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Foreword

Building machines that can see and interpret things around us is an 

interesting, but notoriously complex problem to solve. The human visual 

system is infallible for tasks such as recognizing a face or a given object.

Computer vision has now become a very important sub-field of 

artificial intelligence. Application areas of computer vision have expanded 

from reading and interpreting human scripts (handwriting recognition) 

or analyzing images and videos to using these capabilities in security 

surveillance and intelligent automation (among other digital usages).

In this book, Sunila Gollapudi articulates the broader vision of 

artificial intelligence and how computer vision is now a key enabler. She 

has included a step-by-step hands-on guide to building computer vision 

applications from scratch using OpenCV and Python. Readers can access 

the complete code for each of these implementations, which utilize real-

world examples and open data sets.

Overall, what is more challenging is how computer vision applications 

can be integrated as an offering to enhance existing products or 

applications, and how they can be scaled and deployed as a service. This 

book has a special focus on operationalizing AI applications and cloud 

platforms for computer vision.

—V Laxmikanth

Managing Director

Broadridge India
www.broadridge.com

http://www.broadridge.com
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Introduction

What artificial intelligence is today is a result of our continuous pursuit 

to make machines do all that humans can do, be it hearing, seeing, 

perceiving, thinking, or emoting. The evolution of artificial intelligence 

has reached an interesting juncture where machines not only are doing 

intensive work that is beyond a human’s physical capabilities (such as 

mining harmful chemicals, large manufacturing plants, etc.) but also are 

being companions or assistants to humans by helping with day-to-day 

chores and by being available on small devices like smartphones (for 

example, Siri, Alexa, and Google Assistant). The key measure for success 

now is how personalized these machines can be and how well they can 

operate in collaboration with humans (human-aware AI). While this is 

reaping bigger benefits by enhancing quality of life and improving the 

adoption of technology in many businesses, it is also opening up avenues 

for misuse, probing the need for governing bodies to define stricter 

boundaries and controls around adopting artificial intelligence.

Computer vision is one such area of artificial intelligence that has 

significantly gained adoption in recent times given the advent of the 

Internet of Things. Computer vision is all about enabling machines to 

perceive and interpret what is seen.

This book focuses on the field of computer vision in particular 

and provides step-by-step guidance on how to build computer vision 

applications to address real-world use cases using OpenCV with Python. 

This book briefly introduces the overall landscape of artificial intelligence 

and its purpose and subfields, which includes computer vision. That is 

followed by a detailed introduction to computer vision and its subfields 

such as OCR, ICR, and OMR that enable computers to view, recognize, and 
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process images and videos in the way human do and provide the necessary 

interpretations.

This book starts with setting up OpenCV with Python from scratch and 

then covers implementing specialized image processing, implementing 

object/feature detection and motion tracking functions, using advanced 

libraries, and productionizing large-scale deployments using OpenCV.

The high-level objectives of the book are as follows:

• Understand what computer vision is and its overall 

application in AI and intelligent automation systems

• Learn all the deep learning techniques required and 

used for building computer vision applications

• Learn how to build complex computer vision 

applications using the latest techniques in OpenCV 

using programming skills such as basic Python and 

NumPy

• See practical applications and implementations such 

as face detection and recognition (face swapping and 

filters!), handwriting recognition, object detection, 

tracking, and motion analysis

This book has seven chapters, described here:

Chapter 1, “Artificial Intelligence and Computer 

Vision,” focuses on introducing you to the landscape 

of artificial intelligence and the role of computer 

vision in AI applications. This chapter explains 

what images are, describes their characteristics, and 

introduces some computer vision concepts such as 

manipulation, tracking, detection, and recognition. 

It also describes some use cases and domains that 

need this technology.

InTroduCTIonInTroduCTIon



xix

Chapter 2, “OpenCV with Python,” introduces an 

open library called OpenCV that provides the  

tools and necessary frameworks to implement 

computer vision applications. A brief introduction 

to Python and the image libraries of Python like 

NumPy is provided. You will be able to set up an 

OpenCV/Python environment from scratch and get 

ready to implement some real-world use cases for 

the upcoming chapters. Additionally, the chapter 

talks about some aspects around computer vision 

as a service and discusses the extended libraries 

of OpenCV like OpenCV.JS for web and mobile 

applications and how OpenCV can be deployed on 

the cloud. A few competing frameworks and tools 

like the Google Vision API from Google, Textract and 

Rekognition from Amazon AWS, and the Microsoft 

Computer Vision API are introduced.

Chapter 3, “Deep Learning for Computer 

Vision,” describes how building computer 

vision applications requires creating complex 

deep learning models with two components: a 

convolution neural network (CNN) that transforms 

an input image into a set of features, and a recurring 

neural network (RNN) that turns those features into 

a rich, descriptive language. This chapter covers 

how these cutting-edge deep learning architectures 

work, especially in the context of computer vision.

InTroduCTIonInTroduCTIon



xx

Chapter 4, “Image Manipulation and Segmentation,” 

covers image manipulations and segmentation- 

related functions that are core to image processing 

in computer vision. For each of the use cases, 

the syntax and implementations of the built-in 

functions in OpenCV in Python are covered, and 

sample implementations are provided. Techniques 

such as edge detection, rotations, resizing, shape 

detection, and so on, are covered in depth.

Chapter 5, “Object Detection and Recognition,” 

provides a deep dive into object detection and 

then moves on to object recognition followed by 

face-feature recognition, landmark identification, 

and finally handwriting recognition. The necessary 

OpenCV libraries are explained, and sample 

implementations are provided.

Chapter 6, “Motion Analysis and Tracking,” covers 

motion analysis and tracking of objects in videos. 

Information about different types of objects in 

motion is given, with details on how to remove 

background and foreground information and how to 

do real-time tracking. The topics in this chapter are 

an extension to the object detection and recognition 

techniques in Chapter 5.

InTroduCTIonInTroduCTIon
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CHAPTER 1

Artificial Intelligence 
and Computer Vision
The field of artificial intelligence, and its application in day-to day life, 

has seen remarkable evolution in the past three to five years. Artificial 

intelligence (AI) is an enabler that potentially facilitates machines doing 

everything that humans can do. This includes perceiving, reasoning, 

rationalizing, and problem-solving while working within a context or 

interacting with the environment with more efficiency and accuracy.  

Here, the word context means the domain or the business where the 

problem is dealt with, for example online shopping, social media, 

insurance, manufacturing, and others. Interacting with the environment 

could mean that computers or machines work along with the humans or 

take input from external stimuli and adjust their behaviors accordingly. 

Computer vision, which enables computers and machines to see and 

understand the world around them, specifically has become a game-

changer for how and where machines can be used and AI can be adopted.

This chapter covers the larger AI dream that is all about touching both 

the personal and professional lives of humans and how computer vision 

among other areas is a key enabler. Also, you’ll learn about a few real- 

world applications, challenges, and technology tools such as OpenCV that 

help in complex implementations.
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The following topics are covered in detail in this chapter:

• Artificial intelligence and its landscape, which includes 

a basic definition and the usage context of robotics, 

intelligent automation, natural language processing, 

expert systems, speech recognition, computer vision, 

and machine learning

• Computer vision, including its challenges and 

applications in today’s world

• Computer vision architecture and tools, including what 

images are and how to understand and manipulate key 

attributes of images

• A sneak-peak into the core building blocks of computer 

vision and aspects such as image manipulation and 

segmentation, object detection, motion analysis and 

tracking, and others

• A brief introduction to optical character recognition, 

intelligent character recognition, and optimal mark 

recognition

Note A good understanding of programming and prior knowledge 
of Python will be helpful to understand the working examples in 
this book; however, primers will be given for all the hands-on code 
exercises.
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 Introduction to Artificial Intelligence
The definition of artificial intelligence has evolved since its first reference 

in 1956 at a Dartmouth conference, from emulating how the human brain 

works to solving focused, complex problems to doing all that a human can 

do such as seeing, hearing, communicating, acting, learning, perceiving, 

thinking, deciding, demonstrating emotion and compassion, interacting 

with environment, and more. The 2012 AI breakthroughs with vision, 

language recognition, and self-driving vehicles changed the way that AI 

is looked at today. This section gives a simple and informal definition of 

artificial intelligence.

essentially, Ai is the field of computer science that involves enabling 
computers to behave like humans or perform tasks that usually 
require human intelligence.

The purpose of AI systems is evolving. In this section, we will cover 

different types of AI systems categorized based on their core purpose. 

You will also observe how these different types of AI systems signify a step 

toward building smarter systems.

Figure 1-1 lists different types of AI.
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• Reactive AI was the first kind of AI that was talked 

about. These types of machines do not have memory 

and do not use information from past experiences. 

In these machines, the current context is directly 

perceived as it is and acted upon. This makes the 

machine behave the same way every time it encounters 

a situation. The benefit of this is a reliable and 

consistent outcome. An example is Deep Blue (a chess- 

playing computer developed by IBM that won against 

Kasparov in the game of chess).

• Limited memory AI machines look into the past and 

use it as a preprogrammed representation of the world 

and then apply it to the current data set. For example, 

in self-driving cars, decisions on when a car should 

Figure 1-1. Types of AI
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change lanes is based on data such as lane markings, 

speed limits or road directions, current speed of the car, 

and relative neighboring car speeds.

• Theory of mind AI machines are intelligent machines 

that use advanced technologies that have more to 

do with understanding human emotions. The theory 

of mind is a psychological term that refers to the fact 

that living beings have emotions and thoughts that 

determine their behavior.

• Self-aware AI machines are an extension of theory of 

mind AI. They can configure representations, which 

means we will have machines that are conscious and 

aware given a context. This is also called human-aware 

AI or human interaction AI. There are no prototypes 

built of these machines.

Type  
of AI

Memory Uses Past 
Experience

Interaction 
with 
Environment

Dynamic and 
Incremental 
Learning

Examples

reactive Ai no no no no deep Blue

limited 

memory Ai

Yes (with 

little 

information)

Yes (a limited 

set that become 

preprogrammed 

standards)

no no self-

driving 

cars

theory of 

mind Ai

Yes Yes no Yes efforts in 

progress

self-

aware Ai

Yes Yes Yes Yes efforts in 

progress
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Another way of categorizing of AI systems is based on the degree of 

complexity of the problem at hand.

Artificial narrow intelligence (ANI) is about solving a problem against 

a given request with a narrow range of abilities. A feature like Siri in 

smartphones can be considered an example in this case. This is also called 

weak AI.

Artificial general intelligence (AGI) is referred to as strong AI and refers 

to a machine that is as capable as humans. The Pillo robot is an example of 

a robot that can diagnose an illness and administer pills as well.

Artificial super intelligence (ASI) is about machines that can perform 

tasks beyond what humans are capable of. The Alpha 2 robot was a first 

attempt toward this; it is a robot that can manage a smart home and 

operate things at home. It potentially could be a member of the family. 

Most of the existing AI today is ANI. AGI and ASI are still being developed.

Figure 1-2 represents the core functions and features of an AI system at 

the center and related subfields that support implementing these functions.

Figure 1-2. AI functions
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The applications or subfields of AI are as follows:

• Natural language processing

• Robotics

• Machine learning and deep learning

• Expert systems

• Speech or voice recognition

• Intelligent automation

• Computer vision

Each of these subfields is interrelated, and any real-world 

implementation usually includes one or more subfields. The next sections 

define each of these subfields and give real-world examples and related 

technology tools wherever applicable, before taking a deep dive into 

computer vision.

 Natural Language Processing
Natural language processing (NLP) refers to an area of specialization 

in computer science that deals with analyzing and deriving useful or 

meaningful information from natural language or human language. At a 

high level, this requires employing formal techniques such as tokenization, 

relationship extraction in the context of a specific business case, word 

classification, and sentence detection. For a language, syntax refers to 

basic rules the language follows, and semantics refers to its meaning. The 

complexity comes from the fact that the meaning of text can be ambiguous 

and can change with the context. For example, the word saturation could 

have different definitions when used with colors or when used in the 

context of human behaviors.

ChAPter 1  ArtifiCiAl intelligenCe And ComPuter Vision



8

NLP is used in a wide variety of disciplines to solve a variety of 

problems. A brief list of applications follows:

• Searching refers to identifying specific elements of text 

within a bigger context of content.

• Machine translation is about translating text from one 

natural language to another and summarizing longer 

text in documents, blogs, and so on.

• Named-entity recognition (NER) refers to extracting 

the names of locations, people, and things from text.

• Information grouping is about categorizing text based 

on its content and context.

• Sentiment analysis is usually used to perceive and 

provide automated help or feedback on how a product 

such as a book or a movie is doing in the market.

• Answering queries or help is used in medicine or retail 

services, for example in chat bots.

• Speech recognition helps analyze and understand 

automatically the context in a conversation with 

humans.
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Table 1-1 describes some key NLP techniques and provides examples.

Table 1-1. NLP Techniques

NLP Techniques Description Example

Sentence 
segmentation

this technique is all about 

breaking up the text and 

marking the sentences 

within the text, usually 

identified by dot (.) 

separation.

Input:
We went to naigara falls. that 

was fun!

Output:
sentence 1: We went to naigara 

fallssentence 2: that was fun!

Tokenization this is a technique to 

identify the different words 

or punctuation marks 

or symbols given in a 

sentence.

Input:
this movie has a funny story line 

but has a “tragic” end.

Output:
[this] [movie] [has] [a] [funny] 

[story] [line] [but] [has] [a] [“] 

[tragic] [”] [end][.]

Named entity 
recognition

this is a technique to 

identify different entities 

within a sentence such as 

a person, place, time, and 

so on.

Input:
the singapore fintech conference 

starts at 9 a.m.

Output:
time, location, event

Stemming/
lemmatization

this technique trims the 

words to extract the root 

word.

Input:
starting, started, start

Output:
start

(continued)
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 Robotics
Robotics is a computer science discipline that deals with the design, 

programming, engineering, and development of physical robots or 

machines that are built to execute tasks that are usually done by humans.

The adoption of robotics was originally targeted for jobs that are 

hazardous for humans such as welding, riveting, mining, cleaning 

toxic wastes, or defusing bombs, among others, or those that need high 

precision or have low tolerance for human errors such as long surgeries in 

the medical field.

Table 1-1. (continued)

NLP Techniques Description Example

Part-of-speech 
tagging

this is a technique to 

identify different parts 

of speech and tag them 

as noun, verb, adjective, 

preposition, pronoun, and 

so on.

Input:
since it was late, she stayed back.

Output:
BP: Verb noun third person 

singular present form

in: Prepositions and subordinating 

conjunctions

PrP: Personal pronoun 

PrP: Personal pronoun

Parsing the parsing technique is 

about walking through the 

sentence to mark different 

words in it.

Input:
sylvie and Andrew went to watch 

a movie.

Output:
(s(nP(nP sylvie and (nP(Andrew))

(VP(went VBP to watch (nP a 

movie))))
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While robots have been around and evolving for several decades, it is 

only now that the use of robots in day-to-day activities is picking up. With 

the advent of the Internet of Things (IoT) and Big Data, the assimilation 

of a large number of streaming data points and analysis is not a challenge. 

For example, if you look at a simple sensor on an autonomous vehicle, 

it processes hundreds of thousands of data points every millisecond or 

second to assess whether a move by the vehicle is safe and aligned to reach 

the target destination within the stipulated time.

 Machine Learning
Machine learning is a way of building intelligence into a machine so it will 

be able to learn over time and do better using its own experience. It deals 

with a pattern search mechanism that filters the relevant details from the 

details or environment.

Machine learning algorithms that are constructed in this way can build 

up intelligence. The goal of a learning algorithm is to produce a result in 

the form of a rule that is accurate to a maximum extent.

