
Pro DevOps with
Google Cloud
Platform

With Docker, Jenkins, and Kubernetes
—
Pierluigi Riti

Pro DevOps with Google
Cloud Platform

With Docker, Jenkins, and Kubernetes

Pierluigi Riti

Pro DevOps with Google Cloud Platform: With Docker, Jenkins, and Kubernetes

ISBN-13 (pbk): 978-1-4842-3896-7 ISBN-13 (electronic): 978-1-4842-3897-4
https://doi.org/10.1007/978-1-4842-3897-4

Library of Congress Control Number: 2018961422

Copyright © 2018 by Pierluigi Riti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484238967. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Pierluigi Riti
Mullingar, Westmeath, Ireland

https://doi.org/10.1007/978-1-4842-3897-4

To Mara, Nicole, and Mattia. My life is empty without you.

v

Table of Contents

Chapter 1: Introduction to DevOps ��� 1

What Is DevOps? ��� 1

The DevOps Engineer �� 2

Adopting DevOps ��� 3

The Manager Must Promote the Change ��� 3

The Developer Must Be Responsible for the Software �� 4

The Operational People Must Be Treated As “First-Class Citizens” ��� 4

Continuous Integration and Continuous Delivery Policies Must Be Built ��������������������������������� 5

Barriers to the IT Department Must Be Removed �� 6

The Release Process Must Be Automated ��� 6

Agile Practices Must Be Promoted Across the Entire Company �� 7

Reasons for Adopting DevOps ��� 7

What and Who Are Involved in DevOps? �� 8

Changing the Coordination �� 9

The DevOps Chain ��� 11

Defining the Development Pipeline ��� 13

Centralizing the Building Server �� 15

Monitoring Best Practices ��� 16

Best Practices for Operations �� 17

Conclusion �� 18

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Introduction ���xvii

vi

Chapter 2: Introduction to GCP ��� 19

Introduction to Cloud Computing �� 19

Cloud Computing Service Model ��� 20

The Deployment Models �� 22

Why Use the Cloud? ��� 23

Introduction to Google Cloud Platform �� 23

Starting with GCP �� 24

Understanding Billing in GCP ��� 28

GCP Resources �� 30

Google SDK ��� 32

Conclusion �� 35

Chapter 3: Introduction to Continuous Integration and Delivery ���������������������������� 37

Definition of Continuous Integration ��� 37

What Is Build in a Continuous Integration Scenario? �� 38

The Code Repository Server �� 40

The Continuous Integration Server �� 40

Continuous Delivery �� 42

Differences Between Continuous Integration and Continuous Delivery �������������������������������� 44

Strategies for Continuous Delivery �� 44

Benefits of Continuous Integration and Continuous Delivery �� 47

Designing a Continuous Integration and Continuous Delivery System ��������������������������������������� 49

Building Continuous Integration and Continuous Delivery Pipelines ������������������������������������� 51

Continuous Database Integration �� 53

Continuous Testing and Inspection �� 54

Preparing the Build for Release �� 56

Identifying the Code in the Repository �� 57

Creating Build Reports ��� 57

Putting the Build in a Shared Location �� 58

Releasing the Build �� 58

Conclusion �� 62

Table of ConTenTs

vii

Chapter 4: Containerization with Docker and Kubernetes�������������������������������������� 63

Introduction to Docker �� 63

Why Use Docker?��� 65

Using Docker in Google Cloud Platform �� 66

Introduction to Google Compute Engine �� 66

Creating a Compute Engine Instance �� 67

Instance Group �� 74

Container Application in Google Cloud Platform ��� 75

What Is Kubernetes? ��� 79

Using Kubernetes Engine to Deploy an Application �� 82

Deploying Our First Kubernetes App �� 85

Conclusion �� 96

Chapter 5: Continuous Delivery with GCP and Jenkins �� 99

An Introduction to Jenkins �� 99

Continuous Integration and Delivery with Jenkins�� 100

Code �� 101

Unit Test ��� 101

Code Integration �� 101

System Testing �� 102

Stage Release �� 102

User Acceptance �� 102

Production Release �� 102

Designing a Good Branching Strategy �� 103

Using Jenkins in GCP �� 104

Configuring Jenkins on Kubernetes �� 105

Designing the Jenkins Architecture ��� 110

Namespaces, Pods, Services, Quotas, and Deployments in Kubernetes ����������������������������� 112

Create Jenkins Service �� 117

Deploying Jenkins on Kubernetes ��� 124

Table of ConTenTs

viii

Creating a Continuous Delivery Project ��� 130

Creating the Repository ��� 135

Creating Jenkins Pipelines �� 138

Creating the Jenkinsfile �� 142

Conclusion �� 146

Chapter 6: Microservices Architecture with GCP ��� 147

Introduction to Microservices Architecture ��� 147

Implementing a Microservices Architecture �� 149

Microservices Architecture with Docker and Kubernetes ��� 150

Creating the Microservices Architecture in GCP �� 154

Creating the Services �� 155

Publishing the Image in the Registry ��� 157

Creating the Kubernetes Cluster ��� 161

Conclusion �� 163

Chapter 7: Monitoring in GCP ��� 165

What Is a Monitoring System? �� 165

Factors Involved in the Monitoring System ��� 167

Why Monitoring Is Important ��� 169

White-Box and Black-Box Monitoring ��� 171

Latency �� 172

Traffic��� 172

Error ��� 172

Saturation �� 172

Building a Monitoring System ��� 173

Configuring Stackdriver on GCP �� 174

Creating the Application �� 178

Log Analysis with Stackdriver ��� 181

Alerts in Stackdriver �� 183

Policy Alert Configuration �� 185

Table of ConTenTs

ix

Creating a Dashboard �� 187

Testing the Dashboard ��� 189

Conclusion �� 190

Chapter 8: Creating and Managing Infrastructure in GCP ������������������������������������ 191

Infrastructure As Code �� 191

Infrastructure as Code Principles �� 192

Architecture for Infrastructure As Code ��� 194

Infrastructure As Code in Google Cloud Platform �� 195

Configuration ��� 196

Templates �� 197

Resource�� 201

Types ��� 201

Manifest ��� 201

Deployment ��� 204

Starting with Google Cloud Deployment Manager �� 205

Upgrading Our Infrastructure �� 209

Expanding and Customizing Our Deployment�� 212

Creating a Template for Our Deployment �� 216

Defining the Template with the Environment Variable ��� 219

Conclusion �� 222

Chapter 9: Identity and Access Management with Google Cloud Platform ���������� 223

What Is Identity and Access Management? �� 223

Defining a Digital Entity ��� 224

The Importance of Digital Identity ��� 225

IAM and Digital Entity �� 226

Authentication ��� 228

Authorization ��� 228

Roles �� 228

IAM in Google Cloud Platform ��� 228

Google IAM Policy ��� 232

Table of ConTenTs

x

Creating and Managing the IAM Policy ��� 234

Creating a JSON File �� 235

Using the API via REST �� 239

Creating the API via Java Code �� 240

Using the Console �� 242

Conclusion �� 244

Chapter 10: Network Configuration and Management in GCP ������������������������������ 245

Fundamentals of Networking in GCP �� 245

Introduction to the Virtual Private Cloud ��� 247

Network and Subnets �� 249

Defining the IP Range for the Subnet �� 250

Routes and Firewalls ��� 252

Tagging Network ��� 254

Implementing a VPC Network �� 255

Creating and Maintaining Firewall Rules ��� 262

Creating and Maintaining Routes in GCP �� 265

Conclusion �� 269

Index ��� 271

Table of ConTenTs

xi

About the Author

Pierluigi Riti has more than 20 years of extensive experience in the design and

development of different scale applications, particularly in the telecommunications

and financial industries. He is a freelance consultant, with specialization in DevOps,

the cloud, and security. He has quality-development skills in the latest technologies,

including Java, J2EE, C#, F#, .NET, Spring .NET, EF, WPF, WF, WinForm, WebAPI,

MVC, Nunit, Scala, Spring, JSP, EJB, Struts, Struts2, SOAP, REST, C, C++, Hibernate,

NHibernate, Weblogic, XML, XSLT, Unix script, Ruby, and Python. He is the author of

Practical Scala DSL, also published by Apress. He can be contacted via his LinkedIn

profile page at www.linkedin.com/in/pierluigi-riti/.

http://www.linkedin.com/in/pierluigi-riti/

xiii

About the Technical Reviewer

David Gonzalez is a DevOps engineer who has written

three books about DevOps and microservices. He works

as a consultant, helping large companies to advance

their systems development, by tweaking related software

processes and tools. David is also a Google Developer Expert

(https://developers.google.com/experts/people/david-

gonzalez- gonzalez) in Kubernetes (Google Container Engine)

and a member of the Node.js foundation, working on security

in third-party npm packages. In his free time, he enjoys cycling

and walking with his dogs in the green fields of Ireland.

https://urldefense.proofpoint.com/v2/url?u=https-3A__developers.google.com_experts_people_david-2Dgonzalez-2Dgonzalez&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=S2OovC2yIscTXEydoMJehNbvqws2fiWxLqDkG7wRzoE&s=U6gVxkI8Cxt2SsD25QCFvqRFaxKfCHSgyVkt314xeOk&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__developers.google.com_experts_people_david-2Dgonzalez-2Dgonzalez&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=S2OovC2yIscTXEydoMJehNbvqws2fiWxLqDkG7wRzoE&s=U6gVxkI8Cxt2SsD25QCFvqRFaxKfCHSgyVkt314xeOk&e=

xv

Acknowledgments

My thanks go to David Gonzalez, for the amazing feedback he provided during the

technical review of the text. Another big thank you to Steve, Matthew, and Mark, for their

support and help in completing this book.

xvii

Introduction

Cloud technology is increasingly present in our daily lives. The intent of this book is to

introduce Google Cloud Platform, of cloud computing services, with an eye to DevOps

practices.

DevOps is currently a hot commodity in the information technology (IT) field,

and every day, a new company begins to adopt its practice. The cloud is a natural

environment for DevOps, because in the cloud environment, such practices as

infrastructure as code and continuous delivery can be adopted more efficiently. Thus,

the cloud is the natural environment in which DevOps can grow and be increasingly

effective.

In 2003, Google created Site Reliability Engineering (SRE). This represented a new

approach to the continuous large-scale release of product features. SRE shares many

concepts with DevOps. I use Google Cloud Platform, because it is one of the most highly

recommended by Gartner, particularly its use in infrastructure development. As with

the Gartner Magic Quadrant, Google offers strong network management, and with

the integration of Kubernetes, it is ideal for developing container and infrastructure

solutions. By adding code, Google Cloud Platform offers a complete solution for creating

the deployment management for release of infrastructure. In addition, Google Cloud

Platform has one of the highest levels of application programming interface (API)

available in the cloud environment.

All the code in this book can be accessed from the related GitHub site. Please feel

free to read that code and alter it for your personal use.

1
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_1

CHAPTER 1

Introduction to DevOps
DevOps, DevOps, DevOps, there is hardly a day in our professional lives that we don’t

hear that mantra. The reason is simple: by adopting DevOps practices, a company

can reduce “time to market,” the time necessary to identify a new software or other

requirement and to put it in place.

In this chapter, I introduce some of the advantages of DevOps and the changes that

must be made to accommodate and promote their use most profitably by a company.

 What Is DevOps?
The term DevOps is derived from the combination of two words: developer and

operations. DevOps is used to define a movement born of the need for reducing barriers

between the development and operations teams of a company. The goal of DevOps is

to reduce time to market. This means adopting DevOps practices, to reduce the time

needed, from the identification of a new requirement to the time it goes live for customers.

The DevOps journey introduces such practices as continuous integration and continuous

delivery, which help to reduce time to market and produce better quality software.

The most significant and possibly most expensive failures related to a new release

occurred in 2012, when Knight Capital Group, a global financial services firm, lost $440

million, owing to a glitch in its servers during the release process, and, in 2013, when an

upgrade failure at Goldman Sachs sent orders accidentally, resulting in the loss of what

was thought to have been millions of dollars. DevOps allows a set of practices that can

reduce potentially expensive errors.

When we think of DevOps, we must think of a movement formed to change how an

entire company works together. The goal is to build a set of practices that can be used to

reduce impediments to communication across different departments in the company.

To be successful, DevOps should be promoted at the highest level of the company and

accepted by each of its departments.

2

The philosophy behind DevOps was born in 2008, at the Agile conference in Toronto,

Canada. During this conference, Patrick Debois presented his talk “Infrastructure and

Operations.” In it, Debois expounded on the application of Agile methodologies for

building an infrastructure. He offered three case studies and, at the end, proposed a

better method of communication and other improvements allowing developers to gain

more IT skills, in the sense of the system knowledge necessary to ensure a smoother

release process.

The movement grew, until the 2014 publication of the book The Phoenix Project.

In this book, authors Gene Kim, Kevin Behr, and George Spafford describe how to

use DevOps to create a successful business. With this book, the start of the DevOps

movement became official, and after, a new IT figure was born with the advent of the

DevOps engineer.

 The DevOps Engineer
The role of the DevOps engineer is a very recent one. The DevOps engineer represents

a kind of bridge between the developer and the operations manager. In most cases, the

role the DevOps engineer assumes is a mix of operations manager and developer, and

this is fine, because these engineers must have the necessary knowledge for advising and

managing a problem from both disciplines.

In some cases, the responsibility of a DevOps engineer is connected to continuous

integration and delivery. Another responsibility associated with this position is

infrastructure management, usually, infrastructure as code (IaC), and to help put in

place optimal DevOps practices across the company.

Some companies view the DevOps engineer as an evolution of the site reliability

engineer (SRE), whose main responsibility is to maintain the software in production and

automate all the steps to solve an issue when one arises and to take the appropriate steps

to ensure the normal administration of tasks necessary for maintaining the system. The

role of the DevOps engineer is varied and can change from one company to another,

but all have at their core ensuring the changes required to adopt the DevOps practices

initiated by the company.

Chapter 1 IntroduCtIon to devops

3

 Adopting DevOps
Adopting DevOps in a company is like starting on a new journey. During this journey,

management must be effective for change to be successful. The following bulleted list

highlights the essential signposts of the journey.

• The manager must promote the change.

• The developer must be responsible for the software.

• The operational people must be treated as “first-class citizens.”

• Continuous integration and continuous delivery policies must be

built.

• Barriers to the IT department must be removed.

• The release process must be automated.

• Agile practices must be promoted across the entire company.

To achieve the desired result requires that DevOps changes be initiated by

management and integrated into the company culture.

This step is very important, to ensure a successful DevOps journey, and, of course, it

involves some technical changes, to be really effective. Let’s examine in detail what this

means.

 The Manager Must Promote the Change
To be successful, the changes required by DevOps must be pushed and accepted by

management first. For change to be effective, it must have strong company approval.

Imagine, for example, at the outset of our journey, that we start a new development.

We want to design a continuous integration/continuous delivery (CI/CD) system. To

do that, we decide to adopt Scrum as our methodology, instead of Waterfall, which was

previously used.

One day, the chief technology officer (CTO) proposes a new feature that he/she

absolutely wants to release in spring, only months away, but to do this, we must cancel

and delay some other features. The Scrum Master tries to tell the CTO not to introduce

the new feature so soon, because it will delay other features and cause some issues.

The CTO insists, and using his/her power, pushes the feature to spring. To hit this date,

the team must postpone some other jobs and work faster on the new feature, thereby

Chapter 1 IntroduCtIon to devops

4

creating some software quality issues. The requirements are not completely clear, and

during the CI/CD, cycle issues are identified, and this makes the software of very poor

quality and essentially not ready for release.

In the end, the team loses confidence in the DevOps practice, and little by little,

everyone goes back to the usual way of doing things.

 The Developer Must Be Responsible for the Software
In the normal development cycle, the responsibility of the development team ends

when the software is released to live production. After that, the developer works on new

features and is involved only when operations find a bug to fix. But this means a new

feature must be released, and the operations team must find a way to mitigate the bug.

If we want to have a successful DevOps journey, we must empower the developer.

This means that when the operations team finds a bug in the software, the developer

working on the function must be involved in the fix. This has two major advantages:

• The developer can more easily identify the problem and find a fix for

the issue. Because he/she knows the software, it is easier for him/her

to find the root cause of the problem.

• Because the developer can identify a problem’s root cause, it is easier

for him/her to work on a permanent solution. This, with a CI/CD

practice in place, reduces the time to market for release and improves

the quality and stability of the software.

This requires a big change in company culture: to lead the way to another important

change for DevOps, which, of course, must have complete management approval to be

really effective. The big advantage is that this assures improvement in the quality of the

software.

 The Operational People Must Be Treated As “First-Class
Citizens”
When we design a new feature, the development and the architecture teams must be

involved with the operations team. This is because those responsible for the correct

functioning of the live software make up the operations team.

Chapter 1 IntroduCtIon to devops

5

The role of the operations staff during architectural decision making is particularly

important in the release of a new feature. Imagine, for example, that we must design

a new feature for our system. The developer proposes a fancy new component for the

web interface and offers a mini demo. Of course, on the developer’s laptop, no issues

occur. Problems can arise, however, when the component is tested on the actual server.

The only people who can respond effectively to such problems are the operations

technicians, those who know the server on which the software should be installed and

run and who know all the policies related to security, software version, etc. In this case,

the operations team can reject the component, because, for example, it does not meet

company standards, or the team can start a process to test the server and ready it for the

new component.

This means, for this Sprint of the next n-Sprint phase, the component cannot be

used, but the operations team can advise the development team when the server is

ready. Another important reason for including the operations team in the design of

software is log level. For a developer, the message can be clear, but this is because he/

she knows the software and understands what’s happening. Operations personnel must

be able to understand an issue primarily by reading the log. If the log is too chatty or

otherwise unclear, this will impede a correct analysis of the error and cause a delay in

finding a resolution and identifying a root cause of the problem.

 Continuous Integration and Continuous Delivery Policies
Must Be Built
Using CI/CD policies helps the development and operations teams to identify faster

potential issues with the software. When we establish a practice for CI/CD, we receive

constant feedback. An important part of every CI/CD system is the code review. When

a developer completes the code, it must be fully tested. First, to ensure successful

integration, the developer must ask other software engineers to review the code and

raise any issues found in it. This is a very important procedure for the CI/CD system.

For every simple update in the software, the developer must begin to adopt test-driven

development (TDD) practices. In this way, every commit can be fully tested by the CI

software, for example, Jenkins, and promoted to the next step, for example, creation and

delivery to the quality assurance (QA) environment for testing.

Chapter 1 IntroduCtIon to devops

6

Having a CI/CD system in place helps to improve the quality and stability of the

system. The reason for this is connected to the nature of the system. The entire life cycle

of the software is extended every time we commit a new file to it. This means, in the

event of a new bug, that we can determine in real time the cause of the error, and we can

easily roll back the software delivery. At the same time, we gain the ability to review the

software constantly. This helps the operations team to identify security risks and take all

the necessary measures needed to eliminate them.

But to achieve true success and avoid creating problems and destabilizing the

system, the software engineer must invest more time in unit testing and automation

testing. In addition, we must invest time in code review. If we don’t have a good test

coverage of the software, or don’t really review the code, we can release software that is

potentially dangerous and compromise the security of the application.

 Barriers to the IT Department Must Be Removed
Normally, development and operations teams use different software for their daily work.

This can create barriers that must be removed, if we want to ensure an effective DevOps

journey.

DevOps can unify communications tools and promote communication across

different IT-related departments. In this way, we can coordinate the time frame for the

software release and can better plan the work involved. If, for example, a new feature

introduced to the CI system creates a security bug, the security team can use the

common channel to communicate to the development team, and this can put in place a

fix for solving the problem. At the same time, the operations team can be advised of every

step the developer has taken with the software and can be ready for the release time.

 The Release Process Must Be Automated
Analyzing the error rate, we can positively identify humans as the main cause of failure.

The main focus of DevOps is to reduce human and other errors and reduce the time to

market. To achieve this, one of the important changes we must make is to automate the

release process.

With an automatic process for releasing the software, we reduce the human

interaction with the system. Less human interaction reduces the number of failures,

because we have a predictable and repeatable process in place.

Chapter 1 IntroduCtIon to devops

7

The other advantage of having an automatic process in place is the possibility of

defining the IaC. With the IaC, we can define, via code, what type of structure we want

for our software. In addition, defining the IaC makes the infrastructure predictable and

allows for the faster release of upgrades. Automating the release process and defining the

infrastructure reduces or removes, in the best-case scenario, human interaction and, for

this reason, effectively reduces the error rate.

 Agile Practices Must Be Promoted Across the Entire
Company
DevOps was born during an Agile conference, and to be effective, a company must begin

to implement Agile across all its departments. Normally, the Agile practice is mostly used

by the development team, but for a good DevOps journey, we must spread this practice

as well to the infrastructure and operations teams. If the entire team works in Sprint

and, if possible, shares the same backlog, this can help to improve communication.

During the Sprint planning, the other team can adjust the work in order for it to be more

effective.

At the same time, with Agile in place, we can improve communication and make the

work more visible across the team. At the end of the Sprint phase, we can see a demo

of the work of the other teams. This helps to see how effective the work is and how to

improve the iteration from one team to another.

 Reasons for Adopting DevOps
There are different reasons why a company decides to adopt DevOps. Normally, the

adoption of the DevOps philosophy is related to improvement in the quality of the

software and a better way of managing its release.

When a company adopts DevOps, the first step is to improve communication across

teams. This characteristic of DevOps is shared by the Agile methodologies and can be

put in place only with a harmonization of the tools used across the company.

This change is not always easily accepted by all IT employees. The initial resistance

is usually to the change of culture necessary to adopt DevOps. In general, the life cycle

for designing and implementing infrastructure is managed using the ITIL. This means

the procedure follows Waterfall methodologies, because it is essentially impossible to

configure a server without the server being physically in your hands.

Chapter 1 IntroduCtIon to devops

8

Adopting DevOps means changing the way we think of infrastructure: where

possible, migrating it to the cloud, adopting infrastructure as code, and adopting the

compatibility of the case, using Sprint to manage the work. This demands that all teams

use common project methodologies and create a common product backlog that is shared

with the development team, in particular, when the project involves new infrastructure.

Another reason for adopting DevOps practices is the improvement in the quality

of the software released. With DevOps, we can adopt some procedure for improving

the quality of the software. For this we must have in place continuous integration and

continuous delivery. With these, it is easy to identify errors when we push the code on

the repository. In addition, because we have continuous delivery, we can release the

software directly on the QA more times per day. This ensures a continuous check of the

software and continuous feedback for the software engineer.

These are just some common reasons that drive a DevOps journey. Whatever the

reason, it is important to understand what actors are involved in DevOps. To do that, we

must clarify some misunderstandings commonly connected with the use of DevOps. We

must try at this point to identify the common mistakes associated with DevOps and to

clarify its role and who is involved.

 What and Who Are Involved in DevOps?
In talking about DevOps, we can encounter some misunderstanding of what it is and

who is involved in it. The first myth regarding the adoption of DevOps is associated with

the professionals who deal with it. DevOps, for many people, involves only software

engineers, system engineers, and system administrators.

This assumption is incorrect. When a company decides to adopt DevOps, the first

change required is to improve communication across the various teams. This means

not only development and operations but other teams as well, such as QA, security,

and business. To be effective and successful, a DevOps journey requires that all team

members work together. The goal of DevOps is to reduce time to market. This means

that when a new feature is designed, every team must communicate, to reach the

goal. The QA engineer must respond quickly to the software engineering team and

communicate any glitch found in the software. At the same time, the software engineer

must communicate with the security team, to describe what the software does and

what libraries are used, and to allow the security team to martial the necessary assets

to ensure the safety of the software. The business analyst must to be aligned with the

software architect, and the software engineer with what the customer wants.

Chapter 1 IntroduCtIon to devops

9

As you can see, to undertake a successful DevOps journey, the whole organization

should be involved. Every team must take responsibility for a small part of the business,

but in tandem with other teams. DevOps seeks to remove communication barriers

across teams, making it easier to identify and correct errors during development and not

after release. This ensures better software, a more timely release to market, and better

alignment with what the customer needs and wants.

All these actors must work together like musicians in an orchestra. If all respect the

symphony, everything runs smoothly, but if one team starts to make problems or doesn’t

practice good communication, the intended goal will be compromised. For this reason,

the most important job when adopting DevOps is to improve the coordination of the

internal and external teams.

 Changing the Coordination
By adopting DevOps, one of the goals we want to achieve is the reduction of

coordination. This means ensuring that those responsible for managing the team invest

less time coordinating the different operations. This becomes very important when

moving the software from the development server to the stage server. If a CI/CD practice

is in place, the software is automatically promoted.

When more automatic processes are introduced, human interaction is reduced and,

thereby, the requirement of coordination. This is necessary to reduce time to market.

Fewer humans require approval; therefore, fewer delays occur. This requires a change in

the classic coordination processes. When we adopt a nonautomatic process, normally,

when we finish the software development, the team responsible for the development

communicates the completion of the development and then coordinates with the other

teams responsible, to move the software onstage. This coordination essentially delegates

to humans different ways in which to communicate, for example, via e-mail. DevOps

tries to change this way of coordination, reducing the human interaction and, of course,

changing the way coordination is actualized.

The coordination has different means of being actualized. These change depending

on the context—whether the team is remote, on-site, or partially remote. The normal

attributes necessary for good coordination are to be

• Direct

• Indirect

• Persistent

Chapter 1 IntroduCtIon to devops

10

These three attributes define how we manage coordination across the team.

Every style has its strengths and weaknesses, so we must be sure to use the correct

type of coordination for our purposes. The wrong type can result in an unnecessary

consumption of resources and poor coordination. I will now discuss the different styles

and when to use one instead of another. I will describe how to use Agile, to improve

coordination and to split it across roles and artifacts of the Agile methodologies.

The goal for all the kinds of coordination is to improve communication and, with

that, reduce time to market. Remember: The ultimate goal of DevOps is to reduce time to

market.

 Direct Coordination

With direct coordination, those responsible for the coordination know each other. This

means the coordinator directly coordinates the job of every team member. This kind

of coordination requires a lot of work from those responsible for the coordination.

Normally, this effort can be mitigated when the team is managed using Scrum. In this

way, during the stand-up, the staff responsible for the coordination can receive direct

feedback regarding the status of the team and take decisions about that.

 Indirect Coordination

By this type of coordination, we don’t just coordinate people, we coordinate a team, for

example, system administration, software engineering, etc. This kind of coordination

requires greater coordination, because we don’t really go deeply into the details of the

task but approach it from a higher level. Imagine, for example, that we must manage

new software being put in place, a new piece of infrastructure, and new software

functionality. The coordination we want to have is not about detailed tasks but a general

view of the status of some specific task. This view gives to the coordinator the capacity

to have a plan and start to move on the other activities to calculate an estimated time for

the release.

This kind of planning is normally delegated to the product owner. Keeping still to the

Scrum style of management, the product owner doesn’t really go deep inside a single

functionality, but he/she takes an overall view. The production owner is responsible

for the entire project and, of course, can help the team reach the best result, reducing

unnecessary effort.

Chapter 1 IntroduCtIon to devops

11

 Persistent Coordination

This is not really a kind of coordination but essentially an artifact. Persistent

coordination refers to all the reports and e-mails sent when a decision is reached about a

project.

Persistence gives the team all the instruments for keeping a daily record of the

production story and allows teams to make new decisions, based on the history of the

project and prevents any misunderstandings about the project itself.

 The DevOps Chain
Until now, I have discussed only the kinds of coordination available and what kinds can

be used to improve communication. However, the most important question we want to

answer is why coordination is so important in DevOps.

The reason is simple. The DevOps movement progresses according to a “toolchain.”

Essentially, this toolchain is used to define every step of the production process.

Figure 1-1 shows the phases for the DevOps of a software release. Every phase can

be managed by a different team. For this reason, strong and clear coordination and

communication are important.

To better understand the importance of coordination and communication, we must

understand how every phase is connected to the other, creating a “chain” of production

for the software.

The first phase is the code. During this phase, code for the software is created. Every

developer puts the code in a common repository, for example, Git, and this leads to the

next link in the chain.

The second phase is build. This phase is directly connected with the continuous

integration practice. The code previously committed is downloaded in the build server

and then built in an automatic way. At the same time, a test is performed for the first

time. If all elements of the test are successful, the next phase begins.

Figure 1-1. Porter’s value chain for DevOps

Chapter 1 IntroduCtIon to devops

12

The third phase is the test phase. The software previously built is tested by some

automatic process, but this time, the software is tested altogether. In the build phase,

only the unit test connected with the specific functionality we release is executed. If

the system doesn’t find any issue, the software is promoted to the next phase. In case of

failure, the software will be rejected, and an automatic system will advise the developer

of that.

The fourth phase is the configure. This phase requires a clear distinction. When we

have good and tested DevOps practices in place, we can have continuous release. This

means, obviously, the continuous release of the software in production. However, for

software that is mission critical, this phase is normally split into two different parts. The

first release is intended for a restricted number of servers called canary servers.

Note the term canary server designates an intentionally restricted number of
servers that are used to test the new software. the purpose of the canary server is
to allow a real user to use the new software and provide real-time feedback about
potential bugs and the quality of the server. a canary server is very important when
we want to be sure not to release software that can be potentially destructive to
the company. at the same time, canary software can be used for pen testing and to
improve system security.

The fifth phase of the chain is release. In this phase, the server is configured, as

well as the infrastructure for the new software. This phase defines IaC. The server is

created and managed using the code. Such software as Chef, Puppet, Ansible, and

CloudFormation are examples of software for creating IaC.

Chapter 1 IntroduCtIon to devops

13

Note Infrastructure as code (IaC) is at the core of devops. IaC provides the ability
to create the infrastructure for a new server. this guarantees the integrity of every
new release, because human interaction is reduced and the integrity of the release
is improved. In addition, IaC allows devops to create a different environment as a
request. this makes it possible for the developer to create a different environment
and different test environments directly on request. With IaC in place, we can
create and orchestrate an immutable infrastructure, that is, an infrastructure
composed of some immutable components that are replaced every time we
release the infrastructure. Instead of updating a component for our infrastructure,
we can simply deploy a new immutable component with the necessary update.
this guarantees the stability of the entire infrastructure and ensures that an
infrastructure always yields the same result with every release.

The sixth phase of the chain is monitor. This is extremely important for providing

continuous feedback about our software and infrastructure. Monitoring is very important

in DevOps, because it allows the developer to gain feedback about the software,

including an average of the failure, the kind of failure, etc., and, at the same time, can be

used to check the metrics of the server and provide feedback for autoscaling it.

Coordination and communication are crucial for putting the complete DevOps chain

in place. This is because every phase requires a good coordination at every step. We

must ensure reliable feedback at every step, because we must react quickly to errors and

adjust the system, to prevent new errors.

 Defining the Development Pipeline
To ensure a successful DevOps journey, one of the most important jobs is to define

the development pipeline. Building this pipeline is essentially the core of the changes

required by DevOps.

Chapter 1 IntroduCtIon to devops

14

The first of the changes in the development life cycle is to put in place continuous

integration. This requires some changes to our development practice, which can be

summarized as follows:

• Define the unit test.

• Define a branch policy.

• Have in place a continuous integration system.

These three practices are the backbone of the development pipeline. The first, the

unit test occurs every time the developer commits code to a central repository.

When the code is committed to the software for continuous integration—for

example, Jenkins—this compiles the code and executes the unit test associated with the

software. In the case of failure, an e-mail, with the test results, is sent to the developer.

Because we don’t want to break the main branch, we adopt the second practice,

the branch policy. This is important for maintaining a clean master branch. When a

development team adopts this policy, every developer creates a specific branch when

developing a feature. This policy is strictly connected to a code review. For every merge

with the master, a code review occurs, after the build has been completed and correctly

tested. Essentially, for every commit, only the branch is built. In this way, in case of error,

the master is not broken and is always ready for a release.

In the case of a positive build, we can ask for a code review, and when the code

review is complete, merge the branch with the master, and, of course, restart a complete

system for continuous integration. With continuous integration in place, we build and

test every time we commit into the master or a branch.

Continuous integration must be paired with a good communication system. In

particular, we must have a good mail system, to send e-mail to the developer to brake the

continuity in the pipeline.

With this pipeline in place, we have continuous software production. What closes the

pipeline are the release and monitoring.

During the development life cycle, the release does not happen during production

but in QA and testing the server. This release happens automatically. Essentially, it is

a promotion of the software built by the continuous integration system. This release

is used for testing purposes by the QA engineer, to test the software, provide faster

feedback to the developer, and put in place fixes to any bugs faster.

Chapter 1 IntroduCtIon to devops

15

Having a release in QA is important, not only to fix bugs, but to start the monitoring

phase. Monitoring is very important in DevOps, to reduce and prevent errors for

occurring in the system.

Monitoring is very important for checking and maintaining the stability of the

system. A good monitoring system must check not only the availability of the system,

for example, if the network is available or the software is working, but can be used for

preventing future errors.

There is a lot of software for monitoring, for example, Nagios, Prometheus, Zabbix,

or the ELK combination, Elasticsearch, Logstash, and Kibana. All this software has its

specific strengths and can be used in combination for achieving the best results.

One of the crucial reasons for effective monitoring is the log. With a good log, it is

easy to initiate some log analysis policy. This policy is intended to isolate common error

conditions and define some practice of mitigating the error and, at the same time, give to

the developer the critical space to fix the software.

 Centralizing the Building Server
Centralizing the building server is crucial for building the correct pipeline. When we

design a DevOps architecture, we must think of reducing points of failure.

When we adopt a build server, we centralize everything in one server. This means

that we use a different software to release our new software. Having only one server,

or cluster, for building new software means that there is only one point of failure. Any

problem is centralized at only one point. This reduces the cost of maintaining the

software and speeds up the release process.

The building server is normally connected with an artifact repository server. The

repository server is where the build is stored and saved. It is associated with continuous

release. Essentially, with this practice, we build the software every time and release it to

a server. This server essentially maintains the different versions of the software we build

on the server. Normally, we establish a naming policy to maintain the different software

versions. This is because we want to identify every version of the software uniquely.

With the artifact server, we can easily centralize one point for release of the software.

In this way, we can have different versions of the same software, and, if we use Docker,

we can have different versions on the same server at the same time. We can also start

them at the same time, with some minor adjustments. This allows the QA engineer, for

Chapter 1 IntroduCtIon to devops

16

example, to undertake some regression test, and in case of new errors, identify exactly

what version has the bug. This allows the developer to understand exactly what change

to the code introduced the error.

 Monitoring Best Practices
To be effective, monitoring must be combined with some other practice. A log analysis

is the most important practice for preventing errors and understanding how the

system functions. Some software is required for analyzing the log and making related

predictions.

The software most commonly used is ELK (Elasticsearch, Logstash, and Kibana).

This ecosystem is helpful because it gives a complete log analysis system, not only

providing alerts, but also a graphical representation of the error and the log.

Log analysis is very important for improving the quality of software. One important

practice we can put in place is to have some software that not only identifies the number

of errors but graphs these as well.

Having a graphical representation of the errors is important for providing visible

feedback about the software, without the necessity of reading a log, in order to

understand the status of the software.

Monitoring is the backbone for every DevOps practice, and if we want a very

successful journey, we must be sure to have a good monitoring system. At the same

time, we must start to monitor not only the production but possibly the canary server.

This is because it can reveal an error, and we can solve it before release to production.

Monitoring can take two forms. Black-box monitoring tests a piece of code as if it were

in a black box. It reveals only the status of the system, to determine whether it is alive. It

doesn’t really indicate what is happening inside, because the monitoring is external. An

example of black-box software monitoring is Nagios.

The opposite of this is white-box monitoring. This type of monitoring provides a

clear picture of the inside of the system, such as, for example, the number of HTTP

connections open, the number of errors, etc. Prometheus is an example of white-box

monitoring software.

Chapter 1 IntroduCtIon to devops

17

 Best Practices for Operations
In DevOps, the operations team has a big influence on achieving the best results. The

importance of the operations team is strictly connected to the quality of the software and

what the customer thinks about the company.

In case of an error, the operations team is the first face of the company. This team is

normally delegated to maintain the software in the production environment.

The only point of contact with the software is the log. For this reason, some member

of the operations team must be included when software is designed, and, more

important is the feedback they can provide when software is released for testing. This is

because if the log is insufficient, the operations team can’t really identify the error, which

means more time will be required to fix the issue.

At the same time, the operations team can help to identify common issues and

provide documentation to solve them faster. This documentation is actually a step

toward resolving the issue. It is used essentially by first-line operations engineers. It is

“live,” meaning that it is never closed and must be carefully managed, so that it aligns

with the most recent software updates.

The documentation must indicate common errors in the log and show how to solve

the root cause(s) of the problem. This documentation should be written with people who

don’t know the system in mind and, based on that, must provide specific details about

the appropriate steps to be taken.

Another operations practice we can put in place is developer on-call. This practice

introduces a new figure to the operations world. The developer on-call is essentially

a software engineer, working with the operations professionals to resolve errors in

production. This has two principal advantages. The first is a reduction in the time it takes

to identify and fix an issue. Because one of the developers works on the issue, he/she can

easily identify what’s gone wrong and what part of the code creates the issue. This can

drive the operations team’s efforts to fix it.

The second advantage is improving the level of responsibility. Because the developer

works to fix a live issue, he/she understands better what’s wrong with the software and

thus can improve the way he/she writes the software and the log, because a bad log can

result in more work for him/her in future.

Chapter 1 IntroduCtIon to devops

18

 Conclusion
In this chapter, I have offered a brief introduction to DevOps—what it is and how

a movement was born. DevOps is very important in relation to the cloud. Cloud

development requires software that is always live and designed to be released faster and

of higher quality.

DevOps puts the accent on quality and on time to market. It allows for a simple

design microservice architecture, because of the practices connected with continuous

integration and delivery, which help to deliver faster service on a system.

DevOps is very important to modern software development, and more companies

are starting to adopt it, because it promotes some best practices necessary for

improving the quality of software. DevOps requires a change, not only in how we

think of infrastructure, but in how well we design and organize the internal company

infrastructure.

DevOps essentially represents a change in corporate culture. To ensure its optimal

practice, it is important to change the organization, so that its priorities align with the

requirements of cultural change, practices for success, and change that is driven by

management and, of course, approved by the engineers.

Chapter 1 IntroduCtIon to devops

19
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_2

CHAPTER 2

Introduction to GCP
The cloud is one of the technologies most frequently adopted today. More and more

companies have started to use this technology for their projects. This change is driven

by different factors, for example, a reduction in the cost of spinning up new projects. Of

course, this is only partially true. Normally, the cloud can be more expensive in the long

run, but, on the other hand, it can reduce resources. In the cloud, it is easier to spin up a

new operating system with all the environments necessary for its application.

At the same time, a cloud solution offers flexibility in terms of cost savings not

available in a traditional infrastructure. With the cloud, we generally pay for what we use.

This means that if we don’t need, or simply don’t use, an instance, we don’t pay for it. This

is a big saving for a small company that needs to spin up its business. With a traditional

infrastructure, we must pay the electricity bill for the server, in any case. The major

competitors in the cloud are essentially three: Amazon Web Services, Microsoft Azure,

and Google Cloud Platform (GCP). In 2017, Google was cited as the most visionary cloud,

by Gartner Magic Quadrant, based on its leading position in the field of cloud computing.

In this chapter, I provide a brief introduction to cloud and, following, an introduction

to Google Cloud Platform. In addition, I review the similarities between Amazon Web

Services (AWS) and GCP.

 Introduction to Cloud Computing
Cloud computing is a new IT paradigm. The definition of cloud computing derives

directly from the National Institute of Standard and Technology (NIST), as follows:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction. This cloud model is composed of five essen-
tial characteristics, three service models, and four deployment models.

20

From the preceding definition, we can see that the cloud is essentially a shared

resource within a network, another important distinguishing point. The cloud also has

some other characteristics, which are essential for defining cloud computing.

• Self-service and on-demand: A customer can unilaterally define the

required resource and pay for it only when used.

• Network access: As stated in the NIST definition, the cloud is a set

of services offered via networks. This means that customers can

access different resources via networks and, possibly, across different

platforms, such as, for example, mobile phones, tablets, and thin

client computers.

• Pooling of the resources: The cloud allows for the sharing of resources

with different people at the same time. In addition, different users

can have a different configuration. Cloud computing can manage this

necessity and share resources with different users.

• Faster response to change: This capability of the cloud allows for faster

releases, most of the time, in an automatic way. This means the cloud

must be faster to adapt, in order to share new resources.

• Measurable service: Every cloud system must allow the user to

manage and check the chosen resource. The cloud must have a

system to control and manage the resource used, including the ability

to stop its use. Normally, the cloud uses a pay-per-use paradigm,

meaning the user pays only for the resource consumed.

Another important characteristic of cloud computing is its different service and

deployment models. These various services and models, de facto, define how we can use

cloud.

 Cloud Computing Service Model
The most important differentiation of the cloud is the service model. The service model

defines how to offer cloud to the customer. Every model has different characteristics.

Service models include

Chapter 2 IntroduCtIon to GCp

21

• SaaS (software as a service): The SaaS model allows users to design

and promote their software. Based on the cloud’s infrastructure, this

means consumers essentially share some resource on the network

and run their software on that resource. Consumers are not able to

manage the underlying infrastructure, such as the network, operating

system, etc., and they are able only to use the software. The software

is accessible on different platforms, such as mobile phone, tablet, or

computer. Good examples of SaaS include Google Docs, Office 365,

and Zendesk, with which the consumer can access software from

different platforms with, in most cases, only the requirement of an

Internet connection.

• PaaS (platform as a service): The PaaS model offers the user the

ability to deploy his/her own software, library, database, and

everything else required for the software, in a cloud environment,

without thinking about the underlying infrastructure. With PaaS, the

consumer can develop an application, using the language provided,

and essentially not care about the resource. An example of PaaS is

Heroku, in which a consumer develops an application using his or

her own preferred language, and the only work required is to create

the software infrastructure, such as the database, and deploy the

software for allowing the user to access his/her cloud resource.

• IaaS (infrastructure as a service): The IaaS model is the most

manageable service model. With IaaS, a user can run a preferred

software. The software is run in the infrastructure the user creates.

This includes the operating system, applications, or anything else

that is required. At the same time, the user is able to manage some

underlying network features, such as, for example, the firewall and

load balancer. Good examples of IaaS include GCP, AWS, and Azure.

All these service models are important for defining the kind of cloud we want to use.

