading the image file from the path it was saved in previously.

 img = scipy.misc.imread(os.path.join(app.root_path, secure_filename))

Checking whether the image dimensions match the CIFAR10 specifications.

Chapter 7 Deploying pretraineD MoDels

335

CIFAR10 images are RGB (i.e. they have 3 dimensions). Its number of

dimensions was not equal to 3, then a message will be returned.

 if(img.ndim) == 3:

Checking if the number of rows and columns of the read image matched

CIFAR10 (32 rows and 32 columns).

 if img.shape[0] == img.shape[1] and img.shape[0] == 32:

Checking whether the last dimension of the image has just 3 channels

(Red, Green, and Blue).

 if img.shape[-1] == 3:

Passing all preceding conditions, the image is proved to be of CIFAR10.

This is why it is passed to the predictor.

 predicted_class = CIFAR10Predict.main(sess, graph, img)

After predicting the class label of the input image, the prediction label

is rendered on an HTML page.

The HTML page is fetched from the /templates directory. The HTML page

accepts an input which is the predicted class.

 return flask.render_template(template_name_or_

list="prediction_result.html", predicted_class=predicted_

class)

 else:

 # If the image dimensions do not match the CIFAR10

specifications, then an HTML page is rendered to show the

problem.

 return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

 else:

Chapter 7 Deploying pretraineD MoDels

336

 # If the image dimensions do not match the CIFAR10

specifications, then an HTML page is rendered to show the

problem.

 return flask.render_template(template_name_or_list="error.

html", img_shape=img.shape)

 return "An error occurred."#Returned if there is a different error

other than wrong image dimensions.

Creating a route between the URL (http://localhost:7777/predict) to a

viewer function that is called after navigating to such URL.

Endpoint 'predict' is used to make the route reusable without hard-coding

it later.

app.add_url_rule(rule="/predict/", endpoint="predict", view_func=CNN_

predict)

def upload_image():

 """

 Viewer function that is called in response to getting to the 'http://

localhost:7777/upload' URL.

 It uploads the selected image to the server.

 :return: redirects the application to a new page for predicting the

class of the image.

 """

 #Global variable to hold the name of the image file for reuse later in

prediction by the 'CNN_predict' viewer functions.

 global secure_filename

 if flask.request.method == "POST":#Checking of the HTTP method

initiating the request is POST.

 img_file = flask.request.files["image_file"]#Getting the file name

to get uploaded.

 secure_filename = werkzeug.secure_filename(img_file.

filename)#Getting a secure file name. It is a good practice to use

it.

 img_file.save(secure_filename)#Saving the image in the specified

path.

 print("Image uploaded successfully.")

Chapter 7 Deploying pretraineD MoDels

337

After uploading the image file successfully, next is to predict the class

label of it. The application will fetch the URL that is tied to the HTML

page responsible for prediction and redirects the browser to it.

The URL is fetched using the endpoint 'predict'.

 return flask.redirect(flask.url_for(endpoint="predict"))

 return "Image upload failed."

Creating a route between the URL (http://localhost:7777/upload) to a

viewer function that is called after navigating to such URL.

Endpoint 'upload' is used to make the route reusable without hard-coding

it later. The set of HTTP method the viewer function is to respond to is

added using the ‘methods’ argument. In this case, the function will just

respond to requests of the methods of type POST.

app.add_url_rule(rule="/upload/", endpoint="upload", view_func=upload_

image, methods=["POST"])

def redirect_upload():

 """

 A viewer function that redirects the Web application from the root to

an HTML page for uploading an image to get classified.

 The HTML page is located under the /templates directory of the

application.

 :return: HTML page used for uploading an image. It is 'upload_image.

html' in this example.

 """

 return flask.render_template(template_name_or_list="upload_image.html")

Creating a route between the homepage URL (http://localhost:7777) to a

viewer function that is called after getting to such a URL.

Endpoint 'homepage' is used to make the route reusable without hard-

coding it later.

app.add_url_rule(rule="/", endpoint="homepage", view_func=redirect_upload)

Chapter 7 Deploying pretraineD MoDels

338

def prepare_TF_session(saved_model_path):

 global sess

 global graph

 sess = tensorflow.Session()

 saver = tensorflow.train.import_meta_graph(saved_model_path+'model.

ckpt.meta')

 saver.restore(sess=sess, save_path=saved_model_path+'model.ckpt')

 #Initializing the variables.

 sess.run(tensorflow.global_variables_initializer())

 graph = tensorflow.get_default_graph()

 return graph

To activate the web server to receive requests, the application must run.

A good practice is to check whether the file is called from an external

Python file or not.

If not, then it will run.

if __name__ == "__main__":

In this example, the app will run based on the following properties:

host: localhost

port: 7777

debug: flag set to True to return debugging information.

 #Restoring the previously saved trained model.

 prepare_TF_session(saved_model_path='\\AhmedGad\\model\\')

 app.run(host="localhost", port=7777, debug=True)

Chapter 7 Deploying pretraineD MoDels

339
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7_8

CHAPTER 8

Cross-Platform Data
Science Applications
There are releases from the current DL libraries that support building applications for

mobile devices. For example, TensorFlowLite, Caffe Android, and Torch Android are

all releases from TF, Caffe, and Torch, respectively, to support mobile devices. These

releases are based on their parents. There must be an in-between step in order to make

the original model work on mobile devices. For example, the process of creating an

Android application that uses TensorFlowLite has the following summarized steps:

 1. Prepare the TF Model.

 2. Convert the TF Model to TensorFlowLite Model.

 3. Create an Android Project.

 4. Import the TensorFlowLite Model Within the Project.

 5. Call the Model Within Java Code.

It is tiresome to go through these steps for building a model suitable for running on

mobile devices. The challenging step is the second one.

TensorFlowLite is a release compatible with mobile devices. Thus, it is simplified

compared to its ancestor TF. This means it does not support everything in its parent

library. Some operations in TF such as tanh, image.resize_bilinear, and depth_to_space

are not supported in TensorFlowLite to date. This adds restrictions when preparing

a model that works on mobile devices. Moreover, the model developer has to use

languages in order to create an Android application running a trained CNN model.

Using Python, the model will be created using TF. After optimizing the model using

the TF optimizing converter (TOCO), a project is created using Android Studio. Inside

such a project, the model will be called using Java. As a result, the process is not

340

straightforward, and it is challenging to create the application. For more information

about building mobile applications using TensorFlowLite, read the documentation at

this link (www.tensorflow.org/lite/overview). In this chapter, we will use Kivy (KV) for

building applications running cross-platform with minimal effort.

Kivy is an abstract and modular open source cross-platform Python framework used

to create natural user interfaces (UIs). It decouples the developer from complex details

by using back-end libraries for low-level access to graphics hardware and handling both

audio and video. It just gives the developer simple APIs for doing the tasks.

This chapter gives an introduction to Kivy using a number of simple examples to

help explain its basic program structure, UI widgets, structuring of the widgets using

KV language, and handling actions. Kivy supports the execution of the same Python

code on Window, Linux, Mac, and also mobile devices, which makes it cross-platform.

Using Buildozer and Python-4-Android (P4A), the Kivy application is converted into

an Android package. Not only executes native Python code; Kivy also supports some

libraries to be executed on mobile devices such as NumPy and PIL (Python Image

Library). By the end of this chapter, a cross-platform application is built to execute the

CNN implemented in Chapter 5 using NumPy. Ubuntu is used in this chapter because

Buildozer is currently available on Linux.

 Introduction to Kivy
In this section, Kivy basics are discussed in detail based on some examples. This helps us

to put our hands on the way to build our own applications. Remember from Chapter 7

that Flask application starts to create an application by instantiating the Flask class; then

the application runs by calling the run() method. Kivy is similar but with some changes.

We can assume that the Flask class corresponds to the App class in Kivy. There is a

method called run() inside both Kivy and Flask. The Kivy application is created not by

instantiating the class App but by instantiating a child class extending the App class. The

application then runs by calling the run() method using an instance created from the

child class.

Kivy is used to build a UI that consists of a set of visual elements called widgets.

Between instantiating the class and running it, we have to specify which widgets are

used and their layout. The App class supports a method called build(), which returns

the layout widget containing all other widgets in the UI. This method can be overridden

from the parent App class.

Chapter 8 Cross-platform Data sCienCe appliCations

http://www.tensorflow.org/lite/overview

341

 Basic Application Using BoxLayout
Let’s make things clearer by discussing a basic Kivy application in Listing 8-1. At first, the

required modules from Kivy are imported. The kivy.app contains the App class. This

class is used as the parent of our defined class FirstApp. The second statement imports

kivy.uix.label, which has the label widget. This widget just displays text on the UI.

Inside the build() method, the label widget is created using the kivy.uix.label.

Label class. The class constructor accepts an argument named text, which is the text to

be displayed on the UI. The returned label is saved as a property of the FirstApp object.

Adding widgets as properties for the class object makes it easy to retrieve them later

compared to saving them in separate variables.

Listing 8-1. Basic Kivy Application

import kivy.app

import kivy.uix.label

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

 def build(self):

 self.label = kivy.uix.label.Label(text="Hello Kivy")

 self.layout = kivy.uix.boxlayout.BoxLayout()

 self.layout.add_widget(widget=self.label)

 return self.layout

firstApp = FirstApp()

firstApp.run()

Widgets in Kivy are grouped into a root widget. In Listing 8-1, the BoxLayout is used

as the root widget, which contains all other widgets. This is why the kivy.uix.boxlayout

is imported. Based on the constructor of the kivy.uix.label.BoxLayout class, the

BoxLayout object is saved as a property of the FirstClass object. After creating both

the label and the layout objects, the label is added to the layout using the add_widget()

method. This method has an argument named widget, which accepts the widget to be

added to the layout. After adding the label into the root widget (layout), the layout is

returned by the build() method.

Chapter 8 Cross-platform Data sCienCe appliCations

342

After creating the child class FirstApp and preparing its build() method, an

instance from that class is created. The run() method is then called by that instance and

the application window is displayed according to Figure 8-1.

Figure 8-1. Simple Kivy application with a text label

 Kivy Application Life Cycle
By just running the application, the widgets defined inside the build() method are

rendered on the screen. Note that the Kivy life cycle is illustrated in Figure 8-2.

It is similar to the Android application life cycle. The life cycle starts by running the

application using the run() method. After that, the build() method is executed,

which returns the widgets to be displayed. After executing the on_start() method,

the application runs successfully. Also, the application might get paused or stopped.

If paused, then the on_pause() method is called. If the application resumed, then the

on_resume() method is called. If not resumed, then the app stops. The app might get

stopped directly without being paused. If this case, the on_stop() method is called.

Chapter 8 Cross-platform Data sCienCe appliCations

343

The title at the top of the Figure 8-1 has the word First. What is that? The child class

is named FirstApp. When the class is named with the word App at the end, Kivy uses the

work before it as the application title. Naming the class MyApp, then the title is My. Note

that the word App must start with a capital letter. If the class is named Firstapp, then

the title will be also Firstapp. Note that we have the ability to set a custom name using

the title argument of the class constructor. The constructor also accepts an argument

named icon, which is the path of an image.