Figure 1-3 depicts various subfields of machine learning.
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Supervised learning is working to a known expectation, which means 

that what needs to be analyzed from the data is defined up front. When 

there is no clear target in mind or specific problem to solve, the learning is 

referred to as unsupervised learning. The goal in this case is to decipher the 

structure in the data first and then to identify potential output attributes. 

As an example, to train a puppy, rewarding him every time he follows 

instructions works well. In fact, he figures out quickly what behavior helps 

him earn rewards. A learning methodology that focuses on maximizing the 

rewards from the result is referred to as reinforcement learning.

Deep learning is an area of machine learning that focuses on unifying 

machine learning with artificial intelligence. For a face detection 

requirement, a deep learning algorithm records or learns features such 

as the length of the nose, the distance between the eyes, the color of 

the eyeballs, and so on. This data is used to address a classification or a 

Figure 1-3. Machine learning
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prediction problem and is evidently different from the traditional shallow 

learning algorithm. In Chapter 2, we will cover some specific deep learning 

methods that are used in computer vision.

 Expert Systems
Expert systems (ESs) are one of the most significant research domains of AI 

that were first mentioned at Stanford University. These systems primarily 

focus on solving complex problems in a particular domain at a level of 

exemplary human intelligence or expertise. Expert systems are highly 

responsive, reliable, accurate, and performant. While they cannot replace 

a human when it comes to decision-making, they are used as advisors to 

humans and can help in diagnosis, explanation, prediction, justification, 

and reasoning. Any expert system includes three core components: a 

knowledge base, an inference engine, and a user interface.

Expert systems are used heavily in many domains. Some examples of 

usage are fraud detection (the identification of suspicious transactions and 

stock market trading in the financial domain), critical ailment diagnosis 

and deduction of root cause for an ailment in the medical domain, and 

prediction of the potential behavior of a system by monitoring its current 

status against the patterns derived from earlier monitoring reports.

 Speech and Voice Recognition
Speech recognition technology enables computers to recognize spoken 

words, which are then converted to text for analysis. A natural progression 

in processing includes the application of NLP techniques on the extracted 

text. Voice recognition is a subset of speech recognition with one of the 

goals of identifying a person based on the voice. Today, many electronic 

products such as mobile phones, TVs, and electronic gadgets support 

speech recognition to enable smart and automatic operations based on  

simple instructions. There are advanced services such as Siri, Alexa, and 

ChAPter 1  ArtifiCiAl intelligenCe And ComPuter Vision
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Google Assistant from technology giants such as Apple, Google, and 

Amazon, among others, that are breaking barriers in simplifying day-to- 

day activities.

 Intelligent Process Automation
Automation has evolved from running repetitive and mundane tasks 

to dealing with complex cases and optimizing overall the way humans 

execute tasks. Robotic process automation (RPA) is the application of 

technology that allows a user to configure a software robot (bot) to 

capture and interpret existing applications for processing a transaction, 

manipulating data, triggering responses, communicating with other digital 

systems in an efficient way, and scaling to heavier workloads on an as- 

needed basis.

Intelligent process automation (IPA) has more cognitive capabilities 

than RPA when used in conjunction with NLP, machine learning, 

computer vision, and other subfields.

 Introduction to Computer Vision
With this brief understanding of all the related subfields of AI, you will 

now learn about computer vision, the prime purpose of this book. In 

this section, you will explore the basic concepts, building blocks, and 

algorithms of computer vision and learn how to implement them using the 

most up-to-date versions of OpenCV and Python.

Computer vision, also referred to as vision, is the recent cutting-edge 

field within computer science that deals with enabling computers, devices, 

or machines in general to see, understand, interpret, or manipulate what is 

being seen.

ChAPter 1  ArtifiCiAl intelligenCe And ComPuter Vision
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Computer vision technology implements deep learning techniques 

and in a few cases also employs NLP techniques as a natural progression 

of steps to analyze extracted text from images. With all the advancements 

of deep learning, building functions such as image classification, object 

detection, tracking, and image manipulation has become simpler and 

more accurate, thus leading way to exploring more complex autonomous 

applications such as self-driving cars, humanoids, and drones. With deep 

learning, we can now manipulate images, such as superimposing Tom 

Cruise’s features onto another face or converting a picture into a sketch 

mode or watercolor painting mode. We can eliminate the background 

noise of a picture and highlight the subject in focus or take a stable picture 

even with the shakiest of hands. We can estimate the closeness, structure, 

and shape of objects, and we can estimate the textures of a surface too. 

With different lights or camera exposure, we can identify objects and 

recognize an object that we have seen before.

In computer vision, by saying we are enabling computers to “see,” 

we mean enabling machines and devices to process digital visual data, 

which can include images taken with traditional cameras, a graphical 

representation of a location, a video, a heat intensity map of any data, and 

beyond.

As you can see, computer vision applications are becoming ubiquitous 

in our day-to-day lives. We can find an object or a face in a video or in a live 

video feed, understand motion and patterns within a video, and increase 

or decrease the size, brightness, or sharpness of an image.

 Scope
To understand what constitutes computer vision, look at Figure 1-4.

ChAPter 1  ArtifiCiAl intelligenCe And ComPuter Vision
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Though you are looking this image for the first time, you can probably 

tell that this image is of the sport cricket being played on a bright day. 

Specifically, it is a match between teams Australia and South Africa, and 

Australia won the match. The overall mood is that of celebration, and a 

few players can be named either by recognizing their facial features or by 

reading the names printed on their shirts.

The information you can observe is complex for a computer vision 

application; this could be a set of multiple inferences. Let’s now map the 

whole human-driven interpretation to a machine’s vision processes.

• You can observe objects such as grass/ground, 

people, cricket equipment advertisements, and 

sports uniforms. These objects are then grouped into 

categories. This process of extracting information is 

referred to as image detection and classification.

Figure 1-4. Image of a cricket game
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• At a high level, there is ground, and there is a pitch. 

While it is difficult to exactly pinpoint the boundaries of 

each, making the markings based on the objects within 

the image is possible. This process is referred to as 

image segmentation.

• Taking this to the next level, you can get smarter and 

smaller boundaries that can help identify specific 

people and objects in the image. This can be observed 

with small boxes marked around each potential unique 

object, as shown in Figure 1-5.

• Now, within each box, there could be people or 

different cricket-related objects. At the next level, you 

can detect and tag what each box contains, also shown 

in Figure 1-5. This process is called object detection.

Figure 1-5. Marking unique objects
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• Extending this, you can look closely at the people’s 

faces and through the face recognition process exactly 

determine who each player is. You also can observe 

that each person is of different height and build.

• Names on the back of the shirts of the players can be 

another source for determining who each player is. 

An optical character recognition (OCR)  handwriting 

recognition process can recognize shapes and lines and 

infer letters or characters.

• Depending on the color of the uniform, you can infer 

what type of match it is and what teams are playing. 

Identifying the colors of the pixels is part of the image 

detection and manipulation process.

• In the process of playing the game, movement of the 

ball can be tracked and the speed at which the ball 

strikes the bat can be computed or determined. The 

path the ball will potentially take can be determined as 

well. A few important calculations such as how many 

ball serves have hit a particular spot on the pitch can 

be computed. This is possible using a process called 

motion tracking.

• Sometimes the determination of whether the player 

is “in” or “out” is determined by his leg position while 

the player is striking the ball. To accurately determine 

this, images from different cameras set up at different 

angles need to be analyzed to identify the accurate 

position of the player’s leg. This process is called image 

reconstruction, where an object is compiled from 

different tomographic projects of the same object in 

different angles.
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In Chapters 4, 5, and 6, we will cover all the processes listed here 

in detail with hands-on examples. In the next section, let’s look at what 

makes computer vision a difficult and complex system to build.

 Challenges of Computer Vision
Digital visual data sources can be webcams, cameras, video recorders, 

scanners, and others. The accuracy of computer vision applications is 

determined by how well the images or videos are interpreted. In this 

section, we will look at a few important aspects of images that can make 

the whole process of image interpretation complex.

• Illusions in an image can be confusing. For example, is 

Figure 1-6 representing two faces facing each other or a 

vase?

• There can be issues with camera sensors in low or bad 

light conditions. The images can get noisy or pixelated 

when zooming in (see Figure 1-7).

Figure 1-6. Faces or vase? 
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• The same object can look different from different 

angles. For example, Figure 1-8 shows the Eiffel Tower 

from different angles.

• An object in motion can look different during the 

movement. For example, Figure 1-9 shows different 

images of a cheetah running.

Figure 1-7. Zooming in

Figure 1-8. Different angles
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• There can be background clutter that can make 

identifying the object of focus difficult.

• Finally, there can be many variations of the same 

object, such as different kinds of chairs.

Dealing with all these cases makes computer vision a hard problem 

to solve. In humans, the collection of data (through vision) happens 

constantly. Unlike with machines, there is a little chance that a human can 

misclassify a dog when seen in different positions.

 Real-World Applications of Computer Vision
In this section, we will cover computer vision applications across domains 

such as automotive, healthcare and biomedical, and retail.

Figure 1-9. In motion
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 Automotive Industry

Computer vision has been in constant use since XXX in the automotive 

industry, especially to improve the safety and functionality of modern 

vehicles. Vehicles are equipped with sensors and cameras that can collect 

images and data regarding everything around the vehicle (see Figure 1- 10).  

Thus, vehicles are able to detect speed limit signs on the road, warn or 

inform the driver when parked in a no-parking zone, proactively find an 

open parking space, and guide the driver to reach a location.

Proactive warnings or intimations regarding diversions, gas stations, 

hazardous obstacles, and so on, are just a few more examples.

The recent advent of self-driving cars has brought a revolution in 

the way intelligence can be built into automobiles to manage traffic 

congestion, road accidents, and proactive vehicle care.

 Healthcare and Biomedical Industry

The healthcare and biomedical industry has seen an equal amount of 

adoption and traction for computer vision as the automobile industry. 

Figure 1-10. Computer vision in the automotive industry (source: 
Neuromation.io)
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In addition to advances in the way human organs and related data are 

photographed and stored, the way this data is interpreted and visualized 

has been drastically changed with computer vision algorithms. Preventive 

care is now possible for cancer and other genetic diseases because 

computers are able to detect potential occurrence in images from 

microscopes with very high precision. In addition, robots are able to 

perform complex surgeries with accuracy and efficiency.

In the case of surgeries, predicting the amount of blood loss is 

important because it can avoid unnecessary blood transfusions costing 

approximately $10 billion worldwide. Similarly, storing the analysis 

data and gaining insights from digital health reports of patients can help 

improve the accuracy and effectiveness of treatments.

 Retail Industry

Both online and physical retail stores are extensively using computer 

vision to improve the customer experience, provide competitive 

alternatives, and optimize processes. Amazon, for example, implements 

computer vision to identify similar products that are marked at different 

prices and provide a comparison-based suggestion to customers as well as 

advice to sellers on positioning a particular product online. An Amazon Go 

store is a partially automated store with no checkout stations or cashiers 

that lets customers buy products of their choice, and payments are dealt 

with offline via their Amazon accounts.

Another example of an online retail store using computer vision is an 

eyewear store. Customers can simulate how specific frames look on their 

face or use a recommended design for a face type to help choose among 

the eyewear.
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 Images and Their Features
At the core of computer vision is its input, which is referred to as an 

image. Sources of images include cameras, video recorders, scanners, and 

microscopic images, among others. Let’s now look at what images are, how 

are they stored and represented internally, and what image features can 

be used by vision algorithms to re-create, manipulate, analyze, track, and 

interpret images.

in simple technical terms, an image is a two-dimensional vector or a 
matrix with a finite number of rows and columns.

The following are different characteristics of images:

• The width of an image is represented by the number of 

columns in the matrix.

• The height of the image is represented by the number 

of rows in the matrix.

• An image is composed of multiple pixels, and a pixel 

is a core component of an image that is represented by 

one element in the matrix.

• The value in each pixel represents a channel that 

signifies a visual aspect of the image such as brightness, 

scale, color, and so on. The pixel values can take either 

a number between 0 and 255 or an RGB representation. 

A combination of these values then forms a color. The 

image thus formed is called a three-channel image.

The image features listed here (width, height, resolution, depth, and 

channels) are used in computer vision algorithms.

ChAPter 1  ArtifiCiAl intelligenCe And ComPuter Vision



25

 Color Spaces

The color space concept helps in storing and reproducing color schemes 

and hence is also called a color model. For example, in a grayscale color 

space, a pixel is represented as a single 8-bit unsigned integer value that 

corresponds to the brightness or gray intensity of that pixel. Figure 1-11 

displays all the possible colors that exist within the grayscale color space.

The RGB color space has each pixel represented by three different 8-bit 

integer values that correspond to the red, green, and blue color intensity of 

that pixel. Figure 1-12 depicts how all other colors (such as yellow or pink) 

between the three main colors are formed.

Another four-channel color space is the CMYK color space 

(representing cyan, maroon, yellow, and key/black). Figure 1-13 shows an 

example of the CMYK color space.

Figure 1-11. Grayscale color space

Figure 1-12. Other colors (such as yellow or pink)
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Overall, images are matrix-like structures that have features or 

properties such as height, width, channels, depth, element type, and so on. 

In the next section, let’s look at the process flow for the computer vision 

process that covers where and how the input comes from, how the input is 

processed, and what the outcome is.

 Core Building Blocks (Input – Process – Output)
The core process of a computer vision system involves receiving the input 

from sources such as cameras, smartphones, scanners, email attachments, 

printers, faxes, and so on, in the form of images or PDFs. The image or PDF 

data is extracted using image recognition or optical character recognition 

(OCR) or intelligent character recognition (ICR) engines (see Figure 1-14).

Figure 1-13. CMYK color space
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For example, let’s take a case of smartphone with a photo gallery 

application and a built-in camera that allows you to take pictures or videos. 

Take a photograph using the camera, apply a filter to enhance the photo, 

and email the file using an email application. While this may sound like a 

simple process, it internally uses critical functions of computer vision.

In this example, the images or documents can be provided by a wide 

range of input devices such as scanners, cameras, and so on. Just the way 

an image recognition engine extracts and classifies images, an OCR/ICR 

engine extracts and classifies text from images and documents.

Figure 1-14. Input – process – output
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 Optical Character Recognition and Intelligent 
Character Recognition

Optical character recognition (OCR)  is about recognizing scanned images 

that have textual content and translating images into text-searchable files. 

Converting an image to text files reduces the storage footprint and makes 

them more portable. Multiple neural network algorithms are used to poll 

the results and extract a final translated file. The input image is converted 

into a machine format that is interpretable by machines and then matched 

to a predefined code and a character. Once the image is converted into 

text, it becomes easy to manipulate based on the use case requirements.

As a next step, there’s a need to recognize handwritten content, 

which is where intelligent character recognition (ICR) comes in. Since it 

has to deal with human/handwritten content, ICR is more complex than 

OCR. The character recognition process is more or less the same, but 

there needs to be some intelligence included to make the computer think 

like a human while interpreting the characters, thus mandating a built-in 

dictionary.

 Optical Mark Recognition

Optical mark recognition (OMR) is similar to OCR and ICR but applies to 

slightly different use cases. This technology is used to compute scores in 

examinations.

 Conclusion
In this chapter, we defined artificial intelligence and its subfields including 

robotics, intelligent process automation, expert systems, speech and voice 

recognition, machine learning (deep learning), and computer vision. We 

took a nontechnical approach to understanding what comprises computer 

vision, its application across domains, and its challenges. You learned 
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about the core building blocks of computer vision and its functions. At the 

heart of computer vision is its core element, the image. We defined what 

an image is in the context of computer vision, what the key features are, 

and how an image is represented and stored as machine code.

