
Make Your Own
Python Text
Adventure

A Guide to Learning
Programming

Phillip Johnson

Make Your Own Python Text Adventure

ISBN-13 (pbk): 978-1-4842-3230-9 ISBN-13 (electronic): 978-1-4842-3231-6
https://doi.org/10.1007/978-1-4842-3231-6

Library of Congress Control Number: 2017960887

Copyright © 2018 by Phillip Johnson

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484232309.
For more detailed information, please visit http://www.apress.com/source-code.

Phillip Johnson
New York, USA

Chapter 1: Getting Started ��1

Introduction ���1

Who This Book Is For ���2

How To Use This Book ���2

Setting Up Your Workspace ���4

Python Versions ���4

Installing Python ��4

Verify Your Installation ��6

Chapter 2: Your First Program ��9

Creating a Module ���10

Writing Code ���10

Running Python Programs ��11

Homework ���12

Chapter 3: Listening to Your Users ���13

Your Friends: stdout and stdin ��13

Reading from Standard Input ��15

Saving Information ��15

Data Types ���17

Homework ���18

Contents

Chapter 4: Decisions ���19

Booleans ���20

If-statements ��22

Boolean Operations ���24

Homework ���26

Chapter 5: Functions ��27

Data In, Data Out ���28

Homework ���32

Chapter 6: Lists���33

What Is a List? ��33

Common List Operations ���35

Add ��35

Length ���35

Get ���36

Search ���36

Adding Lists to the Game ��38

Homework ���39

Chapter 7: Loops ���41

While Loops ���41

For-Each Loops ���43

Loop Counters ���44

Ranges ���45

Using Enumerate ���47

Nesting ��49

The Game Loop ���51

Homework ���52

Table of ConTenTs

Chapter 8: Objects ��53

Object Members ��53

Defining Objects with Classes���54

Using __init()__ to Initialize Objects ���55

Using __str__() to Print Objects ��57

Adding Weapons to the Game ���60

A Dash of Object-Oriented Programming ��61

Homework ���64

Chapter 9: Exceptions ���65

Validating User Input ���65

Checking Object Members ��66

Raising Exceptions Intentionally ���68

Homework ���70

Chapter 10: Intermezzo ��71

Organizing Code Into Multiple Files ��71

Importing from Other Files ��75

Homework ���76

Chapter 11: Building Your World ��77

The X-Y Grid ��77

Moving in the World ��81

Chapter 12: Making the World More Interesting ��������������������������������85

Enemies ��85

Do You Have Any Potions…or Food? ��93

Table of ConTenTs

Chapter 13: World-Building Part 2 ��99

Dictionaries ���99

Creating a Dictionary ��100

Get ���100

Add/Update ��101

Delete ��102

Loop ���102

Limiting Actions ��103

Expanding the World ���107

Chapter 14: Econ 101 ���115

Share the Wealth ���115

Giving the Trader a Home ��118

Expanding the World ���122

Chapter 15: Endgame ���127

Finishing Up ��127

What Next? ��129

Add More Features to the Game ��129

Make Your Job Easier with Python Scripts ��130

Write a Web Application ��130

Appendix A: Homework Solutions ��131

Chapter 2: Your First Program ���131

Chapter 3: Listening to Your Users ��132

Chapter 4: Decisions ���133

Chapter 5: Functions ���134

Chapter 6: Lists ���135

Table of ConTenTs

Chapter 7: Loops ���137

Chapter 8: Objects ���139

Chapter 9: Exceptions ���143

Appendix B: Common Errors ���145

AttributeError ��145

NameError ���145

TypeError ���146

 Index ���147

Table of ConTenTs

1© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_1

CHAPTER 1

Getting Started
 Introduction
So you’ve heard the Internet chanting, “Learn to code! Learn to code!”,

and you’ve read that Python is a good place to start…but now what? Many

people who want to program don’t know where to start. The idea that you

can create “anything” with code is paralyzing. This book provides a clear

goal: learn Python by creating a text adventure.

This book will teach you the fundamentals of programming, including

how to organize code and some coding best practices. By the end of

the book, you will have a working game that you can play or show off to

friends. You will also be able to change the game and make it your own

by writing a different story line, including adding new items, creating new

characters, etc.

Learning to program is an exciting endeavor, but can feel daunting

at first. However, if you stick with it, you could become a professional

programmer or a weekend hobbyist, or both! My story is similar to

the stories of many programmers: The first thing I programmed was a

number guessing game in QBASIC and now programming is my job. I

hope that you, too, can join us, and I thank you for choosing this book as

the place to start.

2

 Who This Book Is For
This book is intended for people who have never programmed before or

for novice programmers starting out with Python. If you’re in this second

group, you can probably skim some of the early material.

Although this is geared toward beginners, I do make some

assumptions that you know computer basics such as opening a command

prompt, installing software, etc. If you get stuck on anything, an Internet

search for “how to do [thing] on [operating system]” will typically help

you out. Particularly useful web sites for programmers are StackOverflow

(http://stackoverflow.com)1 and SuperUser (http://superuser.com),2

so if you see them in your search results, give them a shot first.

 How To Use This Book
In each chapter of the book, you will make progress on the overall goal of

creating your text adventure. The early chapters may seem like slow going

because they focus on learning the basics of Python. Things will pick up

in the second half of the book, when the focus shifts toward building the

game world.

I suggest reading this book on or beside your computer so you can easily

go back and forth between reading and writing code. Each of the chapters in

the first half of the book will end with a homework section. These problems

won’t be required for the main game, but you should at least try them.

When applicable, solutions are provided at the end of the book.

Most of the Python code in this book will look like this:

1 greeting = "Hello, World!"

2 print(greeting)

1 http://stackoverflow.com
2 http://superuser.com

Chapter 1 GettinG Started

http://stackoverflow.com/
http://superuser.com/
http://stackoverflow.com/
http://superuser.com/

3

Code that is intended to be entered into an interactive Python session

(see Chapter 3) will look like this:

>>> greeting = "Hello, World!"

>>> print(greeting)

References to code or commands that appear inline will appear like

this. Technical terms that you should learn appear like this.

If you ever get stuck, you can download the code for each chapter in

the book here.3 Resist the urge to copy and paste everything! You’ll retain

more information if you type out the code. However, we all make mistakes,

so if you can’t figure out what’s wrong, you can compare your code against

mine. If you’re really sure everything is the same, double-check with an

online comparison tool like DiffChecker4 or Mergely.5 You can also check

Appendix B for some common errors you may run into.

Finally, this game is your game. It is fully customizable, and if you feel

comfortable adding more rooms and enemies, changing the story, making

it more difficult, etc., please do so. I will point out good customization

opportunities like this:

 Customization Point Some notes about customization.

Keep in mind that each chapter builds on the last, so if you deviate

too far from the material, you may want to save your customized code in

another directory so you can keep learning from the source material.

3 https://www.dropbox.com/sh/udvdkxtjhtlqdh1/AAD9HOD6VTb5RGFZ7k
Bv-ghua?dl=0

4 https://www.diffchecker.com
5 http://www.mergely.com/editor

Chapter 1 GettinG Started

http://www.mergely.com/editor
https://www.diffchecker.com/
http://www.mergely.com/editor

4

 Setting Up Your Workspace
Don't skip this section! You need to make sure everything is set up properly

before you begin working on the code in this book. A lot of problems await

you if you have an improper configuration.

 Python Versions
The creators of Python made a decision that Python 3 would not be

backwards compatible with Python 2. And while Python 3 was released

in 2008, some people still cling to Python 2. There’s no reason for

beginners to start out with Python 2, so this book is written using Python 3.

Unfortunately, some operating systems are bundled with Python 2, which

can make installing and using Python 3 a bit tricky. If you run into trouble,

there are plenty of detailed instructions for your specific operating system

online.

 Installing Python
There are many ways to install Python depending on your operating

system and what (if any) package managers you use.

 Windows

An advantage of installing Python on Windows is that you don’t need to

worry about an already existing old version. Windows does not have a

standard package manager, so you’ll need to download the installer from

Python.

 1. Open http://python.org/download/ in your

browser and download the latest 3.x.y installer for

Windows.

 2. Run the installer.

Chapter 1 GettinG Started

http://python.org/download/

5

 3. On the first screen of the installer, you will see an

option to include Python 3.X on the PATH. Be sure

to check that box.

 4. Proceed through the installation; the default settings

are fine. If you see another option in the installer for

Add Python to Environment Variables, make sure

that box is checked too.

 Mac OS X

From my experience, the easiest way to install developer tools on Mac

OS X is by using the Homebrew6 package manager (http://brew.sh).

However, I appreciate that you may not want to install something to install

something else! I’ll provide the Homebrew steps first and then the more

traditional path.

Using Homebrew:

 1. Open a terminal.

 2. Install Homebrew by running the command at

http://brew.sh in the terminal.

 3. Install Python 3 with the following command: brew

install python3.

You will now use the command python3 anytime you want to use

Python. The command python points to the default Mac OS X installation

of Python, which is version 2.7.5.

6 http://brew.sh

Chapter 1 GettinG Started

http://brew.sh/
http://brew.sh/
http://brew.sh/

6

Using the Installer:

 1. Open http://python.org/download/ in your

browser and download the latest 3.x.y installer for

Mac OS X.

 2. Open the download package and then run

Python.mpkg.

 3. Follow the installation wizard. The default settings

are fine.

You will now use the command python3 anytime you want to use

Python. The command python points to the default Mac OS X installation

of Python, which is version 2.7.5.

 Linux

If you’re using Linux, chances are you are already comfortable using your

distribution’s package manager, so I won’t go into details. Typically, something

like sudo apt-get install python3 or sudo yum install python3 will

get what you want. It is also possible that your distribution already includes

Python 3. If all else fails, you can download the source and build Python from

the official web site (https://www.python.org/downloads/source/).7

 Verify Your Installation
To verify your installation, open a command prompt/terminal (I’ll use

console, command prompt, and terminal interchangeably) and try both of

these commands:

python --version

python3 --version

7 https://www.python.org/downloads/source/

Chapter 1 GettinG Started

http://python.org/download/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/

7

There are four possibilities:

• Both display a version number: Great, you have both

Python 2 and 3 installed on your computer. Just make

sure you always run the code in this book with python3.

• Only Python displays a version number: If the first

number in the version is a 3, as in “Python 3.5.1” you

are OK. If instead it is a Python 2 version, as in “Python

2.7.10”, then Python 3 is not properly installed. Try

repeating the installation and if that still does not work,

you may need to adjust your PATH to point to Python 3

instead of Python 2.

• Only Python3 displays a version number: Great, you

have Python 3 installed. Just make sure you always run

the code in this book with python3.

• Neither displays a version number: Python is not

properly installed. Try repeating the installation. If that

still does not work, you may need to adjust your PATH to

include the location of your Python installation.

Chapter 1 GettinG Started

9
© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_2

CHAPTER 2

Your First Program
When you open an application on your computer, such as an Internet

browser, at the lowest level the CPU is executing instructions to move

around bytes of information. Early programs were painstakingly written on

punch cards, as shown in Figure 2-1.

Figure 2-1. An early punch card Credit: Wikipedia user Harke

Thankfully, we have decades of improvements to computer programming

that make it much easier to write those instructions! Now, programming

languages lie on a spectrum of “lower-level” to “higher-level” with languages

like C and C++ being lower-level and languages like Python and Ruby being

higher-level. By design, higher-level languages allow programmers to ignore

much of the behind-the-scenes details of computer programs. This is one

reason why Python is often recommended as a first programming language.

10

To get started, create a folder on your computer where you will do all of

the work for your game. From here on out, this directory will be referred to

as the root directory of your project.

Creating a Module
Python code is organized into files called modules. Each module usually

contains a significant amount of code that is all logically related. For

example, our project will contain a module that runs the game, another

module that contains the code for managing the enemies, another for the

world, etc. To create your first module, navigate to your root directory and

create an empty file called game.py.

Writing Code
When writing code, it’s important that you write the code exactly as it

appears in this book. However, I don’t recommend simply copying and

pasting. Especially when starting out, muscle memory will help you learn

faster. If you run into errors, review your code line-by-line and check for

typos, wrong casing, misplaced symbols, etc. If you really can’t figure out

the problem, then and only then is it okay to copy code. But always be sure

to read over the pasted code to find your error.

I need to mention here one of the more controversial parts of the

Python syntax: meaningful whitespace. Many languages ignore spaces

and tabs, but Python does not. This means that you can run into problems

caused by characters you can’t (easily) see! Because of that, you need to

decide if you will use tabs or spaces to indent your code. Most Python

programmers have chosen to use spaces, so I will stick with the convention

of using four spaces to indent the code for this book. If you choose to use

tabs and copy code you must switch the indentation to tabs! Some text

Chapter 2 Your First program

11

editors can do this for you with a toolbar command. If yours does not, you

should be able to replace four spaces with “\t” (which means “tab”).

With that in mind, let’s write your first line of code. Open game.py and add

the following line:

print("Escape from Cave Terror!")

 Customization Point

You can change the name of your game by replacing the text inside
the quotation marks. think about the scene your game takes place in.
is it a medieval forest, an alien spaceship, or a crime-ridden city?

Running Python Programs
Now, we’ll execute the code we just wrote. Start by opening a command

prompt or terminal and then use the cd command to navigate to your

project root directory. For example, cd ~/Documents/code/learn-python-

game or cd C:\Code\my_python_adventure. Finally, run the following

command:

python game.py

(Note: Depending on how you installed Python, you may need to run

python3 game.py.)

If all went well, you should see "Escape from Cave Terror!" printed out

to the console. Congratulations! You just wrote your first Python program.

Chapter 2 Your First program

12

Homework
Try the following exercise for homework:

 1. Make a new module called calculator.py and write

code that will print out "Which numbers do you

want to add?" to the console.

 2. Run the calculator program and make sure it works

correctly.

 3. Try removing the quotes from the code. What

happens?

Chapter 2 Your First program

13© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_3

CHAPTER 3

Listening to Your
Users
All computer programs have some level of user input. Some may simply

require a user to start the application, while others simply wait patiently

until a user tells it to do something. Since this application is a text

adventure, it falls closer to the “wait patiently” end of the spectrum. In this

chapter, you’ll learn how to read and process instructions that the user

types into the command prompt.

 Your Friends: stdout and stdin
By definition, text adventures require the user to enter text instructions for

the program. In response, the program will display text to the user. This is a

common pattern in command-line applications.

To get a feel for this, let’s demo a command-line application that you

already have installed—Python. That’s right, the python command can

do more than just run programs. Open your command prompt and run

python. You should see something like this:

$ python

Python 3.4.1 (default, May 8 2015, 22:07:39)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.49)] on

darwin

14

Type "help", "copyright", "credits" or "license" for more

information.

>>>

Now, at the cursor, type this and press Enter:

help(print)

You should see this:

>>> help(print)

Help on built-in function print in module builtins:

[...]

To exit this view, simply press q.

We just interacted with this command-line application by entering two

commands: help(print) and q. Both of those commands were read in by

Python, interpreted, and responded to.

When an application writes out text to the console, this is called writing

to standard output or stdout for short. Similarly, when a user (or even

another application) writes text into the console, it is called writing to

standard input or stdin.

In fact, if you go back to the console and type help(print) again, you’ll

see that the documentation refers to sys.stdout. By default, the print

function writes text to standard output. You already saw this in action

when you ran the game—the application displayed the intro text to the

console.

Now try entering help(input). You can read that the input function

will “read a string from standard input.” This is exactly what we’re looking

for to allow our application to listen to the user.

To exit, press q and then type quit(). This should take you back to a

regular command prompt.

Chapter 3 Listening to Your users

15

 Reading from Standard Input
Open a new file and save it as echo.py. Enter the following line:

input("Type some text: ")

Save the file and run it using python echo.py. Remember, to run

an application, you must be at the same directory in which the file is

contained.

Hopefully, you see the prompt "Type some text". Go ahead and do

as it says, then press Enter. It might seem like the program ignored you

and tossed you back to the command prompt. So what just happened?

The input command printed out the prompt text ("Type some text")

to standard output, and it read in your response to standard input. Since

there were no more instructions, the application simply exited.

As the name of the file hinted, we’re going to make an application that

echoes back to the user, but first we need to learn how to store temporary

information.

 Saving Information
In the last exercise, we were able to read in information from the user,

but we weren’t able to do anything with it. We need to save that input

temporarily so we can print it out. Temporary information can be stored in

and accessed from a computer’s memory using variables.

Some examples of variable names in Python are n, my_number, and

address. To store information in a variable, we simply use the = operator.

This is called the assignment operator. For example:

1 n = 5

2 my_number = 3

3 address = '123 Maple St.'

Chapter 3 Listening to Your users

16

Then, anytime we need to recall that information, we can refer to the

variable name as in print(n) or print(address). Let’s get some practice.

Return to your terminal and run python. When we did this before, we

used the help command to get information about functions. Perhaps a

more useful feature is the ability to enter Python code and have it executed

immediately. This is called the “Python interpreter”, “Python shell” or

“Python REPL” (abbreviation of Read Evaluate Print Loop).

Go ahead and enter the following commands:

>>> address = '123 Maple St.'

>>> print(address)

You should see "123 Maple St." printed out. This works because we

assigned the value “123 Maple St.” using the assignment operator to the

variable address. Then when the print function runs, it looks up the real

value of address in memory so it knows what to print out.

With this information, we can now do something more interesting with

our echo program. Go back to echo.py and change the code as follows:

1 user_input = input("Type some text: ")

2 print(user_input)

Run this program again and verify that it echoes back whatever text

you enter. Let’s do something similar to our game. Open game.py and add

the following lines:

2 action_input = input('Action: ')

3 print(action_input)

Chapter 3 Listening to Your users

17

 Data Types
Before we finish this chapter, we need to briefly go over some data types.

So far, we’ve mostly seen textual data like "Type some text" and

"123 Maple St.". These are called strings1 and Python knows they are

strings because they are surrounded by single or double quotes in the

code. The data that input returns is also a string. Here are some examples

of strings:

1 name = 'Phillip'

2 forecast = "It's going to rain!"

3 url = 'http://letstalkdata.com'

The next most common data type is the integer. If you remember from

math class, integers are numbers like 1, 15, -99, and 0. In Python, integers

are entered as numbers without any extra symbols.