Every service model affects how the customer approaches and uses the cloud, whether

that be only to use software over the network across a different kind of platform or to

define the operating system and, starting from that, build the application.

Chapter 2 IntroduCtIon to GCp

22

 The Deployment Models
In cloud computing, we can identify four different types of deployment models. The

difference in the models is defined only by how we release on the cloud, but not by what

kind of cloud we will deploy. This means that each of the service models can be defined

according to the four deployment models.

These models and their differences are listed following:

• Private: The private model of cloud computing is intended for

internal use only. This kind of cloud is normally built to be shares in

a private company, across the different business units. This cloud is

completely owned and managed by the provider, normally, another

business unit of the company.

• Community: This kind of cloud model is intended to be shared across

a specific community, for example, a security community or charity.

In this type of deployment, the community owns and manages the

cloud infrastructure.

• Public: This cloud model can essentially be used by anyone. Usually,

it is rented. Examples of this kind of model are Amazon Web Services,

GCP, and Microsoft Azure.

• Hybrid: This type of cloud model combines different models. It is

normally used when there is a need for part of the data to remain

private, for example, customer data, for security reasons. The

purpose of having a hybrid cloud model is to combine characteristics

of different kinds of cloud models, for example, a need for privacy

but, at the same time, a need to share some information with a

community.

The different deployment models are intended to respond to the different needs of

the potential user. For example, a hybrid solution can be adopted when we want to have

an SaaS cloud deployment but have concerns about the security of the data, because of,

for example, some regulation that makes it necessary to secure how our data is managed.

In this case, we can have the SaaS in the public cloud, for example, GCP, but store the

data in our internal private cloud. This can essentially meet all the legal requirements

and, at the same time, provide public software to our customer.

Chapter 2 IntroduCtIon to GCp

23

 Why Use the Cloud?
As with every technology, the cloud has some benefits and some disadvantages. The

cloud can be cost-effective. In particular, if we want to start a new business, adopting the

cloud can be cheaper than buying and maintaining an internal server.

In addition, the public cloud allows for service-level agreements. About 99% of the

time, this means our site and our business are essentially always online. A public cloud

also can help a company to scale with the business. We can easily add more power to

our actual infrastructure in minutes and scale down when we don’t require this power

anymore.

This helps to save the company money and to improve profitability. Another

important consideration is the total cost of operation (TCO). TCO is generally calculated

based on all the costs of hardware and maintenance. The TCO of the cloud is very low,

because we essentially rent the hardware on a monthly fee, and we can always reduce

the cost by reducing the resource used, according to business necessity.

Because the cloud infrastructure can essentially grow with our business’s needs, this

creates a big return on investment (ROI). This is because we pay only for what we really

use. With a traditional infrastructure, we reduce the initial ROI, because we must repay

the initial hardware investment, and this cannot be supported by our business.

 Introduction to Google Cloud Platform
GCP is the public cloud offered by Google. It is made up of a suite of services run on

the same infrastructure with which Google runs the software for the customer, such as

YouTube and Gmail.

GCP was first offered to the public in October 2011. Since that time, it has continued

to grow in popularity and is now the third most popular cloud platform, after AWS and

Azure.

GCP offers a wide range of services, which can be divided into the following areas:

computing and hosting, storage, networking, big data, and machine learning.

For every area, GCP offers a complete set of products that can be used to build our

own cloud application. The most popular services are

• Google Compute Engine: This provides the capacity to create a virtual

machine to run an operating system. It allows for the creation of

different “computers” inside the cloud.

Chapter 2 IntroduCtIon to GCp

24

• Google App Engine: A PaaS component for building applications. With

App Engine, it is possible to create applications with different types

of languages and frameworks. At the time of writing, App Engine is

supported by Go, PHP, Java, .NET, Ruby, Python, and Node.js.

• Google Kubernetes Engine: A managed orchestrator for the container,

this is used to deploy, scale, and release containers.

• Google Cloud Bigtable: A compressed high-performance and

proprietary data storage feature developed by Google.

• Google BigQuery: This is a RESTful web service, used to analyze a

massively large number of datasets.

• Google Cloud Function: An event-driven serverless cloud platform.

With Function, it is possible to create infrastructure as code, that is,

infrastructure designed and implemented by the code.

• Google Cloud Datastore: A highly scalable fully managed NoSQL

document database, built on Bigtable and Megastore technology

• Google Storage: This is a RESTful service for storing data on GCP. It is

comparable to the Amazon S3 service.

This is only a short list of services, but it is enough to start our journey. The next step

is to set up and configure a GCP instance.

 Starting with GCP
We can create a new GCP account by following some simple steps. First, we must

connect to the site: https://cloud.google.com/.

This is the initial page for connecting to GCP. To create a new account, simply

click the Try GCP Free button. Insert all the parameters, to create the free account. To

complete the process, we must provide credit card information, but don’t worry, no fee is

charged. Use remains free for one year or, alternatively, until we don’t reach the $300 free

trial limit. After that, the account is automatically converted to a pay-for-use one.

When the account is initiated, we will see a page such as that shown in Figure 2-1.

Chapter 2 IntroduCtIon to GCp

https://cloud.google.com/

25

The initial page of GCP shows the resource used and the project we have in the

cloud. Of course, because we’ve just started, the page is blank.

The first action we must take is to create a new project. A project is essentially a

container for regrouping all IT and non-IT resources connected with a specific cloud

project. Every project is identified by some specific parameter, as follows:

• Name: This is a string used to identify and describe the project.

The name is only for user reference and can be changed at

any stage. Using the free tier, we can create 24 projects.

• Project ID: This is a globally unique string for identifying the project.

It is created starting with the project name. It is possible to edit

and change the project ID. To create the project ID, we can use any

lowercase letter, number, and hyphens. The only requirement is the

unicity of the name. After this is entered, it is no longer possible to

change it.

• Project Number: This is a parameter that is autogenerated by GCP. We

can’t manage or change this number.

To create a new project, just click the Create a new project button. This starts the

process of creating a new project (Figure 2-2).

Figure 2-1. The Google Cloud Platform screen

Chapter 2 IntroduCtIon to GCp

26

Now we can see that to create a new project, we must add a new name. In this case,

we assign the name PracticalDevOpsGCP, leave the project ID with the default value,

and click Create.

Clicking the Create button creates the project for us. This takes a few seconds. When

the project is ready, we can click the right side to return to the main page. In this case, we

move back to the dashboard.

The home dashboard shows the command to create a new project or select another

one (Figure 2-3).

Figure 2-2. Creating a new project with GCP

Figure 2-3. Entering the Google dashboard

Chapter 2 IntroduCtIon to GCp

27

Because we have created the project previously, we click the Select button. This takes

us to another page from which to select the project we want to open (Figure 2-4).

Select our project and then click Open, to open the project. When we open the

project, we see the complete dashboard from GCP (Figure 2-5). This dashboard can be

configured to adapt to our needs.

Figure 2-4. Selecting the project

Chapter 2 IntroduCtIon to GCp

28

On the left, we can see “Project info.” This shows the general information about our

project. At the center of the screen is APIs Requests (requests/sec). This is an important

parameter that shows the number of requests to our API per second. For most services,

with GPC, it is possible to enable the API interface at runtime. This means that we can

programmatically use this service in production. When we are in production, we can

easily identify a problem by simply taking a look at this panel. If, for example, we see a

significant drop in the number of requests per second, this can point to a problem in our

infrastructure.

On the right, we see the Google Cloud Platform status, which indicates the general

status of the platform. It is useful for identifying the general problem on the platform.

In addition to the technical information, the dashboard shows some nontechnical

information, such as billing. To access the billing information, click the Billing section on

the dashboard.

 Understanding Billing in GCP
Billing is an important part of our process, because it is essentially the return on our

business. GCP offers a very good platform for understanding billing and how a bill is

composed and read.

Figure 2-5. The Google dashboard for our project

Chapter 2 IntroduCtIon to GCp

29

GCP identifies billing accounts for the following items:

• Billing account ID: This is the unique ID generated by Google

associates with our account.

• Billing account name: This is the name associated with the billing

account ID. We can change this name to be more user friendly.

• Status: This indicates the status of the billing, whether closed or open.

• Number of project: When we create a billing account, we can link it to

more than one project. This is used to have one point of payment but

different bills for different customers or projects.

The Billing dashboard also shows information about budgets and alerts (Figure 2-6).

We can create a monthly budget and raise an alert when we reach the budget ceiling.

This is very useful when we must take control of a project’s expenses.

By default, only the owner of the Google Cloud account is responsible for managing

the billing. We can easily add another user just by clicking the Permissions section on

the right side of the dashboard. When we add users, we can select roles for them. All the

roles can be managed by the identity and access management (IAM) sections.

Figure 2-6. The GCP Billing dashboard

Chapter 2 IntroduCtIon to GCp

30

The GCP billing dashboard is very clear and manageable. We can easily identify how

many projects are associated with the billing account, as well as the payment overview,

which shows all the information about payment details. We can easily change this

parameter, according to the needs of the company.

 GCP Resources
When we talk about the cloud, we are also essentially talking about hardware. In the case

of GCP, we “rent” the Google infrastructure.

Google hosts resources in different geographical areas, because this reduces the risk

of the system going down. The possibility of a natural disaster or some other problem

occurring at the same time in two different locations is minimal. Another significant

advantage of having different resource locations is the reduction in latency.

Each of these locations is known as a region. A region is essentially a Google data

center. In a data center, we find all the resources required to build a Google cloud

application. These resources include a physical server, network components, and

a virtual machine. The actual region is located in the central United States, western

Europe, or East Asia.

Every region is essentially a collection of zones. A zone is a deployment area

for a cloud platform. A zone should be considered as a single point of failure in our

infrastructure.

Because a zone can have a downtime, to ensure fault tolerance and high availability,

we must consider deploying our application across different zones and, possibly,

different regions. The different regions and zones help us to design for complete fault

tolerance and high availability in the cloud.

The zone has a specific name. This is created using the name of the region and a

number, which identifies the number of the zone, for example, europe-west2.

Chapter 2 IntroduCtIon to GCp

31

Note When we design a cloud application, it is important to think about its
availability. this is essentially related to the decision we make about our deployment
model. If we want our service to have high availability, we must use either a regional
application, such as app engine, or a managed multiregional application, such as
Cloud Storage. If we want to build disaster recovery for the data that follows this
strategy, we use some multiregional- based service, such as Google Cloud Storage or
Google Cloud datastore. If we use a zonal or regional service, we snapshot the data
in a multiregional resource. the data should be replicated in a different region or
zone. this way, if one zone fails, we will have another zone available. For computing,
use the zonal or regional resource, such as Google app engine, but in case of
failure, have a mechanism for spinning up the application in another zone or region.
of course, for total high availability, we must have a load balancer, to balance the
resource across the zone or region and connect the data with a multiregional service.

Following are some different types of GCP resources:

• Regional: A regional resource is one that can be redundantly

deployed across all zones of a specific region. This provides high

availability to a zonal resource.

• Zonal: A zonal resource operates in a single zone. If the zone

becomes unavailable, the resource itself becomes unavailable.

• Multiregional: This cloud service is directly managed by Google to be

redundant and distributed across different zones and regions. The

data stored in a multiregional area is stored across different regions

and not in only one region or zone

• Global resource: This kind of resource can be accessed by another

resource, independent of the zone or region. The global resource is

normally a preconfigured disk, snapshot, or network.

Knowing the type of resource is important when we decide to put our cloud

architecture in place. This is because it essentially drives the design of the architecture.

When we plan our architecture, it is very important to understand the scope of the

operation, based on the kind of resource we choose. For example, if we must create a

network, we create a global resource, because it can be shared across different zones

Chapter 2 IntroduCtIon to GCp

32

and regions. However, when we assign an IP, this is essentially a zone operation,

because the IP address changes, depending on the zone.

When thinking about the cloud, we must make choices based on the efficiency of the

architecture. This means that we never use a hard-drive resource from a different region,

because the latency is too high. Planning the resource correctly is the key difference

between a good and bad cloud project.

 Google SDK
GCP offers a good command line interface that we can use to manage our cloud.

This software development kit (SDK or devkit) is called Google Cloud SDK. It is available

for different operating systems and can be downloaded from the following link:

https://cloud.google.com/sdk/docs/.

Select the correct SDK for your operating system and install. This is generally an

automatic process. When the SDK is installed, we can initialize our cloud environment.

When the SDK is installed, we can open the command line and digit the following command:

gcloud init

This command starts to configure the Google Cloud SDK. When asked to log in,

simply type “Y.” This opens the browser. Now log in to GCP (Figure 2-7).

Figure 2-7. Google SDK initialization

Chapter 2 IntroduCtIon to GCp

https://cloud.google.com/sdk/docs/

33

Now that we have seen that we can select to create a new project or use the project

we just created, press 1 and complete the Cloud SDK configuration.

gcloud is now configured. We can use this tool to access and manage the different

resources in our cloud environment, via the command line. It is possible to use the

command line from the console as well. To launch the command line, just click the

cloud shell button, on the right of the search bar. This command opens a shell directly on

the console (Figure 2-8).

gcloud has a very comprehensive help system. For example, we can see all the

operations we can execute on the computer, using the command

gcloud compute -h

This produces an output like that following:

C:\Users\user\AppData\Local\Google\Cloud SDK>gcloud compute -h

Usage: gcloud compute [optional flags] <group | command>

 group may be accelerator-types | addresses | backend-buckets |

 backend-services | commitments | disk-types | disks |

firewall-rules | forwarding-rules | health-checks |

http-health-checks | https-health-checks | images |

Figure 2-8. Google SDK opened on the console

Chapter 2 IntroduCtIon to GCp

34

instance-groups | instance-templates | instances |

interconnects | machine-types | networks |

operations |

os-login | project-info | regions | routers |

routes |

shared-vpc | snapshots | ssl-certificates |

target-http-proxies | target-https-proxies |

target-instances | target-pools | target-ssl-

proxies |

target-tcp-proxies | target-vpn-gateways |

url- maps |

vpn-tunnels | xpn | zones

 command may be config-ssh | connect-to-serial-port | copy-files |

 reset-windows-password | scp | ssh

We can obtain more information about the command, by using the command line

gcloud compute –help. This command essentially produces a man page for the specific

command. On this man page, it is possible to find more information about the command

and the operations we can perform with it.

gcloud can be used in another scripting language, for automating operations. For

example, we can use the command to have all the live instances in our project and

manage them. This can be part of a Jenkins script for indicating the status of an instance

during the deployment and, for example, stop the monitoring for that specific instance.

Another important feature on GCP is the REST API, called Cloud API. This is actually

the most powerful API on the cloud market. With the GCP REST API, we can essentially

execute any operation in the cloud. For example, we can create a virtual private cloud

(VPC) or firewall, using the API. The languages supported are

• Java

• JavaScript

• .NET

• Object-C

• Python

• PHP (Beta)

Chapter 2 IntroduCtIon to GCp

35

• Dart (Beta)

• Go (Alpha)

• Node.js(Alpha)

• Ruby (Alpha)

With the API, it is possible to integrate any component of GCP.

 Conclusion
This chapter presented a short introduction to GCP. Different services were discussed,

and we configured the project we will work on for the rest of the book.

Different products related to cloud computing were covered, in addition to how to

install and use the basic SDK tool from Google. You saw how Google Cloud is configured

and what a region and zone are. These are important when deciding how to build our

cloud project.

GCP offers a range of services. In this book, I will concentrate on the services

necessary for DevOps. You will see how to use App Engine and create all the services

required to continue our DevOps journey.

Chapter 2 IntroduCtIon to GCp

37
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_3

CHAPTER 3

Introduction to
Continuous Integration
and Delivery
Continuous integration (CI) and continuous delivery (CD) grow in popularity every day.

This is because they are crucial to reducing time to market and improving the quality of

software.

With the practice of CI and CD, every time we release software from a central

repository, it is built and released to test. This represents hundreds of deliveries every

day. CI and CD are strictly connected, and one is an extension of the other. Both

practices have some associated costs and savings. In this chapter, I introduce CI and CD

and try to show how they are important to our DevOps journey.

 Definition of Continuous Integration
The definition of CI is quite simple. It is a development practice that requires the

developer to integrate code in a central shared repository. Every time the developer

commits the code, it is integrated with other code and verified by the execution of a test.

CI starts every time we commit code to the centrally shared repository. This means

that every time we change something, for example, a label on an HTML page, or a

variable, we test the entire solution, because we test the solution at every single commit.

We can find errors more quickly and easily in the build and fix them. What we do at every

commit is essentially build the entire solution.

Adopting CI is cheap. Essentially, we only need a server with Jenkins, and we can

start to use it. CI can be summarized in three simple phases (see Figure 3-1).

38

 1. Develop

 2. Test

 3. Deploy

When we have CI in place, we execute this cycle every time we commit the code

in our repository. When we use CI, we create a build every time. This is the essence of

CI: we have an entire software life cycle every time we commit the code. There are two

schools of thought about that. Normally, CI releases to QA.

 What Is Build in a Continuous Integration Scenario?
In a CI scenario, a build is more than compiling software. A build is made up of all the

operations required to release the software. A build is essentially a process that puts all

the code together and verifies that all work fine.

If we consider a typical project, we can see that different people are involved in

different areas. The developer creates the feature and, if necessary, changes the script

for the table. The database administrator (DBA) puts in place the script and advises the

developer when the database is ready. Starting from that, the developer continues the

development.

At the end of development, the software is integrated and tested altogether. This

can take weeks of work to complete, and in the case of errors, the software may return

to the developer for a fix. This costs time and can reduce the quality of the software.

This is because, in classic project management professional (PMP), a.k.a. Waterfall,

methodologies, quality is a result of three variables:

• Scope

• Time

• Cost

Develop Test

Continuous Integration

Deploy

Figure 3-1. The continuous integration chain

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

39

If we skimp on any one of the three variables, we can reduce the quality of the

software. In a CI scenario, all CI processes start with the commit of the source code in the

repository.

A CI scenario can be designed with these simple steps:

 1. The developer commits the code in the repository.

 2. The CI server pools the repository, downloads the last code, and

starts to test. If all tests are passed, the server compiles it.

 3. The CI server sends a notification, via e-mail, slack, etc., with

feedback about the integration.

 4. The CI server continues to pool the repository, to check the new

change.

Figure 3-2 shows a sample CI system. Here, we can see that we have a mail server

that is used to send the feedback to the developer. Feedback is crucial to a good CI

system, because it provides an immediate critique of the build, and the developer can

use it to resolve any issues faster.

This cycle starts every time the developer commits the code in the repository, which

means it can start a hundred times per day.

Figure 3-2. A CI system

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

40

 The Code Repository Server
The code repository server is where we store our software. This is essentially a software

for the repo, like Git or SVN. The server can be in-house, meaning that we have an

internal server, or external, in which case, we don’t manage the server directly, for

example, when we put the code in Bitbucket.

A good CI system must have a repository server. This is essentially the starting point

of our process. Every time the developer commits, we start the process. We can have

many branches in our repo, but only one master branch, which is essentially where we

integrate the other branches every time.

 The Continuous Integration Server
The continuous integration server is responsible for running the integration script every

time we commit the code. We can use different software for doing that, for example,

Jenkins, Travis CI, TeamCity, etc.

A CI server executes some specific operations.

 1. Retrieves the code from the repository server

 2. Merges the last commit with the old software

 3. Executes the test on the software

 4. Builds the software

 5. Sends a feedback with the result

It is not necessary to have a CI server. We can perform this operation with a simple

script, such as Bash, Ant, Maven, or Makefile. We can write a simple script to merge and

build the software, such as the following:

#!/bin/bash

function integrate_code() {

 SOURCE=$1

 DEST=$2

 git checkout $DEST

 git pull --ff-only origin $DEST

 result=$?

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

41

 if [$result -ne 0]

 then

 echo "Error in pull"

 exit 1

 fi

 git merge --ff-only $SOURCE --no-edit

 result=$?

 if [$result -ne 0]

 then

 echo "Error in merge"

 exit 1

 fi

 git push origin $DEST

 result=$?

 if [$result -ne 0]

 then

 echo "Error in a push"

 exit 1

 fi

 return 0

}

This script merges the code from a branch with another. It is a very simple script and

just a piece of a more complex building system.

When we use a CI server, we can reduce the number of scripts we need to maintain,

because a CI server starts a build in an automatic way. For example, we can configure

Jenkins to start a build in different ways (Figure 3-3).

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

42

You can see from the preceding figure that we can connect Jenkins with most of the

source control management systems, such as Git, Mercurial, etc., and we can trigger the

build with a different option, for example, GitHub hook. In this way, when we commit

the software in Git, Jenkins automatically starts a build. By adding to the automatic build,

we can build at a certain time or use an external script to start the build.

Note When we use a periodic build, we are not really using a continuous
integration approach, because the build does not start when the software is
committed to the code. this kind of build policy can be good, for example, when
we want to have a daily build that can be integrated with a CI policy.

In addition, with a CI server, we have a dashboard from which we can see what

builds are good and what builds failed. This can offer an immediate visual status report

on our software.

 Continuous Delivery
CD is a software engineering practice used to release software within a short cycle. This

means that with every build, we create a new build of the entire software. This does not

mean that we release the software to production, but if we want, we can release it. This is

the difference between continuous delivery and continuous deployment.

Figure 3-3. The Jenkins build trigger configuration

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

43

Note We must understand the differences between continuous delivery and
continuous deployment. the concepts are similar, but there is a substantial
difference between the two. By continuous delivery, we are referring to a pipeline
for creating a build but not necessarily one we intend to release to production.
With continuous deployment, we release the build to production every time. this
relatively small difference between continuous delivery and deployment makes a
big difference to a company’s business.

With CD practices, we always have a build ready to use. This allows the QA team

to start testing immediately, with a restricted number of features, and give immediate

feedback to the development team. This reduces the time to fix the problem and improve

the quality of the software itself. Of course, this depends more on the environment. In

most of the environments with a CI/CD system in place, we don’t really need a QA team

to execute the test.

This type of approach helps to reduce costs. Maintaining the software or resolving an

issue during the development life cycle is certainly more efficient than fixing a problem

when the software has been produced. In addition, with CD, we always test a small part

of the software, because CD takes place with every commit, thus reducing the risk of

releasing software with a destructive bug, for example.

The idea behind CD is similar to that informing DevOps, but they are two different

practices. DevOps concentrates more on changing an entire company culture. Instead,

CD concentrates on producing a new software build. However, because DevOps

essentially represents a change of culture, CD and CI practices fall within its sphere.

CD (see Figure 3-4) is an extension of CI, because CD adds another step to CI. For this

reason, if we want to have good CD in place, we must have a strong foundation in CI.

Develop Commit Test Build Deliver

Figure 3-4. The continuous d chain

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

44

 Differences Between Continuous Integration
and Continuous Delivery
CI and CD are similar, but there are some differences between these practices. CI

concentrates on integrating the software with every commit. This occurs after unit testing.

CD extends CI, because it adds another layer after integration and testing of the

software are complete. CD builds the software and prepares it for potential release.

CI places a big emphasis on the testing phase. This is very important for CI, in

particular when code is merged with the main branch. The goal of CI is not to lose

functionality after the merge.

On the other hand, CD places great emphasis on building software. With CD in

place, we can decide to release new software on a daily basis. In 2011, Amazon had an

average release of new software every 11.6 seconds. This is a huge number of releases per

day. With continuous release, we automate any step and process required for achieving

this result.

 Strategies for Continuous Delivery
To ensure good CD, we must have the following:

• Good branching strategies

• A strong unit test policy

• An automatic testing phase

• Automatic code promotion

All of the preceding practices are strictly connected and help to produce good and

strong CD. Some of them are connected to CI, such as branching strategies and unit

testing; others are more connected to CD.

 Good Branching Strategies

In CI, the goal is to integrate the software with the main branch. With that in mind, we

can develop our branching strategies.

The most common branching strategies (Figure 3-5) are to create a branch for every

feature/bug we work on. In this way, we can merge single features with the master

branch.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

45

Because we have a different branch for every feature of a bug, we can play with the

code without breaking the master line of code. This means that during development, we

always have a buildable and potentially releasable line of code.

When we release the software in our branch, we execute the unit test against our

branch. We don’t test only the feature we develop, but the entire system. In this way, we

can have immediate feedback about any error we introduce in the code.

If all tests are passed and the feature is green-lighted, we can start to integrate our

branch with the master line of code. When we merge, we start another set of tests. We

can also start some code analysis, and if it is green-lighted, we can release a new build

with the new feature.

 A Strong Unit Test Policy

To be effective, good CD must have strong CI in place, and for strong CI, we must have

strong unit testing strategies in place. Unit testing is essential if we want to build a good

CI system, because testing can identify an error in what we intend to release.

Unit testing is important not only for identifying the error but because it can be used

to validate business requirements. A unit test must be written before development. This

means that we must write the code for passing the unit test. This technique is called

test driven development (TDD). With TDD, we write the test based on the business

requirements and then start to write the code. This ensures a correct correlation between

the requirements and the code we release.

TDD is normally connected with a code coverage value. This means that we make

sure that a certain percentage of code is covered by the test. A good percentage of code

coverage is about 85%. This essentially covers all the code, and we can be quite sure of

the quality of our code with this percentage tested.

Master Branch

Branch Feature 1

Branch Feature 2 Branch Feature 3

Branch Bug Fix 1 Branch Bug Fix 2

Figure 3-5. Branching strategies in place

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

46

Another important practice for tests is the test pyramid. This phrase is a metaphor

used to describe the different granularities of tests in a bucket. The concept was defined

by Mike Cohn in the book Succeeding with Agile. When we think of a test pyramid, we

must include three types of tests.

• Unit tests (the base of the pyramid)

• Service tests (the middle)

• UI tests (the top of the pyramid)

This pyramid helps to test all the important aspects of the software. It is important to

have a test pyramid in place. This is because it helps to catch most of the errors and the

design of a more reliable system.

 An Automatic Testing Phase

Testing is very important to guarantee the quality of the code. In addition to a unit test,

we can conduct another type of test. Usually, we have an integration test, for check if all

the software is correctly integrated with the other components of the system. We can add

an acceptance test. This kind of test is designed to be executed on the entire system.

When we execute the integration test, we essentially remove all the mock parts of

the test and use the real system instead. Normally, we create mock parts in the unit

test phase, because we don’t yet have any piece of the system ready for testing. For this

reason, we create a fake response for that.

The integration test is important for testing the entire system and to validate our

integration. In case of any errors in the integration test, we must revert the integration of

the code.

The acceptance test is important for reducing the risk of accidentally removing features

and having a build that does not align with business requirements. Usually, the acceptance

test is designed by the QA engineering team and is conceived to test any integration with

the system. This test normally tests the UI/UX of the system, although it is not intended to

test the software itself but, more generally, the system and the features connected with it.

 Automatic Code Promotion

Code promotion is the basis of continuous release, because it is used to define what

version of the software is ready to be released. A code promotion occurs when the test

phase is correctly passed and the code builds without any issue.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

47

Normally, a CI server like Jenkins has the ability to promote the code itself. In

general, this is done by tagging the code in a specific way or creating a new branch for

release. When we promote a release, what we essentially do is release the code in a

different kind of server. For example, we move the code from the development server to

the staging server. The different server can be used, for example, by the QA engineering

team, for executing some additional manual test.

When we have a CI system in place, usually we have a file to define the artifact.

This file describes all the libraries and the relation of every piece of the software. This is

described by the term “artifact immutability” and is exemplified by Maven, with which

we can define the system and all its dependencies, to install and build the software.

 Code Inspection

Another important practice connected to CI and CD is code inspection, a.k.a. linting. This

practice is very important for maintaining a good architect level of code.

This technique is used to explore the code and create a clear picture of what it looks

like. We can, for example, identify if the method is too long or complex.

We can use CI to produce a quality code check. With Ruby, for example, we can use

RuboCop. This tool analyzes the code and shows all errors identified in it. In Python, we

can use PEP8 to enforce some rules. The use of these rules enhances the quality of the

software, because all the development follows some specific rules.

Another important check on the software is the cyclomatic complexity. This is a

measure used to determine the complexity of a program. It measures the number of

independent linear paths through the method. These are determined by the number and

complexity of conditional branches. When we have a low cyclomatic complexity, this

means the method is easy to read, understand, and test.

 Benefits of Continuous Integration and Continuous
Delivery
Until now, I have discussed and presented the differences between CI and CD. Both

practices have some costs and benefits (see Table 3-1) that we must consider when we

adopt their practice.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

48

Table 3-1. Costs and Benefits of CI and CD

Practice Cost/Change Benefits

Continuous

Integration

the developer must write code using

the tdd practice. the code must be

associated with the unit test.

Because we test every release, we can

reduce the number of bugs we release

in production.

We need to put in place a new CI

server, which must be used to monitor

the repo and start the build on every

commit.

a bug is identified soon, which means it

can be fixed soon. this accelerates the

fix and, of course, saves money

the developer must integrate the

software at least one time per

day, which doesn’t allow for much

difference in integration.

the software is integrated at least one

time per day, which means we can have

at least one release of the software

daily.

Feedback for every build we make

must be in place.

With a CI server in place, we can reduce

testing time, because we can execute

more tests in parallel and then reduce

the time to complete the tests.

the Qa team can reduce the amount

of tests needed to be executed to test

a single functionality, which means we

can spend more time improving the

quality of the software testing real-world

scenarios.

Continuous

delivery

For Cd, we must have strong CI in

place, because Cd is an extension of CI.

Cd reduces the time to deliver software,

because delivery occurs every time the

process ends.

We must automate all processes for

deploying the software and remove the

human interaction.

We can improve the number of releases,

potentially to more than one release a

day, instead of a big release every six

months. this accelerates the feedback

provided by customers, which can drive

our development.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

49

We can see from the preceding table that both practices require some changes. These

changes are connected to the way the developer writes the code and how it connects to

the infrastructure put in place.

The major cost is essentially creating and maintaining the CI server, because we

must configure it for every new feature we add. We can reduce this cost by creating a

Jenkinsfile. This is a Jenkins feature that allows us to create a pipeline for CD. Using

Jenkinsfile, we can automate and store in the repository our process for the pipeline.

 Designing a Continuous Integration and Continuous
Delivery System
For putting in place a complete CI and CD system, we must make some changes to our

infrastructure and in our architecture. The architecture changes are not directly connected

to the software itself but more in the way we produce the software and release it.

The first change we must make is in how we write the code. The developer must

start to write the unit test for every single class or function we release, but to be really

effective, we must use the TDD technique. This is because, otherwise, we risk writing a

test to pass the code, and not to test the requirement we want to implement, which can

reduce the benefit of CI.

Another change we must initiate is to force the developer to integrate the software

as soon as possible—at least one time per day. Otherwise, we can spend more time

integrating the software and the test phase, and fixing a bug can take a very long time.

We must also put in place some rules about the code. We can implement a code-

inspection system, using a tool such as infer, developed by Facebook, which can check

multiple languages, such as C, C++, and Java, and produce a report indicating a line

of code with an error. This can help to improve the quality of the software and reduce

potential bugs. Other tools, such as PEP8 or RuboCop, work with a specific language

and are often used to force some rules regarding the complexity of the method, number

of operations executed in the method, number of lines of the method or the class,

and length of the lines of code. These rules help to have a readable and maintainable

code. This does not directly improve the quality of the code, but it helps to reduce the

maintenance time required by the code.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

50

The most important change we must put in place for a CI system and, later, a CD

system is an automatic script for building the software. This script must be used to

produce some automatic operation to compile and build the software, and, more

important, must be able to start from the command line.

To create the script, we can use software like Maven, Ant, or MSBuild, or we can

use the simple command-line scripting in Bash or PowerShell. The language is not

important, but we must have something that we can start every time we build under the

same conditions that always produces the same result.

The most important change in the CI server is the building block of the CI and CD

practice. There are a lot of applications we can use for that. Some are free, like Jenkins,

others require a license for professional use, such as Travis CI.

To create a good system for CI and CD, we must adhere to some principles.

• Commit the code frequently. Every minor update to the code must be

committed and tested.

• Don’t break the code with the commit. With the first commit, execute

a local build and test, because the code we commit doesn’t stop the

cycle for the CI.

• Develop unit tests. Every commit must be associated with a strong

unit test, because we must test to validate the code.

• Create a script for building the software automatically. We must

reduce human interaction, which means we have to create a script

for building the software and ensure this works every time, to give us

the consistency we need for our system.

• Build the software for different environments. With a CD system,

software development has different stages. Normally, we have

a development server, a staging/test server, and one or more

production servers. Every environment has different characteristics

and, of course, connection parameters. We must create a system to

build software in each of these environments.

• Design pipelines for the software release. To improve quality, we

must create a script that automatically promotes the software at every

stage.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

51

• Design a strategy to release the software at every stage. Because

different stages are involved, we must design a strategy and an

architecture for the software release. For example, when the software is

built in development and the test is passed, this must be promoted at

this stage. By doing so, we can easily create a Docker image, release in

the registry, and, by software for orchestration, release it in the stage.

These principles are the foundation for a good CI/CD system. Of course, they must

be adapted to specific company needs, but, in general, if we follow these principles, we

are sure to reduce human interaction and put in place a good CI/CD system.

 Building Continuous Integration and Continuous Delivery
Pipelines
To build a good system for CI and CD, we must create a pipeline. With a pipeline, we

can define the steps necessary for building the software and eventually release it in

production.

When we build software, we can identify different stages. Every stage is responsible

for a specific validation of the software. The basic pipeline is composed of three stages.

 1. Development

 2. Staging

 3. Production

When we define a pipeline, we essentially create a system for promoting the software

from one state to another, when a certain condition is in place. This process must be

managed programmatically, so that it can be easily changed/updated and reduce human

interaction. Today, there is a lot of software that we can use for that, for example, GoCD,

Travis CI, GitBucket, Circle CI, and Jenkins.

All this software can be used to visually create a pipeline with the different stages we

want for our software. Much of it supports some type of scripting language. Having a script

for the pipelines is important, because we can save the script in a software repository.

If we have to create another environment, we have only to download the script.

For creating such a script in Jenkins, we use a Jenkinsfile. With this file, we can define

all the steps we want for our pipeline and, of course, use it to promote the software from

one stage to another. An example of a Jenkinsfile (Listing 3-1) follows:

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

52

Listing 3-1. A Basic Example of a Jenkinsfile

pipeline {

 agent any

 stages {

 stage('Build') {

 steps {

 echo 'Building..'

 }

 }

 stage('Test') {

 steps {

 echo 'Testing..'

 }

 }

 stage('Deploy') {

 steps {

 echo 'Deploying....'

 }

 }

 }

}

From the file, we can define different stages and different agents, which is important

for our CI/CD system. The different stages can have different parameters for work.

For example, DB connection of system access passwords. In the stage section, we can

prepare our system to get this value and change the behavior for response at different

stages. Not every CI system has only three phases, but they are a good starting point.

Another important piece of our CI/CD system is the feedback system. This is

essentially an e-mail sent out to advise the user about the status of the build. This

message is very important, because the developer can react and fix any broken part of

the build. The e-mail can be very simple. It must include only the number of the build,

the error that has occurred, and the tests failed. This information helps the developer

to identify issues and fix them faster. The system must escalate the e-mail if the n-build

failed to CC, for example, the team leader.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

53

 Continuous Database Integration
When we release software, usually we have a database in which we store the data when

we change the software. This can be associated with a change in the data structure, for

example, a new table. In this context, it is important to establish a continuous database

integration commonly known as database migration.

Continuous database integration is the process of releasing and rebuilding all the

database and populating it with new data, every time we release the software.

Following this process ensures that we have a database that is always aligned

with the last code and, of course, provides a fresh set of test data. Another benefit of

this process is that it identifies any issue with the database every time we release the

software. To take advantage of this process, we can create and maintain the script for

the data manipulation language (DML) and data definition language (DDL). This script

must be stored in the software repo, as with every other piece of code in the system, and

then reviewed by the DBA team for approval or rejection.

To adopt this process, we can follow these simple steps during our build:

 1. Drop the entire database. This way, every time we build the

software, we have a fresh new database.

 2. Maintain the DML and DDL script in the code repo. The script

for creating the database must be in the code repo and integrated

every time we release the software.

 3. Have a stage for re-creating the database. Because we

continuously integrate the database, our pipeline must have a

stage for creating and maintaining the database.

 4. Have a code review for the DML and DDL script. The DBA team

must be aware of any change we put in place in the database, so

that we can easily identify any relevant issue. In addition, we must

have a code review, to ensure that the update doesn’t break the

database.

 5. Ensure that the test data is always aligned. Because we can change

the database structure, we must align the test data to reflect the

changes we have made in the database.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

54

When we have automated this process, we can easily fix any issue with the data

simply by calling the process for re-creating the database. This guarantees a set of data

that is always correct and removes the chance of having an issue connected to wrong

data being in the system. Of course, as with every procedure in CI/CD, this must be

adapted to your system. Not all systems can have a complete database release every

time. This must be a decision based mostly on the system you are working on.

Note database migration is not always simple. In some cases, this procedure
can be very dangerous. For example, if you work in the financial sector, you don’t
want to destroy and re-create the database every time you release the software.

With modern development frameworks, such as rails, .net, etc., we probably use
object-relational mapping (orM). this frequently includes a procedure known
as code first, which means we create the code and, based on that, produce
the database. In production, this is not recommended. In this case, adopting
continuous database integration can be useful for maintaining ongoing control of
the database.

 Continuous Testing and Inspection
A principal aim a company wants to achieve by building a CI and CD system is to

improve the quality of the software released. To ensure this, a good CI and CD system

must have continuous testing and continuous inspection in place.

The scope of continuous testing is to create reliable software every time it is released.

To achieve this, we create different types of tests that can be executed in an automatic

way every time we build the software.

The first type of test we automate is the unit test. This test must be executed every

time we compile and build the software. This test is the first point for testing the release

and the quality of the software. The unit test can also check the code coverage of our

software. Code coverage is important for understanding what percent of lines of code of

our software is covered and then tested.

There is no specific optimal number for the percentage of code coverage, but good

code coverage is considered to be between 80% and 90%. What is clear is that to write

a good unit test, write to effectively test the functionality and not only to achieve code

coverage. The reasons for having code coverage in place are essentially two.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

55

• It improves the quality of the unit test, ensuring that more code is

covered and more bugs are intercepted during the testing phase.

• It allows us to be confident that when we develop a new feature, we

are not releasing a new bug into the production environment.

The unit test is only the first step in our testing system. Another test we must include

in the system is the integration test. This type of test is designed to test the software with

the real components. This phase of testing occurs after the unit testing and uses real

data to execute it. During the unit test, we can have the ability to mock some data. For

example, when we must communicate with an external web service, the integration test

combines the different components and tests all the software together.

Note Integration testing is an important phase of continuous integration, because
it is responsible for testing the entire system and not only the code we develop.
When we start the integration test, we essentially bring a different piece of
software together and remove any mock library we use in the test. In this phase,
we essentially use real data, to test the system and see if it works well with the
new software.

The last phase of testing is made up of the acceptance test or verification test. This

phase of the test is designed by the QA engineering team to test the system from a user’s

point of view. This means that in the event of an interface, the test is essentially designed

on the interface. The goal of this phase of testing is to verify the user requirements and

validate them. At this stage, we have the test pyramid build and can easily use it for testing.

In addition to the different testing phases, another important phase is the code

inspection. This phase is a check of the code, using a set of rules to produce a report on

the software itself. Code inspection can be split into two different phases.

• Code review: This phase is in place before the final integration.

• Static code analysis: This phase occurs when we integrate the

software.

The code review is the first phase of the code inspection. During the code review,

the code must be approved by another developer first, to be integrated into the main

branch. The other members of the team review the code and leave feedback about it. The

developer of the code takes the notes and adjusts the code, based on the comments and

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

56

asks for another review. When all comments are addressed, the code can be approved

and finally merged in the main branch.

The static code analysis is made up of two different phases. The first occurs when the

developer executes the local commit. During this phase, the code can be validated by

some rules. These rules check, for example, the following:

• The complexity of the method

• Lines for every method

• Number of characters per lines

• Comments on the method or class

There are more tools available for making this analysis, for example, PEP8 in Python,

and different languages can have different types of rules applied to them.

The other type of analysis we make of the code is the static code analysis. This

analysis has the goal of highlighting issues connected directly with the code. There are

different tools for doing that, but it is normally executed by automated tools. This is

important for identifying potential runtime bugs that can appear in the code and to fix

them before release to production. When all the analysis and tests are executed, the code

can finally be built and prepared for release.

 Preparing the Build for Release
The last step in a CI/CD system is to prepare the release for the build. This follows some

simple rules.

• Identify the code in the repository.

• Create a build report.

• Put the build in a shared location. For most modern software, we can

have a nexus for our artifacts that allows us to rebuild the software in

every system.

These basic rules can be used to identify the software ready for the build. A ready

build can be released faster into production, or in our QA environment.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

57

 Identifying the Code in the Repository
Identifying the code in the repository is important for understanding when we have a

production-ready build. We can identify the code in different ways.

• Create a label in the repo: The fastest way to identify the last build

code in the repo is simply to identify the code.

• Tag the code: A more complex way of identifying the code is tagging.

This means creating a tag in the repo with the value for identifying the

version.

• Create a branch: Another way to identify the code is to create a new

branch. This is similar to the tagging technique, only we use the

branch instead.

To identify the code, we must create software with a unique name. To create a name,

we can use a naming convention such as the following:

PracticalDevOpsGP.1.1.0

The naming convention we create uses this syntax: <feature>.<major release>.<minor

release>.<build number>. When we build, we essentially change only the last version of

the number, for example, PracticalDevOpsGP.1.1.1, 1.1.2, etc. As with every other feature,

this must be created by the CI/CD system in an automatic way.

 Creating Build Reports
Build reports include important information we disseminate after the build. This report

must consider staff other than technical personnel, so that what is in the report can be

universally understood.

For build reports to be effective, they must include the following information:

• Name of the release

• Feature released

• Where to get the release

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

58

The report can take the form of an auto-generated message, produced by the CI/

CD system and sent to a specific list of users every time the release is ready. The field

can easily be included during the build. The trickiest part can be the feature released,

but data related to this can be gathered simply by connecting the CI system with the

system for maintaining and designing the software. For example, by connecting Jenkins

with Jira, we can determine what task we are still working to connect. In this way, when

Jenkins receives the code for the build, it can include a description of the feature, which

can be added to our report.

