Generic
Pipelines
Using Docker

The DevOps Guide to Building Reusable,
Platform Agnostic Cl/CD Frameworks

Brandon Atkinson
Dallas Edwards

ApPress’

Generic Pipelines
Using Docker

The DevOps Guide to Building
Reusable, Platform Agnostic
CI/CD Frameworks

Brandon Atkinson
Dallas Edwards

Apress’

Generic Pipelines Using Docker

Brandon Atkinson Dallas Edwards
North Chesterfield, VA, USA Midlothian, VA, USA
ISBN-13 (pbk): 978-1-4842-3654-3 ISBN-13 (electronic): 978-1-4842-3655-0

https://doi.org/10.1007/978-1-4842-3655-0
Library of Congress Control Number: 2018962365

Copyright © 2018 by Brandon Atkinson, Dallas Edwards

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484236543.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3655-0

Table of Contents

About the AUtROrS.........ccccmmmsemmmmsmsmmsnsmmsnssssss s ssnnnnns vii
About the Technical ReVIEWErccvcusssesssssssssnsssassssnsssssssssssssnsssassssass ix
Acknowledgments.......cccceersssssssssnnnnmmmsssssssssssssnsssesssssssssnsnnssssssssssnnnnnns Xi
Introduction........ccccmnimmmmsmnmnsesnnnns s ———— xiii
Chapter 1: Recognizing You Are Stuck in the Pastc..ccccrnsinennninans 1
Monolithic APPlICALIONS.....ccccerererrercere s r e e enes 2
One Pipeline per Applicationcccccveverrrierievnsensereseses s sseses e ssessesessessesaees 5
372 Lo AT (0] £ N 7
Pipeling as GALEKEEPETevvvvererrerrrrerersersesersessersesessessessessesesessesassessessesaes 10

Agile Can’t Die; It Was Never Bornccovrennencnncesneses e seses e sesse e sessens 12
OVBIVIBW ..ttt e s s e bbb e s aenns 14
Chapter 2: Setting the Stage for the Present.......ccccccinirnnnssssssnnnnnnnnnas 17
MICTOSEIVICES. .. .eieiueerreerreerese e se s e e 17
Developer Best Practices Are Keyc.cccvverrenernsesnesssssesnsesessesessesessnnes 19
Dedicated Pipeline per Languagec.cuccoverrrnnernsessnesesssessssessssessssssessssesenns 21
STANAArdS Are KBYccovevrirerireserisesense s se s s ss s 26
Taking Code Reuse @ Step FUIhErccovcvvevnesence e 28
Microservices and Shared Pipelines are More Agile.........cccveevvvrrerienienensenienens 31
L0112 T 32

iii

TABLE OF CONTENTS

Chapter 3: Getting it Right with Docker and Scripts.......ccusemrrnsssnnnnns 33
One Pipeline to Rule TheM All ... 34
SHEll SCHIPIS .. ——————— 39

Configuration Files.......c..coovvrvriiinnsnsnre e 43
DOCKEr @t the COrEcoveeeeecrereeree e 47
Platform AgNOSTIC.cvcerrererneser s e 56
L0112 T 61

S 1T LT) 3SR 61

DOCKEN ...t e 62

BUIIA CONTAINETSvcveveereeerisesere s 62

Chapter 4: A Practical Exampleccceemmmmmmmmmmmmsssssssssssssssssssssssssssnns 63

An Overview of Our APPlICALIONS.......ccveverreriererrererrere s ese s 63
SPrING BOOL.... o s ss e sae e e nne e 64
ASP.NET COre WED APlcvieeeeiriririrereresesesesesese s ssssssssssssssssesenenes 65
Y Lo 1] 66

A Deep Dive into the Pipeline.........ccooererircrne s 67
The Pipeline Configuration File...........ccocvverierrrrerierrenesensessesesessesessesessessensens 67
THE ClONE STAQE ..evvevreerereerrererere e e s s s e s e e e e e sae e e saesaesas e nnesaens 71
THE BUIIA STAQE ..vevveeeerereriererere s serse e s e sessesessesessesassesessessesassensessens 72
(e L= 0] - Vo 74
THE ArChiVE STAQE......cccvrererrrrerierere s s ss s s s e s saesa s e s sneseesessesaens 75
The DEPIOY STAQE......ccvcrrererrrrererererersere s s e sr e saesa s e ssesaesessensesaees 77
A Look at Our Build CONtainers..........covrmmmmnmserenmnssssssesessssssssssesesssssssssesens 78

Running the PipeliNg ...t 81
Using the Command Line.........cccccvnnnnnininnncninssess s sessnnes 82
Using INtellid IDEA CEcovererererirereseeseeessss s ssssssssssssese e sssssssssens 83

iv

TABLE OF CONTENTS

Moving 0 the CIOUMccccverererreriere s sersere e ss e sse e sessesresessessesnees 89
Moving the Pipeling t0 Travis Cl.........ccevrervrnremiernsensensesessssessesessesessessesees 89
Running the Pipeling in CirClECHccvvrrerererreriereressessereses s s ssesesessesaes 96

OVEIVIBW ...covveeccseses e se e s se s se s 104

Chapter 5: Moving Beyond the BasiCSccccsrussmmmsssmsmsssssssssnsssssnnsnas 105

Additional Stages and StEPScccverrrrererrererere e 105

Other Scripting LANQUAGEScccvvererererrenerrssesesssesesesessesesseses s sessssessssessnnes 108
POWEISNEIL ... 109
g1 o OSSR 112

Custom SCript HOOKS.....cccveriiriniinere s sss e e saessssessesnens 115
Pre- and Postpipeling HOOKSccocvvevverieeneriersinsee e ssessessse s sessesssessessensens 116
STA0E HOOKSovreeirceriee e 119

Where 10 GO from HEre.........covinnnnns s 122

INA@X uueiiisnnnsssnnnsssannsssanssssanssssanssssannsssansssssnnssssnnssssnnssssnnssssnnnsssnnnsnnn 125

About the Authors

Brandon Atkinson is a software engineer with more than 14 years of
industry experience encompassing analysis, design, development, and
implementation of enterprise-level solutions. His passion is building
scalable teams and enterprise architecture that can transform businesses
and alleviate pain points. He has extensive experience in various
technologies/methodologies, including Azure, AWS, .NET, DevOps, Cloud,
JavaScript, Angular, Node.js, and more. Brandon lives in Richmond,
Virginia, USA with his wife and two daughters.

Dallas Edwards has more than ten years of experience as a software
engineer. He thrives on creating solutions that are pragmatic, scale easily,
and that are easy to test and maintain. His experience encompasses a
wide range of expertise, including software development, iOS application
development, and DevOps. Dallas lives in Richmond, Virginia, USA with
his wife and is an avid scuba diver.

vii

About the Technical Reviewer

Alex Fabian is a professional software
engineer with experience building enterprise-
scale Java systems, APIs, and web applications.
He has hands-on experience implementing
Docker-based deployment pipelines for
microservices and has spent considerable
time integrating with various offerings from
Amazon Web Services. Alex has had the
opportunity to work on large- and small-scale

projects for Fortune 500 companies, technology startups, government
contractors, and small organizations. He holds certifications from Amazon
Web Services and a B.S. in Computer Science from The University of

Virginia.

ix

Acknowledgments

Brandon Atkinson

Writing a book is very hard work, and very time consuming. I could not
have done this without the support of my family, especially my amazing
wife Jennie and my wonderful kids. I also want to thank Dallas for coming
on this journey with me. I did my best to take over your life; you're about to
get it back! I also want to thank Chris Bowers for setting me on this DevOps
path, and providing a lot of the vision that made this pattern come true.

Dallas Edwards

There’s no way this could’ve happened without the constant support and
encouragement of my family. I am so grateful for the role each of you has
played in my life.

I'd like to thank Brandon for giving me this opportunity. I can’t wait to
see what you drag me into next!

Finally, to my wife Cierra: thank you so much for all of your advice and
sticking with me through all the late nights. I already proved it.

Introduction

DevOps (a clipped compound of “development” and “operations”) is a
software engineering culture and practice that aims at unifying software
development (Dev) and software operation (Ops). The main characteristic
of the DevOps movement is to strongly advocate automation and
monitoring at all steps of software construction, from integration, testing,
and releasing to deployment and infrastructure management.

That definition pretty much sums up what most people think of when
they hear the term DevOps. Not because it perfectly describes what it is,
however; it leaves you more confused than before you asked the question
“What is DevOps?”. DevOps comes in so many forms it can be hard to nail
down exactly what it is. I've worked in a lot of different shops in my time
and DevOps is always something different at each stop.

For most it involves developers writing code that is checked into
source control, which immediately kicks off a build pipeline that deploys
your application. That pipeline will perform various steps that may include
stages like building, testing, and deploying. From my experience, if you're
just doing these simple steps through automation, you're way ahead of
some. However, for many this is not enough to have your organization be
considered as fully embracing DevOps.

You may also want to include things like automated infrastructure
creation, security scans, static code analysis, and more. In an ideal
situation everything you do in a software shop is stored as code in source
control. This includes your application code, infrastructure scripts,
database scripts, networking setup, etc. With a push of a button everything
your application needs to run can be created on the fly. For a lot shops, this
is what it means to truly embrace DevOps.

xiii

INTRODUCTION

Some organizations are more mature than others when it comes to
DevOps practices. In my experience you're well on your way to maturity if
you're doing the following items:

e You deploy your application via an automated pipeline.

¢ Once built and tested, application code binaries can be
promoted via an automated pipeline.