1 a = 3

2 b = 4

3 hypotenuse = 5

A number that has a decimal point is called a floating point number

or a float for short. Floats are entered similarly to integers, except they

contain decimal points.

1 a = 3.0

2 b = 4.0

3 hypotenuse = 5.0

1 Internally, Python stores text data in a variety of different formats. The most
common you will encounter are str and bytes. Thus the word “string” does not
always correlate exactly with the Python str type.

Chapter 3 Listening to Your users

18

You can perform basic math operations on numbers just like you

would expect. Try out some of these in the interpreter:

>>> 5 + 6

>>> 0 - 99

>>> 5.0 / 2.0

>>> 5 / 2

>>> 4 * (7 - 2)

There are many, many more data types that Python has built-in, but

for now the important thing to notice is that Python infers the types based

on how you type them. There’s a big difference between my_variable = 5

and my_variable = '5'!

 Homework
Try the following exercises for homework:

 1. What is the difference between my_variable = 5

and my_variable = '5'?

 2. What is the difference between print(n) and

print('n')? If you’re not sure, try entering the

following commands into the Python interpreter:

n = 5

print(n)

print('n')

 3. Try rewriting echo.py without using a variable.

Chapter 3 Listening to Your users

19© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_4

CHAPTER 4

Decisions
You have a big decision to make tomorrow—take the bus or walk. Okay,

well, maybe not so much a big decision, but a decision nonetheless. Your

decision could be made based on a number of factors, but let’s keep it

simple. If it rains, then you will take the bus; otherwise, you will walk.

Notice the structure of the decision:

 1. First, there is something that is either true or

false. In this case, the thing that is true or false is

the presence or absence of rain. This is called a

condition.

 2. Next, there is an action taken if the condition is true.

If it is raining, then you take the bus.

 3. Finally, there is an action taken if the condition is

false. If it is not raining, then you walk.

Computers need the ability make decisions in the same way. In

computer code, we can give the computer a condition to evaluate and

actions to take if that condition is true or false. This concept is called

branching because code can “branch” into two or more directions when

we need it to.

20

Booleans
Formally, a statement that is either true or false is called a boolean

expression. Here are some examples of boolean expressions:

• My age in years is 30

• I have two siblings

• 1 > 100

• 1 < 100

If you read through these statements, you should be able to say if each

one is true or false for you. Our answers differ for the first two conditions,

but hopefully we all agree about the last two!

In Python, we might write these expressions as follows:

1 age == 30

2 siblings == 2

3 1 > 100

4 1 < 100

Notice we can use the < and > operators just like we do in math. But

what’s with the double equals sign? Is that a typo? Nope, this symbol is

the equality operator. Remember that a single equals sign (=) already

has a purpose—to assign values to variables. In the examples, we’re not

assigning values, we’re checking values so we have to use a different

operator.

As mentioned, each of these expressions can evaluate to either true

or false. “True” and “False” are such important concepts that they are in

fact keywords in Python. This new data type is unsurprisingly called the

boolean data type. Both “boolean expression” and “boolean data type” are

commonly shortened to just “boolean,” and the context implies which is

being referred to.

Chapter 4 DeCisions

21

When Python code is evaluated, boolean expressions are converted

to their boolean type. That means that the following expressions are all

equivalent:

1 1 == 1

2 'abc' == 'abc'

3 True

Similarly, these expressions are also all equivalent:

1 1 == 0

2 'abc' == 'xyz'

3 False

To prove this to yourself, open up a Python shell and type some of

these in. Python will evaluate each expression and respond with True or

False.

There’s one more comparison operator to learn and that is the “does

not equal” operator. In Python, this is written !=. Try out these expressions

in the Python interpreter

>>> 1 != 0

>>> True != True

>>> 'abc' != 'xyz'

Chapter 4 DeCisions

22

To summarize, here are the operators we know so far, plus >= and <=:

Operator Type Purpose

= assignment assigns a value to a variable

== Comparison Checks if two values are equal

!= Comparison Checks if two values are not equal

> Comparison Checks if the value on the left is greater than the value

on the right

>= Comparison Checks if the value on the left is greater than or equal to

the value on the right

< Comparison Checks if the value on the left is less than the value on

the right

<= Comparison Checks if the value on the left is less than or equal to the

value on the right

If-statements
Now that we know about boolean expressions and data types, we can start

adding conditions to our code with if-statements. An if-statement must

have a condition, an action to take if the condition is true, and optionally

an action to take if the condition is not true. For example:

1 n = 50

2 if n < 100:

3 print("The condition is true!")

4 else: # <-- This part is optional

5 print ("The condition is false!")

Chapter 4 DeCisions

23

sometimes it’s helpful to put notes for ourselves and others directly into
code. these are called code comments and they are ignored by python
when the program runs. in python, code comments start with #.

We can also stack if-statements using the elif keyword:

1 n = 150

2 if n < 100:

3 print("n is less than 100.")

4 elif n < 1000:

5 print("n is less than 1000.")

6 else:

7 print("n is a big number!")

In Python, elif is the way of writing “else if”. It’s shortened to elif

since it is used so commonly.

Now go ahead and open game.py and change the code as follows:

 1 print("Escape from Cave Terror!")

 2 action_input = input('Action: ')

 3 if action_input == 'n':

 4 print("Go North!")

 5 elif action_input == 's':

 6 print("Go South!")

 7 elif action_input == 'e':

 8 print("Go East!")

 9 elif action_input == 'w':

10 print("Go West!")

11 else:

12 print("Invalid action!")

Chapter 4 DeCisions

24

This code will read in the user input and compare the value of the

input to a predefined character (“n”, “s”, “e”, or “w”). If one of those

conditions is true, the program will branch to that part of the code and

print the action to the console. Otherwise, it will notify the user that the

action is invalid.

 Boolean Operations
Sometimes, it is helpful to combine multiple conditions into one, and we

do this using the keywords and and or. These work just like you would

expect.

1 if a == 3 and b == 4:

2 print("The hypotenuse is 5.")

3 if a == 3 or b == 4:

4 print("The hypotenuse might be 5.")

You can use as many of these as you need, but when you start

combining operators, you sometimes need to include parentheses to

specify the order in which the conditions evaluate. Try typing these into

the interpreter:

>>> 1 == 100 and 1 == 2 or 1 == 1

>>> (1 == 100 and 1 == 2) or 1 == 1

>>> 1 == 100 and (1 == 2 or 1 == 1)

The first example is syntactically correct, but confusing to read. To

clarify it, in the second example we wrap parentheses around the first two

conditions. In the third example, we actually change the order in which the

expressions are evaluated so that the response changes.

Chapter 4 DeCisions

25

Here’s the difference between the two groupings:

1 (1 == 100 and 1 == 2) or 1 == 1

2 (False) or 1 == 1

3 False or True

4 True

vs.

1 1 == 100 and (1 == 2 or 1 == 1)

2 1 == 100 and (True)

3 False and True

4 False

With that in mind, we can do something like this:

1 if (a == 3 and b == 4) or (a == 4 and b == 3):

2 print("The hypotenuse is 5.")

Note that we cannot do this:

1 # Warning: Bad Code!

2 favorite_color = 'blue'

3 if (favorite_color = 'red' or 'orange'):

4 print("You like warm colors.")

While the code may make sense when reading it in your head, that

is invalid syntax. The statements on either side of an or or and must be

complete boolean expressions.

To make our game more user-friendly, let’s make each of the

conditions ignore the case of the action:

 1 print("Escape from Cave Terror!")

 2 action_input = input('Action: ')

 3 if action_input == 'n' or action_input == 'N':

 4 print("Go North!")

Chapter 4 DeCisions

26

 5 elif action_input == 's' or action_input == 'S':

 6 print("Go South!")

 7 elif action_input == 'e' or action_input == 'E':

 8 print("Go East!")

 9 elif action_input == 'w' or action_input == 'W':

10 print("Go West!")

11 else:

12 print("Invalid action!")

If you test the game now, you can verify that actions are accepted

regardless of case.

Homework
Try the following exercises for homework:

 1. What is the difference between = and ==?

 2. Create ages.py to ask the users their age and then

print out some information related to their age. For

example, if that person is an adult, if they can buy

alcohol, they can vote, etc. Note: The int() function

can convert a string to an integer.

Chapter 4 DeCisions

27© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_5

CHAPTER 5

Functions
In computer programming, a function is a named block of code.

Sometimes, values are passed into a function. We have already seen an

example of a function:

print("Hello, World!")

The word print refers to a block of code inside of the Python core

and we pass it a value to display on the console. If you did the homework

from the last chapter, you also probably used int(), which is another

function in the Python core that accepts a value and converts that value

to an integer. Visually, you know something is a function because of the

parentheses. Can you think of another function we’ve used?

Very similar to a function is a method. In fact, functions and methods

are so similar that you will often see the terms used interchangeably. The

difference is, a method is a function that is associated with an object. We’ll

talk more about objects later, but for now think of an object as a concrete

“thing” in your application—a person’s name, a calendar date, or a favorite

color. An if statement is not an object, the >= operator is not an object, etc.

An example of a method is the title() function that works on strings. Try

this out in the Python shell:

>>> place = "white house"

>>> important_place = place.title()

>>> print(important_place)

28

You should see that “white house” becomes capitalized to “White

House” when you print it out. We can see that title() is a method because

we needed an object (in this case the string “white house”) to exist before

we could use it. A method is referenced by using the . character. In some

ways, you can think of this like the possessive “’s” in English: place.

title() becomes “place’s title function” or “the title function that belongs

to the place object”.

 Data In, Data Out
Most functions return a value. For example, the int() function gives us

back the integer result of whatever we pass in, and the title() method

gives us a capitalized version of the string. Other functions just “do

something” such as the print() function. It accepts a value and displays

the text, but it doesn’t actually give any data back. In practice, we usually

take the result of a function that returns something and store it in a

variable, whereas we do not do the same with a function like print().

1 my_number = '15'

2 # The int() function gives something back, so we save it.

3 my_integer = int(my_number)

4

5 # But this doesn't make sense because print() doesn't give

anything back.

6 useless_variable = print(my_integer)

Of course, we don’t always use Python’s built-in functions; we often

write our own. Remember that a function is a named block of code and the

way we name a function is with the def keyword. Here is a function that

prints a greeting:

1 def say_hello():

2 print("Hello, World!")

Chapter 5 FunCtions

29

To use that function, we need to call it by writing its name wherever we

want the function to run. Create hello.py as follows:

hello.py

1 def say_hello():

2 print("Hello, World!")

3

4 say_hello()

5

6 answer = input("Would you like another greeting?")

7 if answer == 'y':

8 say_hello()

Each time the program sees say_hello(), it jumps to that block of

code and does everything inside of it. Try out this program and verify

that "Hello, World!" is always printed out at least once, and that it is

optionally printed a second time depending on how you answer.

The say_hello() function does not accept data. We say that this function

does not have any parameters. A function that does accept data must have

one or more parameters.1 Let’s try a modified version of say_hello:

1 def say_hello(name):

2 print("Hello, " + name)

This function has one parameter called name. When the function runs,

name actually becomes a variable with the value of whatever was passed in.

The function (and only the function) can then use the variable wherever it

needs to. In this example, the variable is used in order to display the value

of the variable in the console.

1 Functions can have up to 255 parameters. Please don’t write a function with 255
parameters!

Chapter 5 FunCtions

30

This function also used the + operator to combine or concatenate

strings into one string. We’ve now seen that the + operator can be used

with numbers in math equations or with strings.

Create hello_name.py to get some practice writing parameterized

functions.

hello_name.py

1 def say_hello(name):

2 print("Hello, " + name)

3

4 user_name = input("What is your name? ")

5

6 say_hello(user_name)

Now that we know about functions, we can organize our game code.

Switch back to game.py and create a function that returns the player action.

1 def get_player_command():

2 return input('Action: ')

Then call this new function in the code that controls player movement.

1 print("Escape from Cave Terror!")

2 action_input = get_player_command()

Next, indent the code controlling the player movement and wrap it

inside of a function. To save space, I don’t include the whole function.

1 def play():

2 print("Escape from Cave Terror!")

3 action_input = get_player_command()

4 # Remaining code omitted for brevity

Chapter 5 FunCtions

31

In order to make the game still playable, at the bottom of the file, make

a simple call to the play() function. Here’s what your game.py file should

look like now:

game.py

 1 def play():

 2 print("Escape from Cave Terror!")

 3 action_input = get_player_command()

 4 if action_input == 'n' or action_input == 'N':

 5 print("Go North!")

 6 elif action_input == 's' or action_input == 'S':

 7 print("Go South!")

 8 elif action_input == 'e' or action_input == 'E':

 9 print("Go East!")

10 elif action_input == 'w' or action_input == 'W':

11 print("Go West!")

12 else:

13 print("Invalid action!")

14

15

16 def get_player_command():

17 return input('Action: ')

18

19

20 play()

From the user’s perspective, the game is unchanged from the previous

chapter. But from a coding perspective, we’ve added some structure

to make the code more maintainable. The way code is organized into

functions is one of many factors that can make for really nice or really ugly

code. As you read and write more code, you will get a better feel for how

your own code should be organized.

Chapter 5 FunCtions

32

There is much more that can be said about functions and indeed the

entire paradigm of functional programming dives deep into functions. Be

sure you understand the concepts introduced in this chapter because the

rest of the book heavily relies on them.

 Homework
Try the following for homework:

 1. What keyword is used to create a function?

 2. What are some differences between parameterless

and parameterized functions?

 3. When reading the code for a function, how do you

know if it just “does something” or “gives something

back”?

 4. Create doubler.py to contain one function named

double that accepts a single parameter. The function

should return the input value multiplied by two.

Print out the doubled value of 12345 and 1.57.

 5. Create calculator.py to contain one function

named add that accepts two parameters. The

function should return the sum of the two numbers.

Print out the sum of 45 and 55.

 6. Create user_calculator.py and re-use your add

function from the previous exercise. This time, ask

the user for two numbers and print the sum of those

numbers. Hint: It is okay if this works only with

integers.

Chapter 5 FunCtions

33© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_6

CHAPTER 6

Lists
Until now, we have worked with variables that contain only one value,

such as age = 30 and name = 'Joe'. But in the real world (and by

extension, computer programs), it is often useful to group values together.

Consider a program that needs to display the names of all of the students

in a class. This would be really annoying to code:

1 student1 = 'John'

2 student2 = 'Jack'

3 student3 = 'Ashton'

4 student4 = 'Loretta'

5 print(student1)

6 print(student2)

7 print(student3)

8 print(student4)

Imagine a class with 30 or 300 students! In this chapter, we learn how

to group these values together and allow them to exist as a group in code.

 What Is a List?
When values are grouped together into one variable, it is called a collection

and a list is the most common type of collection used. In Python, a list is

created with brackets and commas, as in this example:

students = ['John', 'Jack', 'Ashton', 'Loretta']

34

This is very handy. We can now write code that generically works on

all of the students at once. A simplified (although not identical1) version of

this short program is simply:

1 students = ['John', 'Jack', 'Ashton', 'Loretta']

2 print(students)

There are two defining characteristics of a list:

• It is ordered. The sequence in which things are added to

a list is preserved.

• It may contain duplicates.

This means that these two lists are not identical:

1 list1 = ['John', 'Jack', 'Ashton', 'Loretta']

2 list2 = ['Ashton', 'Jack', 'John', 'Loretta']

And that this list is perfectly okay:

list1 = ['Buffalo', 'Buffalo', 'Buffalo', 'Buffalo', 'Buffalo']

These characteristics may seem obvious, but we will learn about other

collection types later that are unordered and/or do not contain duplicates.

In addition to being able to write code that acts on a list as a whole,

Python also provides a lot of handy methods for working with lists.

1 After learning about loops in the next chapter, we could make an identically
behaving program.

Chapter 6 Lists

35

 Common List Operations
 Add
To add an item to a list, use the append function.

>>> my_list = ['A','B','C']

>>> my_list.append('D')

>>> my_list

['A', 'B', 'C', 'D']

 Length
To find out the length or size of a list, we use the built-in len() function.

>>> my_list = ['A','B','C']

>>> len(my_list)

3

>>> my_list.append('D')

>>> len(my_list)

4

You may be wondering, why do we write my_list.append() but not

my_list.len()? The reason is len() can actually be used with things other

than lists, so it lives outside of the List class. Try these in the interpreter:

>>> len('Hello, World!')

>>> len({})

The first is a string and second is an (empty) dictionary, which is

another collection we’ll learn about later.

Chapter 6 Lists

36

 Get
To get a specific item out of a list, you need to know where in the list the

item exists. The position of an item in a list is also called the index. If

we look at the list ['A', 'B', 'C', 'D'], these are how the items are

indexed.

index 0 1 2 3

item A B C D

Note that the indexing starts at 0. Most computer programming

languages are 0-indexed, which means that the counting starts at 0.

To get the first item in the list, we use the index 0 as such:

>>> my_list = ['A', 'B', 'C', 'D']

>>> my_list[0]

A

Be sure to use square brackets when specifying a list index and not

parentheses.

To get the last item in the list, we can use the len() function to help:

>>> my_list = ['A', 'B', 'C', 'D']

>>> last_position = len(my_list) - 1

>>> my_list[last_position]

D

 Search
There are two easy ways to search a list for an item. The first will tell us if an

item is in a list and the second will tell us where an item is in a list.

If you think back to the chapter about if-statements, you learned

about boolean operators such as == and <. There’s a special boolean

Chapter 6 Lists

37

operator that can be used with lists, which is simply the word in. Here’s

how the in operator is used:

>>> 2 in [1, 2, 3]

True

>>> 5 in [1, 2, 3]

False

>>> 'A' in ['A', 'B', 'C']

True

Sometimes, it is useful to know where the item is in a list. For that, we

use the index() function.

>>> my_list = ['John', 'Jack', 'Ashton', 'Loretta']

>>> my_list.index('Ashton')

2

If an item occurs more than once, the first index is returned.

>>> my_list = ['Buffalo', 'Buffalo', 'Buffalo']

>>> my_list.index('Buffalo')

0

And if an item does not occur in the list, an error is thrown.

>>> my_list = ['John', 'Jack', 'Ashton', 'Loretta']

>>> my_list.index('Buffalo')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: 'Buffalo' is not in list

There are other helpful list operations that you can read about in the

Python documentation2.