The report can be used to identify the feature and, of course, by the QA team, to

identify any discrepancy in the feature planned to be released and the one effectively

released.

 Putting the Build in a Shared Location
When we finish creating the build, we must share it with other teams. Where we put the

build depends on the policy we use to release the software.

If, for example, we release a WAR or an MSI file, we can put the software directly in

a shared server. If, for example, we want to create a Docker image, this image must be

published in an internal registry used to retrieve the last image to build.

What we must keep in mind is a very simple concept: the immutability of the build.

When QA tests a specific build version and validates it, we must release exactly the

build used in the QA. The system doesn’t have to make another build; it just uses the file

passed in QA for release.

 Releasing the Build
Releasing the build is the last phase in our CI/CD system. The build release is not

intended to be solely for production but can, for example, be used to restrict the number

of servers, specular to the production server, on which some customers can try out new

features. This type of server is known as a canary server.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

59

Note Canary servers restrict the number of servers that allow customers to use
a feature. the use of canary servers is to reduce potential bugs in production and
to obtain real feedback about the release. Because the canary server is the same
as that used in the production release, we can use it to gain feedback about the
quality of the software. For example, we can see how the software works in a real-
time environment and intercept memory leaks and other bugs raised in production.

Another important consideration is how we release when we release in a cloud SaaS.

We don’t want customers to have any interruption in the usage of the software. To do

that, we must identify a specific way of releasing the software and ensure the reliability of

the software itself.

In other cases, we can schedule software maintenance windows. At a specific time,

we essentially stop the functionality of our software and release a new version of the

software itself.

Note With Cd, we don’t really have to release the software in production every
time. this feature is part of Cd, which is important to know.

To release the software without interrupting functionality, we can release it with

some specific procedures. The most commonly used include

• Blue/green deployment

• Canary deployment

• Incremental deployment

The main goal of these techniques is not to interrupt the functionality of the software

and intercept potential problems with the infrastructure and the software as soon as

possible.

 Blue/Green Deployment

Blue/green deployment is a technique for releasing software that reduces the risk of

downtime. It is called “blue/green” because we release two production environments:

one called blue and another called green.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

60

With blue/green deployment, we have only one live environment. The system for CD

releases the new version of the software in the environment that is not live. When the

software is ready and tested, it is installed in the other environment and then switched in

production. With blue/green deployment, we essentially have two similar environments,

and we just switch between the two (see Figure 3-6).

Blue/green deployment has some benefits and some costs. With blue/green

deployment, we can easily roll back the environment, in case of error, because we always

have an environment ready for production.

The cost is connected with some architectural design that we must bear in mind.

The first concerns the database. When we release the software, we may have to modify

the table, before proceeding with blue/green deployment. First, we must release the

database. When we have released the database, we can then switch the environment.

Another important point we must keep in mind is the user session and other data

that can be used by the software. We must have a cache common to the environment, in

order not to lose this information and allow its use without any issue.

Figure 3-6. Blue/green deployment

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

61

 Canary Deployment

Canary deployment is intended to reduce the risk connected with the release. We release

the software in a small part of the infrastructure, which means only a small percent of

customers is touched by the release. In case of failure, we can easily roll back the release.

The release is intended to be incremental in terms of users. We increment the number of

users after a certain time, so that we don’t reach 100% (see Figure 3-7).

This type of deployment can be associated with blue/green deployment. The

difference is in how we switch the infrastructure. We create our new environment, and

when we are satisfied, we start to release a subset of the users in the new server.

Canary deployment is used to provide immediate feedback about the deployment

from a restricted number of users. This can help to identify and solve an issue without a

complete rollback, because we release only to a restricted number of users. In the event

of a rollback owing to any issue, we can just release to a small number of servers.

Another benefit of canary deployment is connected to the slow ramp-up in the

number of users. When we release new functionality, a slow ramp-up of users is

preferred for analyzing the use of the memory and other issues connected with the

functionality. At the same time, the allows the chance to create specific monitoring

values for the software.

Figure 3-7. Canary deployment

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

62

 Incremental Deployment

Incremental deployment (Figure 3-8) is used when we want to have only one hardware

in production. By this technique, we release to only a percentage of users at a time, for

example, to 5% of users. When we are satisfied with the first release, we move to another

set of users.

Figure 3-8. The incremental deployment process

The incremental deployment process is used with only one line of hardware. This

is because only a small part of the software is used at a time. The benefit of this type of

deployment is connected with the small amount of servers we release to.

Because of this, we can monitor the feature better, immediately identify any issue

with the software, and adapt the infrastructure or the code to fix the issue.

 Conclusion
In this chapter, I discussed CI and CD. Both techniques are at the core of DevOps and are

the basis of the cloud deployment.

CI and CD are two closely connected practices. This is because one is the evolution

of the other. It is important to spend the time to fully understand these practices to

correctly put them in place.

Both practices require a complete change in the way we develop software and how

we design the software. We must exert some pressure on the developer to follow the

guidelines for CI and CD.

On the other hand, a good system for CI and CD improves the quality of our software

and helps to increase release to more than one or two times a year.

Chapter 3 IntroduCtIon to ContInuous IntegratIon and delIvery

63
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_4

CHAPTER 4

Containerization with
Docker and Kubernetes
Today, when we think of the cloud, we think of containerization. Containerization can be

seen as an evolution of virtualization. With virtualization, we usually re-create an entire

operating system (OS) and host it on a host machine.

Using a software for the container, such as Docker, it is possible to create a complete

image of our applications and release it via the common registry. To manage and release

this image, we can use software known as a container orchestrator, such as Kubernetes.

When we adopt the practice of CI and CD, using such containers as Docker and

orchestrators such as Kubernetes helps to speed up the automatic process to release, and

at the same time, we can have a strong policy for rollback.

 Introduction to Docker
Docker is probably the most famous software for containerization. It offers a level of

virtualization called operating-system-level virtualization. This is known as containerization.

This type of isolation allows us to run more than one OS inside another. For

example, it is possible to create a container inside an Ubuntu Linux with Red Hat. There

is an important distinction between a container and a virtual machine (VM), which

is that a container doesn’t require a full operating system for run. When we create a

VM, we essentially re-create an entire OS. When we create a container, we get only a

part of the operating system. This reduces the size of the image. When we talk about

virtualization, we can identify two types: hypervisor-based virtualization and operating-

system virtualization. In hypervisor-based virtualization, the system emulates the

hardware. This means that we can re-create the network, the hard disk drive (HDD), etc.

64

In operating system virtualization, the virtualization is made at the operating-system

level. The host isolates each container from the other, in particular, the host isolates the

filesystem of each container, but they run in a single host. Because the container has

a filesystem isolated OS, a container loses flexibility. You can run containers only with

the same host. It is not possible to run Windows on a Linux host, for example, because

the OS virtualization is run by the systems. Windows and Linux have two different OS

kernels and filesystem structures, which does not allow Windows to run on Linux.

Containers suffer from less security compared to hypervisor virtualization. This is

because when we create a Linux container, we use libcontainers. These access five basic

namespaces—Network, Process, Mount, Hostname, and Shared Memory—but, for

example, don’t use SELinux, cgroups, and other libraries used to enhance OS security.

This translates to a greater possibility of malicious software preventing execution and

operation. Conversely, a container is an isolated environment. This means that in the

case of a breach on the container, it is not likely to create an issue on the host system,

because a container doesn’t share anything with the hosting OS.

Docker containers are complex to create and difficult to maintain and automate.

Docker is essentially software designed to create other software, based on system-

operation virtualization. Docker adds an application deployment on the top of the

virtualized container. With Docker, it is easy to create a complete runtime environment

similar to the production one, and this can speed up the development process.

Docker helps developers to eliminate the discrepancy that can result when software

is developed and released in production. This is because when we release the software in

production, a Docker container works in the same OS configuration used to develop the

software.

With Docker, we can easily create our process for CI and CD, because when we commit

the code, we can create and compile the Docker image directly and release it in the test.

From an architectural point of view, with Docker, it is easy to implement a

microservice architecture. This is because any container can be a single piece of the

application, and we can manage this single piece independently of another.

Docker is composed of the following different components:

• The Docker engine is a client-server application. The client talks with

the server application, called a daemon. The daemon is responsible

for executing the container. Client and daemon can be on the same

machine or different ones.

Chapter 4 Containerization with DoCker anD kubernetes

65

• Images are the basis of our Docker architecture. Images are used to

launch our container, and we can create personal images, starting

with another basic image.

• The registry is where the image is stored. We can identify two types

of registries: private and public. Public registries can be reached via

the address https://hub.docker.com. This is the official Docker Hub

registry. Here, we can create an account and start to store our images

in the registry.

• Containers are basically an image that is executed. A container can

have more than one running process inside, depending on how

the images are designed and created. A container is essentially a

lightweight stand-alone application. We can combine more than one

container to execute a complex application.

 Why Use Docker?
Docker becomes more popular with the cloud, because it is very useful when we have to

build a PaaS cloud. The reason is simple. The concept of containers allows us to create a

layer of different isolated containers with a single application inside. We can easily build

a PaaS specific to a single customer. This allows great flexibility in all aspects associated

with the release of the design of our PaaS.

Docker also can be used to

• Create an environment for the developer like that for production.

Docker can have the same software stack as that used in production.

• Create a building block for service-oriented or microservice

architecture. With Docker, we can easily isolate the application and

use that to build our microservice or service-oriented architecture

(SOA).

• Create a system for CI and CD. We can use Docker to isolate the

application and easily deploy in a test environment or even in

production.

• Create a stand-alone light application environment for testing and

experimentation.

Chapter 4 Containerization with DoCker anD kubernetes

https://hub.docker.com

66

These are only a few examples of adopting Docker. More companies adopt Docker

to accelerate the release or deployment processes. Modern integrated development

environments, such as Visual Studio or IntelliJ, now have a plug-in to “dockerize” our

application. This makes it easy for developers to create Docker images every time they

build the software.

 Using Docker in Google Cloud Platform
The best way to learn something is to get your hands dirty, so the best way to learn

Docker in Google Cloud Platform (GCP) is to use it.

With Docker, we can create our SaaS and our IaaS, because we can use it to provide

our infrastructure. This is because we can create a container, for example, for our

database, and our application, for example, our Java- or Ruby-based web site. In GCP, we

can create Docker containers using Google Compute Engine. First, to understand how

to create and use Docker, it is important to understand what it is and how to create an

instance in Compute Engine.

 Introduction to Google Compute Engine
Google Compute Engine is the IaaS component offered in GCP. The Google Compute

Engine is composed of three basic components:

• Virtual Machine

• Network component

• Persistent Disk

With Google Compute Engine, we can create a workflow for scaling from a single

instance to a globally distributed instance. When we create a Google Compute Engine,

we can choose any configuration in terms of CPU, memory, and space. Google Compute

Engine also makes it possible to use predefined instances. These are

• Standard: This kind of machine has 3.75GB of memory per CPU.

We can choose up to 8 kinds of processor configurations, from 1 to 96.

The maximum number of persistent disks we can use is 16.

This configuration is ideal for tasks requiring a good balance between

CPUs and memory.

Chapter 4 Containerization with DoCker anD kubernetes

67

• High-memory: This kind of configuration has 6.5GB of memory per

CPU. We can choose a minimum of 2 CPUs, up to 96. The maximum

number of persistent disks we can use is 16. This configuration is

ideal when more memory than CPUs is required.

• High-CPU: This kind of configuration has 0.90GB of memory per

CPU. We can choose a minimum of 2 CPUs, up to 96. The maximum

number of persistent disks we can use is 16. This configuration is

ideal when more CPUs than memory is required.

Note there is some limitation when we create a new persistent disk in Compute
engine. the maximum size is 64tb for persistent disk. if we have to create a larger
disk, we must create a cluster of persistent disks. every instance has a limit of 16
disks that can be connected. there is a beta feature, for example, in which the limit
of the persistent disk can be connected to every instance. For a shared core, it is
possible to attach only 16 instances. For 1 Cpu, it is possible to attach up to 32
disks. For between 2 and 4 Cpus, it is possible to attach up to 64 disks. with 8 or
more Cpus, it is possible to attach up to 128 disks.

The core component for Google Compute Engine is an instance. This is a VM that is

hosted on the Google infrastructure.

It is possible to create an instance provided by Google, based on Linux, on a

Windows server, or it is possible to create or import a custom image, by running a

Docker image. In this case, Google offers an optimized OS for running the Docker image.

This operating system is based on the Chromium OS.

 Creating a Compute Engine Instance
To create a new Compute Engine, we can use Google SDK with the command gcloud

compute, or we can use the console. To create the instance, we must follow these two steps:

 1. Configure gcloud.

 2. Select the region and zone.

Chapter 4 Containerization with DoCker anD kubernetes

68

The first step, configuring gcloud, creates the OAuth2 to authenticate and access to

the resource. To use gcloud compute, first we must configure Google SDK for creating

the token necessary for the authorization.

For configuring Google SDK, we must open the command line and use the

command gcloud init. This uses the default configuration and is good for most of the

configuration. Open Google SDK and run the command gcloud init, which gives the

following output:

Welcome! This command will take you through the configuration of gcloud.

Settings from your current configuration [default] are:

core:

 account: pierluigi.riti@gmail.com

 disable_usage_reporting: 'False'

 project: practicaldevopsgcp-197023

Pick configuration to use:

 [1] Re-initialize this configuration [default] with new settings

 [2] Create a new configuration

Please enter your numeric choice:

In this case, select the number 1, then press Enter. We require this additional output:

Your current configuration has been set to [default]

You can skip diagnostics next time by using the following flag:

 gcloud init --skip-diagnostics

Network diagnostic detects and fixes local network connection issues.

Checking network connection...done.

Reachability Check passed.

Network diagnostic (1/1 checks) passed.

Choose the account you would like to use to perform operations for

this configuration:

 [1] pierluigi.riti@gmail.com

 [2] Log in with a new account

Please enter your numeric choice:

Chapter 4 Containerization with DoCker anD kubernetes

69

Select the mail we want to use for configuring Google SDK. We can use the user we

are logged in as or log in a new account.

You are logged in as: [pierluigi.riti@gmail.com].

Pick cloud project to use:

 [1] practicaldevopsgcp-197023

 [2] Create a new project

Please enter numeric choice or text value (must exactly match list

item):

Select the project we want to use or create a new one. In this case, create a new one,

called practicaldevopsgcpcli. To create this, select option 2, which will give an output

like the following:

Please enter numeric choice or text value (must exactly match list

item): 2

Enter a Project ID. Note that a Project ID CANNOT be changed later.

Project IDs must be 6-30 characters (lowercase ASCII, digits, or

hyphens) in length and start with a lowercase letter.

Insert the name of the instance and press Enter.

Your current project has been set to: [practicaldevopsgcpcli].

Not setting default zone/region (this feature makes it easier to use

[gcloud compute] by setting an appropriate default value for the

--zone and --region flag).

See https://cloud.google.com/compute/docs/gcloud-compute section on

how to set

default compute region and zone manually. If you would like

[gcloud init] to be

able to do this for you the next time you run it, make sure the

Compute Engine API is enabled for your project on the

https://console.developers.google.com/apis page.

Your Google Cloud SDK is configured and ready to use!

Chapter 4 Containerization with DoCker anD kubernetes

70

* Commands that require authentication will use pierluigi.riti@gmail.com by

default

* Commands will reference project `practicaldevopsgcpcli` by default

Run `gcloud help config` to learn how to change individual settings

This gcloud configuration is called [default]. You can create additional

configurations if you work with multiple accounts and/or projects.

Run `gcloud topic configurations` to learn more.

Some things to try next:

* Run `gcloud --help` to see the Cloud Platform services you can interact

with. And run `gcloud help COMMAND` to get help on any gcloud command.

* Run `gcloud topic -h` to learn about advanced features of the SDK like

arg files and output formatting

In the end, we can log in to the console, and in the section for selecting the project,

we can see the new project created (Figure 4-1).

This command is used to create a new project. Now that we have set the project, the

next step is to create the new instance. Because we have two projects, we must set the

default project.

gcloud config set project practicaldevopsgcpcli

Updated property [core/project].

Figure 4-1. The new project created with the command line

Chapter 4 Containerization with DoCker anD kubernetes

71

This configures the main project to the new project we have just created. To use

the command line, we must enable the API for the project. For the link, just create the

following command on the console:

gcloud compute instances create example-instance --zone us-centra1-f

Because the API is not enabled the output is

ERROR: (gcloud.compute.instances.create) Could not fetch resource:

 - Project 377223342623 is not found and cannot be used for API calls.

If it is recently created, enable Compute Engine API by visiting

https://console.developers.google.com/apis/api/compute.googleapis.com/

overview?project=377223342623 then retry. If you enabled this API recently,

wait a few minutes for the action to propagate to our systems and retry.

For enabling the API, just get the link and put this in the browser, then enable the

API. When the API is enabled, the console shows an option such as Figure 4-2.

We can finally create the instance, using the gcloud command.

gcloud compute instances create practicaldevopsgcp --zone us-east1-b

The output is

Created [https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcpcli/zones/us-east1-b/instances/practicaldevopsgcp].

NAME ZONE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP

EXTERNAL_IP STATUS

Figure 4-2. The console used to create a new Compute Engine

Chapter 4 Containerization with DoCker anD kubernetes

72

practicaldevopsgcp us-east1-b n1-standard-1 10.142.0.2

35.227.53.98 RUNNING

The instance is finally live. The result shows the information for access on the instance

with the internal and the external IP. It is possible to check the instance created in the

console. Simply connect to the dashboard and see the new instance (see Figure 4- 3).

For connecting to the instance we have just created, we must go to the Compute

Engine dashboard. Under the Connect column, select to connect to the new browser.

This opens the connection in the new page (Figure 4-4).

Figure 4-3. The dashboard where it is possible see the compute engine use

Figure 4-4. Selections to open the connection on the instance

Chapter 4 Containerization with DoCker anD kubernetes

73

Select the Open in browser window, to open the connection in another browser

window (Figure 4-5).

We just completed the first instance. The basic instance is created with Debian Linux

by default. We can install Docker in the system, or simply create a different instance

using a specific image for Docker. Google has designed four kinds of pre-built images for

Docker.

• Containers-Optimized OS from Google: This is a Google image

created directly, based on the project Chromium OS. This image

includes Docker and Kubernetes. The image project is cos-cloud,

and the image family is cos-stable.

• CoreOS: This is a Linux-based OS designed for containerization.

It includes Docker, rkt, and Kubernetes. The image project is called

coreos-cloud, and the image family is coreos-stable.

• Ubuntu: This is an image based on the Ubuntu version 16.04 LTS that

includes the LXD. The image project is ubuntu-os-cloud, and the

image family is ubuntu-1604-lts.

• Windows: This is Windows’ core version designed per the

containerization, which includes Docker. The image project is

windows-cloud, and the image family is windows-1709-core-for-

containers.

Because we want to create a Docker image for our system, we now create a new

instance, based on one of the Docker images.

Figure 4-5. The connection on our instance, open in another browser

Chapter 4 Containerization with DoCker anD kubernetes

74

 Instance Group
In Compute Engine, we can create a named group of VM. When we create a group of

instances, we can manage all the instances at the same time. We can create two types of

instance groups: managed and unmanaged.

When we create a managed instance group, we use an instance template. This is used

to create a group of identical instances. With a managed instance, we can manage all the

instances as one, which means when we modify the instance template, we modify all the

instances at the same time. A managed instance group has several benefits.

• Autoscaling: When the application requires more resources, we can

scale the instance to fit the new requirements.

• Load balanced: Because all the instances are managed as one, the

resource is shared and balanced among the instances. Of course,

we must create the load balancer on top of that to ensure the

functionality.

• Management of the unhealthy instances: In the event an instance in

the group is stopped or crashed, it is automatically re-created with

the same name as the previous instance.

There are two types of managed instance:

• A zonal managed group: All the instances are based in the same zone.

• A regional managed group: All the instances are based in the same

region.

Google suggests using a regional managed group instead of a zonal one, to have the

application spread across the different geographical areas. Spreading the application

across different geographical locations reduces the risk of faults, as very different

geographical zones can experience faults caused by natural disasters or human error at

the same time. Thus, regional management can enhance availability of our software.

The unmanaged instance is not recommended by Google, and it doesn’t have any

of the benefits of a managed instance. This group is made up of dissimilar instances and

can only use the load balancer. This can be used only when there is some old instance,

and we want to use a load balancer on it.

Chapter 4 Containerization with DoCker anD kubernetes

75

 Container Application in Google Cloud Platform
A container is probably the best way to release and put a microservice into production.

To create a container in GCP, we can construct a new Compute Engine with one of the

container-optimized OSs. This is a family of OSs optimized for the run container in

Compute Engine. For example, CoreOS is one of the operating systems.

Note Coreos is a lightweight operating system, based on Linux kernel, that is
designed to provide an infrastructure for the cluster. Coreos has a minimal set
of commands and automates all the jobs related to the container application.
with Coreos, it is easy to deploy and maintain containerized infrastructure
programmatically, and because it is cluster-based, we can be sure our application
is always reachable.

We now construct a new Compute Engine with a CoreOS operating system and

then create a container in that. The following is one of the ways to create a container

application in GCP.

 1. Connect to our Google Cloud Platform instance and select the

project practicaldevopsgcpcli.

 2. Click the board Compute Engine, which opens the page to

manage our Compute Engine instance (Figure 4-6).

Chapter 4 Containerization with DoCker anD kubernetes

76

 3. This opens the page of our Compute Engine. We must now create

a new instance, based on one of the container-optimized OSs.

Select the Create Instance button from the toolbar.

 4. In the page for creating the instance, type the name

practicaldevopscontainerinstance and check the Container box

(Figure 4-7). This changes the default OS from Debian to one that

is container-optimized.

Figure 4-6. The Compute Engine board, an extract from the Google Console
dashboard

Chapter 4 Containerization with DoCker anD kubernetes

77

 5. In the container image text box, we can identify the Docker image

we want to use. For our test, we can use a busybox image. In the

text box, we must insert the following string: gcr.io/google-

containers/busybox.

Figure 4-7. Creating a new container instance

Chapter 4 Containerization with DoCker anD kubernetes

https://console.cloud.google.com/gcr/images/google-containers/GLOBAL
https://console.cloud.google.com/gcr/images/google-containers/GLOBAL

78

Note Google provides a private registry for the Docker container. this registry
can be used to store our private Docker images and for creating a new instance. it
is possible to see all the images in the registry via this link: https://console.
cloud.google.com/gcr/images/google-containers/GLOBAL.

 6. Click the Create button and then create the new Compute Engine

instance with the Docker image (Figure 4-8).

We can access the new instance just by clicking the name. This opens the details of

the instance. Then scroll down to Remote access and click SSH (Figure 4-9).

This opens new browser windows for the instance with Docker and our image.

We can see the image actually installed, with the command docker images. When we

execute the command into the instance, we get the output shown in Figure 4-10.

Figure 4-9. The Remote access selection

Figure 4-8. The new instance is created with Docker inside

Chapter 4 Containerization with DoCker anD kubernetes

https://console.cloud.google.com/gcr/images/google-containers/GLOBAL
https://console.cloud.google.com/gcr/images/google-containers/GLOBAL

79

Creating a Compute Engine instance in which we create our container is a good

starting point. Google offers a private registry, and we can upload our images to the

registry and use that in our instance. Using the Google registry, we can put in place our

CI/CD basic systems. For example, we can use Jenkins to create the image and put it in

the registry.

Using a Compute Engine instance to create our Docker image does have some

limitations.

• It is possible to deploy only one container in the VM.

• It is possible only to use an optimized-container OS to create the

instance.

In the Compute Engine, the image from the Docker Hub registry can be used as well;

however, there is a limit of one container for VM. If we want to design a microservice

application, we probably need to use more than one container per VM. To do so, Google

offers another service called Kubernetes Engine.

Kubernetes Engine is a managed environment to deploy and manage containerized

applications. The engine runs Kubernetes, an open source platform designed to manage

and scale containers. Using the Kubernetes Engine allows the use of more than one

container. Before proceeding to the creation, we must understand what Kubernetes is.

 What Is Kubernetes?
Kubernetes, sometimes referred to as K8s, is an open source platform developed by

Google and managed by the Cloud Native Computing Foundation. It is used to manage

and scale containerized applications in a cluster, such as Docker.

Note kubernetes is a very complex application. i could devote an entire book to
kubernetes, which is not within the scope of this chapter. i just want to provide a
brief introduction to the kubernetes platform.

Figure 4-10. The Docker images command output

Chapter 4 Containerization with DoCker anD kubernetes

80

Kubernetes defines some basic building blocks for creating and managing a

resource. All the components are designed to be loosely coupled. The first component of

the Kubernetes building block is called a pod. A pod is a collection of Docker containers,

all with the same IP address. Every pod can be composed of one or more containers,

hosted in the same host and sharing the resource. Each pod shares a unique IP address

with the cluster and can be managed manually, by the API or by the controller.

The other resource defined in Kubernetes is called labels. These are used for creating

a key-pair value for identifying the resource, for example, a pod. The labels don’t provide

any uniqueness. In Kubernetes, it is possible to have more than one object with the same

name and to create what is called a label selector, or selector.

With a selector, it is possible to identify a set of objects. The selector is the core

primitive for grouping objects in Kubernetes. Actually, we can use two types of selectors,

equality-based and set-based, when we want to identify a resource. A label selector

can be made with multiple requirements, separated by commas. In this case, all

requirements must be met.

A set-based label selector is used to allow the filtering, using a key according a

set of values. The selector supports three types of operators: in, notin, and exist.

The selector can be used, for example, to choose only one type of resource, such as

environment=production or tier (at the production, stage).

The controller is used to manage the state of the cluster. To change the state of the

cluster, the controller manages the pod. There are three types of controllers.

• Replication controller: This is used to replicate the service across

the Kubernetes cluster. Another important use of the Replication

controller is to spin up new pods when one fails. It is used to

maintain the minimum number of nodes run and ensure high

availability of the cluster.

• DaemonSet controller: This controller is responsible for ensuring that

all the nodes run a copy of a pod when we add a node in the cluster.

Pods are added to the new node by this service.

• Job controller: This is used to run a pod until some or all of the run is

completed successfully. It checks the status of the pod, and when a

certain number is complete, the job terminates itself.

Chapter 4 Containerization with DoCker anD kubernetes

81

The last piece of the building block is services. In Kubernetes, a service is a set of

pods working together. For example, we can create a pod with a complete piece of

our microservice architecture and define a service with that. The service is defined

and identified by a label. This helps to identify the service itself. With Kubernetes, it is

possible to search a service with the service discovery and use the IP address or the DNS

name for finding the service we need to manage.

Note a loosely coupled system is one designed and implemented so that each
service has no, or little, knowledge of the definition of the other services. the
services recognize one another only for data exchanged among them and do not
know how the service is implemented and if another service is used.

Kubernetes is a container orchestrator for automating deployment, management,

and scaling of the containerized application, such as, for example, Docker. This

container is defined in pods. This offers a high level of abstraction, grouping the

containerized applications. A pod is the essential building block of every Kubernetes

application. Pods help us to release our container. Instead of releasing a single container

at a time, we can release the pods. A pod can have more than one container in the

definition, which helps in releasing more than one container at a time.

With Kubernetes, we can create a cluster to manage the system. A cluster is a

collection node. A Kubernetes cluster has one master node and zero or more worker

nodes. This means that we can have a Kubernetes cluster with just one master node. In

Kubernetes, a node is a machine in which it is possible to run and schedule a pod. The

machine can be physical or virtual. Because the node is essentially the basic block of

the cluster, every node can be a master node or a worker node. It depends only on the

configuration we choose for our cluster.

One of the key components of Kubernetes is etcd. This is a lightweight distributed

and persistent key-store developed by CoreOS. This component is used to store the state

of the cluster at any time. etcd is used to define a high-availability cluster.

The reason for using Kubernetes can be found in the nature of DevOps itself. When

a company decides to adopt the DevOps practice, with Kubernetes we can faster release

and deploy our application using Docker.

At the same time, Kubernetes can grow with business necessity. This is because of

the scalability of the service itself. With Kubernetes we can add or remove a node to the

cluster, and Kubernetes takes care to manage the pods with our application.

Chapter 4 Containerization with DoCker anD kubernetes

82

 Using Kubernetes Engine to Deploy an Application
Kubernetes Engine offers the flexibility and power of K8s in the GCP. With Kubernetes

Engine it is possible to create a cluster of Docker containers to use to design our

microservice architecture. You will now see how to use Kubernetes Engine to create and

manage a Docker container and cluster.

To access Kubernetes Engine, we must install another command line: the Kubernetes

command line called kubectl. This command line gives us the commands needed to

manage the Kubernetes cluster. This command line is built into the Google Cloud Shell.

We can open the command shell directly from the Google Cloud Console. We can add

this console to our Google SDK, as follows:

 1. Open the Google Cloud SDK.

 2. Run the command gcloud components install kubectl. This

starts to download and install the Kubernetes command line tool.

 3. When the installation is complete, we can verify if all has been

correctly installed, using the command kubectl version.

This command shows the version installed on the Kubernetes

command line (Figure 4-11).

It is possible to use the command line we have in the Google console. All we must do

is open the GCP console and click the Console button. This opens the shell, at the bottom

of the console (Figure 4-12). We can use the same command and see the same output

Figure 4-11. The Kubernetes version command shows the version of the command
line

Figure 4-12. The Google Cloud Shell button

Chapter 4 Containerization with DoCker anD kubernetes

https://kubernetes.io/docs/user-guide/kubectl-overview/

83

First, to proceed, we must be sure gcloud has the correct project id and zone

configured. To set the project id, in our case practicaldevopsgcpcli, use this command:

gcloud config set project practicaldevopsgcpcli

The output for this command is a simple line: Updated property [core/project].

This indicates that we have correctly updated our project.

The next property we need to update is the default compute zone. This way, we are

sure to create our cluster exactly where we want. To do this, we can use the following

command line:

gcloud config set compute/zone us-east1-b

The output of this command is a simple line: Updated property [compute/zone].

This indicates that we have correctly updated the compute zone.

Now that we have set up the zone and the code project, we can start to create our

Kubernetes cluster. In Kubernetes, a cluster is at least one server. The node is essentially

the Compute Engine VM on which we run the Kubernetes process for being part of the

cluster. The first step is to create the cluster in gcloud.

gcloud container clusters create practicaldevopsgcpcluster

Note the first time we execute this command we can get an error, because we
don’t have the kubernetes api configured. we must access it from the following
link: https://console.cloud.google.com/apis/api/container.
googleapis.com/overview?project=practicaldevopsgcpcli.

The command starts to create the Kubernetes cluster, which can take several

times to be complete. At the end, we can see the cluster in our console. The result of

the operation is a line telling us that the cluster is ready to use. We can navigate to the

page. The default cluster has a default of three nodes. The image used in the node is the

container-optimized OS. The basic image is created by Google for the container. The size

of the machine is an n1-standard, which translates to 1 CPU, with 3.75GB of RAM. This is

essentially enough for a basic use of Kubernetes.

https://console.cloud.google.com/kubernetes/workload_/gcloud/us-east1b/

practicaldevopsgcpcluster?project=practicaldevopsgcpcli

Chapter 4 Containerization with DoCker anD kubernetes

https://console.cloud.google.com/apis/api/container.googleapis.com/overview?project=practicaldevopsgcpcli
https://console.cloud.google.com/apis/api/container.googleapis.com/overview?project=practicaldevopsgcpcli
https://console.cloud.google.com/kubernetes/workload_/gcloud/us-east1b/practicaldevopsgcpcluster?project=practicaldevopsgcpcli
https://console.cloud.google.com/kubernetes/workload_/gcloud/us-east1b/practicaldevopsgcpcluster?project=practicaldevopsgcpcli

84

To see the instance of our cluster, if all the completed operations are good, you will

see something like Figure 4-13.

With the cluster ready, what we need to do is get the credentials for accessing the

cluster. To get the credentials, we must use the following command:

gcloud container clusters get-credentials practicaldevopsgcpcluster.

The result of this command follows:

Fetching cluster endpoint and auth data.

kubeconfig entry generated for practicaldevopsgcpcluster.

We are now ready to deploy our cluster. For our example, we use a Google-ready

application. The goal, for now, is to deploy in Kubernetes. The application is called hello-

server, a simple Go server application.

Figure 4-13. The Kubernetes Engine cluster created

Chapter 4 Containerization with DoCker anD kubernetes

85

 Deploying Our First Kubernetes App
As you saw, Kubernetes creates a cluster and allows us to manage it from one single

point. When we create a cluster in Kubernetes, we deploy on the master node, and which

the master deploys in every single node.

This behavior is managed by etcd. etcd is the key-value used to remember the status

of the cluster when the master sees the different statuses on the node. The daemon

present in the node installs the application and aligns every node. Service maintenance

is normally done one node at a time. This means that when one node is installing or

updating, the other is reachable. For installing the application in the cluster, we can use

the kubectl command line to launch the following command:

kubectl run hello-server --image gcr.io/google-samples/hello-app:1.0 --port

8080

This command is very simple and takes the name of the server, with the image

parameters and the port to send to the Docker for the parameter. The result of the

operation is a simple line: deployment "hello-server" created. We can see the new

server in our cluster (Figure 4-14).

It is useful to spend some time analyzing the parameter on the command line. The

parameter, --image, is used to indicate the image we want to deploy in our cluster.

The image can be a public get from the Docker Hub or one from the Google Repository.

What’s important is the version of the image. In Docker, we can identify the version of an

image by adding the value after the :, for example, hello-app:1.0, indicates version 1.0

for the image hello-app. When we fix a version for the image, we must be sure always to

deploy the same image version, if we want to put our CI/CD system in place. For example,

we can name the image stable, because we want to use the last build of the image.

Figure 4-14. The Kubernetes cluster with the hello-server application

Chapter 4 Containerization with DoCker anD kubernetes

86

Using a specific name for tagging our Docker image helps to always deploy in

production the last image with that name. When we release the image to the registry,

Kubernetes checks that the image is the latest and downloads for installation the

image with the same tag. This means that if we put a new stable in the registry, this is

automatically deployed in our system.

We have now deployed our application, but for it to be useful, it must be reachable

from other users. To expose our application on the Internet, we must configure a load

balancer.

A load balancer is used to balance the resources across the cluster. This is important

when we have to manage the traffic coming from the Internet. Because Kubernetes

creates a cluster of the resource, it is normal to use a cluster to manage the traffic. In

Kubernetes, we can expose the cluster, using the command kubectl expose from the

kubectl command line.

kubectl expose deployment hello-server --type "LoadBalancer"

We have defined the load balancer when we add the parameter --type

"LoadBalancer". This exposes our service to the Internet and configures a load balancer

to manage the request. The LoadBalancer command is important, if we want to expose

the service to the outside world. LoadBalancer is created in GCP, and after the IP is

assigned to the external IP of the cluster. In this way, it is possible to connect to the

cluster and show the service run.

The application is exposed on the Internet using an external IP. To see the IP,

we must see the information about our cluster. We can get the information by using

the command kubectl get service. This shows the information about the service

we indicate in Kubernetes. To get the information about our application, we use the

following command:

kubectl get service hello-server

The result is a table showing the information about the service.

NAME TYPE CLUSTER-IP EXTERNAL- IP PORT(S) AGE

hello-server LoadBalancer 10.35.247.216 35.196.27.26 8080:32104/TCP 20m

Note the external ip is used to identify our application. this will be different,
depending on your Google Cloud configuration.

Chapter 4 Containerization with DoCker anD kubernetes

87

We can see our application working (Figure 4-15). Open the browser and follow this

link:

http://35.196.27.26:8080

Congratulations! We have now deployed our first Kubernetes application.

 Configuring the Kubernetes Dashboard

Until now, we have seen how to use Kubernetes via command line, but Kubernetes has

an amazing interface. To use it in GCP, we must configure it for access on that platform.

Caution with the new version of GCp, Google strongly recommends that you
disable the classic kubernetes ui and use the Google Console dashboard instead.

By installing and configuring Kubernetes, we have created a cluster. This has

different basic components that can be accessed via HTTP/HTTPS. We can see the

information about the cluster by using this command:

kubectl cluster-info

This shows us the information about the cluster (Figure 4-16).

Figure 4-15. The live hello-server application

Figure 4-16. The Kubernetes cluster information

Chapter 4 Containerization with DoCker anD kubernetes

88

To access the dashboard, we need to follow this link:

https://<kubernetes master ip>/api/v1/namespaces/kube-system/services/
https:kubernetes-dashboard:/proxy

If we attempt to access the UI, we get the error shown in Figure 4-17. This is because

we haven’t configured the service account to access the Kubernetes cluster.

To gain access to the Kubernetes UI, we must configure the identity and access

management (IAM) for the service account.

Note You’ll learn more about iaM in Chapter 9. For now, you only have to know
how to configure the user access we need for the kubernetes ui.

The first step is to get the key for the user. For this, we use connect to the command

line interface. We can do this simply by using the Console dashboard and moving to the

IAM & Admin section and, from there, to the Service Account screen (see Figure 4-18).

Figure 4-17. The error we have when trying to access the Kubernetes UI

Figure 4-18. The Service Account screen on Google Console

Chapter 4 Containerization with DoCker anD kubernetes

89

Now we can see that we don’t have any key for the service account for our project.

This generated the error we saw when we tried to access the Kubernetes UI. First, we

must create the key for the account and, after, download the key in the JSON format and

use that to configure access to our Kubernetes UI.

To create the key, we simply click the three dots under Actions and then select the

Create key menu option (see Figure 4-19).

Create key opens a new modal window from which to select the type of key we want

to create. Select JSON and then click Create. This creates a new key associated with our

service account. At the same time, the key is downloaded to our PC. The key can be used

to configure access on the Kubernetes UI (see Figure 4-20).

Figure 4-19. The menu for creating a new key

Figure 4-20. The key associated with the service account

Chapter 4 Containerization with DoCker anD kubernetes

90

With the key created and associated with our service account, we can configure the

service account access for the Kubernetes UI. The command we need to configure the

gcloud authorization follows:

gcloud auth activate-service-account practicaldevopsgcpcli@appspot.

gserviceaccount.com --key-file=<path where we download the JSON key>

We can execute the command in Cloud SDK. The result of the command tells us that

the service account is now activated (see Figure 4-21).

Now we have configured access with Kubernetes, using our service account. The next

step is to update the cluster we previously created in GCP and update it with our new

service account credentials, using the following command:

gcloud container clusters get-credentials practicaldevopsgcpcluster --zone

us-east1-b --project practicaldevopsgcpcli

This command adds a new entry in the kubeconfig generated for the cluster and

associates the service account with the cluster. To run the dashboard, first we must see

all the Kubernetes services in the cluster. We can do this with the following command:

kubectl get secrets -n kube-system

Note in case we encounter an error while running the kubectl command,
we can install it as part of the Google Cloud sDk. the command for installation
is gcloud components install kubectl. this installs and downloads the
kubernetes command line on the sDk.

This shows any token we have in our cluster. We can use this to view the information

about the token that we require to access our dashboard (see Figure 4-22).

Figure 4-21. The service account activation via Cloud SDK

Chapter 4 Containerization with DoCker anD kubernetes

91

To connect to the UI, we must have a token. This token is used when we need to

enter the Kubernetes UI. We can get the token, using the following command:

kubectl -n kube-system describe secret replicaset-controller-token-thsvx

Note that the value of the replicaset-controller-token can be different on your

configuration, in particular, the last part. When we run this command, we can see an

output such as that in Figure 4-23.

Figure 4-22. The Kubernetes tokens present in our Kubernetes cluster

Chapter 4 Containerization with DoCker anD kubernetes

92

With the token, we can finally run the command kubectl proxy. This starts the

server on our computer and shows the address and the port for access to it. This is

usually 127.0.0.1:8001. We can run the server and insert in our browser the address

localhost:8001/ui/. This executes the Kubernetes dashboard and asks us how to

authenticate on the server (see Figure 4-24).

Figure 4-23. The Kubernetes token for access to the dashboard

Figure 4-24. The Kubernetes dashboard login

Chapter 4 Containerization with DoCker anD kubernetes

93

We can insert the token we got before and use it to log in to the dashboard. The

dashboard reveals a warning. This is because every service has a different token. The

dashboard is shown in Figure 4-25.

We can see that Google recommends that we disable the classic Kubernetes UI and

use the Cloud Console UI. This because the latter is better integrated into the system.

 Exploring the Kubernetes Instance

When we create our Kubernetes cluster, we essentially create a different compute engine.

We can check the instance created, in the Kubernetes Compute Engine dashboard

(Figure 4-26).

Figure 4-25. The Kubernetes UI

Chapter 4 Containerization with DoCker anD kubernetes

94

We can identify the instances, because they have all been created with the prefix

gke-. We can check the details of an instance just by clicking the instance.

With the console, it is possible to explore the Kubernetes configuration of the cluster.

If we open the console and check the Kubernetes Compute Engine, we can see the

information about the cluster (Figure 4-27).

We can see that the cluster has the minimum value of three nodes. It is possible to

change the value of the cluster, by clicking the pencil icon on the right (Figure 4-28).

Figure 4-27. The Kubernetes cluster information

Figure 4-26. The Kubernetes Compute Engine created to manage the cluster

Chapter 4 Containerization with DoCker anD kubernetes

95

Figure 4-28. The node pools section for the Kubernetes cluster

It is possible to manage the node of the cluster in the section Node Pools. In this

section, we can configure a different parameter of the cluster, for example, change the

number of the node in the pool. This is configured in the Size value. We can change

the value by adding more nodes in the cluster. We can, for example, change the value

to 5 and add another two nodes to the cluster. In this section, it is possible to enable

the autoscaling for the cluster. This adds and deletes nodes automatically to the cluster

(Figure 4-29).

Chapter 4 Containerization with DoCker anD kubernetes

96

 Deleting a Kubernetes Cluster

To complete our tour of Kubernetes, we must learn how to destroy our Kubernetes

cluster. This sometimes is necessary to maintain company costs or to dismiss old

infrastructure.

We can delete the Kubernetes cluster, using this command: kubectl delete

service hello-server. This deletes the Kubernetes load balancer. After the load

balancer is deleted, we now have to delete the cluster. The command to delete the

cluster is gcloud container clusters delete practicaldevopsgcpcluster. This

command destroys the cluster we have created in Google Cloud and asks to confirm the

deletion of the cluster. Select Y to delete the cluster.