In the next chapter, we will cover the open source computer vision 

library OpenCV. With hands-on code examples, we’ll cover setting up 

OpenCV, working with Python libraries, and understanding the syntax and 

modules that help implement key computer vision functions.
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CHAPTER 2

OpenCV with Python
This chapter will lay the foundations for learning computer vision 

algorithms through hands-on exercises using the most widely adopted 

open source computer vision framework, OpenCV 3.4.3 with Python 3.7.  

The chapter will cover setting up your system with OpenCV and the 

Python libraries, understanding key modules and out-of-box functions 

for computer vision implementations, and learning the syntax for 

scaling up.

Specifically, the following topics are covered in this chapter:

• Overview of OpenCV, its history, and its setup using the 

latest versions of OpenCV 3.4.3 and Python 3.7

• Introduction to the NumPy library and image-related 

functions

• How to create OpenCV projects

• Key modules for image access, manipulations, 

transformation, and tracking
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 About OpenCV
The name OpenCV comes from “open source computer vision.”  

The framework comprises tools, libraries, and modules that have  

built-in support for implementing computer vision applications. It is one 

of the most widely adopted toolkits with a strong developer community.  

It is known for its scale of building real-world use cases for commercial use 

as well. Version 3.4.3 of OpenCV, in conjunction with version 3.7 of Python, 

is used for all the coding examples in this book. OpenCV supports the C/

C++, Python, and Java languages, and it can be used to build computer 

vision applications for desktop and mobile operating systems alike, 

including Windows, Linux, macOS, Android, and iOS. In this book, we will 

focus on using it with Python on the Windows OS.

OpenCV started at Intel Research Lab during an initiative to advance 

approaches for building CPU-intensive applications. It was conceived as a 

way to make computer vision infrastructure universally available. 

 Setting Up OpenCV with Python
Let’s set up OpenCV with Python.

 Windows Installation
Follow these steps to install OpenCV on Windows:

 1. Go to https://www.python.org/downloads/

windows/ to access the latest stable Python version 

for Windows (Python 3.7.0 in this book).
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 2. Download the executable for Windows with the 

required bit configuration and run it.

 3. Click “Customize installation” (see Figure 2-1).

Figure 2-1. Choosing to customize the installation

 4. Select the advanced options you want, set the path  

(if necessary), and click Install, as shown in Figure 2-2. 
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 5. Check that the setup was successful, as shown in 

Figure 2-3.

Figure 2-3. Success! 

Figure 2-2. Selecting advanced options
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 6. From the command prompt, type python to double-

check that the installation was successful and verify 

the installed version, as shown in Figure 2-4.

Figure 2-4. Verifying the installation at the command line

 7. Download NumPy (the version used here is 

numpy-1.14.6+mkl-cp37- cp37m-win_amd64.

whl) from https://www.lfd.uci.edu/~gohlke/

pythonlibs/#numpy.

 8. Download OpenCV version 3.4.3 (the version used 

here is opencv_python- 3.4.3+contrib-cp37-

cp37m-win_amd64.whl) from https://www.lfd.

uci.edu/~gohlke/pythonlibs/#opencv.

 9. Both the downloaded NumPy and OpenCV libraries 

will need to be placed in the Python installation 

folder. On the command prompt, navigate to the 

Python installation folder.

 10. Install NumPy and OpenCV from the command 

prompt in the default Python location using the 

following commands:

pip install "numpy-1.14.6+mkl-cp37-cp37m-win_

amd64.whl"

pip install  "opencv_python-3.4.3+contrib-cp37-

cp37m-win_amd64.whl"
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 11. If the install was successful, you’ll see the message 

shown in Figure 2-5 at the command prompt.

 12. To verify the installation is error-free, the following 

import commands on the Python editor should not 

throw any error:

>>import numpy

>>import cv2

 13. To check the installation version, run this:

>>print(cv2.__version__)

It should print 3.4.3.

 macOS Installation
You can use Homebrew to install OpenCV and Python on macOS. Follow 

these steps:

 1. Install Python using the following command:

$ brew install python

Figure 2-5. Successful install
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 2. Verify the Python installation using the following:

$ which python

 3. You should see /usr/local/bin/python printed 

on the terminal. This indicates that you are using 

“brewed Python.” Open the terminal and run the 

following command:

$ brew tap homebrew/science

 4. Install NumPy.

$ pip install numpy

 5. Install OpenCV.

$ brew install opencv --with-tbb --with-opengl

 6. OpenCV is now installed on your machine, and you 

can find it at /usr/local/Cellar/opencv/3.4.3/.

 7. Check the versions using this:

$ cd /Library/Python/3.7/site-packages/

$ ln -s /usr/local/Cellar/opencv/3.1.0/lib/

python2.7/site- packages/cv.py

cv.py

$ ln -s /usr/local/Cellar/opencv/3.1.0/lib/

python2.7/site- packages/cv2.so

cv2.so
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 Using Modules
OpenCV consists of two types of modules, main and additional modules.

• Main modules: These modules are more or less the 

core modules of OpenCV and come by default with the 

packaged versions. They form core modules because 

they provide the core functionalities such as image- 

processing tasks, filtering, transformation, and others.

• Extra modules: These modules do not come by default 

with the OpenCV distribution. These modules are 

related to additional computer vision functionalities 

such as text recognition.

Table 2-1 describes the main modules.

Table 2-1. Main Modules

Module Name Function or Purpose

core includes all core OpenCV functionalities such as basic structures, 

Mat classes, and so on.

imgproc includes image-processing features such as transformations, 

manipulations, filtering, and so on.

Imgcodecs includes functions for reading and writing images.

videoio includes functions for reading and writing videos.

highgui includes functions for GUi creation to visualize results.

video includes video analysis functions such as motion detection and 

tracking, the Kalman filter, and the infamous CaM Shift algorithm 

(used for object tracking).

   calib3d includes calibration and 3D reconstruction functions that are used 

for the estimation of transformation between two images.

(continued)
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In addition to the modules in Table 2-1, OpenCV has modules based 

on CUDA (an API created by Nvidia). Using these modules is not covered 

in this book, but it is worth noting that these modules provide additional 

scale.

Table 2-1. (continued)

Module Name Function or Purpose

features2d includes functions for keypoint-detection and descriptor-extraction 

algorithms that are used in object detection and categorization 

algorithms.

objdetect Supports object detection.

dnn Used for object detection and classification purposes, among others. 

the dnn module is relatively new in the list of main modules and 

has support for deep learning.

ml includes functions for classification and regression and covers most 

of the machine learning capabilities.

flann Supports optimized algorithms that deal with the nearest neighbor 

search of high-dimensional features in large data sets. FLann 

stands for Fast Library for approximate nearest neighbors (FLann).

photo includes functions for photography-related computer vision such as 

removing noise, creating hD images, and so on.

stitching includes functions for image stitching that further uses concepts 

such as rotation estimation and image warping.

shape includes functions that deal with shape transformation, matching, 

and distance-related topics.

superres includes algorithms that handle resolution and enhancement.

videostab includes algorithms used for video stabilization.

viz Display widgets in a 3D visualization window.
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 Working with Images and Videos
Images and videos that form the primary input to a computer vision 

application are represented in matrix format, as covered in Chapter 1. This 

matrix stores details of the images such as width, height, depth, channel, 

and others. You will first look at the C++ core class, or, module called Mat, 

which stands for “matrix.” The Python equivalent is represented by numpy.

ndarray. NumPy is a Python library that contains a wide set of numerical 

algorithms and mathematical operations that support working with large 

multidimensional arrays and matrices.

 Using NumPy
Before working on the OpenCV libraries, you will first look at the NumPy 

library, including the data types, functions, and syntax to work with 

images.

Chapter 1 introduced images and their properties. NumPy facilitates 

a special n-dimensional array called ndarray that can hold image and 

related data. An n-dimensional array type is defined as numpy.ndarray.

The following is the code to create an n-dimensional array:

1  import numpy

2  newlist = [1,2,3]

3  type(newList)

4  newArray = np.array(newList)

5  type(newArray)

Line 1: Imports the NumPy library.

Line 2: Creates a new list object in Python. A list is represented by 

square braces, as in [ and ].

Line 3: Displays the object data type as list .

Chapter 2  OpenCV with pythOn



41

Line 4: Uses NumPy’s array() function to create a new array using 

the existing list object. An array is represented within parentheses. So, this 

function creates an object called newArray that is an array initialized with a 

single row and three columns, represented as ([1,2,3]).

Line 5: Displays this new object as numpy.ndarray.

The zeros() or ones() function in NumPy libraries can be used to 

create an n-dimensional array. The following code helps create a 3×2 

matrix initiated with zeros():

1  np.zeros(shape=(3,2))

2  np.ones((2,4))

The output of the previous lines is shown here:

array([[0.,0.], [0.,0.], [0.,0.]])

array([[1.,1.,1.,1.], [1.,1.,1.,1.]]) 

all ndarray functions that help extract and manipulate ndarray 
can be found at  https://www.tutorialspoint.com/numpy/
numpy_ndarray_object.htm.

 Reading and Loading Images with OpenCV and NumPy

Create a folder called images in the Python home path and add a few 

images in JPG and PNG formats for examples. Add panda.jpg, as shown in 

Figure 2-6.

Chapter 2  OpenCV with pythOn

https://www.tutorialspoint.com/numpy/numpy_ndarray_object.htm
https://www.tutorialspoint.com/numpy/numpy_ndarray_object.htm


42

Try the following program to read, show, change the scale of, and write 

an image:

 1  import numpy

 2  import cv2

 3

 4  panda_image = cv2.imread("./images/panda.jpg")

 5   panda_gray_image = cv2.cvtColor(panda_image, cv2.COLOR_

BGR2GRAY)

 6  cv2.imshow("Gray panda", panda_gray_image)

 7  cv2.imshow("Color panda", panda_gray_image)

 8  cv2.imwrite("gray_panda", panda_gray_image)

 9  cv2.waitKey(0)

10  cv2.destroyAllWindows()

Line 1: Imports the NumPy library; this is important because the 

matrix format of the image is represented by the NumPy data type ndarray 

(an n-dimensional array).

Figure 2-6. Adding panda.jpg
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Line 2: Imports the OpenCV library that gives access to all the 

functions to operate on images.

Line 4: Reads the image panda.jpg that was just placed in the images 

folder in Python’s default path. This line reads the image and stores it in a 

variable called panda_image.

Try printing the data type of the image that is read using type(panda_

image). It should show numpy.ndarray. This is just for verification.

Line 5: Converts the image to grayscale, and using the method 

cvtColor, passes the constant COLOR_BGR2GRAY and stores it in another 

variable, called panda_gray_image.

Lines 6 and 7: Display both the images in a window using the 

imshow() method. The first attribute for this method is the window name 

(see Figure 2-7).

Figure 2-7. First attribute of method showing window name

Line 8: Saves the converted image into a folder using the imwrite() 

method.

The folder will now have a new JPG saved (see Figure 2-8).
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Line 9: Gives 0 ms before keystroke action.

Line 10: Closes all the windows.

 Working with a Histogram Representation

There is another representation for images, and that is a histogram.

 1  import numpy as np

 2  import cv2

 3

 4  from matplotlib import pyplot as plt

 5

 6  image = cv2.imread("./images/panda.jpg")

 7  #plot a histogram

 8   histogram_image = cv2.calaHist([Image], [0], done, [256], 

[0,256])

 9  #flaten the histogram

Figure 2-8. Saving new JPG
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10  plt.hist(histogram_image.ravel(), 256, [0,256])

11  plt.show()

12  #view color channels

13  color = ['b','g','r']

14

15  #seperate the colors and plot the histogram

16  for I, col in enumaerate(color):

17      hist = cv2.calcHist([image], [i], None, [256], [0,256])

18      plt.plot(hist, color = col)

19      plt.xlim([0.256])

20

21  plt.show ()

Line 1: Imports the NumPy library. This is important as the matrix 

format of the image is represented by the NumPy data type ndarray  

(n- dimensional array).

Line 2: Imports the OpenCV library that gives access to all the 

functions to operate on images.

Line 4: Imports matplotlib, which has libraries for plotting a 

histogram.

Line 6: Reads the image panda.jpg that was just placed in the images 

folder in Python’s default path. This line reads the image and stores it in a 

variable called image.

Line 8: Generates a histogram of the image that is loaded.

Line 10: Flattens the histogram.

Lines 16 through 19: Loops the values on the flattened histogram, 

separates the colors, and plots the data.

Line 21: Displays the histogram.

Figure 2-9 shows the output of the previous program for the panda 

image.
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 Videos
In the section, you will learn about loading videos from a webcam or a file 

stored at a location. You will load a video frame by frame and also save it to 

another video file.

 Loading Videos from a Webcam

Here is how to load a video from a webcam:

 1  import cv2

 2  import numpy as np

 3

 4  cap = cv2.VideoCapture(0)

 5

 6  while True:

 7      ret, frame = cap.read()

Figure 2-9. Histogram
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 8

 9      cv2.imshow("frame", frame)

10

11      key = cv2.waitKey(1)

12      if key == 27:

13          break

14

15  cap.release()

16  cv2.destroyAllWindows()

Lines 1 and 2: Import the OpenCV and NumPy libraries.

Line 4: Loads frames from a webcam using the VideoCapture() 

method. The parameter 0 indicates the first webcam, and the number can 

change if there is more than one webcam.

Lines 6 through 13: Read through video frames.

A video is just a sequence of images, and you need to loop (using a 

while loop) through images. Each frame from the video is read using the 

read() method.

The r parameter takes a value of true or false. It’s true if cap is 

reading a frame based on the completion of reading the images. Then the 

image is shown using the imshow() method. The waitkey() method is 

used to wait until you press the key.

Lines 15 and 16: Clear the stream and close the window.

 Loading Videos from a File

Here is how to load a video from a file:

 1  import cv2

 2  import numpy as np

 3

 4  mountains_video = cv2.VideoCapture("mountains.mp4")

 5
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 6  while True:

 7      ret, frame = mountains_video.read()

 8

 9      cv2.imshow("frame", frame)

10

11      key = cv2.waitKey(25)

12      if key == 27:

13          break

14

15  mountains_video.release()

16  cv2.destroyAllWindows()

Line 1 and 2: Import the OpenCV and NumPy libraries.

Line 4: Loads frames from a webcam using the VideoCapture() 

method; the parameter will be the video file name.

Lines 6 through 13: Read through video frames.

A video is just a sequence of images, and you need to loop (using a 

while loop) through images. Each frame from the video is read using the 

read() method.

r takes a value of true or false. It’s true if cap is reading a frame based 

on the completion of reading the images. Then the image is shown using 

the imshow() method. The waitkey() method is used to wait until you 

press the key.

Lines 15 and16: Clear the stream and close the window.

 Reading the Video and Writing into a File

The same code is used to read the video and write to a file, except when 

each frame is read, a new parameter holds the read frame in a flip mode 

and writes the flipped frame into another video file.