2 https://docs.python.org/3.5/tutorial/datastructures.html#more-on-lists

Chapter 6 Lists

https://docs.python.org/3.5/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3.5/tutorial/datastructures.html#more-on-lists

38

 Adding Lists to the Game
Now that we know about lists, we can provide the player with a list of items

in their inventory. At the top of the play function, add this list:

1 def play():

2 inventory = ['Dagger','Gold(5)','Crusty Bread']

 Customization Point You can change player’s inventory by

adding, changing, or removing items.

We should also allow the player to view the inventory, so let’s make the

i key print the inventory. Add this right below the “Go West” action:

13 elif action_input == 'i' or action_input == 'I':

14 print("Inventory:")

15 print(inventory)

Run the game and verify that you can print the inventory.

We also now have the opportunity to make our code a little cleaner

by putting equivalent actions (e.g., ‘W’ and ‘w’) into a list. Update your

if- statements in the play function as follows:

 5 if action_input in ['n', 'N']:

 6 print("Go North!")

 7 elif action_input in ['s', 'S']:

 8 print("Go South!")

 9 elif action_input in ['e', 'E']:

10 print("Go East!")

11 elif action_input in ['w', 'W']:

12 print("Go West!")

Chapter 6 Lists

39

13 elif action_input in ['i', 'I']:

14 print("Inventory:")

15 print(inventory)

This is a personal preference, but I find that easier to read than the

previous version. Using a list also allows us to easily add characters in a

much less verbose manner. For example, if we wanted to, we could make

> an alias for “Go East” by simply adding it to the list: action_input in

['e', 'E', '>'].

 Homework
Try the following for homework:

 1. What two characteristics make a collection a list?

 2. Write code that allows users to enter their three

favorite foods. Store those foods in a list.

 3. Print out the middle item of this list using an index:

['Mercury', 'Venus', 'Earth']. Could you

change your code to work with a list of any size

(assuming there are an odd number of items)?

Hint: Think back to the int() function that converts

something into an integer.

 4. What happens when you run this code? Do you

know why?

>>> my_list = ['A','B','C']

>>> my_list[len(my_list)]

Chapter 6 Lists

41© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_7

CHAPTER 7

Loops
All work and no play makes Jack a dull boy

All work and no play makes Jack a dull boy

All work and no play makes Jack a dull boy

All work and no play makes Jack a dull boy

The real power of computers is in their ability to execute repetitive tasks

without complaint. A CPU is perfectly happy chugging along flipping bits

until it burns out. A calculator will keep calculating for as long as you give

it numbers to work with. And sure—keep mashing F5 on your favorite web

site that is currently having server trouble—your router won’t care.

When we want a computer program to run the same piece of code

multiple times, we wrap that code inside of a loop.

 While Loops
Different programming languages have different kinds of loops, but for the

most part there are two main categories: “Do something until I say stop”

loops and “Do something N number of times” loops. Usually, these are

called while loops and for loops, respectively. Python has one of each kind:

a while loop and a for-each loop.

42

As it turns out, the only loop you really need is a while loop.
However, many programming languages provide other looping
keywords to make writing loops easier.

A while loop is always paired with a boolean expression. Remember,

boolean expressions are things that can evaluate to true or false. The loop

will continue to run while the condition is true, hence the name. The while

loop in Python is written using the while keyword. Here is an example:

1 while True:

2 print("All work and no play makes Jack a dull boy")

Try creating a script with that code and run it. Just be ready to press

Ctrl+C! You should see that the text flies by as "All work and no play

makes Jack a dull boy" is printed out to the console. If left alone, this

code would run until the computer shuts down because the boolean

expression True is obviously always true.

Let’s take a look at a more realistic program. Building on the program

from last chapter’s homework (you should do that now if you haven’t!),

what if we wanted the user to keep entering favorite things until they were

done? We have no idea if they want to enter one, two, or 20 things, so we use

a while loop to keep accepting items. Change the code in favorites.py

as follows:

 1 favorites = []

 2 more_items = True

 3 while more_items:

 4 user_input = input("Enter something you like: ")

 5 if user_input == '':

 6 more_items = False

CHApter 7 Loops

43

 7 else:

 8 favorites.append(user_input)

 9

10 print("Here are all the things you like!")

11 print(favorites)

The first line creates an empty list. Each time the loop runs, another

item is added to the list. The boolean condition in the loop is simply

more_items, which means in order for the loop to exit, more_items needs

to be false. We also could have written while more_items == True, but

that is needlessly verbose. To stop adding items, the user should enter an

empty string, which can be done by just pressing Enter. Go ahead and run

this script and see what the output looks like. Here’s what I ended up with:

Here are all the things you like!

['family', 'pizza', 'python!']

Hmm, looks pretty good, but Python’s default behavior for printing

lists isn’t very pretty. It would be nice if we had some more control over

how the list is printed…

 For-Each Loops
To start with, let’s try to print a bulleted list of all of the favorite items. To do

that, we will use a for-each loop. A for-each loop gets its name because

it does something for each thing in a collection. This is perfect because we

want to print each thing in the favorites list. Let’s add a function to the

top of the file that will pretty print an ordered list for a given collection.

1 def pretty_print_unordered(to_print):

2 for item in to_print:

3 print("* " + str(item))

CHApter 7 Loops

44

The Python syntax for for-each loops is very readable: for variable

in collection. The name of the variable is up to us. Each time the loop

runs, the variable points to the next item in the collection. The loop stops

running when it reaches the end of the collection.

Inside of the loop, we have access to the current item via the variable

defined in the loop syntax. In order to make sure we can print the current

item, the variable item is wrapped inside of the str() function to force the

item to a string. This function works just like the int() function that you

have used before. If we didn’t use this, Python could throw an error if a

non-string item is encountered.

To use the pretty print function, change the end of the script and rerun it.

14 print("Here are all the things you like!")

15 pretty_print_unordered(favorites)

You should now see something like this:

Here are all the things you like!

* family

* pizza

* python!

All right, but what if we want an ordered list with numbers? There’s

actually a few different ways to do this and we’ll go over three of them.

 Loop Counters
If we want to print a number for each item, we need to have some way to

keep track of both an increasing number and the actual item in the loop.

The first way we can do that is with a counter.

1 def pretty_print_ordered(to_print):

2 i = 1

3 for item in to_print:

CHApter 7 Loops

45

4 print(i + ". " + str(item))

5 i = i + 1

In this loop, we set i equal to 1 and each time the loop runs, we

increment i by one.1 The downside to this style is that it requires two extra

lines of code and we have to keep track of and update our counter. Another

option is to use Python’s range() function.

 Ranges
Open a Python shell and try out these:

>>> list(range(5))

>>> list(range(3,7))

>>> list(range(7,3))

>>> list(range(-2,2))

the list() function forces the range into a list that we can easily
read. Are you noticing a pattern with int(), str(), and list()?

Using range() gives us a collection of numbers. And we know that a

for-each loop can operate on a collection. With that information, we can

change our ordered list as follows:

1 def pretty_print_ordered(to_print):

2 for i in range(len(to_print)):

3 print(str(i + 1) + ". " + str(to_print[i]))

1 It is a convention to use variable i in loops that have a counter; this is one of the
few exceptions where it is okay to not use a descriptive variable name!

CHApter 7 Loops

46

Here, we use the len() function again to get the size of the list and that

number gets passed into range() to give a list of numbers that correspond

to the indices of the items in the to_print collection. This may seem a

little confusing, so let’s look at an example:

>>> to_print = ['abc', 'def', 'ghi']

>>> len(to_print)

3

>>> list(range(len(to_print)))

[0, 1, 2]

In this example, there are three things in the list. Therefore, the range

we get back has three numbers: 0, 1, and 2.

Why do we have to use list() in the shell but not in a script? the
answer is that range() actually returns a python range object, not
a list object. When a script runs, python knows how to use the
range object. However, when we want to look at the object in the
REPL, we need force it to be a list so we can see the values all at
once. Using print(range(3)) will print out the unhelpful string
"range(3)".

When the loop runs, we use the number from the range function

to locate the item in the list at the current index. For example, str(to_

print[2]) would return the item in the to_print collection at index 2.

Finally, to make the printout user-friendly, we add one to each index in

str(i + 1). If we did not do that, we would get a list like this:

0. abc

1. def

2. xyz

CHApter 7 Loops

47

It’s correct, but not very user-friendly. Using range() may seem a lot

more confusing than using a counter, but the code is shorter and it saves us

the trouble of maintaining the counter. The last option we’ll learn about is

a nice middle ground between the two options we’ve already seen.

 Using Enumerate
Lists are great when we want to store a lot of similar things in one variable,

like classroom students. But sometimes we have just two or three2

variables that are closely associated with each other. In this scenario, a

list may be overkill, so instead we use a tuple. Like a list, the things in a

tuple are ordered and may be duplicated, but unlike a list, a tuple’s length

is fixed. We cannot add or remove items from a tuple. Here are a few

situations in which a tuple could make sense:

1 first_name, last_name = ('Barack', 'Obama')

2 month, day, year = (10, 22, 2015)

3 dna_aminos = ('A','T','C','G')

The tuple syntax allows you to define your variable names on the left

and the values on the right. If the number of variables and values match,

then each variable is assigned the next value as it appears in the tuple. So

in the previous example, month is equal to 10. If just one variable name is

used, the whole tuple is assigned to that variable. The value of dna_aminos

is ('A','T','C','G') all together.

2 You can actually store a really huge number of items in a tuple, but if you need
more than a few variables, you should rethink your choice to use a tuple.

CHApter 7 Loops

48

Functions can return tuples too. Try these three different scripts:

1 def get_date():

2 return (10, 22, 2015)

3

4 month, day, year = get_date()

5 print(month)

1 def get_date():

2 return (10, 22, 2015)

3

4 date = get_date()

5 print(date)

1 def get_date():

2 return (10, 22, 2015)

3

4 month, day = get_date()

5 print(month)

The first script works like expected: we unpack the tuple returned in

the function into month, day, and year. The second script does not unpack

the tuple and instead stores all of the parts in the date variable. The last

script throws an error because the tuple returned has three values, but we

only used two variables. So why the diversion into tuples? Well, the next

built-in function we will learn about returns a tuple!

If you pass a collection to the enumerate() function, you will get back a

special Python object3 that behaves like a list of tuples. Each tuple contains

two values: the current index and the value from the original list. Try

running this code:

3 The object is called an iterator if you want to research more. The range() function
also returns an iterator.

CHApter 7 Loops

49

>>> letters = ['a', 'b', 'c']

>>> list(enumerate(letters))

[(0, 'a'), (1, 'b'), (2, 'c')]

>>> list(enumerate(letters, 1))

[(1, 'a'), (2, 'b'), (3, 'c')]

So how can we use that to our advantage? Well, in the loop to print

things, we could enumerate over the list.

1 def pretty_print_ordered(to_print):

2 for i, value in enumerate(to_print, 1):

3 print(str(i) + ". " + str(value))

In the for loop, we unpack the tuple into the index i, and we unpack

the favorite thing from the list into the variable value. Now that we already

have the list value, we don’t have to extract it from the list like we did with

the range() function. We also don’t have to know how long the list is using

len()—the enumerator takes care of that for us.

So which is best? As with many things in programming, there isn’t one

correct answer. In different situations, you could make an argument that

any of these is the best solution. For my money, I prefer enumerator in

this example. It only takes a few lines of code and is slightly easier to read

than the range option. Do you agree? If not, what do you prefer about your

choice?

 Nesting
A final concept to introduce about loops is nesting. A nested loop is simply

a loop inside of another loop. Here is a very simple nested loop that creates

a small list of multiplication problems.

CHApter 7 Loops

50

1 for i in range(3):

2 for j in range(3):

3 product = i * j

4 print(str(i) + " * " + str(j) + " = " +

str(product))

Notice that inside of the second loop, we have access to the index from

the first loop.4 In fact the second loop has access to any variables declared

between the first loop and second loop.

Suppose we wanted to find the factors of a range of numbers. This

would require us to have a different list of factors for each number. Using

what we just learned, we can write this script to find the factors for each

number from 1 to 10.

1 for i in range(1,11):

2 factors = []

3 for j in range(1, i + 1):

4 if i % j == 0:

5 factors.append(j)

6 print("The factors of " + str(i) + " are: " +

str(factors))

the % operator is called the modulo or modulus operator and it returns
the remainder after dividing two numbers. If a % b returns 0, then a is
evenly divisible by b as in 4 % 2. this has some handy uses such as
doing something every n th time a loop runs. We won’t use it much, but
it’s a good tool to keep in your bag of computer programming tricks.

4 Just like using i is a convention, j is a convention in a nested loop. If you really
need them, k and l are next.

CHApter 7 Loops

51

This code can access the factors list from inside the second loop even

though the variable is declared in the first loop.

 The Game Loop
In games, most of the code runs inside what is called the game loop. Each

time the loop runs, the game world changes and user input is passed back

into the program. In a 3D game, this may happen 60 times per second!

In our game, the loop does not need to run that fast because there are no

graphics to redraw. However, the world will be updated and user input will

be accepted each time the loop runs.

Add this loop inside of the play() function of the game and be sure to

indent the rest of the function:

1 def play():

2 inventory = ['Dagger','Gold(5)','Crusty Bread']

3 print("Escape from Cave Terror!")

4 while True:

5 action_input = get_player_command()

6 if action_input in ['n', 'N']:

Why was a while loop used instead of a for-each loop? Well, we don’t

know how many times the loop will run. For now, it runs infinitely, but

even in the real game we will need the loop to run until the player wins or

loses. Since we don’t know how many turns the player will take, we use a

while loop.

Now that we know how to pretty print a list, let’s modify the code that

prints the inventory.

14 elif action_input in ['i', 'I']:

15 print("Inventory:")

16 for item in inventory:

17 print('*' + str(item))

CHApter 7 Loops

52

If you run the game now, you’ll see that the while loop allows you to

keep entering commands and the for loop prints the inventory in a nicer

format. To quit the game, use Ctrl+D or Ctrl+C.

 Homework
Try the following for homework:

 1. What kind of loop would you use for each of the

following:

 A. A program that checks the temperature every

five seconds

 B. A program that prints receipts at grocery stores

 C. A program that tallies the score in a bowling game

 D. A program that randomly shuffles and plays

songs from a music library

 2. Open user_calculator.py from Chapter 5 on

functions and add a while loop that allows the user

to keep adding two numbers.

 3. Write a script that displays a multiplication table

from 1 * 1 to 10 * 10. Here is what the top-left corner

should look like:

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

 4. Use enumerate and the % operator to print every

third word in this list:

['alpha','beta','gamma','delta','epsilon','zeta','eta']

CHApter 7 Loops

53© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_8

CHAPTER 8

Objects
In a computer program, an object is a container stored in the computer’s

memory that holds one or more values. More simply, objects are the

“things” available in the program. We have already seen some objects: a

string like "Hello, World!" is an object, the list [1, 2, 3] is an object,

and even the function print() is an object! In fact, in Python, everything

is an object behind the scenes. But most of the time we’re actually most

interested in the objects we create. By the end of this chapter, you will be

able to add objects into your game to represent weapons.

 Object Members
In code, objects are often used as the means to bundle related pieces of

data. For example, a Person object may contain a string for the person’s

name, a number for their age, and a list of their favorite foods. Objects can

also have their own functions, called methods. These methods typically

work with the data stored inside the object. Our Person object could have

a method that calculates the year the person was born based on their age.

Collectively, the data and methods of an object are called the members or

properties of the object.

54

 Defining Objects with Classes
Before we can create an object, we need to create a class to define the

object. You can think of a class like a blueprint—it tells us how to make a

house but it is not a house. We can also reuse the same blueprint to make

many similar houses, even if the houses vary in their location, color, etc. To

define a class, we use the class keyword followed by the name of the class,

which is TitleCased by convention.

Create census.py and add this class1:

1 class Person:

2 age = 15

3 name = "Rolf"

4 favorite_foods = ['beets', 'turnips', 'weisswurst']

5

6 def birth_year():

7 return 2015 - age

Now, let’s add some functionality to our census by creating some

people and finding the average age. To create a new object, simply add

parentheses after the class name. This code will create three people:

1 people = [Person(), Person(), Person()]

2

3 sum = 0

4 for person in people:

5 sum = sum + person.age

6

7 print("The average age is: " + str(sum / len(people)))

1 In a real application, we would of course use Python’s date and time library to
calculate the year born, but this will serve for our demo.

Chapter 8 ObjeCts

55

Notice that to access the data in an object, we use the . operator just

like we do when accessing a function. The code list.append() is very

similar to person.age because append() is a member of the List class

and age is a member of the Person class. Running this program should,

unsurprisingly, tell us that the average age is 15. What we really need is the

ability for each object or instance of the Person class to have different values

for age, name, and favorite foods. To do that, we’ll learn about a special

function that can be added to any Python object, called __init__().

 Using __init()__ to Initialize Objects
In the previous example, we created three identical people. But the Person

class is only useful if we can use it to create three people with different

names and ages. One option would be something like this:

 1 people = [Person(), Person(), Person()]

 2

 3 people[0].name = "Ed"

 4 people[0].age = "11"

 5 people[0].favorite_foods = ["hotdogs", "jawbreakers"]

 6 people[1].name = "Edd"

 7 people[1].age = "11"

 8 people[1].favorite_foods = ["broccoli"]

 9 people[2].name = "Eddy"

10 people[2].age = "12"

11 people[2].favorite_foods = ["chunky puffs", "jawbreakers"]

But that is rather verbose and tedious. To ease object creation, Python

defines some special behavior around a method named __init__(). First,

that method runs immediately upon object creation. Second, we can add

Chapter 8 ObjeCts

56

arguments to the method that then become required arguments when

creating the object. Go ahead and modify your Person class to have the

following initializer:

1 class Person:

2 def __init__(self, name, age, favorite_foods):

3 self.name = name

4 self.age = age

5 self.favorite_foods = favorite_foods

The initializer takes the arguments passed in and assigns them to

the object that was just created. Readers paying close attention may have

noticed the self keyword popping up in the initializer. That keyword2 is

used to refer to the specific object. That means that the age member in the

Person class is not some sort of universal “age”, rather, it is the age of this

specific person that the initializer is acting upon. If it helps, whenever you

see self, think that the object is referring to itself.