 Conclusion
Using containers is important for accelerating the time-to-market process and offers

a lot of benefits. The container application can be used to replicate the development

production environment. With the container application, we can put in place the

CI and CD practice. This chapter gave a very short introduction to Kubernetes and

showed how to configure the classic Kubernetes UI in GCP. The intention was not to

explain Kubernetes in depth. For that, I suggest the talk by David Gonzalez available at

www.youtube.com/watch?v=GNj63thbiCM&t=222s. It provides a good introduction to

Kubernetes.

Figure 4-29. The new Compute Engine instance

Chapter 4 Containerization with DoCker anD kubernetes

http://www.youtube.com/watch?v=GNj63thbiCM&t=222s

97

In GCP, we can create an instance programmatically, using the Compute Engine. The

Compute Engine is a VM used for container applications and containers. The best way

to manage a container is to use the Kubernetes Compute Engine. With this, it is possible

to create a cluster of engines with a specific operating system designed for maintaining

containers. In the next chapters, you will learn how to use Kubernetes and integrate it

with the CI and CD practice, to implement the principles of DevOps.

Chapter 4 Containerization with DoCker anD kubernetes

99
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_5

CHAPTER 5

Continuous Delivery
with GCP and Jenkins
Continuous delivery, as an extension of continuous integration, is essentially an

evolution of the latter and one of the pillars of DevOps. There is a variety of software

and tools for putting a CD system in place, such as Travis CI, GoCD, and Bitbucket, but

probably the tool most often used is Jenkins. In this chapter, you will see how to use

Jenkins to design and define our CD pipeline in Google Cloud Platform (GCP).

 An Introduction to Jenkins
Jenkins is probably the most famous software related to continuous integration and

delivery (CI/CD). Jenkins is an open source software written in Java to help automate all

the nonhuman processes that occur during software development.

Jenkins works with almost any type of repository, such as CVS, Git, Subversion,

Mercurial, and others. It is possible to automate all the processes related to CI/CD very

easily.

The most important concept in Jenkins is the plug-in. It is possible to find a plug-in

for almost any necessity. Plug-ins are split into different uses, for example

• .NET development

• Android development

• Authentication and user management

• Command-line interface

• Build notifiers

• Deployment

100

This is just a short list of all the different areas in which plug-ins are useful. With

plug-ins, we can use Jenkins to cover every aspect of continuous integration and delivery.

The popularity of Jenkins is due to the following:

• Ease of installation and provision of a consistent interface across

different operating systems

• The possibility of modularity, to write a plug-in for extending Jenkins

• A simple interface to use and configure

• The possibility, with master/slave architecture, to use the master and

slave in different operating systems, to achieve different results from

the same build

• Easy configuration

• Easy reporting of the historical status of the builds

These are the principles that make Jenkins so ubiquitous. Jenkins is often used for

CI, because the focus of CI is the rapidity of building after the commit and the fast and

reliable automation of tasks. With Jenkins, it is possible to use a trigger to start the build

after a commit, and we can automate any single task associated with that. This means

that every time we release, we execute all the tasks necessary to build the software.

 Continuous Integration and Delivery with Jenkins
Jenkins offers very good support for creating CI and CD pipelines. I use the term

pipelines because we must execute and repeat a series of steps to achieve the same

results (see Figure 5-1).

The pipelines for CI/CD require that some steps be put in place. I will now discuss

these steps and explain how Jenkins can be used for automating them, to create a

complete pipeline for CI/CD.

Code Unit Test
Code

Integration
System
Testing

Stage
Release

User
Acceptance

Production
Release

Continuous Integration Continuous Delivery

Figure 5-1. The pipeline for continuous integration and delivery

Chapter 5 Continuous Delivery with GCp anD Jenkins

101

 Code
The first step in creating the pipeline is the code. When the code is ready, and the

developer has completed it and tested it locally, it is usually released to the central

repository. Because we are implementing continuous integration, we normally release

in another branch. Usually, this is connected to a branching policy. For example, we

can create a branch with the number of tasks we want to implement. Using a branching

policy helps to define the different tasks actually in development and to identify what

part of the code is actually released.

 Unit Test
The next step in developing the pipeline is the unit test. This step consists of writing the

test for the code and executing it directly when we start the process for CI and CD.

Jenkins can automate this process in an easy way. With Jenkins, it is possible to connect

a repository and trigger the unit test when the code is committed directly to the repo.

Jenkins downloads the code from the repo. After the download, we can build the software

and execute the test suite. After the building, if the test is passed, we can move on to the

next steps. This entire process can be easily managed by Jenkins, when we configure the

project and connect our code to the repo.

 Code Integration
When the code has been tested, it is time to integrate it into the main branch. This can

be automatic or, in most cases, after a code review policy. Use a code review policy to

enforce the quality of the code and help share the knowledge of the system. With this

policy, we require a minimum of two people to approve the code first, before it is merged

into the main branch. When the code is integrated, we can start another battery of unit

tests on the main branch. For a CD policy, the code must be integrated automatically,

but this means that there is no review executed by a human. In this case, we can use

a static code analysis to identify potential problems with the code. With Jenkins, it is

possible to use a tool to execute the static code analysis, sometimes called code analysis,

if the build fails.

Chapter 5 Continuous Delivery with GCp anD Jenkins

102

 System Testing
When the code is integrated into the main branch, it is possible to start some system

testing. This kind of testing is different from the unit test, because we use real, rather

than mock, data. This kind of testing is sometimes called integration testing. With this

type of testing, we integrate and test all components of the system. The scope of this type

of testing identifies any new bug introduced with the new feature, and the data is derived

from a real, rather than a mock, component of the system, because we want to test the

entire system.

 Stage Release
When the system testing is green-lighted, Jenkins can take care of the release of the

software. This can occur in different ways, depending on how we release the software.

If, for example, we want to release Docker, Jenkins can push the code directly into the

registry we use for the stage server. With Jenkins, we can also execute the script in Bash

or Windows, to deploy the software on the server. Release in a stage server is crucial to

ensure the quality of the software. This server is used by the QA engineering team and

must be similar to that used in the production environment. In this way, it is possible to

emulate the real environment and grab more errors before release to production.

 User Acceptance
User acceptance is an important phase in constructing continuous release pipelines. It

consists of a battery of tests to verify the functionality, from the user’s point of view. This

phase can be automatic, based on the test written by the QA engineering team, but it

can include some manual execution. In relation to continuous delivery, this test is first

executed using Jenkins, and after the code is released in some canary server, the QA

team tests the software manually. This test is used to develop an agreement with the end

user about the most desirable software to release.

 Production Release
The last and most critical phase of the pipeline process is the production release. In

keeping with continuous delivery policy, this phase can occur more than once a day.

In addition, we can decide not to release directly to production but opt for a sample

Chapter 5 Continuous Delivery with GCp anD Jenkins

103

release on a canary server and use these servers to test the release with a limited number

of users. This helps to identify any issues and to create alerts in the system. In CD, we

automatize all process and release any change in the code directly to production. This

can be a simple image change or a label or a fix for a bug. With a pure continuous delivery

policy, we essentially release a small part of the software more times per day. Jenkins can

help to automate all aspects of this phase and create a complete pipeline for CD.

 Designing a Good Branching Strategy
Designing a good branching strategy is essential for having good continuous integration

and delivery. The most popular strategy for branching is to create a branch for every

feature (Figure 5-2). When we release the software on the branch, we execute the unit test,

and if it is green-lighted, we can merge the code. For this, the Git Workflow software is very

useful. This software is built and manage by Atlassian and is the de facto industry standard.

This strategy is the simplest and is completely automatic. Every time we merge the

code into the main branch, Jenkins builds the code when the build is ready. Jenkins

executes some other steps to check the quality of the software we release.

The first step is the code analysis or static code analysis. This is performed using a

plug-in. If the code analysis is positive, we can move to the next step, which is the system

testing or integration test. This is normally designed to test the system with real, rather

than mock, data. The aim is to use the real component for the test.

Figure 5-2. Feature branching strategies

Chapter 5 Continuous Delivery with GCp anD Jenkins

104

The last step we execute is the acceptance test. Usually, this test is written by an

engineer, but in some cases, this test can be written by the QA engineering team, and

the goal is to test the functionality from a user’s point of view. This test is intended to

check for quality, to ensure that all functionality is fully implemented. Another use of

this test is to make sure that the older functionality is working with the new software

implementation.

If all phases have been properly executed, we have just created a new build that can

be installed in production or, depending on the policy, in the canary server. These steps

are performed every time we commit a new feature or fix a bug. In the repository, the

process can start, for example, when we only update a label or change an image.

With Jenkins, it is possible to create a pipeline using a multibranch pipeline job. This

kind of job tells Jenkins to create a new pipeline when a new branch is created on the

repo. This feature is managed by the multiline plug-in.

When we want to implement CI and CD in the company, we probably need to create

a multibranch system for our Jenkins. It is possible to create a multibranch project using

a Jenkinsfile.

The multibranch solution is the accepted choice when we decide to use branching

strategies. This is because we can create a CI/CD pipeline for every new branch we

create in the repo.

 Using Jenkins in GCP
Until now, you have had an introduction to Jenkins and some features we can use to

create CI/CD pipelines. Now you’ll start to learn how to use Jenkins in GCP. The reason

for creating our CI/CD system in the cloud is the facility with which we can spin up a

new server and scale up, according to our business needs.

To use Jenkins on GCP, we need to use Google Kubernetes Engine and Jenkins in the

cluster we create via Kubernetes. Using Kubernetes to create our CD pipelines gives the

system some important benefits.

• In a microservice architecture or a multi-operating system

environment, one virtual host created in Kubernetes can run the job

against the different operating systems. This is made possible with

server-slave architecture.

Chapter 5 Continuous Delivery with GCp anD Jenkins

105

• With Kubernetes, we have ephemeral executors, meaning we can

execute the build in a clean environment every time we execute new

jobs. This can eliminate errors in an unclean environment.

• Build executors are run in seconds.

• The Kubernetes clusters are used only when our feature is active,

which saves resources and leaves the cluster free for use.

First of all, we must set up our Kubernetes Cluster Engine, which is the backbone for

creating our Jenkins environment.

 Configuring Jenkins on Kubernetes
For creating our Jenkins CI/CD pipelines, we must follow these steps:

 1. Create a new Kubernetes cluster.

 2. Install Jenkins on the cluster.

 3. Install the Jenkins plug-in for work with Kubernetes.

 4. Configure Kubernetes to start the Jenkins process.

The first step is to connect on the GCP, open Google Shell, and then create our

Kubernetes cluster. First, we create a new network component for our Kubernetes

cluster. The command for creating the network is

gcloud compute networks create jenkinscicd

This command creates a new virtual private cloud (VPC) network. We use this network

to create our Kubernetes Engine. The result of the operation is shown in Listing 5-1.

Listing 5-1. Result for the Kubernetes VPC Creation

pierluigi_riti@practicaldevopsgcpcli:~$ gcloud compute networks create

jenkinscicd

Created [https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcpcli/global/networks/jenkinscicd].

NAME SUBNET_MODE BGP_ROUTING_MODE IPV4_RANGE GATEWAY_IPV4

jenkinscicd AUTO REGIONAL

Instances on this network will not be reachable until firewall rules

Chapter 5 Continuous Delivery with GCp anD Jenkins

106

are created. As an example, you can allow all internal traffic between

instances as well as SSH, RDP, and ICMP by running:

$ gcloud compute firewall-rules create <FIREWALL_NAME> --network

jenkinscicd --allow tcp,udp,icmp --source-ranges <IP_RANGE>

$ gcloud compute firewall-rules create <FIREWALL_NAME> --network

jenkinscicd --allow tcp:22,tcp:3389,icmp

In our case, we don’t have to expose our cluster outside, and we can easily skip

the configuration of the firewall. Now that we have created a new VPC, we can start to

construct our Kubernetes cluster.

Note virtual private cloud is how Google is able to show or hide our instance on
the internet. By default, with the Google instance, we can see a default vpC enabled
and exposed. we can manage the connection by a firewall for allowing or blocking
traffic, with a specific port or protocol. in every project, it is possible to have
multiple vpCs, and all vpCs are ipv4, as ipv6 is not supported. something important
to keep in mind is that every vpC has a “hidden” firewall rule: every transmission
Control protocol (tCp) connection is dropped after ten minutes of inactivity.

We create the VPC because we don’t want to use the default VPC. This is because

Jenkins is used for internal applications, and we don’t want to configure different rules. If

we stay in the same network, the rules we create are reflected throughout the network.

Now that we have created the new network, we can build the new Kubernetes cluster,

using the Kubernetes Engine.

gcloud container clusters create jenkins-cd \

--network jenkinscicd \

--zone us-east1-b \

--scopes "https://www.googleapis.com/auth/projecthosting,storage-rw"

We add an attribute –scopes. It allows the cluster to access Google Cloud Storage and

the Google Cloud Container Registry. The parameter –scopes is used to specify the type

of node instance. We can define different scopes for our instance. We can also define

multiple scopes, but we must separate these with a comma. Scopes are defined using the

full URI. In GCP, we can define this URI. (See Table 5-1.)

Chapter 5 Continuous Delivery with GCp anD Jenkins

107

Table 5-1. URI for the most common Google Cloud Resource

Alias URI

bigquery https://www.googleapis.com/auth/bigquery

cloud-platform https://www.googleapis.com/auth/cloud-platform

cloud-source-repos https://www.googleapis.com/auth/source.full_control

cloud-source-repos- ro https://www.googleapis.com/auth/source.read_only

compute-ro https://www.googleapis.com/auth/compute.readonly

compute-rw https://www.googleapis.com/auth/compute

datastore https://www.googleapis.com/auth/datastore

default https://www.googleapis.com/auth/devstorage.read_only

https://www.googleapis.com/auth/logging.write

https://www.googleapis.com/auth/monitoring.write

https://www.googleapis.com/auth/pubsub

https://www.googleapis.com/auth/service.management.

readonly

https://www.googleapis.com/auth/servicecontrol

https://www.googleapis.com/auth/trace.append

gke-default https://www.googleapis.com/auth/devstorage.read_only

https://www.googleapis.com/auth/logging.write

https://www.googleapis.com/auth/monitoring

https://www.googleapis.com/auth/service.management.

readonly

https://www.googleapis.com/auth/servicecontrol

https://www.googleapis.com/auth/trace.append

logging-write https://www.googleapis.com/auth/logging.write

monitoring https://www.googleapis.com/auth/monitoring

monitoring-write https://www.googleapis.com/auth/monitoring.write

pubsub https://www.googleapis.com/auth/pubsub

(continued)

Chapter 5 Continuous Delivery with GCp anD Jenkins

https://www.googleapis.com/auth/bigquery
https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/source.full_control
https://www.googleapis.com/auth/source.read_only
https://www.googleapis.com/auth/compute.readonly
https://www.googleapis.com/auth/compute
https://www.googleapis.com/auth/datastore
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/logging.write
https://www.googleapis.com/auth/monitoring.write
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/servicecontrol
https://www.googleapis.com/auth/trace.append
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/logging.write
https://www.googleapis.com/auth/monitoring
https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/servicecontrol
https://www.googleapis.com/auth/trace.append
https://www.googleapis.com/auth/logging.write
https://www.googleapis.com/auth/monitoring
https://www.googleapis.com/auth/monitoring.write
https://www.googleapis.com/auth/pubsub

108

We can use the URI to define the scopes of our instance. The attribute --network

identifies what VPC we want to use for our cluster. (The command takes some time to

complete.) We must define as well the zone where we want to create our cluster. This is

defined by the attribute –zone. At the end, we see this result:

WARNING: Starting in 1.12, new clusters will have basic authentication

disabled by default. Basic authentication can be enabled (or disabled)

manually using the `--[no-]enable-basic-auth` flag.

WARNING: Starting in 1.12, new clusters will not have a client certificate

issued. You can manually enable (or disable) the issuance of the client

certificate using the `--[no-]issue-client-certificate` flag.

WARNING: Currently VPC-native is not the default mode during cluster

creation. In the future, this will become the default mode and can be

disabled using `--no-enable-ip-alias` flag.

Use `--[no-]enable-ip-alias` flag to suppress this warning.

This will enable the autorepair feature for nodes. Please see

Table 5-1. (continued)

Alias URI

service-control https://www.googleapis.com/auth/servicecontrol

service-management https://www.googleapis.com/auth/service.management.

readonly

sql https://www.googleapis.com/auth/sqlservice

sql-admin https://www.googleapis.com/auth/sqlservice.admin

storage-full https://www.googleapis.com/auth/devstorage.full_

control

storage-ro https://www.googleapis.com/auth/devstorage.read_only

storage-rw https://www.googleapis.com/auth/devstorage.read_

write

taskqueue https://www.googleapis.com/auth/taskqueue

trace https://www.googleapis.com/auth/trace.append

userinfo-email https://www.googleapis.com/auth/userinfo.email

Chapter 5 Continuous Delivery with GCp anD Jenkins

https://www.googleapis.com/auth/servicecontrol
https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/service.management.readonly
https://www.googleapis.com/auth/sqlservice
https://www.googleapis.com/auth/sqlservice.admin
https://www.googleapis.com/auth/devstorage.full_control
https://www.googleapis.com/auth/devstorage.full_control
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/taskqueue
https://www.googleapis.com/auth/trace.append
https://www.googleapis.com/auth/userinfo.email

109

https://cloud.google.com/kubernetes-engine/docs/node-auto-repair for more

information on node autorepairs.

WARNING: The behavior of --scopes will change in a future gcloud release:

service-control and service-management scopes will no longer be added to

what is specified in --scopes.

To use these scopes, add them explicitly to --scopes. To use the new

behavior, set container/new_scopes_behavior property (gcloud config set

container/new_scopes_behavior true).

WARNING: Starting in Kubernetes v1.10, new clusters will no longer get

compute-rw and storage-ro scopes added to what is specified in --scopes

(though the latter will remain included in the default --scopes).

To use these scopes, add them explicitly to --scopes. To use the new

behavior, set container/new_scopes_behavior property (gcloud config set

container/new_scopes_behavior true).

Creating cluster jenkins-cd...done.

Created [https://container.googleapis.com/v1/projects/

practicaldevopsgcpcli/zones/us-east1-b/clusters/jenkins-cd].

To inspect the contents of your cluster, go to: https://console.cloud.

google.com/kubernetes/workload_/gcloud/us-east1-b/jenkins- cd?project=

practicaldevopsgcpcli

kubeconfig entry generated for jenkins-cd.

NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE

NODE_VERSION NUM_NODES STATUS

jenkins-cd us-east1-b 1.9.7-gke.3 35.231.107.135 n1-

standard- 1 1.9.7-gke.3 3 RUNNING

In this configuration, we use Google Cloud Container Registry and Google Cloud

Storage, because we must allow Jenkins to access the service.

With Google Cloud Container Registry, we allow Jenkins to access the repositories

we can use to store our code, in this case, projecthosting. The other scope is Google

Cloud Storage, which allows Jenkins to access Cloud Storage and store the container or

the build we have created. The parameter -rw indicates an access on read-write. The

next step is to create the Jenkins/Kubernetes architecture for our environment.

Chapter 5 Continuous Delivery with GCp anD Jenkins

110

We must get the credentials for the cluster we created. These credentials are used to

gain access to the Kubernetes cluster that hosts our Jenkins deployment. To do this, we

can use the following command:

gcloud container clusters get-credentials <cluster name>

In our case, the cluster name is jenkins-cd. The result of the command follows:

pierluigi_riti@practicaldevopsgcpcli:~$ gcloud container clusters get-

credentials --zone us-east1-b jenkins-cd

Fetching cluster endpoint and auth data.

kubeconfig entry generated for jenkins-cd.

The credentials are now configured, and we can now think about and implement our

Jenkins architecture.

 Designing the Jenkins Architecture
What we want to design is a master/slave Jenkins architecture. This type of architecture

is used to manage distributed Jenkins architecture. In simple terms, the master launches

the job with one slave and monitors the slave to check the status of the job.

This type of architecture is used in particular when we want to scale up our Jenkins

configuration. The job can be executed for any available slave, or we can configure the

master for executing the job in a specific slave node. Fixing the job in a slave node can be

used, for example, when we must execute a job in a particular SO, or when we must use a

specific configuration.

Figure 5-3 shows the architecture we want to use to implement our Jenkins CD

pipelines in Kubernetes. This configuration is built using two nodes, the minimal

requirement for a Kubernetes cluster. The cluster allows us to expand our test necessity,

adding another node, in case the number of tests increases.

Chapter 5 Continuous Delivery with GCp anD Jenkins

111

This architecture essentially deploys Jenkins in a multi-node cluster. We can have

more than two nodes. So as not to overload the other networks, we deploy the Jenkins

master into a separate namespace in the Kubernetes cluster. There are two major

advantages to deploying Jenkins in a separate namespace:

• Namespace allows us to create a specific quota.

• A namespace is used to create a logical separation from Jenkins and

another deployment.

First, to continue with our deployment, we must better understand the concepts of

namespaces, pods, services, quotas, and deployments in Kubernetes.

Figure 5-3. The Jenkins master/slave architecture in Kubernetes

Chapter 5 Continuous Delivery with GCp anD Jenkins

112

 Namespaces, Pods, Services, Quotas, and Deployments
in Kubernetes
Creating Jenkins pipelines in GCP involves an intensive use of Kubernetes. First, to move

forward with the configuration of Jenkins, I must define and explain some important

concepts related to Kubernetes.

 Namespaces

Namespaces is a logical division of our deployment in the cluster. It is important to have

different resources logically organized in the cluster.

A Kubernetes cluster can satisfy multiple users or groups of users, which means that

different users can have a different project in the same cluster. Using namespaces helps

to identify the project for every team. This is done when we satisfy two requirements:

• Provide names for the namespaces

• Launch a mechanism to define and attach different policies and the

authorization to access a subsection of the cluster

Each user or group of users may want to create a different isolated environment

for our resource, and for this environment, we want to define our own policies and

authorization. This is done by creating a namespace. Every namespace allows the user to

perform some unique features.

• Uniquely named resources

• Delegated managed authority to defined users

• Ability to limit the resource consumption, using quotas

First, to create our namespace, we want to see if there is another namespace we can

use. With Kubernetes, we can see a list of all namespaces, with the following command:

kubectl get namespace

This command produces an output similar to the following:

pierluigi_riti@practicaldevopsgcpcli:~$ kubectl get namespace

NAME STATUS AGE

default Active 2d

kube-public Active 2d

kube-system Active 2d

Chapter 5 Continuous Delivery with GCp anD Jenkins

113

Kubernetes GCP has three basic namespaces:

• default: This namespace is for all the objects without a specific

namespace.

• kube-public: This namespace is readable for all users, including

those users who are not authenticated.

• kube-system: This namespace is for the object created by the

Kubernetes system.

These namespaces are present in every cluster and are created when we build the

cluster itself. When we have established the cluster, we can see a summary of it, using the

following command:

kubectl get namespace <name>

If, for example, we want to see all the details concerning the default namespace, we

can use the command kubectl get namespace default. The result looks like this:

pierluigi_riti@practicaldevopsgcpcli:~$ kubectl get namespace default

NAME STATUS AGE

default Active 2d

If we want more details, we can use this command:

kubectl describe namespace <name>

The result follows:

pierluigi_riti@practicaldevopsgcpcli:~$ kubectl describe namespace default

Name: default

Labels: <none>

Annotations: <none>

Status: Active

No resource quota.

Resource Limits

Type Resource Min Max Default Request Default Limit Max Limit/

 Request Ratio

---- -------- --- --- --------------- ------------- -------------

Container cpu - - 100m - -

Chapter 5 Continuous Delivery with GCp anD Jenkins

114

We can see that the command gives us detailed information about the namespace.

For devising a namespace in Kubernetes, we must construct a YAML file with the values

necessary for creating the namespace. This value is the name of the namespace, which

must be compatible with the DNS rules. An example of this file is given in Listing 5-2.

Listing 5-2. The Code for Creating a Namespace in Kubernetes

apiVersion: v1

kind: Namespace

metadata:

 name: practicaldevopsgcpnamespace

When the file is ready we can run the command:

Kubectl create -f ./<namespace file>.yaml

 Pods

A pod is the smallest deployable unit in the Kubernetes world. It is a group of one or

more containers, for example, Docker, with shared network/storage. In the Figure 5-3,

for example, the pod shares the network of the node that is installed.

The pod can be used, for example, to run software, such as NGINX. We can use

more than one pod to create a stack, but the primary roles of the pod are to operate

and support colocated and comanaged software. We use the pod in our architecture to

operate and manage the Jenkins node for our CI/CD pipelines.

 Services

A service is an abstraction that defines logical groups of pods and a policy for accessing

them. We can view the service as a microservice. Essentially, we create a set of service

groupings with different pods. Because every pod is basically a container, we can group

different applications to reply as one entity.

To create a service, we must define a YAML file with the parameter for creating the

service. For example, we can have a file like the following in Listing 5-3:

Chapter 5 Continuous Delivery with GCp anD Jenkins

115

Listing 5-3. A YAML file for Defining a Service

kind: Service

apiVersion: v1

metadata:

 name: practicaldevopgcp-service

spec:

 selector:

 app: PracticalDevOpsGCPApp

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

The service file uses the metadata to assign the name to the service itself. In this

case, practicaldevopgcp-service. The service points out any pod with the label

PracticalDevOpsGCPApp and with the port 8080 exposed. The service exposes a common

port, in this case, 80. Because we use a selector, the service creates end points called

practicaldevopgcp-service. We can create a service without the selector, in which

case, we must manually create an end points file, and this file is necessary to expose the

IP and the port for the service (see Listing 5-4).

Listing 5-4. The End Points YAML File Definition

kind: Endpoints

apiVersion: v1

metadata:

 name: practicaldevopgcp-service

subsets:

 - addresses:

 - IP: 1.2.3.4

 ports:

 - port: 8080

Chapter 5 Continuous Delivery with GCp anD Jenkins

116

 Quotas

Quotas are a way to limit the usage of resources across the Kubernetes cluster. A quota is

defined using the object ResourceQuota, and this is initiated by the administrator of the

cluster.

The types of resources we can limit are as follows:

• CPU: We can limit the number of requests or the number of CPUs

used by the pod in a nonterminal state.

• Memory: We can limit the number of requests or limit the memory

that can be used by the pod in a nonterminal state.

• Storage: We can limit the sum of requests across all storage volumes

and the number of storage volumes.

Setting the correct limit for the quota is crucial for defining our cluster.

 Deployments

Deployments are used to declare and manage the state of the pods and ReplicaSet.

We can describe the state of the object in the deployment object, and the deployment

controller changes the state of the object at the desired state. This is essentially the basis

for defining high availability, because the deployment takes care of the state and, in case

the state changes, forces the pods or the ReplicaSet to move in the state defined in the

deployment.

Deployment is essentially the heart of a Kubernetes cluster. It is used to create the

number of pods we want and to change the state for the pod. A sample deployment is

offered in Listing 5-5.

Listing 5-5. Sample YAML Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

Chapter 5 Continuous Delivery with GCp anD Jenkins

117

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

In this case, we create a new deployment for the NGINX service. We can define

the number of pods that define the value replicas, in our case three. This indicates the

number of pods the deployment must create.

The deployments define the kinds of containers required to run, in this case, a copy

of NGINX version 1.7.9. This is defined in the section containers. The template section

defines the label associated with the containers, in this case, NGINX. This means that all

the pods use the same name and expose the same port.

 Create Jenkins Service
Now that we have discussed the general uses of Kubernetes, we will translate our Jenkins

diagram into a set of Kubernetes files. This is necessary to create our CI/CD pipelines.

The first piece of our architecture defines the two Jenkins services required by the

Kubernetes cluster:

• Jenkins UI

• Jenkins Discovery

The first service we create is the UI. the relevant file is given in Listing 5-6.

Listing 5-6. The Code for Creating the service-ui

 kind: Service

 apiVersion: v1

 metadata:

Chapter 5 Continuous Delivery with GCp anD Jenkins

118

 name: jenkins-ui

 namespace: jenkinsgcp

 spec:

 type: NodePort

 selector:

 app: master

 ports:

 - protocol: TCP

 port: 8080

 targetPort: 8080

 name: ui

The code defines a typing service called jenkis-ui, which is defined in the

namespace jenkinsgcp. This uses a type NodePort, which is used to allow an external

service and pod access to the Jenkins UI. This service is the first of the two services we

must create for our cluster.

The other service we must create is the discovery service. The YAML file for creating

this service follows (Listing 5-7):

Listing 5-7. Code for Creating the Discovery Service

 kind: Service

 apiVersion: v1

 metadata:

 name: jenkins-discovery

 namespace: jenkinsgcp

 spec:

 selector:

 app: master

 ports:

 - protocol: TCP

 port: 50000

 targetPort: 50000

 name: slaves

In this case, we expose the port 50000, which is used by the internal Jenkins service

to talk to the master and execute the job. The complete file looks like Listing 5-8.

Chapter 5 Continuous Delivery with GCp anD Jenkins

119

Listing 5-8. Code for the Complete Service File Created

[START jenkins_service_ui]

 kind: Service

 apiVersion: v1

 metadata:

 name: jenkins-ui

 namespace: jenkinsgcp

 spec:

 type: NodePort

 selector:

 app: master

 ports:

 - protocol: TCP

 port: 8080

 targetPort: 8080

 name: ui

[END jenkins_service_ui]

[START jenkins_service_discovery]

 kind: Service

 apiVersion: v1

 metadata:

 name: jenkins-discovery

 namespace: jenkinsgcp

 spec:

 selector:

 app: master

 ports:

 - protocol: TCP

 port: 50000

 targetPort: 50000

 name: slaves

[END jenkins_service_discovery]

Chapter 5 Continuous Delivery with GCp anD Jenkins

120

The last and the most important file we must create is the deployment file, which is

given in Listing 5-9.

Listing 5-9. Deployment File Code for the Kubernetes Jenkinsfile

[START jenkins_deployment]

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: jenkins

 namespace: jenkinsgcp

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: master

 spec:

 containers:

 - name: master

 image: jenkins/jenkins:tls

 ports:

 - containerPort: 8080

 - containerPort: 50000

 readinessProbe:

 httpGet:

 path: /login

 port: 8080

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 2

 failureThreshold: 5

 env:

 - name: JENKINS_OPTS

 valueFrom:

 secretKeyRef:

 name: jenkins

Chapter 5 Continuous Delivery with GCp anD Jenkins

121

 key: options

 - name: JAVA_OPTS

 value: '-Xmx1400m'

 volumeMounts:

 - mountPath: /var/jenkins_home

 name: jenkins-home

 resources:

 limits:

 cpu: 500m

 memory: 1500Mi

 requests:

 cpu: 500m

 memory: 1500Mi

 volumes:

 - name: jenkins-home

 gcePersistentDisk:

 pdName: jenkins-home

 fsType: ext4

 partition: 1

[END jenkins_deployment]

The deployment file is used to define the service and how many replicas we require

for every service. For the master service, we define a replica of 1.

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: master

This is because we want to be sure that only one master at the time is alive in our

cluster. In case the node of the cluster fails, Kubernetes starts another node elsewhere in

the cluster. The deployment defines the type of container we want to run in this section.

 spec:

 containers:

 - name: master

Chapter 5 Continuous Delivery with GCp anD Jenkins

122

 image: jenkins/jenkins:tls

 ports:

 - containerPort: 8080

 - containerPort: 50000

This section defines the Docker image we want to use, in this case, the latest version

of Jenkins, and the two container ports. Now we define the ports 8080 and 50000. This

port used by the UI service is 8080 and that used by the discovery service is 50000.

We can define when the container must be restarted, using the readinessProbe

section. The readinessProbe is very important when we try to spin up a new Docker

image, because some images have a lot of data and can’t be available immediately. For

example, if we spin up a new Jenkins, it can become live in minutes. In this scenario,

Docker kills the image. With the readinessProbe section, we can indicate the seconds

to wait to check beforehand. We also can indicate a time-out and how many times to

try before killing the image. The periodSeconds parameter indicates how often we try

to perform the probe. The timeoutSeconds parameter indicates the time to wait after

the first probe. The successThreshold parameter sets the number of successful probes

to consider before the image is live. The failureThreshold parameter indicates the

number of failures to consider before the image fails to start. The code for this is

 readinessProbe:

 httpGet:

 path: /login

 port: 8080

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 2

 failureThreshold: 5

This section defines the parameter used by kubelet for identifying when the container

is ready to accept traffic. A pod is ready when all containers in the pod are ready.

With readinessProbe, we define the parameter we use for monitoring the container

and check if the container is alive or not. The first parameter is periodSeconds. This

value defines how many seconds kubelet requires to check the container, in our case

every ten seconds.

Chapter 5 Continuous Delivery with GCp anD Jenkins

123

Some containers require some external parameters, to work correctly. In our

deployment, we send this parameter with the following code section:

env:

 - name: JENKINS_OPTS

 valueFrom:

 secretKeyRef:

 name: jenkins

 key: options

 - name: JAVA_OPTS

 value: '-Xmx1400m'

The final two sections are used to define the quota and the volume connected with

the Jenkins master. The code for the quota is

 resources:

 limits:

 cpu: 500m

 memory: 1500Mi

 requests:

 cpu: 500m

 memory: 1500Mi

The resource section requires a little explanation, particularly about how to define

the resource. The first resource we define is the CPU. This has a value of 1, to indicate

1 GCP Core. In our case, because we are using GCP, we set a value of 500m. This value

indicates that we want to use a maximum of 500 millicores. The other value we see is the

memory. Memory usage is expressed in bytes. We can use a suffix to indicate the value

of memory we want to use. These suffixes are E, P, T, G, M, and K. We also can have, as

in our case, two letters. In this case, after the suffix, we add the letter i. Here we have we

defined a limit of 1500Mi, or 1500 megabytes.

The last part of the resource is the volume. This indicates where the data is stored, in

our case, it is split in two parts. The first is

 volumeMounts:

 - mountPath: /var/jenkins_home

 name: jenkins-home

Chapter 5 Continuous Delivery with GCp anD Jenkins

124

This first part indicates what path we want to mount and its name. The second part

defines what type of volume we use.

 volumes:

 - name: jenkins-home

 gcePersistentDisk:

 pdName: jenkins-home

 fsType: ext4

 partition: 1

In this case, we define that we use an ext4 file system with only one partition. Now

we can define all the parameters we need to create our Jenkins deployments.

 Deploying Jenkins on Kubernetes
With the file for the deployment and service ready, we must define some other files, to

allow Jenkins to work properly. The first file we must create is the option file, and inside

this file, we can set our password for Jenkins. This file contains only one line:

--argumentsRealm.passwd.jenkins=CHANGE_ME --argumentsRealm.roles.

jenkins=admin

We can set our own password, or we can generate the password at runtime. To

generate the password, we can use the following command:

openssl rand -base64 15

This generates a random password that we can put in our option file. We can now

update the password to CHANGE_ME, to the value generated for the password. The next

step is to create a secret in Kubernetes. To do that, we can use the following command:

kubectl create secret generic jenkins --from-file=options

--namespace=jenkinsgcp

Note a kubernetes secret is used to hold sensitive information, such as a
password, oauth tokens, or ssh keys. a secret offers more security and flexibility
than storing the same value in a pod or container.

Chapter 5 Continuous Delivery with GCp anD Jenkins

125

The result of the command is a simple line advising that the secret has been created

correctly.

pierluigi_riti@practicaldevopsgcpcli:~/practicalgcp-jenkins$ kubectl create

secret generic jenkins --from-file=options --namespace=jenkinsgcp

secret "Jenkins" created

With the secret created, we want to add our account to the administrative roles of

the role-based access control (RBAC). This gives us the right to manage the cluster. The

command for doing that is

kubectl create clusterrolebinding cluster-admin-binding --

clusterrole=cluster-admin --user=$(gcloud config get-value account)

The command creates a cluster role binding and adds our actual account to the role

of cluster-admin. This gives us the right to manage the Kubernetes cluster. The result of

this command shows us the user we have added and the result.

pierluigi_riti@practicaldevopsgcpcli:~/practicalgcp-jenkins$ kubectl create

clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin

--user=$(gcloud config get-value account)

Your active configuration is: [cloudshell-20307]

clusterrolebinding "cluster-admin-binding" created

With all the security configured, what remains is to create the volume we require to

use with Jenkins. To create this volume, we can use the following command:

gcloud compute images create jenkins-home-image --source-uri https://

storage.googleapis.com/solutions-public-assets/jenkins-cd/jenkins-home-v3.

tar.gz

gcloud compute disks create jenkins-home --image jenkins-home-image

The result for the command is shown in Listing 5-10.

Listing 5-10. Result of the Creation for the Volume

pierluigi_riti@practicaldevopsgcpcli:~$ gcloud compute images create

jenkins-home-image --source-uri https://storage.googleapis.com/solutions-

public- assets/jenkins-cd/jenkins-home-v3.tar.gz

Chapter 5 Continuous Delivery with GCp anD Jenkins

126

Created

[https://www.googleapis.com/compute/v1/projects/practicaldevopsgcpcli/

global/images/jenkins-home-image].

NAME PROJECT FAMILY DEPRECATED STATUS

jenkins-home-image practicaldevopsgcpcli READY

With the volume created, us can finally run the Kubernetes deployment and the

service. The command to run the deployment is

kubectl apply -f k8s/

This command executes all the YAML files in the folder K8s. The result of this

command follows:

deployment "jenkins" created

service "jenkins-ui" created

service "jenkins-discovery" created

In the cluster, we now can see that we have created one deployment and two

services. Next, we must check if the pods are running. We can check the master with the

following command:

kubectl get pods --namespace jenkinsgcp

This shows the information about the container.

NAME READY STATUS RESTARTS AGE

jenkins-87c47bbb8-5mgh4 1/1 ContainerCreating 0 4m

We can check the status of the service with this command:

kubectl get svc --namespace jenkinsgcp

The result of the command shows us the two services and the information about

them (Figure 5-4).

Figure 5-4. The status of the Jenkins service

Chapter 5 Continuous Delivery with GCp anD Jenkins

127

 Exposing the Service

Now that we have the service configured, what we must do is expose the service to the

Internet. Kubernetes offers a very good API system for using the Ingress resource. This is

used to allow external resources to access an internal cluster, typically an HTTP resource.

For this, we create a new file, called ingress.yaml, in the K8s folder. This file

contains all the information we need to expose the service. The file looks like this:

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: jenkins

 namespace: jenkinsgcp

spec:

 tls:

 - secretName: tls

 backend:

 serviceName: jenkins-ui

 servicePort: 8080

We want a TLS communication to expose the port. For this, we must create our own

certificate. We can create the certificate with the openssl command. This command

ensures that the certificate is self-signed, so the browser can raise an exception related to

that. We must accept the certificate and the browser stop, to raise the error.

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /tmp/tls.key

-out /tmp/tls.crt -subj "/CN=jenkins/O=jenkins"

This essentially creates a certificate with a validity of 365 days. The command creates

the certificate and puts it into the tmp folder. Now we can use the secret, to store our

certificate and open the communication.

kubectl create secret generic tls --from-file=/tmp/tls.crt --from-file=/

tmp/tls.key --namespace jenkinsgcp

Now that we have the secret, we can run the ingress.yaml file present in the

ingress folder.

kubectl apply -f ingress/

Chapter 5 Continuous Delivery with GCp anD Jenkins

128

With the ingress created, we can now find the IP associated with it. To do this, we can

use this command:

kubectl get ingress --namespace jenkinsgcp

This operation can take several minutes to finish. As a result of that, GCP creates a

new load balancer. This is used to expose Jenkins to our infrastructure. The beauty and

power of GCP takes care of creating the necessary infrastructure to expose the service for

us, in this case, via the load balancer. The result shows a table with the IP associated with

the Jenkins UI.

NAME HOSTS ADDRESS PORTS AGE

jenkins * 35.x.x.x 80, 443 2m

The IP we see is the IP we can use to access our Jenkins UI. First, to use the UI,

we must check with the load balancer where the instance is healthy. We can use the

following command to check against the load balancer:

kubectl describe ingress jenkins --namespace jenkinsgcp

This command returns the details of the cluster, and with those, we can see when the

UI is available (Figure 5-5).

We can see that the load balancer created in Google Console moves to Networking

Services and then selects the load balancing choice from the menu. To view the details of

the load balancer, click that, and something similar to Figure 5-6 is shown.

Figure 5-5. The Kubernetes health status

Chapter 5 Continuous Delivery with GCp anD Jenkins

129

With the health status of the cluster, we can now access Jenkins. To access the

Jenkins UI, we can use the IP of the load balancer, in my case, 35.186.199.190. This shows

us the Jenkins login page (Figure 5-7).

For access, we can use the username Jenkins; the password is the same one we

defined in the file. We are now ready to create our CD pipelines.

Figure 5-6. The load balancer details created by GCP

Figure 5-7. The Jenkins page run on the cluster

Chapter 5 Continuous Delivery with GCp anD Jenkins

130

 Creating a Continuous Delivery Project
With the Jenkins page up and running, we can finally create our CD pipeline. To try out

our Jenkins feature, we create a very simple app, as follows:

For trying the feature of Continuous Delivery in GCP we use the example

code build by Google, this is a very simple page showing the information

about the system because what we really need is understand only how to

create the environment, the project is based on the gceme image present in

the Google repository, gcr.io/cloud-solutions-images/gceme

For creating a CD pipeline, we first must create the different environment we use to

release the software. We actually create three environments.

• Production: This is the environment in which we release the software

for production.

• Services: We use the service environment to describe how many

layers we have. In our case, we have a back end and front end. This

is not an environment like production or canary, but it is something

we can use to have a more logical division of our service layers. This

allows better management of that.

• Canary: This creates the canary server used for the system.

Note a canary server is a server used in CD to test a feature in a real
environment before it is released for production. a canary server emulates the
production environment, only in a limited manner. the canary server can be used
to isolate errors in code and, normally, for a limited number of users selected for
production purposes. using these servers is useful not only to uncover errors but to
test the ui/uX of the application.

These environments are used to simulate the phases of CD pipeline development. To

simulate them, we first must create a new namespace in Kubernetes.

kubectl create ns practical-gcp-production

Chapter 5 Continuous Delivery with GCp anD Jenkins

131

This command creates a new namespace in the Kubernetes cluster. We use this

namespace to build our production environment. With the new namespace created, we

can now create the services necessary for the code. The first service we create is for the

production. The production has two services: back end and front end (see Listing 5-11).