 1  import cv2

 2  import numpy as np
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 3

 4  mountains_video = cv2.VideoCapture("mountains.mp4")

 5

 6  fcc = cv2.VideoWriter_fourcc(*"XVID")

 7  out = cv2.VideoWriter("new_mountains.avi", fcc, 28, (640, 360))

 8

 9  while True:

10      ret, f = mountains_video.read()

11      f2 = cv2.flip(f, 1)

12

13      cv2.imshow("frame2", f2)

14      cv2.imshow("frame", f)

15

16      out.write(f2)

17

18      key = cv2.waitKey(20)

19      if key == 27:

20          break

21

22  out.release()

23  mountains_video.release()

24  cv2.destroyAllWindows()

 Conclusion
In this chapter, you learned about the OpenCV framework and how it 

works in conjunction with Python libraries. You reviewed the core and 

advanced modules of OpenCV. You learned the functions for reading, 

writing, showing, and saving images and videos.
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In the next chapter, you will learn about relevant deep learning 

algorithms that power computer vision, about some specific complex 

problems that they solve, and about how they can be implemented using 

OpenCV modules.
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CHAPTER 3

Deep Learning 
for Computer Vision
The goal of this chapter is to introduce you to the underlying deep learning 

algorithms that power computer vision applications. Deep learning is 

applied in the classification, detection, segmentation, and generation of 

images and videos in computer vision applications. This chapter will cover 

the methods to train deep learning models and deploy them on various 

platforms. The following are the topics covered in this chapter:

• Understanding the basics and taxonomy of deep 

learning

• Convergence areas of deep learning and computer 

vision

• A recap of neural networks and common terms used in 

deep learning techniques

• Step-by-step guide to how convolution and recurrent 

neural networks work and how they are used in specific 

vision examples
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 Deep Learning: An Overview
Chapter 1 introduced machine learning and deep learning. In this chapter, 

you will take a deep dive into a few deep learning algorithms that power 

computer vision.

Deep learning is a subset of machine learning that focuses on learning 

significant features from the input data, especially in cases where the 

data is complex. This is more or less a replacement for a typical feature 

extractor that was built to be unique to complex data types such as images, 

videos, and so on. In Chapter 1, you learned some of the challenges of 

images and videos that can make the computer vision process overall a 

complex problem to solve. Applying some deep learning techniques such 

as convolution neural networks addresses these challenges seamlessly.

Traditional or elementary machine learning techniques were originally 

in use for computer vision. The K-nearest neighbor (KNN) technique 

and linear classifier are the most popular traditional approaches. With 

the KNN algorithm, each image is matched against all the images in the 

training data, and the image (or images) with the least distance measured 

is chosen to help classify the input image. In cases where an image had 

the same object with a different illumination or angle, the distance 

measure practically failed. Similarly, with the traditional linear classifier 

technique, each pixel value of the input image is assessed and tagged if it 

can be a parameter for matching. Typically, a weighted average value of 

the pixel is taken for comparison, which is why all the challenging areas of 

images (such as illuminations, different angles or image viewpoints, noise, 

background clutter, and multiple varieties of same objects) cause the 

algorithm to fail to match the input image.

Other more sophisticated techniques fail to match the output that deep 

learning techniques can match. Let’s first look at what vision requirements 

are addressed by deep learning techniques before learning how they work.
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 Deep Learning Applications in Computer 
Vision
Computer vision enables the properties of human vision on a computer. A 

computer here could be a smartphone, drone, CCTV, MRI scanner, and so 

on, with various sensors for perception. The sensor produces images in a 

digital form that has to be interpreted by the computer. The basic building 

block of such interpretation or intelligence is explained in the next section. 

The different problems that arise in computer vision can be effectively 

solved using deep learning techniques.

 Classification
Image classification is the task of labeling the whole image with an object 

or concept with confidence. The applications include identifying gender 

given an image of a person’s face, identifying the type of pet, tagging 

photos, and so on. Figure 3-1 shows the output of such a classification task.

Figure 3-1. Output of classification task
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 Detection and Localization
Detection or localization is an activity that involves finding an object and 

marking or boxing it. This has many real-world applications, especially 

in the automotive industry where self-driving cars detect objects through 

their camera sensors. The first image in Figure 3-2 depicts object detection, 

and the second image shows localization.

Figure 3-2. Object detection and localization
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 (Semantic) Segmentation
Segmentation is the process of doing pixel-wise classification. This gives a 

fine separation of objects, as shown in Figure 3-3. It is useful for processing 

medical images and satellite imagery.

Figure 3-3. Segmentation

 Similarity Learning
Similarity learning is the process of learning how two images are similar. 

A score can be computed between two images based on the semantic 

meaning.

There are several applications of this, from finding similar products to 

performing facial identification.

 Image Captioning
Image captioning is the task of describing an image with text, as shown in 

Figure 3-4.
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 Generative Models
Generative models are interesting because they generate images. Figure 3- 5  

shows an example of a style transfer application where an image is generated 

with the content of that image and the style of other images. Specifically, it 

shows how an image of a temple uses the style of a pencil sketch.

Figure 3-4. Captioning

Figure 3-5. Generative modeling

Images can be generated for other purposes such as new training 

examples, super-resolution images, and so on.
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 Video Analysis
Video analysis processes a video as a whole, as opposed to images. It has 

several applications, such as sports tracking, intrusion detection, and 

surveillance cameras.

Before we go deeper into the convolution and recurring neural 

network techniques of deep learning, let’s quickly recap what neural 

networks are.

 Neural Networks at Their Core
Let’s look at a simple problem in Figure 3-6; the requirement is to recognize 

the objects from the handwritten script and image.

Figure 3-6. Handwritten script and object

For humans, this is not a big deal; they are recognized as the numbers 

123456789, the text thank you, and the image of a goldfish. While this 

appears simple, it hides the complexity of the human brain. The brain can 

interpret these images incrementally, and this is done by visual cortices. 

Each cortex contains millions of neurons that are interconnected, enabling 

this interpretation.

If a computer program has to crack this recognition of digits, text, and 

images, how should that work? Should there be rules that help identify and 

differentiate one image from another?

Chapter 3  Deep Learning for Computer Vision



58

 Artificial Neural Networks
The research in neural networks started as an attempt to simulate 

multilayered learning. This definitely requires feeding input to the model 

a large amount of input variations of handwritten digits or text or object 

images from which the interpretation rules can be inferred and applied for 

prediction on a new image input.

Deep learning is an assemblage of techniques from an artificial neural 

network (ANN), which is a subfield of machine learning. As mentioned, 

ANNs are modeled on the human brain, which has multiples nodes that 

are linked and can pass information within them using the links. In the 

following sections, let’s look at some core building blocks of ANNs.

 Artificial Neurons or Perceptrons
Artificial neurons are called that because they emulate biological neurons 

and are structured as shown in Figure 3-7. These are the basic unit of 

computation in the neural network.

Figure 3-7. Artificial neurons
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The following are the features and functions of artificial neurons:

• Each artificial neuron receives input from other 

neurons, and each of these inputs is associated with a 

weight (w) that is an indication of relative importance 

with the other inputs.

• These inputs set the context and activate the neurons 

by applying nonlinear or linear functions. These 

functions are called step or activation functions.

• An output transmitter transfers signals, also called 

activations, of the neurons.

• A core processing unit produces the output signals or 

activations from the input signals.

There is a process called idealization for a neuron, which refers to 

models that further allow inferencing. When more complexities are added 

to the model, the more robust the model gets.

The earlier step or activation functions add nonlinear aspects to the 

output of the neuron. This is required as this is what makes the whole 

output closer to being real because most real-world data is usually 

nonlinear.

These activation functions (or nonlinearity) take a single input and 

run mathematical operations on it. Table 3-1 describes different types of 

activation functions.
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Figure 3-8 illustrates a typical structure of an ANN. Each circle in the 

diagram represents a neuron. The input layer pushes input values; the 

hidden layers of neurons then take the values as input. It is possible to 

have multiple layers within these hidden layers, where the output from 

Table 3-1. Activation Functions

Type of Function Description Representation

Sigmoid it converts the input 

value to a range 

between 0 and 1. 

example:

σ(x) = 1 / (1 + exp(−x))

tanh it converts the input 

value to a range 

between -1 and 1. 

example:

tanh(x) = 2σ(2x) – 1

Rectified linear 
unit (ReLU)

it thresholds the 

input value at zero by 

replacing the negative 

numbers with zero. 

example:

f(x) = max(0, x)
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one layer is fed as an input to the next layer. Each of these layers can be 

responsible for specialized learning. The last hidden layers feed into the 

output layer. The concept of the credit assignment path (CAP) refers to the 

path from input to output.

Input
Node 1

Input
Node 2

Input
Node 3

Hidden
Node 1

Hidden
Node 2

Output
Node 1

Input Layer Hidden Layer Output Layer

Output
Node 2

Hidden
Node 3

Output 1

Output 2

Figure 3-8. Typical structure of an ANN

In feedforward networks, the length of the path is the total number 

of hidden layers along with the output layer. These networks can be 

either single-layered or multiple-layered networks. Figure 3-8 shows a 

feedforward neural network with a single hidden layer. In the case of 

multiple hidden layers, each of the hidden layers is connected internally. 

The hidden layers are considered hidden because they are internally 

connecting the input and output layers and have no direct connection with 

the external world.
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 Training Neural Networks
The key to the highest accuracy or success of a deep learning algorithm 

is determined by how well the ANNs are trained. Training an ANN is 

complex because there is a need to optimize multiple parameters. Through 

a process called backpropagation, the input weights are adjusted based on 

the input relevance computed at each layer.

 Backpropagation

A backpropagation algorithm is commonly used for training artificial 

neural networks. The weights are updated from backward based on the 

error calculated in a layer. Figure 3-9 shows the input navigation and 

weight computations transmitted backward.

Figure 3-9. Backpropagation

After calculating the error, a gradient descent method can be applied to 

recalculate the weight.
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 Gradient Descent and Stochastic Gradient Descent

The gradient descent algorithm is responsible for accomplishing the 

multidimensional optimization until the global maximization is achieved. 

Gradient descent is a popular optimization technique used in many 

machine learning models. It is used to improve, or optimize, the model 

prediction. A variation of gradient descent called stochastic gradient descent 

(SGD) is becoming one of the most adopted methods. Optimization involves 

calculating the error value and changing the weights to achieve that minimal 

error. The direction of finding the minimum is the negative of the gradient of 

the loss function.

The learning rate determines how big each step should be. Note that 

ANNs with nonlinear activations will have local minima. SGD works better 

in practice for optimizing nonconvex cost functions.

In the next section, you will learn about two important neural network 

variations, convolution neural networks (CNNs) and recurrent neural 

networks (RNNs), that are heavily used in computer vision algorithms.

 Convolutional Neural Networks
Convolution neural networks, also known as convolution nets, are a 

variation of regular neural networks.

The traditional approaches discussed earlier fail to solve the vision tasks 

when there are vast variations in images. Convolution neural networks solve 

the problem as they model smaller pieces of information and combine them 

using deep networks. This processing happens across multiple layers. The 

first layer applies edge detection, which refers to detecting edges and build 

templates. The next layers use these templates for the base, take simpler 

shapes from the image, and form more templates that include different object 

scales, positions, or illuminations. The last layers match the input images with 

all the templates, and the final output is a weighted sum of all the outputs. 

This helps handle complex variations in images with higher accuracy.
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CNNs have three types of layers.

• Convolution layer

• Pooling layer

• Fully connected layer

CNNs work differently when compared to regular neural networks. In 

CNNs, the layers are set as three dimensions: height, width, and depth.

The neurons of one hidden layer connect only to a partial set of 

neurons of the other layer and don’t connect to every neuron. Additionally, 

the output is reduced to a single vector of probability scores, organized 

along the depth dimension.

The hidden layers help in feature extraction; this is done by the 

convolution and pooling layers, and the final classification is done by the 

fully connected layer.

 Convolution Layer
The convolution layer consists of spatial filters that are convolved along 

the spatial dimensions and summed up along the depth dimension of 

the input volume. The convolution layer is a key building block of a CNN. 

Convolution means combining two functions to produce a third function 

and using merging techniques. The convolution is done by applying 

a filter or kernel that helps form a feature map. The filter is applied on 

the different areas of the input, a matrix multiplication is done, and the 

summation of the matrices forms the feature map.

The term stride represents the pixel distance that each filter application 

uses. For example, a stride value of 1 indicates applying the filter/kernel at a 

1-pixel distance. Padding is added to the feature map that is extracted. This 

is usually a layer of 0-value pixels to prevent the feature map from shrinking.

The final matrix that is formed by this function is passed through an 

activation function to make it nonlinear. This could be a ReLU activation 

function.
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 Pooling Layer
A pooling layer is added after the convolution layer. The pooling layer 

is responsible for reducing the dimensionality and thus reducing the 

parameter count to control the training timing and avoid overfitting.

A max pooling technique is the most common technique applied. This 

takes the maximum value in each window. This helps optimize the feature 

map size, ensuring key information about the image is retained.

So, the following are the key parameters in CNNs that decide on the 

optimization of the feature map:

• Kernel size

• Filter count

• Stride and

• Padding

 Fully Connected Layer
After the convolution and pooling, the final feature map used for the 

“classification” task is executed by the fully connected layer. These fully 

connected layers can accept only one-dimensional data. Hence, the 3D 

data needs to be converted to 1D. For this, the standard Python flatten 

functions can be used. Neurons in the fully connected layer have full 

connections to all the activations in the previous layer, and they work 

exactly the way regular neural networks do.

CNNs are widely used for the image recognition, object detection, 

and tracking tasks of computer vision. The OpenCV functions 

internally implement CNN algorithms. You’ll learn more about these 

implementations in the upcoming chapters.
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 Recurrent Neural Networks
Recurrent neural networks are key algorithms for handling sequential 

data. They are extensively used by Apple’s Siri and Google’s Voice 

Search. The key differentiating factor for RNN is that it can remember 

the input because it has internal memory. It is one of the key algorithms 

behind the scenes of the amazing achievements of deep learning in the 

past few years.

RNN is considered to be one of the most robust neural network 

algorithms. This is a relatively old algorithm but is becoming more popular 

in recent years because of the invention of long short-term memory 

(LSTM). Because of this, RNNs can remember some key information 

about the input and thus can be more accurate in predicting what is 

coming next.

Sequential data is handled very well. An example of sequential data 

is time-series data. Hence, this algorithm can be potentially effective in 

speech, text, financial data, audio, video, and weather analysis, among 

other domains. A stronger understanding of the sequence of steps can 

be established. This is not quite possible with other algorithms. In RNNs, 

unlike a feedforward neural network, the information is fed cyclically in 

loop. So, when a decision is made, both the current input and the learnings 

from the inputs received previously are used. Figure 3-10 shows the cyclic 

inputs in an RNN.
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Usually an RNN has a short-term memory, but in conjunction with 

LSTM, it can have long-term memory as well. A recurrent neural network 

is able to remember exactly that because of its internal memory. It 

produces output, copies that output, and loops it back into the network. 

RNNs thus can add the immediate past to the present.

Input weights are added to both present and past inputs for RNNs. 

RNNs can map one to many, many to many (translation), and many to one 

(classifying a voice), as shown in Figure 3-11.

Figure 3-10. Cyclic inputs in an RNN
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Furthermore, they tweak their weights both through gradient descent 

and through backpropagation through time. Let’s now look at how that 

happens.

 Backpropagation Through Time
Backpropagation through time (BPTT) does backpropagation on an 

“unrolled” recurrent neural network. Unrolling is a visualization and 

conceptual tool to check on what is flowing through the network. This 

process is usually taken care of internally by the framework that is used to 

implement the RNN. LSTM networks are an extension for recurrent neural 

networks, and they basically extend the memory of RNNs. Therefore, BPTT 

is well suited to learn from important experiences that have long time lags 

in between.

The units of an LSTM are used as building units for the layers of an 

RNN, which is then often called an LSTM network.

Figure 3-11. Mapping
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 Conclusion
In this chapter, you learned about deep learning, how convolution and 

recurrent neural networks work, and how you can train neural networks 

using backpropagation and related functions to compute weights for 

the inputs. The chapter then covered some key computer vision use 

cases that use deep learning algorithms. Finally, the chapter concluded 

with the modules in OpenCV that support deep learning algorithm 

implementations.