I realize a lot of people will look at that list and exclaim “WHAT?!"
There are only two items, and your organization may be way beyond those.
However, most are not and would see immense improvements by just
doing these two things. If you're one of the folks who thinks this list is crazy
small, then count yourself lucky. I know many people who would kill for
just these two items.

Automated pipelines in my opinion are the lifeblood of good DevOps
practices. They provide so many benefits to both the team of developers
as well as the business that relies on their code. A well-crafted pipeline
gives you a repeatable process for building, testing, and deploying your
application. It can be used to create artifacts that, once built, are simply
promoted, ensuring that what makes it to Production has been tested and
vetted.

Pipelines can also be a pain point for organizations as well. You may
have multiple applications, each written in different languages, and each
with their own finicky way of being built. It can be a nightmare at times
jumping between technologies, debugging the various stages, and keeping
the lights on. Luckily modern technology is helping us get around some
of these issues. Technology like Docker has given us an opportunity to
standardize our platforms. By utilizing Docker in your pipeline, you can
give your developers some peace of mind that if they can build it, so can
you.

Combine this with cloud technology like Amazon ECS or Azure
Container Service and now we can extend that piece of mind all the way

Xiv

INTRODUCTION

to deployment. If it runs locally in your Docker daemon, it will run in the
cloud. This even applies if you're running an enterprise cloud platform
like Nutanix or Dell; if the destination is a container orchestration service
you're golden. Now, consider that .NET Core is open source and can run
on Linux, and you've pretty much covered all your bases. It’s a great time to
be in technology!

This book aims to show how you can use all this technology to simplify
your pipelines and make them truly generic. Imagine a single pipeline that
deploys all your code regardless of the tech stack it is written in. It's not a

dream; we’ll show you how.

Who This Book is For

This book was written with the DevOps professional in mind who may be
struggling with writing and maintaining multiple pipelines. However, it’s
also for anyone in technology who is interested in learning about building
generic pipelines.

You don’t have to be a DevOps master to get a lot from this book;
however, you will benefit more with experience in the following areas:

e Docker: Being familiar with Docker from creating
Dockerfiles, building and running images, etc. We
won't get very deep into Docker, but a working
knowledge is key.

e Bash Scripts: Most of the examples in this book are
written in Bash. You should have at least some minimal

experience with scripts.

e CI/CD Platform Experience: You'll be much better off if
you already have experience with a platform like Circle
CI or Jenkins. However, throughout the book we’ll walk
you through working with these platforms.

INTRODUCTION

As you can see, having some DevOps and pipeline experience will
certainly benefit you as you read this book, but it’s not a hard requirement.
If you're a developer of any type, you should have no issues jumping
right into the examples in this book. As stated, the future of DevOps and
pipelines is everything is code. If you're comfortable writing code, you'll be
fine.

Why We Wrote This Book

This book is the culmination of a lot of hard work our team has done over
the last year. We were tasked with creating a generic, reusable pipeline

that any development team could utilize regardless of the language they
were writing in. Our organization was going through a transformation from
monolithic applications to microservices, and the old way of delivering
code wasn’t going to cut it.

After we decided on our plan of attack and began implementing, we
realized we had something special on our hands. Talking with other groups
around us, no one was tackling CI/CD pipelines in quite the same way.
Most were still building a pipeline per application. Some were taking a step
further and building tech stack-specific pipelines that could work with
teams using the same language. However, no one was going the extra step
and building a single pipeline for all.

Now that we've been iterating on our code for a while we've seen
some amazing results. Our development teams can quickly produce
microservices and on-board them to the pipeline in a matter of minutes.
By utilizing Docker locally on the developer’s machines and in the
pipeline, we can ensure that the experience is extremely similar. Using
Docker in the pipeline gives us full control over the process regardless of
what the underlying platform has installed.

We've seen this pattern take hold in our group and how it’s
transformed the way we deliver code. This book is our effort to share what

INTRODUCTION

we've learned and hopefully pass along some of that knowledge. If you
come away from this book with even a few things you find useful, we’ll take
that as a success. If you end up taking this pattern and applying it in your

organization—even better. We've seen its successes and believe in it 100%)!

What We Won’t Cover in This Book

This book is meant to show you how to build generic pipelines utilizing
Docker. We won'’t be covering any CI/CD principles (except by reference),
or talking about the benefits of DevOps and how it can transform your
organization. We're going to assume you are either already on-board with
these concepts or at least know about them in some way.

There are many well-written books out there that extoll the benefits of
proper continuous integration and delivery. We don’t need to hash all that
out here, nor could we do a better job than those before us. We won’t be
covering Agile principles or how to write better software. We won'’t argue
which CI/CD platform is better or which language produces the best code.

While you're in this book we’re going to focus on why monolithic
applications and their pipelines are bad. How microservices and smaller
pipelines are good. We'll follow that up with why generic reusable
pipelines are even better. Then we’ll wrap all that up with a lot of examples.
So, if you want or need a deep dive into the benefits of DevOps and proper
CI/CD practices, search out another book. If you want to build leaner more
efficient pipelines, read on.

What You’ll Need

Before moving on we'll need to cover the items you'll need to work with
the examples in this book. The first few chapters deal with why you want
to look at generic pipelines, and later chapters present implementing an
example. So, you will not immediately need all of these. If you like, you can

xvii

INTRODUCTION

read ahead and deal with these later. If you prefer to be prepared ahead of
time, here is what you'll need:

e Mac or Windows 10

¢ Docker for Mac/Windows

o Intelli] IDEA (or another IDE)
e CI/CD Platform

e Docker Hub Account

e GitHub Account

Let’s dig into each of these and walk through installing, signing up, and
configuring each.

Mac or Windows 10

At first glance you may be thinking “Why include a section on this? Of
course we have one of these.” You would not be entirely wrong for thinking
this, but there is a good reason. If you're on a Mac you're all set, you are
set up well for what'’s about to come. If you're on a Windows machine, we
need to talk.

We highly recommend using Windows 10 if your only option is Windows.
The main reason for this is the Docker experience. In Windows 10, Docker
is a first-class citizen and the experience closely matches that on a Mac. In
addition, Windows 10 now supports the Linux subsystem, which allows you
to use Bash natively.

We also realize not everyone can be on the latest hardware and
operating systems. You should be able to complete all the examples in this
book with any operating system that you can install Docker on. However,
this means you may have to jump through more hoops to get everything
working correctly. As we move forward, we will assume you are either on a
Mac or Windows 10.

xviii

INTRODUCTION

Caution Realistically, Windows 7 is about as low as you can go
with an earlier Windows release. While it is possible to install Docker
on Windows 7, some of the other items we’ll use in this book, like
Bash, will be outside your reach natively on that platform. You can
still utilize them; it will just need to be within the context of a Docker
container or virtual machine.

Docker for Mac/Windows

It goes without saying that you'll need Docker for this book—it’s in the
title! Luckily Docker provides a free Community Edition for both Mac and
Windows 10 users. Navigate to www.docker . com/docker-mac or

www . docker . com/docker-windows as shown in Figure I-1.

' | @ Secure | https://'www.docker.com/docker-mac

What is Docker? Product Community Support v

DOCKER FOR MAC

The fastest and easiest way to get started with Docker on Mac

DOWNLOAD FROM DOCKER STORE

Figure I-1. Download page from docker.com

Click the “Download from Docker Store” button to be taken to the
official Docker Store download page as shown in Figure I-2.

Xix

http://www.docker.com/docker-mac
http://www.docker.com/docker-windows

INTRODUCTION

@ Secure nhtips /'store docker.com ed

Q

Get Dacker Community Edition for Mac

Docker Community Edition for Mac

By Docker

Figure I-2. Docker Community Edition download page for Mac. The
Windows download page is almost identical.

Click the “Get Docker” link to download Docker. Follow the
instructions to install Docker on your machine. Once installed, you will
see the Docker icon in the top left of your screen as shown in Figure I-3.
Clicking the icon will open the menu.

F2d 3 &0 2% Thut

About Docker

Preferences... a8,
Check for Updates...
Diagnose and Feedback...

Documentation
. Kitematic

More of Docker >

Sign in / Create Docker ID
Repositories

Swarms

72 Quit Docker #¥Q P

2o g

Figure I-3. Docker icon and menu after a successful installation

INTRODUCTION

On Windows 10 the icon will appear in the bottom right tray. You
can also verify the installation by running a docker -wv command in the
terminal, as shown in Figure I-4. If you're on Windows you can run this

command from PowerShell.

[NON | 7 owner — -bash — 80x24

Last login: Thu Jan 25 22:24:36 on ttys@el
iMac:~ owner$ docker -v

Docker version 17.12.0-ce, build c97cédé
iMac:~ owner$ JI

Figure I-4. Verifying your Docker installation via the terminal

Note When downloading Docker, make note of the supported
versions for your operating system. As of this writing, Mac 0S
Yosemite 10.10.3 or above and Windows 10 Professional or
Enterprise 64-bit are supported. If you are using an earlier release
of your OS, you can opt to install Docker Toolbox (https://docs.
docker.com/toolbox/overview/). However, please be aware
that Toolbox is not a full-fledged Docker experience.

IntelliJ IDEA

In this book we’ll be using JetBrains Intelli] IDEA as our IDE of choice.
However, any IDE can be used and if you have one already installed and
are comfortable with it, feel to use that. If you want to use Intelli], then
continue reading; otherwise jump to the next section.

https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/

INTRODUCTION

Note Any screenshots taken of an IDE in this book will be of IntelliJ

on Mac. However, there is nothing stopping you from using a different
IDE. All code examples will work the same regardless of what you are
using.