Listing 5-11. Kubernetes File for Creating the Back-End Service in the

Production Namespace

kind: Deployment

apiVersion: extensions/v1beta1

metadata:

 name: practical-gcp-backend-production

spec:

 replicas: 1

 template:

 metadata:

 name: backend

 labels:

 app: gceme

 role: backend

 env: production

 spec:

 containers:

 - name: backend

 image: gcr.io/cloud-solutions-images/gceme:1.0.0

 resources:

 limits:

 memory: "500Mi"

 cpu: "100m"

 imagePullPolicy: Always

 readinessProbe:

 httpGet:

 path: /healthz

 port: 8080

 command: ["sh", "-c", "app -port=8080"]

Chapter 5 Continuous Delivery with GCp anD Jenkins

132

 ports:

 - name: backend

 containerPort: 8080

The preceding is the Kubernetes file for creating the back-end service for the

production. Now we can see that the service uses the application gceme, version 1.0.0.

containers:

 - name: backend

 image: gcr.io/cloud-solutions-images/gceme:1.0.0

 resources:

 limits:

 memory: "500Mi"

 cpu: "100m"

 imagePullPolicy: Always

The image is pulled from the Google repository and built in the Kubernetes file. The

other service we need to create is the front-end service (Listing 5-12).

Listing 5-12. Front-End Production Service

kind: Deployment

apiVersion: extensions/v1beta1

metadata:

 name: practical-gcp-frontend-production

spec:

 replicas:

 template:

 metadata:

 name: frontend

 labels:

 app: gceme

 role: frontend

 env: production

 spec:

 containers:

 - name: frontend

 image: gcr.io/cloud-solutions-images/gceme:1.0.0

Chapter 5 Continuous Delivery with GCp anD Jenkins

133

 resources:

 limits:

 memory: "500Mi"

 cpu: "100m"

 imagePullPolicy: Always

 readinessProbe:

 httpGet:

 path: /healthz

 port: 80

 command: ["sh", "-c", "app -frontend=true -backend-service=http://

gceme-backend:8080 -port=80"]

 ports:

 - name: frontend

 containerPort: 80

These files are in the same folder, and we can use them for a deployment. A

deployment is used to create and set a specific state for a pod and ReplicaSet. We use the

following command to deploy our application:

kubectl --namespace=practical-gcp-production apply -f k8s/production

The result of the command is

deployment gceme-backend-production" created

deployment "gceme-frontend-production" created

Now, when we create the service, we can create the other deployments for the

service and the canary. Essentially, we tell Kubernetes to create one Kubernetes service,

the services line, and one deployment for the canary service. The first command creates

a service. A service in Kubernetes is a REST object similar to a pod. When we create a

service, we essentially POST the resource to the API server, to create the new resource.

When we create the canary, we essentially create a new deployment. In Kubernetes,

this follows the rules for every deployment: the application goes under the previous

Kubernetes application. In this case, we can use the load balancer to deploy to the

Internet and be reachable from the outside.

kubectl --namespace=practical-gcp-production apply -f k8s/services

kubectl --namespace=practical-gcp-production apply -f k8s/canary

Chapter 5 Continuous Delivery with GCp anD Jenkins

134

We don’t change the namespace, because we want to use the same environment.

When all the deployments are created, we can scale the production for the front end. We

do this because we want to have multiple instances running in our front-end application.

kubectl --namespace=practical-gcp-production\

 scale deployment practical-gcp-frontend \

 --replicas=4

When we have scaled the deployment, we can determine the external IP assigned to

our application with the following command:

kubectl --namespace=practical-gcp-production get service practical-gcp-

frontend

This command shows the IP for the service we can use to access our application

(Figure 5-8).

We can see when the application being run has put the public IP in the browser. It

will look something like Figure 5-9.

Figure 5-8. The IP for our application, deployed in Kubernetes

Chapter 5 Continuous Delivery with GCp anD Jenkins

135

 Creating the Repository
The next step in our CD development process is to create the repository in which we

can put the code to use for our pipelines. In Google Cloud, we have a Google Cloud

Repository. This is a private Git repository that we can use for maintaining our code.

Figure 5-9. The application up and running

Chapter 5 Continuous Delivery with GCp anD Jenkins

136

We must create a repository in which to put our code. To do this, open the Google

Cloud Console, and in the find text box, type repository. This yields a drop-down menu.

Select Source code, which opens the window for the source repository (Figure 5-10).

Create a new repository called practicaldevopscgp. With the repo created, we see

something like Figure 5-11.

Figure 5-11. The source code with the new repository

Figure 5-10. The Source Repositories service in Google Cloud Platform

Chapter 5 Continuous Delivery with GCp anD Jenkins

137

With the repo created, we can now start to initialize the Git and push the code on the

remote repository, insert the sample-app folder, and use the command for initializing

the repository. To do this, we must execute these commands:

gcloud init && git config credential.https://source.developers.google.com.

helper gcloud.cmd

This creates the basic configuration for our Git repository. After that, we must make

our repository remote, with this command:

git remote add google https://source.developers.google.com/p/

practicaldevopsgcpcli/r/practicaldevopscgp

With the repo created and configured, we can start to push the first file in the repo.

First, we must add the file to the local repository.

git add .

git commit -m "First commit"

The preceding commands are used to add and commit the file in our local

repository. With the file committed, we now must push the file in the remote repo.

git push --all google

This pushes all the code we have in the remote repository and creates a new branch

called master (Figure 5-12).

We have finally committed all our files to the remote repository. We can manage and

view the information about the file directly from the Google platform. We just need to

connect to the platform and move to the repository section (Figure 5-13).

Figure 5-12. The first commit in our repository

Chapter 5 Continuous Delivery with GCp anD Jenkins

138

 Creating Jenkins Pipelines
With the repository complete, we must create a pipeline for CD in Jenkins. For this, we

set up the credential we must use for our service. Because it is an automatic service, and

we don’t have a user connection to the UI, we want to provide a different credential for

the service. To add a credential, connect to the Jenkins UI, open the Credentials section,

and click the link Global, which opens a page on which to add the new credential on the

server (Figure 5-14).

Click the Add Credentials link on the left panel of the window. This opens another

page, on which we can select the credential. Select Google Service Account from

metadata (Figure 5-15).

Figure 5-13. The repo with the file committed

Figure 5-14. The Credentials section in Jenkins

Chapter 5 Continuous Delivery with GCp anD Jenkins

139

Click OK, to add the credential for the service. This adds the credential to the system.

Because Jenkins runs under GKE, Google exposes the credential. This credential can

automatically get by Jenkins and configure in it. The credential now looks like Figure 5-16.

With the credential configured, what we need now is to create the jobs for the build.

In the Jenkins UI, select the link to create the new job and then select the Multibranch

Pipeline type of project. This opens the configuration section for the project (Figure 5- 17).

Figure 5-15. The credential for the Google account

Figure 5-16. The updated credential

Chapter 5 Continuous Delivery with GCp anD Jenkins

140

For adding the source code for the pipelines, must click the Add Source drop-down,

then select the Git repository, the credential created previously, and, finally, the link

for the code repository we previously created. In the end, we should see something like

Figure 5-18.

Figure 5-17. The multibranch project configuration section

Figure 5-18. The Jenkins GIT configuration section

Chapter 5 Continuous Delivery with GCp anD Jenkins

141

Now we must define when to execute the build. Because we want to have CD, we

trigger the build every time we commit on the repository. This practice leads the CD, and

we can have hundreds of builds per day. To configure Jenkins to do this, we must select

the GitHub hook trigger for GITScm polling option (Figure 5-19).

On the main page, we can see the log of the GitHub hook, because we have

connected our Jenkins with Git (Figure 5-20).

Save the configuration. This starts our first build in the branch (Figure 5-21).

Figure 5-19. The configuration of the GitHub trigger

Figure 5-20. The menu with the GitHub hook log

Chapter 5 Continuous Delivery with GCp anD Jenkins

142

Because ours is a multipipeline project, we must configure a Jenkinsfile to configure

and manage the build. What you must learn now is how to create the Jenkinsfile.

 Creating the Jenkinsfile
We now have Jenkins up and running on the server. Now we must create the structure for

the application and the CD pipelines.

To construct a CD pipeline with Jenkins, we must create a pipeline project and a

Jenkinsfile. This file is used to describe the branch we want to deploy and must be placed

on every single branch we create. You will see more details regarding these steps when

I discuss the microservice. For now, it is important to understand the anatomy of a

Jenkinsfile (Listing 5-13).

Listing 5-13. The Jenkinsfile Necessary for Continuous Deployment

node {

 def project = 'practicaldevopsgcp-197023'

 def appName = ' pdopsgcp'

 def feSvcName = "${appName}-frontend"

 def imageTag = "gcr.io/${project}/${appName}:${env.BRANCH_NAME}.${env.

BUILD_NUMBER}"

Figure 5-21. The first build in Jenkins

Chapter 5 Continuous Delivery with GCp anD Jenkins

143

 checkout scm

 stage 'Build image'

 sh("docker build -t ${imageTag} .")

 stage 'Run Go tests'

 sh("docker run ${imageTag} go test")

 stage 'Push image to registry'

 sh("gcloud docker -- push ${imageTag}")

 stage "Deploy Application"

 switch (env.BRANCH_NAME) {

 // Roll out to canary environment

 case "canary":

 // Change deployed image in canary to the one we just built

 sh("sed -i.bak 's#gcr.io/cloud-solutions-images/

pdopsgcp:1.0.0#${imageTag}#' ./k8s/canary/*.yaml")

 sh("kubectl --namespace=production apply -f k8s/services/")

 sh("kubectl --namespace=production apply -f k8s/canary/")

 sh("echo http://`kubectl --namespace=production get

service/${feSvcName} --output=json | jq -r '.status.loadBalancer.

ingress[0].ip'` > ${feSvcName}")

 break

 // Roll out to production

 case "master":

 // Change deployed image in canary to the one we just built

 sh("sed -i.bak 's#gcr.io/cloud-solutions-images/

pdopsgcp:1.0.0#${imageTag}#' ./k8s/production/*.yaml")

 sh("kubectl --namespace=production apply -f k8s/services/")

 sh("kubectl --namespace=production apply -f k8s/production/")

 sh("echo http://`kubectl --namespace=production get

service/${feSvcName} --output=json | jq -r '.status.loadBalancer.

ingress[0].ip'` > ${feSvcName}")

 break

 // Roll out a dev environment

 default:

Chapter 5 Continuous Delivery with GCp anD Jenkins

144

 // Create namespace if it doesn't exist

 sh("kubectl get ns ${env.BRANCH_NAME} || kubectl create ns ${env.

BRANCH_NAME}")

 // Don't use public load balancing for development branches

 sh("sed -i.bak 's#LoadBalancer#ClusterIP#' ./k8s/services/frontend.

yaml")

 sh("sed -i.bak 's#gcr.io/cloud-solutions-images/

pdopsgcp:1.0.0#${imageTag}#' ./k8s/dev/*.yaml")

 sh("kubectl --namespace=${env.BRANCH_NAME} apply -f k8s/services/")

 sh("kubectl --namespace=${env.BRANCH_NAME} apply -f k8s/dev/")

 echo 'To access your environment run `kubectl proxy`'

 echo "Then access your service via http://localhost:8001/api/v1/

proxy/namespaces/${env.BRANCH_NAME}/services/${feSvcName}:80/"

 }

}

This file is used by the pipelines project to build the software we made. Now we can

see the file, called a Dockerfile. This is because we build Docker images for our software.

The file is used to define the stage at which the pipelines can be executed

automatically by Jenkins, in particular the files we found in the following phases:

• Build: Used to create the Docker image with the last code

• Run: Runs some tests against the image just created

• Push: Pushes the image on the repo, if the tests have passed

• Deploy: Used to deploy the application on different servers

These steps are the basis of our pipelines (Figure 5-22). Now we can configure some

parameters for the branch. These can be changed every time a developer creates a new

branch, and they represent the best way of creating a multibranching policy.

Caution Be careful when selecting the project iD in the Jenkinsfile. you can get
the information from the home page of our GCp.

Chapter 5 Continuous Delivery with GCp anD Jenkins

145

Now we can see that Jenkins creates the pipelines, based on the stage we define in

the Jenkinsfile.

 stage 'Build image'

 sh("docker build -t ${imageTag} .")

 stage 'Run Go tests'

 sh("docker run ${imageTag} go test")

 stage 'Push image to registry'

 sh("gcloud docker -- push ${imageTag}")

Now, when we make any changes to the code, we execute all the pipelines, from

beginning to end, which allows us to create a complete software, starting from the code.

Figure 5-22. The built pipelines

Chapter 5 Continuous Delivery with GCp anD Jenkins

146

 Conclusion
This chapter covers how to create pipelines projects for CD. This is very important when

we want to implement a complete DevOps resource. Jenkins offers a very effective tool

for implementing CD, and with Kubernetes in the GCP, we can create a very powerful CD

system. With our new multibranch project, we can have a graphical representation of its

stages. Jenkinsfile is a very easy and powerful means of configuring the CD system. We

can use code to define every stage and every environment we require. We can release the

file with the code, and in this way, every developer has the system correctly configured,

which reduces the time for maintenance and, at the same time, improves the stability of

the project.

Chapter 5 Continuous Delivery with GCp anD Jenkins

147
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_6

CHAPTER 6

Microservices
Architecture with GCP
Every day, we probably use a service based on a microservices architecture. Every

time we watch a Netflix series, we essentially use a service based on a microservice. A

microservice offers more advantages than a classic architecture and is perfect for a cloud

application. In this chapter, you will learn how to design a microservices architecture

and how to implement it in Google Cloud Platform (GCP).

 Introduction to Microservices Architecture
Microservices architecture is a programming technique derived directly from service-

oriented architecture (SOA). Microservices architecture is, in fact, a variation of that style

of architecture. In microservices architecture, we create services that are loosely coupled,

fine-grained, and connected with a lightweight protocol.

A loosely coupled service doesn’t have to know more about the definition of the

other services. It needs to know only how to call and what it gets back; no other details

are needed. This means that we can change the implementation of the service without

any problems.

The service is normally fine-grained. Granularity is a key consideration that must be

made when we design a service, as it defines the business functionality and the payload

message between the services. In a fine-grained service, we can define a small business

case in which the payload message can be big or small. This depends on how many

transactions we have. For example, we can define a microservices user for which we

define the interface for creating and reading the user.

148

Adopting a microservices architecture helps to decompose big architecture into

smaller pieces. This helps to improve the scalability of the architecture. Microservice is

normally deployed with a container architecture. This means that we can add services to

respond to the high traffic and remove them when they are no longer needed.

Another advantage of this architecture is that it allows the team to write code in

parallel and deploy it independently. This is because, for the test, we just need to know

the data for the input and the data we receive from the output. Because the entire

service is independent, we can, and must, implement the continuous integration and

deployment easily. For microservice to be successful, it is essential to adopt continuous

integration and deployment.

Following are some principles associated with microservices architecture:

• Microservices is designed for big systems: A microservice is born of

the necessity to scale a big system, but how a big system is defined

is relative. The important idea behind microservices is to design

a system to be reactive to changes and improve scalability of the

system itself.

• Microservices is goal-oriented: When we design a microservices

architecture, we don’t have to follow set rules, but we can devise

solutions tailored to resolve specific problems. This becomes more

clear when, for example, we must add another service to an existing

architecture. In that case, we must consider how to design the service

and what service we must use to implement the architecture.

• Microservices is designed to be replaced: When we think of

microservices architecture, we design a service to be loosely coupled

to others, which allows us to change a service for another, without

creating problems for the system.

These principles derive directly from the nature of microservices architecture,

because when we define the service, we design an architecture for modularity. Most

microservices architectures use Docker or a similar container technology to define and

deploy the service. In this way, we can easily deploy a new service in the architecture, to

fix a bug or to scale the architecture.

Microservices architecture naturally leads the process of CI/CD. This is connected

to the implementation of the architecture. When we implement the architecture, we

define a set of services designed to exchange a small amount of data. Normally, these are

Chapter 6 MiCroserviCes arChiteCture with GCp

149

designed to be released easily and drive the CI/CD process. We continuously integrate

the software and release new services ready for production.

 Implementing a Microservices Architecture
When we think about microservices architecture, we must think about all the cultural

changes we must put in place for a correct implementation. When we implement

a microservices architecture, we make a choice to have a small service designed to

respond to the business need of communicating with a minimum amount of data. This

requires some cultural change to accommodate that.

This change is, in particular, connected to the philosophy behind the microservices

architecture, which is the Unix philosophy to “do one thing and do it well.” Based on this,

we can define the philosophy and the architectural principles of the microservices.

• The service has a fine granularity that serves only one function.

• We must embrace a continuous testing and continuous integration

policy.

• When we design the system, we must embrace the failure and

the faults that can occur on the system and, based on that failure,

improve our system.

• The service must have some specific constraints. It must be

• Elastic: Each service must be able to scale up and down.

• Resilient: In case a service fails, the failure doesn’t affect another

service in the system. In some systems, we can have one

microservice depend on another, in which case we must be sure

to manage the failure of the dependencies.

• Composable: Because the microservices are loosely coupled, each

service must offer a uniform interface that doesn’t change over time.

• Minimal: Each service is designed for doing one thing and doing

it well. Therefore, the service is designed to be a highly cohesive

entity, with each part specialized in only one thing.

• Complete: Each microservice must have complete functionality,

because each service is specialized.

Chapter 6 MiCroserviCes arChiteCture with GCp

150

These architectural practices require a change in company culture. This change is

similar to that required for adopting DevOps practices.

When we implement a microservices architecture, there are some pros and cons that

must be considered (Table 6-1):

 Microservices Architecture with Docker and Kubernetes
When I think about a microservices architecture in GCP, I usually think of Docker and

Kubernetes. My choice of stack derives from the goal I want to achieve. I want to design

a modular, completely independent service-based architecture, I want to use some

RESTful web service, managed and deployed using the CD principle.

Table 6-1. Pros and Cons of a Microservice Architecture

Pros Cons

Strong modularity : when we move from a

monolithic service to a microservice, we

design the application to be modular and

divisible into small modules. this becomes

critical where there is a large cross-

distributed team.

Microservices are distributed : Developing a

distributed system can be more difficult, because the

system can be geographically hosted in another place.

this can create an issue with response times. another

issue is determining if a service is alive or not.

Independent deployment : when we design a

microservice, we design a small, independent

service. By its nature, the service can be

released and deployed independently from

others.

Consistency : when we deploy the system, we

must be sure that the service is correctly deployed

across the instances and have the consistency

of the interface. we must remember that the

microservices talk to each other via messages. if

we change something, this can corrupt the system.

Language independence : as each service is

deployed and developed independently from

each other, we can choose any language we

want for developing the service. this means

we can have potentially a different language

for every service we develop.

Complexity of operations : when we design a

microservices architecture, we have hundreds of

services connected to one another. this increases

the complexity of the operativity of the system.

we need a very experienced team to maintain the

architecture.

Chapter 6 MiCroserviCes arChiteCture with GCp

151

When we consider and design an architecture using Kubernetes, the natural choice

is Docker. With Docker, we can create a level of isolation we need for our microservices

architecture. The first thing to bear in mind in the design of the architecture we want to

implement is how it is different from a monolithic architecture. Figure 6-1 illustrates the

differences.

When we move from a monolithic application to a microservices application, we

must think about each piece of the system as a separate application.

Each application, for example, for orders, customers, and users, is not a simpler

component of the application but a small application itself. This is the first major change

that we must reflect in our architecture. To achieve that shift, we can use Docker and

Kubernetes.

This kind of application can be defined by Container as a Service (CaaS), in which

each Docker is a single application, and Kubernetes helps to manage them all.

Figure 6-1. A monolithic system vs. a microservices system

Chapter 6 MiCroserviCes arChiteCture with GCp

152

As was noted previously, microservices architecture has some specific

characteristics.

• Independence: Each service must be independent of another.

• Decentralization: The service can be installed on a different server

without impacting the application.

• Message-based: Each service uses a message to communicate to

another.

• Automatically released: When we implement a microservices

architecture, we usually use the practice of CD to release the

application.

• Isolated: Each service must be isolated from another

These four principles drive the choice for Docker and Kubernetes. With Docker, we

can create independent containers that talk to each other only via messages and are

released in accordance with CD practices.

 Designing a Kubernetes Microservices Architecture

When we design a microservices architecture in Kubernetes, we must “translate” in

the Kubernetes world what we need to implement. An example of a microservices

application in Kubernetes is shown in Figure 6-2.

Chapter 6 MiCroserviCes arChiteCture with GCp

153

The preceding drawing shows a translation from a monolithic application to a

Kubernetes/Docker microservices architecture. Every microservice is deployed in a pod.

This is the smallest unit in our architecture. By managing more pods in a service, this

creates our complete application.

Figure 6-2. Kubernetes microservices architecture

Chapter 6 MiCroserviCes arChiteCture with GCp

154

In this architecture, we introduce a new component, called ingress. This component

is used to manage the external access to the service, typically with HTTP. With ingress,

we can create a load balancer, to manage access to our application.

 Creating the Microservices Architecture in GCP
I have discussed the theory behind microservices architecture. It is only a very brief

introduction. To impart a thorough understanding of microservices architecture would

require a book dedicated to the subject. Given the scope of this book, my intention is

to describe only how to use GCP to implement a microservices architecture and to use

DevOps practices to manage it. So, let’s get our hands dirty with GCP and implement a

simple microservices architecture.

Note there is a big difference between Devops and microservices architecture.
the important distinction is that Devops is a practice to help a company reduce
time to market, the time to recover a system in the case of failure, and to
improve the quality of what it releases. Microservices architecture is a software
development practice derived from soa architecture, and there are some points
of commonality with Devops. when we implement a microservices architecture,
we put in place some practices common in Devops, in particular, CD. the cultural
change required for Devops is essentially the same as that required to be
successful when changing from a monolithic to a microservices architecture.

The first steps we must take are to design the microservices and define the

Kubernetes component, service, and pod. Once the first steps are identified, and

the components of our architecture are designed, we create a diagram with all the

components we want to implement. In our case, we want to implement part of the

architecture we designed earlier and the components we need to implement it. For

creating a microservices architecture, we must “dockerize” the application we want

to transform in the microservice. In our case, we want to implement a basic front-end

service for showing a list of users retrieved by a back-end system.

To implement that, first we must create the Go code and, after, the Dockerfile to

dockerize the application. When the application is in Docker, we can start to integrate it

into a CI pipeline and use Jenkins and Kubernetes to expose the application in the real

world.

Chapter 6 MiCroserviCes arChiteCture with GCp

155

 Creating the Services
The first step is to create the code for our Go service. So, let’s begin to write a simple code

for creating the service necessary for exposing the users. In our case, we don’t use a real

database, so we read a text file and offer this file to another service. The code looks like

that in Listing 6-1.

Listing 6-1. The Go Code for Reading a File

package main

import (

 "bufio"

 "fmt"

 "log"

 "os"

)

func main() {

 file, err := os.Open("users.txt")

 if err != nil {

 log.Fatal(err)

 }

 defer file.Close()

 scanner := bufio.NewScanner(file)

 for scanner.Scan() {

 fmt.Println(scanner.Text())

 }

 if err := scanner.Err(); err != nil {

 log.Fatal(err)

 }

}

The code is simple: read a text file and show the result to the shell. In our case, we

create the .txt file directly in the folder of the Go file. The .txt file looks like this:

John Doe

Pierluigi Riti

Chapter 6 MiCroserviCes arChiteCture with GCp

156

It is essentially just a list of names. The next step we must take to create our

microservices architecture is to construct a Dockerfile (Listing 6-2).

Listing 6-2. The Dockerfile for the Application

FROM golang:latest

ADD . /app/

WORKDIR /app

RUN go build -o main .

CMD ["/app/main"]

We can see that the Dockerfile is very simple. We start by importing the latest

Golang from Docker, then we create the directory for the application with the following

command:

RUN mkdir /app

This command executes the command mkdir on the Docker basic image and creates

a new directory called app. When the directory is created, we must add the file we have

in the path with the Dockerfile in the Docker directory. To do this, we use the following

command:

ADD . /app/

This copies all the files in our Docker container. In our case, this is the file with the

user and the Go file. The next line of our Dockerfile moves the work dir to the app dir.

The command for that is

WORKDIR /app

Then we build the file for creating the Go executable file.

RUN go build -o main

This creates the Go executable file. We invoke this file every time we run the image,

For that, we add the command

CMD ["/app/main"]

Chapter 6 MiCroserviCes arChiteCture with GCp

157

This executes the main file created previously with the go build command. With

the Dockerfile ready, we must compile the Docker image and execute. The command to

build the Docker image is

docker build -t practicalgcpgo -f Dockerfile .

The result of the command is shown in Figure 6-3.

The image is now created. We can try out our image, and our code, just by executing

the Docker image (Figure 6-4).

 Publishing the Image in the Registry
With the image now created, what we must do is to publish the image in our private repo.

This is an essential step for our architecture, because with the image published, we can

plan a CI/CD system.

Figure 6-3. The result of the Docker build

Figure 6-4. The Docker image executed

Chapter 6 MiCroserviCes arChiteCture with GCp

158

Google has its own internal private repository. Before we can start to pull and

push Docker images in the repository, we must be sure to have the credential correctly

configured. To do that, open the Google SDK and execute the following command:

gcloud auth configure-docker

This command configures the credentials for access to the private Google Docker

registry. The result of the command is shown in Figure 6-5.

 Tagging the Local Image

With the registry configured, we can start to push the image into the registry, but first, to

push the image, we must create a tag with the registry name. After that, we can push the

image.

Tagging the image is important for the management of the image itself. With the

correct tagging, it is easy to understand where the image is located and what version

of the code is in the image. Google recommends creating a tag following this naming

convention:

[HOSTNAME]/[PROJECT-ID]/[IMAGE]

Figure 6-5. The Google Cloud Docker Repository credentials configured

Chapter 6 MiCroserviCes arChiteCture with GCp

159

Using this naming convention, we can easily identify our image, based on the project

ID and the location. The hostname is essentially where we store the image. There are

four hostnames:

• gcr.io: This hostname stores the image in the United States, but this

location can be changed in the future.

• us.gcr.io: This always stores the images in the United States but

uses a different bucket instead of gcr.io.

• eu.gcr.io: This stores the images in Europe.

• asia.gcr.io: This stores the images in Asia.

It is important to choose the nearest location when we store images. This is because

we don’t want to have too much latency when we push or pull the image. We can tag the

local image in the registry with the following command:

docker tag [SOURCE_IMAGE] [HOSTNAME]/[PROJECT-ID]/[IMAGE]

The command tags an image with the latest version. If we want to create a specific

version, we can use this syntax:

docker tag [SOURCE_IMAGE] [HOSTNAME]/[PROJECT-ID]/[IMAGE]:[VERSION]

We can now create the command for tagging our first image. The SOURCE_IMAGE is the

image we just built with the Docker command. In our case, the command is

docker tag practicalgcpgo eu.gcr.io/practicaldevopsgcpcli/practicalgpc:1.0

We can see the new image tagged, using the command docker images. The result

shows us all the images present in our system (Figure 6-6).

From the result, we can see that we have two images with the same size and the same

image ID. The first is the result of the Docker build. What we see is the latest version, the

one after we found our new image tagged with the naming convention we indicated.

Figure 6-6. The Docker images result with the images tagged

Chapter 6 MiCroserviCes arChiteCture with GCp

160

With the image tagged, we can now push the image on the registry. The syntax for

pushing the image follows the same rules for creating the tag. The syntax looks like the

following:

docker push [HOSTNAME]/[PROJECT-ID]/[IMAGE]:[VERSION]

If we omit VERSION, the image is pushed using the latest tag.

Note we must be sure to select the correct project iD. in our case, it is
practicaldevopsgcpcli. if the wrong project iD is selected, Google can show
an error telling us that the api is not enabled.

The result of the push is shown in Figure 6-7.

It is possible to verify all the images we pushed in the registry with the following

command:

gcloud container images list-tags [HOSTNAME]/[PROJECTID]/[IMAGE]

The result of the command shows the info about the image (Figure 6-8).

Figure 6-7. The result of pushing our image in the registry

Figure 6-8. The list of images pushed in the registry

Chapter 6 MiCroserviCes arChiteCture with GCp

161

Now that the image is pushed in the registry, this means we are the first service in the

common registry. Of course, the service only shows the result for a text file. We need now

to update the service for a reply with a JSON response and create a Kubernetes cluster for

manage the service.

The next steps for implementing our microservices architecture are to create the

cluster and put in place a system for CD and, based on that, update the cluster with the

latest image.

 Creating the Kubernetes Cluster
The Docker image is created, and the next step is to create a cluster in Kubernetes that

we can use for scaling and maintaining the applications.

In the previous chapter, you saw how to create a Kubernetes cluster, but for

reinforcement, we repeat some of these steps and consider why we do that. First, we

must create the basic cluster. For our basic application, we can create a three-node

cluster. The steps to create a Kubernetes cluster are these:

gcloud config set compute/zone us-east1-b

Set the compute zone to your zone (in my case, us-east1-b), then execute the

command to create the cluster.

gcloud container clusters create microservice-gcp --num-nodes 3 \

--scopes https://www.googleapis.com/auth/projecthosting,storage-rw

This command creates a three-node cluster called microservice-gcp. This is a specific

cluster in which we go to deploy our previous applications. Because we had to create

the Jenkins cluster for the CI/CD, we now have two Kubernetes clusters in our system

(Figure 6-9).

Chapter 6 MiCroserviCes arChiteCture with GCp

162

To better manage the cluster, we create a new namespace, called microservice-gcp.

The command for creating the namespace is

kubectl create ns microservice-gcp

With the namespace created, we can now start to create the YAML file to define the

Kubernetes service we want to implement.

We must create the deployment file to download the image we created previously.

The file is similar to that in Listing 6-3.

Listing 6-3. The Service for Our Microservice

kind: Deployment

apiVersion: extensions/v1beta1

metadata:

 name: practical-microservice

spec:

 replicas: 1

 template:

 metadata:

 name: backend

 labels:

 app: gcp-microservice

 role: backend

Figure 6-9. The Kubernetes clusters present in our cloud

Chapter 6 MiCroserviCes arChiteCture with GCp

163

 env: production

 spec:

 containers:

 - name: pracitcalgcp-microservice

 image: eu.gcr.io/practicaldevopsgcpcli/practicalgpc:1.0

 resources:

 limits:

 memory: "500Mi"

 cpu: "100m"

 imagePullPolicy: Always

 command: ["sh", "main"]

Next, we must create the new deployment in the namespace we previously created,

using the following command:

kubectl --namespace=microservice-gcp apply service.yaml

The service is now created and ready to be used. We can now create a system for the

CD and continue the development of the microservices architecture.

Note there is a technical limitation with the free tier of GCp: only one public ip
is allowed. this means that we can encounter an issue when we try to display the
service for the microservices architecture. in case this happens, we can integrate
the service with the code we deployed in Chapter 5 and use this service instead of
the simple-app.

 Conclusion
In this chapter, you saw how to create a microservices architecture. By the term

microservices, we mean a way to implement and organize our architecture.

Microservices have a natural connection with Docker. When we create a container

for our microservice, we can easily create a microservice for our architecture and,

more important, we can integrate it into our CD system. With GCP, it is easy to create

and maintain a microservice, because Kubernetes is naturally integrated into Google,

allowing the cluster to be maintained in an easy and very flexible way.

Chapter 6 MiCroserviCes arChiteCture with GCp

165
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_7

CHAPTER 7

Monitoring in GCP
Monitoring is one of the most critical stages in our DevOps journey. Having a good

monitoring system in place is crucial for obtaining accurate feedback about the

infrastructure and the software we have created and, of course, for overseeing access to the

system. In this chapter, I discuss what is fundamental to building an effective monitoring

system in Google Cloud Platform (GCP). If someone asks, “Why must I use a monitoring

system?” You can reply with this analogy: “Having a large distributed system with no

monitoring is like riding a bike, only that you are in Hell, and you and the bike are on fire.”

 What Is a Monitoring System?
Arriving at a correct definition of monitoring is not simple. For example, we must

define first if we’re talking about software monitoring or system monitoring. Software

monitoring can be defined as monitoring software to ensure the quality of the service,

based on the terms of the service-level agreement (SLA). This is usually composed of a

set of metrics designed on the software and graphed by specific software. These metrics

are collected and analyzed to provide a picture of the software and how it works.

System monitoring can be defined as monitoring a system to ensure the correct

state of the machinery. This consists of a set of monitors and alerts to check the general

status of the server and the network, to confirm correct functionality of the current

infrastructure.

Based on both definitions, we can build a common definition. Monitoring is a set

of practices and software necessary to assure the status of the system. It is made up of a

combination of software monitoring and system monitoring. When we want to create

a monitoring system, we must be sure to put in place all the metrics and the alerts

required to ensure continuous feedback about the status of the system.

166

In keeping with this definition, we can identify the key requirements of our

monitoring system:

• Metrics: We must define a set of metrics to collect data concerning

the current status of the system.

• Alerts: We must define a system to provide alerts when the metrics

indicate an incorrect value.

• Monitoring: We must use software to collect and display the actual

state of the system. Normally, this is done by specific software.

• Feedback: We must have proactive feedback, in case of errors in the

system. This can be provided via e-mail with an escalation system.

These four areas are essentially the heart of every monitoring system. Real-time

monitoring is crucial for debugging a problem when it occurs in production.

Effective real-time monitoring indicates the actual state of the system when the

problem occurs and provides a picture of all the states of the system, not only the

software, but, for example, the network, database, disk space, etc. This information can

be used to solve the actual problem and, more important, to prevent the occurrence of

the same problem again. This is because it shows where the system failed and helps us to

identify the true root cause related to that.

When we have good real-time monitoring, we can easily identify errors when, for

example, we release a new feature in our software. We can see the error ratio for the

release, and in the event that we observe too many failures, we can easily push a rollback

of the code, for example, by using the system for continuous delivery (CD), and release a

previous version of the software.

Another use for a monitoring system is predictive analysis. When we have a

monitoring system in place, we can collect data about the status of the system. Based on

this data, collected with a log such as Splunk, for example, we can start to make some

predictive analysis. Imagine that we have a graph displaying the usage of the CPU

(see Figure 7-1).

Chapter 7 Monitoring in gCp

167

The preceding graph shows the usage of the CPU at different times. We can see some

spikes and some normal usage. The same graph can be created for different time frames,

for example, days, weeks, and months. The graph can display the usage across different

data frames. This information can be used to perform calculations and determine the

busiest periods during which our infrastructure is in use.

A good monitoring system helps us to identify this period and then adapts the software

and the infrastructure to respond better to the busiest periods. In addition, it provides

information about the historical performance of the system and can help us to calibrate

and identify what we need when we must spin up a new server in our infrastructure. This

translates into cost savings and better identification of any bottlenecks in the system.

When we think about monitoring, we can identity two types: white-box monitoring

and black-box monitoring. White-box monitoring gives us details about the internal

state of the application, for example, the HTTP connection, number or users, etc. Black-

box monitoring, on the other hand, checks how well the system is operating, but from

the outside. Black box doesn’t give you the information about the number of HTTP

connections or users actually connected to the system.

A good example of white-box monitoring is Prometheus, and a good example of

black-box monitoring is Nagios. We can use both types, to build a good and strong

monitoring system.

 Factors Involved in the Monitoring System
When we think of building our monitoring system, we must consider some key factors.

The first assumption we must make is that there is no clear definition of monitoring.

However, we can identify some common terms related to monitoring systems.

Figure 7-1. A sample memory graph

Chapter 7 Monitoring in gCp

168

• Monitoring: I have defined monitoring previously, but, to summarize,

it can be defined as collecting, processing, aggregating, and

displaying real-time information about a system, errors, lifetime of

the server, user connection, space used, etc.

• White-box monitoring: This type of monitoring is of the internal

metrics exposed by the system to the outside. An example of white-

box monitoring is logging a service to check if the software is live,

such as an HTTP check, and any other service that can be used to

view inside the system.

• Black-box monitoring: This is a kind of monitoring performed

from outside the system, for example, to monitor an application.

As opposed to white-box monitoring, it is used to check the log

produced from the system itself. With black-box monitoring, we don’t

really check the log but review the output of the service, for example,

checking whether the service is live.

• Dashboard: The dashboard is essentially a graphical user interface

(GUI) used to indicate the status of the system. This is usually a web

application. A dashboard normally allows the user to filter, or search,

for a specific resource on the system.

• Alert: An alert is the reaction of the monitoring system to a specific

condition, for example, when we have a high CPU usage or a disk

space problem. An alert can be raised in different ways. For example,

we can have a ticketing alert, meaning that when a system identifies

a problem, a ticket is created and directly assigned to a team, or a

mailing alert, in which case the system sends an e-mail to a specific

mailing list when it detects an issue.

• Root cause: The root cause is essentially the principal source of

an issue. Identifying the root cause of a problem is integral to the

stability of the system, and a good monitoring system can easily

identify the cause and put in place a new alert to prevent the problem

from occurring again.

• Node/machine: This term identifies the hardware, physical or virtual,

in which the error occurs. Every node or machine can run more than

one service, and an alert can be connected to every server.

Chapter 7 Monitoring in gCp

169

• Push: This is a release of the software, made by an automatic system,

such as Puppet or Chef.

• Rollback: This is the procedure followed to release an older version

of software to make a system stable again. This is normally done by

pushing an older version of the software in the system.

This terminology is common to all the monitoring systems and is often used to

describe the operations we undertake to solve a problem on the system.

 Why Monitoring Is Important
Monitoring is important for many reasons, not only to ensure the stability of the system

itself. For example, a monitoring system can be used for the following:

• Temporal analysis: The monitoring system can be used to observe

the critical aspects of a system’s infrastructure. We can, for example,

collect data about the growth of our database or we can determine

the time of the year or month it is most active. As well, we can gauge

the quality of our software across different releases.

• Comparing data: With a monitoring system, we can collect data from

one system and compare it with another. This data can then be used

for making a decision about what software is better for our needs.

• Alerts: As mention previously, a monitoring system is used to raise

alerts when errors in the system occur. The monitoring system checks

the status of the system and, in the case of an error, raises an alert.

• Visualizing the status of the system: When we have a monitoring

system in place, we usually have a dashboard for visualizing the

present status of the system. A monitoring system offers a clear

picture of the entire system.

• Debugging: A monitoring system is based on log analysis, which

means that we can use the system to analyze the status of the

software at a specific time and see if there is any particular condition

responsible for a specific error.

Chapter 7 Monitoring in gCp

170

The preceding are a few of the most common reasons a good monitoring system

can be used to ensure security. We can monitor access to the system and use this

information to prevent a data breach. A good monitoring system must respond to two

simple questions:

• What is broken?

• Why is it broken?

Every monitoring system must answer both these questions, to be truly effective.

 What Is Broken and Why?

A good and effective monitoring system must be able to give us an answer to these

simple questions. First, we must determine what is broken. This is the identification of

the component of the system that doesn’t work properly. This is the basis for monitoring

the system.

The second answer the monitoring system must find is to the question, Why is it

broken? The answer to this is more complex to propose, because it involves analysis of

the error. A good monitoring system can help us to do that, because it gives us an actual

picture of the status of the system.

Table 7-1 shows two common errors that can occur in every system. We can see

that the “what” is the symptom and the result of cause of the error. A good and effective

monitoring system must be able to identify the what and send an alert to the engineering

team to begin the analysis and identify the why of the failure.

Table 7-1. Examples of What May Be Broken and Why

What Why

the web site shows a 505. the web service we use for getting the data is down, and we can’t

reach it.

the Fpt fails. the disk is full, and the file can’t be uploaded.

Chapter 7 Monitoring in gCp

171

 White-Box and Black-Box Monitoring
As I mentioned previously, there are two kinds of system monitoring: white-box and

the black-box monitoring. White-box monitoring can be performed on all the software

and systems and can be set to reveal the internal state of the software. With white-box

monitoring, we use software to check the system at an operating-system level. White-

box monitoring is not directly related to the infrastructure. The software we can use for

white-box monitoring is, for example, Prometheus, Nagios, Zabbix, and Splunk. All these

softwares are used to check the status of the infrastructure and reveal it directly.

Conversely, black-box monitoring is used to check the system by using metrics. To

look at the system as a black box means that we can peer directly inside software, but

based on a statistic defined by some related metric. Software for black-box monitoring

includes Prometheus, Nagios, and Splunk.

We can think of black-box monitoring as telling us what is broken, but not in a

predictive way. Black-box monitoring indicates when a problem is present but doesn’t

give us a way to predict when a problem can appear.

White-box monitoring is based on inspection of the actual state of the system. This

means that we can use the data collected. For example, we can use Splunk to analyze the

log and see when a condition exists that results in a potential issue.

White-box monitoring directly checks the operating system and identifies any

condition or metric that can be used for debugging or for identifying the cause of an

issue, allowing users to prevent it from occurring. With white box, for example, we can

see when a system starts to use too much memory, and this can slow the system.

There is a golden rule we can apply to monitoring systems. It defines four golden

signals that we can use to gain a picture of the system. These signals are:

• Latency

• Traffic

• Error

• Saturation

Each signal is used to describe a condition that is not necessarily associated with an

error but can be the cause of subsequent errors.

Chapter 7 Monitoring in gCp

172

 Latency
Latency is the time we require to service a request. High latency is not always a problem,

but it can signal a slow response by a system, and, in some cases, this can lead to an

error. It is important to prevent the error, by monitoring the normal time response the

system has for identifying when there is a latency problem and acting faster to fix the

issue.

 Traffic
Traffic is not an actual error, but it can be used to understand how to scale our system to

avoid problems or failures. Traffic measures how much demand there is for the system.

We can put in place different high-level measurements for defining this, such as how

many pages are requested per second or how many requests our server receives per

second. This measure can be adapted, depending on the nature of the system we must

monitor.

 Error
When we measure an error, we must not only determine the evident error, such as a 500

internal server error or a NullPointerException, but also whether the function finishes

correcting any work, such as a page returning a 200 error but having different content,

such as different data. It is important to track both situations. Normally, a monitoring

system tracks only the evident error condition, but a very good monitoring system also

can track partial error conditions, such as a 200 error, and any resulting incorrect data.

 Saturation
Saturation is used to measure how “full” our system is. We usually use different

indicators to determine saturation, such as the memory, the file system, the network,

and the I/O pipeline. Saturation can be used for predictive analysis, because, for

example, we can use this measure to understand how many times we must saturate

the database or the filesystem. In a complex system, identifying the value is not so easy,

because a 10% improvement in the resource can have the result of slowing down the

entire system. Having an effective means of measuring saturation is very important for

preventing critical errors in our system.