This chapter lays the foundation for the upcoming chapters, which 

cover the hands-on implementation of OpenCV modules with Python for 

image processing, object detection, and motion analysis and tracking real- 

world use cases.
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CHAPTER 4

Image Manipulation 
and Segmentation
Chapters 4, 5, and 6 cover hands-on implementations for image 

manipulation, segmentation, object detection, and motion analysis and 

tracking along with a few real-world use cases. A brief introduction of these 

concepts was already given in Chapter 1, so these chapters will take you 

deeper into the implementation specifics. This chapter, specifically, covers 

image manipulations and segmentation-related functions that are core 

to image processing in computer vision applications. For each of the use 

cases, the chapter will show the Python syntax and implementations of the 

built-in functions in OpenCV.

The following topics are covered in this chapter:

• The chapter will give an overview of image 

manipulation and segmentation and the libraries that 

support these features.

• As part of image manipulations, the chapter will 

provide a step-by-step guide on how to perform 

transformations on images such as translations, 

rotations, resizing, blurring, sharpening, edge 

detection, masking, converting a photograph into a 

sketch, and more.
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• As part of image segmentation, the chapter will cover 

how to partition an image into different regions using 

contour approximation; how to detect specific shapes 

such as lines, circles, and blobs; and how to identify 

the occurrence of a specific object or shape within an 

image. 

• All implementations (including the libraries, functions, 

syntax, and hands-on code) are explained using 

OpenCV and Python.

 Image Manipulations
Chapter 1 introduced what images are, their different properties, and their 

storage structure. You also learned how to read, show, and write images; 

change their color; and work with color spaces.

As a quick recap of what was covered in Chapter 1, images are stored 

in a two-dimensional (2D) matrix. You learned how to load, display, and 

show them within in a window. When an image is stored as a matrix, each 

cell represents a pixel. The pixels store a value that represents information 

about the image. For example, in the case of a grayscale image, the pixels 

store an integer value between 0 and 255. Changing the value of a pixel 

thus changes the image. This manipulation at a pixel level can be done 

by accessing a single pixel or a range of pixels in the image. Images can 

also be represented as histograms, and you have already looked at how to 

represent access and manipulate a few properties.

Overall, image manipulation refers to a process of altering or 

modifying an image for different purposes such as beautifying images, 

sharpening images with noise, restoring old black-and-white images and 

re-creating them in color, and so on.

Let’s now start looking at various image manipulation requirements 

and how to implement each of them.
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 Accessing and Manipulating Pixels
In this section, you will write OpenCV/Python code to access the pixels in 

an image and modify the color of them.

The following Python code demonstrates how to access a pixel in an image 

and print it. Also, you can change the color of one pixel or a range of pixels.

Lines 1 through 5: These are common code lines that load the NumPy 

and OpenCV libraries and then load an image that is placed in a specific 

directory path using the imread() function.

 1  import numpy

 2  import cv2

 3

 4  #read the flower image and load it into a variable flower_image

 5  flower_image=cv2.imread("./images/flower_pink.jpg")

 6

 7   #access a specific pixel using the coordinate based access 

from the matrix

 8  pixel=flower_image[200,250]

 9

10   #see what color space this pixel represents - this is an 

RBG representation

11  print(pixel)

12

13  #lets change the pixel color value to blue

14  flower_image[200,250]=(255,0,0)

15

16   #lets change the pixel color value to blue in a region 

range as against

17  flower_image[200:250,200:350]=(0,255,0)

18

19  cv2.imshow('modified pixel', flower_image)

20  cv2.waitkey(0)
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Lines 8 and 11: Access a specific pixel by choosing the pixel 

coordinates and print the color representation in RGB values.

Line 14: Changes a specific pixel color to blue with the output shown 

in Figure 4-1. 

Figure 4-1. Changing one pixel
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 Drawing Geometric Shapes or Writing Text 
on a Color Image
In this section, you will explore a few geometric functions in OpenCV.  

You can use the line(), rectangle(), circle(), ellipse(), polygon(), or 

putText() functions in OpenCV. Let’s start with the tree shown in Figure 4- 3 

to draw or write text.

Line 16: Picks a range of pixels and colors them green. The output 

shown in Figure 4-2 is the result of executing this line. (You can comment 

line 14 to see the output for this code.)

Figure 4-2. Changing pixels to green
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The functions and syntax are as follows:

• cv2.line(): To draw a line, this function takes the 

following arguments:

 a. Image object on which the line needs to be drawn

 b. Starting point’s pixel coordinates

 c. Ending point’s pixel coordinates

 d. Color in BGR (not RGB) format

 e. Thickness (in pixels)

• cv2.rectangle(): To draw a square or rectangle, 

similar to the line() function, this function takes the 

following arguments:

 a. Image object on which the rectangle needs to be drawn

 b. Pixel coordinates of the vertex at the top left

Figure 4-3. No text yet
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 c. Pixel coordinates of the lower-right vertex

 d. Color in BGR (not RGB)

 e. Thickness (in pixels) 

• cv2.circle(): To draw a circle, this function takes the 

following arguments:

 a. Image object on which the circle needs to be drawn

 b. Center pixel’s coordinates

 c. Pixel radius of the circle

 d. Color in BGR (not RGB)

 e. Thickness (in pixels)

• cv2.ellipse(): To draw a ellipse, this function takes 

the following arguments:

 a. Image object on which the ellipse needs to be drawn

 b. Center pixel’s coordinates

 c. Length of the minor and major axes

 d. Rotation angle of the ellipse (calculated 

counterclockwise)

 e. Starting angle (calculated clockwise)

 f. Final angle (calculated clockwise)

 g. Color in BGR (not RGB—be careful)

 h. Thickness

• cv2.polyline(): To draw a polygon, this function takes 

the following arguments:

 a. Image object on which the polygon needs to be drawn

 b. The image object on which to draw
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 c. The array of coordinates

 d. True, if it is a closed line

 e. Color

 f. Thickness

• cv2.putText(): To write text, this function takes the 

following arguments:

 a. The image on which the text is to be written

 b. The text to be written

 c. Coordinates of the text’s starting point

 d. Font to be used

 e. Font size

 f. Text color

 g. Text thickness

 h. The type of line used

 1  import numpy

 2  import cv2

 3

 4  #read the flower image and load it into a variable flower_image

 5  flower_image=cv2.imread("./images/flower_pink.jpg")

 6

 7  cv2.line(flower_image,(25,21),(100,100),(255,0,0),5)

 8  cv2.rectangle(flower_image,(25,21),(200,200),(0,255,0),2)

 9  cv2.circle(flower_image,(50,50),50,(0,0,255),-1)

10

11  cv2.imshow("Geometry",flower_image)

12  cv2.waitKey(0) 
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The previous Python program creates the output shown in Figure 4-4.

Figure 4-4. Output 

 Filtering Images
Image filtering is a mechanism to modify an image and extract or highlight 

the detail that is useful for further computer vision tasks. Filtering 

processes can include adding or removing noise in an image, removing 

the background or a specific object, extracting edges, and blurring or 

sharpening an image. When photographs are taken in sunlight, there 

would be a few bright and dark areas; likewise, a photograph taken at night 

would have noise. Even images with too many colors can be categorized as 

noise. In this section, you will learn how to implement filtering using the 

built-in OpenCV libraries.

Figure 4-5 is an example of “salt and pepper” noise.
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Let’s now look at how to add or remove noise from an image. You will 

use the median filter for removing salt and pepper noise. This filter uses 

the same technique of neighborhood filtering; the key technique in this 

is the use of a median value. The workflow of neighborhood filtering is 

covered in the following example. As such, this filter is nonlinear by nature.

This filter takes the median value of all the pixels in the neighborhood 

pixel region and replaces the pixels in context with the median value. This 

removes random peak values in the region, which can be due to noise like 

salt and pepper noise. There is a typical kernel size that can be set. The 

higher the kernel value, the more effective the removal of the noise, with a 

side effect of having the blur in the image increase.

Here is the OpenCV function:

cv2.medianBlur(src, ksize[, dst])

This function smoothens an image using the median filter with the 

 aperture. Each channel of a multichannel image is 

processed independently.

The following Python code uses the medianBlur() function with a 

kernel value of 3. This means a 3 × 3 matrix of pixels around a pixel is 

taken, and the median of all the pixel values is used to replace that pixel.

 1  import numpy

 2  import cv2

 3

 4  #read the flower image and load it into a variable image

 5  image=cv2.imread("./images/input1.jpg")

Figure 4-5. Salt and pepper noise
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 6

 7  #kernel value of 3 3x3 matrix neighbourhood is used

 8  noisereduced_version = cv2.medianBlur(image,3)

 9

10  cv2.imshow("Original",image)

11  cv2.imshow("Corrected",noisereduced_version)

12

13  cv2.waitKey(0)

Let’s simulate how the previous code converts or removes the salt and 

pepper noise. Consider the image matrix shown in Figure 4-6. Around the 

pixel value 6, a 3 × 3 pixel matrix is highlighted. When all these pixel values 

are placed in ascending order, it looks like this: 1, 1, 2, 2, 2, 2, 3, 5. The 

median for this list is 2. So, the final output of the pixel value 6 is replaced 

with 2. This process is repeated for each pixel value.

Figure 4-6. 3 × 3 pixel matrix highlighted
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The output image sample for a 3 × 3 kernel matrix is shown in Figure 4- 7. 

The higher the kernel value, the lower the noise and the higher the blur.

Figure 4-7. Output image sample for a 3 × 3 kernel matrix

There are many more filtering functions such as bilateral filters, box 

filters, and Gaussian blur filters that are categorized as linear or nonlinear 

filters.

 Transforming Images
Transformation operations on an image are usually referred to as 

geometric transformations applied on a photo. There are several other 

kinds of transformations as well, but this section will cover geometric 

transformations. These consist of, but are not limited to, shifting an image, 

rotating an image along an axis, and projecting it onto different planes.

There are two types of transformations: affine and nonaffine. 

Translation, resizing, and rotation are categorized as affine 

transformations of an image, and the warpAffine() function is used  

(see Figure 4-8).
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The nonaffine transformations are also called projective transformations. 

This type of transformation does not preserve parallelism or length or angle 

of an image. The example in Figure 4-9 shows a nonaffine transformation.

Figure 4-8. Affine transformations

Figure 4-9. Nonaffine transformation

At the core of transformation is a matrix multiplication of the image. 

You will now look at different components of this matrix and the resulting 

image.

 Translation

Image translation is about the displacement of images from the original 

position in any direction and within a frame of context. Figure 4-10 shows 

the transformation matrix.

Figure 4-10. Transformation matrix
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Here, tx is translation in the x direction, and ty is in the y direction 

in an image reference. After choosing different values of the translation 

matrix, the resulting translation images will look like Figure 4-11.

Figure 4-11. Resulting translation images

The code for creating this translation is as follows; you can change the 

values of tx and ty to generate different translations:

 1  import cv2

 2  import numpy as np

 3

 4  iamge = cv2.imread('.images/pup.jpg')

 5  num_rows, num_cols = iamge.shape[:2]

 6

 7  translation_matrix = np.float32([ [1,0,70], [0,1,110] ])

 8   image_translation = cv2.warpAffine(iamge, translation_

matrix, (num_cols, num_rows))

 9  cv2.imshow('Translation', image_translation) 

10  cv2.waitKey()

Chapter 4  Image manIpulatIon and SegmentatIon



85

The warpAffline() function is used to define the translated image.

 Rotation

Another form of image transformation is rotation. In this section, you will 

look at how to rotate the images in at a certain angle.

To understand this, let’s see how to handle rotation mathematically. 

Rotation is also a form of transformation, and it can be achieved using the 

transformation matrix shown in Figure 4-12.

Figure 4-12. Transformation matrix

Here, θ is the angle of rotation in the counterclockwise direction. 

OpenCV provides closer control over the creation of this matrix through 

the function getRotationMatrix2D. You can specify the point around 

which the image will be rotated, the angle of rotation in degrees, and a 

scaling factor for the image. Once you have the transformation matrix, you 

can use the same warpAffine() function to apply this matrix to any image.

The following code helps to expand the context to ensure the image is 

not cut off when it is rotated:

 1  import cv2

 2  import numpy as np

 3

 4  img = cv2.imread('images/pup.jpg')

 5  num_rows, num_cols = img.shape[:2]

 6
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 7   translation_matrix = np.float32([ [1,0,int(0.5*num_cols)], 

[0,1,int(0.5*num_rows)] ])

 8  2*num_cols, 2*num_rows))

 9  rotation_matrix = cv2.getRotationMatrix2D((num_cols, num_rows), 

30, img_translation = cv2.warpAffine(img, translation_matrix, (1)

10   img_rotation = cv2.warpAffine(img_translation, rotation_

matrix, (2*num_cols, 2*num_rows))

11

12  cv2.imshow('Rotation', img_rotation)

13  cv2.waitKey()

Figure 4-13 shows the output of this code.

Figure 4-13. Output of rotation code
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 Image Scaling

Image scaling is about resizing an image by changing its pixel dimensions. 

This is one of the most common operations in computer vision. Whenever 

you resize an image, there are multiple ways to fill in the pixel values. When 

you are enlarging an image, you need to fill up the pixel values in between 

the pixel locations. When you are shrinking an image, you need to take the 

best representative value. When you are scaling by a noninteger value, you 

need to interpolate values appropriately so that the quality of the image is 

maintained. There are multiple ways to do interpolation. If you are enlarging 

an image, it’s preferable to use linear or cubic interpolation. If you are 

shrinking an image, it’s preferable to use the area- based interpolation. Cubic 

interpolation is computationally more complex and hence slower than 

linear interpolation. But the quality of the resulting image will be higher.

OpenCV provides a function called resize() to achieve image scaling. 

The following OpenCV Python code helps to resize images:

 1  import cv2

 2  import numpy as np

 3

 4  img = cv2.imread('images/pup.jpg')

 5

 6   img_scaled = cv2.resize(img,None,fx=1.2, fy=1.2, 

interpolation = cv2.INTER_LINEAR)

 7  cv2.imshow('Scaling - Linear Interpolation', img_scaled)

 8   img_scaled = cv2.resize(img,None,fx=1.2, fy=1.2, 

interpolation = cv2.INTER_CUBIC)

 9  cv2.imshow('Scaling - Cubic Interpolation', img_scaled)

10   img_scaled = cv2.resize(img,(450, 400), interpolation = 

cv2.INTER_AREA)

11  cv2.imshow('Scaling - Skewed Size', img_scaled) cv2.waitKey()

12

13  cv2.waitKey()

Chapter 4  Image manIpulatIon and SegmentatIon



88

Figure 4-14 shows the sample outputs of rotating an image.

Figure 4-14. Outputs of rotating an image

 Edge Detection

Edge detection has a lot of prominence in computer vision. It deals with 

the contours of an image usually denoted as an outline of a specific object 

in an image. Figure 4-15 shows an example of an output from an edge 

detection implementation.

Figure 4-15. Edge detection implementation
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There are many edge detection algorithms such as Sobel, Laplacian, 

and Canny among others. The Canny edge detection algorithm is the 

most widely used for both ease of use and accuracy levels. The following 

OpenCV Python program is an example of implementing the Canny edge 

detection algorithm.

For more details about the Sobel, Laplacian, and Canny edge 

detection algorithms, refer to www.rroij.com/open-access/performance- 

analysis- of-canny-and-sobel-edgedetection-algorithms-in-image-

mining.php?aid=43752.

 1  import opencv

 2  import numppy as np

 3

 4  image = cv2.imread('./images/dolphin.jpg')

 5  hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 6

 7  lower_red = np.array([30,150,50])

 8  upper_red = np.array([255,255,180])

 9

10  mask = cv2.inRange(hsv, lower_red, upper_red)

11  res = cv2.bitwise_and(frame,frame, mask= mask)

12

13  cv2.imshow('Original',frame)

14  edges = cv2.Canny(frame,100,200)

15  cv2.imshow('Edges',edges)

16

17  k = cv2.waitKey(5) & 0xFF

18  if k == 27:

19   break

20

21  cv2.destroyAllWindows()

22  cap.release()
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 Image Segmentation
As a quick recap, pixels on images store values. These values represent 

features of an image that give information about image statistics. These 

values group dark to light transitions to form borders, and the borders 

divide scenes into different objects. Borders connect to each other and 

reveal contours. Contours play an important role in many computer 

vision algorithms. They help to find objects, to separate one instance of 

something from another, and finally to understand the whole scene.