JetBrains offers a free Community Edition of Intelli] that can be
downloaded from the following URL: www. jetbrains.com/idea/
download/. There are two available downloads: a trial edition and the
Community Edition as shown in Figure I-5.

Resources

IntelliJ IDEA Coming in 2018.1 What's Mew Features Learn Buy

Download IntelliJ IDEA

Windows macOS Linux
Ultimate Community
For web and enterprise For JVM and Android
development development

Version: 2017.3.3
Build: 173.4201.25

Released: January 15, 2018
e aruans. 2 DOWNLOAD DOWMLOAD

Free trial Free, open-source

Figure I-5. Intelli] download page on the JetBrains website

The Community Edition has more than enough features to get you
through this book and beyond. Download this edition, and follow the
normal installation. Once installed and launched, you'll be greeted with

xxii

http://www.jetbrains.com/idea/download/
http://www.jetbrains.com/idea/download/

INTRODUCTION

the “Welcome to Intelli] IDEA” screen as shown in Figure I-6. If you see
this screen, your install was successful and you can move on to the next

section.

@ Welcome to IntelliJ IDEA

IntelliJ IDEA

¢ Create New Project
“ Import Project
Open

¥ Check out from Version Control ~

1) Events v % Configure + Get Help ~

Figure I-6. The welcome screen upon launching Intelli] for the first
time

Cl/CD Platform

To showcase how you can build platform agnostic pipelines, we’ll need
some platforms to work with. We’ll work with two of the more popular
platforms on the market: Circle CI and Travis CI. Outside of being popular
options for building pipelines, they also provide free subscriptions via
Software as a Service (SaaS) offerings. This was important so you could
work through the examples without spending any money. Also, being SaasS,

xxiii

INTRODUCTION

you don’t need to worry about downloading and installing software, which
is extremely nice!

Another reason we chose these two platforms is how different they are
in their Uls and setup. Given that this book will demonstrate a platform
agnostic approach to building pipelines, these two vendors showcase this
quite well.

We won'’t cover setup here; that will come later in Chapter 4. For now
we recommend visiting their sites and poking around a little bit. We’ll
come back to these soon!

Circle Cl

Circle Cl is a great option as it provides a totally free option when signing
up. To learn more, navigate to the site located at the following URL:
https://circleci.com/.

Travis Cl

Travis CI is another great option with a free tier. You can sign up and learn
more here: https://travis-ci.org/.

Other Options

If you've been working in DevOps for a while, you know there are many
platforms out there to choose from. If you're new to DevOps, have no fear.
If you don’t like an offering from a vendor, you'll have plenty of options to
find something different.

What we present in this book will work with any platform that offers
running commands inside a Docker container. If you don'’t care for the
platforms we’re using in this book, there is nothing stopping you from
using something different. These vendors were chosen because they offer

XXiv

https://circleci.com/
https://travis-ci.org/

INTRODUCTION

a great product at a great price: Free! Also, these options are completely

managed with Saa$ solutions. This frees you up from having to deal with

installations. However, if you like, here are some other options you can also

use:

JetBrains Teamcity TestDrive (www. jetbrains.com/
teamcity/): JetBrains offers a 60-day trial of Teamcity
TestDrive in the cloud. However, TestDrive is meant to
be a trial in the web, and not meant for long-term use.
At the end of the trail you are expected to download the
product if you like it.

CloudBees Jenkins (www.cloudbees.com/): Jenkins is a
powerhouse in the DevOps world, so we’d be remiss to
leave them out of this book. CloudBees offers a seven-
day trial of their Enterprise product, which is hosted.
There are some drawbacks. You need a company-
provided email address to sign up, and did I mention
the seven days?

Docker Hub Account

You'll also need an account on Docker Hub. In the examples you'll be

building custom Docker images to perform your build and unit test stages

in, so we'll need somewhere to store those. Docker provides free accounts
on Docker Hub. To get started, navigate to https://hub.docker.com/ as

shown in Figure I-7.

http://www.jetbrains.com/teamcity/
http://www.jetbrains.com/teamcity/
http://www.cloudbees.com/
https://hub.docker.com/

INTRODUCTION

‘nub.docker.com

New to Doc

Figure I-7. Docker Hub landing page

Fill out the form on the landing page and click the “Sign Up” page and
you'll be all set. Once you're logged in you can create new repositories
via the “Create Repository” button, as shown in Figure I-8. You'll need to
create a new repository before pushing any images to Hub.

& Se 11ps / hasb docker com o & i

Figure I-8. Docker Hub page after you've logged in

GitHub Account

Finally, you'll need a GitHub account. As you noticed in the signup for
Circle CI and VSTS, you'll eventually be connecting a GitHub account to
them. To create an account, navigate to https://github.com/ and fill in
the form located on the homepage, as seen in Figure I-9.

XxXVi

https://github.com/

INTRODUCTION

@ GitHub, Inc, [US] | hitps://github.com

O Features Business Explore Marketplace Pricing 1€ Signin o Signup

Username

Built for |
developers

(.,E;-_i | VT IS Password

Create a password

| Open source

Use at least one letter, one numeral, and seven
characters

Sign up for GitHub

By clicking “Sign up for GitHub®, you agree 1o our terms of

Figure I-9. Sign up form on the GitHub landing page

Once you sign up, you'll be taken to the main landing page where
you can create new projects. For now you don’t need to do anything else;
you're all setup for the examples to come.

Overview

This introduction has gotten you prepared for the code examples that
come later in the book. You should now have all the software installed
and have created all the accounts needed. While actual coding and
deployments come later in the book, I would encourage you to poke
around and explore Circle CI and VSTS ahead of time. There are a lot of
options available in each, and it would be good to build even a simple
“Hello World” deployment before jumping into examples.

Next, we'll begin to look at how traditional monolithic applications and
pipelines are holding you back. We’ll explore why these came to be and
how toxic they are for rapid delivery of applications.

XxXVii

CHAPTER 1

Recognizing You Are
Stuck in the Past

It can seem sometimes that the world has lost its mind. You're plugging
away writing code, building new features for your business users, and
deploying code like a pro without a care in the world. Then along comes
a new pattern or a blogger talking about new ways to write software and
efficient means to deploy code. They talk about how they’ve observed that
the way your organization does things is just plain wrong, if not barbaric.
You might take it personally or get offended, and rightly so! Who are they
to tell you that what you're doing is wrong; “we’ve always done it this way.”

Recognizing you are stuck in the past can be difficult. Some of us
refuse to acknowledge it or are comfortable in our ways of doing things,
while others of us use it as an excuse to get upset or vent frustration about
a project or the software we're building. Oftentimes, especially when you
work for a larger company, you have no control over the situation you're
in. I've worked for companies that have had feature requests pile up,
which prevented any discussions of refactoring an application. When the
business needs new features to bring in more money from demanding
clients, it's tough to argue any other way.

In this chapter we’ll look at how some organizations are truly stuck in
the past. We'll explore why applications tend to evolve this way, or are born
that way. We'll also discuss how these applications can lead to stress and

© Brandon Atkinson, Dallas Edwards 2018 1
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_1

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

discontent among teams, and some simple things you can do to mitigate
stress and improve morale. This is not meant to be doom and gloom, but
rather to help bring to light that things can be better.

Monolithic Applications

Monolith—something having a uniform, massive, redoubtable, or
inflexible quality or character. ("monolith". Dictionary.com Unabridged.
Random House, Inc. Jan 30, 2018. <Dictionary.com www.dictionary.com/
browse/monolith>)

I think this sums up quite nicely some of the monolithic applications
I have worked on in the past. Massive and inflexible are great ways to
describe these applications. If you're not a software developer by trade
and have never worked on an application like this, count yourself lucky.
Those of us who have understand these definitions and how accurate they
are. A traditional monolithic application looks like the design as shown in

Database

Figure 1-1.

Monolithic
Application

Figure 1-1. Traditional monolithic application design

http://www.dictionary.com/browse/monolith>
http://www.dictionary.com/browse/monolith>

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

Info The word redoubtable is fitting as well, defined as “that is to
be feared; formidable.” (“redoubtable”. Dictionary.com Unabridged.
Random House, Inc. Jan 30, 2018. <Dictionary.com
www.dictionary.com/browse/redoubtable>)

Here we have a huge application that connects to a database and
has multiple configurations as it moves through various deployment
environments. Sometimes the configuration isn’t even separate, it'’s baked
into the source code. In this scenario the user interface (UI) lives with,
and is usually packaged with, the application code. Applications like this
are usually built on MVC frameworks that bring front-end rendering and
server-side code all in one neat package. These frameworks are great for
rapid application development, but usually result in poor decisions in
code structure, separation of concerns, and flow.

Some teams will logically make the next jump to an architecture that
breaks the UI away from server-side code, much like the design shown in

Database

Figure 1-2.

Monolithic
Server-Side

Figure 1-2. Monolith that has been split into two layers

http://www.dictionary.com/browse/redoubtable>

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

While this is certainly a step in the right direction, it can introduce
much more complexity. You've now effectively doubled up your
deployment concerns. Even though the UT and server-side code are split
from each other, they cannot be deployed independently. You'll now have
two deployments of large code bases that must be coordinated. You may
also now need to juggle configuration files: one for the UI and one for the
server-side code.