Chapter 7 Monitoring in gCp

173

Monitoring all these four signals is a good start to establishing a very good and

effective monitoring system.

 Building a Monitoring System
Until now, we have analyzed what a monitoring system must include and potentially identify

in our system. What we must do now is define the requirements and the software required

to build our monitoring system. Imagine that we want to build our monitoring system from

scratch. We must consider the main components of our system, such as the following:

• OS monitoring: We must define a set of scripts to interact with a

very good and effective monitor. For every measure, we can raise an

alert, connected to an e-mail, that can act expeditiously and prevent

similar problems from happening. The operating system can offer

feedback about the status of the system.

• Log analysis: We must have the capacity to read the log, to identify

errors in the software and collect the data.

• Alerts: We must have the capacity to send out an e-mail or connect to

some external software, to track any error occurring in the system.

• Dashboard: For a visual representation of the system, and to obtain

observable analysis, a dashboard can be designed for use with the

software, and we can use the dashboard to gain a picture of the actual

system.

• Software integration: We must design some third-party integration to

use and connect to our software, with some external alerting or data-

analysis system.

• Monitoring the four signals: To have a very good and effective

monitoring system, we must monitor all four signals—latency, traffic,

error, and saturation. When we monitor these signals and raise the

proper alert—if one of the signals shows an anomaly—we have the

basis of a very effective monitoring system.

The preceding bullet points are essentially the main requirements of our system.

We can build the system from scratch or use some existing software to perform the

monitoring. GCP has an integrated monitoring system called Stackdriver. So, let’s start to

use Stackdriver, to monitor our cloud.

Chapter 7 Monitoring in gCp

174

 Configuring Stackdriver on GCP
Google Cloud offers its own solution for creating a monitoring system. It is called

Stackdriver and offers the power of monitoring all cloud applications in a single place. It

is possible to create graphs and add the signals we want, based on the service we have.

Stackdriver offers various integration with some common software used for our

application, such as NGINX, Cassandra, Apache, and Elasticsearch. The alert generated

by Stackdriver can be sent directly to alerting software, such as PagerDuty, or chat, such

as Slack or HipChat.

To use Stackdriver in our GCP, the first step is to create an account. To do that, simply

connect to the GCP console, open the left menu, and in the Stackdriver section, select

Monitoring (see Figure 7-2).

When the monitoring board is open, it asks to select the project we want to monitor

and, if it is our first time, to remind us to start our 30-day free trial (Figure 7-3).

Figure 7-2. The Stackdriver menu from GCP

Chapter 7 Monitoring in gCp

175

To start Stackdriver, select the project PracticalDevOpsGCP and then click the

CreateAccount button. When the account is created, in our case, it is associated with our

GCP.

The next step is to associate the project we want to monitor under Stackdriver. In our

case, we can see the two projects presented in our cloud. The first selected is shown in

Figure 7-4.

Scroll down the page and click Continue. This will open the next page for configuring

Stackdriver. The next page asks to configure the AWS account. We can skip this part, as it

is not necessary for our purposes.

The last section is used to configure the Stackdriver agent. This page shows the

command we must execute to configure the client. The agent runs in our cloud instance

and collects all the information we require for putting our monitoring system in place

(Figure 7-5).

Figure 7-3. The Stackdriver monitoring section

Figure 7-4. Stackdriver section to add a project to monitor

Chapter 7 Monitoring in gCp

176

To configure the client, open the command line and execute the command we

require for configuring the client. The first command we must execute is curl, to

download the script necessary to install the client.

curl -sSO https://dl.google.com/cloudagents/install-monitoring-agent.sh

The file is very small, and the command returns immediately. The next command we

execute is the command to install the client.

sudo bash install-monitoring-agent.sh

The script returns the output for the installation, but the part we must pay attention

to is the last line of the script, where we find the status of the installation.

Created new plugin context.

option = PIDFile; value = /var/run/stackdriver-agent.pid;

option = Interval; value = 60.000000;

option = Hostname; value = ;option = FQDNLookup; value = false;

Created new plugin context..

===

Installation of stackdriver-agent-5.5.2-382 completed successfully.

Please consult the documentation for troubleshooting advice:

https://cloud.google.com/monitoring/agent

You can monitor the monitoring agent's logfile at:

 /var/log/syslog

===

Figure 7-5. The command for configuring the Stackdriver client in our platform

Chapter 7 Monitoring in gCp

177

Now that the installation has been completed successfully, we have correctly

installed the Stackdriver monitoring client. To complete the installation of Stackdriver,

we must install the logging client. This client is used to stream logs from the VM and

other third-party software. This can be used to identify issues related to reading the log of

the application. To install the logging client, we first must download the script necessary

to install it.

curl -sSO https://dl.google.com/cloudagents/install-logging-agent.sh

When the script is downloaded, we can now execute the script to install the client.

sudo bash install-logging-agent.sh

As with other scripts, this one returns the status of the script, but for us, what is

important is the last part of the script, where we can see the status of the installation

(Listing 7-1).

Listing 7-1. The Result of Logging the Stackdriver Client Installation

Installing default conffile /etc/google-fluentd/google-fluentd.conf ...

invoke-rc.d: could not determine current runlevel

invoke-rc.d: policy-rc.d denied execution of start.

Setting up google-fluentd-catch-all-config (0.7) ...

Restarting google-fluentd: google-fluentd.

===

Installation of google-fluentd complete.

Logs from this machine should be visible in the log viewer at:

 https://console.cloud.google.com/logs/viewer?project=&resource=gce_

instance/instance_id/6349597365373579285

A test message has been sent to syslog to help verify proper operation.

Please consult the documentation for troubleshooting advice:

 https://cloud.google.com/logging/docs/agent

You can monitor the logging agent's logfile at:

 /var/log/google-fluentd/google-fluentd.log

===

Now that we have correctly installed our Stackdriver logging client, we now have all

the clients we need to start to put in place our monitoring system.

Chapter 7 Monitoring in gCp

178

 Creating the Application
Now that we have configured and installed all the necessary elements for Stackdriver,

we can start to see how Stackdriver works. For demonstration purposes only, we create a

new PHP 7 with Apache CloudStack in GCP and see how we can monitor the system.

The first step we take is to create a new Compute Engine Instance. To do that, we

must open the console and create the Compute Engine. We can create an instance by

clicking the Create button from the Create New Instance pop-up. This shows the details

we need to insert for our new instance (Figure 7-6).

Because the instance is used primarily to show how monitoring works with GCP, we

call the instance stackdriverinstance. Select a small instance and allow both HTTP and

HTTPS traffic, leaving the rest of the files to the default details, and click Create, to create

the instance (Figure 7-7).

Figure 7-6. The page for creating the new instance we want to monitor

Chapter 7 Monitoring in gCp

179

With the instance created, we now must install the software we want to monitor.

To do this, we open an SSH shell, to connect to the instance. We can do this by simply

clicking the SSH label. I suggest opening a new browser, as this opens a shell directly on

our VM instance (Listing 7-2).

Listing 7-2. The SSH Connection with the New Instance Created

Connected, host fingerprint: ssh-rsa 2048 3A:76:C8:B9:E5:0C:9B:30:BF:47:B5:

92:9C:23:CA:88:BA:09:4E:76:48:39:C5:32:D0:C9:0B:37:94:6D:C4:15

Linux stackdriverinstance 4.9.0-7-amd64 #1 SMP Debian 4.9.110-3+deb9u2

(2018-08-13) x86_64

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

pierluigi_riti@stackdriverinstance:~$

With access to the instance, what we must do now is install the software. We want to

install PHP 7 and Apache HTTP web server. So, the first command we need to execute

is one to update the library. We choose a Debian operating system, so the command for

updating the library is

sudo apt-get update

This command generates the output with the list of the package updated from the

system. The command done, we must now install PHP 7 and Apache Web Server. For

that, we use the following command:

sudo apt-get install apache2 php7.0

Figure 7-7. The Stackdriver instance created on GCP

Chapter 7 Monitoring in gCp

180

The software starts to check the packages necessary for the installation and asks

us to confirm the installation of the software. Click Y, and the software continues the

installation (Listing 7-3).

Listing 7-3. The PHP-Apache Installation Package

pierluigi_riti@stackdriverinstance:~$ sudo apt-get install apache2 php7.0

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 apache2-bin apache2-data apache2-utils libapache2-mod-php7.0 libapr1

libaprutil1 libaprutil1-dbd-sqlite3

 libaprutil1-ldap libicu57 liblua5.2-0 libperl5.24 libxml2 perl perl-

modules- 5.24 php-common php7.0-cli

 php7.0-common php7.0-json php7.0-opcache php7.0-readline psmisc rename

sgml-base ssl-cert xml-core

Suggested packages:

 www-browser apache2-doc apache2-suexec-pristine | apache2-suexec-custom

php-pear perl-doc

 libterm-readline-gnu-perl | libterm-readline-perl-perl make sgml-base-doc

openssl-blacklist debhelper

The following NEW packages will be installed:

 apache2 apache2-bin apache2-data apache2-utils libapache2-mod-php7.0

libapr1 libaprutil1

 libaprutil1-dbd-sqlite3 libaprutil1-ldap libicu57 liblua5.2-0 libperl5.24

libxml2 perl perl-modules-5.24

 php-common php7.0 php7.0-cli php7.0-common php7.0-json php7.0-opcache

php7.0-readline psmisc rename sgml-base

 ssl-cert xml-core

0 upgraded, 27 newly installed, 0 to remove and 0 not upgraded.

Need to get 21.0 MB of archives.

After this operation, 95.1 MB of additional disk space will be used.

Do you want to continue? [Y/n]

Chapter 7 Monitoring in gCp

181

With the software installed, we can now check if the server is responsive. To

connect to the server, we can use the link http://<external_ip>. In my case, the link

is http://35.227.27.47/. This shows the default page of the Apache HTTP server

(Figure 7-8).

 Log Analysis with Stackdriver
With Stackdriver and the application we want to monitor configured, we can now start to

see how Stackdriver works. We had previously installed the logging client for Stackdriver.

This means we can see the log for the application directly from the Compute Engine

page. To access the log, click the three dots near the name of the instance and select

View logs (Figure 7-9).

Figure 7-8. The Apache HTTP server default page

Chapter 7 Monitoring in gCp

182

View logs opens the log dashboard for Stackdriver (Figure 7-10).

Stackdriver is a very mature system for monitoring, and the logging dashboard gives

us numerous instruments for making our analysis. To help to analyze the log, we can

apply some filters to the log we choose to see.

We can change the log we want to analyze, using the first drop-down menu on the

left. We can choose what kind of log we want to analyze. For example, we can read the

log based on these families of logs: Firewall Rule, Project, VM Instance, and Bucket.

These are just examples of the different families of logs. For every section, we can have

sub-detailed logs. For example, in case of VM Instance, we have a choice of all the

instances we have in our system (Figure 7-11).

Figure 7-9. View logs command for a new instance

Figure 7-10. The log dashboard for Stackdriver

Chapter 7 Monitoring in gCp

183

We can change the type of log we want to analyze, and based on our selection, we can

have more submenus. This helps us to undertake a very detailed analysis of the system.

We can add another filter. For example, we can choose what log we want to read, by

selecting among the choices on the menu. By default, we see “All logs,” but if we change

the log that we see, we can add another filter. For example, we can choose to see only the

error or the debug information. We also can add a temporal filter. We can choose to see

only the last hour’s log. We can add a text filter, which makes a free text search in the log.

We can use the filter to analyze the log and debug our application. We can use the

filter, to move back on the time, and the log dashboard, to analyze and determine what

the root cause of an error is.

 Alerts in Stackdriver
A good monitoring system can’t be put in place without a good alert system. To create

an alert in Stackdriver, open the Monitor page in the Stackdriver section. This shows the

dashboard for creating the alert and managing the alert policy in Stackdriver (Figure 7- 12).

Figure 7-11. The VM Instance submenu

Chapter 7 Monitoring in gCp

184

We can see that we have created some basic alerts connected to the application. The

basic alert we want to create is the uptime, to know if the application is live or not.

To create an uptime alert, we must first create a monitor. To do this, we select from

the dashboard CREATE CHECK, under Monitor Uptime. This opens the configuration

page for the alert. We can configure different parameters on the check. We can set the

Title of the alert, in our case, practicaldevopsgcp_uptime, and the Type of check we want.

We can select three different types:

• HTTP

• HTTPS

• TCP

In our case, we use the HTTP type. This is because the instance we want to check

responds to an HTTP link. To be effective, an alert must know what type of resource to

check. This can be configured in the Resource Type section. We can select one of the

following types:

• Instance

• Cloud Load Balancer

• App Engine

• URL

Figure 7-12. The Stackdriver monitoring dashboard

Chapter 7 Monitoring in gCp

185

Because we want to monitor an instance, we choose Instance. We can now select

what instance is applied to the alert and whether only for a single or a group. We can

configure that on the Applies To section. To be effective, an alert must check the system

after a certain amount of time. We can configure that in the Check Every section. By

default, the check starts every five minutes. We can change this interval simply by

selecting a different time from the drop-down menu. Now that we have set all the values

for the alert, we can save the alert and start to monitor our system. We can test the alert,

to see if it is working properly. To test it, we just have to click the Test button. This shows

the results of the operation (Figure 7-13).

We can see that the test was successfully executed, and the result is a 200. This

means that the alert can reach the instance and the service we want to monitor.

 Policy Alert Configuration
We have now an alert to check the status of our system. An alert by itself is not really

useful. This is because intercepting it requires a human to stay in front of the dashboard,

to see when an alert is raised.

We can associate the alert with a specific policy alert. A policy alert is used to advise

a human of an error occurring on the system. We can, for example, send an e-mail or add

a notification in a HipChat room, or we can create a policy alert by clicking the Create

alert policy button. This shows a page on which we can configure our policy. We can

configure four aspects of the policy.

• Conditions

• Notifications

Figure 7-13. The test result from the alert we created

Chapter 7 Monitoring in gCp

186

• Documentation

• Name

The page allows us to create specific values for our policy. The first section is

Conditions. The condition is all the choices we can make to create our alert. There are

four types from which we can choose to create the alert.

• Basic Types: In this section, we can select some basic values for our

alert. We also can indicate a metric threshold, for example, the CPU

usage or the disk I/O read or write. We can indicate the value of the

threshold and whether it must be above or below that threshold and

for how long. Another condition we can put in place is the absence of

metrics. For example, we can raise an alert if we don’t have any CPU

usage for 30 minutes.

• Advanced Types: This metric is used to define the increase or

decrease in the use of a resource within a specific time frame. It can

be used, for example, to look into an increase in usage of the resource

and to scale up or down accordingly.

• Basic Health: This metric is used to give us a basic check regarding

the uptime of the service. We configure this condition with the alert

we previously created.

• Advanced Health: This is used to check the process on the instance.

We can specify the process we want to check and how long it is live.

The next section is Notifications. This is used to send an alert to a human for

processing or for acknowledgment. The basic notification is an e-mail. This means we

send an e-mail to a specific recipient we have configured. In a monitoring system, this

e-mail can be sent to a group. This way, all the members of the group receive the alert

and can address it.

Documentation is a field we can use to document the type of alert we want. It is

important to define good documentation for the alert. We can use some markup to

create our documentation in connection with the alert.

The last section is the Name of the policy, which is essentially the name of the policy.

Chapter 7 Monitoring in gCp

187

We can now create our policy for the alert we created previously. In the monitoring

section, we create a new policy alert. We created the policy for the uptime, but we must

create a basic health check, to notify by e-mail when an error is raised. We select basic

health and the instance we want to monitor. We connect an e-mail to the notification

section, add some documentation, give a name, and save. Now we have a policy

connected to our alert.

 Creating a Dashboard
One of the basic components of a monitoring system is a dashboard for having a

graphical representation of our system. This is used to get a clear and immediate idea of

the status of the system.

To create a dashboard in Stackdriver, we select Dashboard and then Create

Dashboard. This takes us to a blank dashboard, which we can use to create our personal

dashboard (Figure 7-14).

The first step is to change the name of the dashboard. We can change the name

simply by clicking Untitled Dashboard and then configuring the name we want for the

dashboard, in my case, Stackdriver GCP Dashboard. We can add the first graph simply

by clicking the ADD CHART button. This opens the page for creating our first graph.

First, we must create the resource we want to add to the graph. When we click the Find

Resource type and metrics text box, the page shows a drop-down box from which we

can start to choose the type of resource we want to add to the graph. In our case, we add

a GCE VM Instance. After that, we can choose what metric we want to monitor. In our

case, we choose Uptime. Click the Save button to create the chart (see Figure 7-15).

Figure 7-14. The blank dashboard we use to create our personal dashboard

Chapter 7 Monitoring in gCp

188

We have now created the first chart. We can add another chart on the dashboard. If

we want to add the CPU load average, we can repeat the steps we just took, but in this

instance, we check the metric CPU usage. The dashboard will look like that in Figure 7- 16.

Figure 7-15. The Add Chart page

Figure 7-16. The dashboard with two monitors in place

Chapter 7 Monitoring in gCp

189

 Testing the Dashboard
Now that we have our monitoring system in place, we must make sure it works properly.

So, we stop our instance and, after five minutes, check if the alert has been raised

correctly. Stop the instance and see what’s happening. When the time to check arrives,

we can see that the dashboard reveals the incident (Figure 7-17).

Because we have set up an e-mail alert, we receive a message telling us about the

incident occurring at the moment. The message looks like that in Figure 7-18.

Figure 7-17. The dashboard shows the error with the uptime

Chapter 7 Monitoring in gCp

190

The monitoring system shows the error and advises the human about it occurring in

the system. We have now set up our first monitoring system on GCP.

 Conclusion
Creating a good monitoring system is essential to achieve good results with our

DevOps. To build a good monitoring system isn’t easy. It requires experience and

patient observation of our software. The main goal of the monitoring system is to

identify and react to any errors that occur and, possibly, to be used to debug errors in

production. There is a lot of software we can use to create our own monitoring system.

In this chapter, we used Stackdriver, the solution offered by Google, to monitor the

GCP. Monitoring is a very huge area, and in this chapter, we saw common techniques

we can use to design our system. All the techniques can be adapted to your favorite

software. The important part of monitoring is the theory behind it and the alert system.

Figure 7-18. The mail sent by the policy alert

Chapter 7 Monitoring in gCp

191
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_8

CHAPTER 8

Creating and Managing
Infrastructure in GCP
One of the most critical aspects of DevOps and the cloud is infrastructure. When we

design and implement our infrastructure in the cloud, we always want the results to

be the same. For this, it is important to create and maintain our own virtual image. In

this chapter, you will learn how to create and manage your own virtual image in Google

Cloud Platform (GCP).

 Infrastructure As Code
You have seen that the DevOps movement was born officially at the Toronto Agile

conference in 2008, when Patrick Debois presented the talk “Agile Infrastructure and

Operations.” During his talk, Debois presented a way of putting a development together with

both the infrastructure and operational features. Thus, the DevOps movement was born.

This vision opens the way to what we call infrastructure as code, or IaC. When we

talk about IaC, we are referring to infrastructure that can be programmatically designed

and released. An example is when we create our Docker images in connection with our

software, or when Chef, Puppet, or any other configuration software is programmed to

prepare our infrastructure.

When we think of adopting an IaC, it is primary to ensure consistency across the

server and achieve a consistent result with the operation, every time we execute the

same operation.

Adopting IaC can drastically reduce the operation and release times. This is because

we can create the staging server with exactly the same software we use in production,

which means that the development team can test the software in an environment similar

to production. This is possible, because we define the infrastructure and deploy it in a

similar way as we deploy the software.

192

With IaC, we essentially promote the procedure used in development when we

design and implement our infrastructure. This is done to promote the consistency of the

operation, the stability of the system, and a repeatable result of the operations.

When we adopt IaC for our infrastructure, it is because we want to achieve some

specific goals.

• Easy support: When we implement IaC, the support is simpler,

because it is easier to return a functional status to the infrastructure.

• Make the infrastructure change routines: With IaC, we can update our

infrastructure every day or every hour. This is because we follow the

same procedure we use when we release the software.

• Easy failure recovery: With IaC, in case of disaster, the infrastructure

can come back in a definite state, because we can add software, such

as Terraform or GCD, to fix it.

• Continuous improvement: IaC improves our infrastructure daily,

because we follow the same principles we have for the software

development. Any small improvement is released in staging, tested,

and, finally, released into production.

The cloud is the natural environment for IaC. When we create a new machine in the

cloud environment, we create a new virtual machine (VM), with a specific version of OS

and with a specific version of the software. When we want to spin up a new server, we

can easily start the VM we created and use it as the basis of our new server.

 Infrastructure as Code Principles
To move our infrastructure toward IaC, we must adhere to some basic principles:

• Repeatability

• Consistency

• Disposability

These three principles form the backbone of IaC, we and must keep them in mind

when we design our infrastructure. We will now consider these principles in greater

detail.

Chapter 8 Creating and Managing infrastruCture in gCp

193

The first principle we must bear in mind is that every infrastructure must be repeatable.

When we design IaC, it must be repeatable. Infrastructure is repeatable when it has code

and/or procedures for replicating it that always have the same type of infrastructure.

The second principle derives directly from the first. Every IaC must be consistent. This

means that every time we rebuild or add a new node in the infrastructure, we must always

have the same result. At least, we mustn’t change the definition of our infrastructure.

The last principle we must follow is that every IaC must be disposable. This means

that we must have the capacity to destroy, update, and resize at every opportunity we

require. The ability to be disposable helps to scale the infrastructure and fix an issue

when the infrastructure is running.

To implement this principle, we must follow certain practices. These will drive our

implementation and ensure the correct functionality of our infrastructure.

• Define the infrastructure in a file: To ensure a consistent and

repeatable process, it must always give the same result. For this,

we can define our infrastructure in a file. In this file, we can define

all we need for our infrastructure, for example, DNS, disk space,

OS, etc. Keeping all this information in a file can help to define our

infrastructure programmatically.

• Define the document system and the process: It is important to

have a clear definition of what a system or a process does in our

infrastructure. To achieve this, it is very important to document

the system and the process. Having clear documentation helps to

maintain the infrastructure over time. Members of a team can read

the script and follow the documentation to put improvements in

place or fix issues with the infrastructure.

• Versioning the infrastructure file: To maintain the consistency of the

infrastructure and to have a good process in place, versioning the

definition file for the infrastructure is important. By versioning the

file, we can easily recover the infrastructure to any defined state.

This helps the consistency of the process and the availability of the

infrastructure. Versioning the file for the infrastructure is important

to roll back the infrastructure, in case of a fatal error.

• Test the infrastructure first: We define our infrastructure in a file,

and we use a program to put it in place. This means that we can test

Chapter 8 Creating and Managing infrastruCture in gCp

194

the infrastructure first, to move that into production. Testing the

infrastructure, for example, creates a staging infrastructure to test our

definition file.

• Make small changes: It is better to make a small change to the

infrastructure than ae big one. A small change in the infrastructure

makes it easier to isolate the root cause of an issue and then fix it. If

we release a big change in the infrastructure, it can be more difficult

to do this, and we have to roll back everything for the infrastructure to

work again.

When we follow these practices, we can define a state for our infrastructure and

then ensure that we have this specific state. We create what is defined as a defined

configuration state.

Note By defined configuration state, we mean an infrastructure that can be
observed and found in a specific well-defined state. this can be achieved by
describing the infrastructure in the file and defining the state of the infrastructure
at every step. We can also query the infrastructure, to obtain an answer for the
infrastructure at a specific moment.

When we have an infrastructure in a defined configuration state, we can easily

observe the infrastructure and monitor it. Because the infrastructure is defined in a file,

we can define the state for every step of the infrastructure, and we can, for example,

disable the alert for a specific piece of the infrastructure when, for example, we update it.

This reduces the noise and makes the alert more efficient.

 Architecture for Infrastructure As Code
When we want to implement IaC, we essentially want to design a centralized system for

managing our infrastructure. There are three different approaches we can use to define

our definition file for our infrastructure:

• Declarative

• Imperative

• Intelligent

Chapter 8 Creating and Managing infrastruCture in gCp

195

The declarative approach describes what the configuration should be. With the

declarative approach, we define the desired state of the infrastructure. The system

executes all the operations necessary for putting the infrastructure in the state we define.

The imperative approach concentrates on how the configuration should be. The

system executes the operations one after the other, to move the system in the defined state.

The intelligent approach concentrates on why the infrastructure must have this specific

state and status. This decision takes into consideration the state of all the components of

the infrastructure and analyzes the status of the co-components of our infrastructure. To

configure the infrastructure, the tool for the configuration can use two different methods:

• Pull

• Push

The difference between the two methods is only in how the central server configures

the client. With the pull method, the client asks the central server what the configuration

state is. With the push method, the server tells the client what the configuration state is.

 Infrastructure As Code in Google Cloud Platform
In GCP, we can create our IaC using a tool called Google Deployment Manager (GDM)

This allows us to define all the resources for our infrastructure, by creating a YAML file in

a declarative way.

We can also use Python or the Jinja2 template to create a configurable template

file. We can, for example, define a parameter for the load balancer, autoscaling, and

instance group. With GDM, we can define a template. This can be used for reuse in our

deployment and, of course, stored in the repository.

GDM is built around some fundamental components that we must understand to

use the tool effectively. These components are

• Configuration

• Templates

• Resource

• Types

• Manifest

• Deployment

Chapter 8 Creating and Managing infrastruCture in gCp

196

 Configuration
The configuration is the YAML file in which we define the list of resources we want for

our deployment. This can be the entire infrastructure or, more likely, a piece of our

infrastructure.

To define a resource in the file, we must use the syntax resources:. Every resource

must be defined by three components:

• name: the name for the resource we want to create

• type: the type of resource we want to create

• properties: the parameter defined for the resource

A sample resource file given in Listing 8-1.

Listing 8-1. Sample Configuration File

resources:

- name: gcp-devops-vm

 type: compute.v1.instance

 properties:

 zone: us-central1-a

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp/zones/us-central1-a/machineTypes/f1-micro

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/debian-

cloud/global/images/rhel-6-v20180611

 networkInterfaces:

 - network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp/global/networks/default

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

Chapter 8 Creating and Managing infrastruCture in gCp

197

 Templates
The configuration is fine when we want to define a simple image, such as in the

preceding listing, but when we want to define a more complex infrastructure, this is not

sufficient. In that case, we can create a template.

A template is essentially a reusable piece of configuration. The template is defined

in an external file and is used in the configuration as a type. The template can be written

using the Jinja 2.8 syntax, which is similar to the YAML syntax, or with Python 2.7. An

example of a static Jinja template is shown in Listing 8-2.

Listing 8-2. Example of a Jinja Template

- name: gcp-jinja-template

 type: compute.v1.instance

 properties:

 zone: us-central1-a

 machineType: zones/us-central1-a/machineTypes/n1-standard-1

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: projects/debian-cloud/global/images/family/debian-8

 networkInterfaces:

 - network: global/networks/default

We can see that the Jinja template is similar to a normal template definition. Using

Python gives us more flexibility. This is because we can use the language and the library to

define our template. An example of the template defined in Python follows (Listing 8-3).

Listing 8-3. Python Template Definition

"""Creates a Compute Engine Instance."""

def GenerateConfig(context):

 """Generate configuration."""

 resources = []

Chapter 8 Creating and Managing infrastruCture in gCp

198

[START use_basic_template]

 resources.append({

 'name': 'gcp-template',

 'type': 'compute.v1.instance',

 'properties': {

 'zone': 'us-central1-a',

 'machineType': 'zones/us-central1-a/machineTypes/n1-standard-1',

 'disks': [{

 'deviceName': 'boot',

 'type': 'PERSISTENT',

 'boot': True,

 'autoDelete': True,

 'initializeParams': {

 'sourceImage':

 'projects/debian-cloud/global/images/family/debian-8'

 }

 }],

 'networkInterfaces': [{

 'network': 'global/networks/default'

 }]

 }

 })

[END use_basic_template]

 return {'resources': resources}

The two necessary requirements when we use Python to define our template are these:

• The code must define a method called either

GenerateConfiguration or generate_configuration. If both

methods are used, the compiler gives priority to the generate_

configuration method.

• Because the configuration is defined in a YAML file, the method must

return a valid YAML file.

In the preceding code, we defined a GenerateConfiguration method simply by

writing our YAML file. There is another way to define the configuration. We can use a

Python variable, to make some part of the file dynamic (Listing 8-4).

Chapter 8 Creating and Managing infrastruCture in gCp

199

Listing 8-4. The Template Created with Python Variables

"""Creates a Compute Engine Instance."""

def GenerateConfig(context):

 """Generate configuration."""

 resources = []

[START use_template_with_variables]

 resources.append({

 'name': 'gcp-' + context.env['deployment'],

 'type': 'compute.v1.instance',

 'properties': {

 'zone': 'us-central1-a',

 'machineType': ".join(['zones/', context.properties['zone'],

 '/machineTypes/n1-standard-1']),

 'disks': [{

 'deviceName': 'boot',

 'type': 'PERSISTENT',

 'boot': True,

 'autoDelete': True,

 'initializeParams': {

 'sourceImage':

 'projects/debian-cloud/global/images/family/debian-8'

 }

 }],

 'networkInterfaces': [{

 'network': 'global/networks/default'

 }]

 }

 })

[END use_template_with_variables]

 return {'resources': resources}

In the preceding code, we define some variable for making the configuration more

dynamic, instead of creating only the YAML file.

Chapter 8 Creating and Managing infrastruCture in gCp

200

With Python, we can easily create a very complex dynamic configuration, and we can

adapt the configuration, in our case, for example, the name, based on the environment

variable. This is useful when, for example, we want to identify the VM based on the

server it runs.

When we have defined our template, we can import it in our configuration file.

We can import our template with the extensions .py, .jinja, or any non- template

extension, such as .txt. To import the file, we can indicate the path of our file, and if

we want to assign a name, indicate the name. It is possible to import more than one

template, and, of course, we can mix templates. For example, it is possible to import one

Python and one Jinja template (Listing 8-5).

Listing 8-5. Code to Import a Template in the Configuration File

imports:

 - path: /path/to/gcp_template.jinja

 - path: gcp_new_template.py

 name: gcp_infrastructure.py

When we have imported our template, we can use it like a type in the configuration

file (Listing 8-6).

Listing 8-6. Importing and Using a Template

imports:

 - path: /path/to/gcp_template.jinja

resources:

 - name: my_gcp_template

 -type: /path/to/gcp_template.jinja

It is possible to use a template without a configuration file. To do this, we can use the

command line and compile the template directly. The relevant command is shown in

Listing 8-7.

Listing 8-7. How to Invoke the Template by the Command Line

gcloud deployment-manager deployments create my-vm-gcp \

 --template gcp_template.jinja \

 --properties zone:us-central1-b

Chapter 8 Creating and Managing infrastruCture in gCp

201

 Resource
The resource represents a single API resource. This API can be provided by Google or we

can create our resource by defining a new type. For example, a Google Compute Engine

is a resource. We can create our resource using a Jinja or Python template. A resource is

the basic information we must define to create our configuration file.

 Types
A resource is used to define what we want to do, but a type is used to identify the

resource and allow us to create a deployment process.

The type is used to identify the resource. There are two types of resources:

• Base type: This is a single resource, like Google Compute Engine.

• Composite type: This is a set or resource.

The base type is essentially a single type of resource offered by Google, such as

Google Compute Engine, a basic storage, or SQL.

The composite type contains one or more templates. These templates are

preconfigured to work together and, of course, can be defined using Python or Jinja.

A composite type is normally used to define a piece of the template and can be reused

easily. For example, we can create a load-balancer resource for our network.

 Manifest
A manifest is a description of our original configuration. This is read-only and is used

normally to give as much information as possible about the deployment. We use the

manifest to describe the resource and the types of our configuration. A manifest returns

a value in the following form (Listing 8-8).

Listing 8-8. Example of a Manifest

config:

 content: |

 resources:

 - name: gcp-first-vm

 type: compute.v1.instance

 properties:

Chapter 8 Creating and Managing infrastruCture in gCp

202

 zone: us-east1-b

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/f1-micro

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/

debian-cloud/global/images/family/debian-9

 networkInterfaces:

 - network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

 - name: gcp-second-vm

 type: compute.v1.instance

 properties:

 zone: us-east1-b

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/g1-small

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/

debian-cloud/global/images/family/debian-9

 networkInterfaces:

 - network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

 accessConfigs:

 - name: External NAT

Chapter 8 Creating and Managing infrastruCture in gCp

203

 type: ONE_TO_ONE_NAT

expandedConfig: |

 resources:

 - name: gcp-first-vm

 properties:

 disks:

 - autoDelete: true

 boot: true

 deviceName: boot

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/

debian-cloud/global/images/family/debian-9

 type: PERSISTENT

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/f1-micro

 networkInterfaces:

 - accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

 network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

 zone: us-east1-b

 type: compute.v1.instance

 - name: gcp-second-vm

 properties:

 disks:

 - autoDelete: true

 boot: true

 deviceName: boot

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/

debian-cloud/global/images/family/debian-9

 type: PERSISTENT

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/g1-small

 networkInterfaces:

Chapter 8 Creating and Managing infrastruCture in gCp

204

 - accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

 network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

 zone: us-east1-b

 type: compute.v1.instance

id: '2742029496220147117'

insertTime: '2018-08-16T13:49:06.882-07:00'

layout: |

 resources:

 - name: gcp-first-vm

 type: compute.v1.instance

 - name: gcp-second-vm

 type: compute.v1.instance

name: manifest-1534452546871

selfLink: https://www.googleapis.com/deploymentmanager/v2/projects/

practicaldevopsgcp-197023/global/deployments/gcp-vm-deployment/manifests/

manifest-1534452546871

We can see that the manifest describes all the resources actually defined and

installed in our deployment.

 Deployment
A deployment is a collection of resources deployed and managed altogether. We can

create a deployment using a configuration file and a command line. The command for

executing the deployment is shown in Listing 8-9.

Listing 8-9. Command for Creating a New Deployment in GCP

gcloud deployment-manager deployments create gcp-first-deployment \

 --config gcp-vm.yaml

Chapter 8 Creating and Managing infrastruCture in gCp

205

To define the configuration file, we must employ the --config option, followed

by the name of the configuration file. When the deployment is complete, we can see

whether the deployment is correctly configured, by using the following command

(Listing 8-10):

Listing 8-10. Command to Describe the Deployment

gcloud deployment-manager deployments describe gcp-first-deployment

 Starting with Google Cloud Deployment Manager
Up to now, you have seen the basic concepts of Google Cloud Deployment Manager. At

this point, we can start to define our own IaC.

As you learned, we can define our infrastructure by creating a configuration file, and

we can create a deployment via a command line. This essentially deploys our resource in

our infrastructure. The first step is to define our configuration file. For starters, we create

a simple virtual image with a Debian image. The file is like that shown in Listing 8-11.

Listing 8-11. The First Configuration File for Our Google Cloud

resources:

- type: compute.v1.instance

 name: gcp-first-configuration-vm

 properties:

 zone: us-east1-b

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-central1-f/machineTypes/f1-micro

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/debian-

cloud/global/images/family/debian-9

 networkInterfaces:

Chapter 8 Creating and Managing infrastruCture in gCp

206

 - network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

Note When we create our infrastructure, we can indicate the family for our VM,
as in the preceding code. We can find all the families for our operating system
here: https://cloud.google.com/compute/docs/images#os-compute-
support.

In this configuration file, we indicate some information necessary for defining our

VM. We define a zone, in our case, us-east1-b; a machineType, in our case, f1-micro; a

boot disk; and a random IP address. These values are necessary to identity and to deploy

our VM. We must now deploy our infrastructure. To do so, we must use the command

line. The command we use for the deployment is

gcloud deployment-manager deployments create gcp-first-deployment --config

gcp_vm.yaml

Note the YaML file is a space-sensitive file. at the time of publication of this
book, it is possible that some images have been removed. it is recommended,
therefore, that you download the file from the git connected with this book.

The command is essentially what we describe to create a new deployment. We can

now construct, or import, the file in our Google Cloud Console and run it. It deploys our

resource and shows the result of the operation (Listing 8-12).

Listing 8-12. Result of the Google Deployment of Our Resource

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud deployment-manager

deployments create gcp-first-deployment --config gcp_vm.yaml

The fingerprint of the deployment is 4Sb9EZuc2qx92SWmbnmLig==

Waiting for create [operation-1534453555625-57393cf1b7c2b-27da25f9-

d094a48e]...done.

Chapter 8 Creating and Managing infrastruCture in gCp

https://cloud.google.com/compute/docs/images#os-compute-support
https://cloud.google.com/compute/docs/images#os-compute-support

207

Create operation operation-1534453555625-57393cf1b7c2b-27da25f9-d094a48e

completed successfully.

NAME TYPE STATE ERRORS INTENT

gcp-first-configuration-vm compute.v1.instance COMPLETED []

We have now successfully completed the installation of our first piece of the

infrastructure. We can see the details of our new infrastructure, and we can describe it.

The command we must use to describe the infrastructure is

gcloud deployment-manager deployments describe gcp-first-deployment

This command returns detailed information about our deployment (Listing 8-13).

Listing 8-13. Command Used to Describe the Deployment

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud deployment-manager

deployments describe gcp-first-deployment

fingerprint: 4Sb9EZuc2qx92SWmbnmLig==

id: '4465263803798936028'

insertTime: '2018-08-16T14:05:55.750-07:00'

manifest: manifest-1534453555753

name: gcp-first-deployment

operation:

 endTime: '2018-08-16T14:06:14.117-07:00'

 name: operation-1534453555625-57393cf1b7c2b-27da25f9-d094a48e

 operationType: insert

 progress: 100

 startTime: '2018-08-16T14:05:56.070-07:00'

 status: DONE

 user: pierluigi.riti@gmail.com

NAME TYPE STATE INTENT

gcp-first-configuration-vm compute.v1.instance COMPLETED

This command shows us that our VM has been created and is ready to use. We can

check and connect to the VM directly via the Compute Engine page, if we go to Compute

Engine and connect to it (Figure 8-1).

Chapter 8 Creating and Managing infrastruCture in gCp

208

Because we created the infrastructure using GDM, we can also inspect the

configuration using the GDM page. We can find the resource under the tool’s menu

(Figure 8-2).

Now we can see that we have our first piece of infrastructure defined by the code.

To complete the life cycle, we must learn how we can destroy the infrastructure. The

command we use to destroy our infrastructure is

gcloud deployment-manager deployments delete gcp-first-deployment

This shows a confirmation question about the deletion of our infrastructure. We

can confirm the operation by pressing y. This deletes our infrastructure. The operation

can take several minutes to complete. The result is a message advising us that the

infrastructure has been deleted (Listing 8-14).

Listing 8-14. Command to Delete an Infrastructure

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud deployment-manager

deployments delete gcp-first-deployment

The following deployments will be deleted:

- gcp-first-deployment

Do you want to continue (y/N)? y

Waiting for delete [operation-1534453886807-57393e2d8ebd8-e48703b3-

d3b921ed]...done.

Delete operation operation-1534453886807-57393e2d8ebd8-e48703b3-d3b921ed

completed successfully.

Figure 8-1. The Compute Engine page, showing our first configuration

Figure 8-2. The Deployment Manager page

Chapter 8 Creating and Managing infrastruCture in gCp

209

You have learned how to create basic IaC, but our example is really simple. Real

infrastructure is more complex than a simple VM. Let’s turn our attention to how to

create more complex infrastructure and, more important, how to use a template to

define our infrastructure.

 Upgrading Our Infrastructure
When we define an infrastructure, we don’t have only one VM. Our infrastructure can

have more than one single resource. For example, we can have different VMs, a load

balancer, etc. In the preceding section, you defined a configuration file with only one

VM. Now you will see how it is possible to create a configuration file, using our example,

with more than one resource. Let’s suppose we want to create two simple VMs for our

infrastructure. To do that, we add another VM to the previous one. The file for that

follows (Listing 8-15).

Listing 8-15. The Configuration File with Two Different VMs

resources:

- name: gcp-first-vm

 type: compute.v1.instance

 properties:

 zone: us-east1-b

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/f1-micro

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/debian-

cloud/global/images/family/debian-8

 networkInterfaces:

 - network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

Chapter 8 Creating and Managing infrastruCture in gCp

210

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

- name: gcp-second-vm

 type: compute.v1.instance

 properties:

 zone: us-east1-b

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/g1-small

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/

debian- cloud/global/images/family/debian-8

 networkInterfaces:

 - network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

In this file, we created a second VM of a different size. To create a new resource, in

this case, a virtual machine, we can add another resource to our deployment. In our

case, we started with

- name: gcp-second-vm

 type: compute.v1.instance

 properties:

 zone: us-east1-b

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/g1-small

 disks:

 - deviceName: boot

Chapter 8 Creating and Managing infrastruCture in gCp

211

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/

debian-cloud/global/images/family/debian-8

 networkInterfaces:

 - network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/default

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

You can see that we restart a new section to define a new resource. We don’t have

to reopen another resource section. This is because, under one resource, we can have

more than one single resource. We can now deploy our resource, to see the two instances

created on the system. The command for deploy is

gcloud deployment-manager deployments create gcp-second-deployment --config

gcp-two-vm.yaml

The result shows the status of both VMs (Listing 8-16).

Listing 8-16. Result When We Deploy Both VM Images

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud deployment-manager

deployments create gcp-vm-deployment --config gcp-two-vm.yaml

The fingerprint of the deployment is tReLCx9Y7aa7QzguA54V2Q==

Waiting for create [operation-1534452546303-5739392f27419-af9ff154-

2b46debe]...done.

Create operation operation-1534452546303-5739392f27419-af9ff154-2b46debe

completed successfully.

NAME TYPE STATE ERRORS INTENT

gcp-first-vm compute.v1.instance COMPLETED []

gcp-second-vm compute.v1.instance COMPLETED []

Chapter 8 Creating and Managing infrastruCture in gCp

212

 Expanding and Customizing Our Deployment
You’ve learned how to create a simple configuration file with one or two resources. That

is good, but still not sufficient to create our deployment. When we create more than one

resource in our configuration file, we might have issues related to dependencies across

the resource, for example, when we use the first network we created. By default, GDM

creates all the resources in parallel, which means we are not sure to have the resource in

place when we need it.