This section covers everything that deals with contours in 

OpenCV. You’ll learn about methods for finding, using, and displaying 

contours, as well as consider basic segmentation methods.

Let’s start drawing contours from a given image, as shown in Figure 4- 16. 

The image has four different shapes.

Figure 4-16. Image with four shapes

The following is the step-by-step guide to building the 

implementation:

Step 1: Load the image.
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Step 2: Convert the loaded image to grayscale.

 

Step 3: Get the contours using the Canny edge detection function.

 

Step 4: Find the contours and print how many contours were found.

 

Step 5: Finally, draw the contours.

 

Figure 4-17 shows the output of this program.

Figure 4-17. Drawing contours
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 Line Detection
In this section, you will learn how to detect lines given an image. You can 

use this technique for detecting lanes for self-driving cars or for drawing 

lines and grids on a chess board, for example. There are two different 

notations for lines in OpenCV: Hough lines and probabilistic Hough lines.

A straight line is usually represented as y = mx +c, and Hough lines are 

represented as 𝜌 = x cos 𝜃 + y sin 𝜃. Figure 4-18 shows an example of a chess 

board grid and the output where the lines are detected by an OpenCV 

Python program.

Figure 4-18. Chess board grid

The following is the step-by-step guide to building the implementation:

Step 1: Load the image, convert it to grayscale, and extract the contours.
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Step 2: Run Hough lines with the following parameters:

 

Step 3: Iterate through each identified line and highlight it on the image.

 

Step 4: Finally, show the image that has the lines highlighted.

 

 Circle Detection
Similar to the previous line detection implementation, let’s now look at 

circle detection. In lieu of Hough lines, you will use Hough circles.

Load an image like Figure 4-19 for circle detection.
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The following is the OpenCV Python code that loads the image in 

Figure 4-19, converts it to grayscale, identifies the contours, extracts the 

Hough circles, and then draws them:

 1  import cv2

 2  import numpy as np

 3  import cv2.cv as cv

 4

 5  image = cv2.imread('images/bottlecaps.jpg')

 6  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 7

 8  blur = cv2.medianBlur(gray, 5)

 9

10  circles = cv2.HoughCircles(blur, cv.CV_HOUGH_GRADIENT, 1.5, 10)

11  #circles = cv2.HoughCircles(gray, cv.CV_HOUGH_GRADIENT, 1, 10)

12

Figure 4-19. Circle detection
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13  circles = np.uint16(np.around(circles))

14

15  for i in circles[0,:]:

16      # draw the outer circle

17      cv2.circle(image,(i[0], i[1]), i[2], (255, 0, 0), 2)

18

19      # draw the center of the circle

20      cv2.circle(image, (i[0], i[1]), 2, (0, 255, 0), 5)

21

22  cv2.imshow('detected circles', image)

23  cv2.waitKey(0)

24  cv2.destroyAllWindows()

Figure 4-20 shows the output of this program.

Figure 4-20. Output of circle detection
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 Conclusion
In this chapter, you learned how to do image processing, which includes 

image manipulations such as drawing on images, changing pixels, 

transforming images, performing edge detection, blurring, and others. 

Similarly to image segmentation, you learned how to detect the contours 

of an object and highlight them.

The next chapter will cover object detection use cases and provide a 

step-by-step guide for implementing them using built-in OpenCV Python 

functions.
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CHAPTER 5

Object Detection 
and Recognition
In the previous chapter, you learned about image segmentation and 

contours. You also learned how to detect lines and circles using Hough 

lines and circles in OpenCV. In this chapter, you will learn how to detect 

objects and label them. Object detection is one of the most widely used 

capabilities of computer vision in multiple domains. In Chapter 1, you 

saw some real-world use cases. In this chapter, you will start with object 

detection and then move on to object recognition, landmark identification, 

and finally handwriting recognition.

The following topics are covered in this chapter:

• Introduction to object detection and its uses

• How objects are stored and the different ways of extracting 

features such as SIFT, SURF, FAST, BRIEF, and so on

• Handwriting recognition

 Basics of Object Detection
Detecting objects in an image is a crucial capability of a computer vision 

application. Object detection/recognition is used in labeling scenes, robotic 

navigation, self-driving cars, face and body part recognition, disease and cancer 

detection, objects in satellite images, handwriting recognition, and many more.
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Figure 5-1 shows an example of real-time object detection and labeling 

done for a given image.

Figure 5-1. Real-time object detection and labeling

 Object Detection vs. Object Recognition
In Figure 5-1, we only marked or detected if there was a truck or a dog. 

We did not recognize any specific qualities such as the model or color of 

the car or the color or breed of the dog because the objective was to just 

identify what objects are in the image. Object recognition is the method of 

identifying an object within an image. In the case of object recognition, 

you first detect the car, and on the cropped car you apply recognizers to 

recognize the features of the car. This is similar with faces as well.

While humans can identify a variety of objects effortlessly, for 

computers it is a complex problem to solve with accuracy. It has eluded 

computer vision researchers for decades now and has become the holy 

grail of computer vision.
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Depending on the position and angle of the object, the object 

detection task is difficult. Defining a bounding box for each object is 

important.

 Template Matching
As part of object detection and recognition, you need to do shape 

analysis and feature analysis. To do this, there is a robust technique 

called template matching. This technically is a brute-force algorithm 

or a simple mechanism to extract an object based on a previously 

acquired template.

OpenCV has a matchTemplate() function to perform template 

matching.

This function takes a “sliding window” of the image being queried and 

slides it across the image it is searching for to determine its presence. It 

does this one pixel at a time. Then, for each of these locations, a correlation 

coefficient is calculated if there is a match at all. Regions with a high 

correlation are the regions that match.

Figure 5-2 shows a typical object detection using matching. This 

method uses a template to detect an object after segmentation. If the 

segmented object is similar to the template, then the object detection 

process is concluded; otherwise, another template is picked for a 

similarity check.
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The following is the example code for template matching in OpenCV 

using the matchTemplate() function:

 1  import cv2

 2  import numpy as np

 3

 4  # Load input image and convert to grayscale

 5  image = cv2.imread('./images/inputImage.jpg')

Figure 5-2. Object detection using matching
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 6  cv2.imshow('Where is this image?', image)

 7  cv2.waitKey(0)

 8  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 9

10  # Load Bigger image

11  bigger_image = cv2.imread('./images/searchImage.jpg',0)

12

13  result = cv2.matchTemplate(gray, template, cv2.TM_CCOEFF)

14  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

15

16  #Create Bounding Box

17  top_left = max_loc

18  bottom_right = (top_left[0] + 50, top_left[1] + 50)

19  cv2.rectangle(image, top_left, bottom_right, (0,0,255), 5)

20

21  cv2.imshow('Where is input image?', image)

22  cv2.waitKey(0)

23  cv2.destroyAllWindows()

The input image is searched in the bigger image. Use the matchTemplate()  

function by passing the grayscale image.

Lines 1 and 2: Import the OpenCV and NumPy libraries.

Lines 4 through 8: Load the image that needs to be searched for and 

convert it to grayscale.

Line 10: Loads the bigger image in which the input image needs to be 

searched for.

Lines 13 and 14: cv2.matchTemplate() returns a correlation map, 

essentially a grayscale image. This image has each pixel that denotes 

the extent to which its neighborhood matches with the template. The 

minMaxLoc function returns the max and min intensity values as an array 

that includes the location of these intensities.
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MaxVal is the location with the highest intensity in the image. This is 

returned by matchTemplate() and corresponds to the best matching input 

image with regard to the defined template.

Lines 16 through 19: Draw a boundary with a padding value of 50 

and a thickness value of 5 pixels and in blue around the contours of the 

matching image.

 Challenges with Template Matching
While template matching helps when doing object detection and 

recognition in an image, there are several challenges with this 

methodology. If the image is rotated, scaled, modified for colors or 

brightness, or transformed, it is difficult to match or detect an input object 

in the image.

 Understanding Image “Features”
With the challenges of the template matching approach, you will now learn 

about image feature–driven object detection and recognition. To start, let’s 

look at what features are in the context of image processing.

Features correspond to the properties or attributes of an image. They 

play an important role in building accurate computer vision applications. 

Pixels, as you learned in Chapter 1, are used to compare two images.

The most basic form of feature detection is point features. In 

applications such as panorama creation on our smartphones, each image 

is stitched with the corresponding previous image. This stitching requires 

the correct orientation of an image overlapped with pixel-level accuracy. 

Computing corresponding pixels between two images requires pixel 

matching.
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 Interesting and Uninteresting Points

Within an image there can be interesting and uninteresting points. 

Interesting points in an image are those that can give the most information 

about the object in the image, and uninteresting points give either zero or 

no information about the image or the object in the image. Figure 5- 3  

shows an image of the Eiffel Tower with the image feature points and 

what could be an interesting or uninteresting point. The sky could be an 

uninteresting feature because it hardly gives the context of the monument. 

A point on the Eiffel Tower does give more information about it and hence 

becomes an interesting feature.

Figure 5-3. Image feature points
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The following are some characteristics of an interesting, or good, feature:

• Is repeatable: The same feature can be found in several 

other images despite any image transformations.

• Is salient/distinctive/unique: The feature is unique 

and has a distinctive description in the use case context.

• Is compact in number: There are a measurable 

number of pixels that describe the object in context.

• Is local: The object in context occupies a relatively 

smaller area within an image.

 Types of Image Features

There are primarily three types of image features: edges, regions, and 

corner features. These features of objects are used to track objects in an 

image by observing the change in intensity, as shown in Figure 5-4.

Figure 5-4. Changes in intensity
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 Feature Matching
Feature matching can be done in one of the following cases:

• There are two images, and you want to quantify 

whether these images match each other. There will 

usually be a comparison metric that is applied.

• There is a large database of images, and for every new 

image, you need to perform matching against the 

database of images. A smaller search criterion is stored 

and then compared with the input image instead of 

recomputing everything for every image in the database. 

This is called a feature vector of the image. For every new 

input image, a similar vector is extracted and stored.

• As an alternative approach, you have a small portion of the 

image stored as a template. The goal is to check whether 

an image has this template. This will require matching 

key points from the template against the given sample 

image. If the match value is greater than a threshold, you 

can say the sample image has a region similar to the given 

template. There is a possibility of showing where in the 

sample image your template image is.

 Image Corners As Features
In this section, you will learn how to use corners as features for object 

detection and recognition. While corners do not necessarily provide all 

the details of the objects, they are helpful in many cases. As indicated 

in Figure 5-4, when the blue frame is moved around the image and 

in particular you see that there is an intensity change in all directions 

(Figure 5-4, section 3), then that is identified as the corner of the image.
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Let’s look at some OpenCV code that explains how to identify a corner. 

You will use an algorithm in the OpenCV library called the Harris corner 

algorithm.

 Harris Corner Algorithm
This algorithm helps identify the inside corner of an image by checking the 

area that has maximum variations in intensity.

In 1988 Chris Harris and Mike Stephens developed this algorithm 

that can perform both edge detection and corner detection. Hence, this 

algorithm was named after one of the authors.

In OpenCV, the cv2.cornerHarris() function is used to achieve the 

corner detection.

cv2.cornerHarris(image, blockSize, ksize, k)

This function takes four arguments.

• img is the image to be analyzed; it must be in grayscale 

and with float32 values.

• blockSize is the size of the window considered for the 

corner detection.

• ksize is a parameter for the derivative of Sobel.

• k is a free parameter for the Harris equation.

The following OpenCV code takes an image input, identifies the 

corners, and marks them:

 1  import cv2

 2  import numpy as np

 3  from matplotlib import pyplot as plt

 4

 5  img = cv2.imread('blackandwhite.jpg',0)

 6  img = np.float32(img)
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 7  corners = cv2.cornerHarris(img,2,3,0.04)

 8

 9  corners = cv2.cornerHarris(img,2,3,0.04)

10

11  plt.subplot(2,1,1), plt.imshow(corners ,cmap = 'jet')

12   plt.title('Harris Corner Detection'), plt.xticks([]),  

plt.yticks([])

13

14  img2 = cv2.imread('blackandwhite.jpg')

15  corners2 = cv2.dilate(corners, None, iterations=3)

16  img2[corners2>0.01*corners2.max()] = [255,0,0]

17

18  plt.subplot(2,1,2),plt.imshow(img2,cmap = 'gray')

19   plt.title('Canny Edge Detection'), plt.xticks([]),  

plt.yticks([])

20

21  plt.show()

In the previous code, line 7 is the place where the Harris corner 

algorithm is invoked. Once the corners are identified, they are highlighted 

using the dilate() function, and the identified pixels are assigned the 

color red for showing in a new window. Figure 5-5 shows the input and 

output images.

Figure 5-5. Input and output images, corner detection
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Figure 5-6 shows another example of an input and output of corner 

detection.

Figure 5-6. Another example of corner detection

However, there are several challenges when corners are used as 

features for object detection. While corner matching works well with image 

rotations, translations or any photometric changes such as brightness, 

intensity changes, and image scaling does not work.

 Feature Tracking and Matching Flow
In this section, you will learn the standard flow for feature extraction 

and matching. Figure 5-7 shows the generic steps involved in feature 

extraction.

Create
Feature
Detector

Input an
Image Into

the Detector

Extract Key
Points

Draw Key
Points

Figure 5-7. Feature extraction workflow
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The first step is to create a standard feature extractor and then extract 

robust features from a given image. This process involves scanning 

through the whole image for possible features and then thresholding them. 

There are several techniques for selecting features such as SIFT, SURF, 

FAST, BRIEF, ORB detectors, and so on. In the next sections, we will cover 

these methods in depth. The feature extracted, in some cases, needs to 

be converted into a more descriptive form so that it can be learned by the 

model or can be stored for re-reading.

In the case of feature matching, say you are given a sample image 

and want to see whether this matches a reference image. After feature 

detection and extraction, as shown previously, a distance metric is formed 

to compute the distance between features of the sample with respect to the 

features of reference. If this distance is less than the threshold, you can say 

the two images are similar.

 Scale Variant Feature Transform
Scale Variant Feature Transform (SIFT) is currently patented but can be 

freely used for academic purposes.

You saw in the previous section some of the challenges with using 

corners for feature extraction and how it doesn’t work well when scaling 

up. In Figure 5-8, you can see how detecting a corner can fail.

Figure 5-8. Corner detection failure
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The SIFT approach addresses this challenge. You can find more details 

about SIFT and how it works at www.inf.fu-berlin.de/lehre/SS09/CV/

uebungen/uebung09/SIFT.pdf.

OpenCV has built-in functions for SIFT, but they need to be explicitly 

installed since they are patented.

The following steps and code show how to implement the SIFT 

functions:

 1. Load an image and convert it to grayscale.

 2. Construct a SIFT object using the SIFT() function.

 3. The sift.detect() function finds the keypoint 

in the images. You can pass a mask if you want to 

search only part of the image. Each keypoint is a 

special structure that has many attributes such 

as its (x,y) coordinates, size of the meaningful 

neighborhood, angle that specifies its orientation, 

response that specifies the strength of the keypoints, 

and so on.

 4. OpenCV also provides the cv2.drawKeyPoints() 

function, which draws small circles on the locations 

of the keypoints. If you pass the flag cv2.DRAW_

MATCHES_FLAGS_DRAW_RICH_KEYPOINTS to it, it will 

draw a circle with the size of the keypoint, and it will 

even show its orientation.

