
Learn Computer
Vision Using
OpenCV

With Deep Learning CNNs and RNNs
—
Sunila Gollapudi
Foreword by V Laxmikanth

Sunila Gollapudi
Foreword by V Laxmikanth

Learn Computer
Vision Using OpenCV

With Deep Learning
CNNs and RNNs

Learn Computer Vision Using OpenCV: With Deep Learning CNNs and RNNs

ISBN-13 (pbk): 978-1-4842-4260-5 ISBN-13 (electronic): 978-1-4842-4261-2
https://doi.org/10.1007/978-1-4842-4261-2

Copyright © 2019 by Sunila Gollapudi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4260-5.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sunila Gollapudi
Hyderabad, Telangana, India

https://doi.org/10.1007/978-1-4842-4261-2

To my angel, my BFF, my raison d’être—my daughter,
Sai Srividya Nikita—for being proud of me always!

v

Table of Contents

Chapter 1: Artificial Intelligence and Computer Vision ������������������������1

Introduction to Artificial Intelligence ���3

Natural Language Processing ��7

Robotics ���10

Machine Learning ��11

Expert Systems ��13

Speech and Voice Recognition ��13

Intelligent Process Automation ��14

Introduction to Computer Vision ��14

Scope ���15

Challenges of Computer Vision ��19

Real-World Applications of Computer Vision ���21

Images and Their Features ��24

Core Building Blocks (Input – Process – Output) ���26

Conclusion ��28

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Foreword ��xv

Introduction ��xvii

vi

Chapter 2: OpenCV with Python ��31

About OpenCV ���32

Setting Up OpenCV with Python ��32

Windows Installation ���32

macOS Installation���36

Using Modules ��38

Working with Images and Videos ��40

Using NumPy ���40

Videos ��46

Conclusion ��49

Chapter 3: Deep Learning for Computer Vision ����������������������������������51

Deep Learning: An Overview ���52

Deep Learning Applications in Computer Vision ���53

Classification ���53

Detection and Localization ��54

(Semantic) Segmentation ��55

Similarity Learning ��55

Image Captioning ��55

Generative Models ��56

Video Analysis ���57

Neural Networks at Their Core ��57

Artificial Neural Networks ���58

Artificial Neurons or Perceptrons ��58

Training Neural Networks ��62

Table of ConTenTsTable of ConTenTs

vii

Convolutional Neural Networks ���63

Convolution Layer ��64

Pooling Layer ���65

Fully Connected Layer ���65

Recurrent Neural Networks���66

Backpropagation Through Time ���68

Conclusion ��69

Chapter 4: Image Manipulation and Segmentation ����������������������������71

Image Manipulations ���72

Accessing and Manipulating Pixels ���73

Drawing Geometric Shapes or Writing Text on a Color Image �����������������������75

Filtering Images ���79

Transforming Images ���82

Image Segmentation ���90

Line Detection��92

Circle Detection ���93

Conclusion ��96

Chapter 5: Object Detection and Recognition �������������������������������������97

Basics of Object Detection ��97

Object Detection vs� Object Recognition ���98

Template Matching ��99

Challenges with Template Matching ��102

Understanding Image “Features” ��102

Feature Matching ��105

Image Corners As Features ���105

Harris Corner Algorithm ���106

Feature Tracking and Matching Flow ��108

Table of ConTenTsTable of ConTenTs

viii

Scale Variant Feature Transform ���109

Speeded-Up Robust Features ��112

Features from Accelerated Segment Test ��113

Binary Robust Independent Elementary Features ���������������������������������������114

Oriented FAST and Rotated BRIEF ���116

Conclusion ��117

Chapter 6: Motion Analysis and Object Tracking ������������������������������119

Introduction to Object Tracking ���120

Challenges of Object Tracking ���121

Object Detection Techniques for Tracking ���121

Frame Differentiation ���122

Background Subtraction ��123

Optical Flow ���125

Object Classification ���131

Shaped-Based Classification ���132

Motion-Based Classification ��132

Color-Based Classification ���132

Texture-Based Classification ���133

Object Tracking Methods ���133

Point Tracking Method ���134

Kernel-Based Tracking Methods ��135

Silhouette-Based Tracking ���144

Conclusion ��145

Index ���147

Table of ConTenTsTable of ConTenTs

ix

About the Author

Sunila Gollapudi is an executive vice

president at Broadridge Financial Solutions

India (Pvt) Ltd. Sunila is a passionate

and pragmatic technology leader with more

than 17 years of experience in architecting,

designing, and developing client-centric,

enterprise-scale, and data-driven solutions.

She oversees every stage of the technology

implementation and is a thought leader and

technology visionary with a proven ability to

build the technology road map. Primarily focused on the banking and

financial services domain over the past ten years, she is a data connoisseur

and an architect, adept at designing an overall data strategy to maximize

the value of data through analytics. She is also an author and a mentor

with an entrepreneur mind-set who believes in continuous learning as a

key to organizational growth.

Her specialties include building overall intelligent

automation strategies by synthesizing the business and domain

drivers and emerging technology trends in Big Data engineering and

analytics; leading cloud migration and DevOps strategies for CI/CD;

and steering application (legacy) modernization, reuse, and technology

standardization initiatives.

xi

About the Technical Reviewer

Lentin Joseph is an author and robotics

entrepreneur from India. He runs a robotics

software company called Qbotics Labs in India.

He has more than eight years of experience

in the robotics domain, primarily in ROS,

OpenCV, and PCL.

He has authored several books on ROS,

namely, Learning Robotics Using Python,

Mastering ROS for Robotics Programming,

ROS Robotics Projects, ROS Programming, and

Robot Operating System for Absolute Beginners.

He is also the technical reviewer of six robotics books.

He completed his master’s in robotics and automation in India and

also conducted research work at the Robotics Institute, Carnegie Mellon

University, in the United States.

xiii

Acknowledgments

My sincere thanks to Broadridge for providing an opportunity to champion

the adoption of artificial intelligence in the financial services domain.

Special thanks to my mentor and boss, V. Laxmikanth, the managing

director at Broadridge India, for all the support and trust and for taking the

time to pen the foreword to this book. I always value and look up to your

humility and leadership.

A big thank-you to Apress, the publishing team, and the reviewers

for an opportunity to work with you and for being efficient, patient, and

professional.

My heartfelt gratitude to Mrs. Radhika Laxmikanth for her unflinching

support and to my brothers, Ravi and Sashi, and my close friends for giving

the best encouragement and being the best critics.

Finally, kudos to all the technology enthusiasts who constantly

experiment and inspire me to be a student for life!

xv

Foreword

Building machines that can see and interpret things around us is an

interesting, but notoriously complex problem to solve. The human visual

system is infallible for tasks such as recognizing a face or a given object.

Computer vision has now become a very important sub-field of

artificial intelligence. Application areas of computer vision have expanded

from reading and interpreting human scripts (handwriting recognition)

or analyzing images and videos to using these capabilities in security

surveillance and intelligent automation (among other digital usages).

In this book, Sunila Gollapudi articulates the broader vision of

artificial intelligence and how computer vision is now a key enabler. She

has included a step-by-step hands-on guide to building computer vision

applications from scratch using OpenCV and Python. Readers can access

the complete code for each of these implementations, which utilize real-

world examples and open data sets.

Overall, what is more challenging is how computer vision applications

can be integrated as an offering to enhance existing products or

applications, and how they can be scaled and deployed as a service. This

book has a special focus on operationalizing AI applications and cloud

platforms for computer vision.

—V Laxmikanth

Managing Director

Broadridge India
www.broadridge.com

http://www.broadridge.com

xvii

Introduction

What artificial intelligence is today is a result of our continuous pursuit

to make machines do all that humans can do, be it hearing, seeing,

perceiving, thinking, or emoting. The evolution of artificial intelligence

has reached an interesting juncture where machines not only are doing

intensive work that is beyond a human’s physical capabilities (such as

mining harmful chemicals, large manufacturing plants, etc.) but also are

being companions or assistants to humans by helping with day-to-day

chores and by being available on small devices like smartphones (for

example, Siri, Alexa, and Google Assistant). The key measure for success

now is how personalized these machines can be and how well they can

operate in collaboration with humans (human-aware AI). While this is

reaping bigger benefits by enhancing quality of life and improving the

adoption of technology in many businesses, it is also opening up avenues

for misuse, probing the need for governing bodies to define stricter

boundaries and controls around adopting artificial intelligence.

Computer vision is one such area of artificial intelligence that has

significantly gained adoption in recent times given the advent of the

Internet of Things. Computer vision is all about enabling machines to

perceive and interpret what is seen.

This book focuses on the field of computer vision in particular

and provides step-by-step guidance on how to build computer vision

applications to address real-world use cases using OpenCV with Python.

This book briefly introduces the overall landscape of artificial intelligence

and its purpose and subfields, which includes computer vision. That is

followed by a detailed introduction to computer vision and its subfields

such as OCR, ICR, and OMR that enable computers to view, recognize, and

xviii

process images and videos in the way human do and provide the necessary

interpretations.

This book starts with setting up OpenCV with Python from scratch and

then covers implementing specialized image processing, implementing

object/feature detection and motion tracking functions, using advanced

libraries, and productionizing large-scale deployments using OpenCV.

The high-level objectives of the book are as follows:

• Understand what computer vision is and its overall

application in AI and intelligent automation systems

• Learn all the deep learning techniques required and

used for building computer vision applications

• Learn how to build complex computer vision

applications using the latest techniques in OpenCV

using programming skills such as basic Python and

NumPy

• See practical applications and implementations such

as face detection and recognition (face swapping and

filters!), handwriting recognition, object detection,

tracking, and motion analysis

This book has seven chapters, described here:

Chapter 1, “Artificial Intelligence and Computer

Vision,” focuses on introducing you to the landscape

of artificial intelligence and the role of computer

vision in AI applications. This chapter explains

what images are, describes their characteristics, and

introduces some computer vision concepts such as

manipulation, tracking, detection, and recognition.

It also describes some use cases and domains that

need this technology.

InTroduCTIonInTroduCTIon

xix

Chapter 2, “OpenCV with Python,” introduces an

open library called OpenCV that provides the

tools and necessary frameworks to implement

computer vision applications. A brief introduction

to Python and the image libraries of Python like

NumPy is provided. You will be able to set up an

OpenCV/Python environment from scratch and get

ready to implement some real-world use cases for

the upcoming chapters. Additionally, the chapter

talks about some aspects around computer vision

as a service and discusses the extended libraries

of OpenCV like OpenCV.JS for web and mobile

applications and how OpenCV can be deployed on

the cloud. A few competing frameworks and tools

like the Google Vision API from Google, Textract and

Rekognition from Amazon AWS, and the Microsoft

Computer Vision API are introduced.

Chapter 3, “Deep Learning for Computer

Vision,” describes how building computer

vision applications requires creating complex

deep learning models with two components: a

convolution neural network (CNN) that transforms

an input image into a set of features, and a recurring

neural network (RNN) that turns those features into

a rich, descriptive language. This chapter covers

how these cutting-edge deep learning architectures

work, especially in the context of computer vision.

InTroduCTIonInTroduCTIon

xx

Chapter 4, “Image Manipulation and Segmentation,”

covers image manipulations and segmentation-

related functions that are core to image processing

in computer vision. For each of the use cases,

the syntax and implementations of the built-in

functions in OpenCV in Python are covered, and

sample implementations are provided. Techniques

such as edge detection, rotations, resizing, shape

detection, and so on, are covered in depth.

Chapter 5, “Object Detection and Recognition,”

provides a deep dive into object detection and

then moves on to object recognition followed by

face-feature recognition, landmark identification,

and finally handwriting recognition. The necessary

OpenCV libraries are explained, and sample

implementations are provided.

Chapter 6, “Motion Analysis and Tracking,” covers

motion analysis and tracking of objects in videos.

Information about different types of objects in

motion is given, with details on how to remove

background and foreground information and how to

do real-time tracking. The topics in this chapter are

an extension to the object detection and recognition

techniques in Chapter 5.

InTroduCTIonInTroduCTIon

1© Sunila Gollapudi 2019
S. Gollapudi, Learn Computer Vision Using OpenCV,
https://doi.org/10.1007/978-1-4842-4261-2_1

CHAPTER 1

Artificial Intelligence
and Computer Vision
The field of artificial intelligence, and its application in day-to day life,

has seen remarkable evolution in the past three to five years. Artificial

intelligence (AI) is an enabler that potentially facilitates machines doing

everything that humans can do. This includes perceiving, reasoning,

rationalizing, and problem-solving while working within a context or

interacting with the environment with more efficiency and accuracy.

Here, the word context means the domain or the business where the

problem is dealt with, for example online shopping, social media,

insurance, manufacturing, and others. Interacting with the environment

could mean that computers or machines work along with the humans or

take input from external stimuli and adjust their behaviors accordingly.

Computer vision, which enables computers and machines to see and

understand the world around them, specifically has become a game-

changer for how and where machines can be used and AI can be adopted.

This chapter covers the larger AI dream that is all about touching both

the personal and professional lives of humans and how computer vision

among other areas is a key enabler. Also, you’ll learn about a few real-

world applications, challenges, and technology tools such as OpenCV that

help in complex implementations.

2

The following topics are covered in detail in this chapter:

• Artificial intelligence and its landscape, which includes

a basic definition and the usage context of robotics,

intelligent automation, natural language processing,

expert systems, speech recognition, computer vision,

and machine learning

• Computer vision, including its challenges and

applications in today’s world

• Computer vision architecture and tools, including what

images are and how to understand and manipulate key

attributes of images

• A sneak-peak into the core building blocks of computer

vision and aspects such as image manipulation and

segmentation, object detection, motion analysis and

tracking, and others

• A brief introduction to optical character recognition,

intelligent character recognition, and optimal mark

recognition

Note A good understanding of programming and prior knowledge
of Python will be helpful to understand the working examples in
this book; however, primers will be given for all the hands-on code
exercises.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

3

 Introduction to Artificial Intelligence
The definition of artificial intelligence has evolved since its first reference

in 1956 at a Dartmouth conference, from emulating how the human brain

works to solving focused, complex problems to doing all that a human can

do such as seeing, hearing, communicating, acting, learning, perceiving,

thinking, deciding, demonstrating emotion and compassion, interacting

with environment, and more. The 2012 AI breakthroughs with vision,

language recognition, and self-driving vehicles changed the way that AI

is looked at today. This section gives a simple and informal definition of

artificial intelligence.

essentially, Ai is the field of computer science that involves enabling
computers to behave like humans or perform tasks that usually
require human intelligence.

The purpose of AI systems is evolving. In this section, we will cover

different types of AI systems categorized based on their core purpose.

You will also observe how these different types of AI systems signify a step

toward building smarter systems.

Figure 1-1 lists different types of AI.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

4

• Reactive AI was the first kind of AI that was talked

about. These types of machines do not have memory

and do not use information from past experiences.

In these machines, the current context is directly

perceived as it is and acted upon. This makes the

machine behave the same way every time it encounters

a situation. The benefit of this is a reliable and

consistent outcome. An example is Deep Blue (a chess-

playing computer developed by IBM that won against

Kasparov in the game of chess).

• Limited memory AI machines look into the past and

use it as a preprogrammed representation of the world

and then apply it to the current data set. For example,

in self-driving cars, decisions on when a car should

Figure 1-1. Types of AI

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

5

change lanes is based on data such as lane markings,

speed limits or road directions, current speed of the car,

and relative neighboring car speeds.

• Theory of mind AI machines are intelligent machines

that use advanced technologies that have more to

do with understanding human emotions. The theory

of mind is a psychological term that refers to the fact

that living beings have emotions and thoughts that

determine their behavior.

• Self-aware AI machines are an extension of theory of

mind AI. They can configure representations, which

means we will have machines that are conscious and

aware given a context. This is also called human-aware

AI or human interaction AI. There are no prototypes

built of these machines.

Type
of AI

Memory Uses Past
Experience

Interaction
with
Environment

Dynamic and
Incremental
Learning

Examples

reactive Ai no no no no deep Blue

limited

memory Ai

Yes (with

little

information)

Yes (a limited

set that become

preprogrammed

standards)

no no self-

driving

cars

theory of

mind Ai

Yes Yes no Yes efforts in

progress

self-

aware Ai

Yes Yes Yes Yes efforts in

progress

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

6

Another way of categorizing of AI systems is based on the degree of

complexity of the problem at hand.

Artificial narrow intelligence (ANI) is about solving a problem against

a given request with a narrow range of abilities. A feature like Siri in

smartphones can be considered an example in this case. This is also called

weak AI.

Artificial general intelligence (AGI) is referred to as strong AI and refers

to a machine that is as capable as humans. The Pillo robot is an example of

a robot that can diagnose an illness and administer pills as well.

Artificial super intelligence (ASI) is about machines that can perform

tasks beyond what humans are capable of. The Alpha 2 robot was a first

attempt toward this; it is a robot that can manage a smart home and

operate things at home. It potentially could be a member of the family.

Most of the existing AI today is ANI. AGI and ASI are still being developed.

Figure 1-2 represents the core functions and features of an AI system at

the center and related subfields that support implementing these functions.

Figure 1-2. AI functions

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

7

The applications or subfields of AI are as follows:

• Natural language processing

• Robotics

• Machine learning and deep learning

• Expert systems

• Speech or voice recognition

• Intelligent automation

• Computer vision

Each of these subfields is interrelated, and any real-world

implementation usually includes one or more subfields. The next sections

define each of these subfields and give real-world examples and related

technology tools wherever applicable, before taking a deep dive into

computer vision.

 Natural Language Processing
Natural language processing (NLP) refers to an area of specialization

in computer science that deals with analyzing and deriving useful or

meaningful information from natural language or human language. At a

high level, this requires employing formal techniques such as tokenization,

relationship extraction in the context of a specific business case, word

classification, and sentence detection. For a language, syntax refers to

basic rules the language follows, and semantics refers to its meaning. The

complexity comes from the fact that the meaning of text can be ambiguous

and can change with the context. For example, the word saturation could

have different definitions when used with colors or when used in the

context of human behaviors.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

8

NLP is used in a wide variety of disciplines to solve a variety of

problems. A brief list of applications follows:

• Searching refers to identifying specific elements of text

within a bigger context of content.