GDM helps us to define the order in which to use the resource. We can create a

hierarchy for the resource, and GDM decides the order and the parallelism to install the

resource. We can’t push the order of deployment, but we can define the dependencies of

the types in a dynamic way. We can do that by defining a reference.

The reference is used to force Deployment Manager on the dependencies and then

create a specific resource only when all the dependencies are available. Using a reference

in our deployment offers us some advantages.

• We can give the deployment manager an order to resolve the resource.

Imagine, for example, that we must create a VM with a connected

network. Deployment Manager first creates the network and then,

when the network is available, creates the VM.

• We can use the reference for self-reference to an internal resource of

the configuration. We can use a selfLink to indicate an internal

resource. For example, we can add a reference to a specific IP

network and use it for defining our network

It is possible to indicate a resource in our configuration file using the syntax

$(ref.RESOURCE_NAME.PROPERTY)

Imagine that we want to specify a family of IP addresses for our previous VM. To do

this, we first must create the resource in the configuration file, then reference our VM to

this new resource. To create the network resource, we first must add that to the end of

the configuration file. What we add is

- name: gcp-network

 type: compute.v1.network

 properties:

 IPv4Range: 10.10.0.1/16

Chapter 8 Creating and Managing infrastruCture in gCp

213

Now that we’ve created the new network resource, we need to connect the network

interface on our previous configuration file and update it with the following code

(Listing 8-17).

Listing 8-17. Configuration File with the Two VMs and the Network

Configuration

networkInterfaces:

- network: $(ref.gcp-network.selfLink)

How we can see we use the reference for use the previous configuration

network we had created, the final file is like that:

resources:

- name: gcp-first-vm

 type: compute.v1.instance

 properties:

 zone: us-east1-b

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/f1-micro

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/debian-

cloud/global/images/family/debian-8

 networkInterfaces:

 - network: $(ref.gcp-network.selfLink)

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

- name: gcp-second-vm

 type: compute.v1.instance

 properties:

 zone: us-east1-b

Chapter 8 Creating and Managing infrastruCture in gCp

214

 machineType: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/machineTypes/g1-small

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 sourceImage: https://www.googleapis.com/compute/v1/projects/debian-

cloud/global/images/family/debian-8

 networkInterfaces:

 - network: $(ref.gcp-network.selfLink)

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

- name: gcp-network

 type: compute.v1.network

 properties:

 IPv4Range: 10.10.0.1/16

We now try our new configuration file. The command to deploy the configuration file is

gcloud deployment-manager deployments create gcp-two-vm-network --config

gcp-two-vm-network.yaml

The result of the operations is shown in Listing 8-18.

Listing 8-18. Resource Created with the Network Reference

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud deployment-manager

deployments create gcp-two-vm-network --config gcp-two-vm-network.yaml

The fingerprint of the deployment is FTlZdQbTWsmDfmCGHfbZZQ==

Waiting for create [operation-1534455595680-5739448b44101-0e70d587-

5dc88e00]...done.

Create operation operation-1534455595680-5739448b44101-0e70d587-5dc88e00

completed successfully.

Chapter 8 Creating and Managing infrastruCture in gCp

215

NAME TYPE STATE ERRORS INTENT

gcp-first-vm compute.v1.instance COMPLETED []

gcp-network compute.v1.network COMPLETED []

gcp-second-vm compute.v1.instance COMPLETED []

We can see that the new IP assigned to the VM simply opens the Google Cloud

Console and goes to the Google Compute Engine section. This indicates both the

instance and the new IP assigned (see Figure 8-3).

The new internal IP is now one of the family we previously defined in the

network. Because we have defined the resource, the VM and the network are in only

one configuration file. If we go to the Deployment Manager page, we see only one

configuration (Figure 8-4).

Figure 8-3. The two VM images with the address assigned by the new network
resource

Figure 8-4. The Deployment Manager page, showing the new configuration file

Chapter 8 Creating and Managing infrastruCture in gCp

216

Now we can see that there is only one deployment file, but inside it, we can create

more than one resource. This is helpful when we construct our infrastructure. We can

create more than one configuration file and deploy with different resources inside it.

We can now clean the environment and learn how to build a template for creating a

more dynamic configuration, using Python. To clean the environment, we can use the

following command:

gcloud deployment-manager deployments delete gcp-two-vm-network

 Creating a Template for Our Deployment
With GDM, it is easy to create IaC, using a simple configuration file. We can use the

reference to manage the dependencies across the resource, but if we want to have more

flexibility, we must use a template.

Using a template gives us the flexibility of using a programming language to define

and create our resource. A template is a separate file write using the Jinja syntax or the

Python language. In our example, we use the Python language. What we want to do is

re-create the configuration file we developed for the two VMs with the network, using the

Python syntax. When we define a Python template, we must respect two simple rules.

• We must define a GenerateConfig() or generate_config() file. In

case we define both, Python uses generate_config().

• We must return a valid YAML file.

When we use a template for our configuration, we can create a module, which we

can reuse to define pieces of code. We can use the template to define a resource we use

in our configuration.

To show how to create a template for defining both VMs in a separate file, the first file

looks like Listing 8-19.

Listing 8-19. A Template Resource Created with Python

COMPUTE_URL_BASE = 'https://www.googleapis.com/compute/v1/'

def GenerateConfig(unused_context):

 """Creates the first virtual machine."""

 resources = [{

Chapter 8 Creating and Managing infrastruCture in gCp

217

 'name': 'gcp-first-template',

 'type': 'compute.v1.instance',

 'properties': {

 'zone': 'us-east1-b',

 'machineType': ".join ([COMPUTE_URL_BASE, 'projects/

practicaldevopsgcp-197023',

 '/zones/us-east1-b/',

 'machineTypes/f1-micro']),

 'disks': [{

 'deviceName': 'boot',

 'type': 'PERSISTENT',

 'boot': True,

 'autoDelete': True,

 'initializeParams': {

 'sourceImage': ".join([COMPUTE_URL_BASE, 'projects/',

 'debian-cloud/global/',

 'images/family/debian-8'])

 }

 }],

 'networkInterfaces': [{

 'network': '$(ref.a-new-network.selfLink)',

 'accessConfigs': [{

 'name': 'External NAT',

 'type': 'ONE_TO_ONE_NAT'

 }]

 }]

 }

 }]

 return {'resources': resources}

The Python code defines in the method GenerateConfiguration() the YAML file for

the resource we want to define. The interesting part in this code is the line

'network': '$(ref.a-new-network.selfLink)',

We essentially use a reference to define the configuration file inside our template.

This starts to reveal the true power of the template.

Chapter 8 Creating and Managing infrastruCture in gCp

218

The template is essentially a piece of configuration code that we can reuse. When we

use a template, our configuration file imports the template and then uses it to define the

resource. This allowed us, for example, to create a common component, such as a VM,

load balancer, Docker configuration, etc., and reuse it across the project.

Because the file is saved in a Python file, it can be easily saved and versioned in our

code repo. We can define different versions of our infrastructure and release the version

we need and, of course, roll back the infrastructure. For testing, we can use one VM for

now, and we can create the first version for our configuration file, which would look like

Listing 8-20.

Listing 8-20. The First Version of Our Configuration File Using the Template

imports:

- path: gcp-first-template.py

resources:

- name: gcp-vm-1

 type: gcp-first-template.py

- name: gcp-network

 type: compute.v1.network

 properties:

 IPv4Range: 10.10.0.1/16

The configuration file created in this case is very compact and easy to read. The

configuration file first imports the template. This is done with the imports section.

imports:

- path: gcp-first-template.py

Under the import, we indicate the path. This indicates the file with the path we want

to import in our configuration file. When we have imported the file, we can use it in the

resources section. As with any other resource, we define the name and the type of the

resource. In this case, the type is the template file we had imported previously.

- name: gcp-vm-1

 type: gcp-first-template.py

This line defines and uses our template. We can define as many templates as we

want in our configuration file. These can be used to define very complex configuration

files and to reuse the resource we defined previously.

Chapter 8 Creating and Managing infrastruCture in gCp

219

This file uses resources defined in the template file. This is not exactly more reusable,

because we give the same type for all the resources. For a complete reusable template, we

must modularize it. We can do that by using the environment variable in the template.

 Defining the Template with the Environment Variable
With the environment variable, we can create a template that we can reuse across

zones, areas, and projects. The environment variable is defined in the configuration

file and then can be personalized for the specific project we want to create. We can

refer to an environment variable using the following code in the template: context.

properties["property-name"]. If we want to define the property in the configuration

file, we can use context.env["environment name"], in case we want to use the

environment variable of our Google Cloud. We can now change our previous template

and define an environment variable for our resource (Listing 8-21).

Listing 8-21. Adding an Environment Variable to the Template

def GenerateConfig(context):

 """Creates the virtual machine with environment variables."""

 resources = [{

 'name': context.env['name'],

 'type': 'compute.v1.instance',

 'properties': {

 'zone': context.properties['zone'],

 'machineType': ".join(['https://www.googleapis.com/compute/v1/',

 'projects/practicaldevopsgcp-197023/

zones/',

 context.properties['zone'], '/

machineTypes/',

 context.properties['machineType']]),

 'disks': [{

 'deviceName': 'boot',

 'type': 'PERSISTENT',

 'boot': True,

 'autoDelete': True,

 'initializeParams': {

Chapter 8 Creating and Managing infrastruCture in gCp

220

 'sourceImage': ".join (['https://www.googleapis.com/

compute/v1/', 'projects/',

 'debian-cloud/global/',

 'images/family/debian-8'])

 }

 }],

 'networkInterfaces': [{

 'network': '$(ref.' + context.properties['network']

 + '.selfLink)',

 'accessConfigs': [{

 'name': 'External NAT',

 'type': 'ONE_TO_ONE_NAT'

 }]

 }]

 }

 }]

 return {'resources': resources}

In this template, we add the following environment variables:

• context.properties['network']

• context.properties['zone']

• context.properties['machineType']

These variables are used to create a different value in our template. The different

value, in this case, enables us to deploy the resource in a different zone, with a different

machine type and different network. We need to adapt the configuration file, to use the

environment variable. In the configuration file, we must add the variable and define the

value we want to assign to it. The new configuration file is shown in Listing 8-22.

Listing 8-22. New Template with the Environment and Properties Files Defined

in the Context

COMPUTE_URL_BASE = 'https://www.googleapis.com/compute/v1/'

def GenerateConfig(context):

 """Creates the virtual machine with environment variables."""

Chapter 8 Creating and Managing infrastruCture in gCp

221

 resources = [{

 'name': context.env['name'],

 'type': 'compute.v1.instance',

 'properties': {

 'zone': context.properties['zone'],

 'machineType': ".join([COMPUTE_URL_BASE, 'projects/',

 context.env['project'], '/zones/',

 context.properties['zone'], '/

machineTypes/',

 context.properties['machineType']]),

 'disks': [{

 'deviceName': 'boot',

 'type': 'PERSISTENT',

 'boot': True,

 'autoDelete': True,

 'initializeParams': {

 'sourceImage': ".join([COMPUTE_URL_BASE, 'projects/',

 'debian-cloud/global/',

 'images/family/debian-8'])

 }

 }],

 'networkInterfaces': [{

 'network': '$(ref.' + context.properties['network']

 + '.selfLink)',

 'accessConfigs': [{

 'name': 'External NAT',

 'type': 'ONE_TO_ONE_NAT'

 }]

 }]

 }

 }]

 return {'resources': resources}

We need to update the configuration file to send the new variable to the template file.

The new configuration file is shown in Listing 8-23.

Chapter 8 Creating and Managing infrastruCture in gCp

222

Listing 8-23. New Configuration File Created

imports:

- path: gcp-first-template.py

resources:

- name: gcp-vm-1

 type: gcp-first-template.py

- name: gcp-network

 type: compute.v1.network

 properties:

 machineType: f1-micro # Sets the 'machineType' template property

 zone: us-east1-b # Sets the 'zone' template property

 network: gcp-network # Sets the 'network' template property

 IPv4Range: 10.10.0.1/16

We can use the same command to deploy the resource. Using the environment and

property variables helps to define a fully reusable template. We can define our variable

and reuse it across zones, regions, and, of course, the project.

 Conclusion
In this chapter, we saw how to define IaC, using GDM. GDM is a very powerful tool for

creating infrastructure, using a definition file. Using a file to define our infrastructure

allows versioning of our infrastructure. In GDM, we can define the infrastructure,

using a template. A template is a reusable piece of code that defines the resource of

our infrastructure. Templates can be modularized, adding some environment and

property value. The property values are defined in the configuration files. Conversely,

the environment variables are gotten directly from GCP. IaC is one of the most important

practices of DevOps, and it is crucial to learn, in order to define, develop, and maintain

our infrastructure.

Chapter 8 Creating and Managing infrastruCture in gCp

223
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_9

CHAPTER 9

Identity and Access
Management with Google
Cloud Platform
Today, identifying a user is important to guaranteeing a correct level of privacy for

our application. In this context, identity and access management (IAM) becomes

increasingly important. Google Cloud Platform (GCP) offers a good solution for defining

our IAM and guaranteeing the privacy requirements of our resource.

 What Is Identity and Access Management?
IAM is referred to as a framework for identifying users and allowing access to a resource

only to the authorized user. IAM is an umbrella term to describe a set of software and

rules that define the level of access a user has. With IAM, we define the level of access

given to every user.

The user can be a customer, in which case, we can talk about customer identity

management (CIM). For an employer, we talk about employer identity management

(EIM). IAM, CIM, and EIM all have in common the same core objective: to uniquely

identify the user and ensure that the user is exactly who he/she is.

When we think of an IAM framework, we must consider two main components:

• Software

• Governance

224

The software is all the tools we need to put our framework in place, from an IT point

of view. Governance is the rules we define to authorize user access to a specific resource.

When we put in place a new IAM framework, it is because we want to achieve

some specific goal. An IAM system is used to identify the user and then authenticate

the user on the system when the user is authenticated. Based on the rules defining the

governance, we can identify what IT resources the user is allowed to use. This creates a

digital entity for the user.

 Defining a Digital Entity
Every day, we learn about new cyber fraud or cyberattacks. This raises some critical

imperatives. We must be sure to know the people we interact with. Using only an e-mail

address and a password to identify a user is not sufficient, because a hacker can steal this

information and fake the login.

When we create a digital entity, we want to be sure who exactly our users will be. For

this, we collect a set of digital entities directly from the browser or mobile phone. We

use all this data to identify the user. Having collected all the data, when a user tries an

action, for example, a new login, the system compares the old data against the new data,

using specific convergence patterns. This checks common points and, using specific risk

patterns, for example, risk-based authentication (RBA), returns a number. This number

is used to uniquely identify the user.

When we create a digital entity, we associate with the entity one or more identity

attributes. These attributes are connected with the entity. For example, this can include

medical data, e-mail, telephone numbers, usernames, bank transactions, etc. All this

data is collected and grows every time we use our digital entity. All these transactions

are used by an algorithm to identify the user. Imagine, for example, that we have only

online bank transactions from the same browser, at the same time and from the same

location. If we change the browser, time, and location one time, the system can challenge

us, by asking, for example, that we introduce another code or respond to some security

questions. A basic example of challenging a user is 2FA, or two-factor authentication.

When we use a Google Authenticator for access to a site such as Facebook, the system

challenges us by asking for another code after the password. This is used to authenticate

our identity and allow us access to the site.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

225

 The Importance of Digital Identity
Today, almost everyone has a digital life—e-mail, a social media account, a smartphone,

and probably an online banking account. All these define our “digital life,” a life in which

we are identified only by our e-mail and, possibly, a password. But are these really

sufficient for recognizing us?

In the United States alone in just the past three years, the incidence of identity theft

has increased rapidly. A study conducted by Javelin Strategy & Research shows that since

2012, nearly 60 million US citizens were victims of identity theft, representing a total of

more than $100 billion stolen, and in 2017, the number of American victims of identity

theft rose to 16.7 million.

Note the complete report is available at www.javelinstrategy.com/
coverage-area/2018-identity-fraud-fraud-enters-new-era-
complexity#.

Based on research conducted by Cisco, every person will have an average of four

devices connected to a network in 2021. What that number makes clear is why digital

identity will become increasingly important.

If we think about what we do daily, we can estimate how much data we move across

a network, primarily the Internet, in the conduct of our daily activities. Examples might

include using Google Maps to find a faster or alternative route to work, or using a credit

card to purchase an ice-cold Frappuccino at our favorite coffee shop, or simply checking

for e-mail on our smartphone. For these basic activities, we move masses of data across

a network. All this data forms an “entity” that is connected to our digital life, because it

identifies our tastes, locations, and banking details.

In this context, defining a secure digital identity is crucial. This is because when we

make a transaction, the transactee must be sure we are who we are supposed to be.

Now we know that a digital entity is a set of attributes that define us. Every time we

order an ice-cold Frappuccino, log in to our e-mail account, or post on our preferred

social media site, we are adding an entity to our digital life, and this grows our digital

entity. Our digital entity is essentially something similar to our DNA. When we think of

developing a cloud application, we must put in place a set of rules to uniquely identify

the user and protect his/her digital entity.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

https://www.javelinstrategy.com/coverage-area/2018-identity-fraud-fraud-enters-new-era-complexity#
https://www.javelinstrategy.com/coverage-area/2018-identity-fraud-fraud-enters-new-era-complexity#
https://www.javelinstrategy.com/coverage-area/2018-identity-fraud-fraud-enters-new-era-complexity#

226

 IAM and Digital Entity
IAM assumes a very important role in defining and protecting digital entity. An IAM

system can involve four basic functions:

• Pure identification

• User access

• Authorization

• Federated identification

These four functions cover every aspect of IAM. The first and most important function

for defining our digital entity is pure identification. This can be built using small sets of

axioms that bring everything together to define the unique identity of the user. Because

we can define the user without constraints, we define a “pure identity.” Because there are

no constraints, the user is not specifically defined for a specific system. When we define a

pure identity, we essentially define a set of attributes used for a new digital entity.

We can see from the graph in Figure 9-1 how we create our digital entity. We can

see how our identity corresponds to a digital entity for a specific user. When we have

identified the user, we can use the same digital identity for different accounts, for

example, mail accounts, bank accounts, etc. We can see that our identity is built using

different attributes. These attributes are used to uniquely identify us. In particular, if we

think of an RBA system, attributes give us the code for uniquely identifying the user.

Entity

User Digital Entity
Correspond to

Identity

Defined by

Attributes

IP Address

Latitude

Longitude

GMT

etc.

e-mail

bank

Google

Apple

Figure 9-1. How we define and create our digital identity

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

227

Note Risk-based authentication is a non-static authentication system. with this
type of authentication, a system collects specific information about the user and
assigns to every piece of information a “weight.” Based on the weight of every
attribute, the system makes a decision about whether to allow a user to enter the
system. we can see the result of this decision, when, for example, google or our
bank asks us to respond to security questions when we try to log in from another
country.

The other functionality of an IAM system is user access. User access connects a

specific user to his/her digital entity. We use the pure identification to define whether

the user can access the system. In the event of access, we create a digital entity, used

across the system.

User access involves another functionality of the IAM system: authorization. When

we talk about authorization, we must think of all the operations, groups, and resources a

user is allowed to access in a system.

The last function of an IAM system is federated identification. Federated

identification is normally referred to by the term single sign-on (SSO). When we think

of federated identification, we use our digital entity to access an external resource of our

system. This means we use our digital entity without entering a password.

An IAM system is one born to manage the user. This means we can create, delete,

and update the identity of the user. These functionalities create an entity and allow the

user to execute an operation on the system. The main components and functionality of

an IAM system are

• Authentication

• Authorization

• Roles

All these operations and functionality are connected and managed by the IAM. Our

digital entity becomes our digital DNA, a unique quality that allows us to move and

navigate within the system.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

228

 Authentication
Authentication is the first step in the IAM system. Authentication is the phase at which

we recognize the entity and verify what/who it claims to be. This phase occurs when the

user tries to enter a system, for example, inserting a username and password, and the

system authenticates the user. In this phase, we define our digital entity.

 Authorization
Authorization is the second step in every IAM system. Authorization is the phase during

which we define what the digital entity can do. This is defined in the context of every

specific application. For example, the user can be authorized to run the financial report

but can’t modify it. The authorization is defined by a set of rules. These rules define what

our entity is allowed to do.

 Roles
Roles are the basis for defining what the user is authorized to do. Roles are a set of groups

and operations. The roles are used to manage in a central way the operations users

perform. Every entity has some roles attached to it, and this defines the operations or

groups the entity has authorized to execute or access.

 IAM in Google Cloud Platform
Having a correctly defined IAM in the cloud is essential, if we want to have an

effective IAM. This is because of the nature of the application. In the cloud, we have

all the user access essentially on the same database and the same shared resource.

In this context, having a correct granularity defined for the resource is essential for

defining access to it.

GCP offers a very easy and advanced system to manage the IAM. It is possible to have

very fine granularity, and this allows an administrator to describe a personalized access

for the resource in the cloud and in the Google ecosystem. With GCP, it is possible to

define an IAM that lets us manage who, in terms of identity, has what access, in terms of

roles, on which resource. Google Cloud IAM allows us to grant access to specific members,

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

229

assigning to every member one or more roles. The assigned member and roles are used

to answer the three questions of the IAM:

• Who

• What

• Which

The members of the Google IAM can be one of the following types:

• Google Account

• Service Account

• Google Group

• G Suite Domain

• Cloud Identity Domain

Google Account can be made up of any members with and e-mail address connected

with a Google account. It can be an identity associated with google.com or any other

domain. This includes a developer, an administrator, or any other person interacting

with GCP.

The second members are the Service Account. This is essentially an account

belonging to specific applications. It is used for calling the API instead of the user. It is

possible to create as many service accounts as we require. These are used to logically

segment the different applications.

The Google Group is a named collection of Google Accounts and Service Accounts.

Every group is identified by a unique e-mail. Google Group allows us to create a group

and associate more than one user to it. With the group, it is possible for an administrator

to associate a role to a number of users at the same time.

The G Suite Domain is the grouping for all the Google Accounts. This represents the

Internet domain name of an organization. When we create a G Suite Domain, we can

create as many users as we need in the domain. This is a convenient way to group users

under specific roles.

The last members are the Cloud Identity Domain. This represents a virtual group of

users. As with the G Suite Domain, we can use this group to easily give access to a group

of people.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

230

In addition to the preceding members, we have some special identifiers. These are

used to represent the user connected with the Google Account. These identifiers are:

• allAuthenticatedUsers: This is a special identifier and represents

anyone who is authenticated by a Google Account or a Service

Account. This identifier doesn’t represent all the anonymous users or

unauthenticated users.

• allUsers: This is a special identifier for grouping all users,

authenticated or not. Some GCP APIs restrict access to users with the

identifier allUsers. In this case, the group for the users requires only

authenticated users.

When Google IAM must authenticate a user, it indicates what operation the user

is allowed to execute, based on a specific set of rules defined. These rules are basically

composed of three elements:

• Resource

• Permissions

• Roles

Resource is used to grant access to a specific GCP resource. Examples of these include

projects, Compute Engine, and Cloud Storage. Generally, when we assign a permission to

a project, all the resources under the project have the same permission. Some resources

are different, for example, the Cloud Pub/Sub. In this case, we use a more detailed

granularity to assign different permissions to a publisher but not to a subscriber.

An important concept we must keep in mind is permissions. This defines what

operation a user is allowed to execute in a specific resource. In the Cloud IAM, we can

define a permission using the following syntax:

<service>.<resource>.<verb>

For example, pubsub.subscription.consume, when we define a permission, is

normally, but not always, connected with a 1:1 REST method. This means that, normally,

every GCP service is exposed to a REST service that is itself exposed.

The last element defined in the GCP IAM is roles. A role is a collection of

permissions. In GCP IAM, we can assign a permission directly to a user, but we can

assign a role to a specific user and, with that, define all the sets of permissions assigned

to the role.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

231

In Google IAM, there are three primary types of roles:

• Primitive roles

• Predefined roles

• Custom roles

Primitive roles are the historical roles present in GCP. They are

• Owner

• Editor

• Viewer

These roles existed before the introduction of the Google Cloud IAM and are

concentric. The owner roles include the roles of editor and viewer. The primitive roles

and the permissions associated with them are summarized in Table 9-1.

Another family of roles is predefined roles. These expand the primitive roles and allow

us to create finer granularity for the specific service functionality. With predefined roles,

we can assign a user-specific role to a specific application. A user can be assigned more

than one role. Predefined roles allow us to create roles for all projects in GCP, for example:

• Project

• App Engine

• BigQuery

Table 9-1. The three types of rolse in IAM

Role Name Role Title Permission

roles/

viewer

Viewer this role allows the user to read only actions but doesn’t modify the

existing data.

roles/

editor

editor this role has all Viewer permissions, plus the permission to modify

the state of the data.

roles/owner owner this role also has the editor permission. In addition, it can execute

the following:

 · Manage roles and permission

 · set up the billing project

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

232

• Cloud BigTable

• Cloud Billing

• Cloud Dataflow

• Cloud Dataproc

• Cloud Datastore

• Dialogflow

For every project, we can define a set of specific roles. This allows, for example, a

user to have the admin roles for the Kubernetes Engine and the Viewer roles for the

Compute Engine.

The last type of role we can define on GCP IAM is custom roles. This includes all the

roles we define, tailored to our system. When we create a custom role, we can mix one

or more roles or get a specific permission from one role and mix it with another. When

we create a custom role, we define a new specific role that is designed to satisfy our

governance needs.

Note Custom roles are very powerful but require attention. first, we must be
sure that the roles we want to create can be applied to the object we want to
associate with them. not all objects can have the same types of permissions. this
is because not all objects are the same. you will see how to create a custom role
later in the chapter.

 Google IAM Policy
First, to learn how to create the roles in GCP, we must understand how the IAM policy

works. To create a new role, we must articulate an IAM policy. This is a collection of

statements used to define who has what type of access. A policy is connected to a

resource and is used to enforce control of the access to the resource.

The graph in Figure 9-2 shows the structure of the Google IAM. Every IAM in Google

is represented by the IAM policy object. This object is created by a list of bindings. Every

bind is a list of members and their associated roles. An example of an IAM policy is

shown in Listing 9-1.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

233

Listing 9-1. A Sample of an IAM Role

{

"bindings": [

 {

 "role": "roles/storage.objectAdmin",

 "members": [

 "user:cgpdevops@devops.com",

 "serviceAccount:my-other-app@appspot.gserviceaccount.com",

 "group:admin@devops.com",

 "domain:gcpdevops.com"]

 },

Figure 9-2. The Google IAM structure

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

234

 {

 "role": "roles/storage.objectViewer",

 "members": ["user:test@devops.com"]

 }

]

}

The code to create a new IAM policy is very simple. First, we define the role: "role":

"roles/storage.objectAdmin". The format for the role is roles/<name of the role>.

When we have to define which role we want to use, we can define the member with

which the role is associated.

"members": [

 "user:cgpdevops@devops.com",

 "serviceAccount:my-other-app@appspot.gserviceaccount.com",

 "group:admin@devops.com",

 "domain:gcpdevops.com"]

This section associates a Google member to the role. In the preceding code, we

associate all four members with the same role. This is because we can associate one or

more members to one or more roles.

 Creating and Managing the IAM Policy
The goal of an IAM policy is to allow a user to have a certain level of access in the project.

Until now, I have discussed the general concept of an IAM policy. It’s now time to learn

how to create an IAM policy to manage the security of our cloud. The IAM policy is used

to grant access by a specific user to a specific resource. The IAM policy can be created

in two ways: using the GCP console and sending the JSON file with the policy or by the

setIamPolicy() method.

A common pattern used to create the policy is to read the actual policy and then

update the policy. This can create a problem. Imagine, for example, the following basic

scenario. Two users must update the IAM policy to an object at the same time. User1

sends the request, and with a little delay, User2 sends the same request. User1 receives

the policy in return and then updates the policy. User2 has the older policy and then

decides to update the IAM policy, which overrides the policy set by User1.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

235

This scenario is more common than you might think. To solve this problem in

Google IAM, we can use etag. This value allows us to change the IAM policy only if set.

It is used to prevent the concurrency scenario described previously. Google compares

the etag associated with the policy with the new one. If the etag is different, the role

is not updated. First, to update the policy, we must collect the actual policy using the

getIamPolicy() method. This gives in return the policy with the actual etag. We can

use the etag we gather to update the policy. In case the previous policy doesn’t have the

etag, it doesn’t send an etag. This is because Google doesn’t update the policy.

Note the etag value is very useful when we want to manage roles, but not all
roles have an etag. first, to update a policy, we must read the actual policy and,
if required, get the etag value, but not all policies have the etag set. In case the
policy doesn’t have an etag, we can’t set an etag for the policy. this is because
google rejects the update. If we want the entire policy to have an etag, we can
destroy and re-create the policy with the correct etag value.

We can update the policy in some different ways.

• JSON file via gcloud

• API via REST

• API via Java code

• Console

Now you will see how to create roles using the different means allowed by Google.

 Creating a JSON File
The first way to creating a new IAM policy is to use a JSON file to define it. This way is

probably the most common and fastest, because we have only to create the JSON file and

use the GCP console. Using this approach, we can easily integrate the IaC. We can create

our JSON file and store it where we store the file to define the infrastructure and, with

every release we make, release the new IAM policy. For modifying the actual IAM policy,

we can connect to the gcloud or Google Console and execute the command for reading

the actual policy and write in a JSON file. The command is

gcloud projects get-iam-policy <your project name> --format json > iam.json

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

236

This command creates a new JSON file in our path, with the actual policy inside. We

can open the file and read what we actually have. In my case, it is like that in Listing 9-2.

Listing 9-2. The Actual IAM Policy Connected with the Project

{

 "bindings": [

 {

 "members": [

 "serviceAccount:service-152799671751@compute-system.iam.

gserviceaccount.com"

],

 "role": "roles/compute.serviceAgent"

 },

 {

 "members": [

 "serviceAccount:service-152799671751@container-engine-robot.iam.

gserviceaccount.com"

],

 "role": "roles/container.serviceAgent"

 },

 {

 "members": [

 "serviceAccount:152799671751-compute@developer.gserviceaccount.com",

 "serviceAccount:152799671751@cloudservices.gserviceaccount.com",

 "serviceAccount:service-152799671751@containerregistry.iam.

gserviceaccount.com",

 "serviceAccount:service-152799671751@containerregistry.iam.

gserviceaccount.com"

],

 "role": "roles/editor"

 },

 {

 "members": [

 "user:pierluigi.riti@gmail.com"

],

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

237

 "role": "roles/owner"

 }

],

 "etag": "BwVt1uqAKmk=",

 "version": 1

}

You can see that the IAM policy defines an etag and the version. The version is

read- only. We don’t have to update the version. To create a new policy, we open the IAM

file with an editor and add new members or remove members to the policy.

If we want to add another user account to be the owner of our GCP, we must create

new members and associate them with the role. We must add the following to our IAM

code:

{

 "members": [

 "user:example1@gmail.com"

],

 "role": "roles/viewer"

}

When we add this section, we associate with the mail example1@gmail.com the roles

of the viewer. We can update our IAM file and then execute it. To execute the file, we

must use this command:

gcloud projects set-iam-policy <your project name> iam.json

The result of the command shows the user added in Google Cloud (Listing 9-3).

Listing 9-3. The Cloud IAM Policy Result

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud projects set-iam-policy

practicaldevopsgcp-197023 iam.json

Updated IAM policy for project [practicaldevopsgcp-197023].

bindings:

- members:

 - serviceAccount:service-152799671751@compute-system.iam.gserviceaccount.com

 role: roles/compute.serviceAgent

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

238

- members:

 - serviceAccount:service-152799671751@container-engine-robot.iam.

gserviceaccount.com

 role: roles/container.serviceAgent

- members:

 - serviceAccount:152799671751-compute@developer.gserviceaccount.com

 - serviceAccount:152799671751@cloudservices.gserviceaccount.com

 - serviceAccount:service-152799671751@containerregistry.iam.

gserviceaccount.com

 - user:example.1@gmail.com

 role: roles/editor

- members:

 - user:pierluigi.riti@gmail.com

 role: roles/owner

- members:

 - user:example.1@gmail.com

 role: roles/viewer

etag: BwVzp_aDURQ=

version: 1

Note with the Json file, it is not possible to create a user-owner. this is possible
only using the setIamPolicy method. this is because when we invite a new owner,
he or she must accept the invitation in the e-mail and join the google Cloud account.

In addition to using a JSON file, it is possible to use the command line to add a single

member with the role. This is possible using the gcloud projects add-iam-policy-

binding command. This adds a single user to the binding. The command for that is the

following:

gcloud projects add-iam-policy-binding practicaldevopsgcp-197023 \

 --member user:example2@gmail.com --role roles/editor

The command inserts another user with the existing member but doesn’t create a

new member. To create a new member, we must use an existing feature in the Cloud IAM.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

239

 Using the API via REST
Another way to modify the Google IAM is to call the setIamPolicy. This is a RESTful web

service. We must invoke it and send the body to update the IAM. The end point for the

REST call is

https://cloudresourcemanager.googleapis.com/v1/projects/<add your project

name>:setIamPolicy

We must create the body for the request. In this case, we must create a policy,

because by setting a new policy, the format is similar to the previous one used for the

JSON (Listing 9-4).

Listing 9-4. The setIamPolicy Body

{

 "policy":{

 "bindings":[

 {

 "role":"roles/owner",

 "members":[

 "user:email1@gmail.com",

 "user:email2@gmail.com",

 "user:email3@gmail.com"

]

 },

 {

 "role":"roles/editor",

 "members":[

 "serviceAccount:example1app@appspot.gserviceaccount.com"

]

 }

]

 }

}

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

240

When we send the request, Google IAM parses it and creates a specific response.

The result of the response is shown in Listing 9-5.

Listing 9-5. The Response from the Google IAM API

{

 "bindings":[

 {

 "role":"roles/owner",

 "members":[

 "user:email1@gmail.com",

 "user:email2@gmail.com",

 "user:email3@gmail.com"

]

 },

 {

 "role":"roles/editor",

 "members":[

 "serviceAccount:my-other-app@appspot.gserviceaccount.com"

]

 }

]

}

Note when we use the apI, we must be sure to integrate the oauth 2.0 in our
system. this is because in another case, the request was rejected. this is another
layer of security managed by google to improve security related to the cloud.

 Creating the API via Java Code
GCP offers an API to create an IAM. This library is used in our Java project and allows us

to create or modify an IAM policy. The library is

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

241

import com.google.api.services.cloudresourcemanager.model.Policy;

import com.google.api.services.cloudresourcemanager.model.SetIamPolicyRequest;

import com.google.api.services.cloudresourcemanager.model.GetIamPolicyRequest;

import com.google.api.services.cloudresourcemanager.model.Binding;

This object allows us to create the IAM policy and the binding necessary to manage

it. Following is a snippet of the code we can create using this object (Listing 9-6).

Listing 9-6. Code Snippet for Using the Java Code

import com.google.api.services.cloudresourcemanager.model.Policy;

import com.google.api.services.cloudresourcemanager.model.

SetIamPolicyRequest;

import com.google.api.services.cloudresourcemanager.model.

GetIamPolicyRequest;

import com.google.api.services.cloudresourcemanager.model.Binding;

import java.util.LinkedList;

import java.util.Arrays;

...

String[] myViewers = new String[] {"user:testviewer1@gmail.com",

 "user:testviewer2@gmail.com"};

// The name of the role, using the format `roles/<role-name>`.

String targetRole = "roles/viewer";

Policy policy =

 client.projects().getIamPolicy(projectId,

 new GetIamPolicyRequest()).execute();

Binding targetBinding = null;

// Make a local copy of the bindings for modification.

LinkedList<Binding> bindings =

 new LinkedList<Binding>(policy.getBindings());

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

242

// Search for the existing binding having role name of

// targetRole.

for (Binding binding : bindings) {

 if (binding.getRole().equals(targetRole)) {

 targetBinding = binding;

 break;

 }

}

// If no matching targetBinding is found, construct a new Binding object

// and add it to the bindings list.

if (targetBinding == null) {

 targetBinding = new Binding();

targetBinding.setRole(targetRole);

bindings.add(targetBinding);

}

// Finally, set the list of members as the members of targetBinding.

targetBinding.setMembers(Arrays.asList(myViewers));

// Write the policy back into the project by calling SetIamPolicy.

SetIamPolicyRequest setIamPolicyRequest = new SetIamPolicyRequest();

 setIamPolicyRequest.setPolicy(policy);

client.projects().setIamPolicy(projectId,

 setIamPolicyRequest).execute();

...

 Using the Console
The last way to create a new policy is to use the GCP Console. This is the simplest way to

manage the members and policy.

To manage the role and policy via the console, follow these simple steps:

 1. Open the Google Console and select IAM & admin from the menu

(see Figure 9-3).

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

243

 2. Then select IAM. This opens the IAM board, from which it

is possible to manage the Google IAM. From the board, it is

possible to add or remove members or roles, manage identity, etc.

(Figure 9-4).

Figure 9-3. The IAM menu on the GCP Console

Figure 9-4. The IAM permission board

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

244

The board allows us to create and maintain all the roles in the cloud. We can navigate

the roles, permissions, and identity in a simple way. Using the board allows us to manage

the role and the other entities involved in the IAM policy efficiently.

 Conclusion
This chapter discussed the Google IAM policy. First, I introduced what IAM is and why

it is important in a cloud environment. After I presented different ways to create the IAM

in GCP. Google IAM offers a very flexible and powerful tool for managing the security

of an entire system and the flexibility to initiate governance based on a specific project

level. We can easily design our governance model and create and maintain it via a JSON

file. This allows us to improve our IaC system and integrate it with our security policy.

Combining the Google IAM policy with IaC can drastically reduce the security issues in

the system, which means more security and fewer SOC security exceptions.

Chapter 9 IdentIty and aCCess ManageMent wIth google Cloud platforM

245
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4_10

CHAPTER 10

Network Configuration
and Management in GCP
When we refer to a cloud environment, we are talking about resources shared over a

network. These resources must be configured and managed over a network, so we must

ensure the level of security required to expose and maintain them. When we create a

cloud application, we must think of having the application up 24/7. This is possible only

if we design the architecture to function reliably on the network. In this chapter, you

will see how we can design and maintain good network architecture in Google Cloud

Platform (GCP).

 Fundamentals of Networking in GCP
First, to define and manage our network, we must identify and understand how the

network is organized in GCP. In GCP, the network is divided into two main components:

• Regions

• Zones

A region is a geographical zone in which we run our resources. One region may

contain one or more zones. A resource that lives in a zone, such as a persistent disk, is

called a zonal resource. Other resources, such as an external Internet Protocol (IP), is

called a regional resource. A regional resource can be used by every resource in the same

zone. Not all resources are zonal or regional. GCP’s regional and zonal resources are

listed in Table 10-1.

246

In thinking about our architecture, we must define where to place our resource,

choosing our zone and resource carefully. This is because correct planning can help to

achieve two major goals for the network.

• Handling failures: If we distribute the resource across zones

and regions, we can use Google Cloud to design the zones to be

independent of one another in the event of failure. Every zone will be

completely independent, and a failure in one zone will not cause a

failure in the other zones. When we have a failure in one zone, we can

move the data to another zone and reach the high-availability of the

cloud.

• Decreased network latency: To reduce the latency of the network, we

must place the resource in the location nearest to us. This means that

if we want to have our application to be global, we have to reproduce

the resource in different regions.

Table 10-1. Regional and Zonal Resources in GCP

Type Resource Description

Regional Addresses A collection of any static external IP defined in the project

Regional Subnets A regional subnet is used to split addresses in the segment.

It is used to identify the subnetwork in the primary network.

Regional Regional Managed

Instance Groups

These resources are collections of homogeneous resources

spanning multiple zones in the same regions.

Regional Regional Persistent

Disks

This are used to provide durable storage and replication of data

across different zones. In case of failover, we can attach the

resource to another region, to migrate the data to the cloud.

Zonal Instances Every instance must live in a zone and can access the global

resource or resources in the same zone.

Zonal Persistent Disks A persistent disk can be accessed by all the resources in

the same zone. It is possible to attach the disk only to a live

resource in the same zone.

Zonal Machine Types These are pre-zone resources. An instance and disk can only

use machine types in the same zones.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

247

In addition to zonal and regional resources, we have some global resources. This

type of resource can be used globally across the cloud. Global resources include

• Images

• Snapshots

• VPC Network

• Firewalls

• Routes

Global resources are important because they can be used in every zone and every

region. The basic requirement for creating a network is a virtual private cloud (VPC).

This is the basic resource for exposing and creating the network architecture.

 Introduction to the Virtual Private Cloud
A VPC gives us the flexibility to scale and control the workload of the resource on global

and regional levels. When we connect our resource to GCP, we can have access to our

VPC without having to replicate the connectivity in every region. This is because the

VPC does that for us. A single Google VPC doesn’t have to access the Internet to share

the resource across different regions. A single connection point can share the resource

across regions. This reduces the complexity of our organization.

In Figure 10-1, you can see that with the Google VPC, we have different subnets.

Every subnet has an application with the internal IP. The VPC shares the IP with the

outside world, thereby sharing the network with the outside world as well.

Figure 10-1. The difference between a normal VPC and Google Cloud Platform
VPC

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

248

Another important attribute of a VPC is its ability to isolate a project. With a VPC, we

can easily separate projects and have different billing for each project. However, we can

share information via the cloud interconnect component. The VPC network is normally

referred to simply as the “network.” Every time we create a new project, it is associated

with a default network. This is essentially a virtual representation of a physical network

and provides the connectivity to all other components, such as Compute Engine or

Kubernetes Engine. Every VPC has some specific properties.

• The VPC network and all its related components, such as firewall

rules and routes, are global. They are not associated with a specific

zone or region.

• Subnets are a regional resource. Each subnet defines a range of

IP addresses.

• Traffic to and from different instances can be controlled by the

firewall rules.

• The resource can communicate across different subnets, using the

internal private IPv4 addresses. The communication respects the

firewall rules defined for the VPC.

• If we define a private IP for an instance, it can communicate with the

Google API only if we enable the Private Google Access for the subnet

in which the instance resides.

• It is possible to use the IAM roles to define who can administrate the

network.

• A network can be connected to another VPC using VPC Network Peering.

• A VPC Network can be securely connected in a hybrid environment,

using Cloud VPN or Google Cloud Interconnect.