Listing 8-2 sets the application title to a custom title and also implements the

on_start() and on_stop() methods. The window is shown in Figure 8-3. When the

application starts, the on_start() method is called to print a message. This is the same

for the on_stop() method.

Figure 8-2. Kivy application life cycle

Chapter 8 Cross-platform Data sCienCe appliCations

344

Listing 8-2. Implementing Life Cycle Methods

import kivy.app

import kivy.uix.label

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

 def build(self):

 self.label = kivy.uix.label.Label(text="Hello Kivy")

 self.layout = kivy.uix.boxlayout.BoxLayout()

 self.layout.add_widget(widget=self.label)

 return self.layout

 def on_start(self):

 print("on_start()")

 def on_stop(self):

 print("on_stop()")

firstApp = FirstApp(title="First Kivy Application.")

firstApp.run()

Figure 8-3. Channing the application title

Chapter 8 Cross-platform Data sCienCe appliCations

345

We can add more than one widget inside the BoxLayout. This layout widget arranges

its child widgets either vertically or horizontally. Its constructor has an argument named

orientation to define the arrangement. It has two values: horizontal and vertical. It

defaults to horizontal.

If the orientation is set to vertical, then the widgets are stacked on top of each other,

where the first widget added appears at the bottom of the window and the last widget

added appears on the top. In this case, the window height is divided equally across all

child widgets.

If the orientation is horizontal, then the widgets are added side by side, where the

first widget added is the leftmost widget on the screen, while the last widget added is the

rightmost widget on the screen. In this case, the width of the window is divided equally

across all child widgets.

Listing 8-3 uses five button widgets with their text set to Button 1, Button 2, up to

Button 5. These widgets are added horizontally inside a BoxLayout widget. The result is

given in Figure 8-4.

Listing 8-3. Kivy Application using BoxLayout as the Root Widget with

Horizontal Orientation

import kivy.app

import kivy.uix.button

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

 def build(self):

 self.button1 = kivy.uix.button.Button(text="Button 1")

 self.button2 = kivy.uix.button.Button(text="Button 2")

 self.button3 = kivy.uix.button.Button(text="Button 3")

 self.button4 = kivy.uix.button.Button(text="Button 4")

 self.button5 = kivy.uix.button.Button(text="Button 5")

 self.layout = kivy.uix.boxlayout.BoxLayout(orientation=

"horizontal")

 self.layout.add_widget(widget=self.button1)

 self.layout.add_widget(widget=self.button2)

 self.layout.add_widget(widget=self.button3)

 self.layout.add_widget(widget=self.button4)

 self.layout.add_widget(widget=self.button5)

Chapter 8 Cross-platform Data sCienCe appliCations

346

 return self.layout

firstApp = FirstApp(title="Horizontal BoxLayout Orientation.")

firstApp.run()

Figure 8-4. The horizontal orientation of the BoxLayout widget

 Widget Size
The BoxLayout divides the screen equally across all widgets. Adding five widgets, then it

splits the screen into five equal parts in both width and height. It assigns each widget a

part of equal size. We can make the part size assigned to a widget larger or smaller using

the size_hint argument of the widgets. It accepts a tuple with two values defining the

width and height relative to the window size. By default, the tuple is (1,1) for all widgets.

This means equal sizes. If this argument is set to (2, 1) for a widget, the widget width will

be doubled compared to the default width. If it is set to (0.5,1), then the widget width will

be half the default width.

Listing 8-4 changes the size_hint argument for some widgets. Figure 8-5 shows

the result where the text of each button reflects its widths relative to the window size.

Note that the widgets make a hint to the parent widget that it would like its size to be

according to the values specified by the size_hint argument. The parent might accept

or reject the request. This is why it has the word hint in the argument name.

Chapter 8 Cross-platform Data sCienCe appliCations

347

For example, setting the col_force_default or row_force_default properties of the

widget makes the parent completely ignore the size_hint argument. Note that the

size_hint is an argument to the widget constructor and also available as a property for

the instances from the widgets.

Listing 8-4. Using the size_hint Argument with theIf added “with” not OK,

please clarify listing caption. Widgets to Change Their Relative Size

import kivy.app

import kivy.uix.button

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

 def build(self):

 self.button1 = kivy.uix.button.Button(text="2", size_hint = (2, 1))

 self.button2 = kivy.uix.button.Button(text="1")

 self.button3 = kivy.uix.button.Button(text="1.5", size_hint =

(1.5, 1))

 self.button4 = kivy.uix.button.Button(text="0.7", size_hint =

(0.7, 1))

 self.button5 = kivy.uix.button.Button(text="3", size_hint = (3, 1))

 self.layout = kivy.uix.boxlayout.BoxLayout(orientation="horizontal")

 self.layout.add_widget(widget=self.button1)

 self.layout.add_widget(widget=self.button2)

 self.layout.add_widget(widget=self.button3)

 self.layout.add_widget(widget=self.button4)

 self.layout.add_widget(widget=self.button5)

 return self.layout

firstApp = FirstApp(title="Horizontal BoxLayout Orientation.")

firstApp.run()

Chapter 8 Cross-platform Data sCienCe appliCations

348

 GridLayout
There are also layouts other than the BoxLayout. For example, the GridLayout divides

the screen into a grid based on the specified number of rows and columns. According

to Listing 8-5, a grid layout is created with two rows and three columns in which six

buttons are added. The number of rows and columns are set according to the rows and

cols properties, respectively. The first widget added appears on the top left corner, while

the last widget added appears on the bottom right corner. The result is illustrated in

Figure 8-6.

Listing 8-5. Dividing the Window into a Grid of Size 2×3 Using GridLayout

import kivy.app

import kivy.uix.button

import kivy.uix.gridlayout

class FirstApp(kivy.app.App):

 def build(self):

 self.button1 = kivy.uix.button.Button(text="Button 1")

 self.button2 = kivy.uix.button.Button(text="Button 2")

 self.button3 = kivy.uix.button.Button(text="Button 3")

 self.button4 = kivy.uix.button.Button(text="Button 4")

Figure 8-5. Changing the width of the widgets using size_hint argument

Chapter 8 Cross-platform Data sCienCe appliCations

349

 self.button5 = kivy.uix.button.Button(text="Button 5")

 self.button6 = kivy.uix.button.Button(text="Button 6")

 self.layout = kivy.uix.gridlayout.GridLayout(rows=2, cols=3)

 self.layout.add_widget(widget=self.button1)

 self.layout.add_widget(widget=self.button2)

 self.layout.add_widget(widget=self.button3)

 self.layout.add_widget(widget=self.button4)

 self.layout.add_widget(widget=self.button5)

 self.layout.add_widget(widget=self.button6)

 return self.layout

firstApp = FirstApp(title="GridLayout with 2 rows and 3 columns.")

firstApp.run()

Figure 8-6. GridLayout with two rows and three columns

Another layout that is suitable for mobile devices is the PageLayout. It actually builds

several pages within the same layout. At the page borders, the user can drag the page left

or right in order to navigate to another page. Creating such a layout is simple. Just create

an instance of the kivy.uix.pagelayout.PageLayout class, which is similar to what we

did before. Then, add widgets into the layout exactly as we did using the add_widget()

method.

Chapter 8 Cross-platform Data sCienCe appliCations

350

 More Widgets
There are multiple widgets to use in the UI. For example, the Image widget is used to

display an image based on its source. The TextInput widget allows the user to type

inputs into the application. Others include CheckBox, RadioButton, Slider, and more.

Listing 8-6 gives an example with Button, Label, TextInput, and Image widgets. The

TextInput class constructor has a property named hint_text that shows a hint message

inside the widget to help the user know what input to enter. The image widget uses the

source property to specify the image path. Figure 8-7 shows the result. Later, we will

handle the actions of these widgets such as button click, changing label text, and more.

Listing 8-6. BoxLayout with Label, TextInput, Button, and Image Widgets

import kivy.app

import kivy.uix.label

import kivy.uix.textinput

import kivy.uix.button

import kivy.uix.image

import kivy.uix.boxlayout

class FirstApp(kivy.app.App):

 def build(self):

 self.label = kivy.uix.label.Label(text="Label")

 self.textinput = kivy.uix.textinput.TextInput(hint_text="Hint

Text")

 self.button = kivy.uix.button.Button(text="Button")

 self.image = kivy.uix.image.Image(source="im.png")

 self.layout = kivy.uix.boxlayout.BoxLayout(orientation="vertical")

 self.layout.add_widget(widget=self.label)

 self.layout.add_widget(widget=self.textinput)

 self.layout.add_widget(widget=self.button)

 self.layout.add_widget(widget=self.image)

 return self.layout

firstApp = FirstApp(title="BoxLayout with Label, Button, TextInput, and

Image")

firstApp.run()

Chapter 8 Cross-platform Data sCienCe appliCations

351

 Widget Tree
In the previous examples, there is a root widget (layout) with several children directly

connected to it. The widget tree of Listing 8-6 is illustrated in Figure 8-8. The tree has

just one level. We can create a deeper tree like the one in Figure 8-9, in which the root

BoxLayout widget with vertical orientation has two layouts as children. The first one is

a GridLayout widget with two rows and two columns. The second child is a horizontal

BoxLayout widget with horizontal orientation. These child GridLayout widgets have

their own child widgets.

Figure 8-7. Vertical BoxLayout with Label, TextInput, Button, and Image
widgets

Figure 8-8. Widget tree of the Kivy application in Listing 8-6

Chapter 8 Cross-platform Data sCienCe appliCations

352

Figure 8-9. Widget tree with nested layouts

The Kivy application with the widget tree defined in Figure 8-9 is given in Listing 8-7.

The application creates each parent followed by creating its children and finally adding

these children into the parent. The rendered window of the application is available in

Figure 8-10.

Listing 8-7. Kivy Application with Nested Widgets in the Widget Tree

import kivy.app

import kivy.uix.label

import kivy.uix.textinput

import kivy.uix.button

import kivy.uix.image

import kivy.uix.boxlayout

import kivy.uix.gridlayout

class FirstApp(kivy.app.App):

 def build(self):

 self.gridLayout = kivy.uix.gridlayout.GridLayout(rows=2, cols=2)

 self.image1 = kivy.uix.image.Image(source="apple.jpg")

 self.image2 = kivy.uix.image.Image(source="bear.jpg")

 self.button1 = kivy.uix.button.Button(text="Button 1")

 self.button2 = kivy.uix.button.Button(text="Button 2")

 self.gridLayout.add_widget(widget=self.image1)

 self.gridLayout.add_widget(widget=self.image2)

 self.gridLayout.add_widget(widget=self.button1)

 self.gridLayout.add_widget(widget=self.button2)

Chapter 8 Cross-platform Data sCienCe appliCations

353

 self.button3 = kivy.uix.button.Button(text="Button 3")

 self.button4 = kivy.uix.button.Button(text="Button 4")

 self.boxLayout = kivy.uix.boxlayout.BoxLayout(orientation=

"horizontal")

 self.textinput = kivy.uix.textinput.TextInput(hint_text="Hint

Text.")

 self.button5 = kivy.uix.button.Button(text="Button 5")

 self.boxLayout.add_widget(widget=self.textinput)

 self.boxLayout.add_widget(widget=self.button5)

 self.rootBoxLayout = kivy.uix.boxlayout.BoxLayout(orientation=

"vertical")

 self.rootBoxLayout.add_widget(widget=self.gridLayout)

 self.rootBoxLayout.add_widget(widget=self.button3)

 self.rootBoxLayout.add_widget(widget=self.button4)

 self.rootBoxLayout.add_widget(widget=self.boxLayout)

 return self.rootBoxLayout

firstApp = FirstApp(title="Nested Widgets.")

firstApp.run()

Figure 8-10. Nested widgets

Chapter 8 Cross-platform Data sCienCe appliCations

354

 Handling Events
We can handle the events generated by the Kivy widgets using the bind() method. This

method accepts an argument specifying the target event to be handled. This argument

is assigned a function or method to be called for handling such an event. For example,

when a button is pressed, the on_press event is fired. As a result, the argument used with

the bind() method will be named on_press. Assume that we want to handle this event

using a method called handle_press, then the on_press argument of the bind() method

will be assigned this method name. Note that the method handling an event accepts an

argument representing the widget that fired the event. Let’s see how things work using

the application in Listing 8-8.