• Machine translation is about translating text from one

natural language to another and summarizing longer

text in documents, blogs, and so on.

• Named-entity recognition (NER) refers to extracting

the names of locations, people, and things from text.

• Information grouping is about categorizing text based

on its content and context.

• Sentiment analysis is usually used to perceive and

provide automated help or feedback on how a product

such as a book or a movie is doing in the market.

• Answering queries or help is used in medicine or retail

services, for example in chat bots.

• Speech recognition helps analyze and understand

automatically the context in a conversation with

humans.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

9

Table 1-1 describes some key NLP techniques and provides examples.

Table 1-1. NLP Techniques

NLP Techniques Description Example

Sentence
segmentation

this technique is all about

breaking up the text and

marking the sentences

within the text, usually

identified by dot (.)

separation.

Input:
We went to naigara falls. that

was fun!

Output:
sentence 1: We went to naigara

fallssentence 2: that was fun!

Tokenization this is a technique to

identify the different words

or punctuation marks

or symbols given in a

sentence.

Input:
this movie has a funny story line

but has a “tragic” end.

Output:
[this] [movie] [has] [a] [funny]

[story] [line] [but] [has] [a] [“]

[tragic] [”] [end][.]

Named entity
recognition

this is a technique to

identify different entities

within a sentence such as

a person, place, time, and

so on.

Input:
the singapore fintech conference

starts at 9 a.m.

Output:
time, location, event

Stemming/
lemmatization

this technique trims the

words to extract the root

word.

Input:
starting, started, start

Output:
start

(continued)

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

10

 Robotics
Robotics is a computer science discipline that deals with the design,

programming, engineering, and development of physical robots or

machines that are built to execute tasks that are usually done by humans.

The adoption of robotics was originally targeted for jobs that are

hazardous for humans such as welding, riveting, mining, cleaning

toxic wastes, or defusing bombs, among others, or those that need high

precision or have low tolerance for human errors such as long surgeries in

the medical field.

Table 1-1. (continued)

NLP Techniques Description Example

Part-of-speech
tagging

this is a technique to

identify different parts

of speech and tag them

as noun, verb, adjective,

preposition, pronoun, and

so on.

Input:
since it was late, she stayed back.

Output:
BP: Verb noun third person

singular present form

in: Prepositions and subordinating

conjunctions

PrP: Personal pronoun

PrP: Personal pronoun

Parsing the parsing technique is

about walking through the

sentence to mark different

words in it.

Input:
sylvie and Andrew went to watch

a movie.

Output:
(s(nP(nP sylvie and (nP(Andrew))

(VP(went VBP to watch (nP a

movie))))

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

11

While robots have been around and evolving for several decades, it is

only now that the use of robots in day-to-day activities is picking up. With

the advent of the Internet of Things (IoT) and Big Data, the assimilation

of a large number of streaming data points and analysis is not a challenge.

For example, if you look at a simple sensor on an autonomous vehicle,

it processes hundreds of thousands of data points every millisecond or

second to assess whether a move by the vehicle is safe and aligned to reach

the target destination within the stipulated time.

 Machine Learning
Machine learning is a way of building intelligence into a machine so it will

be able to learn over time and do better using its own experience. It deals

with a pattern search mechanism that filters the relevant details from the

details or environment.

Machine learning algorithms that are constructed in this way can build

up intelligence. The goal of a learning algorithm is to produce a result in

the form of a rule that is accurate to a maximum extent.

Figure 1-3 depicts various subfields of machine learning.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

12

Supervised learning is working to a known expectation, which means

that what needs to be analyzed from the data is defined up front. When

there is no clear target in mind or specific problem to solve, the learning is

referred to as unsupervised learning. The goal in this case is to decipher the

structure in the data first and then to identify potential output attributes.

As an example, to train a puppy, rewarding him every time he follows

instructions works well. In fact, he figures out quickly what behavior helps

him earn rewards. A learning methodology that focuses on maximizing the

rewards from the result is referred to as reinforcement learning.

Deep learning is an area of machine learning that focuses on unifying

machine learning with artificial intelligence. For a face detection

requirement, a deep learning algorithm records or learns features such

as the length of the nose, the distance between the eyes, the color of

the eyeballs, and so on. This data is used to address a classification or a

Figure 1-3. Machine learning

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

13

prediction problem and is evidently different from the traditional shallow

learning algorithm. In Chapter 2, we will cover some specific deep learning

methods that are used in computer vision.

 Expert Systems
Expert systems (ESs) are one of the most significant research domains of AI

that were first mentioned at Stanford University. These systems primarily

focus on solving complex problems in a particular domain at a level of

exemplary human intelligence or expertise. Expert systems are highly

responsive, reliable, accurate, and performant. While they cannot replace

a human when it comes to decision-making, they are used as advisors to

humans and can help in diagnosis, explanation, prediction, justification,

and reasoning. Any expert system includes three core components: a

knowledge base, an inference engine, and a user interface.

Expert systems are used heavily in many domains. Some examples of

usage are fraud detection (the identification of suspicious transactions and

stock market trading in the financial domain), critical ailment diagnosis

and deduction of root cause for an ailment in the medical domain, and

prediction of the potential behavior of a system by monitoring its current

status against the patterns derived from earlier monitoring reports.

 Speech and Voice Recognition
Speech recognition technology enables computers to recognize spoken

words, which are then converted to text for analysis. A natural progression

in processing includes the application of NLP techniques on the extracted

text. Voice recognition is a subset of speech recognition with one of the

goals of identifying a person based on the voice. Today, many electronic

products such as mobile phones, TVs, and electronic gadgets support

speech recognition to enable smart and automatic operations based on

simple instructions. There are advanced services such as Siri, Alexa, and

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

https://techterms.com/definition/speech_recognition

14

Google Assistant from technology giants such as Apple, Google, and

Amazon, among others, that are breaking barriers in simplifying day-to-

day activities.

 Intelligent Process Automation
Automation has evolved from running repetitive and mundane tasks

to dealing with complex cases and optimizing overall the way humans

execute tasks. Robotic process automation (RPA) is the application of

technology that allows a user to configure a software robot (bot) to

capture and interpret existing applications for processing a transaction,

manipulating data, triggering responses, communicating with other digital

systems in an efficient way, and scaling to heavier workloads on an as-

needed basis.

Intelligent process automation (IPA) has more cognitive capabilities

than RPA when used in conjunction with NLP, machine learning,

computer vision, and other subfields.

 Introduction to Computer Vision
With this brief understanding of all the related subfields of AI, you will

now learn about computer vision, the prime purpose of this book. In

this section, you will explore the basic concepts, building blocks, and

algorithms of computer vision and learn how to implement them using the

most up-to-date versions of OpenCV and Python.

Computer vision, also referred to as vision, is the recent cutting-edge

field within computer science that deals with enabling computers, devices,

or machines in general to see, understand, interpret, or manipulate what is

being seen.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

15

Computer vision technology implements deep learning techniques

and in a few cases also employs NLP techniques as a natural progression

of steps to analyze extracted text from images. With all the advancements

of deep learning, building functions such as image classification, object

detection, tracking, and image manipulation has become simpler and

more accurate, thus leading way to exploring more complex autonomous

applications such as self-driving cars, humanoids, and drones. With deep

learning, we can now manipulate images, such as superimposing Tom

Cruise’s features onto another face or converting a picture into a sketch

mode or watercolor painting mode. We can eliminate the background

noise of a picture and highlight the subject in focus or take a stable picture

even with the shakiest of hands. We can estimate the closeness, structure,

and shape of objects, and we can estimate the textures of a surface too.

With different lights or camera exposure, we can identify objects and

recognize an object that we have seen before.

In computer vision, by saying we are enabling computers to “see,”

we mean enabling machines and devices to process digital visual data,

which can include images taken with traditional cameras, a graphical

representation of a location, a video, a heat intensity map of any data, and

beyond.

As you can see, computer vision applications are becoming ubiquitous

in our day-to-day lives. We can find an object or a face in a video or in a live

video feed, understand motion and patterns within a video, and increase

or decrease the size, brightness, or sharpness of an image.

 Scope
To understand what constitutes computer vision, look at Figure 1-4.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

16

Though you are looking this image for the first time, you can probably

tell that this image is of the sport cricket being played on a bright day.

Specifically, it is a match between teams Australia and South Africa, and

Australia won the match. The overall mood is that of celebration, and a

few players can be named either by recognizing their facial features or by

reading the names printed on their shirts.

The information you can observe is complex for a computer vision

application; this could be a set of multiple inferences. Let’s now map the

whole human-driven interpretation to a machine’s vision processes.

• You can observe objects such as grass/ground,

people, cricket equipment advertisements, and

sports uniforms. These objects are then grouped into

categories. This process of extracting information is

referred to as image detection and classification.

Figure 1-4. Image of a cricket game

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

17

• At a high level, there is ground, and there is a pitch.

While it is difficult to exactly pinpoint the boundaries of

each, making the markings based on the objects within

the image is possible. This process is referred to as

image segmentation.

• Taking this to the next level, you can get smarter and

smaller boundaries that can help identify specific

people and objects in the image. This can be observed

with small boxes marked around each potential unique

object, as shown in Figure 1-5.

• Now, within each box, there could be people or

different cricket-related objects. At the next level, you

can detect and tag what each box contains, also shown

in Figure 1-5. This process is called object detection.

Figure 1-5. Marking unique objects

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

18

• Extending this, you can look closely at the people’s

faces and through the face recognition process exactly

determine who each player is. You also can observe

that each person is of different height and build.

• Names on the back of the shirts of the players can be

another source for determining who each player is.

An optical character recognition (OCR) handwriting

recognition process can recognize shapes and lines and

infer letters or characters.

• Depending on the color of the uniform, you can infer

what type of match it is and what teams are playing.

Identifying the colors of the pixels is part of the image

detection and manipulation process.

• In the process of playing the game, movement of the

ball can be tracked and the speed at which the ball

strikes the bat can be computed or determined. The

path the ball will potentially take can be determined as

well. A few important calculations such as how many

ball serves have hit a particular spot on the pitch can

be computed. This is possible using a process called

motion tracking.

• Sometimes the determination of whether the player

is “in” or “out” is determined by his leg position while

the player is striking the ball. To accurately determine

this, images from different cameras set up at different

angles need to be analyzed to identify the accurate

position of the player’s leg. This process is called image

reconstruction, where an object is compiled from

different tomographic projects of the same object in

different angles.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

19

In Chapters 4, 5, and 6, we will cover all the processes listed here

in detail with hands-on examples. In the next section, let’s look at what

makes computer vision a difficult and complex system to build.

 Challenges of Computer Vision
Digital visual data sources can be webcams, cameras, video recorders,

scanners, and others. The accuracy of computer vision applications is

determined by how well the images or videos are interpreted. In this

section, we will look at a few important aspects of images that can make

the whole process of image interpretation complex.

• Illusions in an image can be confusing. For example, is

Figure 1-6 representing two faces facing each other or a

vase?

• There can be issues with camera sensors in low or bad

light conditions. The images can get noisy or pixelated

when zooming in (see Figure 1-7).

Figure 1-6. Faces or vase?

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

20

• The same object can look different from different

angles. For example, Figure 1-8 shows the Eiffel Tower

from different angles.

• An object in motion can look different during the

movement. For example, Figure 1-9 shows different

images of a cheetah running.

Figure 1-7. Zooming in

Figure 1-8. Different angles

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

21

• There can be background clutter that can make

identifying the object of focus difficult.

• Finally, there can be many variations of the same

object, such as different kinds of chairs.

Dealing with all these cases makes computer vision a hard problem

to solve. In humans, the collection of data (through vision) happens

constantly. Unlike with machines, there is a little chance that a human can

misclassify a dog when seen in different positions.

 Real-World Applications of Computer Vision
In this section, we will cover computer vision applications across domains

such as automotive, healthcare and biomedical, and retail.

Figure 1-9. In motion

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

22

 Automotive Industry

Computer vision has been in constant use since XXX in the automotive

industry, especially to improve the safety and functionality of modern

vehicles. Vehicles are equipped with sensors and cameras that can collect

images and data regarding everything around the vehicle (see Figure 1- 10).

Thus, vehicles are able to detect speed limit signs on the road, warn or

inform the driver when parked in a no-parking zone, proactively find an

open parking space, and guide the driver to reach a location.

Proactive warnings or intimations regarding diversions, gas stations,

hazardous obstacles, and so on, are just a few more examples.

The recent advent of self-driving cars has brought a revolution in

the way intelligence can be built into automobiles to manage traffic

congestion, road accidents, and proactive vehicle care.

 Healthcare and Biomedical Industry

The healthcare and biomedical industry has seen an equal amount of

adoption and traction for computer vision as the automobile industry.

Figure 1-10. Computer vision in the automotive industry (source:
Neuromation.io)

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

23

In addition to advances in the way human organs and related data are

photographed and stored, the way this data is interpreted and visualized

has been drastically changed with computer vision algorithms. Preventive

care is now possible for cancer and other genetic diseases because

computers are able to detect potential occurrence in images from

microscopes with very high precision. In addition, robots are able to

perform complex surgeries with accuracy and efficiency.

In the case of surgeries, predicting the amount of blood loss is

important because it can avoid unnecessary blood transfusions costing

approximately $10 billion worldwide. Similarly, storing the analysis

data and gaining insights from digital health reports of patients can help

improve the accuracy and effectiveness of treatments.

 Retail Industry

Both online and physical retail stores are extensively using computer

vision to improve the customer experience, provide competitive

alternatives, and optimize processes. Amazon, for example, implements

computer vision to identify similar products that are marked at different

prices and provide a comparison-based suggestion to customers as well as

advice to sellers on positioning a particular product online. An Amazon Go

store is a partially automated store with no checkout stations or cashiers

that lets customers buy products of their choice, and payments are dealt

with offline via their Amazon accounts.

Another example of an online retail store using computer vision is an

eyewear store. Customers can simulate how specific frames look on their

face or use a recommended design for a face type to help choose among

the eyewear.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

24

 Images and Their Features
At the core of computer vision is its input, which is referred to as an

image. Sources of images include cameras, video recorders, scanners, and

microscopic images, among others. Let’s now look at what images are, how

are they stored and represented internally, and what image features can

be used by vision algorithms to re-create, manipulate, analyze, track, and

interpret images.

in simple technical terms, an image is a two-dimensional vector or a
matrix with a finite number of rows and columns.

The following are different characteristics of images:

• The width of an image is represented by the number of

columns in the matrix.

• The height of the image is represented by the number

of rows in the matrix.

• An image is composed of multiple pixels, and a pixel

is a core component of an image that is represented by

one element in the matrix.

• The value in each pixel represents a channel that

signifies a visual aspect of the image such as brightness,

scale, color, and so on. The pixel values can take either

a number between 0 and 255 or an RGB representation.

A combination of these values then forms a color. The

image thus formed is called a three-channel image.

The image features listed here (width, height, resolution, depth, and

channels) are used in computer vision algorithms.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

25

 Color Spaces

The color space concept helps in storing and reproducing color schemes

and hence is also called a color model. For example, in a grayscale color

space, a pixel is represented as a single 8-bit unsigned integer value that

corresponds to the brightness or gray intensity of that pixel. Figure 1-11

displays all the possible colors that exist within the grayscale color space.

The RGB color space has each pixel represented by three different 8-bit

integer values that correspond to the red, green, and blue color intensity of

that pixel. Figure 1-12 depicts how all other colors (such as yellow or pink)

between the three main colors are formed.

Another four-channel color space is the CMYK color space

(representing cyan, maroon, yellow, and key/black). Figure 1-13 shows an

example of the CMYK color space.

Figure 1-11. Grayscale color space

Figure 1-12. Other colors (such as yellow or pink)

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

26

Overall, images are matrix-like structures that have features or

properties such as height, width, channels, depth, element type, and so on.

In the next section, let’s look at the process flow for the computer vision

process that covers where and how the input comes from, how the input is

processed, and what the outcome is.

 Core Building Blocks (Input – Process – Output)
The core process of a computer vision system involves receiving the input

from sources such as cameras, smartphones, scanners, email attachments,

printers, faxes, and so on, in the form of images or PDFs. The image or PDF

data is extracted using image recognition or optical character recognition

(OCR) or intelligent character recognition (ICR) engines (see Figure 1-14).

Figure 1-13. CMYK color space

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

27

For example, let’s take a case of smartphone with a photo gallery

application and a built-in camera that allows you to take pictures or videos.

Take a photograph using the camera, apply a filter to enhance the photo,

and email the file using an email application. While this may sound like a

simple process, it internally uses critical functions of computer vision.

In this example, the images or documents can be provided by a wide

range of input devices such as scanners, cameras, and so on. Just the way

an image recognition engine extracts and classifies images, an OCR/ICR

engine extracts and classifies text from images and documents.

Figure 1-14. Input – process – output

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

28

 Optical Character Recognition and Intelligent
Character Recognition

Optical character recognition (OCR) is about recognizing scanned images

that have textual content and translating images into text-searchable files.

Converting an image to text files reduces the storage footprint and makes

them more portable. Multiple neural network algorithms are used to poll

the results and extract a final translated file. The input image is converted

into a machine format that is interpretable by machines and then matched

to a predefined code and a character. Once the image is converted into

text, it becomes easy to manipulate based on the use case requirements.

As a next step, there’s a need to recognize handwritten content,

which is where intelligent character recognition (ICR) comes in. Since it

has to deal with human/handwritten content, ICR is more complex than

OCR. The character recognition process is more or less the same, but

there needs to be some intelligence included to make the computer think

like a human while interpreting the characters, thus mandating a built-in

dictionary.

 Optical Mark Recognition

Optical mark recognition (OMR) is similar to OCR and ICR but applies to

slightly different use cases. This technology is used to compute scores in

examinations.