• A VPC network supports only IPv4 unicast traffic. It doesn’t support

multicast and broadcast or IPv6 traffic. It is possible to use the IPv6 to

reach resources in the network.

• A VPC network has a maximum transmission unit (MTU) of

1460 bytes. This MTU value is offered to the instance via DHCP

option 26, per RFC 2132. Configuring the MTU for packets larger than

1460 bytes can lead to packet loss.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

249

These properties help to understand how a VPC works and what its limitations are.

Now that we know that the VPC allows subnets to talk to each other, it is important to

understand how the subnets work in GCP.

 Network and Subnets
Every VPC network consists of one or more IP ranges. These IP ranges are called

subnetworks, or subnets. Every subnet is associated with a region. A VPC network can

have one or more subnets in one or more regions. This means that we can have our

VPC network span different geographical locations, to ensure the high availability of

the cloud. This means that, in case of failure in one region, another region is available,

and we can ensure our customers of the cloud’s functionality. We can define the VPC

network in two ways:

• Auto mode: The network is created automatically across different

regions.

• Custom mode: The network is created without any associated subnet,

which makes it possible for us to define all the characteristics of our

network.

When we create an auto mode network, GCP creates a subnet for every region. The

subnet is associated with a predefined set of IP ranges in the 0.128.0.0/9 CIDR (classless

inter-domain routing) block. When a new GCP region becomes available, a new

subnet is added to this region, and the network uses the IP network associated with the

region. In addition to adding a subnet by GCP, it is possible to add a subnet to a region

manually and use an IP outside of the automatic subnet. When we create a custom mode

network, GCP doesn’t provide a default subnet. This type of network leaves it to users

to determine the power to define their network. We can use every IP range we want and

create the subnet in every region we decide to use.

When we plan our network, we must consider the strengths and weaknesses of every

type of network. This is useful for understanding what type of network is best suited to

our architecture. The auto mode network is easy to set up and use. It lends itself best to

the following use cases:

• For a subnet that is automatically created in every region

• When the predefined IP ranges don’t overlap with any IP addresses

we have configured for our architecture

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

250

On the other hand, the custom mode network offers more flexibility and better suits

a production environment. This is because we can define our ranges of IP addresses and

we plan more carefully where to create the subnet network. We can identify some basic

use cases in which the custom mode network is highly recommended.

• When we don’t have to create a subnet network automatically in

every region

• When we want to decide the range of the IP assigned to our subnet,

because the predefined IP ranges overlap with other IPs on the

network

• When we plan to connect our subnet using VPC Network, Peering, or

Cloud VPC.

 Defining the IP Range for the Subnet
When we create a custom mode network, we must design our IP ranges according to

certain rules. These rules are used to help us correctly implement the IP ranges for our

subnets.

• A subnet must have a primary address range. This range must be a

valid RFC 1918 CIDR block.

• Subnets in the same network must have a unique IP range, but

subnets in a different network, even if part of the same project, can

use the same IP range and reuse it for another network.

• When we define an RFC 1918 CIDR block, we must impose some

limitations on the IP ranges we can create.

• Subnets in the same network must have a unique IP address.

• When we connect VPC using VPC Network Peering or Cloud VPC, the

subnet must have a unique IP address.

• When we define IP ranges for an on-premise network connected via

Cloud VPN or Google Cloud Interconnect, they should not conflict

with any other IP range defined in the GCP.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

251

• It is possible to assign one or more IP address ranges to a subnet.

These ranges are reserved for the Virtual Machine (VM) instances.

These can use the RFC 1918 CIDR block and must respect the same

rules defined previously.

• We don’t have to define a contiguous IP range for the subnet we

define in the same network.

• The minimum size for the CIDR for a subnet is /29.

Note CIDR, sometimes called supernetting, is a way to allow more flexibility in
allocating an Internet Protocol (IP). This slows down exhaustion of the IPv4 address.
CIDR introduces the concept of the variable-length subnet masking (VLSM). This
technique allows us to specify an arbitrary length for the prefix. CIDR introduces a
new method to represent the IP address, called CIDR notation. with CIDR notation,
the address or routing prefix is written with a suffix indicating the number of bits of
the prefix, for example, 192.10.0.2/24 for the IPv4.

When we define a new subnet, we must be sure to have four IP addresses reserved on

its primary IP range. These reserved addresses are listed in Table 10-2.

The reserved IP addresses exist only in the primary IP address. This means that when we

define a secondary IP address, we don’t have a reserved address in the secondary address.

Table 10-2. Reserved IP Addresses for Subnets

Reserved Address Description Example

Network first IP address in the primary IP range of the subnet 10.10.1.0 in

10.10.1.0/24

Default Gateway Second IP address in the primary IP range of the subnet 10.10.1.1 in

10.10.1.0/24

Second-to-Last

Reservation

Second-to-last IP address in the primary IP range of the

subnet

10.10.1.254 in

10.10.1.0/24

Broadcast Last IP address in the primary IP range of the subnet 10.10.1.255 in

10.10.1.0/24

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

252

 Routes and Firewalls
Routes and firewalls are some of the basic components of every network. A route is a

defined pair of addresses that represent the destination and the gateway. A route is used

when we try to send a packet to a specific destination, using a specific gateway. We can

identify three types of destinations.

• Individual hosts

• Subnets

• Default

There are also three types of gateways.

• Individual hosts

• Interface or links

• Ethernet hardware address (MAC)

When we create a VPC GCP to generate a system-generated route automatically, this

route is created and managed within it, as follows:

• GCP creates a route whose destination is 0.0.0.0/0 and whose next

hop is the default Internet gateway.

• For each subnet we create, a route is created to define the path for

its resource. These subnet routes show the next hop of the virtual

network in the GCP Console. The permit for the communication is

defined by the firewall rules.

• The priority of a subnet’s route is fixed at 1000.

• An auto mode network automatically creates a route for every subnet

we create.

• For every subnet we create, a subnet route is automatically created.

• When we delete a subnet, all the routes are automatically deleted.

We can identify the route generated by the system, because the name begins with the

default-route- prefix. This helps to identify what routes are added manually and those

generated by the system. For example, if we open GCP and move to the Route section,

we can see something such as Figure 10-2.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

253

As with the default rules applied to routes, in GCP, we can find some generic firewall

rules. These rules allow us to define what traffic is allowed or denied to and from a VM.

These rules are always used, and the traffic is controlled even if we stay in our

network. This means that when we move from a private internal VM to another private

internal VM, the firewall applies the rules we previously defined. Every VPC has two

implicit firewall rules. These are not shown in the GCP Console but are used and defined

when we create a new VPC. These rules are:

• Implied allow egress rule: This rule allows egress traffic. Incoming

traffic to the destination 0.0.0.0/0 is allowed, and the priority is the

lowest possible, 65535.

• Implied deny ingress rule: This rule denies ingress traffic, if the source

is 0.0.0.0/0 and the priority is the lowest possible, 65535.

These implied rules cannot be removed, but they can be overridden. To override the

rules, we must create a new rule with a higher priority, with a priority number less than

65535. This is because both implied rules have a priority of 65535. The default network

adds some additional default rules, which can be modified or deleted, as necessary.

These rules are:

• default-allow-internal: This rule allows ingress connections for all

protocols and ports among the instances in the network. The priority

for this rule is 65534.

• default-allow-sh: This rule allows the connection on TCP with the

port 22, from any source or instance to the network. The priority for

this rule is 65534.

• default-allow-rdp: This rule allows the connection on TCP with the

port 3389. This rule has a priority of 65534 and is used to allow the

Windows Remote Desktop.

• default-allow-icmp: This rule allows the ICMP traffic for any source

or instance on the network. The priority of this rule is 65534.

Figure 10-2. Example of a default route

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

254

In GCP, some traffic is blocked by default. It is not possible to create firewall rules to

allow this traffic. The blocked traffic is

• GRE traffic

• Protocols other than TCP, UDP, ICMP, IPIP

• Egress traffic on the TCP and port 25

• Egress traffic on the TCP and port 465 or 587 (SMTP over SSL/TLS)

Having a basic knowledge of routes and firewalls is important for understanding how

to design and implement a VPC in GCN.

 Tagging Network
One very useful feature is network tagging. A network tag is an attribute we can add

in our Compute Engine VM and use with firewalls and routes, applied only on some

specific Compute Engine VM. Tags don’t need to be unique across multiple VPC

networks.

When we create a tag for our network, we can apply firewall rules or routes to a

specific set of instances. With a tag, we can

• Apply the firewall rule applicable to a specific instance, using target

tags and source tags

• Apply the routes to a specific instance, by using the tag

In GCP, every firewall has a target. By default, all firewalls have the target all

instances of the network. We can specify the instances as targets, using the target

tags or target service accounts. A target tag is used to identify the GCP VM to which the

rules are applied. The rule is applied to the primary internal IP address and to all the

instances that have the same network tag.

To create a tag in our network, we must to use this command:

gcloud compute instances add-tags <INSTANCE-NAME> --zone <ZONE> --tags

<TAGS>

This adds a new tag to the instance, which means existing tags are not deleted or

modified by the command. The result of the command is shown in Listing 10-1.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

255

Listing 10-1. Result of the add-tags Command

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud compute instances

add- tags test-tag --zone us-east1-b --tags test-tag

Updated [https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/zones/us-east1-b/instances/test-tag].

We can remove the tag, using the command remove-tags. The syntax is

gcloud compute instances remove-tags <INSTANCE-NAME> --zone <ZONE>

--tags <TAGS>

The tag is very useful when we want to apply the firewall rules or routes to a specific

set of VM instances. This allows us to have a “logical” representation of the network, and

we can easily identify what rules are applied to the specific VM.

 Implementing a VPC Network
Up to now, I have presented the theory and the basis for a VPC network, but to

understand these better, you must get your hands dirty. So, let’s start to create a VPC

network for our Google Cloud Platform. The simple way to create a VPC is to create an

auto mode network via the GCP Console. We can create a VPC with these simple steps:

 1. Connect to the GCP Console.

 2. Move to the VPC networks page (Figure 10-3).

Figure 10-3. The networking section for creating a new VPC network

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

256

 3. This opens the page from which it is possible to find all the VPC

networks and create a new one. To create a new network, just click

the CREATE VPC NETWORK button (Figure 10-4).

Figure 10-4. The button to create a new VPC network

The page for creating the VPC network is now open. On this page, we can add and

indicate all the information we need to create our VPC. First, in the appropriate field, we

must indicate the name of the network. This must be in all lowercase letters and without

spaces. We can use numbers or hyphens in the name of the network. With the name,

we can add a description of the network. This can be used to indicate the scope of the

network. When we create the name and add the description, we must create the subnet

to connect with the VPC. We can create the subnet in two ways:

• Automatic

• Custom

If we choose an automatic mode to create the VPN, we have only to select the

region for our subnet, and the GCP assigns the default IP address range for the region

(Figure 10-5).

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

257

When we opt to create custom subnets, we must indicate more values for the subnet.

We can indicate the name of the network, respecting the same rules as for the VPC. The

name must be entirely in lowercase letters, with only letters, numbers, or hyphens,

and without spaces. It is possible to add a description for the subnet. This is useful for

indicating the type and the use of the subnet.

The other parameter we need to specify for a subnet is the region where we want

to create the VPC. The region is the classic region we can use in Google Cloud. In the

IP address range section, we can identify the private IP range for our VPC. It is always

possible to add a second IP range. In this case, we can indicate a name and the IP range

we want to use. The last two options for our subnet are

Figure 10-5. The automatic subnet creation options

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

258

• Private Google access: This option indicates if our VPC can access

other services without assigning an external IP.

• Flow logs: This option is used to generate the log of the subnet. It

doesn’t slow down any service but generates Stackdriver traffic and

can improve the cost of the service (Figure 10-6).

Figure 10-6. The option for generating the custom subnet

The last option is the dynamic routing mode. This option is used to determine which

subnets are visible in the cloud routers. We can set two types of routing:

• Regional

• Global

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

259

If we select regional routing, Google Cloud Router adverts and propagates our subnet

in the region where the subnet is defined. With global routing, Cloud Router adverts all

the subnets defined in our VPC to the on-premises network. Cloud Router propagates the

learned route across all the regions of our VPC. With all the options set, we can click the

Create button, and this creates the VPC. We can see the created network in our Google

Console (Figure 10-7).

Figure 10-7. The Google Console displaying the information about the network
we just created

Another way to create a VPC is to use the gcloud command line. To create a network

and a subnet, we must perform two different steps. First, we must create the network

and then the subnet. To create the network, we must use a command with the following

format:

gcloud compute --project=<project name> networks create <network name>

--subnet-mode=auto/custom

In case we want to create a custom mode network, we must add a subnet.

The command for creating the subnet is

gcloud compute --project=<project name> networks subnets create <subnet

name> --network=<network name> --region=<region name> --range=<ip range>

--secondary-range=<secondary range name>=<ip range> --bgp-routing-mode

<routing mode>

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

260

The routing mode section is optional and used to indicate what type of routing mode

we want to use. We can now try the command to create the network. The first step is to

create the network. The complete command for this is

gcloud compute --project=<your project name> networks create

practicaldevopsgcp --subnet-mode=auto

The result of the command shows the information about the network we just wanted

to create. We can see the result from the command in Listing 10-2.

Listing 10-2. The Result of the Command Line Network Creation

 pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud compute

--project=practicaldevopsgcp- 197023 networks create practicaldevopsgcp

--subnet-mode=auto

Created [https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp197023/global/networks/practicaldevopsgcp].

NAME SUBNET_MODE BGP_ROUTING_MODE IPV4_RANGE GATEWAY_IPV4

practicaldevopsgcp AUTO REGIONAL

Instances on this network will not be reachable until firewall rules

are created. As an example, you can allow all internal traffic between

instances as well as SSH, RDP, and ICMP by running:

$ gcloud compute firewall-rules create <FIREWALL_NAME> --network

practicaldevopsgcp --allow tcp,udp,icmp --source-ranges <IP_RANGE>

$ gcloud compute firewall-rules create <FIREWALL_NAME> --network

practicaldevopsgcp --allow tcp:22,tcp:3389,icmp

In the Google Console, it is possible to see the new network created. Because we

have created the network in auto mode, the console shows an IP address for any region.

Global routing is disabled, because we don’t specify any routing for the network, and, of

course, we don’t have any specific firewall rules. If we want to create our subnet network,

we must create the network with a custom mode. The command for doing this is

gcloud compute --project=<your project name> networks create

practicaldevopsgcp-custom --subnet-mode=custom

The result for the command shows the creation of the network and the command for

creating the firewall rules (see Listing 10-3).

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

261

Listing 10-3. The Result of the Command to Create the Network in Custom Mode

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud compute

--project=practicaldevopsgcp- 197023 networks create practicaldevopsgcp-

custom --subnet-mode=custom

Created [https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/practicaldevopsgcp-custom].

NAME SUBNET_MODE BGP_ROUTING_MODE IPV4_RANGE GATEWAY_IPV4

practicaldevopsgcp-custom CUSTOM REGIONAL

Instances on this network will not be reachable until firewall rules

are created. As an example, you can allow all internal traffic between

instances as well as SSH, RDP, and ICMP by running:

$ gcloud compute firewall-rules create <FIREWALL_NAME> --network

practicaldevopsgcp-custom --allow tcp,udp,icmp --source-ranges <IP_RANGE>

$ gcloud compute firewall-rules create <FIREWALL_NAME> --network

practicaldevopsgcp-custom --allow tcp:22,tcp:3389,icmp

The network now shows up on the Google Cloud Console, but because we don’t add

any subnet on the network, this is just a name created in custom mode (Figure 10-8).

Figure 10-8. The custom network created without subnet

The next step is to create the subnet associated with the network. The command for

creating the subnet associated with the network is

gcloud compute --project=<you project name> networks subnets create

practicaldevopsgcp-subnet --network=practicaldevopsgcp-custom

--region=us- central1 --range=10.0.0.0/24

The parameter for creating the network requires first the name of the subnet. We

associate the new subnet of the network with the parameter --network. The result of the

command is shown in Listing 10-4.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

262

Listing 10-4. The Result of the Subnet Associated with the Network

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud compute

--project=practicaldevopsgcp- 197023 networks subnets create

practicaldevopsgcp-subnet --network=practicaldevopsgcp

-custom --region=us-central1 --range=10.0.0.0/24

Created [https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/regions/us-central1/subnetworks/

practicaldevopsgcp-subnet].

NAME REGION NETWORK RANGE

practicaldevopsgcp-subnet us-central1 practicaldevopsgcp- custom 10.0.0.0/24

This command associates the new subnet to the previous network we created. We

can see the subnet associated with the network in the console (Figure 10-9).

We have now created a network and associated it with a subnet network. For the

custom network, we must create a subnet for every region in which we want to replicate

the VPC.

 Creating and Maintaining Firewall Rules
You have learned how to create a new VPC, but creating a VPC is not enough. To ensure

security of access, we must configure a firewall. A firewall is one of the basic components

of the network’s security, and the aim of a firewall is to deny or allow traffic to the

network, if the traffic doesn’t respect some certain rules.

We see, when we create the VPC, that GCP assigns some default firewall rules to our

VPC. This is to define what traffic is allowed or denied on the VPC, but these rules are

not enough to manage a network. For that, we must create and manage the firewall rules

necessary to manage our VPC. Now you will learn how to create new firewall rules with

gcloud. The command for creating a new firewall rule is

Figure 10-9. The subnet associated with the previous network

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

263

gcloud compute firewall-rules create [NAME] \

 [--network [NETWORK]; default="default"] \

 [--priority [PRIORITY];default=1000] \

 [--direction (ingress|egress|in|out); default="ingress"] \

 [--action (deny | allow)] \

 [--target-tags [TAG][,TAG,...]] \

 [--target-service-accounts=[IAM Service Account] \

 [--source-ranges [CIDR-RANGE][, CIDR-RANGE...]] \

 [--source-tags [TAG][,TAG,...]] \

 [--source-service-accounts=[IAM Service Account] \

 [--destination-ranges [CIDR-RANGE][,CIDR-RANGE...]] \

 [--rules ([PROTOCOL][:PORT[-PORT]],[PROTOCOL[:PORT[-PORT]],...]] | all

) \

 [--disabled | --no-disabled]

All these parameters are used to define the type of firewall rule we want to create.

Following are all the parameters and their role in creating the firewall rule.

• --network: This parameter indicates the network on which we create

the firewall rule. If we don’t indicate any network, the rule is to create

it in the default network.

• --priority: This is a numerical value indicating the priority of the

rule. The lowest level is 65535 and is normally assigned to the default

firewall rule. The lower the number, the higher the priority of the rule.

A higher number indicates a lower-level priority of the rule.

• --direction: This parameter indicates the direction of the rule.

Ingress is the direction used to indicate traffic from a source to a

target. Egress is the direction indicating the traffic from a target to a

destination.

• --action: This parameter indicates what action we want to execute

with the firewall rule. We can define one of two actions:

• allow: This permits the connection

• deny: This prevents the connection

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

264

A firewall rule must be applied to a target. This target can be a network or a service

user. The two different values to define the target are

• --target-tags: This is used to indicate the network on which the

firewall rule applies.

• --target-service-accounts: This indicates the service account to

which this rule applies.

If we don’t define any of the target values, the rule simply applies to the entire

network. Another important part of the configuration is the direction of the traffic we

want to use to define the direction of the rule. For the ingress rule, we must specify a

source. We can specify three types of sources.

• --source-ranges: With this flag, we can specify the range of source

addresses in CIDR format.

• --source-tags: With this flag, we apply the rule to all the IP

addresses coming from a specifically tagged network.

• --source-service-account: With this flag, we can specify all the IP

addresses for a service account. We can use this tag only if we don’t

configure the source tag.

If we don’t specify any source, we apply the rule everywhere, because it is applied

to the IP 0.0.0.0/0. We can define an egress rule to use the destination. This has only the

following option:

• --destination-range: This flag defines the range of the destination

IP using the CIDR format.

In case we omit the destination option, the egress destination is applied everywhere

to IP 0.0.0.0/0. The --rules option defines to which protocols and ports the rule applies.

If we use All, we apply the rule to all the protocols and ports in the VPC network. An

example of a firewall rule is

gcloud compute --project=<your project name> firewall-rules create test

--direction=INGRESS --priority=1000 --network=practicaldevopsgcp-custom

--action=deny --rules=tcp

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

265

The result for the command is the creation of the rule (see Listing 10-5).

Listing 10-5. The Newly Created Firewall Rule

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud compute

--project=practicaldevopsgcp- 197023 firewall-rules create test

--direction=INGRESS --priority=1000 --network=practical

devopsgcp-custom --action=deny --rules=tcp

Creating firewall...Created [https://www.googleapis.com/compute/v1/

projects/practicaldevopsgcp-197023/global/firewalls/test].

Creating firewall...done.

NAME NETWORK DIRECTION PRIORITY ALLOW DENY

test practicaldevopsgcp-custom INGRESS 1000 tcp

In case we want to update the firewall rule, we can use the same basic syntax,

only instead of using firewall-rules create, we use the firewall-rules update

command.

 Creating and Maintaining Routes in GCP
At the start of this chapter, you learned what a route is. Every network has some system-

generated routes from a VPC network and to the Internet. We can’t override the routes

to another subnet in the same network, but we can override the default route 0.0.0.0/0.

We can create routes to a specific destination range. This is to direct the traffic to a VPN

tunnel, a specific instance, or other destination.

When we plan our network, we want to be sure not to override any existing route.

We can list the actual route we have in the network with this simple command:

gcloud compute routes list

The result of the command shows all the routes actually configured in the system.

We can see an extract of the routes in Listing 10-6.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

266

Listing 10-6. The Route List Result

pierluigi_riti@practicaldevopsgcp-197023:~$ gcloud compute routes list

NAME NETWORK DEST_RANGE NEXT_HOP PRIORITY

default-route-1d7c378c35a58bf1 default 10.142.0.0/20 default 1000

default-route-2733f6b435addfb8 default 10.146.0.0/20 default 1000

default-route-27ee2255201b7609 default 10.152.0.0/20 default 1000

default-route-2ba825e5b5d3dd2a default 10.160.0.0/20 default 1000

default-route-2eca2b974eff32fb default 0.0.0.0/0 default-

internet-gateway 1000

To see the details of an individual route, we can use this command:

gcloud compute routes describe <route name>

For example, we can see the details for one of the default routes, using this

command line:

gcloud compute routes describe default-route-9702087d924fe3ad

The result is the description of the route.

creationTimestamp: '2018-07-29T14:07:03.497-07:00'

description: Default local route to the subnetwork 10.132.0.0/20.

destRange: 10.132.0.0/20

id: '1148425788491797144'

kind: compute#route

name: default-route-9702087d924fe3ad

network: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/practicaldevopsgcp

nextHopNetwork: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/networks/practicaldevopsgcp

priority: 1000

selfLink: https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/routes/default-route-9702087d924fe3ad

The description of the route shows us the information connected with the route, for

example, the creation of the route, the kind of route, the network associated with the

route, and the NextHop for the network.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

267

The most important operation we want to perform with the route is the creation of a

new static route. The syntax for creating a new static route is

gcloud compute routes create [ROUTE] \

--destination-range [DEST_RANGE] \

--network [NETWORK]\

[--tags=TAG,[TAG,...]] \

[--next-hop-address=[ADDRESS]] |

[--next-hop-gateway=default-internet-gateway] |

[--next-hop-instance=[INSTANCE_NAME] |

[--next-hop-vpn-tunnel=[VPN_TUNNEL]]

The parameter for creating a route indicates all the information we need to create a

new route in GCP.

• --destination-range: This value indicates the destination range for

the outgoing packet.

• --network: This indicates the network on which we define the rule.

We must be careful to correctly indicate the network or we might

apply the route to another network.

• --tags: We can use this option to indicate which VM we want to

associate to the route.

The hop parameters can be specified only once. We can have two hop parameters in

the same definition. The description of the parameters follows:

• --next-hop-address: This is used to specify the IP address where the

route wants to send the traffic.

• --next-hop-gateway: This flag is used to specify via what subnet we

can send the packet to the Internet connection.

• --next-hop-instance: This flag is used to specify the instance we

want to use to send the packet.

• --next-hop-vpn-tunnel: This flag is used to specify through which

VPN tunnel we want to send the packet.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

268

The command for generating a new route is

gcloud compute --project=<your project name> routes create route-gcp

--network=default --priority=1000 --destination-range=10.0.0.0/16

--next- hop- gateway=default-internet-gateway

The result of the operation shows the creation of the route (Listing 10-7).

Listing 10-7. The Result of the Route Creation

gcloud compute --project=practicaldevopsgcp-197023 routes create route-gcp

--network=default --priority=1000 --destination-range=

10.0.0.0/16 --next-hop-gateway=default-internet-gateway

Created [https://www.googleapis.com/compute/v1/projects/

practicaldevopsgcp-197023/global/routes/route-gcp].

NAME NETWORK DEST_RANGE NEXT_HOP PRIORITY

route-gcp default 10.0.0.0/16 default-internet- gateway 1000

With GCP, by default, we cannot forward an IP to another instance. This means that

we can send a packet to an IP, unless the IP doesn’t match the destination, but we must

forward the IP when we want to create a new route or use the instance with the route

packet. To forward the IP, we must create the instance with the flag --can-ip-forward.

The command line for this follows:

gcloud compute instances create ... --can-ip-forward

This creates the instance with the ability to forward the IP and allows the instance to

use the help of the route. The last command we must explore is that to delete a route.

To delete a route, we can use the following command:

gcloud compute routes delete [ROUTE]

This command deletes the route indicated in the name.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

269

 Conclusion
This chapter covered the basics for creating and maintaining a network and a private

cloud resource in GCP. This functionality is very important when we plan our cloud

project. We must plan the network carefully, to be sure that it is always reachable and

maintains an accurate SLA with the customer. In addition, a carefully planned network

helps to prevent data breaches and service interruptions resulting from hacker attacks.

Having strong firewall rules in place, in addition to good routing, helps to speed the

network and prevent the most common attacks by hackers.

ChAPTER 10 NETwoRk CoNfIGuRATIoN AND MANAGEMENT IN GCP

271
© Pierluigi Riti 2018
P. Riti, Pro DevOps with Google Cloud Platform, https://doi.org/10.1007/978-1-4842-3897-4

Index
A
Acceptance test, 46, 55, 104
Amazon Web Services (AWS), 19, 22,

23, 175
Automatic testing, 46

B
Black-box monitoring, 16, 167–168, 171
Blue/green deployment, 59–60
Branching strategies, 44–45

C
Canary deployment, 61
Canary server, 58
Chief technology officer (CTO), 3
Classless inter-domain routing

(CIDR), 249
Cloud computing

characteristics, 20
definition, 19–20
deployment models

community, 22
hybrid, 22
private, 22
public, 22

ROI, 23
service-level agreements, 23

service models
IaaS, 21
PaaS, 21
SaaS, 21

TCO, 23
Code inspection, 47, 49
Code promotion, 46–47
Code repository server, 40
Code review, 55
Continuous database integration, 53–54
Continuous delivery (CD)

chain, 43
vs. CI, 44
code inspection, 55–56
continuous testing, 54–55
costs and benefits, 47–48
definition, 42
designing, 49–50
pipelines, 51–52
strategies

automatic testing, 46
branching, 44–45
code inspection, 47
code promotion, 46–47
unit testing, 45–46

Continuous integration (CI)
and CD system

blue/green deployment, 59–60
build reports, 57–58

https://doi.org/10.1007/978-1-4842-3897-4

272

canary deployment, 61
canary server, 58
cloud SaaS, 59
differences, 44
identifying code, repository, 57
incremental deployment, 62
shared location, 58
software maintenance windows, 59

chain, 38
code inspection, 55–56
code repository server, 40
continuous testing, 54–55
costs and benefits, 47–48
definition, 37
designing, 49–50
phases, 37
pipelines, 51–52
scenario, 38–39
server, 40–42

Coordination, DevOps
automatic process, 9
direct, 10
indirect, 10
nonautomatic process, 9
persistent, 11

Customer identity management
(CIM), 223

D
Database migration, 53
Declarative approach, 195
DevOps

adoption
Agile practices, 7
automating, release process, 6
barriers to IT department, 6

changes, 3–4
CI/CD policies, 5
communication, 7–9
coordination, 9–11
developer and software, 4
first-class citizens, 4
infrastructure, 8
software quality, 8

Agile conference, 2
chain, 11–13
definition, 1
development pipeline

branch policy, 14
centralizing, building server, 15
continuous integration, 14
monitoring, 15–16
operations, 17
unit test, 14

engineer, 2
Digital entity

attributes, 226
authentication, 228
authorization, 228
basic functions, 226
definition, 224
federated identification, 227
pure identification, 226
roles, 228

Direct coordination, 10
Docker

application deployment, 64
components, 64
Google Compute Engine (see Google

Compute Engine)
hypervisor-based virtualization, 63
libcontainers, 64
microservice architecture, 64
operating-system virtualization, 63–64

Continuous integration (CI) (cont.)

Index

273

PaaS cloud, 65
uses, 65
virtual machine (VM), 63

E
Elasticsearch, Logstash, and

Kibana (ELK), 16
Employer identity management

(EIM), 223

F
First-class citizens, 4

G
GenerateConfiguration() method, 217
Google App Engine, 24
Google BigQuery, 24
Google Cloud Bigtable, 24
Google Cloud Datastore, 24
Google Cloud Function, 24
Google Cloud Platform (GCP), 19

areas, 23
billing, 28–30
Compute Engine page, 208
configuration file, 196, 205, 213–214
console, 243
creating, new project, 25–26
deployment, 204, 207
Deployment Manager page, 208, 215
description, 23
Docker (see Docker)
environment variable, 219
Google dashboard, 26, 28
Google SDK, 32–34
home dashboard, 26

IaC (see Infrastructure as code (IaC))
IAM permission board, 243
initial page, 25
Kubernetes (see Kubernetes)
manifest, 201
new account, 24
network reference, 214–215
popular services, 23–24
Python/Jinja2 template, 195
resources, 30–31, 201, 206
screen, 25
selecting project, 27
template, 197, 216
types, 201
virtual machine (VM), 209–211, 215

Google Compute Engine, 23
components, 66
container application

CoreOS operating system, 75
creating instance, 76–77
Docker image, 77–79
Google Console dashboard, 76
Remote access selection, 78

high-CPU, 67
high-memory, 67
instances

connections, 72–73
dashboard, 72
enabling API, console, 71
Google SDK configuration, 68–69
managed, 74
new project created, command

line, 70
pre-built images, 73
unmanaged, 74

standard, 66
Google Deployment Manager (GDM), 195
Google Kubernetes Engine, 24

Index

274

Google SDK
command line, console, 33
configuration, 68–69
downloaded link, 32
initialization, 32
operations, 33
scripting languages, 34

Google Storage, 24

H
Hypervisor-based virtualization, 63

I
Identity and access management (IAM)

custom roles, 232
database and shared resource, 228
digital entity (see Digital entity)
digital identity, 225
elements, 230
Google Account, 230
Google ecosystem, 228
Google IAM, 229
Governance, 224
level of access, 223
permissions, 230
policy

API via Java Code, 240
API via REST, 239
getIamPolicy() method, 235
Google IAM structure, 233
IAM Role, 233–234
JSON file, 235
level of access, 234
pattern, 234

predefined roles, 231–232

primitive roles, 231
resource, 230
roles, 231
software, 224

Imperative approach, 195
Incremental deployment, 62
Indirect coordination, 10
Infrastructure as a service (IaaS), 21, 66
Infrastructure as code (IaC)

architecture, 194–195
DevOps movement, 191
goals, 192
principles, 192–193
virtual machine (VM), 192

Integration test, 46, 55, 103
Intelligent approach, 195

J
Jenkins CI/CD pipelines

branch indexing log, 141–142
branching strategy, 103–104
code, 101
code integration, 101
credentials

Global, 138
Google account, 138–139
updated, 139

GitHub hook log, 141
GitHub hook trigger, 141
Git repository, 140
Jenkinsfile, 142–145
Kubernetes (see Kubernetes and

Jenkins)
multibranch project configuration,

139–140
plug-ins, 99

Index

275

popularity, 100
production release, 102
stage release, 102
system testing, 102
unit test, 101
user acceptance, 102

Jenkins services
complete file, 118–119
deployment file, 120–121
discovery service, 118
Docker image, 122
kubelet, 122
quotas, 123
resources, 123
service-ui, 117

K, L
Kubernetes

cluster, 81
DaemonSet controller, 80
definition, 79–80
etcd, 81
job controller, 80
pods, 81
replication controller, 80
selectors, 80
services, 81

Kubernetes and Jenkins
benefits, 104
cluster, 106, 108
creating repository, 135–138
credentials, 110
deployments, 116–117

administrative roles, RBAC, 125
cluster-admin, 125
health status, 128

ingress.yaml, 127
Jenkins login page, 129
load balancer, 128–129
option file, 124
password, 124
pods, 126
status of service, 126
TLS communication, 127
volume creation, 125

environments, 130
Google Cloud Container Registry, 109
Google Cloud Storage, 109
Jenkins services (see Jenkins services)
master/slave architecture, 110–111
namespaces, 112–114
pods, 114
production namespace

application IP, 134–135
back-end service, 131–132
front-end service, 132, 134
RESTful API object, 133

quotas, 116
scopes, URI, 106–108
services, 114–115
VPC creation, 105–106

Kubernetes Engine
cluster

Compute Engine instance, 95–96
create, 83–84
deleting, 96
information, 94
Kubernetes Compute

Engine, 93–94
node pools, 94–95

command line, 82
dashboard

access UI, 88

Index

276

Cloud SDK, service account
activation, 90

cluster information, 87
Create key menu option, 89
gcloud authorization, 90
installing and configuring, 87
login, 92–93
Service Account screen, 88
tokens, 90–92

etcd, 85
Google Cloud Shell button, 82
Google SDK, 82
hello-server application, 85–87
kubectl version command, 82

M
Microservices architecture

advantage, 148
constraints, 149
creating, 154
Docker and Kubernetes

characteristics, 152
designing, 152–153
monolithic system vs. microservices

system, 151
fine-grained, 147
image publishing

Google Docker registry, 158
Google SDK, 158
tagging, 158–161

Kubernetes cluster, 161–163
loosely coupled service, 147
philosophy, 149
principles, 148
pros and cons, 150

services
Dockerfile, 156–157
Go code, 155

SOA, 147
Microsoft Azure, 19
Monitoring system

alerts, 169
broken, 170
components, 173
data comparison, 169
debugging, 169
definition, 165
error, 172
factors, 167, 169
infrastructure, 167
latency, 172
predictive analysis, 166
real-time, 166
requirements, 166
sample memory graph, 167
saturation, 172
software, 165
Stackdriver (see Stackdriver)
system, 165
temporal analysis, 169
traffic, 172
visualizing status, 169

N
Network configuration and management

cloud environment, 245
components, 245
GCP, 265
global resources, 247
goals, 246
regional resource, 245–246
zonal resource, 245–246

Kubernetes Engine (cont.)

Index

277

O
Operating-system virtualization, 63–64

P, Q
Persistent coordination, 11
Platform as a service (PaaS), 21, 65

R
Real-time monitoring, 166
Regional resource, 245–246
Return on investment (ROI), 23
Risk-based authentication (RBA), 224
Role-based access control (RBAC), 125
Routes and firewalls

default route, 253
destinations, 252
gateways, 252
network’s security, 262
network tagging, 254
parameters, 263
system-generated route, 252
target, 264
types of sources, 264

S
Service-oriented architecture (SOA), 147
Single sign-on (SSO), 227
Site reliability engineer (SRE), 2
Software as a service (SaaS), 21–22, 66
Software monitoring, 165
Stackdriver

alerts, 183–185
Apache HTTP server default page, 181
applications, 174

client installation, logging, 177
configuration command, 175–176
creating instance, 178
dashboard

creating, 187–188
testing, 189–190

installation, 176–177
log analysis, 181–183
menu from GCP, 174
monitoring section, 175
PHP-Apache installation package,

179–180
policy alert configuration, 185–187
projects, 175
SSH connection, 179
stackdriverinstance, 178–179

Static code analysis, 56, 101, 103
System monitoring, 165
System testing, 102–103

T
Test driven development (TDD), 45
Test pyramid, 46
Total cost of operation (TCO), 23

U
Unit testing, 45–46

V
Verification test, 55
Virtual private cloud (VPC), 34, 105–106

automatic mode, 249, 256
cloud interconnect component, 248
command line network

creation, 260

Index

278

creation, 255
custom mode network, 250, 257,

 259, 261
custom subnet, 258
dynamic routing mode, 258
firewall rules, 260
flow logs, 258
global routing, 259
Google Cloud Platform, 247
IP ranges, subnets, 250
network and subnets, 249

Private Google access, 258
properties, 248
regional routing, 259
subnet network, 262

W, X, Y
White-box monitoring, 16, 167–168, 171

Z
Zonal resource, 245–246

Virtual private cloud (VPC) (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to DevOps
	What Is DevOps?
	The DevOps Engineer
	Adopting DevOps
	The Manager Must Promote the Change
	The Developer Must Be Responsible for the Software
	The Operational People Must Be Treated As “First-Class Citizens”
	Continuous Integration and Continuous Delivery Policies Must Be Built
	Barriers to the IT Department Must Be Removed
	The Release Process Must Be Automated
	Agile Practices Must Be Promoted Across the Entire Company

	Reasons for Adopting DevOps
	What and Who Are Involved in DevOps?
	Changing the Coordination
	Direct Coordination
	Indirect Coordination
	Persistent Coordination

	The DevOps Chain

	Defining the Development Pipeline
	Centralizing the Building Server
	Monitoring Best Practices
	Best Practices for Operations

	Conclusion

	Chapter 2: Introduction to GCP
	Introduction to Cloud Computing
	Cloud Computing Service Model
	The Deployment Models
	Why Use the Cloud?

	Introduction to Google Cloud Platform
	Starting with GCP
	Understanding Billing in GCP
	GCP Resources

	Google SDK
	Conclusion

	Chapter 3: Introduction to Continuous Integration and Delivery
	Definition of Continuous Integration
	What Is Build in a Continuous Integration Scenario?
	The Code Repository Server
	The Continuous Integration Server

	Continuous Delivery
	Differences Between Continuous Integration and Continuous Delivery
	Strategies for Continuous Delivery
	Good Branching Strategies
	A Strong Unit Test Policy
	An Automatic Testing Phase
	Automatic Code Promotion
	Code Inspection

	Benefits of Continuous Integration and Continuous Delivery
	Designing a Continuous Integration and Continuous Delivery System
	Building Continuous Integration and Continuous Delivery Pipelines
	Continuous Database Integration
	Continuous Testing and Inspection

	Preparing the Build for Release
	Identifying the Code in the Repository
	Creating Build Reports
	Putting the Build in a Shared Location
	Releasing the Build
	Blue/Green Deployment
	Canary Deployment
	Incremental Deployment

	Conclusion

	Chapter 4: Containerization with Docker and Kubernetes
	Introduction to Docker
	Why Use Docker?

	Using Docker in Google Cloud Platform
	Introduction to Google Compute Engine
	Creating a Compute Engine Instance
	Instance Group

	Container Application in Google Cloud Platform
	What Is Kubernetes?
	Using Kubernetes Engine to Deploy an Application
	Deploying Our First Kubernetes App
	Configuring the Kubernetes Dashboard
	Exploring the Kubernetes Instance
	Deleting a Kubernetes Cluster

	Conclusion

	Chapter 5: Continuous Delivery with GCP and Jenkins
	An Introduction to Jenkins
	Continuous Integration and Delivery with Jenkins
	Code
	Unit Test
	Code Integration
	System Testing
	Stage Release
	User Acceptance
	Production Release

	Designing a Good Branching Strategy
	Using Jenkins in GCP
	Configuring Jenkins on Kubernetes
	Designing the Jenkins Architecture
	Namespaces, Pods, Services, Quotas, and Deployments in Kubernetes
	Namespaces
	Pods
	Services
	Quotas
	Deployments

	Create Jenkins Service
	Deploying Jenkins on Kubernetes
	Exposing the Service

	Creating a Continuous Delivery Project
	Creating the Repository
	Creating Jenkins Pipelines

	Creating the Jenkinsfile
	Conclusion

	Chapter 6: Microservices Architecture with GCP
	Introduction to Microservices Architecture
	Implementing a Microservices Architecture
	Microservices Architecture with Docker and Kubernetes
	Designing a Kubernetes Microservices Architecture

	Creating the Microservices Architecture in GCP

	Creating the Services
	Publishing the Image in the Registry
	Tagging the Local Image

	Creating the Kubernetes Cluster
	Conclusion

	Chapter 7: Monitoring in GCP
	What Is a Monitoring System?
	Factors Involved in the Monitoring System
	Why Monitoring Is Important
	What Is Broken and Why?

	White-Box and Black-Box Monitoring
	Latency
	Traffic
	Error
	Saturation
	Building a Monitoring System

	Configuring Stackdriver on GCP
	Creating the Application
	Log Analysis with Stackdriver
	Alerts in Stackdriver
	Policy Alert Configuration
	Creating a Dashboard
	Testing the Dashboard

	Conclusion

	Chapter 8: Creating and Managing Infrastructure in GCP
	Infrastructure As Code
	Infrastructure as Code Principles
	Architecture for Infrastructure As Code

	Infrastructure As Code in Google Cloud Platform
	Configuration
	Templates
	Resource
	Types
	Manifest
	Deployment

	Starting with Google Cloud Deployment Manager
	Upgrading Our Infrastructure
	Expanding and Customizing Our Deployment
	Creating a Template for Our Deployment
	Defining the Template with the Environment Variable

	Conclusion

	Chapter 9: Identity and Access Management with Google Cloud Platform
	What Is Identity and Access Management?
	Defining a Digital Entity
	The Importance of Digital Identity

	IAM and Digital Entity
	Authentication
	Authorization
	Roles

	IAM in Google Cloud Platform
	Google IAM Policy
	Creating and Managing the IAM Policy
	Creating a JSON File
	Using the API via REST
	Creating the API via Java Code
	Using the Console

	Conclusion

	Chapter 10: Network Configuration and Management in GCP
	Fundamentals of Networking in GCP
	Introduction to the Virtual Private Cloud
	Network and Subnets
	Defining the IP Range for the Subnet

	Routes and Firewalls
	Tagging Network
	Implementing a VPC Network
	Creating and Maintaining Firewall Rules

	Creating and Maintaining Routes in GCP
	Conclusion

	Index