In an ideal world you're deploying the application into multiple
environments that may include: Development, QA, UAT, Staging, and
Production. At each stage the configuration must change to point to the
correct database. Also, presumably the database must be updated with
any data or schema changes to support the code. In almost all scenarios
changes in the application code or database are tightly coupled. So,

a change in either concern forces a complete deployment of all the
concerns. This is a lot of work if all you need to do is add a link to a page!

Now imagine if you have two or three of these applications. The
deployment process becomes so much more complicated. It would not
be unheard of that these applications have dependencies on each other
as well. Now every deployment must be coordinated across multiple
applications, or at the very least, all applications must be tested even if
only one is being deployed.

This is a sure-fire way to drive your IT teams insane. Nothing about this
process makes you feel good. Monoliths become a nightmare to maintain,
debug, or add new features to. From a developer point of view, you never
want to touch the code, especially in business-critical areas. As a system
team (DevOps or Sys Admins), you dread deployments, as they are error
prone and take a lot of time. If you're lucky to have a CI/CD pipeline in
place to support your application, it may not be much better on the other
side of the fence.

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

One Pipeline per Application

A lot of monolithic applications are still deployed manually, even in 2018!
I've worked with several clients who had a system team that consisted of
DBAs and Sys Admins. This was the de facto DevOps team, as they were
responsible for deploying application code. The deployment process
involved the developers manually building and packaging the code, and
placing it on a shared drive or FTP folder on the network. A Sys Admin
would then copy the compiled code and paste it on the production servers.

You might be reading this and thinking to yourself there is no way this
is still going on. How can organizations deploy applications like this? Well,
these practices exist for many of the same reasons as monoliths. Here’s the
short list:

o We've always done it this way.

e The deployment can’t be automated.

e The business won't give us time to build it out.
¢ We don’t have DevOps expertise.

The list can go on and on, and some of these may be valid; however,
most simply reflect fear of doing something new or moving away from a
method that works. If they are valid, they most likely need to be addressed
and overcome. If your monolith is a commercial off-the-shelf product, you
may not be able to automate the deployment. The business may have other
very real and critical needs that need immediate attention. You may not
want to take on building a pipeline if you don’t have the expertise, or the
time to dedicate to it.

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

Note Commercial off-the-shelf (COTS) applications can pose a real
challenge. While there are many well-written and maintained COTS
products, some are a real nightmare. A quality COTS application can
be easily deployed via a pipeline. Others require custom deployment
processes that make using a pipeline nearly impossible.

If you're lucky enough to have a pipeline for your monolith, it can at
times add to your headaches. In almost all scenarios, you will build one
that is tightly coupled to your application. In fact, this practice has nothing
to do with monoliths per se. Most CI/CD pipelines and processes are
built around a single application. They are custom built to do everything
needed by the application and can include things like:

e Building the application

e Automated tests

o Running security or static code analysis
» Provisioning/configuring infrastructure
e Publishing artifacts

o Injecting configuration

o Deploying the application

These pipelines do everything they should to get the application where
it needs to go, and the state it needs to be in. You may even be able to reuse
some sections of the pipeline elsewhere, like security or static code scans.
However, in most cases the pipeline is very coupled to the specific needs
of the application being deployed. For instance, if you're provisioning
infrastructure, configuring it, and adding application configuration, the
pipeline becomes very tightly coupled to the application.

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

If you begin adding more applications in your organization, your
overhead starts to grow quickly. You now need to build and maintain multiple
pipelines, each with their own eccentricities. If the platform you build your
CI/CD efforts on top of needs to be updated or a new version is released, you
may be in the position of rebuilding all your pipelines. This is not an ideal
situation to be in, especially if you don’t have the staff to handle it.

Bad Actors

Having a single pipeline per application can introduce some bad behavior.
Since the pipeline is tied directly to a single codebase, it’'s not uncommon
to receive requests for it to be modified to do nonstandard things. After
all, it’s a pipeline dedicated to a single application; it must support the
needs of the application. If you make a change to it, it only affects this one
application. However, these ad hoc changes can quickly put you in a very
fragile spot. Take, for instance, the flow as shown in Figure 1-3.

master
Developer Branch #1

Source Control

Feature Branch #1
Feature Branch #2

R

Figure 1-3. Source control with multiple branches, hooked up to a
deployment pipeline

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

In this example we have application code stored in source control
with multiple branches. The “master” branch is tied to the deployment
pipeline. Any commits to “master” will trigger a deployment of the code.
Developers can maintain feature or development branches that will
eventually get merged into “master.” In this scenario “master” is the source
of truth, and the only branch that ever gets deployed. This follows proper
CI/CD principles and is a very good practice.

As is often the case with larger code bases that have a dedicated
pipeline, bad practices begin to emerge. It's not uncommon for a feature
branch to become so large that it becomes difficult to easily merge it back
into “master” Developers work hard on this branch for an upcoming
release, and the clock is ticking. Eventually the request will come down to
have the pipeline reconfigured so it points to a feature branch, as shown in
Figure 1-4.

master
Developer Branch #1

Source Control

Feature Branch #1
Feature Branch #2

R

Figure 1-4. Source control with multiple branches, hooked up to a
deployment pipeline on a nonmaster branch

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

Now we have our pipeline deploying off a feature branch, which is
not good practice. If you have multiple teams working on several features,
which branch is now the source of truth? The team is very quickly put into
a place where “Feature Branch #1,” in this example, is the de facto “master”
branch. This very quickly gets out of hand, especially if another team
needs to begin working on a new feature at this very moment. They will be
forced to create a feature branch off a feature branch!

Another common bad practice is a request to turn off certain stages in
the pipeline, as shown in Figure 1-5.

master
Developer Branch #1

Source Control

Feature Branch #1

Feature Branch #2

SO

Figure 1-5. Pipeline that has been configured to bypass unit tests

Now the pipeline is deploying code that is in a feature branch, and the
testing stage has been bypassed. If your pipeline is configured like this,
it should raise alarm bells—not for the DevOps team, but for the teams
you support. These requests can come over very quickly and are usually
the result of tight deadlines, or needing to provide a hotfix for production.
Whatever the reason, they introduce risk in the process of delivering

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

quality software. The result most often is that these changes persist past
the initial implementation, as technical debt has a way of being created but
never resolved.

Info These examples are from real-world scenarios I've
encountered throughout my career. It takes a village to deliver quality
software, and the pipeline needs just as much attention at times as
your application.

Pipeline as Gatekeeper

The CI/CD pipeline plays a huge role in the software delivery lifecycle. Not
only is it responsible for delivering your application to an environment

in an automated and predictable way, it also plays a role in the quality of
that software. Quality pipelines include various stages to check not only
the quality of the code but also if it has any security or performance issues.
Typical stages include:

e Build: This stage does exactly what it says; it builds the
application from source code. The binaries created
here are what is deployed later.

o Test: This stage will run unit tests against the code. This
is your first quality check and it ensures any changes
made by the development team did not break expected
functionality.

o Static Code/Security Analysis: This is a scan of the
source files for the application. This scan will look for
vulnerabilities, technical debt, and may verify code
coverage. This stage could be broken into multiple steps,
given your choice of tools to perform the scanning.

10

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

o Storing Artifacts: A good process takes the binaries
created in the Build stage and saves them for later
deployments. This ensures that code that was tested
and successfully deployed can be promoted later with
confidence it passed all your checks.

e Deployment: A simple (hopefully) deployment of the
binaries to the specified environment, i.e., Dev, QA,
Production, etc.

e End to End/Performance Tests: Once the code is
deployed, you may run automated tests to ensure it
performs properly. This can be via a browser or hitting
API endpoints. This stage may also be broken up into
multiple stages, depending on your needs.

As you can see in this scenario, a CI/CD pipeline can do a lot of work
to ensure the code being delivered is a quality product. Bypassing some
of these steps is just impossible; you can’t deploy if you haven’t built the
application. However, some could absolutely be skipped, but shouldn’t.
Teams may find themselves up against tight timelines and realize that their
code coverage is beginning to slip. A request may come down to bypass
the static code analysis stage. They may import a new code library that
has a security vulnerability in it. Rather than address it, another request
is received to bypass another stage. Soon you're left with the absolute
barebones pipeline.

Note There is an argument to be made that the CI/CD pipeline is
not the place to enforce good behaviors. It’s really the responsibility
of the development teams to ensure the code is properly tested and
secure. However, there is no way to escape the fact that the pipeline
is often where these checks are applied.

11

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

This behavior is tied directly to the fact that the pipeline serves a single
application. The team believes it’s in their best interest to ignore some
best practices, as they are being pressured to deliver faster. However, if the
pipeline is not there as a proper check on what'’s being deployed, the result
could be much worse.

Agile Can’t Die; It Was Never Born

CI/CD pipelines are the perfect complement to any team using agile
methodologies. In an ideal situation development teams are building
features that are committed to source control often. Each commit kicks off
a build via the pipeline and your entire test suite is executed. The code is
deployed to a lower environment for user acceptance testing, and artifacts
are created for later promotion. Once the feature is complete, or maybe the
sprint, the new feature is deployed to production and your users are happy.
Even if you're not using agile, these practices still make sense.
You want your code built and tested as often as possible. Performing
deployments often will also highlight any problems long before you get to
push to production. The problem you will most often face is an extremely
long lead time to deployment. With a typical monolithic application, the
time it takes to deploy from the moment work begins on a new feature can
be weeks or months, as shown in Figure 1-6.