Having defined the initializer, we can create people like this:

1 people = [Person("Ed", 11, ["hotdogs", "jawbreakers"])

2 , Person("Edd", 11, ["broccoli"])

3 , Person("Eddy", 12, ["chunky puffs", "jawbreakers"])]

That’s a lot more convenient than having to set each class member

explicitly!

As it turns out, we also need to use self anywhere else in the class

where members of the object are accessed or manipulated. That means

changing the birth_year() function. Here is the modified Person class:

1 class Person:

2 def __init__(self, name, age, favorite_foods):

3 self.name = name

2 In fact, self is not a reserved keyword, but it is a convention that everyone follows.

Chapter 8 ObjeCts

57

4 self.age = age

5 self.favorite_foods = favorite_foods

6

7 def birth_year(self):

8 return 2015 - self.age

Let’s update our census to also output the average year of birth. To

do this, we simply call the birth_year() function on each person object.

When the function runs, it runs for that specific object. We know this

because the function refers to itself via the self keyword.

18 age_sum = 0

19 year_sum = 0

20 for person in people:

21 age_sum = age_sum + person.age

22 year_sum = year_sum + person.birth_year()

23

24 print("The average age is: " + str(age_sum / len(people)))

25 print("The average birth year is: " + str(int(year_sum /

len(people))))

Some more magic about the self keyword is that Python knows it

refers to the object so you don’t have to pass it in manually. Something like

person.birth_year(person) is unnecessary and actually incorrect.

I also chose to wrap the average year inside of an int() function

because the year “2003” makes more sense than “2003.6666666666667”.

 Using __str__() to Print Objects
Let’s suppose we wanted to display the raw information about the people

in the census. A naive approach might be something like this:

18 print("The people polled in this census were:")

19 print(people)

Chapter 8 ObjeCts

58

But now when you run the script, you’ll see something like this:

The average age is: 11.333333333333334

The average birth year is: 2003

The people polled in this census were:

[<__main__.Person object at 0x10135eb00>, <__main__.Person

object at 0x10135eb38>, <__main__.Person object at 0x10135eb70>]

Well that’s not very helpful at all! What you are seeing is Python’s

default implementation of printing objects. It tells you what kind of object

the thing is, in this case Person, and where it is in memory (the memory

location will vary from computer to computer). It would be really nice if

we could pass a Person into print() and see the information about the

person.

Thankfully, Python provides an easy way to do this. Like the __init__()

function that Python looks for, there is also a __str__() function that

Python looks for when printing objects or when converting an object into a

string using the str() function. This method must return a string. Go ahead

and add this method to the Person class:

10 def __str__(self):

11 return "Name: " + self.name \

12 + " Age: " + str(self.age) \

13 + " Favorite food: " + str(self.favorite_

foods[0])

For readability, we can use backslashes to wrap a string onto

multiple lines. All of those strings will be combined into one string for

the function to return. And now when you run the script…the same thing

happens. Huh.

Chapter 8 ObjeCts

59

A quirk in Python when printing containers (like a list) is that the

__str__() method is not called for each object in the container.3 So we

need to do it ourselves with a loop.

18 for person in people:

19 print(person)

Now, if you run the program, you should see this:

The average age is: 11.333333333333334

The average birth year is: 2003

The people polled in this census were:

Name: Ed Age: 11 Favorite food: hotdogs

Name: Edd Age: 11 Favorite food: broccoli

Name: Eddy Age: 12 Favorite food: chunky puffs

One last thing to make working with __str__() easier is to use the

format() method for strings. Using format() saves us from concatenating

strings. Here’s an alternative way to write the method:

10 def __str__(self):

11 return "Name: {} Age: {} Favorite food: {}".format(

12 self.name, self.age, self.favorite_foods[0])

The braces {} are used as placeholders and each of the arguments

passed to format() is injected into the placeholders in order. This is often

easier to read and write when you need to concatenate a bunch of strings.

There are also a lot of other things you can do with format() such as pad

3 The method that is searched for is called __repr__(). We’re sticking with
__str__() here because the purpose of __str__() is to make objects readable.
The purpose of __repr__() is to aid in troubleshooting when something goes
wrong in an application. In real applications, you may want to also implement
__repr__(), but it’s beyond the scope of our game.

Chapter 8 ObjeCts

60

strings, truncate long decimal numbers, print currency, etc. If you are

interested, you can read all about the string formatting “mini-language” in

the Python documentation.4

 Adding Weapons to the Game
Now that we know how to create classes, let’s add some to our game to

represent weapons. Add the following at the top of game.py:

 1 class Rock:

 2 def __init__(self):

 3 self.name = "Rock"

 4 self.description = "A fist-sized rock, suitable for

bludgeoning."

 5 self.damage = 5

 6

 7 def __str__(self):

 8 return self.name

 9

10 class Dagger:

11 def __init__(self):

12 self.name = "Dagger"

13 self.description = "A small dagger with some rust. " \

14 "Somewhat more dangerous than a

rock."

15 self.damage = 10

16

4 https://docs.python.org/3.5/library/string.html#formatspec

Chapter 8 ObjeCts

https://docs.python.org/3.5/library/string.html#formatspec

61

17 def __str__(self):

18 return self.name

19

20 class RustySword:

21 def __init__(self):

22 self.name = "Rusty sword"

23 self.description = "This sword is showing its age, " \

24 "but still has some fight in it."

25 self.damage = 20

26

27 def __str__(self):

28 return self.name

Having defined an actual Dagger class, we can now update the starting

inventory to include a Dagger object instead of just a string that says "Dagger".

1 def play():

2 inventory = [Dagger(),'Gold(5)','Crusty Bread']

3 print("Escape from Cave Terror!")

 Customization Point try defining some of your own weapon
types, like Crossbow or Axe. Or if your game is set in a sci-fi world,
maybe you want to have RayGun and ShockStick. just make sure
to update the player’s inventory accordingly.

What do you think will happen when the players choose to display

their inventory? Try it out and see if you were correct!

Chapter 8 ObjeCts

62

 A Dash of Object-Oriented Programming
In computer programming, a principle that we should strive to follow is

“Don’t repeat yourself!” or “DRY”. If you find yourself typing the same code

more than once, there’s probably a better way to organize your code. You

may have noticed that for each weapon, the __str__() method is exactly

the same. Now suppose we wanted to change that method. We would have

to make the change in three places. Thankfully, there’s a better way.

Object-oriented programming (or OOP) is a paradigm that involves

building code around the idea of objects. As mentioned, everything in

Python is an object, but we only explicitly started creating objects in this

chapter. We were able to do a lot of programming before that because

Python supports, but does not require, OOP. In building our game, we’ll

use some OOP where it helps, but we won’t force ourselves into a box

unnecessarily just to stick to the paradigm. Structuring the weapons code

is one place where OOP can help.

Two important concepts in OOP are composition and inheritance.

Composition is when an object contains another object. We saw this

in our census because each Person contained a List of favorite foods.

Inheritance is when a class inherits behavior from another class. The

metaphor of parent and child applies here and we will sometimes call

a class a “parent class” and a class that inherits from the parent a “child

class”. Alternatively, the terms “superclass” and “subclass” are also used.

To apply inheritance to the weapons, let’s start by making a parent

class Weapon and move the duplicate __str__() method into the class.

1 class Weapon:

2 def __str__(self):

3 return self.name

Chapter 8 ObjeCts

63

To make a class inherit from Weapon, we use the syntax

ClassName(Weapon):. Any class that inherits from Weapon will

automatically get the same behavior of the Weapon class for free. This

means if we make the Rock, Dagger, and RustySword inherit from Weapon,

we can remove the duplicated __str__() methods.

 6 class Rock(Weapon):

 7 def __init__(self):

 8 self.name = "Rock"

 9 self.description = "A fist-sized rock, suitable for

bludgeoning."

10 self.damage = 5

11

12

13 class Dagger(Weapon):

14 def __init__(self):

15 self.name = "Dagger"

16 self.description = "A small dagger with some rust. " \

17 "Somewhat more dangerous than a

rock."

18 self.damage = 10

19

20

21 class RustySword (Weapon):

22 def __init__(self):

23 self.name = "Rusty sword"

24 self.description = "This sword is showing its

age, " \

25 "but still has some fight in it."

26 self.damage = 20

Chapter 8 ObjeCts

64

 Homework
Try the following for homework:

 1. What is the difference between a class and an object?

 2. What is the purpose of an __init__() method in a

class?

 3. What is the difference between __str__() and str()?

 4. Create a file called food.py that contains a class,

Food. This class should have four members: name,

carbs, protein, and fat. These members should be

set in the initializer of the class.

 5. Add a method to the Food class called calories()

that calculates the number of calories in the food.

There are 4 calories per gram of carbs, 4 calories per

gram of protein, and 9 calories per gram of fat.

 6. Create another class called Recipe that has an

initializer that accepts a name and a list of food items

called ingredients. Add a method to this class called

calories() that returns the total calories in the recipe.

 7. Add a __str__() method to the Recipe class that

simply returns the name of the recipe.

 8. Create two (simple!) recipes and print out the name

and total calories for each recipe. You can make

up the numbers for carbs, protein, and fat if you

choose. For bonus points, try to do this in a way that

would work for two recipes or 200 recipes.

 9. The classes in this script are examples of either

inheritance or composition. Which one and why?

Chapter 8 ObjeCts

65© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_9

CHAPTER 9

Exceptions
In a perfect world, programmers never make mistakes and users are

always well-behaved. In the real world, programmers always make

mistakes and users are never well-behaved! When something goes wrong,

Python will raise an exception, which is an error encountered while the

program is executing. Thankfully, it is possible to handle and recover from

most exceptions. In this chapter, we learn about some common exceptions

we should anticipate, and how to deal with them.

 Validating User Input
Suppose you wanted to collect some basic data about your users and then

give them back some information. It seems simple enough:

1 name = input("Please enter your name: ")

2 age = input("Please enter your age: ")

3 print("You were born in {}.".format(2015 - int(age)))

You test the program and it works perfectly. Then you show it to your

friend, and she enters “25 years” for age. Well, this unhelpful message dumps

out to the screen and now it looks like you don’t know how to program.

Traceback (most recent call last):

 File "validate.py", line 3, in <module>

 print("You were born in {}.".format(2015 - int(age)))

ValueError: invalid literal for int() with base 10: '25 years'

66

This is an exception (specifically a ValueError), and it was raised

because the user entered a value that could not be converted into a

number using int(). Being diligent programmers, we can anticipate and

plan for this situation.

The keyword try allows us to mark a block of code as something that

could raise an exception. It is followed by the except keyword, which

marks the block of code to run should an exception be encountered.

1 name = input("Please enter your name: ")

2 age = input("Please enter your age: ")

3 try:

4 print("You were born in {}.".format(2015 - int(age)))

5 except ValueError:

6 print('Unable to calculate the year you were born, ' \

7 + '"{}" is not a number.'.format(age))

Pay special attention to the syntax here and remember that whitespace

in Python is meaningful. The indentation shows us what code is part of

the try block and what code is part of the except block. If any code inside

of the try block encounters a ValueError, the program will immediately

jump to the except block and run the code inside that block.

 Checking Object Members
In our game, the player has an inventory of a few assorted items. Let’s add

one more:

inventory = [Rock(), Dagger(), 'Gold(5)', 'Crusty Bread']

Some of those are weapons and some are not. If we wanted to find the

most powerful weapon in the inventory, we’d need to check each item and

see what its damage is.

Chapter 9 exCeptions

67

59 def most_powerful_weapon(inventory):

60 max_damage = 0

61 best_weapon = None

62 for item in inventory:

63 if item.damage > max_damage:

64 best_weapon = item

65 max_damage = item.damage

66

67 return best_weapon

This should be pretty straight-forward. The function loops over all

of the items in the inventory and checks the damage to see if it is greater

than what has already been found. There is one new keyword here: None.

It is the absence of a value. We set best_weapon equal to None initially

because if the player does not have any weapons, the function can’t return

a weapon!

If you run this code, it unfortunately raises an exception:

Traceback (most recent call last):

 File "game.py", line 80, in <module>

 play()

 File "game.py", line 46, in play

 best_weapon = most_powerful_weapon(inventory)

 File "game.py", line 59, in most_powerful_weapon

 if item.damage > max_damage:

AttributeError: 'str' object has no attribute 'damage'

This makes sense because “Crusty Bread” and “Gold” don’t do

damage. Since we know the inventory will often have non-weapons, we

can wrap the code in a try and handle the AttributeError.

59 def most_powerful_weapon(inventory):

60 max_damage = 0

61 best_weapon = None

Chapter 9 exCeptions

68

62 for item in inventory:

63 try:

64 if item.damage > max_damage:

65 best_weapon = item

66 max_damage = item.damage

67 except AttributeError:

68 pass

69

70 return best_weapon

71

72 play()

If an AttributeError is encountered, we don’t actually need to do

anything because we don’t care that Crusty Bread doesn’t have a damage

attribute. The keyword pass can be used any time we simply want to skip

over or ignore a code block. Keep in mind that for most exceptions, you

want to do something, such as alert the user or follow a different code path.

For this specific situation, we’re safe to ignore the exception.

 Raising Exceptions Intentionally
It may seem counter-intuitive at first, but there are some scenarios where

we actually want to cause an exception to be raised. We usually do this

when we want to yell at ourselves for doing something wrong! Putting in

checks for bad code will help us catch errors during testing.

One vulnerability in the current code is with the Weapon class. This

code would cause an exception:

1 axe = Weapon()

2 print(axe)

Chapter 9 exCeptions

69

Why? Because the __str__() method of the Weapon class looks for a

name when printing the object, but the class doesn’t have that attribute.

We could fix this by assigning a name to Weapon, but that doesn’t really

make sense because the class is too general to describe. Really, we should

never create a Weapon object; we should always create a specific subclass

like Dagger. If we need an axe object, we should create an Axe class that

inherits from the superclass Weapon.

To prevent ourselves from accidentally creating Weapon objects, we can

raise an exception in the initializer.

1 class Weapon:

2 def __init__(self):

3 raise NotImplementedError("Do not create raw Weapon

objects.")

4

5 def __str__(self):

6 return self.name

The NotImplementedError exception is built into Python and it is a

good marker to alert us that we’re doing something wrong. We can include

a message for the exception to help remind us what the problem is. If

you would like to test this new code, try adding Weapon() to the player’s

inventory and running the game. You should see this error:

Traceback (most recent call last):

 File "game.py", line 72, in <module>

 play()

 File "game.py", line 33, in play

 inventory = [Weapon(), Rock(), Dagger(), 'Gold(5)',

'Crusty Bread']

 File "game.py", line 3, in __init__

 raise NotImplementedError("Do not create raw Weapon

objects.")

NotImplementedError: Do not create raw Weapon objects.

Chapter 9 exCeptions

70

Just remember to remove Weapon() from the inventory when you’re

done testing.

 Homework
Try the following for homework:

 1. Update user_calculator.py with try and except to

handle a user who doesn’t enter a number.

 2. What does None mean and when is it used?

 3. What does pass mean and when is it used?

 4. Create a Vehicle class, a Motorcycle class that is a

subclass of Vehicle with a wheels attribute set to 2,

and a Car class that is a subclass of Vehicle with a

wheels attribute set to 4. Add code that will raise an

exception if the programmer tries to create a Vehicle.

Chapter 9 exCeptions

71© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_10

CHAPTER 10

Intermezzo
Believe it or not, by now you actually know most of the Python material

this book will cover. There will be a few new things to learn, but the rest

of the book will focus on making the game. Along the way, we will pick up

some best practices and guidelines for building applications. To start with,

we’re going to reorganize the code into a few files.

 Organizing Code Into Multiple Files
First, we’re going to create items.py that will store all of the classes for the

items the player will interact with. Right now, we just have weapons, but

later we will add more.

items.py

 1 class Weapon:

 2 def __init__(self):

 3 raise NotImplementedError("Do not create raw

Weapon objects.")

 4

 5 def __str__(self):

 6 return self.name

 7

 8

 9 class Rock(Weapon):

72

10 def __init__(self):

11 self.name = "Rock"

12 self.description = "A fist-sized rock, suitable for

bludgeoning."

13 self.damage = 5

14

15

16 class Dagger(Weapon):

17 def __init__(self):

18 self.name = "Dagger"

19 self.description = "A small dagger with some rust. " \

20 "Somewhat more dangerous than a

rock."

21 self.damage = 10

22

23

24 class RustySword(Weapon):

25 def __init__(self):

26 self.name = "Rusty sword"

27 self.description = "This sword is showing its age, " \

28 "but still has some fight in it."

29 self.damage = 20

Next, we will create player.py with a Player class. Since the inventory

is really associated with the player, we will make it an attribute of the

object. This also means that the methods associated with printing the

inventory need to be moved to the Player class. We’ll cover import after

we’re finished reorganizing.

Chapter 10 Intermezzo

73

player.py

 1 import items

 2

 3

 4 class Player:

 5 def __init__(self):

 6 self.inventory = [items.Rock(),

 7 items.Dagger(),

 8 'Gold(5)',

 9 'Crusty Bread']

10

11 def print_inventory(self):

12 print("Inventory:")

13 for item in self.inventory:

14 print('* ' + str(item))

15 best_weapon = self.most_powerful_weapon()

16 print("Your best weapon is your {}".format

(best_weapon))

17

18 def most_powerful_weapon(self):

19 max_damage = 0

20 best_weapon = None

21 for item in self.inventory:

22 try:

23 if item.damage > max_damage:

24 best_weapon = item

25 max_damage = item.damage

26 except AttributeError:

27 pass

28

29 return best_weapon

Chapter 10 Intermezzo

74

Note that the methods are similar to before, but not identical. Now that

we are inside of an object, we need to use self when appropriate.

Finally, we need to clean up our game function to account for these

changes.

game.py

 1 from player import Player

 2

 3

 4 def play():

 5 print("Escape from Cave Terror!")

 6 player = Player()

 7 while True:

 8 action_input = get_player_command()

 9 if action_input in ['n', 'N']:

10 print("Go North!")

11 elif action_input in ['s', 'S']:

12 print("Go South!")

13 elif action_input in ['e', 'E']:

14 print("Go East!")

15 elif action_input in ['w', 'W']:

16 print("Go West!")