The application has two TextInput widgets, one Label, and a Button. The user

enters a number in each of the TextInput widgets. When the button is pressed,

the numbers are fetched and added, and then the result is rendered on the Label.

Everything in the application is familiar to us based on the previous examples except for

calling the bind() method for handling the press event using the add_nums() method.

Listing 8-8. Application for Adding Two Numbers and Showing Their Results on

a Label

import kivy.app

import kivy.uix.label

import kivy.uix.textinput

import kivy.uix.button

import kivy.uix.image

import kivy.uix.boxlayout

import kivy.uix.gridlayout

class FirstApp(kivy.app.App):

 def add_nums(self, button):

 num1 = float(self.textinput1.text)

 num2 = float(self.textinput2.text)

 result = num1 + num2

 self.label.text = str(result)

 def build(self):

Chapter 8 Cross-platform Data sCienCe appliCations

355

 self.boxLayout = kivy.uix.boxlayout.BoxLayout(orientation=

"horizontal")

 self.textinput1 = kivy.uix.textinput.TextInput(hint_text="Enter

First Number.")

 self.textinput2 = kivy.uix.textinput.TextInput(hint_text="Enter

Second Number.")

 self.boxLayout.add_widget(widget=self.textinput1)

 self.boxLayout.add_widget(widget=self.textinput2)

 self.label = kivy.uix.label.Label(text="Result of Addition.")

 self.button = kivy.uix.button.Button(text="Add Numbers.")

 self.button.bind(on_press=self.add_nums)

 self.rootBoxLayout = kivy.uix.boxlayout.BoxLayout(orientation=

"vertical")

 self.rootBoxLayout.add_widget(widget=self.label)

 self.rootBoxLayout.add_widget(widget=self.boxLayout)

 self.rootBoxLayout.add_widget(widget=self.button)

 return self.rootBoxLayout

firstApp = FirstApp(title="Handling Actions using Bind().")

firstApp.run()

The button calls the bind() method, which is a property of any widget. For handling

the on_press event, the method will use it as an argument. This argument is set equal

to the custom function created with the name add_nums. This means the add_nums()

method will be executed each time the on_press event is fired. The on_press itself is a

method. Because it is empty by default, we need to add some logic to it. That logic may

be a method we defined in the Python file, such as the add_nums method. Note that we

created a method, not a function for handling the event to have access to all widgets

within the object. If a function is used, then we have to pass the properties of the widgets

needed for handling the event.

Inside the add_nums() method, the text inside the two TextInput widgets is returned

using the text property into the num1 and num2 variables. Because the result returned by

the text property is a string, we have to convert it into a number. This is done using the

float() function. The two numbers are added together and the result is returned to the

result variable. Adding two numbers will return a number. Thus, the data type of the

Chapter 8 Cross-platform Data sCienCe appliCations

356

result variable is numeric. Because the text property only accepts strings, we have to

convert the result variable into a string using the str() function in order to display its

value on the label. Figure 8-11 shows the application UI after adding two numbers and

rendering the result on the Label widget.

Figure 8-11. Application UI that adds two numbers and displays the result on a
Label widget

 KV Language
Enlarging the widget tree by adding more widgets makes the Python code harder to

debug. Similar to what we did in Chapter 7 by separating the HTML code from the

logic inside the Flask application, in this chapter we will separate the UI code from the

application logic.

The UI will be created using a language called KV language (kvlang or Kivy

language). This language creates files with extension .kv holding the UI widgets. Thus,

there will be a .py file for the application logic such as handling the events, and another

.kv file for holding the UI of the application. The KV language builds the widget tree in a

simple way that is well read compared to adding it inside the Python code. KV language

makes it easy to debug the UI because it is clear what children belong to a given parent.

The KV file consists of a set of rules similar to the CSS rule that defines the widgets.

A rule consists of the widget class and a set of properties with their values. A colon is

added after the widget class name to indicate the beginning of the widget content. The

Chapter 8 Cross-platform Data sCienCe appliCations

357

content under a given widget is indented just the same as what Python does for defining

the content of blocks. There is a colon between the property name and its value. For

example, Listing 8-9 creates a rule for building a button widget.

The button widget is written followed by a colon. Everything indented after the colon

belongs to that widget. The number of indentation spaces is not fixed to just four. It is

similar to Python in that we can use any number of spaces. We find that there are three

properties that are indented. The first one is the text property, which is separated from

the value using a colon. Going to a new indented line, we can write the new property

background_color, which is separated from its value using a colon. By the way, the color

is defined using the RGBA color space, where A represents the alpha channel. Color values

are between 0.0 and 1.0. For the third property, the same process is repeated by writing its

name separated from its value using a colon. The color property defines the text color.

Listing 8-9. Preparing the Button Widget with Some Properties Using KV

Language

Button:

 text: "Press Me."

 background_color: (0.5, 0.5, 0.5, 1.0)

 color: (0,0,0,1)

We can create a simple Kivy application that uses a KV file for building the

UI. Assume we want to build a UI with the BoxLayout widget as the root with vertical

orientation. That root widget has three children (Button, Label, and TextInput). Note

that the KV language has only one root widget, which is defined by typing it without any

indentation. The children of this root widget will be indented equally. The KV language

file is given in Listing 8-10. The Button, Label, and TextInput widgets are indented

by four spaces after the root widget. The root widget itself can have properties. The

properties of each child widget are indented behind their widgets. It is simple enough,

but how can we use this KV file inside the Python code?

Listing 8-10. Simple UI Created Using KV Language

BoxLayout:

 orientation: "vertical"

 Button:

 text: "Press Me."

 color: (1,1,1,1)

Chapter 8 Cross-platform Data sCienCe appliCations

358

 Label:

 text: "Label"

 TextInput:

 hint_text: "TextInput"

There are two ways of loading the KV file inside the Python code. The first way is to

specify the path of the file inside the load_file() method of the kivy.lang.builder.

Builder class. This method uses its filename argument to specify the path of the file.

The file can be located anywhere and is not required to be in the same directory as the

Python file. Listing 8-11 shows how to locate the KV file this way.

Previously, the return of the build() method is the root widget defined within the

Python file. Now it returns the result of the load_file() method. The Python code is

clearer after separating the logic inside the Python file from the presentation, which is

now inside the KV file.

Listing 8-11. Locating the LV File Using Its Path

import kivy.app

import kivy.lang.builder

class FirstApp(kivy.app.App):

 def build(self):

 return kivy.lang.builder.Builder.load_file(filename='ahmedgad/

FirstApp/first.kv')

firstApp = FirstApp(title="Importing UI from KV File.")

firstApp.run()

The code can be made clearer by using the second way of loading the KV file. This

way depends on the name of the child class inheriting the App class. If this class is

named FirstApp, then Kivy will look for a KV file named first.kv. That is, the App word

is removed and the remaining text First is converted into lowercase. If there is a file

named first.kv inside the same directory at which the Python file exists, then this file

will be loaded automatically.

When this method is used, the Python code will be as given in Listing 8-12. The code

is now clearer than before and simpler to debug. The pass statement is added inside the

FirstApp class to avoid leaving it empty. Note that if Kivy could not locate a file named

according to first.kv, the application will still run but it will show a blank window.

Chapter 8 Cross-platform Data sCienCe appliCations

359

Listing 8-12. Loading the KV File Named According to the Child Class Name

import kivy.app

class FirstApp(kivy.app.App):

 pass

firstApp = FirstApp(title="Importing UI from KV File.")

firstApp.run()

We can separate the UI in Listing 8-8 from the Python code and bind the event

handler to the button inside the KV file. The KV file is given in Listing 8-13.

There are some further points worth mentioning. A widget can be given an ID

inside the KV file using the id property. Its value does not need to be enclosed between

quotes. The ID can be used to retrieve properties of widgets inside both the KV file and

the Python file. According to the code, IDs are given to the elements Label and the two

TextInput widgets. The reason is that these are the widgets we are looking to retrieve or

change in terms of their properties.

Listing 8-13. UI of Listing 8-8 for Adding Two Numbers Separated into KV File

BoxLayout:

 orientation: "vertical"

 Label:

 text: "Result of Addition."

 id: label

 BoxLayout:

 orientation: "horizontal"

 TextInput:

 hint_text: "Enter First Number."

 id: textinput1

 TextInput:

 hint_text: "Enter Second Number."

 id: textinput2

 Button:

 text: "Add Numbers."

 on_press: app.add_nums(root)

Chapter 8 Cross-platform Data sCienCe appliCations

360

The button widget has the on_press property. It is used to bind the event handler

to the on_press event. The event handler is the add_nums() method found inside the

Python code in Listing 8-14. Thus, we want to call a Python method from the KV file.

How can we do that?

The KV language has three helpful keywords: app, referring to the application

instance; root, referring to the root widget in the KV file; and self, which refers to the

current widget. The suitable keyword for use in order to call a method from the Python

code is the app keyword. Because it refers to the entire application, then it will be able

to refer to the methods inside the Python file. Thus, we can use it to call the add_nums()

method using app.add_nums().

Listing 8-14. Kivy Python File for Handling the on_press Event

import kivy.app

class FirstApp(kivy.app.App):

 def add_nums(self, root):

 num1 = float(self.root.ids["textinput1"].text)

 num2 = float(self.root.ids["textinput2"].text)

 result = num1 + num2

 self.root.ids["label"].text = str(result)

firstApp = FirstApp(title="Importing UI from KV File.")

firstApp.run()

Inside this method, we want to refer to the TextInput and label widgets in order to

fetch the numbers entered and print the result on the label. Because the self argument

refers to what called it, which is the instance about the entire application, we can use it to

refer to the root widget using self.root. This returns the root of the widgets, which can

be used to access any of its child widgets based on their IDs.

All IDs inside the KF file are saved inside the ids dictionary. We can use this

dictionary to retrieve whatever widget we want as long as it has an ID. After retrieving

the widget itself, we can fetch its properties. This way we can return the entered numbers

within the TextInput widgets, convert their values from string to float, add them, and

assign the text property of the Label widget the result after being converted into a

string.