 Conclusion
In this chapter, we defined artificial intelligence and its subfields including

robotics, intelligent process automation, expert systems, speech and voice

recognition, machine learning (deep learning), and computer vision. We

took a nontechnical approach to understanding what comprises computer

vision, its application across domains, and its challenges. You learned

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

29

about the core building blocks of computer vision and its functions. At the

heart of computer vision is its core element, the image. We defined what

an image is in the context of computer vision, what the key features are,

and how an image is represented and stored as machine code.

In the next chapter, we will cover the open source computer vision

library OpenCV. With hands-on code examples, we’ll cover setting up

OpenCV, working with Python libraries, and understanding the syntax and

modules that help implement key computer vision functions.

ChAPter 1 ArtifiCiAl intelligenCe And ComPuter Vision

31© Sunila Gollapudi 2019
S. Gollapudi, Learn Computer Vision Using OpenCV,
https://doi.org/10.1007/978-1-4842-4261-2_2

CHAPTER 2

OpenCV with Python
This chapter will lay the foundations for learning computer vision

algorithms through hands-on exercises using the most widely adopted

open source computer vision framework, OpenCV 3.4.3 with Python 3.7.

The chapter will cover setting up your system with OpenCV and the

Python libraries, understanding key modules and out-of-box functions

for computer vision implementations, and learning the syntax for

scaling up.

Specifically, the following topics are covered in this chapter:

• Overview of OpenCV, its history, and its setup using the

latest versions of OpenCV 3.4.3 and Python 3.7

• Introduction to the NumPy library and image-related

functions

• How to create OpenCV projects

• Key modules for image access, manipulations,

transformation, and tracking

32

 About OpenCV
The name OpenCV comes from “open source computer vision.”

The framework comprises tools, libraries, and modules that have

built-in support for implementing computer vision applications. It is one

of the most widely adopted toolkits with a strong developer community.

It is known for its scale of building real-world use cases for commercial use

as well. Version 3.4.3 of OpenCV, in conjunction with version 3.7 of Python,

is used for all the coding examples in this book. OpenCV supports the C/

C++, Python, and Java languages, and it can be used to build computer

vision applications for desktop and mobile operating systems alike,

including Windows, Linux, macOS, Android, and iOS. In this book, we will

focus on using it with Python on the Windows OS.

OpenCV started at Intel Research Lab during an initiative to advance

approaches for building CPU-intensive applications. It was conceived as a

way to make computer vision infrastructure universally available.

 Setting Up OpenCV with Python
Let’s set up OpenCV with Python.

 Windows Installation
Follow these steps to install OpenCV on Windows:

 1. Go to https://www.python.org/downloads/

windows/ to access the latest stable Python version

for Windows (Python 3.7.0 in this book).

Chapter 2 OpenCV with pythOn

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/

33

 2. Download the executable for Windows with the

required bit configuration and run it.

 3. Click “Customize installation” (see Figure 2-1).

Figure 2-1. Choosing to customize the installation

 4. Select the advanced options you want, set the path

(if necessary), and click Install, as shown in Figure 2-2.

Chapter 2 OpenCV with pythOn

34

 5. Check that the setup was successful, as shown in

Figure 2-3.

Figure 2-3. Success!

Figure 2-2. Selecting advanced options

Chapter 2 OpenCV with pythOn

35

 6. From the command prompt, type python to double-

check that the installation was successful and verify

the installed version, as shown in Figure 2-4.

Figure 2-4. Verifying the installation at the command line

 7. Download NumPy (the version used here is

numpy-1.14.6+mkl-cp37- cp37m-win_amd64.

whl) from https://www.lfd.uci.edu/~gohlke/

pythonlibs/#numpy.

 8. Download OpenCV version 3.4.3 (the version used

here is opencv_python- 3.4.3+contrib-cp37-

cp37m-win_amd64.whl) from https://www.lfd.

uci.edu/~gohlke/pythonlibs/#opencv.

 9. Both the downloaded NumPy and OpenCV libraries

will need to be placed in the Python installation

folder. On the command prompt, navigate to the

Python installation folder.

 10. Install NumPy and OpenCV from the command

prompt in the default Python location using the

following commands:

pip install "numpy-1.14.6+mkl-cp37-cp37m-win_

amd64.whl"

pip install "opencv_python-3.4.3+contrib-cp37-

cp37m-win_amd64.whl"

Chapter 2 OpenCV with pythOn

https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv
https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv

36

 11. If the install was successful, you’ll see the message

shown in Figure 2-5 at the command prompt.

 12. To verify the installation is error-free, the following

import commands on the Python editor should not

throw any error:

>>import numpy

>>import cv2

 13. To check the installation version, run this:

>>print(cv2.__version__)

It should print 3.4.3.

 macOS Installation
You can use Homebrew to install OpenCV and Python on macOS. Follow

these steps:

 1. Install Python using the following command:

$ brew install python

Figure 2-5. Successful install

Chapter 2 OpenCV with pythOn

37

 2. Verify the Python installation using the following:

$ which python

 3. You should see /usr/local/bin/python printed

on the terminal. This indicates that you are using

“brewed Python.” Open the terminal and run the

following command:

$ brew tap homebrew/science

 4. Install NumPy.

$ pip install numpy

 5. Install OpenCV.

$ brew install opencv --with-tbb --with-opengl

 6. OpenCV is now installed on your machine, and you

can find it at /usr/local/Cellar/opencv/3.4.3/.

 7. Check the versions using this:

$ cd /Library/Python/3.7/site-packages/

$ ln -s /usr/local/Cellar/opencv/3.1.0/lib/

python2.7/site- packages/cv.py

cv.py

$ ln -s /usr/local/Cellar/opencv/3.1.0/lib/

python2.7/site- packages/cv2.so

cv2.so

Chapter 2 OpenCV with pythOn

38

 Using Modules
OpenCV consists of two types of modules, main and additional modules.

• Main modules: These modules are more or less the

core modules of OpenCV and come by default with the

packaged versions. They form core modules because

they provide the core functionalities such as image-

processing tasks, filtering, transformation, and others.

• Extra modules: These modules do not come by default

with the OpenCV distribution. These modules are

related to additional computer vision functionalities

such as text recognition.

Table 2-1 describes the main modules.

Table 2-1. Main Modules

Module Name Function or Purpose

core includes all core OpenCV functionalities such as basic structures,

Mat classes, and so on.

imgproc includes image-processing features such as transformations,

manipulations, filtering, and so on.

Imgcodecs includes functions for reading and writing images.

videoio includes functions for reading and writing videos.

highgui includes functions for GUi creation to visualize results.

video includes video analysis functions such as motion detection and

tracking, the Kalman filter, and the infamous CaM Shift algorithm

(used for object tracking).

 calib3d includes calibration and 3D reconstruction functions that are used

for the estimation of transformation between two images.

(continued)

Chapter 2 OpenCV with pythOn

39

In addition to the modules in Table 2-1, OpenCV has modules based

on CUDA (an API created by Nvidia). Using these modules is not covered

in this book, but it is worth noting that these modules provide additional

scale.

Table 2-1. (continued)

Module Name Function or Purpose

features2d includes functions for keypoint-detection and descriptor-extraction

algorithms that are used in object detection and categorization

algorithms.

objdetect Supports object detection.

dnn Used for object detection and classification purposes, among others.

the dnn module is relatively new in the list of main modules and

has support for deep learning.

ml includes functions for classification and regression and covers most

of the machine learning capabilities.

flann Supports optimized algorithms that deal with the nearest neighbor

search of high-dimensional features in large data sets. FLann

stands for Fast Library for approximate nearest neighbors (FLann).

photo includes functions for photography-related computer vision such as

removing noise, creating hD images, and so on.

stitching includes functions for image stitching that further uses concepts

such as rotation estimation and image warping.

shape includes functions that deal with shape transformation, matching,

and distance-related topics.

superres includes algorithms that handle resolution and enhancement.

videostab includes algorithms used for video stabilization.

viz Display widgets in a 3D visualization window.

Chapter 2 OpenCV with pythOn

40

 Working with Images and Videos
Images and videos that form the primary input to a computer vision

application are represented in matrix format, as covered in Chapter 1. This

matrix stores details of the images such as width, height, depth, channel,

and others. You will first look at the C++ core class, or, module called Mat,

which stands for “matrix.” The Python equivalent is represented by numpy.

ndarray. NumPy is a Python library that contains a wide set of numerical

algorithms and mathematical operations that support working with large

multidimensional arrays and matrices.

 Using NumPy
Before working on the OpenCV libraries, you will first look at the NumPy

library, including the data types, functions, and syntax to work with

images.

Chapter 1 introduced images and their properties. NumPy facilitates

a special n-dimensional array called ndarray that can hold image and

related data. An n-dimensional array type is defined as numpy.ndarray.

The following is the code to create an n-dimensional array:

1 import numpy

2 newlist = [1,2,3]

3 type(newList)

4 newArray = np.array(newList)

5 type(newArray)

Line 1: Imports the NumPy library.

Line 2: Creates a new list object in Python. A list is represented by

square braces, as in [and].

Line 3: Displays the object data type as list .

Chapter 2 OpenCV with pythOn

41

Line 4: Uses NumPy’s array() function to create a new array using

the existing list object. An array is represented within parentheses. So, this

function creates an object called newArray that is an array initialized with a

single row and three columns, represented as ([1,2,3]).

Line 5: Displays this new object as numpy.ndarray.

The zeros() or ones() function in NumPy libraries can be used to

create an n-dimensional array. The following code helps create a 3×2

matrix initiated with zeros():

1 np.zeros(shape=(3,2))

2 np.ones((2,4))

The output of the previous lines is shown here:

array([[0.,0.], [0.,0.], [0.,0.]])

array([[1.,1.,1.,1.], [1.,1.,1.,1.]])

all ndarray functions that help extract and manipulate ndarray
can be found at https://www.tutorialspoint.com/numpy/
numpy_ndarray_object.htm.

 Reading and Loading Images with OpenCV and NumPy

Create a folder called images in the Python home path and add a few

images in JPG and PNG formats for examples. Add panda.jpg, as shown in

Figure 2-6.

Chapter 2 OpenCV with pythOn

https://www.tutorialspoint.com/numpy/numpy_ndarray_object.htm
https://www.tutorialspoint.com/numpy/numpy_ndarray_object.htm

42

Try the following program to read, show, change the scale of, and write

an image:

 1 import numpy

 2 import cv2

 3

 4 panda_image = cv2.imread("./images/panda.jpg")

 5 panda_gray_image = cv2.cvtColor(panda_image, cv2.COLOR_

BGR2GRAY)

 6 cv2.imshow("Gray panda", panda_gray_image)

 7 cv2.imshow("Color panda", panda_gray_image)

 8 cv2.imwrite("gray_panda", panda_gray_image)

 9 cv2.waitKey(0)

10 cv2.destroyAllWindows()

Line 1: Imports the NumPy library; this is important because the

matrix format of the image is represented by the NumPy data type ndarray

(an n-dimensional array).

Figure 2-6. Adding panda.jpg

Chapter 2 OpenCV with pythOn

43

Line 2: Imports the OpenCV library that gives access to all the

functions to operate on images.

Line 4: Reads the image panda.jpg that was just placed in the images

folder in Python’s default path. This line reads the image and stores it in a

variable called panda_image.

Try printing the data type of the image that is read using type(panda_

image). It should show numpy.ndarray. This is just for verification.

Line 5: Converts the image to grayscale, and using the method

cvtColor, passes the constant COLOR_BGR2GRAY and stores it in another

variable, called panda_gray_image.

Lines 6 and 7: Display both the images in a window using the

imshow() method. The first attribute for this method is the window name

(see Figure 2-7).

Figure 2-7. First attribute of method showing window name

Line 8: Saves the converted image into a folder using the imwrite()

method.

The folder will now have a new JPG saved (see Figure 2-8).

Chapter 2 OpenCV with pythOn

44

Line 9: Gives 0 ms before keystroke action.

Line 10: Closes all the windows.

 Working with a Histogram Representation

There is another representation for images, and that is a histogram.

 1 import numpy as np

 2 import cv2

 3

 4 from matplotlib import pyplot as plt

 5

 6 image = cv2.imread("./images/panda.jpg")

 7 #plot a histogram

 8 histogram_image = cv2.calaHist([Image], [0], done, [256],

[0,256])

 9 #flaten the histogram

Figure 2-8. Saving new JPG

Chapter 2 OpenCV with pythOn

45

10 plt.hist(histogram_image.ravel(), 256, [0,256])

11 plt.show()

12 #view color channels

13 color = ['b','g','r']

14

15 #seperate the colors and plot the histogram

16 for I, col in enumaerate(color):

17 hist = cv2.calcHist([image], [i], None, [256], [0,256])

18 plt.plot(hist, color = col)

19 plt.xlim([0.256])

20

21 plt.show ()

Line 1: Imports the NumPy library. This is important as the matrix

format of the image is represented by the NumPy data type ndarray

(n- dimensional array).

Line 2: Imports the OpenCV library that gives access to all the

functions to operate on images.

Line 4: Imports matplotlib, which has libraries for plotting a

histogram.

Line 6: Reads the image panda.jpg that was just placed in the images

folder in Python’s default path. This line reads the image and stores it in a

variable called image.

Line 8: Generates a histogram of the image that is loaded.

Line 10: Flattens the histogram.

Lines 16 through 19: Loops the values on the flattened histogram,

separates the colors, and plots the data.

Line 21: Displays the histogram.

Figure 2-9 shows the output of the previous program for the panda

image.

Chapter 2 OpenCV with pythOn

46

 Videos
In the section, you will learn about loading videos from a webcam or a file

stored at a location. You will load a video frame by frame and also save it to

another video file.

 Loading Videos from a Webcam

Here is how to load a video from a webcam:

 1 import cv2

 2 import numpy as np

 3

 4 cap = cv2.VideoCapture(0)

 5

 6 while True:

 7 ret, frame = cap.read()

Figure 2-9. Histogram

Chapter 2 OpenCV with pythOn

47

 8

 9 cv2.imshow("frame", frame)

10

11 key = cv2.waitKey(1)

12 if key == 27:

13 break

14

15 cap.release()

16 cv2.destroyAllWindows()

Lines 1 and 2: Import the OpenCV and NumPy libraries.

Line 4: Loads frames from a webcam using the VideoCapture()

method. The parameter 0 indicates the first webcam, and the number can

change if there is more than one webcam.

Lines 6 through 13: Read through video frames.

A video is just a sequence of images, and you need to loop (using a

while loop) through images. Each frame from the video is read using the

read() method.

The r parameter takes a value of true or false. It’s true if cap is

reading a frame based on the completion of reading the images. Then the

image is shown using the imshow() method. The waitkey() method is

used to wait until you press the key.

Lines 15 and 16: Clear the stream and close the window.

 Loading Videos from a File

Here is how to load a video from a file:

 1 import cv2

 2 import numpy as np

 3

 4 mountains_video = cv2.VideoCapture("mountains.mp4")

 5

Chapter 2 OpenCV with pythOn

48

 6 while True:

 7 ret, frame = mountains_video.read()

 8

 9 cv2.imshow("frame", frame)

10

11 key = cv2.waitKey(25)

12 if key == 27:

13 break

14

15 mountains_video.release()

16 cv2.destroyAllWindows()

Line 1 and 2: Import the OpenCV and NumPy libraries.

Line 4: Loads frames from a webcam using the VideoCapture()

method; the parameter will be the video file name.

Lines 6 through 13: Read through video frames.

A video is just a sequence of images, and you need to loop (using a

while loop) through images. Each frame from the video is read using the

read() method.

r takes a value of true or false. It’s true if cap is reading a frame based

on the completion of reading the images. Then the image is shown using

the imshow() method. The waitkey() method is used to wait until you

press the key.

Lines 15 and16: Clear the stream and close the window.

 Reading the Video and Writing into a File

The same code is used to read the video and write to a file, except when

each frame is read, a new parameter holds the read frame in a flip mode

and writes the flipped frame into another video file.

 1 import cv2

 2 import numpy as np

Chapter 2 OpenCV with pythOn

49

 3

 4 mountains_video = cv2.VideoCapture("mountains.mp4")

 5

 6 fcc = cv2.VideoWriter_fourcc(*"XVID")

 7 out = cv2.VideoWriter("new_mountains.avi", fcc, 28, (640, 360))

 8

 9 while True:

10 ret, f = mountains_video.read()

11 f2 = cv2.flip(f, 1)

12

13 cv2.imshow("frame2", f2)

14 cv2.imshow("frame", f)

15

16 out.write(f2)

17

18 key = cv2.waitKey(20)

19 if key == 27:

20 break

21

22 out.release()

23 mountains_video.release()

24 cv2.destroyAllWindows()

 Conclusion
In this chapter, you learned about the OpenCV framework and how it

works in conjunction with Python libraries. You reviewed the core and

advanced modules of OpenCV. You learned the functions for reading,

writing, showing, and saving images and videos.

Chapter 2 OpenCV with pythOn

50

In the next chapter, you will learn about relevant deep learning

algorithms that power computer vision, about some specific complex

problems that they solve, and about how they can be implemented using

OpenCV modules.

Chapter 2 OpenCV with pythOn

51© Sunila Gollapudi 2019
S. Gollapudi, Learn Computer Vision Using OpenCV,
https://doi.org/10.1007/978-1-4842-4261-2_3

CHAPTER 3

Deep Learning
for Computer Vision
The goal of this chapter is to introduce you to the underlying deep learning

algorithms that power computer vision applications. Deep learning is

applied in the classification, detection, segmentation, and generation of

images and videos in computer vision applications. This chapter will cover

the methods to train deep learning models and deploy them on various

platforms. The following are the topics covered in this chapter:

• Understanding the basics and taxonomy of deep

learning

• Convergence areas of deep learning and computer

vision

• A recap of neural networks and common terms used in

deep learning techniques

• Step-by-step guide to how convolution and recurrent

neural networks work and how they are used in specific

vision examples

52

 Deep Learning: An Overview
Chapter 1 introduced machine learning and deep learning. In this chapter,

you will take a deep dive into a few deep learning algorithms that power

computer vision.

Deep learning is a subset of machine learning that focuses on learning

significant features from the input data, especially in cases where the

data is complex. This is more or less a replacement for a typical feature

extractor that was built to be unique to complex data types such as images,

videos, and so on. In Chapter 1, you learned some of the challenges of

images and videos that can make the computer vision process overall a

complex problem to solve. Applying some deep learning techniques such

as convolution neural networks addresses these challenges seamlessly.