12

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

Development
Complete

3+ Weeks

Development

User Acceptance
Begins

Testing

Production
Deployment

1 Day
(Weekend)

Figure 1-6. Feature development timeline on a typical monolithic
application

In this example it’s over a month from the time development begins
on a new feature before it’s deployed to production. This cycle time
introduces a lot of risk from many different angles:

1. Developers: This is one of the main reasons that
long-living feature branches exist. Your “master”
branch is pristine and you're hesitant to mess with
it. However, the long cycle time means your feature
branch must also live that long. If multiple features
are being developed concurrently, by the time you
need to merge back into “master” it becomes a real
problem.

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

2. Testers: In this scenario, testers don’t see the new
features for quite some time. In some cases they
don’t see compete functionality until the code is
ready to go to production. This introduces even
more risk if a bug is found.

3. DevOps: One of the selling points of pipelines is an
automated process that is repeatable; you know
what you're getting every time you request a new
build. If you're only deploying once a month, that
process is not performed enough to become routine.
If you're doing manual deployments, this means
the subtle nuances that come with that process are
forgotten. Each deployment then becomes as if it’s
the first time you're doing it.

The longer the cycle time to develop and deploy a feature, the more
out of sync your feature branch becomes with a “master” branch. In many
scenarios changes are being introduced into the “master” branch during
this time. UI updates, bug fixes, or other features may get merged. This
puts you in a position of merging down from “master” into your feature
branch, then merging back up. In either direction you’ll most likely
encounter conflicts that need to be resolved.

Overview

In this chapter we looked at how a monolithic application with a dedicated
pipeline can introduce risk for your deployments. This combination can
lead to bad behaviors that often result in cutting corners to meet deadlines.
However, it’s not all doom and gloom. You can absolutely have a dedicated
pipeline that performs all the tasks needed and runs smoothly. This quite

14

CHAPTER 1 RECOGNIZING YOU ARE STUCK IN THE PAST

often requires strong leaders who are willing to say no to a risky request.
The reality is that if the business needs software out the door on a certain
date, you do what is required.

In the next chapter we’ll look at how microservices can help ease some
of these concerns. We'll explore how these services allow you to break
away from a dedicated pipeline, into a more standardized approach. You'll
begin to see how we can look at the pipeline in more generic ways and get
more from your deployments.

15

CHAPTER 2

Setting the Stage
for the Present

When you sat down with this book, you were probably fully caffeinated
and ready to dive into learning about the world of generic pipelines. You
made it through the introduction and rolled up your sleeves for Chapter 1
when bam, you were served with a healthy dose of “this is how it is.” Sorry
to rain on your parade, but a lot of companies still work that way. Maybe
you are beyond that, on a journey of exploring microservices and how they
can improve writing and deploying applications. Alternatively, maybe you
work in a shop that is already developing microservices, but struggle with
how to manage all the pipelines. It is all very individual, but the good news
is we're here to help.

In this chapter we’ll begin to explore how you can simplify code
deployments using microservices. We’ll explore the beginnings of a truly
generic pipeline. You'll see how this can improve your agile maturity as
well, by lowering risk and delivery time.

Microservices

Microservices represent the true antithesis to monolithic applications.
Small and lightweight, these services usually provide specific and very
limited functionality. This allows them to focus on singular tasks, which

© Brandon Atkinson, Dallas Edwards 2018 17
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_2

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

makes developing them fast, debugging issues easier, and deployments
nimbler. A true microservice can be deployed independently of other
services and is self-contained. A typical microservice architecture is shown

Micro-Service
#3

Figure 2-1. Multiple microservices with dedicated databases

in Figure 2-1.

In this example, each microservice has its own database. This type of
architecture allows developers to easily make changes to their services
without the need to check with other teams. The service is the source of
truth for the data and no other service should manipulate it. If another
service needs to get to this data, an API is exposed for that purpose. This
way if the developers don’t change the API, changes can move forward that
don’t break other services that consume it. This can also be accomplished
with versioned endpoints in the API.

In this architecture, teams can move as fast as they want to and can
deploy even faster. Unlike in the monolithic application, which must be
deployed as a single unit, microservices can be deployed at different times.
This gives teams the flexibility to work on multiple features at the same
time, without worrying about stepping on each other’s check-ins. Each

18

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

microservice is in its own repository, so teams are safe to make changes
as needed. Adopting microservices is not a magic bullet, however. Teams
will need to ensure they use proper API versioning and dependency

management.

Note While microservices can make developers and DevOps lives’
easier, they also come with baggage. Usually you end up with a lot of
services, since they focus on more singular workloads. This increases
your deployments, and the complexity does not necessarily go

away. Microservices are not a silver bullet, but they do provide many
benefits, which we’ll explore in detail.

Developer Best Practices Are Key

One of the tenants of continuous delivery is that teams produce software,
or new features, in short cycles. Microservices provide a great way to do
this. Since teams can focus solely on their service and adding new features
to it, they can move much faster. One of the benefits to this is smaller and
quicker check-ins to the “master” branch.

In most cases your deployment pipeline is configured to react to
commits to the “master” branch in your source control. A commit
will trigger a build, which creates an artifact that can be deployed.
Microservices give development teams an opportunity to practice true
CI/CD patterns. By this I mean each commit to “master” will trigger a
pipeline execution. The pipeline will build, test, and deploy the application
each time, all while producing an artifact that can be promoted to
Production. Each commit produces a potential production release.

19

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

Depending on how mature your organization is, this may seem like
madness! Every commit produces a production-ready artifact?! If you're
new to microservices, this does sound strange—and even more so if you
don’t have a sophisticated pipeline. However, consider the following
scenario. You are a development team working in agile. You have two-week
sprints and plan to produce a feature during each sprint. You have a CI/CD
pipeline that performs the following steps:

e Build

e Unit Tests

e Security Scan

o Static Code Analysis

o End to End/Integration Tests
e Artifact Creation

e Deployment

e Performance Tests

In this scenario when your team has finished development and tested
locally, they can commit the new feature to the “master” branch in source
control. The commit will trigger the pipeline, where a full suite of tests is
run to ensure the code is production ready. At the end you have an artifact
of the application you can now promote to production. Microservices
allow this type of rapid deployment.

While microservices are the gateway to faster release cycles, it
takes much more to truly achieve this goal. This architecture gives you
isolation from other teams and data stores, which allows for more rapid
development. Developers need to ensure their application code is properly
unit tested. End to end tests must be written so user acceptance testing

20

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

can be automated. The same goes for performance tests. Security scans
and static code analysis is usually performed by third-party tools, but
developers must review the results and potentially update code based on
those results.

A great pipeline can get your code deployed in a matter of minutes,
fully scanned and tested. However, it’s a team effort to build production-
ready code. Simply developing the application is no longer enough. Proper
testing and scanning must be in place to ensure the application being
deployed works and is safe for your business.

Note There is debate about how small or large a microservice
should be. Should it cover all the possible needs of a certain business
process, for instance “Billing”? Or, should it be much more granular,
for instance one for “Send Bill” and another for “Process Payment”.
At the end of the day, this is a business decision. However, a good
rule of thumb is if you can’t re-build it in a sprint (roughly 2-3 weeks),
then it’s too big.

Dedicated Pipeline per Language

Microservices give us a better way of delivering application code. In
the previous chapter we looked at how a monolithic application has
a dedicated pipeline for the application itself. Let’s review what the
application looked like, as shown in Figure 2-2.

21

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

Database

Monolithic
Server-Side

Figure 2-2. Monolith application

While this application is a monolith, it would most likely have three
pipelines to deploy it: one for the server-side application, one for the UI,
and one for the database. Even though you have split the deployment
into three components, they are all still tied to a single application. There
is little to no reuse of code in those pipelines. Microservices provide
an opportunity to improve this. Most business applications will have
some sort of UL Let’s look at an example business application that uses
microservices, as shown in Figure 2-3.

22

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

Micro-Service Micro-Service Micro-Service
#1 #2 #3

Figure 2-3. Application that uses microservices with a Ul

In this scenario we still have a Ul that users interact with, but now
the business logic is separated out into multiple microservices. As
more functionality is added, more microservices are added as well.
Following the monolithic approach, we’d build a pipeline per UI and/or
microservice. This may be OK if you only plan on having a few services,
but what happens if your application and business take off and you end
up with a dozen microservices. What about 20, 50, or 100? You may think
those numbers are high, but you'll be surprised at how fast adoption grows
once you start down the microservices path.

Caution Don’t take for granted how fast microservice adoption can
take place or how many services you may end up with. Netflix runs
hundreds of microservices to power its operation, reportedly over
500. You can be assured they do not have dedicated pipelines for
each service.

23

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

Microservices allow for a more generic approach to building your
pipelines. It's not uncommon for an application built with microservices
to use multiple languages such as Angular for the front end, .NET Core for
services interacting with SQL Server, and perhaps Golang for orchestration
services. Figure 2-3 showed an application that had a UI powered by three
microservices. Figure 2-4 expands on this with the addition of languages.

Micro-Service Micro-Service Micro-Service
#1 #2 #3
.NET Core Golang Golang

Figure 2-4. Application that uses microservices with a Ul, with
languages added for reference

In this example our Ul is Angular, but it could be React or something
similar. We have a .NET Core service and two Golang services. The
languages here are not important at all. You can easily substitute Java
for .NET, or Python for Golang. Whatever language is prominent in your
organization, you can count on microservices written in it, plus at least one
more. One of the benefits microservices provide is the ability to choose
the language that is right for the job. As mentioned, you may want to use
.NET to interact with SQL Server due to its frameworks custom built for

24

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

that purpose. You may choose Golang as an orchestration service due to its
speed and small footprint. You may choose an entirely different language
simply because you have a shop full of developers who already know it.
The list goes on and on. However, as you build your pipelines you must be
prepared for a new language popping up at any time.