17 elif action_input in ['i', 'I']:

18 player.print_inventory()

19 else:

20 print("Invalid action!")

21

22

23 def get_player_command():

24 return input('Action: ')

25

26

27 play()

Chapter 10 Intermezzo

75

 Importing from Other Files
Since we moved the code into other files (or modules), we need a way for

the code to be able to reference those modules. The import keyword can

be used to pull in objects from other modules. It appears at the top of a

Python file.

There are two primary styles:

import module

and

from module import ClassName

The first style gives us access to all of the classes in the referenced

module. However, we have to prefix any class from that module with the

name of the module. For example, in the player’s inventory, we have to

write items.Rock(), which means the Rock class in the items module.

Had we left it as just Rock(), Python would search the player module and

naturally not find the class.

The second style is typically used when you need just one or two

classes from a module. In our game, the player module only has one class,

so we could use either style. For readability, I prefer player = Player()

over player = player.Player(), so I chose the second import style.

Run the game now and verify that the game works the same as before.

These changes are an example of refactoring. Refactoring is the work we

do to improve code quality without affecting the behavior of the code. It’s

always a good idea to step back and refactor code periodically, otherwise

you’ll find yourself with a lot of messy code. In the corporate world, we

usually call this “legacy” code. No one wants to touch the legacy code.

Chapter 10 Intermezzo

76

Although the imports seem to work magically here, that is only because

all of the modules are in the directory from which we are running the code.

Python searches a few different locations for modules. If you’d like to learn

more, you can read about the PYTHONPATH.1 Otherwise, just keep in

mind that you can’t drop modules in random locations on the filesystem

and expect them to be picked up by Python.

 Homework
This time, the homework is review:

 1. Go back through the chapters and review anything

that you struggled with. Otherwise, take a break and

get ready to plunge into world building!

1 https://docs.python.org/3/using/cmdline.html

Chapter 10 Intermezzo

https://docs.python.org/3/using/cmdline.html

77© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_11

CHAPTER 11

Building Your World
Early on, we gave our players the ability to move throughout the game world,

but so far that world has been only a figment of our imaginations. In this

chapter, we will finally create the world for the players to move around in.

 The X-Y Grid
Since this is a text adventure, we only need to worry about the players

moving in two directions: forward/backward and left/right. This allows us

to build the world as if we were looking from above down onto the players,

similar to Pac-Man or Chess. To keep track of where everything is, we use

a coordinate plane similar to the one you learned about in math class. The

X-axis represents the horizontal position of game objects and the Y-axis

represents the vertical position of the game objects. However, in game

programming, we orient the grid slightly differently.

A typical coordinate plane in math and science looks like this:

(0,2)──(1,2)──(2,2)
 │ │ │
(0,1)──(1,1)──(2,1)
 │ │ │
(0,0)──(1,0)──(2,0)

But in game programming, we flip the Y-axis so that the numbers

increase downward instead of upward.

78

(0,0)──(1,0)──(2,0)
 │ │ │
(0,1)──(1,1)──(2,1)
 │ │ │
(0,2)──(1,2)──(2,2)

If we label the spaces instead of the intersection, we end up with a grid

of cells.

╔═════╦═════╦═════╗
║ (0,0) ║ (1,0) ║ (2,0) ║
╠═════╬═════╬═════╣
║ (0,1) ║ (1,1) ║ (2,1) ║
╠═════╬═════╬═════╣
║ (0,2) ║ (1,2) ║ (2,2) ║
╚═════╩═════╩═════╝

We can imagine each grid cell to be a different part of the cave (or room

in a spaceship, or city block). Players will be in one cell at any time and

in that cell they may encounter an enemy, loot, or some lovely scenery.

They can move from cell to cell by using the already defined actions North,

South, East, and West. These actions correspond to Up (y - 1), Down (y + 1),

Left (x - 1), and Right (x + 1), respectively.

Before we go much further, let’s get some of this written up into code.

Start by creating a new module called world.py with the following tile

classes.

 1 class MapTile:

 2 def __init__(self, x, y):

 3 self.x = x

 4 self.y = y

 5

 6 def intro_text(self):

Chapter 11 Building Your World

79

 7 raise NotImplementedError("Create a subclass

instead!")

 8

 9

10 class StartTile(MapTile):

11 def intro_text(self):

12 return """

13 You find yourself in a cave with a flickering torch

on the wall.

14 You can make out four paths, each equally as dark

and foreboding.

15 """

16

17

18 class BoringTile(MapTile):

19 def intro_text(self):

20 return """

21 This is a very boring part of the cave.

22 """

23

24

25 class VictoryTile(MapTile):

26 def intro_text(self):

27 return """

28 You see a bright light in the distance...

29 ... it grows as you get closer! It's sunlight!

30

31

32 Victory is yours!

Chapter 11 Building Your World

80

 Customization Point Change the intro text of the tiles to fit
your game world.

The MapTile class is the superclass that defines the initializer. The

following subclasses are specific types of tiles in the game. (Don’t worry,

we’ll get rid of BoringTile!) The intro_text() method will be used in the

next section, but you should be able to guess its purpose. Notice that we

raise an exception if a naughty programmer tries to use MapTile directly.

You may have noticed the triple quote (""") surrounding the intro text.

Python allows us to write multi-line strings by surrounding text with triple

quotes. This can make it easier to write long strings.

Having defined the classes, we need to place them into a grid.

35 world_map = [

36 [None,VictoryTile(1,0),None],

37 [None,BoringTile(1,1),None],

38 [BoringTile(0,2),StartTile(1,2),BoringTile(2,2)],

39 [None,BoringTile(1,3),None]

40]

This list of lists is a way of representing the grid pattern. The “outside”

list represents the Y-axis. So, the first item in the “outside” list is the entire

first row and the second item in the “outside” list is the entire second row.

Each “inside” list represents a single row. The first item in the first row is

the tile in the top-left corner in the grid. The last item in the last row is the

tile in the bottom-right corner of the grid. The None value is used for the

grid spaces where we do not want a map tile to exist.

For convenience, let’s also add a function that locates the tile at a

coordinate.

42 def tile_at(x, y):

43 if x < 0 or y < 0:

44 return None

Chapter 11 Building Your World

81

45 try:

46 return world_map[y][x]

47 except IndexError:

48 return None

The world_map[y][x] syntax may look confusing, but that’s because

we’re working with a list of lists. The world_map[y] part selects the row

of the map and adding [x] selects the specific cell in that row. Catching

IndexError will handle the situation where we pass in a coordinate greater

than the bounds of the map and if x < 0 or y < 0 handles coordinates

smaller than the bounds of the map. Without this function, we’d have to

continually check the bounds of the world whenever we wanted to see if a

tile exists.

 Moving in the World
One of the first features we added to the game was getting user input

for moving in the game world. However, until now, those have just

been placebo actions. To make the players move, we need to add X-Y

coordinates to the Player class to represent the player’s position, and

we need to add methods that modify those coordinates. Start by adding

self.x and self.y in the initializer.

 4 class Player:

 5 def __init__(self):

 6 self.inventory = [items.Rock(),

 7 items.Dagger(),

 8 'Gold(5)',

 9 'Crusty Bread']

10

11 self.x = 1

12 self.y = 2

Chapter 11 Building Your World

82

Next, add these methods inside the class:

34 def move(self, dx, dy):

35 self.x += dx

36 self.y += dy

37

38 def move_north(self):

39 self.move(dx=0, dy=-1)

40

41 def move_south(self):

42 self.move(dx=0, dy=1)

43

44 def move_east(self):

45 self.move(dx=1, dy=0)

46

47 def move_west(self):

48 self.move(dx=-1, dy=0)

If you didn’t read through the homework answers, the syntax

move(dx=0, dy=-1) may be new to you. This code calls the move method

using named parameters. Named parameters are never required, but they

can make it easier to read code, especially when you have parameters of

the same type in the method. The names dx and dy come from math and

mean “change in x” and “change in y,” respectively. So the move() method

accepts a generic change in the x- and/or y-direction and the specific

methods define the amount of the change.

Finally, our main game loop needs to use these methods instead of just

printing out the placeholder text. Jump over to game.py and change the

play() function as follows.

12 if action_input in ['n', 'N']:

13 player.move_north()

14 elif action_input in ['s', 'S']:

Chapter 11 Building Your World

83

15 player.move_south()

16 elif action_input in ['e', 'E']:

17 player.move_east()

18 elif action_input in ['w', 'W']:

19 player.move_west()

20 elif action_input in ['i', 'I']:

21 player.print_inventory()

Now the players will be able to move around in the map, but we should

also display the intro text for each tile so the players know where they are.

Don’t forget to import the world module.

 1 from player import Player

 2 import world

 3

 4

 5 def play():

 6 print("Escape from Cave Terror!")

 7 player = Player()

 8 while True:

 9 room = world.tile_at(player.x, player.y)

10 print(room.intro_text())

11 action_input = get_player_command()

 Help! What’s an AttributeError? a very common
problem at this point in the game is that you get an error that says
AttributeError: 'NoneType' object has no attribute
'intro_text'.

What does it mean? it means that the python code says to run the
intro_text() method on an object, but that object is actually the
None type.

Chapter 11 Building Your World

84

Why does it happen? the error occurs when the player moves into
a room that doesn't exist. More specifically, when the player moves
into a part of the map that is marked None.

How do I fix it? if the error shows up right away, it probably means
the starting location for your player is wrong. Check the __init()__
of the Player class and make sure the self.x and self.y
coordinates are correct. remember to start counting at zero!

if the error shows up while you’re moving around, you are moving into a
room that doesn’t exist. if you want the room to exist, change your map.
if you moved there by mistake, you found a bug that we'll fix soon!

You should be able to test the game now and verify that you can move

around the world. There’s some bugs right now. Notably, the game doesn’t

end when you reach the VictoryTile and the players can also wrap

around the map. We’ll fix those bugs, but for now, enjoy the fact that this is

starting to feel more like a game!

Chapter 11 Building Your World

85© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_12

CHAPTER 12

Making the World
More Interesting
With no risk to the player, our game is pretty boring right now. We’re going

to fix that by adding enemies and making the player vulnerable. But we’ll

also give the player the ability to fight back and heal so that they have a

fighting chance for making it out alive.

 Enemies
By now, the pattern of creating a base class with multiple subclasses

should look familiar. We’ll use that pattern for creating enemies. Each

enemy will have a name, hp (health), and damage. Create these enemy

classes in a new module called enemies.py.

enemies.py

 1 class Enemy:

 2 def __init__(self):

 3 raise NotImplementedError("Do not create raw Enemy

objects.")

 4

 5 def __str__(self):

 6 return self.name

86

 7

 8 def is_alive(self):

 9 return self.hp > 0

10

11

12 class GiantSpider(Enemy):

13 def __init__(self):

14 self.name = "Giant Spider"

15 self.hp = 10

16 self.damage = 2

17

18

19 class Ogre(Enemy):

20 def __init__(self):

21 self.name = "Ogre"

22 self.hp = 30

23 self.damage = 10

24

25

26 class BatColony(Enemy):

27 def __init__(self):

28 self.name = "Colony of bats"

29 self.hp = 100

30 self.damage = 4

31

32

33 class RockMonster(Enemy):

34 def __init__(self):

35 self.name = "Rock Monster"

36 self.hp = 80

37 self.damage = 15

Chapter 12 Making the World More interesting

87

 Customization Point You can create your own enemy types,

just make sure they all have a name, hp, and damage.

To place enemies into the cave, we’ll need a new type of Tile. This tile

will need to generate an enemy and the intro text should appropriately

state if the enemy is alive or dead. Start by switching over to world.py and

add import random to the top of the file. The random module is built into

Python and it provides methods for randomly generating numbers.

Since our enemies are not all equally as easy to defeat, we’ll want

players to encounter them with different frequency. For example, we could

have them encounter a Giant Spider about 50% of the time and a Rock

Monster only 5% of the time. The random() method in the random module

returns a decimal number from 0.0 to 1.0, which means about 50% of the

time, the randomly returned number will be less than 0.5.

25 class EnemyTile(MapTile):

26 def __init__(self, x, y):

27 r = random.random()

28 if r < 0.50:

29 self.enemy = enemies.GiantSpider()

30 elif r < 0.80:

31 self.enemy = enemies.Ogre()

32 elif r < 0.95:

33 self.enemy = enemies.BatColony()

34 else:

35 self.enemy = enemies.RockMonster()

36

37 super().__init__(x, y)

Chapter 12 Making the World More interesting

88

 Customization Point adjust the numbers to make the game
easier or harder. a harder game might use 0.40, 0.70, and 0.90, for
example. if you have more than four enemy types, make sure you
define the percentages for each type.

Each time a new EnemyTile is created, a new enemy will also be created.

That enemy will be linked to the tile since we used the self keyword for the

enemy variable. The line of code at the bottom of the initializer will take the

X-Y coordinates for this tile and pass them to the __init__() method of the

superclass, MapTile. We don’t have to do this explicitly in StartTile because

we did not define an __init()__ method for that class. If an initializer is not

defined on a subclass, the superclass initializer will be called automatically.

To alert the player about the enemy, we can create the intro_text()

method for the EnemyTile class. This method calls the is_alive() method

that we defined in the Enemy class.

39 def intro_text(self):

40 if self.enemy.is_alive():

41 return "A {} awaits!".format(self.enemy.name)

42 else:

43 return "You've defeated the {}.".format(self.

enemy.name)

Now that we have a more interesting tile, let’s delete the BoringTile

class and replace any references to the class in the map with EnemyTile.

56 world_map = [

57 [None,VictoryTile(1,0),None],

58 [None,EnemyTile(1,1),None],

59 [EnemyTile(0,2),StartTile(1,2),EnemyTile(2,2)],

60 [None,EnemyTile(1,3),None]

61]

Chapter 12 Making the World More interesting

89

You can play the game now, but you’ll recognize that you can’t do

anything to the enemies and the enemies don’t do anything to you. Fixing

the first issue is pretty easy: we just need to add an attack method to the

Player class, and then let the player initiate that action.

This new method on the Player class will take advantage of the most_

powerful_weapon() method we already wrote and then use that weapon

against the enemy. Make sure you import world at the top of the class too!

71 def attack(self):

72 best_weapon = self.most_powerful_weapon()

73 room = world.tile_at(self.x, self.y)

74 enemy = room.enemy

75 print("You use {} against {}!".format(best_weapon.

name, enemy.name))

76 enemy.hp -= best_weapon.damage

77 if not enemy.is_alive():

78 print("You killed {}!".format(enemy.name))

79 else:

80 print("{} HP is {}.".format(enemy.name, enemy.hp))

To allow the player to use this method, add another elif to the branch

in game.py:

13 if action_input in ['n', 'N']:

14 player.move_north()

15 elif action_input in ['s', 'S']:

16 player.move_south()

17 elif action_input in ['e', 'E']:

18 player.move_east()

19 elif action_input in ['w', 'W']:

20 player.move_west()

21 elif action_input in ['i', 'I']:

Chapter 12 Making the World More interesting

90

22 player.print_inventory()

23 elif action_input in ['a', 'A']:

24 player.attack()

Since this method automatically chooses the best weapon, I removed

the two lines from print_inventory() that display the best weapon to the

user. This is optional and has no effect on the gameplay, so you can leave

them in if you like, but you’ll no longer see those lines in the example code.

Before the enemy is able to attack the player, the Player class needs to

have its own hp member. We can add this easily in the initializer:

 4 class Player:

 5 def __init__(self):

 6 self.inventory = [items.Rock(),

 7 items.Dagger(),

 8 'Gold(5)',

 9 items.CrustyBread()]

10 self.x = 1

11 self.y = 2

12 self.hp = 100

To make the enemy fight back, we need to provide some logic within

the EnemyTile class. The EnemyTile class is the part of the game that

knows about the strength of the current enemy. Since we might want

other tiles to also be able to respond to the player, let’s name the method

generically as modify_player() so we can reuse the name in other tiles.

56 def modify_player(self, player):

57 if self.enemy.is_alive():

58 player.hp = player.hp - self.enemy.damage

59 print("Enemy does {} damage. You have {} HP

remaining.".

60 format(self.enemy.damage, player.hp))

Chapter 12 Making the World More interesting

91

We should now call this method from the game loop so that the enemy

responds as soon as the player enters the tile. Add this line to the play()

method:

 8 while True:

 9 room = world.tile_at(player.x, player.y)

10 print(room.intro_text())

11 room.modify_player(player) # New line

12 action_input = get_player_command()

Notice that this method gets called every time, regardless of the tile

type. But since we’ve only added the method to the EnemyTile. The game

would raise an exception in its current state. One way to fix it would be to

add modify_player() to every tile class, but that would violate the DRY

principle discussed earlier. A better choice is to add a base implementation

in the MapTile class. Remember that any subclass of MapTile will inherit

the behavior in MapTile, unless it is overridden. We don’t really want the

base method to do anything, so we can use the pass keyword.

 1 class MapTile:

 2 def __init__(self, x, y):

 3 self.x = x

 4 self.y = y

 5

 6 def intro_text(self):

 7 raise NotImplementedError("Create a subclass

instead!")

 8

 9 def modify_player(self, player):

10 pass

Now the game should feel more “real” when you play it. There’s some

sense of danger because you can take damage, but you also feel in control

Chapter 12 Making the World More interesting

92

because you can move and attack when necessary. Indeed, there are still

bugs (which we’ll fix!), but the core elements of the game are now in place.

I chose to add one final touch, which is to make each tile’s intro text a

bit more descriptive based on the status of the enemy in the tile. Here’s the

complete EnemyTile with that enhancement.

 1 class EnemyTile(MapTile):

 2 def __init__(self, x, y):

 3 r = random.random()

 4 if r < 0.50:

 5 self.enemy = enemies.GiantSpider()

 6 self.alive_text = "A giant spider jumps down

from " \

 7 "its web in front of you!"

 8 self.dead_text = "The corpse of a dead

spider " \

 9 "rots on the ground."

10 elif r < 0.80:

11 self.enemy = enemies.Ogre()

12 self.alive_text = "An ogre is blocking your

path!"

13 self.dead_text = "A dead ogre reminds you of

your triumph."

14 elif r < 0.95:

15 self.enemy = enemies.BatColony()

16 self.alive_text = "You hear a squeaking noise

growing louder" \

17 "...suddenly you are lost

in s swarm of bats!"