Chapter 8 Cross-platform Data sCienCe appliCations

361

 P4A
At this point, we have a good overview of Kivy. We can go forward toward a building

Android applications using Kivy. We will start by packaging the Kivy application in

Listing 8-13 and Listing 8-14.

Without any change in the previous applications, they will run on Android after

packaging them. The simplified steps of converting the Kivy application into an Android

application are illustrated in Figure 8-12.

Figure 8-12. Steps for building Android applications from Kivy applications

After completing the Kivy Python application, the Buildozer tool prepares the

required tools for creating the APK file. The most important tool is called P4A. The

Buildozer tool creates a file named buildozer.spec for each Kivy application before

being converted into an Android application. This file holds details about the application

that will be discussed later in section Preparing buildozer.spec File. Let’s start by

installing the Buildozer tool.

 Installing Buildozer
The Buildozer tool is used in this section to package the Kivy applications as Android

applications. Once installed, Buildozer automates the process of building the

Android applications. It prepares the environment by all requirements in order to

build the applications successfully. These requirements include P4A, Android SDK,

and NDK. Before installing Buildozer, some dependencies are required. They can be

downloaded and installed automatically using the following Ubuntu commands:

ahmed-gad@ubuntu:~$ sudo pip install --upgrade cython==0.21

ahmed-gad@ubuntu:~$ sudo dpkg --add-architecture i386

ahmed-gad@ubuntu:~$ sudo apt-get update

ahmed-gad@ubuntu:~$ sudo apt-get install build-essential ccache git

libncurses5:i386 libstdc++6:i386 libgtk2.0-0:i386 libpangox-1.0-0:i386

Chapter 8 Cross-platform Data sCienCe appliCations

362

libpangoxft-1.0-0:i386 libidn11:i386 python2.7 python2.7-dev openjdk-8-jdk

unzip zlib1g-dev zlib1g:i386

After installing these dependencies successfully, Buildozer can be installed

according to this command:

ahmed-gad@ubuntu:~$ sudo install --upgrade buildozer

In case Buildozer is currently installed on your machine, the --upgrade option makes

sure it is upgraded to the latest version. After installing Buildozer successfully, let us

prepare the buildozer.spec file in order to build the Android application.

 Preparing buildozer.spec File
The project structure to be packaged into an Android application is given in Figure 8- 13.

There is a folder named FirstApp, which contains three files. The first file is named main.

py, which is the Kivy application that was named FirstApp.py previously. The reason

it has been renamed is that when building the Android application, there must be a file

named main.py, which is the entrance of the application. This will not change anything

in the application.

Figure 8-13. Project structure

It is preferred to check whether the Kivy application runs successfully before

proceeding the next steps. Just activate the Kivy virtual environment on your machine

and run the main.py Python file according to Figure 8-14. It is expected to work as in

Figure 8-11.

Chapter 8 Cross-platform Data sCienCe appliCations

363

By this point, a Kivy desktop application has been created successfully. We can now

start preparing the missing file buildozer.spec and build an Android application.

The buildozer.spec file can be simply and automatically generated using Buildozer.

After opening the Ubuntu terminal and navigating to the FirstApp directory in which

the application Python and KV files exist, issue the following command:

ahmed-gad@ubuntu:~/ahmedgad/FirstApp$ buildozer init

After issuing this command, a confirmation message appears, as shown in to

Figure 8-15. Some of the important fields of that file are listed in Listing 8-15. For

example, the title represents the application title; source directory refers to the root

directory of the application in which the main.py file exists, which is set in this case

as the current directory; app version; Python and Kivy versions; orientation, that is,

whether the application appears in full screen or not; and application requirements,

which is just set to kivy. If we use a library supported by P4A such as NumPy, then

we need to list it beside kivy in order to load it into the application. The permissions

property represents the requested permissions by the application. You can also hard-

code the paths of both SKD and NDK if they already exist on your machine to save time

downloading them. Note that the # character before a line indicates it is a comment.

The presplash.filename property is used to specify the image path that appears when

loading the application before being started. The icon.filename property is assigned

the file name of an image to be used as the application icon.

Figure 8-14. Activating the Kivy virtual environment for running the Kivy
application

Chapter 8 Cross-platform Data sCienCe appliCations

364

These fields are inside the [app] section of the specification file. You can also

edit the specification file to change whatever fields you see as worth modifying. The

package.domain property is by default set to org.test, which is used just for testing, not

production. If this value is left as is, it will prevent the building of the application.

Listing 8-15. Some Important Fields from the buildozer.spec File

[app]

title = Simple Application

package.name = firstapp

package.domain = gad.firstapp

source.dir = .

source.include_exts = py,png,jpg,kv,atlas

version = 0.1

requirements = kivy

orientation = portrait

osx.python_version = 3

osx.kivy_version = 1.10.1

fullscreen = 0

presplash.filename = presplash.png

icon.filename = icon.png

android.permissions = INTERNET

android.api = 19

android.sdk = 20

android.ndk = 9c

android.private_storage = True

#android.ndk_path =

#android.sdk_path =

Figure 8-15. Creating the buildozer.spec file successfully

Chapter 8 Cross-platform Data sCienCe appliCations

365

After preparing the required files to build the Android application, the next step is to

build it using Buildozer.

 Building Android Application Using Buildozer
After preparing all project files, Buildozer uses them to produce the APK file. For

development, we can produce a debug version of the application using the following

command:

ahmed-gad@ubuntu:~/ahmedgad/FirstApp$ buildozer android release

Figure 8-16 shows the response when the command is entered. When building the

application for the first time, Buildozer has to download all of the required dependencies

such as SDK, NDK, and P4A. Buildozer saves a lot of effort by downloading and installing

them automatically. Based on your Internet connection, the process might take time

before everything is up and running; be patient.

Figure 8-16. Installing dependencies required by Buildozer to build the Android
application

After the installation has been done successfully, there are two folders created. The

first one is named .buildozer; it represents all files downloaded by Buildozer necessary

for building the application. The second folder is named bin; it stores the APK files

produced after building the application. We can transfer the APK file to an Android

device to install and test it. The screen of the Android application is shown in Figure 8- 17.

Chapter 8 Cross-platform Data sCienCe appliCations

366

If an Android device is connected and recognized by the machine, Buildozer could

both produce the APK file and install it once produced on the machine according to this

command:

ahmed-gad@ubuntu:~/ahmedgad/FirstApp$ buildozer android debug deploy run

After building a basic Android application based on the Python Kivy application,

we can start building more advanced applications. Not all Kivy applications running on

desktops can work directly on mobile devices. Some libraries might not be supported

to be packaged into the mobile application. For example, P4A only supports a set of

libraries that could be used in the Android application. If you used an unsupported

library, the application crashes.

Kivy is supported by P4A, which can build the application UI exactly the same

as we discussed previously. P4A also supported other libraries such as NumPy, PIL,

dateutil, OpenCV, Pyinius, Flask, and more. The restriction when building an Android

application using Python is to only use the set of supported libraries by P4A. In the

Figure 8-17. Running the Android application

Chapter 8 Cross-platform Data sCienCe appliCations

367

next section, we will discuss how to build an Android application from the application

created in Chapter 3 for recognizing the Fruits 360 dataset images.

 Image Recognition on Android
The application created in Chapter 3 extracts features from the Fruits 360 dataset, which

used for training an ANN. In Chapter 7, a Flask application was created to access it from

the Web. In this chapter, we will discuss how to package it into an Android application

that runs offline where features are extracted on device.

The first thing to think about is whether the libraries used in this application are

supported by P4A. The libraries used are as follows:

• scikit-image for reading the original RGB image and converting it

into HSV.

• NumPy for extracting the features (i.e., hue histogram), building the

ANN layers, and making predictions.

• pickle for restoring the best weights for the network trained using

GA and indices of the selected feature elements.

From the used libraries, P4A only supports NumPy. Neither scikit-image and

pickle are supported. As a result, we have to find alternative libraries supported by

P4A to replace these two libraries. The available choices for replacing scikit-image are

OpenCV and PIL. We just need a library to read the image file and convert it to HSV and

no more. OpenCV has more features than the two required ones. Packaging this library

into the Android application will increase its size. For this reason, PIL is used because it

is simpler.

Regarding pickle, we can replace it with NumPy. NumPy can save and load variables in

a file with the .npy extension. For this reason, the weights and selected element indices

will be saved into .npy files in order to read them using NumPy.

The project structure is illustrated in Figure 8-18. The Fruits.py file contains the

function required for extracting features from the test image, and predicting its label.

These functions are almost identical to the previous ones in Chapter 3 except for using

NumPy rather than pickle and PIL rather than scikit-image. The implementation of this

file is given in Listing 8-16.

Chapter 8 Cross-platform Data sCienCe appliCations

368

The extract_features() function has an argument representing the image file path.

It reads it using PIL and converts it into HSV color space using the convert method.

This method accepts the HSV string specifying that the image is to be converted into

HSV. After that, the extract_features() method extracts the features, filters the feature

elements based on the selected indices’ .npy file, and finally returns them. The predict_

outputs() function is made to accept the weights .npy file path and then read it using

NumPy, classify the image based on the ANN, and return the classification label.

Figure 8-18. Project structure for recognizing Fruits 360 dataset images on
Android

Listing 8-16. Fruits.py Module for Extracting Features and Classifying Images

import numpy

import PIL.Image

def sigmoid(inpt):

 return 1.0/(1.0+numpy.exp(-1*inpt))

def relu(inpt):

 result = inpt

 result[inpt<0] = 0

 return result

def predict_output(weights_mat_path, data_inputs, activation="relu"):

 weights_mat = numpy.load(weights_mat_path)

 r1 = data_inputs

 for curr_weights in weights_mat:

Chapter 8 Cross-platform Data sCienCe appliCations

369

 r1 = numpy.matmul(a=r1, b=curr_weights)

 if activation == "relu":

 r1 = relu(r1)

 elif activation == "sigmoid":

 r1 = sigmoid(r1)

 r1 = r1[0, :]

 predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]

 return predicted_label

def extract_features(img_path):

 im = PIL.Image.open(img_path).convert("HSV")

 fruit_data_hsv = numpy.asarray(im, dtype=numpy.uint8)

 indices = numpy.load(file="indices.npy")

 hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)

 im_features = hist[0][indices]

 img_features = numpy.zeros(shape=(1, im_features.size))

 img_features[0, :] = im_features[:im_features.size]

 return img_features

The KV file first.kv responsible for building the UI of the application is given in

Listing 8-17. It’s worth mentioning that the font size of both the label and button widgets

is increased using the font_size property. Also, the classify_image() method is called

in response to the button widget on_press event.

Listing 8-17. KV File of the Fruits Recognition Application

BoxLayout:

 orientation: "vertical"

 Label:

 text: "Predicted Class Appears Here."

 font_size: 30

 id: label

 BoxLayout:

 orientation: "horizontal"

Chapter 8 Cross-platform Data sCienCe appliCations

370

 Image:

 source: "apple.jpg"

 id: img

 Button:

 text: "Classify Image."

 font_size: 30

 on_press: app.classify_image()

The implementation of the classify_image() method is available inside the main.

py file according to Listing 8-18. This method loads the path of the image to be classified

from the source property of the image widget. This path is passed to the extract_

features() function inside the Fruits module as an argument. The predict_output()

function accepts both the extracted features, ANN weights, and the activation function.