Traditional or elementary machine learning techniques were originally

in use for computer vision. The K-nearest neighbor (KNN) technique

and linear classifier are the most popular traditional approaches. With

the KNN algorithm, each image is matched against all the images in the

training data, and the image (or images) with the least distance measured

is chosen to help classify the input image. In cases where an image had

the same object with a different illumination or angle, the distance

measure practically failed. Similarly, with the traditional linear classifier

technique, each pixel value of the input image is assessed and tagged if it

can be a parameter for matching. Typically, a weighted average value of

the pixel is taken for comparison, which is why all the challenging areas of

images (such as illuminations, different angles or image viewpoints, noise,

background clutter, and multiple varieties of same objects) cause the

algorithm to fail to match the input image.

Other more sophisticated techniques fail to match the output that deep

learning techniques can match. Let’s first look at what vision requirements

are addressed by deep learning techniques before learning how they work.

Chapter 3 Deep Learning for Computer Vision

53

 Deep Learning Applications in Computer
Vision
Computer vision enables the properties of human vision on a computer. A

computer here could be a smartphone, drone, CCTV, MRI scanner, and so

on, with various sensors for perception. The sensor produces images in a

digital form that has to be interpreted by the computer. The basic building

block of such interpretation or intelligence is explained in the next section.

The different problems that arise in computer vision can be effectively

solved using deep learning techniques.

 Classification
Image classification is the task of labeling the whole image with an object

or concept with confidence. The applications include identifying gender

given an image of a person’s face, identifying the type of pet, tagging

photos, and so on. Figure 3-1 shows the output of such a classification task.

Figure 3-1. Output of classification task

Chapter 3 Deep Learning for Computer Vision

54

 Detection and Localization
Detection or localization is an activity that involves finding an object and

marking or boxing it. This has many real-world applications, especially

in the automotive industry where self-driving cars detect objects through

their camera sensors. The first image in Figure 3-2 depicts object detection,

and the second image shows localization.

Figure 3-2. Object detection and localization

Chapter 3 Deep Learning for Computer Vision

55

 (Semantic) Segmentation
Segmentation is the process of doing pixel-wise classification. This gives a

fine separation of objects, as shown in Figure 3-3. It is useful for processing

medical images and satellite imagery.

Figure 3-3. Segmentation

 Similarity Learning
Similarity learning is the process of learning how two images are similar.

A score can be computed between two images based on the semantic

meaning.

There are several applications of this, from finding similar products to

performing facial identification.

 Image Captioning
Image captioning is the task of describing an image with text, as shown in

Figure 3-4.

Chapter 3 Deep Learning for Computer Vision

56

 Generative Models
Generative models are interesting because they generate images. Figure 3- 5

shows an example of a style transfer application where an image is generated

with the content of that image and the style of other images. Specifically, it

shows how an image of a temple uses the style of a pencil sketch.

Figure 3-4. Captioning

Figure 3-5. Generative modeling

Images can be generated for other purposes such as new training

examples, super-resolution images, and so on.

Chapter 3 Deep Learning for Computer Vision

57

 Video Analysis
Video analysis processes a video as a whole, as opposed to images. It has

several applications, such as sports tracking, intrusion detection, and

surveillance cameras.

Before we go deeper into the convolution and recurring neural

network techniques of deep learning, let’s quickly recap what neural

networks are.

 Neural Networks at Their Core
Let’s look at a simple problem in Figure 3-6; the requirement is to recognize

the objects from the handwritten script and image.

Figure 3-6. Handwritten script and object

For humans, this is not a big deal; they are recognized as the numbers

123456789, the text thank you, and the image of a goldfish. While this

appears simple, it hides the complexity of the human brain. The brain can

interpret these images incrementally, and this is done by visual cortices.

Each cortex contains millions of neurons that are interconnected, enabling

this interpretation.

If a computer program has to crack this recognition of digits, text, and

images, how should that work? Should there be rules that help identify and

differentiate one image from another?

Chapter 3 Deep Learning for Computer Vision

58

 Artificial Neural Networks
The research in neural networks started as an attempt to simulate

multilayered learning. This definitely requires feeding input to the model

a large amount of input variations of handwritten digits or text or object

images from which the interpretation rules can be inferred and applied for

prediction on a new image input.

Deep learning is an assemblage of techniques from an artificial neural

network (ANN), which is a subfield of machine learning. As mentioned,

ANNs are modeled on the human brain, which has multiples nodes that

are linked and can pass information within them using the links. In the

following sections, let’s look at some core building blocks of ANNs.

 Artificial Neurons or Perceptrons
Artificial neurons are called that because they emulate biological neurons

and are structured as shown in Figure 3-7. These are the basic unit of

computation in the neural network.

Figure 3-7. Artificial neurons

Chapter 3 Deep Learning for Computer Vision

59

The following are the features and functions of artificial neurons:

• Each artificial neuron receives input from other

neurons, and each of these inputs is associated with a

weight (w) that is an indication of relative importance

with the other inputs.

• These inputs set the context and activate the neurons

by applying nonlinear or linear functions. These

functions are called step or activation functions.

• An output transmitter transfers signals, also called

activations, of the neurons.

• A core processing unit produces the output signals or

activations from the input signals.

There is a process called idealization for a neuron, which refers to

models that further allow inferencing. When more complexities are added

to the model, the more robust the model gets.

The earlier step or activation functions add nonlinear aspects to the

output of the neuron. This is required as this is what makes the whole

output closer to being real because most real-world data is usually

nonlinear.

These activation functions (or nonlinearity) take a single input and

run mathematical operations on it. Table 3-1 describes different types of

activation functions.

Chapter 3 Deep Learning for Computer Vision

60

Figure 3-8 illustrates a typical structure of an ANN. Each circle in the

diagram represents a neuron. The input layer pushes input values; the

hidden layers of neurons then take the values as input. It is possible to

have multiple layers within these hidden layers, where the output from

Table 3-1. Activation Functions

Type of Function Description Representation

Sigmoid it converts the input

value to a range

between 0 and 1.

example:

σ(x) = 1 / (1 + exp(−x))

tanh it converts the input

value to a range

between -1 and 1.

example:

tanh(x) = 2σ(2x) – 1

Rectified linear
unit (ReLU)

it thresholds the

input value at zero by

replacing the negative

numbers with zero.

example:

f(x) = max(0, x)

Chapter 3 Deep Learning for Computer Vision

61

one layer is fed as an input to the next layer. Each of these layers can be

responsible for specialized learning. The last hidden layers feed into the

output layer. The concept of the credit assignment path (CAP) refers to the

path from input to output.

Input
Node 1

Input
Node 2

Input
Node 3

Hidden
Node 1

Hidden
Node 2

Output
Node 1

Input Layer Hidden Layer Output Layer

Output
Node 2

Hidden
Node 3

Output 1

Output 2

Figure 3-8. Typical structure of an ANN

In feedforward networks, the length of the path is the total number

of hidden layers along with the output layer. These networks can be

either single-layered or multiple-layered networks. Figure 3-8 shows a

feedforward neural network with a single hidden layer. In the case of

multiple hidden layers, each of the hidden layers is connected internally.

The hidden layers are considered hidden because they are internally

connecting the input and output layers and have no direct connection with

the external world.

Chapter 3 Deep Learning for Computer Vision

62

 Training Neural Networks
The key to the highest accuracy or success of a deep learning algorithm

is determined by how well the ANNs are trained. Training an ANN is

complex because there is a need to optimize multiple parameters. Through

a process called backpropagation, the input weights are adjusted based on

the input relevance computed at each layer.

 Backpropagation

A backpropagation algorithm is commonly used for training artificial

neural networks. The weights are updated from backward based on the

error calculated in a layer. Figure 3-9 shows the input navigation and

weight computations transmitted backward.

Figure 3-9. Backpropagation

After calculating the error, a gradient descent method can be applied to

recalculate the weight.

Chapter 3 Deep Learning for Computer Vision

63

 Gradient Descent and Stochastic Gradient Descent

The gradient descent algorithm is responsible for accomplishing the

multidimensional optimization until the global maximization is achieved.

Gradient descent is a popular optimization technique used in many

machine learning models. It is used to improve, or optimize, the model

prediction. A variation of gradient descent called stochastic gradient descent

(SGD) is becoming one of the most adopted methods. Optimization involves

calculating the error value and changing the weights to achieve that minimal

error. The direction of finding the minimum is the negative of the gradient of

the loss function.

The learning rate determines how big each step should be. Note that

ANNs with nonlinear activations will have local minima. SGD works better

in practice for optimizing nonconvex cost functions.

In the next section, you will learn about two important neural network

variations, convolution neural networks (CNNs) and recurrent neural

networks (RNNs), that are heavily used in computer vision algorithms.

 Convolutional Neural Networks
Convolution neural networks, also known as convolution nets, are a

variation of regular neural networks.

The traditional approaches discussed earlier fail to solve the vision tasks

when there are vast variations in images. Convolution neural networks solve

the problem as they model smaller pieces of information and combine them

using deep networks. This processing happens across multiple layers. The

first layer applies edge detection, which refers to detecting edges and build

templates. The next layers use these templates for the base, take simpler

shapes from the image, and form more templates that include different object

scales, positions, or illuminations. The last layers match the input images with

all the templates, and the final output is a weighted sum of all the outputs.

This helps handle complex variations in images with higher accuracy.

Chapter 3 Deep Learning for Computer Vision

64

CNNs have three types of layers.

• Convolution layer

• Pooling layer

• Fully connected layer

CNNs work differently when compared to regular neural networks. In

CNNs, the layers are set as three dimensions: height, width, and depth.

The neurons of one hidden layer connect only to a partial set of

neurons of the other layer and don’t connect to every neuron. Additionally,

the output is reduced to a single vector of probability scores, organized

along the depth dimension.

The hidden layers help in feature extraction; this is done by the

convolution and pooling layers, and the final classification is done by the

fully connected layer.

 Convolution Layer
The convolution layer consists of spatial filters that are convolved along

the spatial dimensions and summed up along the depth dimension of

the input volume. The convolution layer is a key building block of a CNN.

Convolution means combining two functions to produce a third function

and using merging techniques. The convolution is done by applying

a filter or kernel that helps form a feature map. The filter is applied on

the different areas of the input, a matrix multiplication is done, and the

summation of the matrices forms the feature map.

The term stride represents the pixel distance that each filter application

uses. For example, a stride value of 1 indicates applying the filter/kernel at a

1-pixel distance. Padding is added to the feature map that is extracted. This

is usually a layer of 0-value pixels to prevent the feature map from shrinking.

The final matrix that is formed by this function is passed through an

activation function to make it nonlinear. This could be a ReLU activation

function.

Chapter 3 Deep Learning for Computer Vision

65

 Pooling Layer
A pooling layer is added after the convolution layer. The pooling layer

is responsible for reducing the dimensionality and thus reducing the

parameter count to control the training timing and avoid overfitting.

A max pooling technique is the most common technique applied. This

takes the maximum value in each window. This helps optimize the feature

map size, ensuring key information about the image is retained.

So, the following are the key parameters in CNNs that decide on the

optimization of the feature map:

• Kernel size

• Filter count

• Stride and

• Padding

 Fully Connected Layer
After the convolution and pooling, the final feature map used for the

“classification” task is executed by the fully connected layer. These fully

connected layers can accept only one-dimensional data. Hence, the 3D

data needs to be converted to 1D. For this, the standard Python flatten

functions can be used. Neurons in the fully connected layer have full

connections to all the activations in the previous layer, and they work

exactly the way regular neural networks do.

CNNs are widely used for the image recognition, object detection,

and tracking tasks of computer vision. The OpenCV functions

internally implement CNN algorithms. You’ll learn more about these

implementations in the upcoming chapters.

Chapter 3 Deep Learning for Computer Vision

66

 Recurrent Neural Networks
Recurrent neural networks are key algorithms for handling sequential

data. They are extensively used by Apple’s Siri and Google’s Voice

Search. The key differentiating factor for RNN is that it can remember

the input because it has internal memory. It is one of the key algorithms

behind the scenes of the amazing achievements of deep learning in the

past few years.

RNN is considered to be one of the most robust neural network

algorithms. This is a relatively old algorithm but is becoming more popular

in recent years because of the invention of long short-term memory

(LSTM). Because of this, RNNs can remember some key information

about the input and thus can be more accurate in predicting what is

coming next.

Sequential data is handled very well. An example of sequential data

is time-series data. Hence, this algorithm can be potentially effective in

speech, text, financial data, audio, video, and weather analysis, among

other domains. A stronger understanding of the sequence of steps can

be established. This is not quite possible with other algorithms. In RNNs,

unlike a feedforward neural network, the information is fed cyclically in

loop. So, when a decision is made, both the current input and the learnings

from the inputs received previously are used. Figure 3-10 shows the cyclic

inputs in an RNN.

Chapter 3 Deep Learning for Computer Vision

67

Usually an RNN has a short-term memory, but in conjunction with

LSTM, it can have long-term memory as well. A recurrent neural network

is able to remember exactly that because of its internal memory. It

produces output, copies that output, and loops it back into the network.

RNNs thus can add the immediate past to the present.

Input weights are added to both present and past inputs for RNNs.

RNNs can map one to many, many to many (translation), and many to one

(classifying a voice), as shown in Figure 3-11.

Figure 3-10. Cyclic inputs in an RNN

Chapter 3 Deep Learning for Computer Vision

68

Furthermore, they tweak their weights both through gradient descent

and through backpropagation through time. Let’s now look at how that

happens.

 Backpropagation Through Time
Backpropagation through time (BPTT) does backpropagation on an

“unrolled” recurrent neural network. Unrolling is a visualization and

conceptual tool to check on what is flowing through the network. This

process is usually taken care of internally by the framework that is used to

implement the RNN. LSTM networks are an extension for recurrent neural

networks, and they basically extend the memory of RNNs. Therefore, BPTT

is well suited to learn from important experiences that have long time lags

in between.

The units of an LSTM are used as building units for the layers of an

RNN, which is then often called an LSTM network.

Figure 3-11. Mapping

Chapter 3 Deep Learning for Computer Vision

69

 Conclusion
In this chapter, you learned about deep learning, how convolution and

recurrent neural networks work, and how you can train neural networks

using backpropagation and related functions to compute weights for

the inputs. The chapter then covered some key computer vision use

cases that use deep learning algorithms. Finally, the chapter concluded

with the modules in OpenCV that support deep learning algorithm

implementations.

This chapter lays the foundation for the upcoming chapters, which

cover the hands-on implementation of OpenCV modules with Python for

image processing, object detection, and motion analysis and tracking real-

world use cases.

Chapter 3 Deep Learning for Computer Vision

71© Sunila Gollapudi 2019
S. Gollapudi, Learn Computer Vision Using OpenCV,
https://doi.org/10.1007/978-1-4842-4261-2_4

CHAPTER 4

Image Manipulation
and Segmentation
Chapters 4, 5, and 6 cover hands-on implementations for image

manipulation, segmentation, object detection, and motion analysis and

tracking along with a few real-world use cases. A brief introduction of these

concepts was already given in Chapter 1, so these chapters will take you

deeper into the implementation specifics. This chapter, specifically, covers

image manipulations and segmentation-related functions that are core

to image processing in computer vision applications. For each of the use

cases, the chapter will show the Python syntax and implementations of the

built-in functions in OpenCV.

The following topics are covered in this chapter:

• The chapter will give an overview of image

manipulation and segmentation and the libraries that

support these features.

• As part of image manipulations, the chapter will

provide a step-by-step guide on how to perform

transformations on images such as translations,

rotations, resizing, blurring, sharpening, edge

detection, masking, converting a photograph into a

sketch, and more.

72

• As part of image segmentation, the chapter will cover

how to partition an image into different regions using

contour approximation; how to detect specific shapes

such as lines, circles, and blobs; and how to identify

the occurrence of a specific object or shape within an

image.

• All implementations (including the libraries, functions,

syntax, and hands-on code) are explained using

OpenCV and Python.

 Image Manipulations
Chapter 1 introduced what images are, their different properties, and their

storage structure. You also learned how to read, show, and write images;

change their color; and work with color spaces.

As a quick recap of what was covered in Chapter 1, images are stored

in a two-dimensional (2D) matrix. You learned how to load, display, and

show them within in a window. When an image is stored as a matrix, each

cell represents a pixel. The pixels store a value that represents information

about the image. For example, in the case of a grayscale image, the pixels

store an integer value between 0 and 255. Changing the value of a pixel

thus changes the image. This manipulation at a pixel level can be done

by accessing a single pixel or a range of pixels in the image. Images can

also be represented as histograms, and you have already looked at how to

represent access and manipulate a few properties.

Overall, image manipulation refers to a process of altering or

modifying an image for different purposes such as beautifying images,

sharpening images with noise, restoring old black-and-white images and

re-creating them in color, and so on.

Let’s now start looking at various image manipulation requirements

and how to implement each of them.

Chapter 4 Image manIpulatIon and SegmentatIon

73

 Accessing and Manipulating Pixels
In this section, you will write OpenCV/Python code to access the pixels in

an image and modify the color of them.

The following Python code demonstrates how to access a pixel in an image

and print it. Also, you can change the color of one pixel or a range of pixels.

Lines 1 through 5: These are common code lines that load the NumPy

and OpenCV libraries and then load an image that is placed in a specific

directory path using the imread() function.

 1 import numpy

 2 import cv2

 3

 4 #read the flower image and load it into a variable flower_image

 5 flower_image=cv2.imread("./images/flower_pink.jpg")

 6

 7 #access a specific pixel using the coordinate based access

from the matrix

 8 pixel=flower_image[200,250]

 9

10 #see what color space this pixel represents - this is an

RBG representation

11 print(pixel)

12

13 #lets change the pixel color value to blue

14 flower_image[200,250]=(255,0,0)

15

16 #lets change the pixel color value to blue in a region

range as against

17 flower_image[200:250,200:350]=(0,255,0)

18

19 cv2.imshow('modified pixel', flower_image)

20 cv2.waitkey(0)

Chapter 4 Image manIpulatIon and SegmentatIon

74

Lines 8 and 11: Access a specific pixel by choosing the pixel

coordinates and print the color representation in RGB values.