18 self.dead_text = "Dozens of dead bats are

scattered on the ground."

19 else:

Chapter 12 Making the World More interesting

93

20 self.enemy = enemies.RockMonster()

21 self.alive_text = "You've disturbed a rock

monster " \

22 "from his slumber!"

23 self.dead_text = "Defeated, the monster has

reverted " \

24 "into an ordinary rock."

25

26 super().__init__(x, y)

27

28 def intro_text(self):

29 text = self.alive_text if self.enemy.is_alive()

else self.dead_text

30 return text

31

32 def modify_player(self, player):

33 if self.enemy.is_alive():

34 player.hp = player.hp - self.enemy.damage

35 print("Enemy does {} damage. You have {} HP

remaining.".

36 format(self.enemy.damage, player.hp))

 Customization Point rewrite the intro text for each tile to fit

the mood of your game.

 Do You Have Any Potions…or Food?
Remember when we gave the player some crusty bread in their inventory?

Well, now we’ll make it useful. Instead of being just a string, we’ll make

it into something the player can consume to heal. First, create these two

classes in items.py.

Chapter 12 Making the World More interesting

94

32 class Consumable:

33 def __init__(self):

34 raise NotImplementedError("Do not create raw

Consumable objects.")

35

36 def __str__(self):

37 return "{} (+{} HP)".format(self.name, self.

healing_value)

38

39

40 class CrustyBread(Consumable):

41 def __init__(self):

42 self.name = "Crusty Bread"

43 self.healing_value = 10

 Customization Point add another Consumable type for a

food the character could likely encounter in your game world.

The base class allows us to make a new kind of consumable item in the

future, such as a healing potion. For now, we just have the one subclass,

CrustyBread. We should now change the player’s inventory in player.py

to have an actual CrustyBread object, instead of the string.

1 class Player:

2 def __init__(self):

3 self.inventory = [items.Rock(),

4 items.Dagger(),

5 'Gold(5)',

6 items.CrustyBread()]

Chapter 12 Making the World More interesting

95

Next we need to create a heal() function for the player. This function

should:

 1. Determine what items the player has available to

heal with

 2. Display those items to the player

 3. Take player input to determine the item to use

 4. Consume that item and remove it from the

inventory

It sounds like a lot, but this actually won’t take too many lines of code.

To start, we want to find the Consumables in the inventory. Python’s built-

in function isinstance() accepts an object and a type and tells us if that

object is that type or a subclass of that type. In the REPL, isinstance(1,

int) is True and isinstance(1, str) is False, because the number one

is an int, but not a str (string). Similarly, isinstance(CrustyBread(),

Consumable) is True because CrustyBread is a subclass of Consumable, but

isinstance(CrustyBread(), Enemy) is False.

Here’s one way to use that function:

1 consumables = []

2 for item in self.inventory:

3 if isinstance(item, Consumable):

4 consumables.append(item)

That’s perfectly reasonable and correct, but we can make it a bit

more concise using a list comprehension. List comprehensions are a

special feature in Python that let us create a list “on the fly”. The syntax is

[what_we_want for thing in iterable if condition]:

• what_we_want: What ends up in the new list. This is

often just the thing in the iterable, but we can modify

the thing if we want.

Chapter 12 Making the World More interesting

96

• thing: The object in the iterable.

• iterable: Something that can be passed to a for-each

loop, such as a list, range, or tuple.

• condition: (Optional.) A condition to limit what is

added to the list.

To help make this concrete, try these comprehensions in the REPL:

• [a for a in range(5)]

• [a*2 for a in range(5)]

• [a for a in range(5) if a > 3]

• [a*2 for a in range(5) if a > 3]

Here’s the comprehension we will use to filter the player’s inventory:

19 def heal(self):

20 consumables = [item for item in self.inventory

21 if isinstance(item, items.Consumable)]

Sometimes, the player won’t have anything to eat, so we need to check

for that condition. If consumables is an empty list, we should alert the

player and exit the heal() method.

19 def heal(self):

20 consumables = [item for item in self.inventory

21 if isinstance(item, items.Consumable)]

22 if not consumables:

23 print("You don't have any items to heal you!")

24 return

The if not consumables line is a shortcut that means “if there is

nothing in the list” or if consumables == []. If that’s the case, we need to

exit the function, which we do with return. You’ve seen return before, but

Chapter 12 Making the World More interesting

97

here we’re returning…nothing? Exactly! If you need to immediately exit a

function, the return keyword by itself will do just that.

Next, we need to find out what the player wants to eat.

19 def heal(self):

20 consumables = [item for item in self.inventory

21 if isinstance(item, items.Consumable)]

22 if not consumables:

23 print("You don't have any items to heal you!")

24 return

25

26 for i, item in enumerate(consumables, 1):

27 print("Choose an item to use to heal: ")

28 print("{}. {}".format(i, item))

29

30 valid = False

31 while not valid:

32 choice = input("")

33 try:

34 to_eat = consumables[int(choice) - 1]

35 self.hp = min(100, self.hp + to_eat.healing_

value)

36 self.inventory.remove(to_eat)

37 print("Current HP: {}".format(self.hp))

38 valid = True

39 except (ValueError, IndexError):

40 print("Invalid choice, try again.")

The only new thing here is the built-in function min(), which returns

the lesser of two values. This caps the player’s HP at 100. Other than that,

this function is a good review of some concepts we’ve gone over before.

It might behoove you to go through it line-by-line to make sure you

understand what each line’s purpose is.

Chapter 12 Making the World More interesting

98

Finally, we need to give the player the ability to use this new function.

Open game.py and add the lines to let the user heal.

25 elif action_input in ['h', 'H']:

26 player.heal()

Try the game now and make sure that you can heal as long as you have

some crusty bread in your inventory. You should also try to enter a bad

value like 5 when asked to make a choice and verify that the code handles

that situation appropriately.

We added a lot of new features to the game in this chapter. In the next

chapter, we’ll take some time to clean up our code and fix some of the

bugs.

Chapter 12 Making the World More interesting

99© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_13

CHAPTER 13

World-Building Part 2
At this point, we’ve built a pretty decent game world for the player to move

around in and experience. However, along the way, we’ve introduced some

unintentional bugs that need to be resolved. To help fix those bugs, we’ll

introduce a new data structure called a dictionary to help make our code

cleaner.

 Dictionaries
In real life, a person uses a dictionary to search for a word and retrieve

a definition. A Python dictionary works on the same principle, except

instead of just words, any type of object1 can be searched for and the

“definition” can also be any type of object. Generally, we call this a key-

value pair where the key is what we search by and the value is the object

linked to that key. A concrete example is a dictionary where the key is the

name of the city and the value is the population. We’ll use this example to

introduce the syntax for working with dictionaries.

1 Actually, only “immutable” objects can be can be used for keys in dictionaries. An
immutable object is one that cannot change, such as a string or integer.

100

 Creating a Dictionary
A dictionary is created using braces {}:

>>> cities = {"Amsterdam": 780000, "Brasilia": 2480000,

"Canberra": 360000}

 Get
To get a value from a dictionary, we pass in the desired key using one of

two syntaxes:

>>> cities = {"Amsterdam": 780000, "Brasilia": 2480000,

"Canberra": 360000}

>>> cities['Brasilia']

2480000

>>> cities.get('Brasilia')

2480000

If the key exists, these syntaxes behave identically. But if the key does

not exist, there is a different behavior.

>>> cities['Dresden']

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'Dresden'

>>> cities.get('Dresden')

>>> cities.get('Dresden', 0)

0

The get() method will return None if not found, or the default

value that we specify as a second argument. The [] syntax will throw

an exception. If you know 100% that the key exists in the dictionary, the

bracket syntax is usually cleaner and more readable. However, if there’s a

chance that the key does not exist, you are safer using the get() method.

Chapter 13 World-Building part 2

101

 Add/Update
The syntax to add a key-value to a dictionary is the same syntax for

updating the value of an existing key. If the key we pass exists, the value is

updated. If the key does not exist, the key-value pair is added. Here’s how

we add Dresden:

>>> cities = {"Amsterdam": 780000, "Brasilia": 2480000,

"Canberra": 360000}

>>> cities

{'Amsterdam': 780000, 'Canberra': 360000, 'Brasilia': 2480000}

>>> cities['Dresden'] = 525000

>>> cities

{'Dresden': 525000, 'Amsterdam': 780000, 'Canberra': 360000,

'Brasilia': 2480000}

Notice that Dresden was not added to the end of the dictionary. This is

because dictionaries are unordered. In most cases, this is fine because we

simply pass a key into the dictionary and let the computer figure out how

to find the value. If you need an ordered dictionary, Python does provide

an OrderedDict type in the collections module.2

If we wanted to update the population of, say, Amsterdam, we use the

same syntax.

>>> cities = {"Amsterdam": 780000, "Brasilia": 2480000,

"Canberra": 360000}

>>> cities

{'Amsterdam': 780000, 'Canberra': 360000, 'Brasilia': 2480000}

>>> cities['Amsterdam'] = 800000

>>> cities

{'Amsterdam': 800000, 'Canberra': 360000, 'Brasilia': 2480000}

2 https://docs.python.org/3.5/library/collections.html

Chapter 13 World-Building part 2

https://docs.python.org/3.5/library/collections.html

102

It may be obvious, but the implication is that you cannot store

duplicate keys in a dictionary.

 Delete
To remove a pair from a dictionary, use the del keyword.

>>> cities = {"Amsterdam": 780000, "Brasilia": 2480000,

"Canberra": 360000}

>>> cities

{'Amsterdam': 780000, 'Canberra': 360000, 'Brasilia': 2480000}

>>> del cities['Amsterdam']

>>> cities

{'Canberra': 360000, 'Brasilia': 2480000}

 Loop
Sometimes it is useful to iterate over a dictionary in a for-each loop.

Similar to the enumerate() function, we use items() to iterate over a

dictionary and get back a tuple. Specifically, we get each key-value pair in

the dictionary as a tuple.

>>> cities = {"Amsterdam": 780000, "Brasilia": 2480000,

"Canberra": 360000}

>>> for k, v in cities.items():

... print("City: {}, Pop: {}".format(k, v))

...

City: Amsterdam, Pop: 780000

City: Canberra, Pop: 360000

City: Brasilia, Pop: 2480000

Chapter 13 World-Building part 2

103

You may not have seen a for loop in the repl before, but you
can enter them just like any other python code. You can even
define methods and classes in the repl. When you press return,
you will automatically see …, which means the repl is expecting
you to complete the statement. Just remember, you need to enter
indentation manually. When you’re finished, press return twice to
complete the loop, function, class, etc.

Remember that the k and v in the previous example can have any

name, such as city and pop, but k and v are commonly used because they

stand for “key” and “value”.

 Limiting Actions
Currently, the player can take any action at any time, even if it doesn’t

make sense. For example, players could attack in the starting tile or heal

when they have full health.

To start fixing this, let’s add a new function to the game.py module

that stores all of the legal actions in a dictionary. We’ll use an OrderedDict

to ensure that the actions appear in the same order to the player each

time. To create an ordered dictionary, you need to add from collections

import OrderedDict at the top of the module.

What we would like to do is something like this for each action:

1 actions = OrderedDict()

2 if player.inventory:

3 actions['i'] = player.print_inventory

4 actions['I'] = player.print_inventory

5 print("i: View inventory")

Chapter 13 World-Building part 2

104

First we check a condition. In this case, we check if the player has an

inventory (remember, if my_list is the same as if my_list != []).

Second, we map the upper- and lowercase hotkeys to that action. Last, we

print the action to the user. There’s a very important syntax difference here

that is easy to miss: We do not write player.print_inventory(), we write

player.print_inventory. As we’ve seen before, my_function() is the

syntax to execute a function. If instead we just want to refer to the function,

we use the function name without (). This is important because we don’t

want to do the actions right now, we just want to store the possible actions

in the dictionary.3

Since we’re going to need to do this for a bunch of actions, we’ll also

create a helper function, called action_adder().

29 def get_available_actions(room, player):

30 actions = OrderedDict()

31 print("Choose an action: ")

32 if player.inventory:

33 action_adder(actions, 'i', player.print_inventory,

"Print inventory")

34 if isinstance(room, world.EnemyTile) and room.enemy.

is_alive():

35 action_adder(actions, 'a', player.attack,

"Attack")

36 else:

37 if world.tile_at(room.x, room.y - 1):

38 action_adder(actions, 'n', player.move_north,

"Go north")

39 if world.tile_at(room.x, room.y + 1):

3 This feature of Python is very handy, but a lot of languages do not support it. In
Python, functions are “first-class objects,” which means that they can be passed
around and modified just like strings, integers, or MapTiles.

Chapter 13 World-Building part 2

105

40 action_adder(actions, 's', player.move_south,

"Go south")

41 if world.tile_at(room.x + 1, room.y):

42 action_adder(actions, 'e', player.move_east,

"Go east")

43 if world.tile_at(room.x - 1, room.y):

44 action_adder(actions, 'w', player.move_west,

"Go west")

45 if player.hp < 100:

46 action_adder(actions, 'h', player.heal, "Heal")

47

48 return actions

49

50 def action_adder(action_dict, hotkey, action, name):

51 action_dict[hotkey.lower()] = action

52 action_dict[hotkey.upper()] = action

53 print("{}: {}".format(hotkey, name))

Now at any time, we can call get_available_actions() to create a

dictionary of hotkey-action pairs. To utilize the dictionary, create another

new function.

17 def choose_action(room, player):

18 action = None

19 while not action:

20 available_actions = get_available_actions(room,

player)

21 action_input = input("Action: ")

22 action = available_actions.get(action_input)

23 if action:

24 action()

25 else:

26 print("Invalid action!")

Chapter 13 World-Building part 2

106

We’ve seen this pattern before: we keep looping until we get valid input

from the user. However, these three lines need some explanation:

22 action = available_actions.get(action_input)

23 if action:

24 action()

We use get() instead of the [] syntax because it’s possible the user

entered an invalid hotkey. The if action line is shorthand for if action

!= None or if action is not None. If a function was found, we execute

that function by adding the parentheses: action(). The important

distinction here is that action is just a reference to the function, whereas

action() runs the function.

Having added this new function, we can delete get_player_command()

and we can clean up play() as follows:

 6 def play():

 7 print("Escape from Cave Terror!")

 8 player = Player()

 9 while True:

10 room = world.tile_at(player.x, player.y)

11 print(room.intro_text())

12 room.modify_player(player)

13 choose_action(room, player)

If you play the game now, you will see that the player’s actions are

limited based on context. Okay, so we can scratch a few bugs off the list!

We should take this opportunity to do some refactoring.

Chapter 13 World-Building part 2

107

 Expanding the World
At present, our world is pretty small. Small enough that our world_map is

still fairly readable and maintainable. But if it gets much larger, making

changes is going to be very frustrating. We also have the annoyance of

specifying the X-Y coordinates for each tile manually.

Sometimes, when programs require a particular section of the

code to be flexible and more maintainable than the language provides,

programmers use domain specific languages (DSL). A DSL is written in a

way that is particular to the problem at hand; hence it is a language that is

specific to the domain.

We’ll use a DSL to define the map for our world and then Python code

to interpret the DSL and turn it into the world_map variable. Since the map

is a grid, it would be nice if the DSL reflected that. Usually, a DSL has some

features of full programming languages, but our domain is so simple that a

string will serve our purposes. Let’s start sketching out some ideas of what

the DSL could look like and then we’ll write the code to interpret it.

A first go might look something like this:

1 world_dsl = """

2 ||VictoryTile||

3 ||EnemyTile||

4 |EnemyTile|StartTile|EnemyTile|

5 ||EnemyTile||

6 """

Each new line of the string is a row in the map, and each tile within the

row is separated by a | (pipe) character. If there is no tile, we just put two

pipes next to each other. I like the idea here and it does remove the X-Y

coordinates, but it still visually looks a bit wonky. What if we tried making it

look more grid-like?

Chapter 13 World-Building part 2

108

1 world_dsl = """

2 | |VictoryTile| |

3 | |EnemyTile| |

4 |EnemyTile|StartTile|EnemyTile|

5 | |EnemyTile| |

6 """

Hmm, that’s better, but it still doesn’t quite line up. Also, it’s pretty

wide, which means a large map could still be hard to read. What if we

shortened those names?

1 world_dsl = """

2 | |VT| |

3 | |EN| |

4 |EN|ST|EN|

5 | |EN| |

6 """

To me, this is an improvement because you can clearly see the

layout of the map, and it looks like a grid. The trade-off is we have to use

abbreviations for the tile types. I think this should be okay because even

after we add more tile types, we will only have about 5-10 types to keep

track of. If we had dozens of tile types, the abbreviations might get too

difficult to keep track of, and we might choose a different format. For now,

go ahead and add this world_dsl variable to the world.py module right

above the world_map variable.

When we run Python code, the Python interpreter has all sorts of

checks in place to prevent us from doing something wrong. Among other

things, it validates syntax and prevents the program from running if there

is a syntax error. Since DSLs are invented for a specific program, they don’t

come with any error checking in place. Can you imagine trying to chase

down a bug in a Python program only to find out it was a syntax error? For

our own sanity, we should add some simple error checking for the DSL.

Chapter 13 World-Building part 2

109

Let’s start by checking these three basics:

• There should be exactly one start tile

• There should be at least one victory tile

• Each row should have the same number of cells

To help us do this, we will use two string methods: count() and

splitlines(). The count() method works just as you would expect:

it counts the number of occurrences of some substring in a string. The

splitlines() method breaks apart a multiline string wherever there is

a new line and returns a list of the lines. Bearing that in mind, here is the

validation function.

81 def is_dsl_valid(dsl):

82 if dsl.count("|ST|") != 1:

83 return False

84 if dsl.count("|VT|") == 0:

85 return False

86 lines = dsl.splitlines()

87 lines = [l for l in lines if l]

88 pipe_counts = [line.count("|") for line in lines]

89 for count in pipe_counts:

90 if count != pipe_counts[0]:

91 return False

92

93 return True

Since dsl is a string, we can right away count the number of start tiles

and victory tiles to make sure those requirements are met. To check the

number of tiles in each row, we first need to split the string into rows. Once

split into rows, we use a list comprehension to filter out any empty lines

(there should be one empty line at the beginning and end because we used

Chapter 13 World-Building part 2

110

the triple-quote string syntax). Remember that if l is shorthand for if

l != ''. Once filtered, we use a second list comprehension to count the

number of pipes in each row, and then make sure that every row has the

same number of pipes as the first row. If any of those conditions fail, the

function immediately returns False.