It returns the classification label after matrix multiplication between the inputs of each

layer and its weights. The label is then printed on the label widget.

Listing 8-18. Implementation of the main.py File of the Fruits Recognition

Application

import kivy.app

import Fruits

class FirstApp(kivy.app.App):

 def classify_image(self):

 img_path = self.root.ids["img"].source

 img_features = Fruits.extract_features(img_path)

 predicted_class = Fruits.predict_output("weights.npy", img_

features, activation="sigmoid")

 self.root.ids["label"].text = "Predicted Class : " + predicted_

class

firstApp = FirstApp(title="Fruits 360 Recognition.")

firstApp.run()

Chapter 8 Cross-platform Data sCienCe appliCations

371

Before starting to build the APK file, we can ensure that everything works as

expected by running the Kivy application. After running the application and pressing the

button, the image is classified; the result is shown in Figure 8-19. After making sure the

application is running successfully, we can start building the Android application.

Figure 8-19. The result of running the Kivy application after classifying an image

Before building the application using Buildozer, the buildozer.spec file must be

generated. You can use the buildozer init command to create it automatically. It is

important to note that inside the application, we use two.npy files representing the

filtered element indices and the weights. We need to include them into the APK file.

How can we do that? Inside the buildozer.spec file, there is a property named source.

include_exts. It accepts the extensions of all files we need to include into the APK file

separated by commas. These files are located at the root of the application. For example,

to add the files with extensions py, npy, kv, png, and jpg, the property will be as follows:

source.include_exts = py,png,jpg,kv ,npy

Two critical steps for the successful execution of the application are converting

the RGB image into HSV using the PIL and matrix multiplication using the matmul()

function inside NumPy. Take care to use the versions of the libraries that offer these

functionalities.

Chapter 8 Cross-platform Data sCienCe appliCations

372

Regarding the conversion from RGB to HSV, make sure to use the new version of

PIL called Pillow. It is just an extension to PIL that could be imported and used with

no difference. Regarding the matrix multiplication, it is only supported in NumPy

version 1.10.0 and higher. Take care not to use a lower version. This leaves an additional

question, which is how to tell P4A that we need to use a specific version of a library. One

way is to specify the required version inside the P4A recipe corresponding to NumPy.

These recipes are located in the P4A installation directory under Buildozer installation.

For example, version 1.10.1 is used according to Figure 8-20. Based on the specified

version, the library will be downloaded from Python package index (PyPI) and installed

automatically when building the application. Note that preparing the environment of

Kivy for Android is harder than its usage. We are living in an era in which preparing the

development environment is harder than the development itself.

Figure 8-20. Specifying the version of NumPy to be installed

Now we are ready to build the Android application. We can use the command

buildozer android debug deploy run for building, installing, the running the

application on a connected Android device to the development machine. We can also

use the logcat tool to print debugging information about the device. Just add this word

at the end of the command. After the building has been done successfully, the Android

application UI will be as shown in Figure 8-21.

Chapter 8 Cross-platform Data sCienCe appliCations

373

 CNN on Android
In section Building a CNN using NumPy from Scratch of Chapter 5, we created a

project for building CNN from scratch using NumPy. In this section, this project will be

packaged into an Android application to execute the CNN on the device. The project

structure is illustrated in Figure 8-22. The numpycnn.py file holds all functions discussed

in Chapter 5 for building the CNN layers. The main application file named main.py has

its child class named NumPyCNNApp. This is why the KV file should be named numpycnn.

kv. The buildozer.spec file is similar to what we discussed previously. We will just

discuss the main file and its KV file briefly. It is expected that most of this part of the

project will be clear based on the previous discussion across the chapter.

Figure 8-21. UI of the Android application used to classify images of the Fruits
360 dataset

Chapter 8 Cross-platform Data sCienCe appliCations

374

We will start by the KV file in Listing 8-19. The root widget is a vertical BoxLayout that

has two child GridLayout widgets. The first GridLayout widget displays both the original

image and the result of the last layer in the CNN. It is divided equally to hold two vertical

child BoxLayout widgets. Each layout has label and image widgets. The label just makes

it indicate where the original and result images are.

The second child of the root widget, GridLayout, has three widgets. The first one is a

Button that executes the CNN when pressed by calling the start_cnn() method inside

the main Python file. The second one is a Label that prints the size of the result after

executing all CNN layers. Finally, the third child is a TextInput widget, which allows

the user to specify the architecture of the CNN as a text. For example, conv2,pool,relu

means that the network consists of three layers: the first one is a conv layer with four

filters, the second one is an average pooling layer, and the third one is a ReLU layer.

When the application runs, it has the UI shown in Figure 8-23.

Listing 8-19. KV File of the CNN Kivy Application

BoxLayout:

 orientation: "vertical"

 GridLayout:

 size_hint_y: 8

 cols: 3

 spacing: "5dp", "5dp"

 BoxLayout:

 orientation: "vertical"

 Label:

 id: lbl1

 size_hint_y: 1

Figure 8-22. Project structure for running CNN on Android

Chapter 8 Cross-platform Data sCienCe appliCations

375

 font_size: 20

 text: "Original"

 color: 0, 0, 0, 1

 Image:

 source: "input_image.jpg"

 id: img1

 size_hint_y: 5

 allow_stretch: True

 BoxLayout:

 orientation: "vertical"

 Label:

 id: lbl2

 size_hint_y: 1

 font_size: 20

 text: ""

 color: 0, 0, 0, 1

 Image:

 id: img2

 size_hint_y: 5

 allow_stretch: True

 GridLayout:

 cols: 3

 size_hint_y: 1

 Button:

 text: "Run CNN"

 on_press: app.start_cnn()

 font_size: 20

 id: btn

 Label:

 text: "Click the button & wait."

 id: lbl_details

 font_size: 20

 color: 0, 0, 0, 1

Chapter 8 Cross-platform Data sCienCe appliCations

376

 TextInput:

 text: "conv4,pool,relu"

 font_size: 20

 id: cnn_struct

The implementation of the main.py file is given in Listing 8-20. The entry point for

this file is the start_cnn() method. It reads the image path from the Image widget and

reads it using PIL as we discussed in the previous example. For simplicity, the image is

converted into gray using the convert() method. The character L converts the image

into gray. After pressing the Button widget, this function runs a background thread that

executes the CNN according to the structure specified in the TextInput. The result of the

last layer is returned to the refresh_GUI() method. This method displays the first matrix

of the result on the UI window.

Figure 8-23. The main window of the Kivy application executing CNN

Listing 8-20. Implementation of the Main File of the Kivy Application

Executing CNN

import kivy.app

import PIL.Image

import numpy

import numpycnn

import threading

Chapter 8 Cross-platform Data sCienCe appliCations

377

import kivy.clock

class NumPyCNNApp(kivy.app.App):

 def run_cnn_thread(self):

 layers = self.root.ids["cnn_struct"].text.split(",")

 self.root.ids["lbl_details.text"] = str(layers)

 for layer in layers:

 if layer[0:4] == "conv":

 if len(self.curr_img.shape) == 2:

 l_filter = numpy.random.rand(int(layer[4:]), 3, 3)

 else:

 l_filter = numpy.random.rand(int(layer[4:]), 3, 3,

self.curr_img.shape[-1])

 self.curr_img = numpycnn.conv(self.curr_img, l_filter)

 print("Output Conv : ", self.curr_img.shape)

 elif layer == "relu":

 self.curr_img = numpycnn.relu(self.curr_img)

 print("Output RelU : ", self.curr_img.shape)

 elif layer == "pool":

 self.curr_img = numpycnn.avgpooling(self.curr_img)

 print("Output Pool : ", self.curr_img.shape)

 elif layer[0:2] == "fc":

 num_outputs = int(layer[2:])

 fc_weights = numpy.random.rand(self.curr_img.size, num_

outputs)

 print("FC Weights : ", fc_weights.shape)

 self.CNN_FC_Out = numpycnn.fc(self.curr_img, fc_weights=fc_

weights, num_out=num_outputs)

 print("FC Outputs : ", self.CNN_FC_Out)

 print("Output FC : ", self.CNN_FC_Out.shape)

 else:

 self.root.ids["lbl_details"].text = "Check input."

 break

 self.root.ids["btn.text"] = "Try Again."

 self.refresh_GUI()

Chapter 8 Cross-platform Data sCienCe appliCations

378

 def start_cnn(self):

 img1 = self.root.ids["img1"]#Original Image

 im = PIL.Image.open(img1.source).convert("L")

 img_arr = numpy.asarray(im, dtype=numpy.uint8)

 self.curr_img = img_arr

 im_size = str(self.curr_img.shape)

 self.root.ids["lbl_details"].text = "Original image size

" + im_size

 threading.Thread(target=self.run_cnn_thread).start()

 self.root.ids["btn"].text = "Wait."

 @kivy.clock.mainthread

 def refresh_GUI(self):

 im = PIL.Image.fromarray(numpy.uint8(self.curr_img[:, :, 0]))

 layer_size = str(self.curr_img.shape)

 im.save("res.png")

 self.root.ids["img2"].source = "res.png"

 self.root.ids["lbl2"].text = "Last Layer Result"

 self.root.ids["lbl_details"].text = "Out size "+layer_size

if __name__ == "__main__":

 NumPyCNNApp().run()

The thread executes the run_cnn_thread() method. That method starts by splitting

the text retrieved from the TextInput to return each layer separately. Based on if

statements, the suitable function from the numpycnn.py file is called to build the specified

CNN layer. For example, if the current string is relu, then the relu function will be called.

The number appended to the conv string is used as an argument specifying the number of

filters. The shape of all filters is 3×3. They are filled randomly. If there is an unrecognized

string, the application displays a message on the Label to indicate there is something

wrong with the inputs. After this function finishes execution, it returns to the refresh_

GUI() method. It displays the first matrix returned and prints its size on the Label.

A modified version of this application allows running all three successive conv, pool,

and ReLU layers and shows results returned by all of them. Based on the first three layers

(two filters, conv layer with two filters followed by pooling and then ReLU), all returned

results are given in Figure 8-24.

Chapter 8 Cross-platform Data sCienCe appliCations

379

After making sure the application runs well on the desktop, the only file remaining

to build the application is the buildozer.spec file. It can be prepared according to

our previous discussion. After creating it successfully, we can start building it using

Buildozer as we did previously. The UI of the application after running it on an Android

device is given in Figure 8-25.

Figure 8-24. The result of all layers based on three layers CNN
(conv2,pool,relu)

Chapter 8 Cross-platform Data sCienCe appliCations

380

Figure 8-25. Running Kivy application for executing CNN on Android devices

Chapter 8 Cross-platform Data sCienCe appliCations

381
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7

 APPENDIX A

Installing Your Own
Projects Using pip Installer
Most of us have worked with several languages such as Java, C++, and Python and

created a number of projects, but unfortunately, these projects are possibly buried

and no one knows about them. Why not make these projects live online? Distributing

projects is very easy with Python. We can benefit from the implementation of CNN using

NumPy in Chapter 5 to make it available for everyone looking to do the same job.