Line 14: Changes a specific pixel color to blue with the output shown

in Figure 4-1.

Figure 4-1. Changing one pixel

Chapter 4 Image manIpulatIon and SegmentatIon

75

 Drawing Geometric Shapes or Writing Text
on a Color Image
In this section, you will explore a few geometric functions in OpenCV.

You can use the line(), rectangle(), circle(), ellipse(), polygon(), or

putText() functions in OpenCV. Let’s start with the tree shown in Figure 4- 3

to draw or write text.

Line 16: Picks a range of pixels and colors them green. The output

shown in Figure 4-2 is the result of executing this line. (You can comment

line 14 to see the output for this code.)

Figure 4-2. Changing pixels to green

Chapter 4 Image manIpulatIon and SegmentatIon

76

The functions and syntax are as follows:

• cv2.line(): To draw a line, this function takes the

following arguments:

 a. Image object on which the line needs to be drawn

 b. Starting point’s pixel coordinates

 c. Ending point’s pixel coordinates

 d. Color in BGR (not RGB) format

 e. Thickness (in pixels)

• cv2.rectangle(): To draw a square or rectangle,

similar to the line() function, this function takes the

following arguments:

 a. Image object on which the rectangle needs to be drawn

 b. Pixel coordinates of the vertex at the top left

Figure 4-3. No text yet

Chapter 4 Image manIpulatIon and SegmentatIon

77

 c. Pixel coordinates of the lower-right vertex

 d. Color in BGR (not RGB)

 e. Thickness (in pixels)

• cv2.circle(): To draw a circle, this function takes the

following arguments:

 a. Image object on which the circle needs to be drawn

 b. Center pixel’s coordinates

 c. Pixel radius of the circle

 d. Color in BGR (not RGB)

 e. Thickness (in pixels)

• cv2.ellipse(): To draw a ellipse, this function takes

the following arguments:

 a. Image object on which the ellipse needs to be drawn

 b. Center pixel’s coordinates

 c. Length of the minor and major axes

 d. Rotation angle of the ellipse (calculated

counterclockwise)

 e. Starting angle (calculated clockwise)

 f. Final angle (calculated clockwise)

 g. Color in BGR (not RGB—be careful)

 h. Thickness

• cv2.polyline(): To draw a polygon, this function takes

the following arguments:

 a. Image object on which the polygon needs to be drawn

 b. The image object on which to draw

Chapter 4 Image manIpulatIon and SegmentatIon

78

 c. The array of coordinates

 d. True, if it is a closed line

 e. Color

 f. Thickness

• cv2.putText(): To write text, this function takes the

following arguments:

 a. The image on which the text is to be written

 b. The text to be written

 c. Coordinates of the text’s starting point

 d. Font to be used

 e. Font size

 f. Text color

 g. Text thickness

 h. The type of line used

 1 import numpy

 2 import cv2

 3

 4 #read the flower image and load it into a variable flower_image

 5 flower_image=cv2.imread("./images/flower_pink.jpg")

 6

 7 cv2.line(flower_image,(25,21),(100,100),(255,0,0),5)

 8 cv2.rectangle(flower_image,(25,21),(200,200),(0,255,0),2)

 9 cv2.circle(flower_image,(50,50),50,(0,0,255),-1)

10

11 cv2.imshow("Geometry",flower_image)

12 cv2.waitKey(0)

Chapter 4 Image manIpulatIon and SegmentatIon

79

The previous Python program creates the output shown in Figure 4-4.

Figure 4-4. Output

 Filtering Images
Image filtering is a mechanism to modify an image and extract or highlight

the detail that is useful for further computer vision tasks. Filtering

processes can include adding or removing noise in an image, removing

the background or a specific object, extracting edges, and blurring or

sharpening an image. When photographs are taken in sunlight, there

would be a few bright and dark areas; likewise, a photograph taken at night

would have noise. Even images with too many colors can be categorized as

noise. In this section, you will learn how to implement filtering using the

built-in OpenCV libraries.

Figure 4-5 is an example of “salt and pepper” noise.

Chapter 4 Image manIpulatIon and SegmentatIon

80

Let’s now look at how to add or remove noise from an image. You will

use the median filter for removing salt and pepper noise. This filter uses

the same technique of neighborhood filtering; the key technique in this

is the use of a median value. The workflow of neighborhood filtering is

covered in the following example. As such, this filter is nonlinear by nature.

This filter takes the median value of all the pixels in the neighborhood

pixel region and replaces the pixels in context with the median value. This

removes random peak values in the region, which can be due to noise like

salt and pepper noise. There is a typical kernel size that can be set. The

higher the kernel value, the more effective the removal of the noise, with a

side effect of having the blur in the image increase.

Here is the OpenCV function:

cv2.medianBlur(src, ksize[, dst])

This function smoothens an image using the median filter with the

 aperture. Each channel of a multichannel image is

processed independently.

The following Python code uses the medianBlur() function with a

kernel value of 3. This means a 3 × 3 matrix of pixels around a pixel is

taken, and the median of all the pixel values is used to replace that pixel.

 1 import numpy

 2 import cv2

 3

 4 #read the flower image and load it into a variable image

 5 image=cv2.imread("./images/input1.jpg")

Figure 4-5. Salt and pepper noise

Chapter 4 Image manIpulatIon and SegmentatIon

81

 6

 7 #kernel value of 3 3x3 matrix neighbourhood is used

 8 noisereduced_version = cv2.medianBlur(image,3)

 9

10 cv2.imshow("Original",image)

11 cv2.imshow("Corrected",noisereduced_version)

12

13 cv2.waitKey(0)

Let’s simulate how the previous code converts or removes the salt and

pepper noise. Consider the image matrix shown in Figure 4-6. Around the

pixel value 6, a 3 × 3 pixel matrix is highlighted. When all these pixel values

are placed in ascending order, it looks like this: 1, 1, 2, 2, 2, 2, 3, 5. The

median for this list is 2. So, the final output of the pixel value 6 is replaced

with 2. This process is repeated for each pixel value.

Figure 4-6. 3 × 3 pixel matrix highlighted

Chapter 4 Image manIpulatIon and SegmentatIon

82

The output image sample for a 3 × 3 kernel matrix is shown in Figure 4- 7.

The higher the kernel value, the lower the noise and the higher the blur.

Figure 4-7. Output image sample for a 3 × 3 kernel matrix

There are many more filtering functions such as bilateral filters, box

filters, and Gaussian blur filters that are categorized as linear or nonlinear

filters.

 Transforming Images
Transformation operations on an image are usually referred to as

geometric transformations applied on a photo. There are several other

kinds of transformations as well, but this section will cover geometric

transformations. These consist of, but are not limited to, shifting an image,

rotating an image along an axis, and projecting it onto different planes.

There are two types of transformations: affine and nonaffine.

Translation, resizing, and rotation are categorized as affine

transformations of an image, and the warpAffine() function is used

(see Figure 4-8).

Chapter 4 Image manIpulatIon and SegmentatIon

83

The nonaffine transformations are also called projective transformations.

This type of transformation does not preserve parallelism or length or angle

of an image. The example in Figure 4-9 shows a nonaffine transformation.

Figure 4-8. Affine transformations

Figure 4-9. Nonaffine transformation

At the core of transformation is a matrix multiplication of the image.

You will now look at different components of this matrix and the resulting

image.

 Translation

Image translation is about the displacement of images from the original

position in any direction and within a frame of context. Figure 4-10 shows

the transformation matrix.

Figure 4-10. Transformation matrix

Chapter 4 Image manIpulatIon and SegmentatIon

84

Here, tx is translation in the x direction, and ty is in the y direction

in an image reference. After choosing different values of the translation

matrix, the resulting translation images will look like Figure 4-11.

Figure 4-11. Resulting translation images

The code for creating this translation is as follows; you can change the

values of tx and ty to generate different translations:

 1 import cv2

 2 import numpy as np

 3

 4 iamge = cv2.imread('.images/pup.jpg')

 5 num_rows, num_cols = iamge.shape[:2]

 6

 7 translation_matrix = np.float32([[1,0,70], [0,1,110]])

 8 image_translation = cv2.warpAffine(iamge, translation_

matrix, (num_cols, num_rows))

 9 cv2.imshow('Translation', image_translation)

10 cv2.waitKey()

Chapter 4 Image manIpulatIon and SegmentatIon

85

The warpAffline() function is used to define the translated image.

 Rotation

Another form of image transformation is rotation. In this section, you will

look at how to rotate the images in at a certain angle.

To understand this, let’s see how to handle rotation mathematically.

Rotation is also a form of transformation, and it can be achieved using the

transformation matrix shown in Figure 4-12.

Figure 4-12. Transformation matrix

Here, θ is the angle of rotation in the counterclockwise direction.

OpenCV provides closer control over the creation of this matrix through

the function getRotationMatrix2D. You can specify the point around

which the image will be rotated, the angle of rotation in degrees, and a

scaling factor for the image. Once you have the transformation matrix, you

can use the same warpAffine() function to apply this matrix to any image.

The following code helps to expand the context to ensure the image is

not cut off when it is rotated:

 1 import cv2

 2 import numpy as np

 3

 4 img = cv2.imread('images/pup.jpg')

 5 num_rows, num_cols = img.shape[:2]

 6

Chapter 4 Image manIpulatIon and SegmentatIon

86

 7 translation_matrix = np.float32([[1,0,int(0.5*num_cols)],

[0,1,int(0.5*num_rows)]])

 8 2*num_cols, 2*num_rows))

 9 rotation_matrix = cv2.getRotationMatrix2D((num_cols, num_rows),

30, img_translation = cv2.warpAffine(img, translation_matrix, (1)

10 img_rotation = cv2.warpAffine(img_translation, rotation_

matrix, (2*num_cols, 2*num_rows))

11

12 cv2.imshow('Rotation', img_rotation)

13 cv2.waitKey()

Figure 4-13 shows the output of this code.

Figure 4-13. Output of rotation code

Chapter 4 Image manIpulatIon and SegmentatIon

87

 Image Scaling

Image scaling is about resizing an image by changing its pixel dimensions.

This is one of the most common operations in computer vision. Whenever

you resize an image, there are multiple ways to fill in the pixel values. When

you are enlarging an image, you need to fill up the pixel values in between

the pixel locations. When you are shrinking an image, you need to take the

best representative value. When you are scaling by a noninteger value, you

need to interpolate values appropriately so that the quality of the image is

maintained. There are multiple ways to do interpolation. If you are enlarging

an image, it’s preferable to use linear or cubic interpolation. If you are

shrinking an image, it’s preferable to use the area- based interpolation. Cubic

interpolation is computationally more complex and hence slower than

linear interpolation. But the quality of the resulting image will be higher.

OpenCV provides a function called resize() to achieve image scaling.

The following OpenCV Python code helps to resize images:

 1 import cv2

 2 import numpy as np

 3

 4 img = cv2.imread('images/pup.jpg')

 5

 6 img_scaled = cv2.resize(img,None,fx=1.2, fy=1.2,

interpolation = cv2.INTER_LINEAR)

 7 cv2.imshow('Scaling - Linear Interpolation', img_scaled)

 8 img_scaled = cv2.resize(img,None,fx=1.2, fy=1.2,

interpolation = cv2.INTER_CUBIC)

 9 cv2.imshow('Scaling - Cubic Interpolation', img_scaled)

10 img_scaled = cv2.resize(img,(450, 400), interpolation =

cv2.INTER_AREA)

11 cv2.imshow('Scaling - Skewed Size', img_scaled) cv2.waitKey()

12

13 cv2.waitKey()

Chapter 4 Image manIpulatIon and SegmentatIon

88

Figure 4-14 shows the sample outputs of rotating an image.

Figure 4-14. Outputs of rotating an image

 Edge Detection

Edge detection has a lot of prominence in computer vision. It deals with

the contours of an image usually denoted as an outline of a specific object

in an image. Figure 4-15 shows an example of an output from an edge

detection implementation.

Figure 4-15. Edge detection implementation

Chapter 4 Image manIpulatIon and SegmentatIon

89

There are many edge detection algorithms such as Sobel, Laplacian,

and Canny among others. The Canny edge detection algorithm is the

most widely used for both ease of use and accuracy levels. The following

OpenCV Python program is an example of implementing the Canny edge

detection algorithm.

For more details about the Sobel, Laplacian, and Canny edge

detection algorithms, refer to www.rroij.com/open-access/performance-

analysis- of-canny-and-sobel-edgedetection-algorithms-in-image-

mining.php?aid=43752.

 1 import opencv

 2 import numppy as np

 3

 4 image = cv2.imread('./images/dolphin.jpg')

 5 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 6

 7 lower_red = np.array([30,150,50])

 8 upper_red = np.array([255,255,180])

 9

10 mask = cv2.inRange(hsv, lower_red, upper_red)

11 res = cv2.bitwise_and(frame,frame, mask= mask)

12

13 cv2.imshow('Original',frame)

14 edges = cv2.Canny(frame,100,200)

15 cv2.imshow('Edges',edges)

16

17 k = cv2.waitKey(5) & 0xFF

18 if k == 27:

19 break

20

21 cv2.destroyAllWindows()

22 cap.release()

Chapter 4 Image manIpulatIon and SegmentatIon

http://www.rroij.com/open-access/performance-analysis-of-canny-and-sobel-edgedetection-algorithms-in-image-mining.php?aid=43752
http://www.rroij.com/open-access/performance-analysis-of-canny-and-sobel-edgedetection-algorithms-in-image-mining.php?aid=43752
http://www.rroij.com/open-access/performance-analysis-of-canny-and-sobel-edgedetection-algorithms-in-image-mining.php?aid=43752

90

 Image Segmentation
As a quick recap, pixels on images store values. These values represent

features of an image that give information about image statistics. These

values group dark to light transitions to form borders, and the borders

divide scenes into different objects. Borders connect to each other and

reveal contours. Contours play an important role in many computer

vision algorithms. They help to find objects, to separate one instance of

something from another, and finally to understand the whole scene.

This section covers everything that deals with contours in

OpenCV. You’ll learn about methods for finding, using, and displaying

contours, as well as consider basic segmentation methods.

Let’s start drawing contours from a given image, as shown in Figure 4- 16.

The image has four different shapes.

Figure 4-16. Image with four shapes

The following is the step-by-step guide to building the

implementation:

Step 1: Load the image.

Chapter 4 Image manIpulatIon and SegmentatIon

91

Step 2: Convert the loaded image to grayscale.

Step 3: Get the contours using the Canny edge detection function.

Step 4: Find the contours and print how many contours were found.

Step 5: Finally, draw the contours.

Figure 4-17 shows the output of this program.

Figure 4-17. Drawing contours

Chapter 4 Image manIpulatIon and SegmentatIon

92

 Line Detection
In this section, you will learn how to detect lines given an image. You can

use this technique for detecting lanes for self-driving cars or for drawing

lines and grids on a chess board, for example. There are two different

notations for lines in OpenCV: Hough lines and probabilistic Hough lines.

A straight line is usually represented as y = mx +c, and Hough lines are

represented as 𝜌 = x cos 𝜃 + y sin 𝜃. Figure 4-18 shows an example of a chess

board grid and the output where the lines are detected by an OpenCV

Python program.

Figure 4-18. Chess board grid

The following is the step-by-step guide to building the implementation:

Step 1: Load the image, convert it to grayscale, and extract the contours.

Chapter 4 Image manIpulatIon and SegmentatIon

93

Step 2: Run Hough lines with the following parameters:

Step 3: Iterate through each identified line and highlight it on the image.

Step 4: Finally, show the image that has the lines highlighted.

 Circle Detection
Similar to the previous line detection implementation, let’s now look at

circle detection. In lieu of Hough lines, you will use Hough circles.

Load an image like Figure 4-19 for circle detection.

Chapter 4 Image manIpulatIon and SegmentatIon

94

The following is the OpenCV Python code that loads the image in

Figure 4-19, converts it to grayscale, identifies the contours, extracts the

Hough circles, and then draws them:

 1 import cv2

 2 import numpy as np

 3 import cv2.cv as cv

 4

 5 image = cv2.imread('images/bottlecaps.jpg')

 6 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 7

 8 blur = cv2.medianBlur(gray, 5)

 9

10 circles = cv2.HoughCircles(blur, cv.CV_HOUGH_GRADIENT, 1.5, 10)

11 #circles = cv2.HoughCircles(gray, cv.CV_HOUGH_GRADIENT, 1, 10)

12

Figure 4-19. Circle detection

Chapter 4 Image manIpulatIon and SegmentatIon

95

13 circles = np.uint16(np.around(circles))

14

15 for i in circles[0,:]:

16 # draw the outer circle

17 cv2.circle(image,(i[0], i[1]), i[2], (255, 0, 0), 2)

18

19 # draw the center of the circle

20 cv2.circle(image, (i[0], i[1]), 2, (0, 255, 0), 5)

21

22 cv2.imshow('detected circles', image)

23 cv2.waitKey(0)

24 cv2.destroyAllWindows()

Figure 4-20 shows the output of this program.

Figure 4-20. Output of circle detection

Chapter 4 Image manIpulatIon and SegmentatIon

96

 Conclusion
In this chapter, you learned how to do image processing, which includes

image manipulations such as drawing on images, changing pixels,

transforming images, performing edge detection, blurring, and others.

Similarly to image segmentation, you learned how to detect the contours

of an object and highlight them.

The next chapter will cover object detection use cases and provide a

step-by-step guide for implementing them using built-in OpenCV Python

functions.

Chapter 4 Image manIpulatIon and SegmentatIon

97© Sunila Gollapudi 2019
S. Gollapudi, Learn Computer Vision Using OpenCV,
https://doi.org/10.1007/978-1-4842-4261-2_5

CHAPTER 5

Object Detection
and Recognition
In the previous chapter, you learned about image segmentation and

contours. You also learned how to detect lines and circles using Hough

lines and circles in OpenCV. In this chapter, you will learn how to detect

objects and label them. Object detection is one of the most widely used

capabilities of computer vision in multiple domains. In Chapter 1, you

saw some real-world use cases. In this chapter, you will start with object

detection and then move on to object recognition, landmark identification,

and finally handwriting recognition.