Next, we need to add the function that builds up the world_map

variable using the DSL. For starters, we need to define a dictionary that

maps DSL abbreviations to tile types.

95 tile_type_dict = {"VT": VictoryTile,

96 "EN": EnemyTile,

97 "ST": StartTile,

98 " ": None}

Take note that we are mapping the abbreviations to tile types not tile

objects. The difference between EnemyTile and EnemyTile(1,5) is that the

former is a type and the latter is a new instance of the type. This is similar

to how go_north is a reference to a function and go_north() calls the

function.

Since we are now going to programmatically build up world_map,

replace the existing map with world_map = []. Below that, we will add the

function to parse the DSL. In general, the function will validate the DSL, go

line by line and cell by cell looking up the mappings for the abbreviations,

and create new tile objects based on the tile type it finds.

104 def parse_world_dsl():

105 if not is_dsl_valid(world_dsl):

106 raise SyntaxError("DSL is invalid!")

107

108 dsl_lines = world_dsl.splitlines()

109 dsl_lines = [x for x in dsl_lines if x]

110

111 for y, dsl_row in enumerate(dsl_lines):

Chapter 13 World-Building part 2

111

112 row = []

113 dsl_cells = dsl_row.split("|")

114 dsl_cells = [c for c in dsl_cells if c]

115 for x, dsl_cell in enumerate(dsl_cells):

116 tile_type = tile_type_dict[dsl_cell]

117 row.append(tile_type(x, y) if tile_type else

None)

118

119 world_map.append(row)

You should also call this new function in game.py.

 6 def play():

 7 print("Escape from Cave Terror!")

 8 world.parse_world_dsl()

 9 player = Player()

10 while True:

11 room = world.tile_at(player.x, player.y)

12 print(room.intro_text())

13 room.modify_player(player)

14 choose_action(room, player)

Let’s review in detail what the function does. First, the DSL is validated

and if it is invalid, we raise a SyntaxError. This is another example of an

exception that we will intentionally raise to alert the programmer that they

did something wrong. Next, just like before, we split the DSL into lines and

remove the empty lines created by the triple-quote syntax. The last part of

the function actually creates the world. It is a little dense, so I will explain

each line:

 1 # Iterate over each line in the DSL.

 2 # Instead of i, the variable y is used because

 3 # we're working with an X-Y grid.

Chapter 13 World-Building part 2

112

 4 for y, dsl_row in enumerate(dsl_lines):

 5 # Create an object to store the tiles

 6 row = []

 7 # Split the line into abbreviations using

 8 # the "split" method

 9 dsl_cells = dsl_row.split("|")

10 # The split method includes the beginning

11 # and end of the line so we need to remove

12 # those nonexistent cells

13 dsl_cells = [c for c in dsl_cells if c]

14 # Iterate over each cell in the DSL line

15 # Instead of j, the variable x is used because

16 # we're working with an X-Y grid.

17 for x, dsl_cell in enumerate(dsl_cells):

18 # Look up the abbreviation in the dictionary

19 tile_type = tile_type_dict[dsl_cell]

20 # If the dictionary returned a valid type, create

21 # a new tile object, pass it the X-Y coordinates

22 # as required by the tile __init__(), and add

23 # it to the row object. If None was found in the

24 # dictionary, we just add None.

25 row.append(tile_type(x, y) if tile_type else None)

26 # Add the whole row to the world_map

27 world_map.append(row)

Chapter 13 World-Building part 2

113

the syntax value_if_true if condition else value_if_false
is a slightly different way of writing an if statement when you simply
need to toggle a value based on a boolean expression. as in the
example row.append(tile_type(x, y) if tile_type else
None), it can condense what would otherwise be a multi-line code
block into one line. this syntax is sometimes referred to as a ternary.

While this took a lot of work, the game is relatively unchanged from the

player’s perspective. Such is the lot of the refactoring developer! But don’t

worry, this wasn’t for naught. This work was done to make our lives easier.

Now, expanding the map is trivial and even a 20x20 world would be easy to

view and edit.

There were a lot of changes to the nuts and bolts of the application, so

you might have a few errors here and there. Be sure to review your code

closely and compare it to the code bundled with the book if you get stuck.

Chapter 13 World-Building part 2

115© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_14

CHAPTER 14

Econ 101
Much like we turned the crusty bread into something more than a string, this

chapter will focus on making gold a real commodity in the game. After all,

what adventure would be complete without the ability to buy and sell loot?

 Share the Wealth
While it would be possible to track gold as an actual item, that could get

out of hand if the player has lots of it. Instead, it’s easier to handle gold

separately from items and simply have a statistic associated with the

players that can grow or shrink. Update the __init__() function of the

Player class to move gold out of the inventory list.

 4 class Player:

 5 def __init__(self):

 6 self.inventory = [items.Rock(),

 7 items.Dagger(),

 8 items.CrustyBread()]

 9 self.x = world.start_tile_location[0]

10 self.y = world.start_tile_location[1]

11 self.hp = 100

12 self.gold = 5

116

We should also update the print_inventory() method to let the

players know how much gold they have.

14 def print_inventory(self):

15 print("Inventory:")

16 for item in self.inventory:

17 print('* ' + str(item))

18 print("Gold: {}".format(self.gold))

Now that the players have money to spend, we should make it

meaningful by adding a value attribute to the items in the game. Here’s the

RustySword class with a value.

26 class RustySword(Weapon):

27 def __init__(self):

28 self.name = "Rusty sword"

29 self.description = "This sword is showing its age, " \

30 "but still has some fight in

it."

31 self.damage = 20

32 self.value = 100

You will also need to add a value for the other items. Here are the

values I chose.

Class Value

Rock 1

Dagger 20

RustySword 100

CrustyBread 12

Chapter 14 eCon 101

117

 Customization Point Change the values of the items to make

them more or less desirable.

While we’re at it, let’s add another item: a HealingPotion that is a bit

stronger and more valuable than crusty bread.

49 class HealingPotion(Consumable):

50 def __init__(self):

51 self.name = "Healing Potion"

52 self.healing_value = 50

53 self.value = 60

Of course, the players need someone to trade with in order for the

game to have an economy. To introduce other characters into the game,

we’re going to create a new npc.py module. We’ll use the all-familiar

pattern—the generic base class and specific subclass—to define the

Trader class.

npc.py

 1 import items

 2

 3

 4 class NonPlayableCharacter():

 5 def __init__(self):

 6 raise NotImplementedError("Do not create raw NPC

objects.")

 7

 8 def __str__(self):

 9 return self.name

10

11

Chapter 14 eCon 101

118

12 class Trader(NonPlayableCharacter):

13 def __init__(self):

14 self.name = "Trader"

15 self.gold = 100

16 self.inventory = [items.CrustyBread(),

17 items.CrustyBread(),

18 items.CrustyBread(),

19 items.HealingPotion(),

20 items.HealingPotion()]

 Customization Point Change the items the Trader has in its

inventory. a more difficult game could have fewer Consumables and
an easier game might have a wide selection of Consumables and
Weapons.

 Giving the Trader a Home
Just like the EnemyTiles that have an Enemy object, we’re going to create a

TraderTile that has a Trader object. (Don’t forget to import npc!)

 98 class TraderTile(MapTile):

 99 def __init__(self, x, y):

100 self.trader = npc.Trader()

101 super().__init__(x, y)

To handle the business of buying and selling, we’ll add a trade()

method to this class. This method will show all of the items available to

trade (i.e., the seller’s inventory), ask the player to choose an item, and

finally complete the trade if the player makes a choice.

Chapter 14 eCon 101

119

When I first drafted the class, I used a buy() and sell() method.
however, it became apparent that these two methods were extremely
similar. to avoid duplicating code, I revised my original plan of using
two methods and instead used a general “trade” method where
one person is the buyer and one person is the seller. If the player is
buying, the trader is selling, and if the player is selling, the trader is
buying. this process is known as abstraction and abstracting code
to more general patterns is usually a good idea because it makes
the code more reusable. Learning to abstract takes practice and
sometimes, as in this example, it takes writing out some code before
the abstraction reveals itself.

118 def trade(self, buyer, seller):

119 for i, item in enumerate(seller.inventory, 1):

120 print("{}. {} - {} Gold".format(i, item.name,

item.value))

121 while True:

122 user_input = input("Choose an item or press Q to

exit: ")

123 if user_input in ['Q', 'q']:

124 return

125 else:

126 try:

127 choice = int(user_input)

128 to_swap = seller.inventory[choice - 1]

129 self.swap(seller, buyer, to_swap)

130 except ValueError:

131 print("Invalid choice!")

Chapter 14 eCon 101

120

This method uses what looks like an infinite loop (while True), but

you will notice that if the player chooses to quit without making a trade,

the return keyword is used to exit the method. This method also makes a

call to the swap() method, which has not yet been written, but we’ll add

that now.

133 def swap(self, seller, buyer, item):

134 if item.value > buyer.gold:

135 print("That's too expensive")

136 return

137 seller.inventory.remove(item)

138 buyer.inventory.append(item)

139 seller.gold = seller.gold + item.value

140 buyer.gold = buyer.gold - item.value

141 print("Trade complete!")

This method simply removes the item from the seller, gives it to the

buyer, and then does the reverse with the gold value of the item traded.

Since this function works “both ways,” we need a way for the players to

initiate if they want to buy or sell items. The method check_if_trade()

will accept user input to control who the buyers and sellers are.

103 def check_if_trade(self, player):

104 while True:

105 print("Would you like to (B)uy, (S)ell, or (Q)

uit?")

106 user_input = input()

107 if user_input in ['Q', 'q']:

108 return

109 elif user_input in ['B', 'b']:

110 print("Here's whats available to buy: ")

111 self.trade(buyer=player, seller=self.trader)

112 elif user_input in ['S', 's']:

Chapter 14 eCon 101

121

113 print("Here's whats available to sell: ")

114 self.trade(buyer=self.trader, seller=player)

115 else:

116 print("Invalid choice!")

This method also uses a seemingly infinite loop, but exits using return

when the player is done trading. Depending on the player’s choice, the

player object is passed to trade() as either the buyer or seller. Named

parameters are used to make it explicitly clear who is who.

Finally, we need to give this room its intro text:

144 def intro_text(self):

145 return """

146 A frail not-quite-human, not-quite-creature squats in

the corner

147 clinking his gold coins together. He looks willing to

trade.

148 """

To let the player initiate trading, we need to create an action in the

Player class and then add it to the list of available actions. Add this

method to the bottom of the Player class in player.py.

83 def trade(self):

84 room = world.tile_at(self.x, self.y)

85 room.check_if_trade(self)

Now, switch to game.py and add this check to see if the player is in a

TraderTile.

32 if player.inventory:

33 action_adder(actions, 'i', player.print_inventory,

"Print inventory")

34 if isinstance(room, world.TraderTile):

Chapter 14 eCon 101

122

35 action_adder(actions, 't', player.trade, "Trade")

36 if isinstance(room, world.EnemyTile) and room.enemy.is_

alive():

37 action_adder(actions, 'a', player.attack, "Attack")

 Expanding the World
To make the store concept usable to the players, we also need to give

players the opportunity to increase their wealth. We’ll create one more tile

type in world.py: FindGoldTile. This tile will have a random amount of

gold to find and a boolean that tracks if the gold has been picked up. This

boolean variable ensures that players can’t just enter and exit the room

repeatedly to infinitely increase their wealth!

75 class FindGoldTile(MapTile):

76 def __init__(self, x, y):

77 self.gold = random.randint(1, 50)

78 self.gold_claimed = False

79 super().__init__(x, y)

80

81 def modify_player(self, player):

82 if not self.gold_claimed:

83 self.gold_claimed = True

84 player.gold = player.gold + self.gold

85 print("+{} gold added.".format(self.gold))

86

87 def intro_text(self):

88 if self.gold_claimed:

89 return """

90 Another unremarkable part of the cave. You

must forge onwards.

Chapter 14 eCon 101

123

91 """

92 else:

93 return """

94 Someone dropped some gold. You pick it up.

95 """

The new function here is random.randint(). Unlike random.random(),

which returns a decimal number, random.randint() returns an integer in

the given range.

With two new tile types, we can grow the game world and add some

more interest to the game. Here’s the layout I chose:

150 world_dsl = """

151 |EN|EN|VT|EN|EN|

152 |EN| | | |EN|

153 |EN|FG|EN| |TT|

154 |TT| |ST|FG|EN|

155 |FG| |EN| |FG|

156 """

 Customization Point Change the layout of the game world in

any way you like. Just make sure it meets the DSL requirements or
you'll get a SyntaxError.

In order to make sure our DSL still works, we need to add the new tile

abbreviations to the dictionary.

173 tile_type_dict = {"VT": VictoryTile,

174 "EN": EnemyTile,

175 "ST": StartTile,

Chapter 14 eCon 101

124

176 "FG": FindGoldTile,

177 "TT": TraderTile,

178 " ": None}

If you ran the game now, you would run into some issues because the

starting tile moved. Ideally, we’d like to be able to tweak the DSL without

manually adjusting the start location in the Player class. Since there is

only one StartTile (we enforced that in is_dsl_valid()), it would be

easy to record its location during parsing and then use that value in the

Player class. In order to record the location, we’ll need a new variable in

the world.py module called start_tile_location. That variable will be

set in the parse_world_dsl() function.

183 start_tile_location = None

184

185 def parse_world_dsl():

186 if not is_dsl_valid(world_dsl):

187 raise SyntaxError("DSL is invalid!")

188

189 dsl_lines = world_dsl.splitlines()

190 dsl_lines = [x for x in dsl_lines if x]

191

192 for y, dsl_row in enumerate(dsl_lines):

193 row = []

194 dsl_cells = dsl_row.split("|")

195 dsl_cells = [c for c in dsl_cells if c]

196 for x, dsl_cell in enumerate(dsl_cells):

197 tile_type = tile_type_dict[dsl_cell]

198 if tile_type == StartTile:

199 global start_tile_location

200 start_tile_location = x, y

Chapter 14 eCon 101

125

201 row.append(tile_type(x, y) if tile_type else

None)

202

203 world_map.append(row)

You should have noticed that before the variable is set, we have to

include a global start_tile_location line. The global keyword allows

us to access a variable at the module level from inside a function. Variables

declared at the module level are considered “global” because any part of

the application that uses the module has access to the variable. In general,

modifying global variables can have unwanted consequences, especially if

other modules are relying on that variable. So the global keyword is a way

of forcing the programmer to be clear about their intent to modify a global

variable. If we wanted to avoid using a global variable, we could make

start_tile_location a function that parses the DSL and returns the start

location. However, I think that would introduce unnecessary complexity in

the code. The use of this global variable is very limited and we know it will

just be set once and accessed once. Global variables are not evil; they just

need treated with some extra care.

When we set the start_tile_location variable, we use the tuple

syntax to store both x and y in the variable. Knowing that the coordinates

are stored in that way, we can reference them from the Player class in

player.py.

 4 class Player:

 5 def __init__(self):

 6 self.inventory = [items.Rock(),

 7 items.Dagger(),

 8 items.CrustyBread()]

 9 self.x = world.start_tile_location[0]

10 self.y = world.start_tile_location[1]

11 self.hp = 100

12 self.gold = 5

Chapter 14 eCon 101

126

Tuple values can be accessed via indexes just like lists. Since we know

the variable is stored as (x, y), the value at index 0 is the X-coordinate and

the value at index 1 is the Y-coordinate.1 This code relies on the world

having been created first, otherwise start_tile_location would still be

None. Thankfully in game.py, we parse the DSL before creating the player

object.

This last change made the DSL fully decoupled from the rest of the

game because the game doesn’t have to “know” anything specific about

the DSL. Usually, the more decoupled parts of an application are, the

better. Decoupling allows you to change one part of an application without

changing another part. In this application, it means you can revise the

world map at any time without having to change another part of the code.

 Customization Point add some new tile types. Maybe you

could have a FindItemTile, an InstantDeathTile, or a
BossTile with a particularly difficult enemy.

1 If you feel like accessing tuple values via index is a little kludgy, you wouldn’t
be wrong. Python has an alternative called named tuples (see https://docs.
python.org/3.5/library/collections.html#collections.namedtuple) that
could also work in the situation if you prefer.

Chapter 14 eCon 101

https://docs.python.org/3.5/library/collections.html#collections.namedtuple
https://docs.python.org/3.5/library/collections.html#collections.namedtuple

127© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_15

CHAPTER 15

Endgame
We made it! Much like you can claim victory over learning some Python,

our game players will soon be able to claim victory too. We need to add just

one more feature so that the game ends when the player dies or reaches

the victory tile.

 Finishing Up
We can start by modifying the Player class in player.py to add a victory

property and an is_alive() method.

 5 class Player:

 6 def __init__(self):

 7 self.inventory = [items.Rock(),

 8 items.Dagger(),

 9 items.CrustyBread()]

10 self.x = world.start_tile_location[0]

11 self.y = world.start_tile_location[1]

12 self.hp = 100

13 self.gold = 5

14 self.victory = False

15

16 def is_alive(self):

17 return self.hp > 0

128

We should set the victory property to true in the VictoryTile in

world.py.

64 class VictoryTile(MapTile):

65 def modify_player(self, player):

66 player.victory = True

67

68 def intro_text(self):

69 return """

70 You see a bright light in the distance...

71 ... it grows as you get closer! It's sunlight!

72

73

74 Victory is yours!

75 """

Next we need to adjust the condition of our game loop in game.py so

that it checks to see if the player is alive or if victory has been achieved.

In the play method, change while True to while player.is_alive()

and not player.victory. Another way to phrase this condition would be

“keep going until the player dies or wins.”

We also need to add an check after modify_player() runs since that

function could cause the player to win or lose. Finally, we should let the

player know if they die. Here's the complete play() method.

 6 def play():

 7 print("Escape from Cave Terror!")