This appendix discusses the steps required to package your Python projects,

distribute them in distribution formats using setuptools, upload them into the PyPI

repository using twine, and finally install them using Python installers such as pip and

conda. This appendix starts with a very simple Python project called “printmsg”, which

has a simple function to print a message when called.

We are going to discuss the following points:

• Creating a Simple Python Project.

• How Does Python Locate Libraries?

• Manual Installation by Copying Project Files to site-packages.

• How Do Python Installers Locate Libraries?

• Preparing the Package and Its Files (__init__.py and setup.py).

• Distributing the Package.

• Uploading the Distribution Files Online to Test PyPI.

• Installing the Distributed Package from Test PyPI.

• Importing and Using the Installed Package.

• Using PyPI Rather Than Test PyPI.

https://doi.org/10.1007/978-1-4842-4167-7

382

The platform used is Linux Ubuntu 18.04 with Python 3.6.5, but you can use other

platforms such as Windows with little or no difference in the commands used. Let’s see

how things work.

 Creating a Simple Python Project
Let us create a very simple project and distribute it. To be able to package and distribute

any Python project, there must be an associated folder containing all of the required files

for the project. The folder name will later be the project name.

 Project Structure
This project will have just a single level containing a single Python file. The project

structure is available in Figure A-1.

Figure A-1. Simple project structure

The used project/folder name is “printmsg” to reflect its use. The Python file inside it

is named “print_msg_file.py”. The Python file contains a function and a variable. The

function is named “print_msg_func”, and it will print a message once called. Because

most of the existing projects contain some variables to reflect their properties such as the

version, there is a variable named “version” that holds the version of the project.

 Project Implementation
The implementation of the “print_msg_file.py” file is given in Listing A-1. The first line

defines the version of the project using a variable named “__version__”. The “print_
msg_func()” function prints a hello message when called. It is good practice to handle

the situations at which the Python file is called as the main file or not. This is the job of

the “if” statement at the end of the file using the built-in special variable “__name__”.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

383

When a Python file is executed as the main program, then the “__name__” variable is set

equal to “__main__”. In case that file is used within a module, the “__name__” variable

is set to the module name. The if statement ensures that the file is not imported within

another module and then calls the “print_msg_func()” to print the hello message.

Listing A-1. Implementation of print_msg_file.py

__version__ = "1.0"

def print_msg_func():

 print("Hello Python Packaging")

if __name__ == "__main__":

 print_msg_func()

 Running the Project
After completing such a simple project, the next step is to execute it to ensure that

everything is running well. A Python file is to be executed from either the Linux terminal

or Windows command prompt by issuing the Python command followed by the location

of the file. Figure A-2 shows how to run the Python file using both Windows and Ubuntu.

Note that the project folder is saved into the Desktop.

Figure A-2. Running the module as the main program

The CMD/terminal are opened in the "printmsg" directory. Its content is displayed

using the “ls” command. Just the target file "print_msg_file.py" exists there. The

Python command is issued to run the file.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

384

 Importing the Module into a File Inside Its Directory
After making sure everything is working well, it is possible to import that project into

another Python file in order to be able to call its content. If a file to be imported into

another, a legacy way for doing this is to create another file inside the same directory of

that file. Note that it is not required to be in the same directory, but it will be simple in this

case to avoid long paths. For example, another Python file named "inside_project.py"

imports the project and calls its function according to Listing A-2.

Listing A-2. Importing a Module and Calling Its Functions

import print_msg_file

print_msg_file.print_msg_func()

The project is imported as in line 1. Then, it is used to call its function in line 2. After

opening the terminal and setting its current directory to the “printmsg” folder, the new

file "inside_project.py" can be executed as in Figure A-3. The function got called

successfully.

Figure A-3. Importing the module successfully inside another file

 Importing the Module into a File Outside Its
Directory
Because the imported module is in the same directory of the script it is called from, the

process is straightforward. Just type the name of the module in an import statement.

But an important question now arises: What if the script calling the file is in a different

directory than the module it would like to import? Let us try to create another Python file

not located in the same directory of the imported module and try to import the module

again. The file is named “outside_project.py” and is located in the desktop. In other

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

385

words, that file is located one level up compared to the module. It has the same code

used in the previous file, “inside_project.py”. After running this file from the terminal,

the result is shown in Figure A-4.

Figure A-4. Unable to locate the module in a different directory

Figure A-5. Successfully locating the module after locating it correctly within the
import statement

The module is not found because the file and the module to be imported are in

different directories. The file is located in the “~/Desktop/” directory, and the module

is located in “~/Desktop/printmsg/” directory. To solve that issue, the printmsg is

appended to the name of the module to make the interpreter know where it can find the

module as given in Listing A-3.

Listing A-3. Appending Module Name When Importing the Function

import printmsg.print_msg_file

printmsg.print_msg_file.print_msg_func()

The result of executing the “outside_project.py” file is shown in Figure A-5.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

386

But appending the folder name in the path from the file to the module it imports is

tiresome, especially if the file is away from the module in more than one level. To solve

this issue, let’s learn how the Python interpreter locates its imported libraries.

 How Does Python Locate Libraries?
When the Python interpreter encounters an import statement, it searches in some of its

directories for that imported library. If it is not found in any of those directories, then it

will raise an error as in Figure A-4.

There are multiple sources of such paths that are searched for a given library. For

example, paths can be inside the PYTHONHOME or PYTHONPATH environment

variables, current script directory, and the site-packages directory. The list of all

directories that Python searches in is listed in the path property of the sys built-in

module. It can be printed according to Listing A-4.

Listing A-4. Printing List of Search Directories

import sys

print(sys.path)

The sys.path list is printed using the terminal, and the result is shown in Figure A-6.

Figure A-6. Search paths that Python uses to locate a module

In our example, the module is not located in any of the directories listed in sys.path,

and this is why an exception is thrown. We can fix that by moving the library into one of

these paths. The directory that will be used is the site-packages directory. The reason is

that the installed libraries using pip or conda are added to that directory. Let us see how

to add our project into that directory manually.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

387

 Manual Installation by Copying Project Files to
Site- Packages
In Figure A-5, the site-packages directory is listed as a search path for imported libraries.

By simply copying and pasting the project directory “printmsg” inside the site-packages

directory, the print_msg_file module can be imported. Figure A-7 shows that the

printmsg project is copied into site-packages.

Figure A-7. Copying the project into the site-packages directory to make it
locatable by Python

Based on the previous two lines in Listing A-3, the “outside_project.py” file can

now successfully import the project and print the output as in Figure A-5. In this case,

the imported module print_msg_file is prepended by the directory of the project

“printmsg”, but this will be valid wherever the “outside_project.py” file is located.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

388

 How Do Python Installers Locate Libraries?
Up to this point, in order to import the project successfully, it should be copied manually

inside the site-packages directory. Before doing that, the project must be copied to the

machine in some way, such as by being downloaded from any file hosting server. But all

of the work is manual. Some users will find such work tiresome to do for every library

they are to install. As a result, there is an alternative way of installing libraries.

Some installers such as pip and conda are available to receive the library name and

they take care of downloading and installing it automatically. But how can we make our
own libraries accessible by these installers?

The installers search for the libraries inside software repositories such as PyPI. Once

found, they download and install them automatically. Our question now should be how

to upload our own libraries to these repositories. These software repositories accept

distribution formats such as Wheel.

Then, the next question will be how to prepare our project into Wheel distribution

format. In order to generate the Wheel distribution format, there are a number of

files to be packaged together. These files include the actual project Python files, any

supplemental files required by those files, and also some helper files to give some details

about your project.

The sequence to be followed is to prepare the package files, generate the distribution

files, and upload the files to the PyPI repository. These points will be covered in the next

sections.

 Preparing the Package and Its Files (__init__.py
and setup.py)
The first step is to structure the package and its files. The structure of the package will be

as shown in Figure A-8.

Figure A-8. Project structure prepared for use by the Python installers

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

389

There is a root directory holding all files and directories of the package. Inside that

root directory, there is another directory named “printmsg” that holds the Python file to

be imported later after being installed.

For our simple example, the minimal files required will be used; these are __init__.py

and setup.py in addition to the actual project file print_msg_file.py. The next step is to

prepare these files.

 __init__.py
The first file to prepare is the __init__.py file. The main use of this file is to allow Python

to treat the directory as a package. When the package has the __init__.py file, the

package can be imported as a regular library after being installed by either installer. Just

its existence is enough even if empty. You might wonder why it is now required despite

being not when the library installed manually in the “Manual Installation by Copying

Project Files to Site-Packages” section. The answer is that the installer will not know that

the directory is a package without the __init__.py file. That is why it will not fetch the

library Python files (print_msg_file.py).

Assuming that the library is now accessible by Python installers and we successfully

installed it in Windows, there are two folders generated in the site-packages directory

(“printmsg-1.4.dist-info” and “printmsg”) as in Figure A-9 in the case of using the

__init__.py file.

Figure A-9. Project directories created within the site-packages directory

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

390

The “printmsg” folder is what holds the Python files to be imported later. If the __
init__.py file is not used, then the “printmsg” folder will not be found. As a result, it will

become impossible to use the Python code because it will be missing.

Besides telling Python that the directory is a Python package, the __init__.py file is

the first file to be loaded when the module is imported and thus can do initializations.

 setup.py
After marking the directory as a package using the __init__.py file, the next step is to

add more details about the package. This is why the setup.py file is used. The setup.py

script is what gives details about your project, such as what dependencies are required to

make your project run. This script uses the setuptools distribution tool for building the

distribution files to be uploaded later to PyPI. Listing A-5 has the content of the setup.py

file in order to distribute the project.

Listing A-5. Content of setup.py File

import setuptools

setuptools.setup(

 name="printmsg",

 version="1.6",

 author="Ahmed Gad",

 author_email="ahmed.f.gad@gmail.com",

 description="Test Package for Printing a Message")

That file contains a number of fields that hold details such as the name of the

package, version, author, author_email, short description to appear on PyPI, and

others. There are many other fields that could be used based on your needs.

Note that the package name is used currently in two positions. One time for the

module directory and another here in the setup.py file. Must they be equivalent? The

answer is NO. Each one has its own job, but there is no dependency between them. The

name used in the setup.py file is the name to be used when installing the package. The

name of the directory is the name used to import the module. If they are different, then

the package will be installed by a name and imported by a different name. There should

be consistency between these two names to avoid confusing package users.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

391

 Distributing the Package
After preparing the package, we are ready to distribute it. Before actual distribution, we

should make sure that the dependencies required are already existing. To distribute the

project, setuptools and wheel projects are required to be installed. The wheel project

is used to generate the wheel distribution format. Make sure they are installed and

updated as in Figure A-10 according to this command:

ahmed-gad@ubuntu:~/Desktop/root$ pip install --user --upgrade

setuptools wheel

Figure A-10. Install the required packages for packaging the project

Then we can distribute the package by running the setup.py file as in Figure A-11.

After opening the terminal, make the root of the package the current directory and then

execute the setup.py file.

ahmed-gad@ubuntu:~/Desktop/root$ python3 setup.py sdist bdist_wheel

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

392

sdist is used to generate a source distribution format, while bdist_wheel generates

the wheel built distribution format. Both of these distributions are provided for

compatibility with different users.