The following topics are covered in this chapter:

• Introduction to object detection and its uses

• How objects are stored and the different ways of extracting

features such as SIFT, SURF, FAST, BRIEF, and so on

• Handwriting recognition

 Basics of Object Detection
Detecting objects in an image is a crucial capability of a computer vision

application. Object detection/recognition is used in labeling scenes, robotic

navigation, self-driving cars, face and body part recognition, disease and cancer

detection, objects in satellite images, handwriting recognition, and many more.

98

Figure 5-1 shows an example of real-time object detection and labeling

done for a given image.

Figure 5-1. Real-time object detection and labeling

 Object Detection vs. Object Recognition
In Figure 5-1, we only marked or detected if there was a truck or a dog.

We did not recognize any specific qualities such as the model or color of

the car or the color or breed of the dog because the objective was to just

identify what objects are in the image. Object recognition is the method of

identifying an object within an image. In the case of object recognition,

you first detect the car, and on the cropped car you apply recognizers to

recognize the features of the car. This is similar with faces as well.

While humans can identify a variety of objects effortlessly, for

computers it is a complex problem to solve with accuracy. It has eluded

computer vision researchers for decades now and has become the holy

grail of computer vision.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

99

Depending on the position and angle of the object, the object

detection task is difficult. Defining a bounding box for each object is

important.

 Template Matching
As part of object detection and recognition, you need to do shape

analysis and feature analysis. To do this, there is a robust technique

called template matching. This technically is a brute-force algorithm

or a simple mechanism to extract an object based on a previously

acquired template.

OpenCV has a matchTemplate() function to perform template

matching.

This function takes a “sliding window” of the image being queried and

slides it across the image it is searching for to determine its presence. It

does this one pixel at a time. Then, for each of these locations, a correlation

coefficient is calculated if there is a match at all. Regions with a high

correlation are the regions that match.

Figure 5-2 shows a typical object detection using matching. This

method uses a template to detect an object after segmentation. If the

segmented object is similar to the template, then the object detection

process is concluded; otherwise, another template is picked for a

similarity check.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

100

The following is the example code for template matching in OpenCV

using the matchTemplate() function:

 1 import cv2

 2 import numpy as np

 3

 4 # Load input image and convert to grayscale

 5 image = cv2.imread('./images/inputImage.jpg')

Figure 5-2. Object detection using matching

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

101

 6 cv2.imshow('Where is this image?', image)

 7 cv2.waitKey(0)

 8 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 9

10 # Load Bigger image

11 bigger_image = cv2.imread('./images/searchImage.jpg',0)

12

13 result = cv2.matchTemplate(gray, template, cv2.TM_CCOEFF)

14 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

15

16 #Create Bounding Box

17 top_left = max_loc

18 bottom_right = (top_left[0] + 50, top_left[1] + 50)

19 cv2.rectangle(image, top_left, bottom_right, (0,0,255), 5)

20

21 cv2.imshow('Where is input image?', image)

22 cv2.waitKey(0)

23 cv2.destroyAllWindows()

The input image is searched in the bigger image. Use the matchTemplate()

function by passing the grayscale image.

Lines 1 and 2: Import the OpenCV and NumPy libraries.

Lines 4 through 8: Load the image that needs to be searched for and

convert it to grayscale.

Line 10: Loads the bigger image in which the input image needs to be

searched for.

Lines 13 and 14: cv2.matchTemplate() returns a correlation map,

essentially a grayscale image. This image has each pixel that denotes

the extent to which its neighborhood matches with the template. The

minMaxLoc function returns the max and min intensity values as an array

that includes the location of these intensities.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

102

MaxVal is the location with the highest intensity in the image. This is

returned by matchTemplate() and corresponds to the best matching input

image with regard to the defined template.

Lines 16 through 19: Draw a boundary with a padding value of 50

and a thickness value of 5 pixels and in blue around the contours of the

matching image.

 Challenges with Template Matching
While template matching helps when doing object detection and

recognition in an image, there are several challenges with this

methodology. If the image is rotated, scaled, modified for colors or

brightness, or transformed, it is difficult to match or detect an input object

in the image.

 Understanding Image “Features”
With the challenges of the template matching approach, you will now learn

about image feature–driven object detection and recognition. To start, let’s

look at what features are in the context of image processing.

Features correspond to the properties or attributes of an image. They

play an important role in building accurate computer vision applications.

Pixels, as you learned in Chapter 1, are used to compare two images.

The most basic form of feature detection is point features. In

applications such as panorama creation on our smartphones, each image

is stitched with the corresponding previous image. This stitching requires

the correct orientation of an image overlapped with pixel-level accuracy.

Computing corresponding pixels between two images requires pixel

matching.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

103

 Interesting and Uninteresting Points

Within an image there can be interesting and uninteresting points.

Interesting points in an image are those that can give the most information

about the object in the image, and uninteresting points give either zero or

no information about the image or the object in the image. Figure 5- 3

shows an image of the Eiffel Tower with the image feature points and

what could be an interesting or uninteresting point. The sky could be an

uninteresting feature because it hardly gives the context of the monument.

A point on the Eiffel Tower does give more information about it and hence

becomes an interesting feature.

Figure 5-3. Image feature points

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

104

The following are some characteristics of an interesting, or good, feature:

• Is repeatable: The same feature can be found in several

other images despite any image transformations.

• Is salient/distinctive/unique: The feature is unique

and has a distinctive description in the use case context.

• Is compact in number: There are a measurable

number of pixels that describe the object in context.

• Is local: The object in context occupies a relatively

smaller area within an image.

 Types of Image Features

There are primarily three types of image features: edges, regions, and

corner features. These features of objects are used to track objects in an

image by observing the change in intensity, as shown in Figure 5-4.

Figure 5-4. Changes in intensity

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

105

 Feature Matching
Feature matching can be done in one of the following cases:

• There are two images, and you want to quantify

whether these images match each other. There will

usually be a comparison metric that is applied.

• There is a large database of images, and for every new

image, you need to perform matching against the

database of images. A smaller search criterion is stored

and then compared with the input image instead of

recomputing everything for every image in the database.

This is called a feature vector of the image. For every new

input image, a similar vector is extracted and stored.

• As an alternative approach, you have a small portion of the

image stored as a template. The goal is to check whether

an image has this template. This will require matching

key points from the template against the given sample

image. If the match value is greater than a threshold, you

can say the sample image has a region similar to the given

template. There is a possibility of showing where in the

sample image your template image is.

 Image Corners As Features
In this section, you will learn how to use corners as features for object

detection and recognition. While corners do not necessarily provide all

the details of the objects, they are helpful in many cases. As indicated

in Figure 5-4, when the blue frame is moved around the image and

in particular you see that there is an intensity change in all directions

(Figure 5-4, section 3), then that is identified as the corner of the image.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

106

Let’s look at some OpenCV code that explains how to identify a corner.

You will use an algorithm in the OpenCV library called the Harris corner

algorithm.

 Harris Corner Algorithm
This algorithm helps identify the inside corner of an image by checking the

area that has maximum variations in intensity.

In 1988 Chris Harris and Mike Stephens developed this algorithm

that can perform both edge detection and corner detection. Hence, this

algorithm was named after one of the authors.

In OpenCV, the cv2.cornerHarris() function is used to achieve the

corner detection.

cv2.cornerHarris(image, blockSize, ksize, k)

This function takes four arguments.

• img is the image to be analyzed; it must be in grayscale

and with float32 values.

• blockSize is the size of the window considered for the

corner detection.

• ksize is a parameter for the derivative of Sobel.

• k is a free parameter for the Harris equation.

The following OpenCV code takes an image input, identifies the

corners, and marks them:

 1 import cv2

 2 import numpy as np

 3 from matplotlib import pyplot as plt

 4

 5 img = cv2.imread('blackandwhite.jpg',0)

 6 img = np.float32(img)

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

107

 7 corners = cv2.cornerHarris(img,2,3,0.04)

 8

 9 corners = cv2.cornerHarris(img,2,3,0.04)

10

11 plt.subplot(2,1,1), plt.imshow(corners ,cmap = 'jet')

12 plt.title('Harris Corner Detection'), plt.xticks([]),

plt.yticks([])

13

14 img2 = cv2.imread('blackandwhite.jpg')

15 corners2 = cv2.dilate(corners, None, iterations=3)

16 img2[corners2>0.01*corners2.max()] = [255,0,0]

17

18 plt.subplot(2,1,2),plt.imshow(img2,cmap = 'gray')

19 plt.title('Canny Edge Detection'), plt.xticks([]),

plt.yticks([])

20

21 plt.show()

In the previous code, line 7 is the place where the Harris corner

algorithm is invoked. Once the corners are identified, they are highlighted

using the dilate() function, and the identified pixels are assigned the

color red for showing in a new window. Figure 5-5 shows the input and

output images.

Figure 5-5. Input and output images, corner detection

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

108

Figure 5-6 shows another example of an input and output of corner

detection.

Figure 5-6. Another example of corner detection

However, there are several challenges when corners are used as

features for object detection. While corner matching works well with image

rotations, translations or any photometric changes such as brightness,

intensity changes, and image scaling does not work.

 Feature Tracking and Matching Flow
In this section, you will learn the standard flow for feature extraction

and matching. Figure 5-7 shows the generic steps involved in feature

extraction.

Create
Feature
Detector

Input an
Image Into

the Detector

Extract Key
Points

Draw Key
Points

Figure 5-7. Feature extraction workflow

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

109

The first step is to create a standard feature extractor and then extract

robust features from a given image. This process involves scanning

through the whole image for possible features and then thresholding them.

There are several techniques for selecting features such as SIFT, SURF,

FAST, BRIEF, ORB detectors, and so on. In the next sections, we will cover

these methods in depth. The feature extracted, in some cases, needs to

be converted into a more descriptive form so that it can be learned by the

model or can be stored for re-reading.

In the case of feature matching, say you are given a sample image

and want to see whether this matches a reference image. After feature

detection and extraction, as shown previously, a distance metric is formed

to compute the distance between features of the sample with respect to the

features of reference. If this distance is less than the threshold, you can say

the two images are similar.

 Scale Variant Feature Transform
Scale Variant Feature Transform (SIFT) is currently patented but can be

freely used for academic purposes.

You saw in the previous section some of the challenges with using

corners for feature extraction and how it doesn’t work well when scaling

up. In Figure 5-8, you can see how detecting a corner can fail.

Figure 5-8. Corner detection failure

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

110

The SIFT approach addresses this challenge. You can find more details

about SIFT and how it works at www.inf.fu-berlin.de/lehre/SS09/CV/

uebungen/uebung09/SIFT.pdf.

OpenCV has built-in functions for SIFT, but they need to be explicitly

installed since they are patented.

The following steps and code show how to implement the SIFT

functions:

 1. Load an image and convert it to grayscale.

 2. Construct a SIFT object using the SIFT() function.

 3. The sift.detect() function finds the keypoint

in the images. You can pass a mask if you want to

search only part of the image. Each keypoint is a

special structure that has many attributes such

as its (x,y) coordinates, size of the meaningful

neighborhood, angle that specifies its orientation,

response that specifies the strength of the keypoints,

and so on.

 4. OpenCV also provides the cv2.drawKeyPoints()

function, which draws small circles on the locations

of the keypoints. If you pass the flag cv2.DRAW_

MATCHES_FLAGS_DRAW_RICH_KEYPOINTS to it, it will

draw a circle with the size of the keypoint, and it will

even show its orientation.

 1 import cv2

 2 import numpy as np

 3

 4 image = cv2.imread('images/input.jpg')

 5 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

http://www.inf.fu-berlin.de/lehre/SS09/CV/uebungen/uebung09/SIFT.pdf
http://www.inf.fu-berlin.de/lehre/SS09/CV/uebungen/uebung09/SIFT.pdf

111

 7 #Create SIFT Feature Detector object

 8 sift = cv2.SIFT()

 9

10 #Detect key points

11 keypoints = sift.detect(gray, None)

12 print("Number of keypoints Detected: ", len(keypoints))

13

14 # Draw rich key points on input image

15 image = cv2.drawKeypoints(image, keypoints,

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

16

17 cv2.imshow('Feature Method - SIFT', image)

18 cv2.waitKey(0)

19 cv2.destroyAllWindows()

The program results are shown in Figure 5-9; the input image is shown

on top, and the output image is shown at the bottom.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

112

 Speeded-Up Robust Features
Like SIFT, Speeded-Up Robust Features (SURF) is patented but can be

openly used for academic purposes. It needs to be explicitly imported

since it is patented. You can find more details on what SURF is and how it

works at www.vision.ee.ethz.ch/~surf/eccv06.pdf.

OpenCV provides functions for SURF like SIFT. Similar to SIFT, SURF

has functions such as detect() and compute(). The following code sample

shows the implementation steps:

 1 import cv2

 2 import numpy as np

Figure 5-9. SIFT example (source: AIShack)

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

http://www.vision.ee.ethz.ch/~surf/eccv06.pdf

113

 3

 4 image = cv2.imread('images/input.jpg')

 5 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6

 7 #Create SURF Feature Detector object

 8 surf = cv2.SURF()

 9

10 # Only features, whose hessian is larger than hessianThreshold

are retained by the detector

11 surf.hessianThreshold = 500

12 keypoints, descriptors = surf.detectAndCompute(gray, None)

13 print "Number of keypoints Detected: ", len(keypoints)

14

15 # Draw rich key points on input image

16 image = cv2.drawKeypoints(image, keypoints,

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

17

18 cv2.imshow('Feature Method - SURF', image)

19 cv2.waitKey()

20 cv2.destroyAllWindows()

 Features from Accelerated Segment Test
Features from Accelerated Segment Test (FAST) was first introduced

in 2006 by Edward Rosten and Tom Drummond. The previous feature

detectors are not useful for real-time applications, for example those

with video cameras collecting real-time images or robots. These use

cases will fail if any delay is caused in feature detection at runtime.

The FAST algorithm uses a pixel neighborhood to compute key points

in an image.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

114

For the neighborhood, three flags are defined: cv2.FAST_FEATURE_

DETECTOR_TYPE_5_8, cv2.FAST_FEATURE_DETECTOR_TYPE_7_12, and cv2.

FAST_FEATURE_DETECTOR_TYPE_9_16. The following is some simple code to

detect and draw the FAST feature points:

 1 import cv2

 2 import numpy as np

 3

 4 image = cv2.imread('images/input.jpg')

 5 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6

 7 # Create FAST Detector object

 8 fast = cv2.FastFeatureDetector()

 9

10 # Obtain Key points, by default non max suppression is On

11 # to turn off set fast.setBool('nonmaxSuppression', False)

12 keypoints = fast.detect(gray, None)

13 print "Number of keypoints Detected: ", len(keypoints)

14

15 # Draw rich keypoints on input image

16 image = cv2.drawKeypoints(image, keypoints,

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

17

18 cv2.imshow('Feature Method - FAST', image)

19 cv2.waitKey()

20 cv2.destroyAllWindows()

 Binary Robust Independent Elementary Features
Binary Robust Independent Elementary Features (BRIEF) is a relatively

faster method feature descriptor calculator and matching algorithm.

Additionally, it provides a higher-recognition rate except for the cases

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

115

where there is plane rotation. You can find more details about what BRIEF

is and how it works at http://cvlabwww.epfl.ch/~lepetit/papers/

calonder_pami11.pdf.

The following code shows the computation of BRIEF descriptors with

the help of a CenSurE detector:

 1 import cv2

 2 import numpy as np

 3

 4 image = cv2.imread('images/input.jpg')

 5 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6

 7 # Create FAST detector object

 8 fast = cv2.FastFeatureDetector()

 9

10 # Create BRIEF extractor object

11 brief = cv2.DescriptorExtractor_create("BRIEF")

12

13 # Determine key points

14 keypoints = fast.detect(gray, None)

15

16 # Obtain descriptors and new final keypoints using BRIEF

17 keypoints, descriptors = brief.compute(gray, keypoints)

18 print "Number of keypoints Detected: ", len(keypoints)

19

20 # Draw rich keypoints on input image

21 image = cv2.drawKeypoints(image, keypoints, flags=cv2.DRAW_

MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

22

23 cv2.imshow('Feature Method - BRIEF', image)

24 cv2.waitKey()

25 cv2.destroyAllWindows()

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

http://cvlabwww.epfl.ch/~lepetit/papers/calonder_pami11.pdf
http://cvlabwww.epfl.ch/~lepetit/papers/calonder_pami11.pdf

116

 Oriented FAST and Rotated BRIEF
ORB is a combination of a FAST keypoint detector and a BRIEF descriptor

with additional performance fixes. This method applies the FAST

technique to identify the keypoints followed by the measurement of the

top n points using the Harris corner method.

OpenCV has an ORB() function that can use a feature2d common

interface. For more details on what ORB is and how it works, refer to

http://www.willowgarage.com/sites/default/files/orb_final.pdf.

 1 import numpy as np

 2 import cv2

 3 from matplotlib import pyplot as plt

 4

 5 img = cv2.imread('simple.jpg',0)

 6

 7 # Initiate STAR detector

 8 orb = cv2.ORB()

 9

10 # find the keypoints with ORB

11 kp = orb.detect(img,None)

12

13 # compute the descriptors with ORB

14 kp, des = orb.compute(img, kp)

15

16 # draw only keypoints location,not size and orientation

17 img2 = cv2.drawKeypoints(img,kp,color=(0,255,0), flags=0)

18 plt.imshow(img2),plt.show()

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

http://www.willowgarage.com/sites/default/files/orb_final.pdf

117

 Conclusion
In this chapter, you learned about the difference between object detection

and recognition. You learned about what image features are and how they

are important for object detection and feature tracking. You also learned

how to detect corners, especially using OpenCV’s built-in functions.

Additionally, the chapter covered important detectors such as SIFT,

SURF, FAST, BRIEF, and ORB with steps for implementing them using the

OpenCV and Python libraries.