Now that we are looking at applications built with one or more
languages, we can start to look at the pipeline as being language specific
rather than application specific. This is beneficial for a variety of reasons,
including:

e Faster on-boarding: If your pipeline is built for a
language rather than a specific application, others
can use it if they write their applications in the same
language. Teams can on-board to the pipeline faster
and begin providing business value much sooner.

e Reuse of code: You're not spending your time writing
custom code for each application. Your pipeline code is
reused across multiple applications.

o Ease of maintenance: If a new feature is required of the
pipeline or you need to perform a bug fix, everyone gets
those changes. Imagine you have an Angular 4 pipeline
and Angular 5 is released. Simply update your Angular
pipeline, and all UTs benefit at the same time.

Language-specific pipelines provide a lot of code reuse, which will
make your life easier. This becomes very apparent once you build out a
language-specific pipeline and teams begin to on-board. In the monolith
world, a team would build an application and put in a request for a new
pipeline. With language-specific pipelines built for microservices, you can
build it once, then simply have teams utilize it. Figure 2-5 illustrates this
concept.

25

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

NET Service #1
NET Service #25 MNET Build > .NET Test | Static Scan [Security Scan—>» Deploy

Java Service #1
) T Java Build [» Java Test [~ Static Scan |~ Security Scan—» Deploy
Java Service #2

Java Service #3

Angular Ul —————{ Angular Build - Angular Test [—» Static Scan | Security Scan—» Deploy

Figure 2-5. Multiple services and Uls utilizing language-specific
pipelines

Now you're no longer writing and rewriting code for your pipelines. Teams
using the same language will also use the same pipeline. However, this can
only be achieved with proper standards in place. Everyone must agree on a
certain baseline set of rules and patterns that the pipeline will follow. You can’t
have shared pipelines if everyone wants to do something different.

Note Examples that show .NET or .NET Core are referencing .NET
Core running on Linux. One of the benefits of shared pipelines is they
all run in Linux environments, and usually the same environment. Not
jumping between Windows and Linux is a true benefit here, and you
should take advantage of it.

Standards Are Key

We'll be exploring standards much more in depth later in the book as we
begin to take shared pipelines even further. However, it’s an important area
that we’ll look at now because it’s crucial to making these pipelines work.
We'll scratch the surface now, and in future chapters we’ll really dig in.

26

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

In the previous section we talked about the need for consensus on how
things work in the pipeline. For a shared pipeline to function correctly for
all, a few key standards must be defined:

e Howyou build
¢ Howyou test
e How you deploy

Some of these may seem trivial, but once you begin working with
multiple teams you'll find folks have their own ways of doing things. It’s
important that the pipeline performs the exact same commands for all
applications for a specific language. Take .NET Core as an example: you
may settle on the build command shown in Listing 2-1.

Listing 2-1. .NET Core Build Command

dotnet build -c Release -o /build-output

This command will build the application in the current directory in
Release (Production) mode and store the binaries in an output folder
called “build-output.” Listing 2-2 shows an example test command.

Listing 2-2. .Net Core Test Command
dotnet test -c Release -o /build-output

This command will unit test the application in the current directory
in Release (Production) mode and look for binaries in the folder named
“build-output” Both commands are perfectly fine and would run without
any issues. However, what if you have a development team that wants to
run a dotnet build command, but with different arguments? Or you have
arequest not to build in “Release” mode, but rather in “Debug” mode? If
you accommodate each team’s request, your pipeline will need to react
differently based on the code it is building and testing. If you're dealing
with dozens of services, this would not be sustainable.

27

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

The goal of a shared pipeline is to greatly decrease cycle time and
release code faster. To do this the pipeline must be opinionated, in that
it runs certain commands and only those commands. If a team wishes to
deploy their application with your pipeline, they must play by the rules. At
first glance this does not seem like a huge ask of your development teams.
However, you may find that opinions differ on the best way to build and
test applications. People may have certain tools or patterns they prefer
over others. The key is getting a standard in place and sticking to it.

The best way to accomplish this is to interview your developers. Find
out exactly which commands they run locally to build and test. In most
cases you'll find the commands are the same or differ only slightly. Once
you have this information, you can work with the teams to settle on the
standard commands the pipeline will run. After that, all teams must agree
to use these commands going forward. This is the easy part, as you enforce
those via the pipeline. If the application cannot be built and tested using
the standard commands, it won’t be deployed.

Taking Code Reuse a Step Further

Once you have a language-specific pipeline in place, you may notice

that some of your steps are identical. These tend to be tasks dedicated

to various things like security scans or static code analysis. Submitting
code for scans usually involves zipping up the source code or binaries,
and uploading them to a service that performs the scan. There are many
commercial platforms and software packages that perform static code and
security analysis. They usually work with a long list of languages. What
this means for your pipeline is a generic step that any language can use.
Figure 2-6 illustrates a shared step across all your pipelines.

28

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

NET Service #1 :
NET Service #2 NET Build | .NET Test > —>» Deploy

Java Service #1 .
v _I T Java Build > Java Test = Static Scan —»|Security Scan—> Deploy
Java Service #2

Java Service #3

Angular Ul ——» Angular Build - Angular Test —> —>| Deploy

Figure 2-6. Code reuse across common areas

As you can see, not only are we pushing more applications through
fewer pipelines, now we’re beginning to reuse code across pipelines as
well. This illustration should begin to solidify how shared pipelines can
reduce your workload. This also illustrates how generic steps can be
utilized anywhere you need them.

Now, let’s assume that your pipeline is using static code analysis
for code quality. Let’s also assume the business has decided to utilize
containers and the cloud for deployments. Your pipeline can be further
simplified, as shown in Figure 2-7. With these changes you can share even
more code across multiple pipelines. Uploading code for a static code
analysis and deploying to the cloud are not trivial matters. However, the
underlying mechanics don’t change very much between applications.
Some simple configuration data is all that is needed for each of these steps
to operate properly.

29

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

NET Service #1
NET Service #25 NET Build —» .NET Test [>

Java Service #1 . Static Code Code
—» > X
Java Service #2? Java Build Java Test Analysis > Deploy

Java Service #3

Angular Ul ——»{ Angular Build > Angular Test [—>

Figure 2-7. Pipeline utilizing shared steps for static code analysis and
cloud deploy

In this example half of the pipeline is now shared code. The only steps
that are not generic are the ones tied directly to a language like build
and unit test. As your development practices begin to mature, you'll find
additional steps that can be shared, like performance testing, artifact
storage, logging, etc. The idea with this pattern is to make steps as generic
as possible.

Most CI/CD platforms allow for code reuse either directly or indirectly.
Jenkins, for instance, allows you to pull in code from various repositories.
Circle CI and Drone CI allow you to configure scripts to run for each step,
which can easily be reused. This code reuse provides so many benefits as
your microservices begin to grow. The more code you can reuse the better
off you'll be.

30

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

Microservices and Shared Pipelines are
More Agile

Whether you like agile practices or hate them, they provide a process to
release code much faster. Microservices and shared pipelines can greatly
facilitate this process. With microservices you can begin to focus on smaller
releases, generally tied around a new feature. Figure 2-8 illustrates a release
cycle of two weeks, which could match up to the development team’s sprint.

Development
Complete

Immediate
(Automated)

User Acceptance
Testing

Development
Begins

Production
Deployment

Immediate

Figure 2-8. Two-week release cycle

As the example demonstrates, development takes approximately
two weeks, at which point the feature code is committed to the “master”
branch. The pipeline is executed based on the commit and a full suite
of tests are kicked off. A release candidate artifact is created and can be

31

CHAPTER 2 SETTING THE STAGE FOR THE PRESENT

promoted to Production at any time. This image looks drastically different
than the one shown in the previous chapter. Microservices give you the
opportunity for rapid development, testing, and deployments.

A shared pipeline by itself does not necessarily contribute to rapid
deployments. It’s the benefits of this pattern where you see the speed:

o Teams can on-board faster: Gone are the days of
requesting a custom pipeline, meeting to discuss
needs, and waiting for it to be built and tested. Now
development teams simply apply the standard and can
on-board much faster.

o Enhancements are provided to all at the same time: If a
new feature is added to the language-specific pipeline,

everyone benefits immediately.

e Maintenance is done all at the same time: Bug fixes
don’t need to be applied to multiple pipelines. If a new
version of Node.js comes out, simply update the Node.
js pipeline and you’re done.

Overview

In this chapter we explored how moving into a microservice architecture
can speed up development and releases, but also increase the number
of applications that need to be deployed. We looked at how a language-
specific pipeline can ease the DevOps workload by providing a reusable
shared pipeline that all teams can use. We also reviewed how code reuse is
possible in this pattern, further lightening the load and increasing output.
In the next chapter we’ll go one step further, and begin exploring the
truly generic pipeline. Not only generic from the application’s point of view
but also from the underlying platform perspective. We’ll see how Docker
can help us take our pipelines anywhere and how scripts take code reuse
to the next level.

32

CHAPTER 3

Getting it Right with
Docker and Scripts

Up until now we've looked at pipelines that work with monoliths and
microservices. We've explored the challenges that come with both, but
have seen how microservices can ease your pipeline workload. In the
previous chapter we saw how you can build language-specific pipelines.
These implementations allow for multiple teams to take advantage of a
single pipeline. It also makes you begin to set and enforce development
standards, which allows for code reuse across your pipelines. We'll explore
this concept much deeper in later chapters with code examples.