 1  import cv2

 2  import numpy as np

 3

 4  image = cv2.imread('images/input.jpg')

 5  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6
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 7  #Create SIFT Feature Detector object

 8  sift = cv2.SIFT()

 9

10  #Detect key points

11  keypoints = sift.detect(gray, None)

12  print("Number of keypoints Detected: ", len(keypoints))

13

14  # Draw rich key points on input image

15   image = cv2.drawKeypoints(image, keypoints,  

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

16

17  cv2.imshow('Feature Method - SIFT', image)

18  cv2.waitKey(0)

19  cv2.destroyAllWindows()

The program results are shown in Figure 5-9; the input image is shown 

on top, and the output image is shown at the bottom.
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 Speeded-Up Robust Features
Like SIFT, Speeded-Up Robust Features (SURF) is patented but can be 

openly used for academic purposes. It needs to be explicitly imported 

since it is patented. You can find more details on what SURF is and how it 

works at www.vision.ee.ethz.ch/~surf/eccv06.pdf.

OpenCV provides functions for SURF like SIFT. Similar to SIFT, SURF 

has functions such as detect() and compute(). The following code sample 

shows the implementation steps:

 1  import cv2

 2  import numpy as np

Figure 5-9. SIFT example (source: AIShack)
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 3

 4  image = cv2.imread('images/input.jpg')

 5  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6

 7  #Create SURF Feature Detector object

 8  surf = cv2.SURF()

 9

10  # Only features, whose hessian is larger than hessianThreshold  

are retained by the detector

11  surf.hessianThreshold = 500

12  keypoints, descriptors = surf.detectAndCompute(gray, None)

13  print "Number of keypoints Detected: ", len(keypoints)

14

15  # Draw rich key points on input image

16   image = cv2.drawKeypoints(image, keypoints,  

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

17

18  cv2.imshow('Feature Method - SURF', image)

19  cv2.waitKey()

20  cv2.destroyAllWindows()

 Features from Accelerated Segment Test
Features from Accelerated Segment Test (FAST) was first introduced 

in 2006 by Edward Rosten and Tom Drummond. The previous feature 

detectors are not useful for real-time applications, for example those 

with video cameras collecting real-time images or robots. These use 

cases will fail if any delay is caused in feature detection at runtime. 

The FAST algorithm uses a pixel neighborhood to compute key points 

in an image.
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For the neighborhood, three flags are defined: cv2.FAST_FEATURE_

DETECTOR_TYPE_5_8, cv2.FAST_FEATURE_DETECTOR_TYPE_7_12, and cv2.

FAST_FEATURE_DETECTOR_TYPE_9_16. The following is some simple code to 

detect and draw the FAST feature points:

 1  import cv2

 2  import numpy as np

 3

 4  image = cv2.imread('images/input.jpg')

 5  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6

 7  # Create FAST Detector object

 8  fast = cv2.FastFeatureDetector()

 9

10  # Obtain Key points, by default non max suppression is On

11  # to turn off set fast.setBool('nonmaxSuppression', False)

12  keypoints = fast.detect(gray, None)

13  print "Number of keypoints Detected: ", len(keypoints)

14

15  # Draw rich keypoints on input image

16   image = cv2.drawKeypoints(image, keypoints,  

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

17

18  cv2.imshow('Feature Method - FAST', image)

19  cv2.waitKey()

20  cv2.destroyAllWindows()

 Binary Robust Independent Elementary Features
Binary Robust Independent Elementary Features (BRIEF) is a relatively 

faster method feature descriptor calculator and matching algorithm. 

Additionally, it provides a higher-recognition rate except for the cases 
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where there is plane rotation. You can find more details about what BRIEF 

is and how it works at  http://cvlabwww.epfl.ch/~lepetit/papers/

calonder_pami11.pdf.

The following code shows the computation of BRIEF descriptors with 

the help of a CenSurE detector:

 1  import cv2

 2  import numpy as np

 3

 4  image = cv2.imread('images/input.jpg')

 5  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 6

 7  # Create FAST detector object

 8  fast = cv2.FastFeatureDetector()

 9

10  # Create BRIEF extractor object

11  brief = cv2.DescriptorExtractor_create("BRIEF")

12

13  # Determine key points

14  keypoints = fast.detect(gray, None)

15

16  # Obtain descriptors and new final keypoints using BRIEF

17  keypoints, descriptors = brief.compute(gray, keypoints)

18  print "Number of keypoints Detected: ", len(keypoints)

19

20  # Draw rich keypoints on input image

21   image = cv2.drawKeypoints(image, keypoints, flags=cv2.DRAW_

MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

22

23  cv2.imshow('Feature Method - BRIEF', image)

24  cv2.waitKey()

25  cv2.destroyAllWindows()
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 Oriented FAST and Rotated BRIEF
ORB is a combination of a FAST keypoint detector and a BRIEF descriptor 

with additional performance fixes. This method applies the FAST 

technique to identify the keypoints followed by the measurement of the 

top n points using the Harris corner method.

OpenCV has an ORB() function that can use a feature2d common 

interface. For more details on what ORB is and how it works, refer to 

http://www.willowgarage.com/sites/default/files/orb_final.pdf.

 1  import numpy as np

 2  import cv2

 3  from matplotlib import pyplot as plt

 4

 5  img = cv2.imread('simple.jpg',0)

 6

 7  # Initiate STAR detector

 8  orb = cv2.ORB()

 9

10  # find the keypoints with ORB

11  kp = orb.detect(img,None)

12

13  # compute the descriptors with ORB

14  kp, des = orb.compute(img, kp)

15

16  # draw only keypoints location,not size and orientation

17  img2 = cv2.drawKeypoints(img,kp,color=(0,255,0), flags=0)

18  plt.imshow(img2),plt.show()

Chapter 5  ObjeCt DeteCtiOn anD reCOgnitiOn

http://www.willowgarage.com/sites/default/files/orb_final.pdf


117

 Conclusion
In this chapter, you learned about the difference between object detection 

and recognition. You learned about what image features are and how they 

are important for object detection and feature tracking. You also learned 

how to detect corners, especially using OpenCV’s built-in functions. 

Additionally, the chapter covered important detectors such as SIFT, 

SURF, FAST, BRIEF, and ORB with steps for implementing them using the 

OpenCV and Python libraries.

In the next chapter, you will learn how to do object tracking in motion 

using specific OpenCV functions.
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CHAPTER 6

Motion Analysis 
and Object Tracking
The goal of this chapter is to cover motion analysis and the tracking of 

objects. You will learn how to get information about different types of 

objects in motion, understand techniques to remove background and 

foreground information, and see real-time tracking options with hands-on 

implementation steps. The topics in this chapter are an extension of the 

object detection and recognition techniques you learned about in  

Chapter 5 and hence require a thorough understanding of that chapter.

The following topics are covered in detail in this chapter:

• Object tracking techniques, including using frame 

differencing to learn some information about an object 

in motion

• Background and foreground subtraction

• Using optical flow techniques for object feature 

tracking

• Building interactive object tracking using the meanshift 

and camshift techniques
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 Introduction to Object Tracking
Object tracking is the process of estimating the exact position of an object 

while the object is in motion or across consecutive image frames within a 

video. In simple terms, it is all about tracking an object across a sequence of 

images or measuring its relative movement with respect to other objects in 

the frame. Object detection, covered in Chapter 5, forms an important step 

in object tracking. Figure 6-1 shows the basic steps for tracking an object.

Figure 6-1. Basic object tracking

There are many applications of object tracking, such as security 

surveillance, augmented reality, traffic monitoring, self-driving cars, action 

recognition, and so on. In the case of augmented reality, within the context 

of a video, a three-dimensional object is placed based on the relative 

disposition of the other objects in the video, thus giving an impression 

of its real existence in that location. In the case of self-driving cars, the 

distances of the car in motion to the other vehicles moving alongside it are 

measured to compute the exact speed at which the self-driving car needs 

to go. If the distance relative to a neighboring car increases, this means 

the current speed can be increased, and vice versa. The increased speed 

should not cross the speed limit restrictions defined for that area. In effect, 

this process can turn out to be complex because of the large number of 

parameters influencing the decision-making process.

The ability to track an object in a video depends on multiple factors, 

such as knowledge about what the object in context is, what parameters of 

the object are being tracked, and what type of video is showing the object.
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 Challenges of Object Tracking
In addition to all the challenges that apply to image processing (covered 

in Chapter 1) that in general also apply to object tracking, the following 

challenges need to be dealt with:

• Object occlusion: When the target image is hidden 

behind something, it is difficult to both detect and 

update when future images come in.

• Speed: When the motion of an object is fast, the output 

video usually is blurred or jittery. Hence, any sudden 

changes in the motion of cameras lead to problems in 

tracking applications.

• Shape: Tracking objects that are nonrigid (i.e. the 

shape is not constant) will result in failure on object 

detection and thus tracking.

• False positives: When there are multiple similar objects, 

it is hard to match which object is targeted in subsequent 

images. The tracker may lose the current object in terms 

of detection and start tracking a similar object.

These challenges can make applications crash suddenly or give a 

completely incorrect estimate of an object’s location.

 Object Detection Techniques for Tracking
Object tracking uses object detection techniques that are applied across 

consecutive frames of a video. As you learned in Chapter 5, object 

detection is about defining a bounding box for an object. Since a video has 

a set of consecutive image frames, the bounding box application will need 

to be extended and applied for every frame. For object tracking to show the 
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required results, the object that is being tracked is assumed to be available 

across all the frames. A robust matching formula can confirm that the 

same object is between two frames.

The first step in the process of object tracking is to identify objects of 

interest in the video sequence and to cluster pixels of these objects. Since 

moving objects are typically the primary source of information, most 

methods focus on the detection of such objects. This is also referred to as 

tracking by detection. Figure 6-2 shows the object detection techniques 

applied for object tracking.

Figure 6-2. Object detection techniques

 Frame Differentiation
Frame differencing is a technique to measure the difference between two 

video frames by observing the position of one or more objects in context. 

The pixel definitions are observed for any changes as this is an indication 

of changes in the image. A pixel change indicates a change in the image.

Frame differentiation is all about determining the presence of moving 

objects by calculating the pixel difference between two consecutive images 
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in a video. While the general calculation is simple and easy to implement, 

complexity creeps in because of the “moving” object, which can jeopardize 

the accuracy. To differentiate the real movement from noise, some blur, 

and threshold techniques as the difference in the frame could come from 

a change in the light conditions as well. Frame differentiation techniques 

have high accuracy and relatively lower or moderate computational time; 

this method works well for static backgrounds.

 Background Subtraction
Background subtraction is an important preprocessing technique in 

vision-based applications because it helps separate the background from 

the foreground in video streams. An interesting use case for this technique 

is a ticket counter where the background is static but the foreground has 

visitors coming to the counter to buy tickets. The requirement could be 

counting the number of visitors coming to the counter in the day. In this 

case, you first need to extract each person alone.

If there is an image or a frame of video that just has the static 

background and no moving visitors, it is a straightforward task because 

all you need to do is subtract the new image from the background to 

extract the foreground alone. The real-world cases wouldn’t be this 

simple, so extracting the background is a mandatory step. Newer 

complexities would arise when there is a shadow, since as the shadow 

moves, a part of the background would be removed too; therefore, 

the accuracy of the solution suffers. All background subtraction 

methods are moderate on accuracy as well as computational time. 

The Gaussian mixture method requires less memory but cannot cope 

with a multimodal background. The approximate median method 

requires a buffer with the recent pixel values. There are three categories 

of algorithms built for this purpose in OpenCV 3.x. The functions 

createBackgroundSubtractorMOG(), createBackgroundSubtractorMOG2(), 

and createBackgroundSubtractorGMG() have been replaced by much 
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more efficient KNN-based background subtraction algorithms. The MOG() 

and MOG2() functions are Gaussian mixture-based methods that use 

background and foreground segmentation analysis. These functions are 

available only up to OpenCV 2.1.x.

The GMG() function adopts Bayesians methods for background and 

foreground segmentation. Similar to MOG() functions, the GMG() function is 

not available beyond OpenCV 2.1.x.

The function createBackgroundSubtractorKNN() in OpenCV iterates 

through each frame of the video and morphs the foreground with the 

background, thus helping the focus to be just on the object that needs to be 

tracked across frames.

The K-nearest neighbor (KNN) algorithm classifies unknown data 

points by finding the most common class among the “k” closest examples. 

Each data point in the k closest examples adds to the weight, and the 

one maximum weightage is used to classify the object. This algorithm is 

synonymous to the English saying, “Tell me who your neighbors are, and 

I’ll tell you who you are.”

For more details on how the algorithm works and its syntax, please 

refer to https://docs.opencv.org/3.4/db/d5c/tutorial_py_bg_

subtraction.html.

The following code sample demonstrates how to implement the KNN 

method for background subtraction:

 1  import numpy as np

 2  import cv2

 3

 4  cap = cv2.VideoCapture(0)

 5

 6  kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))

 7  fgbg = cv2.createBackgroundSubtractorKNN()

 8

 9  while(1):
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10      ret, frame = cap.read()

11

12      fgmask = fgbg.apply(frame)

13      fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)

14

15      cv2.imshow('frame',fgmask)

16

17      if cv2.waitKey(1) == 13:

18          break

19

20  cap.release()

21  cv2.destroyAllWindows()

Figure 6-3 shows the output from this function.

Figure 6-3. The output for implementing the KNN method

 Optical Flow
Optical flow denotes the motion of the objects in an image from one frame 

to another that is caused by either the motion of the image or the camera. 

It is represented as a 2D vector field that has each element representing the 

movement of the points from one frame to another. Figure 6-4 represents 

the movement of a ball from one position to another across five consecutive 

frames.
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Some of the use cases of optical flow include representing the structure 

from motion, video compression, and video stabilization, among others. 

The optical flow method assumes that there is no change in the pixel 

intensities of an object between consecutive frames, and neighboring 

pixels also have similar motion. Optical flow methods are relatively high in 

computational time and moderate on accuracy.

 Lucas–Kanade Differential Algorithm

The Lucas–Kanade differential algorithm helps in tracking the keypoints of 

an object in a video that has corner features such as tracking a car on the 

race track (by a drone).

OpenCV provides the cv2.calcOpticalFlowPyrLK() function for 

the Lucas–Kanade algorithm. First, consider the input video, which sets 

the parameters for corner detection and the Lucas–Kanade algorithm. 

Initialize a set of colors to create the trails of the object movement.

 4  # Load video stream

 5  cap = cv2.VideoCapture('images/test.avi')

 6

 7  # Set parameters for ShiTomasi corner detection

Figure 6-4. Optical flow (source: OpenCV documentation)
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 8  feature_params = dict( maxCorners = 100,

 9                         qualityLevel = 0.3,

10                         minDistance = 7,

11                         blockSize = 7 )

12

13  # Set parameters for lucas kanade optical flow

14  lucas_kanade_params = dict( winSize  = (15,15),

15                    maxLevel = 2,

16                     criteria = (cv2.TERM_CRITERIA_EPS | cv2.

TERM_CRITERIA_COUNT, 10, 0.03))

Take the first frame, find the corners, and create a mask to track the 

movement in the next frames. Loop through each frame, calculate the 

optical flow, identify and store the good points, draw the track, and show 

the optical flow.