 8 world.parse_world_dsl()

 9 player = Player()

10 while player.is_alive() and not player.victory:

11 room = world.tile_at(player.x, player.y)

12 print(room.intro_text())

13 room.modify_player(player)

Chapter 15 endgame

129

14 if player.is_alive() and not player.victory:

15 choose_action(room, player)

16 elif not player.is_alive():

17 print("Your journey has come to an early end!")

You can now play through the game and it will end if you die or when

you reach a victory tile.

 What Next?
First, take a moment to congratulate yourself. You went from knowing

nothing about Python to having a complete working game. But my guess is

you want to do more than just build the game I put together. This section

contains some suggestions of what to do next.

 Add More Features to the Game
Your imagination is the limit of what you could do in the text adventure.

Here are some ideas:

• Add another NPC who can give a quest. Then, add

another tile type where the player completes the quest.

• Make enemies have loot that can be retrieved after

killing them.

• Give the player magic attacks that deplete mana. Allow

mana to replenish a little bit each time the player

moves into a room and/or with a potion.

• Allow the player to wear armor that reduces enemy

attacks by a percentage.

Chapter 15 endgame

130

 Make Your Job Easier with Python Scripts
Python is a great language to write small scripts that automate boring

tasks. Modifying spreadsheets, fetching data from web sites, etc. For more

guidance, take a look at Automate the Boring Stuff with Python1 by Al

Sweigart.

 Write a Web Application
It's easier than you think, especially with Python. Since I assume you are

new to programming, I recommend the Udacity course How to Build

a Blog2 by Steve Huffman (of Reddit fame). This course teaches web

development fundamentals using Python.

There's much, much more to learn about Python and I encourage you

to keep learning. There are many beginner-friendly resources available, no

matter where your interests lie. Happy coding!

1 https://automatetheboringstuff.com
2 https://www.udacity.com/course/web-development--cs253

Chapter 15 endgame

https://automatetheboringstuff.com/
https://www.udacity.com/course/web-developmentDOUBLEHYPHENcs253

131© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_16

APPENDIX A

Homework Solutions
The solutions in this appendix should only be consulted after giving the

homework questions a fair shot. If you’re stuck, compare your code against

the solution code and make sure you can follow the logic in the solution.

You may also be comparing your code against the solutions to see if you

solved the problem in the right way. While I encourage this, each solution

represents just one possible way of solving the problem. In general, code

should be correct, readable, and efficient—in that order. Your code may be

different, but still meet those goals. If your code is different, try to see if you

can learn something from my solutions. You may even find that your solution

is better than mine. There are always multiple ways to solve a problem and as

long as we keep learning from each other, we’re doing the right thing.

 Chapter 2: Your First Program

 1. Make a new module called calculator.py and write

code that will print out "Which numbers do you

want to add?" to the console.

calculator.py

1 print("Which numbers do you want to add?")

132

 2. Run the calculator program and make sure it works

correctly.

1 $ python calculator.py

2 Which numbers do you want to add?

 3. Try removing the quotes from the code. What

happens?

1 $ python calculator.py

2 File "calculator.py", line 1

3 print(What numbers do you want to add?)

4 ^

5 SyntaxError: invalid syntax

Chapter 3: Listening to Your Users

 1. What is the difference between my_variable = 5

and my_variable = '5'?

The first is the actual number five, whereas the

second is just the text character “5”.

 2. What is the difference between print(n) and

print('n')?

The first will try to print out the value of the

variable n, whereas the second will just print out

the character “n”.

 3. Try rewriting echo.py without using a variable.

echo.py

1 print(input("Type some text: "))

Appendix A Homework SolutionS

133

 Chapter 4: Decisions

 1. What is the difference between = and ==?

The = operator assigns values to variables, whereas

the == operator compares two values to see if they

are equal.

 2. Create ages.py to ask users their age and then print

out information related to their age. For example,

if that person is an adult, if they can buy alcohol,

if they can vote, etc. Note: The int() function can

convert a string to an integer.

This is one example; yours will be different:

ages.py

 1 age = int(input("What is your age? "))

 2 if age < 18:

 3 print("You are a child.")

 4 elif 18 < age < 21:

 5 print("You are an adult, but you cannot

purchase alcohol.")

 6 else:

 7 print("You are an adult.")

 8 if age >= 16:

 9 print("You are allowed to drive.")

10 else:

11 print("You are not allowed to drive")

Appendix A Homework SolutionS

134

 Chapter 5: Functions

 1. What keyword is used to create a function?

The def keyword.

 2. What are some differences between parameterless

and parameterized functions?

The functions are called differently in code.

A call to do_domething() is parameterless and a

call to do_something(a, b) is parameterized.

A parameterized function requires input to do its

work, whereas a parameterless function already

has access to everything it needs to do its work.

 3. When reading the code for a function, how do you

know if it just “does something” or “gives something

back”?

If the function contains the return keyword

followed by a value, then it gives something back.

 4. Create doubler.py to contain one function named

double that accepts a single parameter. The function

should return the input value multiplied by two.

Print out the doubled value of 12345 and 1.57.

doubler.py

1 def double(a):

2 return a * 2

3

4 print(double(12345))

5 print(double(1.57))

Appendix A Homework SolutionS

135

 5. Create calculator.py to contain one function

named add that accepts two parameters. The

function should return the sum of the two numbers.

Print out the sum of 45 and 55.

calculator.py

1 def add(a, b):

2 return a + b

3

4 print(add(45, 55))

 6. Create user_calculator.py and re-use your add

function from the previous exercise. This time, ask

the user for two numbers and print the sum of those

numbers. Hint: It is okay if this works only with

integers.

user_calculator.py

1 def add(a, b):

2 return a + b

3

4 num1 = int(input("Please enter your 1st number: "))

5 num2 = int(input("Please enter your 2nd number: "))

6

7 print(add(num1, num2))

 Chapter 6: Lists

 1. What two characteristics make a collection a list?

Lists are ordered and they may contain duplicates.

Appendix A Homework SolutionS

136

 2. Write a script called favorites.py that allows users

to enter their three favorite foods. Store those foods

in a list.

favorites.py

1 favorites = []

2 favorites.append(input("What is your favorite

food? "))

3 favorites.append(input("What is your 2nd favorite

food? "))

4 favorites.append(input("What is your 3rd favorite

food? "))

 3. Print out the middle item of this list using an index:

['Mercury', 'Venus', 'Earth']. Could you

change your code to work with a list of any size

(assuming there are an odd number of items)?

Hint: Think back to the int function that converts

something into an integer.

1 planets = ['Mercury', 'Venus', 'Earth']

2 print(planets[1])

Or

1 planets = ['Mercury', 'Venus', 'Earth']

2 middle_index = int(len(planets) / 2)

3 print(planets[middle_index])

 4. What happens when you run this code? Do you

know why?

Appendix A Homework SolutionS

137

An IndexError: list index out of range is

thrown. This happens because list indices are

zero-based. The first item is at index 0 and the last

is at index 2, but we asked for index 3 because the

list contains three items.

 Chapter 7: Loops

 1. What kind of loop would you use for each of the

following:

 A. A program that checks the temperature every

five seconds

A while loop because the program needs to

keep running with no defined end.

 B. A program that prints receipts at grocery stores

A for-each loop because we want to print each of

the items the customer purchased. (Technically,

a while loop can also be used, but a for-each

loop is more idiomatic.)

 C. A program that tallies the score in a bowling

game

A for-each loop because we want to go through

each of the ten rounds in the game to find the

final score. (Technically, a while loop can also

be used, but a for- each loop is more idiomatic.)

Appendix A Homework SolutionS

138

 D. A program that randomly shuffles and plays

songs from a music library

A while loop because we don’t know how long

the user is going to run the program. You might

be tempted to use a for-each loop to go through

each of the songs in the library, but what if the

users want to keep playing music even after they

have gone through all their songs?

 2. Open user_calculator.py from Chapter 5 on

functions and add a while loop that allows the user

to keep adding two numbers.

user_calculator.py

1 def add(a, b):

2 return a + b

3

4 while True:

5 num1 = int(input("Please enter your

1st number: "))

6 num2 = int(input("Please enter your

2nd number: "))

7

8 print(add(num1, num2))

 3. Write a script that displays a multiplication table

from 1 * 1 to 10 * 10.

multiplication.py

1 for i in range(1, 11):

2 line = ""

3 for j in range(1, 11):

Appendix A Homework SolutionS

139

4 line = line + str(i * j) + " "

5 print(line)

 4. Use enumerate and the % operator to print every

third word in this list.

greek.py

1 letters = ['alpha','beta','gamma','delta',

'epsilon','zeta','eta']

2 for i, letter in enumerate(letters):

3 if i % 3 == 0:

4 print(letter)

 Chapter 8: Objects

 1. What is the difference between a class and an

object?

A class is the template in code that defines the data

elements for the “thing” the class represents. An

object is a specific instance of a class that lives in

memory when the program runs.

 2. What is the purpose of an __init__() method in a

class?

It runs as soon as the object is created and is

commonly used to set the values of members in the

class.

Appendix A Homework SolutionS

140

 3. What is the difference between __str__() and

str()?

__str()__ is a method that can be defined in a

class that tells Python how to print the objects made

from that class and how to represent those objects

as strings. str() is a built-in function that tries to

convert an object into a string.

 4. Create a file called food.py that contains a class

called Food. This class should have four members:

name, carbs, protein, and fat. These members

should be set in the initializer of the class.

food.py

1 class Food:

2 def __init__(self, name, carbs, protein, fat):

3 self.name = name

4 self.carbs = carbs

5 self.protein = protein

6 self.fat = fat

 5. Add a method to the Food class called calories()

that calculates the number of calories in the food.

There are 4 calories per gram of carbs, 4 calories per

gram of protein, and 9 calories per gram of fat.

food.py

1 def calories(self):

2 return self.carbs * 4 + self.protein

* 4 + self.fat * 9

Appendix A Homework SolutionS

141

 6. Create another class called Recipe that has an

initializer that accepts a name and a list of food items

called ingredients. Add a method to this class

called calories() that returns the total calories in

the recipe.

food.py

 1 class Recipe:

 2 def __init__(self, name, ingredients):

 3 self.name = name

 4 self.ingredients = ingredients

 5

 6 def calories(self):

 7 total = 0

 8 for ingredient in self.ingredients:

 9 total = total + ingredient.calories()

10

11 return total

 7. Add a __str__() method to the Recipe class that

simply returns the name of the recipe.

food.py

1 def __str__(self):

2 return self.name

Appendix A Homework SolutionS

142

 8. Create two (simple!) recipes and print out the name

and total calories for each recipe. You can make

up the numbers for carbs, protein, and fat if you

choose. For bonus points, try to do this in a way that

would work for two recipes or 200 recipes.

In the following answer, I used a feature called

named arguments to clarify which number is fat,

protein, etc. This is not required, but I wanted to

show you an option to make arguments clearer when

you have a lot of them. My solution “works for two

recipes or 200” because it stores each recipe in a list

and then uses a loop to print everything in the list.

food.py

 1 pbj = Recipe("Peanut Butter & Jelly", [

 2 Food(name="Peanut Butter", carbs=6, protein=8,

fat=16),

 3 Food(name="Jelly", carbs=13, protein=0,

fat=0),

 4 Food(name="Bread", carbs=24, protein=7,

fat=2)]

 5)

 6

 7 omelette = Recipe("Omelette du Fromage", [

 8 Food(name="Eggs", carbs=3, protein=18,

fat=15),

 9 Food(name="Cheese", carbs=5, protein=24,

fat=24)

10])

11

Appendix A Homework SolutionS

143

12 recipes = [pbj, omelette]

13

14 for recipe in recipes:

15 print("{}: {} calories".format(recipe.name,

recipe.calories()))

 9. Are the classes in this script an example of

inheritance or composition and why?

Composition. A Recipe doesn’t share any behavior

with the Food objects, but a Recipe does contain

Food objects.

 Chapter 9: Exceptions

 1. Update user_calculator.py with try and except to

handle a user who doesn’t enter a number.

user_calculator.py

 1 def add(a, b):

 2 return a + b

 3

 4 while True:

 5 try:

 6 num1 = int(input("Please enter your 1st

number: "))

 7 num2 = int(input("Please enter your 2nd

number: "))

 8

 9 print(add(num1, num2))

10 except ValueError:

11 print("You must enter a number.")

Appendix A Homework SolutionS

144

 2. What does None mean and when is it used?

The keyword None represents the absence of a value

and it is used when we want to create a variable with

no value.

 3. What does pass mean and when is it used?

The keyword pass means “ignore this code block”. It

can be used in any code block that does not have a

body, such as an empty class or method or also in an

ignored exception.

 4. Create a Vehicle class, a Motorcycle class that is a

subclass of Vehicle with a wheels attribute set to

2, and a Car class that is a subclass of Vehicle with

a wheels attribute set to 4. Add code that will raise

an exception if the programmer tries to create a

Vehicle.

vehicles.py

 1 class Vehicle:

 2 def __init__(self):

 3 raise NotImplementedError("You must use a

subclass.")

 4

 5

 6 class Motorcycle(Vehicle):

 7 def __init__(self):

 8 self.wheels = 2

 9

10

11 class Car(Vehicle):

12 def __init__(self):

13 self.wheels = 4

Appendix A Homework SolutionS

145© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6_17

APPENDIX B

Common Errors
We all want to be perfect programmers, but of course that’s not possible!

Here’s a list of errors others have run into and how you can fix them.

 AttributeError
AttributeError: 'NoneType' object has no attribute 'intro_text'

Check your world map and player location. This error means the player

has moved into a None spot in the map. That shouldn’t happen, so either

your player is somewhere you don’t expect, or your map isn’t properly

configured.

 NameError
NameError: name 'enemies' is not defined (or player, world, etc.)

Check your imports. This error means Python sees the name of something

that it doesn’t understand. In order for Python to understand enemies (or

any other module), it has to be included in an import statement at the top

of the file.

146

 TypeError

TypeError: super() takes at least 1 argument (0 given)

Use Python 3.X. You can get this error if you are using Python 2. If you’re

not sure which version you are using, review “Setting Up Your Workspace”

in Chapter 1.

Appendix B Common errors

147© Phillip Johnson 2018
P. Johnson, Make Your Own Python Text Adventure,
https://doi.org/10.1007/978-1-4842-3231-6

Index

A
AttributeError, 145

B, C
Boolean data type, 20
Boolean expression, 20, 22

solution code, 133
Boolean operations, 24–25

D
Dictionaries

action_adder()
function, 104–105

creation
add/update, 101–102
delete, 102
get, 100
loop, 102

DSL (see Domain specific
languages (DSL))

get_available_actions(), 105
get_player_command(), 106
OrderedDict, 103

Domain specific languages
(DSL), 107–108,
110–111, 113

E
Economy

FindGoldTile, 122
print_inventory() method, 116
RustySword, 116
StartTile, 124–125
Trader class, 117–118

Endgame
modify_player(), 128
VictoryTile, 128

Enemies
creation, 85, 87
EnemyTile, 88, 92
items, 95–96
MapTile, 91
Player, 89–90
random() method, 87–88

Exceptions
object members, 66–67
solution code, 143–144
user input, 65–66
Weapon class, 68–69

F
for-each loop

enumerate, 47–49
loop counters, 44–45

https://doi.org/10.1007/978-1-4842-3231-6

148

ranges, 45–46
solution code, 137–139

Functions
data in and data out, 28, 30–32
int(), 27
solution code, 134–135
title(), 27

G, H
Game loop, 51–52

I, J, K
If-statements, 22–23
__init()__ method, 55–56
Intermezzo

import, 75
items, 71–72
Player class, 72, 74

L
Lists

add, 35
collection, 33
get, 36
if-statements, 38
length, 35
play function, 38
search, 36
solution code, 135, 137

M
Modules, 10

N
NameError, 145
Nesting, 49, 51

O
Object-oriented programming

(OOP), 62–63
Objects

class, 54
__init__(), 55–56
members/properties, 53
solution code, 139,

141, 143
__str__(), 57–59
weapons, 60–61

P, Q, R
Python

execution, 11
installation, 4, 6–7
Linux, 6
Mac OS X, 5–6
programing, 10
solution code, 131–132
versions, 4
Windows, 4

for-each loop (cont.)

Index

149

S
stdout and stdin

command-line
application, 13–14

data types, 17–18
solution code, 132
variables, 15

__str__(), 57–59

T, U, V
trade() method

check_if_trade(), 120
Player, 121

swap(), 120
TypeError, 146

W
While loops, 41–43

X, Y, Z
X-Y grid

MapTile, 78, 80
play(), 82
Player class, 81
typical coordinate

plane, 77

Index

	Contents
	Start
	Introduction
	Who This Book Is For
	How To Use This Book
	Setting Up Your Workspace
	Verify Your Installation

	First Program
	Creating a Module
	Writing Code
	Running Python Programs
	Homework

	Listening to Users
	Your Friends: stdout and stdin
	Reading from Standard Input
	Saving Information
	Homework

	Decisions
	Booleans
	If-statements
	Boolean Operations
	Homework

	Functions
	Data In, Data Out
	Homework

	Lists
	What Is a List?
	Common List Operations
	Adding Lists to the Game
	Homework

	Loops
	While Loops
	For-Each Loops
	Nesting
	The Game Loop
	Homework

	Objects
	Object Members
	Defining Objects with Classes
	Using __init()__ to Initialize Objects
	Using __str__() to Print Objects
	Adding Weapons to the Game
	A Dash of Object-Oriented Programming
	Homework

	Exceptions
	Validating User Input
	Checking Object Members
	Raising Exceptions Intentionally
	Homework

	Intermezzo
	Organizing Code Into Multiple Files
	Importing from Other Files
	Homework

	Building your World
	The X-Y Grid
	Moving in the World

	Making the World more interesting
	Enemies
	Do You Have Any Potions…or Food?

	World-Building
	Dictionaries
	Creating a Dictionary
	Limiting Actions
	Expanding the World

	Econ 101
	Share the Wealth
	Giving the Trader a Home
	Expanding the World

	Endgame
	Finishing Up
	What Next?

	Homework Solutions
	Chapter 2: Your First Program
	Chapter 3: Listening to Your Users
	Chapter 4: Decisions
	Chapter 5: Functions
	Chapter 6: Lists
	Chapter 7: Loops
	Chapter 8: Objects
	Chapter 9: Exceptions

	Common Errors
	AttributeError
	NameError
	T ypeError

	Index