Language specific pipelines are great; they allow the DevOps team to
focus on fewer pipelines by giving feature teams a shared implementation.
It lowers maintenance efforts, allows for all teams to share in upgrades
and improvements, and sets standards for how applications are deployed.
While all this is great, we can do better. Imagine if you could build a single
pipeline that could deploy any application regardless of the language it
was written in. How much time could your DevOps team get back if they
only had to support one implementation?

In this chapter we’ll begin laying the foundations of the generic
pipeline using Docker. You'll learn the pattern and process that allows a
truly generic pipeline to work. We'll explore how this pattern is driven by
Docker and frees you from the underlying platform the pipeline runs on. At
the end of this chapter you'll be ready to start coding an implementation.
© Brandon Atkinson, Dallas Edwards 2018 33

B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_3

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

One Pipeline to Rule Them All

Language-specific pipelines are a great first start. They allow you to break
free of application-specific implementations and begin to serve a larger
base of teams simultaneously. However, as your feature teams begin

to fully embrace microservices, it stands to reason they will begin to
embrace other languages as well. You may start off as a 100% .NET or Java
shop, and slowly turn into a true polyglot shop. This may not be a huge
concern if you're supporting a few languages, but what about five, six, or
seven languages? This may seem like a lot, but it’s not. have worked at
organizations that had the following languages to support:

e User Interface: Angular and React
o Server Side: NET Core, Java, Node.js, Python, Golang

Microservices give feature teams the flexibility to try out new languages
and patterns. They allow for choosing the right language for the job as well.
Take .NET and SQL Server for instance. Let’s imagine you've been writing
back-end services in Node.js and now must write a new API that connects
to SQL Server. You could use Node.js for this task; however, .NET has built-
in functionality to do just that. You can very quickly spin up a .NET Core
microservice that handles CRUD operations against your SQL Server. It would
be faster to write and less error prone, since it’s inside the .NET ecosystem.

Another scenario involves hiring of new talent. Suppose you hire
an amazing developer. When they join, they talk about writing their
microservices in Golang, since it’s easy to write, easy to learn, and
compiles and deploys very fast. You try it out and like it. Suddenly Golang
services are springing up all over the place. The moral of the story is with
microservices developers, feel free to try out new languages or stray from
the standard if another language provides benefits.

As more and more languages come on the scene, you'll find yourself
writing more and more pipeline implementations. If you're in an
organization that supports seven languages, that would be seven pipelines.

34

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Even in a simple scenario, you'd have two languages to support, one for the
UI and one for the server side. That’s one too many! A better solution is a
single pipeline that is built to handle any language that your teams work with.

In the previous chapter we looked at shared steps of a pipeline, as
shown in Figure 3-1.

NET Service #1
NET Service #25 .NET Build » .NET Test [>

Java Service #1 . Static Code Code
Java Build [—»| Java Test [; —»>
Java Service #2? Analysis Deploy

Java Service #3

Angular Ul ——>»{ Angular Build > Angular Test [—>

Figure 3-1. Shared steps of a CI/CD pipeline

A typical pipeline may consist of the following steps:
e Build
e Unit Test
o Static Code Scan/Security Scan
o Packaging/Publishing of Artifacts
e Deploying
o End to End Tests

o Performance Tests

35

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

How mature your organization and CI/CD efforts will determine how
many steps you have, but these are a good target. Upon close examination,
most of these steps are not specific to a language. For instance, if you're
using commercial software for static code analysis it will usually work
with a wide variety of languages. Packaging of artifacts usually involves
zipping up binaries and shouldn’t be any different across applications.
The main differences in applications occur during the first two steps:
build and unit test. Given this, we can reuse most of our code across steps,
and consolidate code for the remaining ones using logic. For instance,
Figure 3-2 shows a fully shared code base across all steps.

.NET Service #1
.NET Service #EL) = > —»

if NET if NET
.NET Build .NET Test
Java Service #1 else if Java else if Java Static Code Code
Java Service #2 JavaBuild [JavaTest [] Analysis —> Deploy
. else if NG else if NG
Java Service #3 NG Build NG Test
Angular Ul ———» > —> —

Figure 3-2. Pipeline stages using shared code

In this scenario, the entire pipeline is now shared across all languages.
Logic is included in the language-specific steps to perform the appropriate
commands. This can be accomplished via if/else blocks, switch/case
statements, etc. At first glance this may seem like a lot of logic code,
especially if you're dealing with a lot of languages. However, earlier in the
book we discussed implementing development standards in your shared

36

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

pipeline. In this scenario you'd have set common build commands to run
for each language. For instance, in .NET you'd use the standard “dotnet
build” command. These commands generally will be the built-in, out of
the box commands for each language. The goal is to set a standard that all
teams can follow without being overly complicated. Listing 3-1 shows an
example build step.

Listing 3-1. Sample Build Step in a Generic Pipeline

if [$language = "dotnetcore"]
then

dotnet build -c Release -o /output
elif [$language
then

mvn package -s settings.xml -f /

lljavall]

elif [$language = "angular"]
then

npm run build
else

echo "Error: No valid language provided."
fi

This example shows how you can pass in a simple variable, “language”
in this case, to inform the step which language it is working with. An
if/else statement then allows you to perform the build command for
that language. Listing 3-2 shows the same example using a switch/case
statement.

37

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Listing 3-2. Sample Build Step Using a Switch/Case Statement

case $language in
"dotnetcore")

dotnet build -c Release -o /output

55
"java")

mvn package -s settings.xml -f /

35
"angular")

npm run build

55
*)

echo "Error: No valid language provided."

35
esac

In this example we're covering three languages in the “build” step:

Angular, .NET Core, and Java. The commands in each section are
admittedly short and probably not a full set of the commands you may run.
For instance, a proper Angular build section may look more like Listing 3-3.

Listing 3-3. A More Complete Angular Build Step

"angular")

npm set progress=false

npm install --registry https://registry.npmjs.org/

npm run build

55

This case statement has three times the amount of code in it, but

it’s still small for all intents and purposes. Even if you need to do more
complex things for a specific language, you will most likely not end up with
so many lines that it's unmanageable. This is where setting standards for

38

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

languages becomes important. To build a truly language-agnostic pipeline
that all teams can use, you need high-quality standards. We’ll continue to
explore this throughout the book; however, in this case your Angular build

standard would be:
e Run “npm set progress=false” to turn off progress bars.
e Run “npm install” to restore packages.
e Run “npm build” to build the project.
e No other commands will be run.

With this build standard in place, all teams would need to conform to it
or in order to use your pipeline. This may seem harsh, but there are a lot of
benefits to it. Teams that share common standards on how they build and
test can more rapidly debug issues and assist other teams with issues, and
it simplifies your work in the pipeline. Now of course, there will always be
outliers who need to do things their own way. In those cases it’s important
not to deviate from the standard. You could explore things like a custom
pipeline for that application, or provide hooks into the pipeline to allow
teams to override your steps. In most cases you will need to hold strong on
the standards and say no to a lot of requests.

Shell Scripts

For your pipeline to be truly generic and run anywhere, it needs to be
written in a way that is portable. So far we've explored writing shared steps.
In the previous section we saw how to combine commands from different
languages into a single step. In case you haven’t noticed, those commands
were all written in Shell. For this book we’ve chosen Shell scripts to execute

all our commands.

39

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Shell scripts were an easy choice to make for a variety of reasons. All
our examples are written in languages that run in a Linux environment.
This includes .NET Core, Angular, and Java. This was also an easy choice,
since this book is about writing pipelines with Docker. While Docker
can run on Windows, I would argue most organizations don’t utilize this
option—especially those running on Amazon Web Services using Elastic
Container Service (ECS) or Google Cloud Platform Kubernetes Engine.

A Shell environment will be present in all our containers without any
additional installations, which is nice!

No matter the container we're working in, we're confident a Shell
environment is available. However, this is not the case with all Shell
languages. Bash, for instance, is a very popular Shell language, but if
you're new to Docker you’ll quickly find out that it’s not always available.
For instance, Alpine containers, which are lightweight Linux distribution
based on “musl libc” and “busybox’, have a Shell environment but do not
come with Bash installed.

While we have chosen Shell scripts for this book, there is no reason you
cannot deviate from this and use another scripting language. For instance,
you can use Bash or Python just as easily. The only caveat is you will need
to ensure those runtimes are installed in your Docker image. In fact, if
you happen to be using Windows containers, there is no reason you can’t
follow along with us. You'll just be using PowerShell in your containers,
most likely.

Let’s take the example from the previous section and reimagine it as a
Shell script for the build step. Listing 3-4 shows what this might look like.

40

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS
Listing 3-4. Build Step as a Shell Script
#!/usxr/bin/env sh

case $1 in

"dotnetcore")
dotnet build -c Release -o /output
55

"java")
mvn package -s settings.xml -f /
55

"angular")
npm run build
35

*)
echo "Error: No valid language provided."
35

esac

This example looks almost identical to Listing 3-2, with a couple of
small but important changes. First, we've include a shebang as the first
line in the file to indicate this is a Shell script. This would change based
on the language you're using. For instance, if you wanted to use Python
3 your shebang would be #! /usr/bin/python3. Next, we've replaced
the “$language” variable with a “$1” indicating we're passing it in as an
argument. While this is still a very simple implementation of a build step,
these two changes make it a fully functional step. Just save it as "build.sh"
and you're ready to use it in your pipeline.