In the next chapter, you will learn how to do object tracking in motion

using specific OpenCV functions.

Chapter 5 ObjeCt DeteCtiOn anD reCOgnitiOn

119© Sunila Gollapudi 2019
S. Gollapudi, Learn Computer Vision Using OpenCV,
https://doi.org/10.1007/978-1-4842-4261-2_6

CHAPTER 6

Motion Analysis
and Object Tracking
The goal of this chapter is to cover motion analysis and the tracking of

objects. You will learn how to get information about different types of

objects in motion, understand techniques to remove background and

foreground information, and see real-time tracking options with hands-on

implementation steps. The topics in this chapter are an extension of the

object detection and recognition techniques you learned about in

Chapter 5 and hence require a thorough understanding of that chapter.

The following topics are covered in detail in this chapter:

• Object tracking techniques, including using frame

differencing to learn some information about an object

in motion

• Background and foreground subtraction

• Using optical flow techniques for object feature

tracking

• Building interactive object tracking using the meanshift

and camshift techniques

120

 Introduction to Object Tracking
Object tracking is the process of estimating the exact position of an object

while the object is in motion or across consecutive image frames within a

video. In simple terms, it is all about tracking an object across a sequence of

images or measuring its relative movement with respect to other objects in

the frame. Object detection, covered in Chapter 5, forms an important step

in object tracking. Figure 6-1 shows the basic steps for tracking an object.

Figure 6-1. Basic object tracking

There are many applications of object tracking, such as security

surveillance, augmented reality, traffic monitoring, self-driving cars, action

recognition, and so on. In the case of augmented reality, within the context

of a video, a three-dimensional object is placed based on the relative

disposition of the other objects in the video, thus giving an impression

of its real existence in that location. In the case of self-driving cars, the

distances of the car in motion to the other vehicles moving alongside it are

measured to compute the exact speed at which the self-driving car needs

to go. If the distance relative to a neighboring car increases, this means

the current speed can be increased, and vice versa. The increased speed

should not cross the speed limit restrictions defined for that area. In effect,

this process can turn out to be complex because of the large number of

parameters influencing the decision-making process.

The ability to track an object in a video depends on multiple factors,

such as knowledge about what the object in context is, what parameters of

the object are being tracked, and what type of video is showing the object.

Chapter 6 Motion analysis and objeCt traCking

121

 Challenges of Object Tracking
In addition to all the challenges that apply to image processing (covered

in Chapter 1) that in general also apply to object tracking, the following

challenges need to be dealt with:

• Object occlusion: When the target image is hidden

behind something, it is difficult to both detect and

update when future images come in.

• Speed: When the motion of an object is fast, the output

video usually is blurred or jittery. Hence, any sudden

changes in the motion of cameras lead to problems in

tracking applications.

• Shape: Tracking objects that are nonrigid (i.e. the

shape is not constant) will result in failure on object

detection and thus tracking.

• False positives: When there are multiple similar objects,

it is hard to match which object is targeted in subsequent

images. The tracker may lose the current object in terms

of detection and start tracking a similar object.

These challenges can make applications crash suddenly or give a

completely incorrect estimate of an object’s location.

 Object Detection Techniques for Tracking
Object tracking uses object detection techniques that are applied across

consecutive frames of a video. As you learned in Chapter 5, object

detection is about defining a bounding box for an object. Since a video has

a set of consecutive image frames, the bounding box application will need

to be extended and applied for every frame. For object tracking to show the

Chapter 6 Motion analysis and objeCt traCking

122

required results, the object that is being tracked is assumed to be available

across all the frames. A robust matching formula can confirm that the

same object is between two frames.

The first step in the process of object tracking is to identify objects of

interest in the video sequence and to cluster pixels of these objects. Since

moving objects are typically the primary source of information, most

methods focus on the detection of such objects. This is also referred to as

tracking by detection. Figure 6-2 shows the object detection techniques

applied for object tracking.

Figure 6-2. Object detection techniques

 Frame Differentiation
Frame differencing is a technique to measure the difference between two

video frames by observing the position of one or more objects in context.

The pixel definitions are observed for any changes as this is an indication

of changes in the image. A pixel change indicates a change in the image.

Frame differentiation is all about determining the presence of moving

objects by calculating the pixel difference between two consecutive images

Chapter 6 Motion analysis and objeCt traCking

123

in a video. While the general calculation is simple and easy to implement,

complexity creeps in because of the “moving” object, which can jeopardize

the accuracy. To differentiate the real movement from noise, some blur,

and threshold techniques as the difference in the frame could come from

a change in the light conditions as well. Frame differentiation techniques

have high accuracy and relatively lower or moderate computational time;

this method works well for static backgrounds.

 Background Subtraction
Background subtraction is an important preprocessing technique in

vision-based applications because it helps separate the background from

the foreground in video streams. An interesting use case for this technique

is a ticket counter where the background is static but the foreground has

visitors coming to the counter to buy tickets. The requirement could be

counting the number of visitors coming to the counter in the day. In this

case, you first need to extract each person alone.

If there is an image or a frame of video that just has the static

background and no moving visitors, it is a straightforward task because

all you need to do is subtract the new image from the background to

extract the foreground alone. The real-world cases wouldn’t be this

simple, so extracting the background is a mandatory step. Newer

complexities would arise when there is a shadow, since as the shadow

moves, a part of the background would be removed too; therefore,

the accuracy of the solution suffers. All background subtraction

methods are moderate on accuracy as well as computational time.

The Gaussian mixture method requires less memory but cannot cope

with a multimodal background. The approximate median method

requires a buffer with the recent pixel values. There are three categories

of algorithms built for this purpose in OpenCV 3.x. The functions

createBackgroundSubtractorMOG(), createBackgroundSubtractorMOG2(),

and createBackgroundSubtractorGMG() have been replaced by much

Chapter 6 Motion analysis and objeCt traCking

124

more efficient KNN-based background subtraction algorithms. The MOG()

and MOG2() functions are Gaussian mixture-based methods that use

background and foreground segmentation analysis. These functions are

available only up to OpenCV 2.1.x.

The GMG() function adopts Bayesians methods for background and

foreground segmentation. Similar to MOG() functions, the GMG() function is

not available beyond OpenCV 2.1.x.

The function createBackgroundSubtractorKNN() in OpenCV iterates

through each frame of the video and morphs the foreground with the

background, thus helping the focus to be just on the object that needs to be

tracked across frames.

The K-nearest neighbor (KNN) algorithm classifies unknown data

points by finding the most common class among the “k” closest examples.

Each data point in the k closest examples adds to the weight, and the

one maximum weightage is used to classify the object. This algorithm is

synonymous to the English saying, “Tell me who your neighbors are, and

I’ll tell you who you are.”

For more details on how the algorithm works and its syntax, please

refer to https://docs.opencv.org/3.4/db/d5c/tutorial_py_bg_

subtraction.html.

The following code sample demonstrates how to implement the KNN

method for background subtraction:

 1 import numpy as np

 2 import cv2

 3

 4 cap = cv2.VideoCapture(0)

 5

 6 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))

 7 fgbg = cv2.createBackgroundSubtractorKNN()

 8

 9 while(1):

Chapter 6 Motion analysis and objeCt traCking

https://docs.opencv.org/3.4/db/d5c/tutorial_py_bg_subtraction.html
https://docs.opencv.org/3.4/db/d5c/tutorial_py_bg_subtraction.html

125

10 ret, frame = cap.read()

11

12 fgmask = fgbg.apply(frame)

13 fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)

14

15 cv2.imshow('frame',fgmask)

16

17 if cv2.waitKey(1) == 13:

18 break

19

20 cap.release()

21 cv2.destroyAllWindows()

Figure 6-3 shows the output from this function.

Figure 6-3. The output for implementing the KNN method

 Optical Flow
Optical flow denotes the motion of the objects in an image from one frame

to another that is caused by either the motion of the image or the camera.

It is represented as a 2D vector field that has each element representing the

movement of the points from one frame to another. Figure 6-4 represents

the movement of a ball from one position to another across five consecutive

frames.

Chapter 6 Motion analysis and objeCt traCking

126

Some of the use cases of optical flow include representing the structure

from motion, video compression, and video stabilization, among others.

The optical flow method assumes that there is no change in the pixel

intensities of an object between consecutive frames, and neighboring

pixels also have similar motion. Optical flow methods are relatively high in

computational time and moderate on accuracy.

 Lucas–Kanade Differential Algorithm

The Lucas–Kanade differential algorithm helps in tracking the keypoints of

an object in a video that has corner features such as tracking a car on the

race track (by a drone).

OpenCV provides the cv2.calcOpticalFlowPyrLK() function for

the Lucas–Kanade algorithm. First, consider the input video, which sets

the parameters for corner detection and the Lucas–Kanade algorithm.

Initialize a set of colors to create the trails of the object movement.

 4 # Load video stream

 5 cap = cv2.VideoCapture('images/test.avi')

 6

 7 # Set parameters for ShiTomasi corner detection

Figure 6-4. Optical flow (source: OpenCV documentation)

Chapter 6 Motion analysis and objeCt traCking

127

 8 feature_params = dict(maxCorners = 100,

 9 qualityLevel = 0.3,

10 minDistance = 7,

11 blockSize = 7)

12

13 # Set parameters for lucas kanade optical flow

14 lucas_kanade_params = dict(winSize = (15,15),

15 maxLevel = 2,

16 criteria = (cv2.TERM_CRITERIA_EPS | cv2.

TERM_CRITERIA_COUNT, 10, 0.03))

Take the first frame, find the corners, and create a mask to track the

movement in the next frames. Loop through each frame, calculate the

optical flow, identify and store the good points, draw the track, and show

the optical flow.

22 # Take first frame and find corners in it

23 ret, prev_frame = cap.read()

24 prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)

25

26 # Find inital corner locations

27 prev_corners = cv2.goodFeaturesToTrack(prev_gray, mask =

None, **feature_params)

28

29 # Create a mask image for drawing purposes

30 mask = np.zeros_like(prev_frame)

31

32 while(1):

33 ret, frame = cap.read()

34 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

35

36 # calculate optical flow

Chapter 6 Motion analysis and objeCt traCking

128

37 new_corners, status, errors = cv2.calcOpticalFlowPyrLK

(prev_gray,

38 frame_gray,

39 prev_corners,

40 None,

41 **lucas_kanade_params)

42

43 # Select and store good points

44 good_new = new_corners[status==1]

45 good_old = prev_corners[status==1]

46

47 # Draw the tracks

48 for i,(new,old) in enumerate(zip(good_new, good_old)):

49 a, b = new.ravel()

50 c, d = old.ravel()

51 mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)

52 frame = cv2.circle(frame, (a,b), 5, color[i].tolist(),-1)

53

54 img = cv2.add(frame,mask)

55

56 # Show Optical Flow

57 cv2.imshow('Optical Flow - Lucas-Kanade',img)

58 if cv2.waitKey(1) == 13: #13 is the Enter Key

59 break

60

61 # Now update the previous frame and previous points

62 prev_gray = frame_gray.copy()

63 prev_corners = good_new.reshape(-1,1,2)

Figure 6-5 shows the output of this program.

Chapter 6 Motion analysis and objeCt traCking

129

Figure 6-5. The results of the Lucas–Kanade algorithm

 Dense Optical Flow Algorithm

Unlike the Lucas–Kanade method that looks at corner-like features, the

dense optical flow algorithm looks at all the points on an image. Colors are

used to reflect movement, with the hue representing the direction and the

value representing the speed. This makes this algorithm relatively slower.

First, load the input video and get the hue colors for the first frame. For

each frame, convert it to grayscale, compute the optical flow, and calculate

the magnitude and the color to reflect the speed of the angle, mark the

color in the frame, and show the video until the frames are exhausted.

 4 # Load video stream

 5 cap = cv2.VideoCapture("images/walking.avi")

 6

 7 # Get first frame

 8 ret, first_frame = cap.read()

 9 previous_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)

10 hsv = np.zeros_like(first_frame)

Chapter 6 Motion analysis and objeCt traCking

130

11 hsv[...,1] = 255

12

13 while True:

14

15 # Read of video file

16 ret, frame2 = cap.read()

17 next = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)

18

19 # Computes the dense optical flow using the Gunnar

Farneback’s algorithm

20 flow = cv2.calcOpticalFlowFarneback(previous_gray, next,

21 None, 0.5, 3, 15, 3,

5, 1.2, 0)

22

23 # use flow to calculate the magnitude (speed) and angle

of motion

24 # use these values to calculate the color to reflect

speed and angle

25 magnitude, angle = cv2.cartToPolar(flow[...,0], flow[...,1])

26 hsv[...,0] = angle * (180 / (np.pi/2))

27 hsv[...,2] = cv2.normalize(magnitude, None, 0, 255,

cv2.NORM_MINMAX)

28 final = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

29

30 # Show our demo of Dense Optical Flow

31 cv2.imshow('Dense Optical Flow', final)

32 if cv2.waitKey(1) == 13: #13 is the Enter Key

33 break

34

35 # Store current image as previous image

36 previous_gray = next

Chapter 6 Motion analysis and objeCt traCking

131

Figure 6-6 shows the output of this program.

Figure 6-6. The dense optical flow results

 Object Classification
Some objects extracted from the moving region could be birds, moving

clouds, humans, or even swaying trees. We covered the shape features in

Chapter 5 that apply for both stationary and moving objects. Figure 6-7

shows some standard approaches to classifying objects.

Figure 6-7. Object classification techniques

Chapter 6 Motion analysis and objeCt traCking

132

 Shaped-Based Classification
There are many descriptions of shape information about motion regions

such as the representation of points, blobs, or boxes to classify a given

object. Classification is done on every frame for the object, and the

results are stored in a histogram. Shape-based classification has a lower

computational time and a relatively lower accuracy because template

matching techniques can be applied.

 Motion-Based Classification
Moving objects have a periodic property called residual flow that can be

used for classification. Residual flow is used to analyze the rigidity and

periodicity of the moving objects. Rigid objects present a little residual

flow, whereas a nonrigid moving object like a human being has a higher

average residual flow and displays a periodic component. Motion-based

classification has a high computational time and relatively lower accuracy.

Though it doesn’t require templates, it fails to identify a static human/

nonrigid object.

 Color-Based Classification
Color usually is not the most appropriate feature of an object to use for

classification, but, among all the object features, color is fairly constant

and can also be easily acquired. Furthermore, it is one of the features

that can be exploited when needed. Color histograms are used to detect

and track vehicles in real time. A Gaussian distribution model is used to

understand the color distribution in a sequence of images, which is useful

to segment the background and the object. Color-based classification

has a higher computational time and relatively higher accuracy because

template matching techniques can be applied.

Chapter 6 Motion analysis and objeCt traCking

133

 Texture-Based Classification
This techniques uses gradient orientation in the selected portions of

the image. This method can result in more accuracy because it uses

overlapping contrast normalization in a dense grid of uniformly spaced

calls. Texture-based classification has a higher computational time and

relatively higher accuracy than other methods.

 Object Tracking Methods
You learned about the basic definition and purpose of object tracking

at the beginning of this chapter. As a quick recap, an object is tracked to

extract objects, recognize and track objects, and make decisions about

activities. Object tracking, at a high level, can be classified as point

tracking, kernel-based tracking, and silhouette-based tracking (Figure 6-8).

Figure 6-8. Some object tracking techniques

Both kernel- and silhouette-based tracking require the object to first

appear in the scene, while point tracking works on object detection in

every frame.

Chapter 6 Motion analysis and objeCt traCking

134

 Point Tracking Method
Point tracking is done using the feature points of the moving object. There

are three methods for point tracking: Kalman filtering, particle filtering,

and multiple hypothesis.

• Kalman filtering uses a restrictive probability density

propagation algorithm. It supports estimation of

past, present, and future states using its efficient

recursive estimation techniques. There are two kinds

of equations: time update equations and measurement

update equations. Time update equations provide a

future state using the details of the current state and

error covariance estimations, and measurement update

equations help in the feedback process in the recursive

flow. Kalman filtering assumes normal distribution of

all variables, which results in poor approximation of

future states of the variables.

• Particle filtering considers a variable at one time and

generates all the models for that variable. This method

supports the dynamicity of variable states and also

allows for a new operation of resampling. Particle

filtering overcomes the restrictions that Kalman filters

pose because they use contours, color features, or

texture mapping. This method uses Bayesian sequential

importance. The sample technique recursively

approaches the distribution using a finite set of

weighted trials.

Chapter 6 Motion analysis and objeCt traCking

135

• Multiple hypothesis tracking (MHT) observes more

than one frame for better tracking results. MHT is an

iterative mechanism as well. Every iteration starts with

an existing track and a hypothesis that has a set of

disconnected tracks. For each hypothesis, the future

position of the object in the next frame is predicted.

Each of these predictions is compared using distance

measures. MHT can track multiple objects and also

handle occlusions.

 Kernel-Based Tracking Methods
Kernel-based tracking methods measure a moving object’s emerging

region between frames. The object’s movement can be a parametric

motion such as a translation, conformal, affine, and so on. Technically,

this refers to measuring the motion of the object using geometric shapes.

The downside of using geometric shapes is the inability to differentiate

the portions of the object or the backgrounds overlapping when the object

is in motion. Some of the kernel-based tracking methods include simple

template matching (this was first covered in Chapter 5, but we will revise

the process summary here), meanshift method, support vector machine

method (SVM), and layering-based tracking methods.

 Simple Template Matching

Template matching is a method used to process digital images where a

small part of an image that matches with an image template is identified

iteratively in each frame. The matching process includes verifying the

image portion with a template that has all the possible positions, and the

success of the matching is measured by a numeric index that is calculated

when compared.

Chapter 6 Motion analysis and objeCt traCking

136

 Meanshift Method

The meanshift tracking method iteratively finds the area of a video frame

that is most similar to the previously initialized model. This image region

is stored as a histogram, and using the gradient method, the tracker is

brought to a location that is more similar to the model. In object tracking

algorithms, the target representation is mainly a rectangular or elliptical

region. It contains the target model and target candidate. To characterize

the target, a color histogram is chosen. The target model is generally

represented by its probability density function (PDF). The target model is

regularized by spatial masking with an asymmetric kernel. This is executed

iteratively for each frame.