After executing the setup.py file, you can expect to get some new directories inside

the root of the package. The files and directories inside the root are shown in Figure A-12.

Figure A-11. Generating source and wheel distributions of the project

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

393

Figure A-12. Generated files and directories of the project

The most important folder is the dist folder, because it contains the distribution files

that will be uploaded to PyPI. Its content is presented in Figure A-13. It contains the .whl
file, which is the build distribution, and also the source distribution .tar.gz file.

Figure A-13. Source and wheel distribution files of the project

After preparing the distribution files, the next step is to upload them to PyPI.

 Uploading the Distribution Files Online to Test PyPI
There are two Python package repositories to use. One of them, Test PyPI (test.pypi.
org), is for testing and experimentation, and the other, PyPI (pypi.org), is for real index.

Their uses are similar, but we can start using Test PyPI.

Before uploading to Test PyPI, you should register yourself to get a username and

password for uploading your packages. Just register by your active e-mail address, where

a confirmation will be received to activate your account. The registration link is https://

test.pypi.org/account/register/.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

http://pypi.org
http://pypi.org
http://pypi.org
https://test.pypi.org/account/register/
https://test.pypi.org/account/register/

394

After registration is complete, we can use the twine utility for uploading package

distributions to Test PyPI. You should make sure it is installed and upgraded according

to the following command:

ahmed-gad@ubuntu:~/Desktop/root$ pip install --upgrade twine

Once it is installed, you can upload packages to Test PyPI. Open the terminal, make

sure you are currently on the root of the package, and issue the following command:

ahmed-gad@ubuntu:~/Desktop/root$ twine upload --repository-url https://

test.pypi.org/legacy/ dist/*

You will be asked to enter your Test PyPI username and password. Once you are

verified, the upload will start. The result is shown in Figure A-14.

Figure A-14. Uploading the project into Test PyPI using twine

After uploading the files successfully, you can open your profile at Test PyPI to

see your uploaded projects. Figure A-15 shows that the printmsg project successfully

becomes live. Note that the value used for the description field inside the setup.py file is

now appearing on the repository.

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

395

 Installing the Distributed Package from Test PyPI
By this point, you have successfully packaged and distributed your Python project. It is

available now for download by any user connected to the Internet. To install the project

using pip, just issue the following command. The result is shown in Figure A-16.

ahmed-gad@ubuntu:~/Desktop/root$ pip install --index-url https://test.pypi.

org/simple/ printmsg

Figure A-15. The project is successfully uploaded to Test PyPI.

Figure A-16. Installing the project uploaded to Test PyPI using pip

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

396

 Importing and Using the Installed Package
After installing the project, it can be imported. The code in Listing A-3 can now be

executed. The difference is using the package installed from Test PyPI repository rather

than the one that is manually installed. The result is identical to what is shown in

Figure A-4.

 Using PyPI Rather Than Test PyPI
If you decided to put your project into the real PyPI, then you will just repeat the

previous steps with few changes. At first, you have to register at https://pypi.org/ and

get a username and a password. I hate to say so, but you will have to register AGAIN

because registration in Test PyPI is different from registration in PyPI.

The first change is not using the --repository-url option with twine because

PyPI is the default repository for uploading packages. So, the command required

will be as follows:

ahmed-gad@ubuntu:~/Desktop/root $ twine upload dist/*

Similarly, the second change is omitting the --index-url option with pip for the same

reason (PyPI is the default repository when installing a package):

ahmed-gad@ubuntu:~/Desktop/root$ pip install printmsg

APPENDIX A INstAllINg Your owN ProjEcts usINg PIP INstAllEr

https://pypi.org/

397
© Ahmed Fawzy Gad 2018
A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs,
https://doi.org/10.1007/978-1-4842-4167-7

Index

A
Adaptive SFFS (ASFFS), 41
ANN optimization

DL models, 129
GA (see Genetic algorithm (GA))
hyperparameter, 130
initial values, 130
KNN algorithm, 130
NSGA-II (see Non-dominated sorting

genetic algorithm II (NSGA-II))
parameters, 129
single-vs. multiobjective

bionics, 133
book publisher, 130
possible solutions, 131–132
variables, 131, 133
wastepaper, 132–133

Application program interface (API), 207
Artificial neural networks (ANNs)

description, 45
implementation

architecture, 120
complete code, 123–125
matrix multiplications, inputs and

weights, 120–123
training data, 126
train_network, 126

regularization technique, 46

reinforcement learning, 45
semisupervised learning, 45
supervised learning, 45–46

B
Backpropagation algorithm, ANNs

activation function, 66–67
error functions, 67
forward vs. backward passes

activation functions, 69
chain partial derivatives, 73–75
derivative magnitude (DM), 76
derivative sign, 76
partial derivatives, 70–72
prediction errors, 70
updating weights, 76–77

initial parameters, 65
inputs and parameters, 66
network structure, 64–65
NN with hidden layer

network architecture, 77–78
neuron, 78–80
partial derivatives, 80–83, 85–87
prediction error, 80
updating weights, 88

training data, 65
weights update equation, 67–69

Bionics, 133

https://doi.org/10.1007/978-1-4842-4167-7

398

C
Central processing units (CPUs), 183
CIFAR10 dataset

application structure, 326
binary data, 271
CIFAR10Predict module, 331
CNN model, TF

building, 273–277
coding, 283
graph, 277
saving, 282, 293
testing, 293–294
training, 278–281

error.html template, 330
Flask application, 326, 334–338
homepage, 327
JavaScript alert, predicted

class, 333–334
main file, 327
prediction class label, 332
prepare_TF_session, 327
rendered page, 332–333
screenshot, HTML page, 328
shape and size, uploaded

images, 331
test data, 292
training data, 271–273
upload_image.html

template, 327–329
view function, 329

Color histogram
gray images, 5–6
HSV color space

advantage, 8
hue channel, 9
image pixels, 8
Matplotlib, 9

pixel intensity, 10
pixel locations, 10

real-world image, 7–8
tiny randomly-generated image, 6–7

ConvNets, 183
Convolutional Neural Networks (CNNs)

ANN, 183
architecture, 218, 220, 273
convolution layer, 275
convolution operation

example, 204–206
image sample of size, 204
results, 202–203

data distribution, 184–186
derivation

convolution, 196–198
image analysis,

FC network, 189–191
neuron grouping, 192
number of parameters, 191
pixel spatial correlation, 195

designing, 198
dropout layer, 276
FC layer, 276
implementation, coding, 220
linear classification, data, 187–188
max pooling operation, 206–207
NumPy library

conv layer, 209
conv-ReLU-pooling layers, 219
filters preparation, 209
max pooling layer, 216–217
reading image, 208
ReLU layer, 215–216

pooling operation, parameter
reduction, 202–203

state-of-the-art technique, 207

Index

399

D
Dataflow graph

constant node, 232
linear model optimized, GD, 254
parameterized graph, placeholder, 239
print statement, 233
tensorflow.add(), 238
tensorflow.constant(), 243
tensorflow.global_variables_

initializer(), 243
tensorflow.Graph, 235
tensorflow.matmul(), 232
tensorflow.Variable(), 244
tensorflow.placeholder, 239
tensorflow.Session, 235
tensorflow.Session.run(), 236
tensor names, 233
TF variables, 242
variable initialization methods, 244
visualization, TB, 245–247

Designing ANN
hidden layers, 97–98
single hidden layer

complex classification
problem, 102–103

connecting outputs, 105
decision boundary, 103–105
network architecture, 106

without hidden layer
boundary curve changes

direction, 100–101
linear classifier, 101
network architecture, 102
nonlinear classification

problem, 99–100
two-class classification

problem, 98–99

E
Embedded approach, 43
Engineered features

ANN implementation, 120
calculators, mathematical

operations, 127–128
classification and regression, 128
CNN, 128
Fruits 360 dataset (see Fruits 360

dataset)
limitations, 126–127
parameters, 128
smartphones, 127–128

Evolutionary algorithms
(EAs), 41, 133

F
FC neural networks (FCNNs), 183
Feature reduction, 115–117
feed_dict argument, 239
Feed-forward ANNs (FFNNs)

ANN simulating XOR gate
coding, 266–270
graph, 265
network architecture, 266
network parameters, 269
truth table, 265

RGB color classification
problem, 256

ANN architecture, 259
ANN parameter variables, 259
graph creation, single layer, 264
matmul() operation, 259
network parameters, training

data, 260
placeholder shape, 257

Index

400

tensorflow.nn.sigmoid()
operation, 259

tensorflow.Session.run()
operation, 260

training data, 3D scatter
plot, 257–258

training data inputs and
outputs, 257, 261

two-class problem, 261–263
weighs and bias, 264

Filter approach, 39–40
Flask application, 340

add_rule_url method, 301
endpoint, 303–304
function with URL, 297
HTML

dynamic templates, 311–314
Flask templates, 310–311
form, 305–307
Python code, 309
view function, 309

minimal, 297
route() decorator

debugging, 300
host and port arguments, 299
request received by

server, 299–300
run() method, 298
testFunc(), 298–299

static files, CSS and JavaScript, 314–317
uploading files, 307–309
variable rules, 301–303
WSGI, 297

Fruits 360 dataset
description, 107
extractFeatures view

function, 320–321

feature mining
Braeburn apple, Meyer lemon,

mango, and raspberry, 108, 110
hue channel histograms, 111–112
hue channel, HSV color space, 111
ImageNet, 115
LBP histogram, strawberry and

apple, 113–114
RGB channels, 108–110

feature reduction, 115–117
filtering, ANN

classification errors, 119
distribution of STDs, 119
scikit-learn library, 118

Flask application, 317, 324–325
homepage

implementation, 318–319
screenshot, 319–320

img_features, 321
prediction label, 322
recognition application

structure, 318
result.html template, 322–323
static CSS file, 323

G
Genetic algorithm (GA)

ANN optimization
accuracy, predict_outputs and

fitness, 172–173
classification accuracy, 171
fitness functions, 171
Fruits 360 dataset, 168
matrix multiplication, 168
numpy.extend function, 170
parameters, 168–170
population, 169

Feed-forward ANNs (FFNNs) (cont.)