22  # Take first frame and find corners in it

23  ret, prev_frame = cap.read()

24  prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)

25

26  # Find inital corner locations

27   prev_corners = cv2.goodFeaturesToTrack(prev_gray, mask = 

None, **feature_params)

28

29  # Create a mask image for drawing purposes

30  mask = np.zeros_like(prev_frame)

31

32  while(1):

33      ret, frame = cap.read()

34      frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

35

36      # calculate optical flow
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37       new_corners, status, errors =  cv2.calcOpticalFlowPyrLK 

(prev_gray,

38                                    frame_gray,

39                                    prev_corners,

40                                    None,

41  **lucas_kanade_params)

42

43      # Select and store good points

44      good_new = new_corners[status==1]

45      good_old = prev_corners[status==1]

46

47      # Draw the tracks

48      for i,(new,old) in enumerate(zip(good_new, good_old)):

49          a, b = new.ravel()

50          c, d = old.ravel()

51          mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)

52          frame = cv2.circle(frame, (a,b), 5, color[i].tolist(),-1)

53

54      img = cv2.add(frame,mask)

55

56      # Show Optical Flow

57      cv2.imshow('Optical Flow - Lucas-Kanade',img)

58      if cv2.waitKey(1) == 13: #13 is the Enter Key

59          break

60

61      # Now update the previous frame and previous points

62      prev_gray = frame_gray.copy()

63      prev_corners = good_new.reshape(-1,1,2)

Figure 6-5 shows the output of this program.
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Figure 6-5. The results of the Lucas–Kanade algorithm

 Dense Optical Flow Algorithm

Unlike the Lucas–Kanade method that looks at corner-like features, the 

dense optical flow algorithm looks at all the points on an image. Colors are 

used to reflect movement, with the hue representing the direction and the 

value representing the speed. This makes this algorithm relatively slower.

First, load the input video and get the hue colors for the first frame. For 

each frame, convert it to grayscale, compute the optical flow, and calculate 

the magnitude and the color to reflect the speed of the angle, mark the 

color in the frame, and show the video until the frames are exhausted.

 4  # Load video stream

 5  cap = cv2.VideoCapture("images/walking.avi")

 6

 7  # Get first frame

 8  ret, first_frame = cap.read()

 9  previous_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)

10  hsv = np.zeros_like(first_frame)
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11  hsv[...,1] = 255

12

13  while True:

14

15      # Read of video file

16      ret, frame2 = cap.read()

17      next = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)

18

19       # Computes the dense optical flow using the Gunnar 

Farneback’s algorithm

20      flow = cv2.calcOpticalFlowFarneback(previous_gray, next,

21                                         None, 0.5, 3, 15, 3, 

5, 1.2, 0)

22

23       # use flow to calculate the magnitude (speed) and angle 

of motion

24       # use these values to calculate the color to reflect 

speed and angle

25      magnitude, angle = cv2.cartToPolar(flow[...,0], flow[...,1])

26      hsv[...,0] = angle * (180 / (np.pi/2))

27       hsv[...,2] = cv2.normalize(magnitude, None, 0, 255, 

cv2.NORM_MINMAX)

28      final = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

29

30      # Show our demo of Dense Optical Flow

31      cv2.imshow('Dense Optical Flow', final)

32      if cv2.waitKey(1) == 13: #13 is the Enter Key

33          break

34

35      # Store current image as previous image

36      previous_gray = next
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Figure 6-6 shows the output of this program.

Figure 6-6. The dense optical flow results

 Object Classification
Some objects extracted from the moving region could be birds, moving 

clouds, humans, or even swaying trees. We covered the shape features in 

Chapter 5 that apply for both stationary and moving objects. Figure 6-7 

shows some standard approaches to classifying objects.

Figure 6-7. Object classification techniques
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 Shaped-Based Classification
There are many descriptions of shape information about motion regions 

such as the representation of points, blobs, or boxes to classify a given 

object. Classification is done on every frame for the object, and the 

results are stored in a histogram. Shape-based classification has a lower 

computational time and a relatively lower accuracy because template 

matching techniques can be applied.

 Motion-Based Classification
Moving objects have a periodic property called residual flow that can be 

used for classification. Residual flow is used to analyze the rigidity and 

periodicity of the moving objects. Rigid objects present a little residual 

flow, whereas a nonrigid moving object like a human being has a higher 

average residual flow and displays a periodic component. Motion-based 

classification has a high computational time and relatively lower accuracy. 

Though it doesn’t require templates, it fails to identify a static human/

nonrigid object.

 Color-Based Classification
Color usually is not the most appropriate feature of an object to use for 

classification, but, among all the object features, color is fairly constant 

and can also be easily acquired. Furthermore, it is one of the features 

that can be exploited when needed. Color histograms are used to detect 

and track vehicles in real time. A Gaussian distribution model is used to 

understand the color distribution in a sequence of images, which is useful 

to segment the background and the object. Color-based classification 

has a higher computational time and relatively higher accuracy because 

template matching techniques can be applied.
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 Texture-Based Classification
This techniques uses gradient orientation in the selected portions of 

the image. This method can result in more accuracy because it uses 

overlapping contrast normalization in a dense grid of uniformly spaced 

calls. Texture-based classification has a higher computational time and 

relatively higher accuracy than other methods.

 Object Tracking Methods
You learned about the basic definition and purpose of object tracking 

at the beginning of this chapter. As a quick recap, an object is tracked to 

extract objects, recognize and track objects, and make decisions about 

activities. Object tracking, at a high level, can be classified as point 

tracking, kernel-based tracking, and silhouette-based tracking (Figure 6-8).

Figure 6-8. Some object tracking techniques

Both kernel- and silhouette-based tracking require the object to first 

appear in the scene, while point tracking works on object detection in 

every frame.
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 Point Tracking Method
Point tracking is done using the feature points of the moving object. There 

are three methods for point tracking: Kalman filtering, particle filtering, 

and multiple hypothesis.

• Kalman filtering uses a restrictive probability density 

propagation algorithm. It supports estimation of 

past, present, and future states using its efficient 

recursive estimation techniques. There are two kinds 

of equations: time update equations and measurement 

update equations. Time update equations provide a 

future state using the details of the current state and 

error covariance estimations, and measurement update 

equations help in the feedback process in the recursive 

flow. Kalman filtering assumes normal distribution of 

all variables, which results in poor approximation of 

future states of the variables.

• Particle filtering considers a variable at one time and 

generates all the models for that variable. This method 

supports the dynamicity of variable states and also 

allows for a new operation of resampling. Particle 

filtering overcomes the restrictions that Kalman filters 

pose because they use contours, color features, or 

texture mapping. This method uses Bayesian sequential 

importance. The sample technique recursively 

approaches the distribution using a finite set of 

weighted trials.
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• Multiple hypothesis tracking (MHT) observes more 

than one frame for better tracking results. MHT is an 

iterative mechanism as well. Every iteration starts with 

an existing track and a hypothesis that has a set of 

disconnected tracks. For each hypothesis, the future 

position of the object in the next frame is predicted. 

Each of these predictions is compared using distance 

measures. MHT can track multiple objects and also 

handle occlusions.

 Kernel-Based Tracking Methods
Kernel-based tracking methods measure a moving object’s emerging 

region between frames. The object’s movement can be a parametric 

motion such as a translation, conformal, affine, and so on. Technically, 

this refers to measuring the motion of the object using geometric shapes. 

The downside of using geometric shapes is the inability to differentiate 

the portions of the object or the backgrounds overlapping when the object 

is in motion. Some of the kernel-based tracking methods include simple 

template matching (this was first covered in Chapter 5, but we will revise 

the process summary here), meanshift method, support vector machine 

method (SVM), and layering-based tracking methods.

 Simple Template Matching

Template matching is a method used to process digital images where a 

small part of an image that matches with an image template is identified 

iteratively in each frame. The matching process includes verifying the 

image portion with a template that has all the possible positions, and the 

success of the matching is measured by a numeric index that is calculated 

when compared.
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 Meanshift Method

The meanshift tracking method iteratively finds the area of a video frame 

that is most similar to the previously initialized model. This image region 

is stored as a histogram, and using the gradient method, the tracker is 

brought to a location that is more similar to the model. In object tracking 

algorithms, the target representation is mainly a rectangular or elliptical 

region. It contains the target model and target candidate. To characterize 

the target, a color histogram is chosen. The target model is generally 

represented by its probability density function (PDF). The target model is 

regularized by spatial masking with an asymmetric kernel. This is executed 

iteratively for each frame.

The following is the step-by-step implementation for the meanshift 

method for object tracking in a video. First you initialize the webcam and 

crop the region that has the object of interest. Then you plot a histogram 

for the current frame.

 4  # Initialize webcam

 5  cap = cv2.VideoCapture(0)

 6

 7  # take first frame of the video

 8  ret, frame = cap.read()

 9  print type(frame)

10

11  # setup default location of window

12  r, h, c, w = 240, 100, 400, 160

13  track_window = (c, r, w, h)

14

15  # Crop region of interest for tracking

16  roi = frame[r:r+h, c:c+w]

17

18  # Convert cropped window to HSV color space
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19  hsv_roi =  cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

20

21  # Create a mask between the HSV bounds

22  lower_purple = np.array([125,0,0])

23  upper_purple = np.array([175,255,255])

24  mask = cv2.inRange(hsv_roi, lower_purple, upper_purple)

25

26  # Obtain the color histogram of the ROI

27  roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])

28

29  # Normalize values to lie between the range 0, 255

30  cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

Define the termination criteria. The centroid shift computations 

should stop to make it finite, and the criteria either can be a fixed set of ten 

iterations or can be set to when the centroid is shifted by at least one pixel.

32  # Setup the termination criteria

33  #  We stop calculating the centroid shift after ten 

iterations

34  #  or if the centroid has moved at least 1 pixel

35   term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_

COUNT, 10, 1 )

Iterate through each frame, calculate the histogram back projection, 

apply the meanshift method to get the new location and draw it on the 

window, and iterate until the condition terminates.

37  while True:

38

39      # Read webcam frame

40      ret, frame = cap.read()

41
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42      if ret == True:

43

44          # Convert to HSV

45          hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

46

47          # Calculate the histogram back projection

48          # Each pixel's value is it's probability

49           dst = cv2.calcBackProject([hsv],[0],roi_hist, 

[0,180],1)

50

51          # apply meanshift to get the new location

52           ret, track_window = cv2.meanShift(dst, track_window, 

term_crit)

53

54          # Draw it on image

55          x, y, w, h = track_window

56          img2 = cv2.rectangle(frame, (x,y), (x+w, y+h), 255, 2)

57

58          cv2.imshow('Meansift Tracking', img2)

59

60          if cv2.waitKey(1) == 13: #13 is the Enter Key

61              break

62

63      else:

64          break

Figure 6-9 shows the output of the meanshift program.

Chapter 6  Motion analysis and objeCt traCking



139

Figure 6-9. Output of the meanshift method
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Another variation of the meanshift method is the continuously 

adaptive meanshift (CAM) shift method. The meanshift method assumes 

a fixed-size window. CAM shift extends meanshift and applies meanshift 

iteratively until it converges. The window size per iteration is recomputed, 

and the orientation for the best fitting of the ellipse is also computed.

The following is the step-by-step implementation for the CAM shift 

method for object tracking in a video. First, initialize the webcam and crop 

the region that has the object of interest. Then, plot a histogram for the 

current frame.

 4  # Initialize webcam

 5  cap = cv2.VideoCapture(0)

 6

 7  # take first frame of the video

 8  ret, frame = cap.read()

 9

10  # setup default location of window

11  r, h, c, w = 240, 100, 400, 160

12  track_window = (c, r, w, h)

13

14  # Crop region of interest for tracking

15  roi = frame[r:r+h, c:c+w]

16

17  # Convert cropped window to HSV color space

18  hsv_roi =  cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

19

20  # Create a mask between the HSV bounds

21  lower_purple = np.array([130,60,60])

22  upper_purple = np.array([175,255,255])

23  mask = cv2.inRange(hsv_roi, lower_purple, upper_purple)

24
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25  # Obtain the color histogram of the ROI

26  roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180])

27

28  # Normalize values to lie between the range 0, 255

29  cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

Define the termination criteria. The centroid shift computations 

should stop to make it finite, and the criteria either can be a fixed set of ten 

iterations or can be set to when the centroid is shifted by at least one pixel.

31  # Setup the termination criteria

32  # We stop calculating the centroid shift after ten iterations

33  # or if the centroid has moved at least 1 pixel

34   term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_

COUNT, 10, 1 )

Iterate through each frame, calculate the histogram back projection, 

apply the CAM shift method to get the new location and draw it on the 

window, and iterate until the condition terminates. The difference between 

the meanshift method and the CAM shift method is that you use polylines to 

show the adaptive boxes that are computed by the CAM shift function.

36  while True:

37

38      # Read webcam frame

39      ret, frame = cap.read()

40

41      if ret == True:

42          # Convert to HSV

43          hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

44
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45          # Calculate the histogram back projection

46          # Each pixel's value is it's probability

47          dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)

48

49          # apply Camshift to get the new location

50           ret, track_window = cv2.CamShift(dst, track_window, 

term_crit)

51

52          # Draw it on image

53          # We use polylines to represent Adaptive box

54          pts = cv2.boxPoints(ret)

55          pts = np.int0(pts)

56          img2 = cv2.polylines(frame,[pts],True, 255,2)

57

58          cv2.imshow('Camshift Tracking', img2)

59

60          if cv2.waitKey(1) == 13: #13 is the Enter Key

61              break

62

63      else:

64          break
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Figure 6-10 shows the output of the CAM shift program.

Figure 6-10. Output of the CAM shift code
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The meanshift method will work well if there is prior knowledge of the 

object that needs to be tracked. The CAM shift method works well when 

the object that is being tracked changes shape with a changing camera 

perspective.

 Support Vector Machine

The support vector machine (SVM) classification method provides both 

positive and negative training values to represent both sets of objects 

that are tracked and not tracked. This method can handle a single-image, 

partial occlusion of an object, but it is a prerequisite to initialize the model.

 Layering-Based Tracking

Layering-based tracking uses kernel-based tracking to track multiple 

objects. Each layer consists of shape representation (ellipse), motion such 

as translation and rotation, and layer appearance based on intensity. 

Layering here is nothing but isolating the motion of the object that is 

tracked from the motion of the other parts or the background of the image. 

The probability of each pixel of the object being tracked is computed 

relative to the shape features and background motion.

 Silhouette-Based Tracking
In most cases, objects don’t have specific geometric contours, such as a 

human body, hand, fingers, and so on. Silhouette-based tracking does 

well tracking objects of this sort because it can support an accurate shape 

description for the objects. The objective of the silhouette-based object 

tracking method is to find the object in context from a region in every 

frame using the object model generated by the previous frames. This 

method supports flexible object shapes and object split and merge cases 

as well. This method has two approaches: contour tracking and shape 

matching.
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 Contour Tracking

Based on a primary contour defined in the initial frame, contour-based 

tracking iteratively uses the previously defined contour to its position in 

the current frame. This contour progress requires that a certain amount 

of the object in the current frame overlay the object region in the previous 

frame. Contour tracking can either use state space models to model the 

contour shape or use motion or gradient descent techniques.

 Shape Matching

Shape matching is similar to the template-based tracking used in 

the kernel approach. Detection based on a silhouette is carried out 

by background subtraction. Model objects are in the form of density 

functions, silhouette boundaries, and object edges. It is capable of dealing 

with single objects and occlusion handling, which is performed with 

Hough transform techniques.

 Conclusion
In this chapter, you learned how to track moving objects. The different 

steps involved in object tracking such as object detection, classification, 

and tracking were covered with approaches or methods for each step. For 

specific cases such as optical flow, techniques such as the Lucas–Kanade 

algorithm and dense optical flow algorithm were explained with step-by- 

step implementation guides. You also learned how to use the meanshift 

and CAM shift techniques to track moving objects in a video. You looked 

at what background subtraction is, why and where it is used, and how to 

implement the KNN approach in OpenCV 3.4.x.

This chapter concludes all the key OpenCV functions for implementing 

critical computer vision use cases.
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