The following is the step-by-step implementation for the meanshift

method for object tracking in a video. First you initialize the webcam and

crop the region that has the object of interest. Then you plot a histogram

for the current frame.

 4 # Initialize webcam

 5 cap = cv2.VideoCapture(0)

 6

 7 # take first frame of the video

 8 ret, frame = cap.read()

 9 print type(frame)

10

11 # setup default location of window

12 r, h, c, w = 240, 100, 400, 160

13 track_window = (c, r, w, h)

14

15 # Crop region of interest for tracking

16 roi = frame[r:r+h, c:c+w]

17

18 # Convert cropped window to HSV color space

Chapter 6 Motion analysis and objeCt traCking

137

19 hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

20

21 # Create a mask between the HSV bounds

22 lower_purple = np.array([125,0,0])

23 upper_purple = np.array([175,255,255])

24 mask = cv2.inRange(hsv_roi, lower_purple, upper_purple)

25

26 # Obtain the color histogram of the ROI

27 roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])

28

29 # Normalize values to lie between the range 0, 255

30 cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

Define the termination criteria. The centroid shift computations

should stop to make it finite, and the criteria either can be a fixed set of ten

iterations or can be set to when the centroid is shifted by at least one pixel.

32 # Setup the termination criteria

33 # We stop calculating the centroid shift after ten

iterations

34 # or if the centroid has moved at least 1 pixel

35 term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_

COUNT, 10, 1)

Iterate through each frame, calculate the histogram back projection,

apply the meanshift method to get the new location and draw it on the

window, and iterate until the condition terminates.

37 while True:

38

39 # Read webcam frame

40 ret, frame = cap.read()

41

Chapter 6 Motion analysis and objeCt traCking

138

42 if ret == True:

43

44 # Convert to HSV

45 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

46

47 # Calculate the histogram back projection

48 # Each pixel's value is it's probability

49 dst = cv2.calcBackProject([hsv],[0],roi_hist,

[0,180],1)

50

51 # apply meanshift to get the new location

52 ret, track_window = cv2.meanShift(dst, track_window,

term_crit)

53

54 # Draw it on image

55 x, y, w, h = track_window

56 img2 = cv2.rectangle(frame, (x,y), (x+w, y+h), 255, 2)

57

58 cv2.imshow('Meansift Tracking', img2)

59

60 if cv2.waitKey(1) == 13: #13 is the Enter Key

61 break

62

63 else:

64 break

Figure 6-9 shows the output of the meanshift program.

Chapter 6 Motion analysis and objeCt traCking

139

Figure 6-9. Output of the meanshift method

Chapter 6 Motion analysis and objeCt traCking

140

Another variation of the meanshift method is the continuously

adaptive meanshift (CAM) shift method. The meanshift method assumes

a fixed-size window. CAM shift extends meanshift and applies meanshift

iteratively until it converges. The window size per iteration is recomputed,

and the orientation for the best fitting of the ellipse is also computed.

The following is the step-by-step implementation for the CAM shift

method for object tracking in a video. First, initialize the webcam and crop

the region that has the object of interest. Then, plot a histogram for the

current frame.

 4 # Initialize webcam

 5 cap = cv2.VideoCapture(0)

 6

 7 # take first frame of the video

 8 ret, frame = cap.read()

 9

10 # setup default location of window

11 r, h, c, w = 240, 100, 400, 160

12 track_window = (c, r, w, h)

13

14 # Crop region of interest for tracking

15 roi = frame[r:r+h, c:c+w]

16

17 # Convert cropped window to HSV color space

18 hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

19

20 # Create a mask between the HSV bounds

21 lower_purple = np.array([130,60,60])

22 upper_purple = np.array([175,255,255])

23 mask = cv2.inRange(hsv_roi, lower_purple, upper_purple)

24

Chapter 6 Motion analysis and objeCt traCking

141

25 # Obtain the color histogram of the ROI

26 roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])

27

28 # Normalize values to lie between the range 0, 255

29 cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

Define the termination criteria. The centroid shift computations

should stop to make it finite, and the criteria either can be a fixed set of ten

iterations or can be set to when the centroid is shifted by at least one pixel.

31 # Setup the termination criteria

32 # We stop calculating the centroid shift after ten iterations

33 # or if the centroid has moved at least 1 pixel

34 term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_

COUNT, 10, 1)

Iterate through each frame, calculate the histogram back projection,

apply the CAM shift method to get the new location and draw it on the

window, and iterate until the condition terminates. The difference between

the meanshift method and the CAM shift method is that you use polylines to

show the adaptive boxes that are computed by the CAM shift function.

36 while True:

37

38 # Read webcam frame

39 ret, frame = cap.read()

40

41 if ret == True:

42 # Convert to HSV

43 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

44

Chapter 6 Motion analysis and objeCt traCking

142

45 # Calculate the histogram back projection

46 # Each pixel's value is it's probability

47 dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)

48

49 # apply Camshift to get the new location

50 ret, track_window = cv2.CamShift(dst, track_window,

term_crit)

51

52 # Draw it on image

53 # We use polylines to represent Adaptive box

54 pts = cv2.boxPoints(ret)

55 pts = np.int0(pts)

56 img2 = cv2.polylines(frame,[pts],True, 255,2)

57

58 cv2.imshow('Camshift Tracking', img2)

59

60 if cv2.waitKey(1) == 13: #13 is the Enter Key

61 break

62

63 else:

64 break

Chapter 6 Motion analysis and objeCt traCking

143

Figure 6-10 shows the output of the CAM shift program.

Figure 6-10. Output of the CAM shift code

Chapter 6 Motion analysis and objeCt traCking

144

The meanshift method will work well if there is prior knowledge of the

object that needs to be tracked. The CAM shift method works well when

the object that is being tracked changes shape with a changing camera

perspective.

 Support Vector Machine

The support vector machine (SVM) classification method provides both

positive and negative training values to represent both sets of objects

that are tracked and not tracked. This method can handle a single-image,

partial occlusion of an object, but it is a prerequisite to initialize the model.

 Layering-Based Tracking

Layering-based tracking uses kernel-based tracking to track multiple

objects. Each layer consists of shape representation (ellipse), motion such

as translation and rotation, and layer appearance based on intensity.

Layering here is nothing but isolating the motion of the object that is

tracked from the motion of the other parts or the background of the image.

The probability of each pixel of the object being tracked is computed

relative to the shape features and background motion.

 Silhouette-Based Tracking
In most cases, objects don’t have specific geometric contours, such as a

human body, hand, fingers, and so on. Silhouette-based tracking does

well tracking objects of this sort because it can support an accurate shape

description for the objects. The objective of the silhouette-based object

tracking method is to find the object in context from a region in every

frame using the object model generated by the previous frames. This

method supports flexible object shapes and object split and merge cases

as well. This method has two approaches: contour tracking and shape

matching.

Chapter 6 Motion analysis and objeCt traCking

145

 Contour Tracking

Based on a primary contour defined in the initial frame, contour-based

tracking iteratively uses the previously defined contour to its position in

the current frame. This contour progress requires that a certain amount

of the object in the current frame overlay the object region in the previous

frame. Contour tracking can either use state space models to model the

contour shape or use motion or gradient descent techniques.

 Shape Matching

Shape matching is similar to the template-based tracking used in

the kernel approach. Detection based on a silhouette is carried out

by background subtraction. Model objects are in the form of density

functions, silhouette boundaries, and object edges. It is capable of dealing

with single objects and occlusion handling, which is performed with

Hough transform techniques.

 Conclusion
In this chapter, you learned how to track moving objects. The different

steps involved in object tracking such as object detection, classification,

and tracking were covered with approaches or methods for each step. For

specific cases such as optical flow, techniques such as the Lucas–Kanade

algorithm and dense optical flow algorithm were explained with step-by-

step implementation guides. You also learned how to use the meanshift

and CAM shift techniques to track moving objects in a video. You looked

at what background subtraction is, why and where it is used, and how to

implement the KNN approach in OpenCV 3.4.x.

This chapter concludes all the key OpenCV functions for implementing

critical computer vision use cases.

Chapter 6 Motion analysis and objeCt traCking

147© Sunila Gollapudi 2019
S. Gollapudi, Learn Computer Vision Using OpenCV,
https://doi.org/10.1007/978-1-4842-4261-2

Index

A
Affine transformations, 83
Artificial general

intelligence (AGI), 6
Artificial intelligence (AI)

defining, 3
functions of, 6
subfields of, 7
types of, 4–6

Artificial narrow
intelligence (ANI), 6

Artificial neural network (ANN), 58
artificial neurons (see Artificial

neurons/perceptrons)
backpropagation algorithm, 62
gradient descent

algorithm, 63
SGD, 63
training, 62

Artificial neurons/perceptrons
activation functions, 60
CAP, 61
functions, 59
idealization, 59–60
typical structure, 61

Artificial super
intelligence (ASI), 6

B
Backpropagation through time

(BPTT), 68
Binary robust independent

elementary features
(BRIEF), 114–115

C
CenSurE detector, 115
Chess board grid, 92
Circle detection, 93–95
Color model, 25
Color space

CMYK, 26
RGB, 25

Computer vision technology
applications, 16–19
challenges, 19–21
core process, 26–28
defining, 14
images, 24
real-world applications, 21

automotive industry, 22
healthcare and biomedical

industry, 23
retail industry, 23

scope, 15–16

https://doi.org/10.1007/978-1-4842-4261-2

148

Continuously adaptive meanshift
(CAM), 140

Convolution neural networks
(CNNs)

convolution layer, 64
edge detection, 63
fully connected layer, 65
pooling layer, 65

Credit assignment path (CAP), 61
cv2.circle()function, 77
cv2.ellipse()function, 77
cv2.line()function, 76
cv2.polyline()function, 77
cv2.putText()function, 78
cv2.rectangle()function, 76

D
Deep learning

CNNs, 63
definition, 52
detection and classification, 54
image classification, 53
KNN algorithm, 52
segementation, 55
similarity learning, 55

Dense optical flow
algorithm, 129, 131

Drawing contours, 91

E
Edge detection, 88–89
Expert systems (ESs), 13

F
Feature matching, 105

BRIEF, 114–115
FAST, 113
image corners, 105
matching flow, 108–109
ORB, 116
SIFT, 109–111
SURF, 112
techniques, 109

Features from Accelerated Segment
Test (FAST), 113

G
Generative models, 56
Geometric functions, 75
GMG() function, 124

H
Handwritten script and image, 57
Harris Corner algorithm

corner detection, 108
dilate() function, 107
image corner, 106

Human-aware AI, 5
Human interaction AI, 5

I, J
Image captioning, 55–56
Image detection and

classification, 16
Image filtering, 79–82

Index

149

Image manipulation,
definition of, 72

Image reconstruction, 18
Image rotation, 85–86
Images

characteristics of, 24
cricket game, 16
different angles, 20
faces/vase, 19
features of, 24–25
in motion, 21
object marking, 17
zoom in, 20

Image scaling, 87–88
Image segmentation, 17, 90–91
Image transformation, 82–83
Image translation, 83–84
imread() function, 73
imshow() method, 47–48
imwrite() method, 43
Intelligent character recognition

(ICR), 26, 28
Intelligent process automation

(IPA), 14

K
Kernel-based tracking methods

layering-based tracking, 144
meanshift tracking method,

136–141, 143–144
SVM, 144
template matching, 135

K-nearest neighbor (KNN), 52, 124

L
Limited memory AI, 4
Line detection, 92–93
Long short-term

memory (LSTM), 66
Lucas–Kanade differential

algorithm, 126–129

M
Machine learning, 11
matchTemplate() function, 99
Meanshift tracking method

CAM shift
method, 140–143

object tracking, 136
output, 138
PDF, 136

medianBlur() function, 80
Motion tracking, 18
Multiple hypothesis tracking

(MHT), 135

N
Named entity

recognition, 9
Natural language

processing (NLP)
applications, 8
defining, 7
techniques, 10

ndarray, 40
Nonaffine transformation, 83

Index

150

NumPy library
array creation, 40–41
histogram representation, 44–46
image loading, 41–44

numpy.ndarray, 40

O
Object classification, 131

color-based, 132
motion-based, 132
shaped-based, 132
texture-based, 133

Object detection, 17, 97
image feature, 103

characteristics, 104
point features, 102
types, 104

vs. object recognition, 98
real-time, 98
template matching, 99–102

Object recognition, 98
Object tracking

background subtraction, 123
KNN method, 124–125
vision-based

applications, 123
basic steps, 120
challenges, 121

false positives, 121
object occlusion, 121
shape, 121
speed, 121

definition, 133

frame differencing, 122
object detection techniques, 121

OpenCV
description, 32
modules, 38–39
setup with Python (see Setting

up OpenCV)
video file

loading from a file, 47–48
loading from webcam, 46–47
write to a file, 48–49

Optical character recognition
(OCR), 18, 26, 28

Optical flow, 125–126
dense optical flow

algorithm, 129, 131
Lucas–Kanade differential

algorithm, 126–129
Optical mark

recognition (OMR), 28
Oriented FAST and Rotated BRIEF

(ORB), 116

P, Q
Parsing, 10
Part-of-speech tagging, 10
Pixel manipulation, 73–75
Point tracking method

kalman filtering, 134
MHT, 135
particle filtering, 134

Probability density
function (PDF), 136

Index

151

Problem types, machine learning
deep learning, 12
optimization, 11

Projective transformations, 83

R
Reactive AI, 4
read() method, 47–48
Recurrent neural

networks (RNNs), 63
cyclic inputs, 66–67
LSTM, 66
mapping, 68

Reinforcement learning, 12
Residual flow, 132
Robotic process

automation (RPA), 14
Robotics, 10–11

S
Salt and pepper noise, 80
Scale variant feature transform

(SIFT), 109–111
Self-aware AI, 5
Sentence segmentation, 9
Setting up OpenCV

macOS installation, 36–37
windows installation, 32–34, 36

Shallow learning algorithm, 13
sift.detect() function, 110
Silhouette-based tracking, 144

contour tracking, 145
shape tracking, 145

Speech recognition technology, 13
Speeded-Up Robust Features

(SURF), 112
Stemming/lemmatization, 9
Stochastic gradient

descent (SGD), 63
Supervised learning, 12
Support vector machine (SVM), 144
Syntax, functions of, 76–79

T
Template matching, 99

challenges, 102
matchTemplate()

function, 100–101
Theory of mind AI, 5
Tokenization, 9
Transformation matrix, 83, 85

U
Unrolling, 68
Unsupervised learning, 12

V
Video analysis, 57
VideoCapture() method, 47–48
Voice recognition technology, 13

W, X, Y, Z
waitkey() method, 47–48

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Artificial Intelligence and Computer Vision
	Introduction to Artificial Intelligence
	Natural Language Processing
	Robotics
	Machine Learning
	Expert Systems
	Speech and Voice Recognition
	Intelligent Process Automation

	Introduction to Computer Vision
	Scope
	Challenges of Computer Vision
	Real-World Applications of Computer Vision
	Automotive Industry
	Healthcare and Biomedical Industry
	Retail Industry

	Images and Their Features
	Color Spaces

	Core Building Blocks (Input – Process – Output)
	Optical Character Recognition and Intelligent Character Recognition
	Optical Mark Recognition

	Conclusion

	Chapter 2: OpenCV with Python
	About OpenCV
	Setting Up OpenCV with Python
	Windows Installation
	macOS Installation

	Using Modules
	Working with Images and Videos
	Using NumPy
	Reading and Loading Images with OpenCV and NumPy
	Working with a Histogram Representation

	Videos
	Loading Videos from a Webcam
	Loading Videos from a File
	Reading the Video and Writing into a File

	Conclusion

	Chapter 3: Deep Learning for Computer Vision
	Deep Learning: An Overview
	Deep Learning Applications in Computer Vision
	Classification
	Detection and Localization
	(Semantic) Segmentation
	Similarity Learning

	Image Captioning
	Generative Models
	Video Analysis
	Neural Networks at Their Core
	Artificial Neural Networks
	Artificial Neurons or Perceptrons
	Training Neural Networks
	Backpropagation
	Gradient Descent and Stochastic Gradient Descent

	Convolutional Neural Networks
	Convolution Layer
	Pooling Layer
	Fully Connected Layer

	Recurrent Neural Networks
	Backpropagation Through Time

	Conclusion

	Chapter 4: Image Manipulation and Segmentation
	Image Manipulations
	Accessing and Manipulating Pixels
	Drawing Geometric Shapes or Writing Text on a Color Image
	Filtering Images
	Transforming Images
	Translation
	Rotation
	Image Scaling
	Edge Detection

	Image Segmentation
	Line Detection
	Circle Detection

	Conclusion

	Chapter 5: Object Detection and Recognition
	Basics of Object Detection
	Object Detection vs. Object Recognition
	Template Matching
	Challenges with Template Matching
	Understanding Image “Features”
	Interesting and Uninteresting Points
	Types of Image Features

	Feature Matching
	Image Corners As Features
	Harris Corner Algorithm
	Feature Tracking and Matching Flow
	Scale Variant Feature Transform
	Speeded-Up Robust Features
	Features from Accelerated Segment Test
	Binary Robust Independent Elementary Features
	Oriented FAST and Rotated BRIEF

	Conclusion

	Chapter 6: Motion Analysis and Object Tracking
	Introduction to Object Tracking
	Challenges of Object Tracking
	Object Detection Techniques for Tracking
	Frame Differentiation
	Background Subtraction
	Optical Flow
	Lucas–Kanade Differential Algorithm
	Dense Optical Flow Algorithm

	Object Classification
	Shaped-Based Classification
	Motion-Based Classification
	Color-Based Classification
	Texture-Based Classification

	Object Tracking Methods
	Point Tracking Method
	Kernel-Based Tracking Methods
	Simple Template Matching
	Meanshift Method
	Support Vector Machine
	Layering-Based Tracking

	Silhouette-Based Tracking
	Contour Tracking
	Shape Matching

	Conclusion

	Index