Index

401

pop_weights_vector, 170
solution vector conversion, 171–172

chromosome
binary, 136–137
fitness value, 137
genotype, 137
location, 136
permutation, 136
phenotype, 137
representations, 136
value, 136

Darwin’s theory of evolution, 134
fitness function, 135
mating pool, parents, 135
offspring, 135
operators

crossover, 138
mutation, 139–140

population, chromosome and
gene, 134

Python implementation
ANN.py file, 180–181
best parents, fitness values, 144
classification accuracy evolution,

iterations, 177
crossover, 145
first function, 143
fitness function, 140, 142
fitness values, 143, 147–148
GA module, 150–151
GA.py file, 177–180
initial population, 141–142
iterations/generations, 142
linear equation, parameters,

148–149
main file, 173–176
mutation, 146–147
offspring, 146

parents from first population, 144
Python files, 173
randomly based optimization

technique, 147
weights, 140–141

GradientDescentOptimizer, 252
Gradient direction, 19
Graphics processing units (GPUs), 183
Graph visualization, TB, 245–247
Gray-level co-occurrence

matrix (GLCM)
calculation, 11
description, 11
D values, 12
intensity value, 11
normalization, 14–17
reference and neighbor, 11
θ values, 12–14

Gray-level gradient-based co-occurrence
matrix (GLGCM), 17

H
Histogram of oriented gradients (HOG)

calculation, 24
description, 17
gradient direction, 19, 25–27
gradient magnitude, 23–27
histogram bins, 19–21
HOG_cell_histogram()

function, 31
image gradients, 18–19
image patch, 22, 26, 30–31
parameters, 36
steps, 21–22
top-left cell, 28–29, 32–36
vertical and horizontal

gradients, 22–23

Index

402

I, J
Image analysis, 188–191
Image gradients, 18–19
Image recognition

classification, 371, 373
libraries used, 367
NumPy, 372
project structure, 368

K
Kivy

Boxlayout, 341, 350–351, 374, 376
building Android

application, 361
Buildozer tool

building Android
application, 365–366

buildozer.spec file, 362–364
installation, 361–362
P4A, 361
preparing file, 365

conv, pool, and ReLU
layers, 378–379

definition, 340
GridLayout, 348–349
handling events, 354–356
implementation, 376, 378
language

create button
widget, 357

loading KV file, 359
loading LV file, 358
Python code, 356, 360
UI, 357, 359

life cycle, 342–345
running UI, 380

widget
actions, 350
size, 346–348
tree, 351–353

K-nearest neighbor (KNN) algorithm, 130

L
Learning rate, ANNs

filter
activation function, 57, 59
ANN architecture, 58
iterations, 62–63
Python implementation, 59–61

prediction, testing samples, 63–64
training loop, 61–62
value, 63

Linear model, ANNs
graphing

basic block, 53
fully connected (FC), 55–56
mapping, 53–54
neural network, 55
neurons, 53, 55
parameters, 52–53

multiple parametric, 50–51
nonparametric model, 47–48
parameter and error, 49–50
parametric model, 48–49
regression problem, 47, 50, 52
training data, 47

Linear model, TF program
data_input_placeholder, 250
error tensor, 248
GD optimizer, model

parameters, 252–254
inputs, weights, and biases, 248, 249

Index

403

minimizer operation, 254
tensorflow.global_variables_

initializer(), 248
tensorflow.reduce_sum(), 255
tensorflow.Session.run(), 248
tensorflow.square(), 255
tensorflow.train.

GradientDescentOptimizer.
minimize(), 255

running, 251
visualization, dataflow graph, 250

Local binary patterns (LBP), 36–38
L1 regularization, 95–97

M
Max pooling layer, 206, 216–217

N
Non-dominated sorting genetic algorithm

II (NSGA-II)
crossover, 166
crowding distance

calculation, 162–163
data, 163
feedback objective, 164
objective functions, 165
parameters, 163–164
sorting solutions, 163

data samples, 152
domination

conditions, 160
nondominated front, 156–158,

160–162
nondominated set, 155–156
population size, 162

Python code, 159–160
solutions, 154–155
splitting data, 162

vs. GA, 151, 154
mutation, 167–168
steps, 152–154
tournament selection, 165–166

Nonparametric linear model, 47–48
Normalization, GLCM, 14–17
NumPy, 367
NumPyCNN, 183

O
Overfitting

cats images, ML model, 89
features, 90
L1 regularization, 95–97
model capacity/complexity, 94–95
predictions, 89
regression model

data to fit, 91
fourth degree, 93
initial model, 91
predictions, 92
second degree, 92
third degree, 92–93

P, Q
Parametric linear model, 48–49
Pixel spatial correlation, 195
Python-4-Android (P4A) tool, 340, 361
Python Image Library (PIL), 340
Python project, printmsg, 381

generated files and directories, 393
implementation, 382–383

Index

404

importing module
inside_project.py, 384
outside_project.py, 384–386

__init__.py file, 389–390
installation, required packages, 391
package structure, 388
pip and conda, 388
running, 383
setup.py file, 390
site-packages directory, 386–388
source and wheel distribution

files, 391–393
structure, 382
sys.path list, 386
Test PyPI

importing, 396
installing project, 395
registration, 396
uploading, 393–395

Wheel distribution format, 388

R
Recognition

embedded, 43
emotional properties, 1
feature elimination methods, 39
feature extraction

dog image, 4
GLCM (see Gray-level

co-occurrence matrix (GLCM))
GLGCM, 17
HOG (see Histogram of oriented

gradients (HOG))
LBP, 36–38
local, 5
reasons, 4
types, 4

feature relevance, 39
filter, 40–41
irrelevant features, 39
objects, 1–2
pipeline, 2–3
regularization, 43–44
selection techniques, 39
wrapper, 41–42

Regularization, 43–44
ReLU layer, 215

S
scikit-image, 367
Search algorithms, 42
Sequential backward selection (SBS), 41
Sequential feature selection (SFS), 41
Sequential forward floating selection

(SFFS), 41

T
Tensor, 231
TensorBoard (TB), 229
TensorFlowLite, 339–340
TensorFlow (TF), 207

APIs, 230
Core API, 231–232
dataflow graph, 231

advantages, 230
constant node, 232
linear model optimized, GD, 254
parameterized graph,

placeholder, 239
print statement, 233
tensorflow.add(), 238
tensorflow.constant(), 243
tensorflow.global_variables_

initializer(), 243

Python project, printmsg (cont.)

Index

405

tensorflow.Graph, 235
tensorflow.matmul(), 232
tensorflow.Variable(), 244
tensorflow.placeholder, 239
tensorflow.Session, 235–236
tensorflow.Session.close(), 236
tensorflow.Session.run(), 236, 239,

242, 248
tensor names, 233
TF variables, 242
visualization, TB, 245–247

linear model (see Linear model,
TF program)

ranks and shapes, 231

TF optimizing converter (TOCO), 339
Training CNN, 278–281
Training Datasubtract() operation, 260

U, V
User interfaces (UIs), 340

W, X, Y, Z
Web application, 295–296
Web Server Gateway Interface

(WSGI), 297
Wrapper approach, 41–42

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Recognition in Computer Vision
	Image Recognition Pipeline
	Feature Extraction
	Color Histogram
	Histogram of a Real-World Image
	HSV Color Space

	GLCM
	D Values
	θ Values
	GLCM Normalization

	HOG
	Image Gradients
	Gradient Direction
	Contributing to Histogram Bins
	HOG Steps

	LBP

	Feature Selection & Reduction
	Filter
	Wrapper
	Embedded
	Regularization

	Chapter 2: Artificial Neural Networks
	Introduction to ANNs
	Linear Models Are the Base of ANNs
	Graphing ANNs

	Adjusting Learning Rate for Training ANN
	Filter Example
	ANN Architecture
	Activation Function
	Python Implementation

	Learning Rate
	Testing the Network

	Weight Optimization Using Backpropagation
	Backpropagation for NN Without Hidden Layer
	Weights Update Equation
	Why Is the Backpropagation Algorithm Important?
	Forward vs. Backward Passes
	Partial Derivative
	Change in Prediction Error wrt Weights
	Prediction Error to Weights Chain

	Calculating Chain Partial Derivatives
	Interpreting Results of Backpropagation
	Updating Weights

	Backpropagation for NN with Hidden Layer
	Partial Derivatives
	Updating Weights

	Overfitting
	Understand Regularization Based on a Regression Example
	Model Capacity/Complexity
	L1 Regularization

	Designing ANN
	Example 1: ANN Without Hidden Layer
	Example 2: ANN with a Single Hidden Layer

	Chapter 3: Recognition Using ANN with Engineered Features
	Fruits 360 Dataset Feature Mining
	Feature Mining
	Feature Reduction
	Filtering Using ANN

	ANN Implementation
	Engineered Feature Limitations
	Not the End of Engineered Features

	Chapter 4: ANN Optimization
	Introduction to Optimization
	Single- vs. Multiobjective Optimization

	GA
	Best-Parents Selection
	Variation Operators
	Crossover
	Mutation

	Python Implementation of an Example
	Complete Implementation

	NSGA-II
	NSGA-II Steps
	Dominance
	Crowding Distance
	Tournament Selection
	Crossover
	Mutation

	Optimizing ANN Using GA
	Complete Python Implementation

	Chapter 5: Convolutional Neural Networks
	From ANN to CNN
	The Intuition Behind DL
	Derivation of Convolution
	Image Analysis Using FC Network
	Large Number of Parameters
	Neuron Grouping
	Pixel Spatial Correlation
	Convolution in CNN

	Designing a CNN
	Pooling Operation for Parameter Reduction
	Convolution Operation Example
	Max Pooling Operation Example

	Building a CNN Using NumPy from Scratch
	Reading the Input Image
	Preparing Filters
	Conv Layer
	ReLU Layer
	Max Pooling Layer
	Stacking Layers
	Complete Code

	Chapter 6: TensorFlow Recognition Application
	Introduction to TF
	Tensor
	TF Core
	Dataflow Graph
	Tensor Names
	Creating a TF Session
	Parameterized Graph Using Placeholder
	TF Variables
	Variable Initialization

	Graph Visualization Using TB
	Linear Model
	GD Optimizer from TF Train API
	Locating Parameters to Optimize

	Building FFNN
	Linear Classification
	Nonlinear Classification

	CIFAR10 Recognition Using CNN
	Preparing Training Data
	Building the CNN
	Training CNN
	Saving the Trained Model
	Complete Code to Build and Train CNN
	Preparing Test Data
	Testing the Trained CNN Model

	Chapter 7: Deploying Pretrained Models
	Application Overview
	Introduction to Flask
	route() Decorator
	add_rule_url Method
	Variable Rules
	Endpoint
	HTML Form
	File Upload
	HTML Inside Flask Application
	Flask Templates
	Dynamic Templates

	Static Files

	Deploying Trained Model Using Fruits 360 Dataset
	Deploying Trained Model Using CIFAR10 Dataset

	Chapter 8: Cross-Platform Data Science Applications
	Introduction to Kivy
	Basic Application Using BoxLayout
	Kivy Application Life Cycle
	Widget Size
	GridLayout
	More Widgets
	Widget Tree
	Handling Events
	KV Language

	P4A
	Installing Buildozer
	Preparing buildozer.spec File
	Building Android Application Using Buildozer

	Image Recognition on Android
	CNN on Android

	Appendix A: Installing Your Own Projects Using pip Installer
	Creating a Simple Python Project
	Project Structure
	Project Implementation
	Running the Project
	Importing the Module into a File Inside Its Directory
	Importing the Module into a File Outside Its Directory

	How Does Python Locate Libraries?
	Manual Installation by Copying Project Files to Site-Packages
	How Do Python Installers Locate Libraries?
	Preparing the Package and Its Files (__init__.py and setup.py)
	__init__.py
	setup.py

	Distributing the Package
	Uploading the Distribution Files Online to Test PyPI
	Installing the Distributed Package from Test PyPI
	Importing and Using the Installed Package
	Using PyPI Rather Than Test PyPI

	Index