This also opens the door for making your pipeline logic much more
modular. Take Listing 3-3 as an example. This was a much more detailed
build command for Angular. Granted it is all of three lines, but imagine you
have a language that requires 30 lines or more. This is probably more code

41

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

than you care to have in a switch/case statement. Now that we're using
Shell scripts, we can reimagine that code as a separate script as shown in
Listing 3-5.

Listing 3-5. Angular Build Commands in Their Own Shell Script
#!/usr/bin/env sh

npm set progress=false
npm install --registry https://registry.npmjs.org/
npm run build

Now, this script can be saved as "angular_build.sh". All your build
logic is now consolidated into a separate script. If you needed to go crazy
and have dozens of lines of code, it’s isolated here. This makes writing,
maintenance, and debugging much easier. It also begins to open the
door for sharing code across multiple pipelines. If we take all our build
commands and put them into separate Shell scripts, our build step could
be simplified as shown in Listing 3-6.

Listing 3-6. Simplified Build Step Shell Script
#!/usr/bin/env sh

case $1 in

"dotnetcore")
dotnet build.sh
55

"java")
maven_build.sh
55

"angular")
angular_build.sh
)y

*)

42

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

echo "Error: No valid language provided."
35
esac

While we haven’t reduced the line count of the code in the file, we've
greatly simplified it, making it easier to read and follow. The script is no
longer cluttered with code from the various languages. If we need to add
another language, simply write the appropriate build script and then add
another case statement to the build step script.

This method introduces shared scripts that can be executed from a
step on your CI/CD platform. For instance, let’s imagine that you have
multiple lines of business in your organization, each with their own
DevOps team. Each LOB has development teams building microservices,
and each runs their own CI/CD platform. We'll also say that all those teams
are writing microservices in Node.js. It’s not hard to imagine that each
DevOps group has its own pipeline that can build, test, and deploy Node.js
services. Each pipeline is essentially doing the same thing, and most likely
using almost identical code to do it!

If both teams adopted using Shell scripts to build their Node.js
services, then they could then easily share code. In fact, the code in
Listing 3-5 could simply be renamed “npm_build.sh” and used for all
Node.js applications! Even if each team was using different platforms for
their pipelines, running Shell scripts is supported in every major platform.

Configuration Files

For Shell scripts to properly handle multiple languages, you must have
some way to inform your pipeline about the application you want to build.
You want to be explicit about what you are doing. A configuration file can
solve this issue for you. Development teams can place this file in their
repo and it would be cloned along with the application when the pipeline
executes. It would contain all the information the pipeline would need to
execute. Listing 3-7 shows what a simple configuration file may look like.

43

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Note This book focuses on building applications that are deployed
via Docker containers to an orchestration service like Amazon ECS
or Kubernetes. As such, the configuration file shown in this chapter
is specific to that. A configuration file for your applications may look
drastically different.

Listing 3-7. A Sample Configuration File

{
"application": {
"name": "Hello App",
"language": "dotnetcore"
})
"build": {
"path": "",
"outputPath": "HelloApp/bin/Release/netcoreapp2.0”
}J
"test": {
"enabled": true,
"path": "HelloTests/"
})
"archive": {
"registry": "docker.io",
"namespace": "YOUR-NAMESPACE",
"repository": "YOUR-REPO"
})
"deploy": {
"containerPort": 5000
}
}

44

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Let’s break this down by each section to better understand its makeup:

Application: Contains basic information about the

application

Name: This is a friendly name for the application.
This may be its identifier in the UI of the platform
or used for reporting.

Language: This is the language the application is
written in. This is the most important, if not only,
variable the pipeline may care about.

Build: Contains information about how to build the

application

Path: This would be the directory path in the
cloned repo, in case your application is located
somewhere other than root.

OutputPath: This tells the pipeline where the
built binaries should be placed. It is useful if other
stages require the binaries to be placed in specific
locations.

Tests: Contains information about how to execute unit

tests

Enabled: Would allow the application to bypass a
stage

Path: Used if the unit tests are not located in the

same directory as the application

45

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

e Archive: Contains information about how to archive the
built application

e Registry: The URL to the Docker registry where the
application will be pushed

e Namespace: The namespace in the registry

e Repository: The repository name under the

namespace

e Deploy: Contains information pertaining to the
deployment

o ContainerPort: The container port number

As you can see, even a simple configuration file can get complex very
fast. However, this file contains just enough information that our pipeline
can execute its stages and deploy our application. A lot of thought needs
to go into these files to make them flexible for future changes. Additional
sections may include things like:

o Security Scans

o Static Code Analysis
e Performance Tests

o ATDD Tests

This could go on and on. The main takeaway here is that for a generic
pipeline that uses shared code to function properly, you need a way
to instruct it on which paths to take while executing. We will explore
configuration files in more detail, as well as use them in later chapters.

46

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Docker at the Core

At the core of the generic pipeline is Docker. It is the glue that holds
everything together, as well as the magic that makes it all possible.
Docker provides a mechanism where we can isolate our pipeline from
the underlying platform. It also allows us to create an environment that
is specific to the needs of the application being deployed. For instance,
if we're building a .NET Core application, we don’t need to worry about
having the Java runtime installed. It also allows for us to easily target
specific runtime.

If you're in a larger organization, it’s not uncommon to have an
enterprise CI/CD platform that you must use. In these scenarios you are
often forced to use the runtimes that are installed on the platform, or face
long lead times to get new ones installed. Continuing with our .NET Core
example, imagine we have an enterprise platform with various runtimes
installed:

e Java Runtime Environment 8
e .NET Core 1.0

e Python2.6

e .NET Standard 4.5

e Sonar Scanner 2.0

If we're using .NET Core 1.0 we're in good shape. It’s installed on the
platform, and we can build and deploy to our heart’s content. Figure 3-3
shows what this platform may look like.

47

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

4 N

-
.NET Core 1.0] (Java 8 } [Python 2.6 } [.NET Standard 4,5}

P
Sonar Scanner 3.5 } [Sonar Runner 2.1 J

S

s
Various Plugins }

p.

. /

Figure 3-3. Enterprise CI/CD platform

Things are humming along just fine; however, our development
team has begun working on a new version of their application and they
are using .NET Core 2.0. Well that’s not going to work; we need to get
.NET Core upgraded on the platform. In most cases this is not a quick
process. For an enterprise to run a tight ship, they need to vet installations
in lower environments first. Only after proper testing has taken place
can the upgraded version of the runtime be scheduled for a Production
deployment. That also takes time, as you need to secure a change order
and downtime window. Figure 3-4 shows the updated platform after the
installation.

48

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

-)

P

.NET Core 1.0} { Java 8 } { Python 2.6 J NET ?lgndardl (.NET Core 2.0]
Sonar Scanner 3.5 ‘ [Sonar Runner 2.1 ‘

Various Plugins }

- /

Figure 3-4. Enterprise CI/CD platform with new runtimes
installed

If your team happens to be agile, they are most likely putting you on
their impediment list! At this point the enterprise platform has become a
bottleneck slowing down the development teams. In a worst-case scenario,
you're stifling progress and innovation because teams cannot move as fast
as they need to. Imagine that an early access release of .NET Core comes
out and a team would like to use it for their application. This would be
even more of a challenge given it’s not a release candidate!

In addition to the slowdowns that this can present, there are also a ton
of runtimes installed that most developers don’t need. To put it another
way, the Java developers don’t need .NET Core and vice versa. Now most of
the time this is not a problem, as multiple runtimes can be installed side by
side without issue. But larger platforms, like Jenkins, also come with a lot
of plugins that sometimes don’t play nice with each other. As the platform’s
popularity grows inside the organization, more and more requests for
plugins flow in. At some point there may be a conflict between plugins,
and someone will have to lose out on functionality they were counting on.

49

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

These scenarios can continue to play out in many different forms. For
instance, given our platform and the runtimes we have installed, if a team
wanted to use Golang for their project they'd have to wait for that to be
installed. Luckily all these problems can be solved with Docker. The only
requirement is that it is installed on the enterprise platform. From there we
have total control over what our applications need in the pipeline. Figure 3-5
shows the ideal platform in its purest form, with only Docker installed.

// Docker \\

-)

Figure 3-5. Enterprise CI/CD platform with only Docker installed

Now at this point you may be thinking to yourself, “this is insane.” Why
would I have an entire platform and only put Docker on it. Well, you're still
going to have a lot of other things installed/configured for your enterprise.
However, you can begin to break free of installing individual runtimes and
tooling to support all the applications your platform supports. Docker
allows for teams to control their environments and only install things
specific to their applications.

50

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

In the previous figures we had a platform with many runtimes installed
to support many different development teams. Let’s see what that looks
like with Docker in the mix. Figure 3-6 shows the platform once we begin
to utilize Docker.

// Docker \\

-
NET Core 1.0 Container with Java B Container with
Sonar Scanner 2.6 Maven
A Y
-
Python 2.6 Container with
A Y

- e

Figure 3-6. Enterprise Cl/CD platform utilizing Docker during builds

In this scenario, each application is built, tested, and deployed
inside a container that is isolated from other containers. The container
is responsible for what components and runtimes are installed, thus
relieving the platform team of being responsible for installing and
maintaining multiple runtimes on the platform. With this approach, the
previous scenario of a team switching to a new runtime version becomes
trivial. In fact, a team wanting to be bleeding edge and use an Early
Access release is not a concern for the enterprise platform team anymore.
Figure 3-7 shows an updated .NET Core 2.0 container and an Early Access
.NET Core container being utilized.

51

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

? N

™ s Y
NET Core 2.0 Container with Java B Container with
Sonar Scanner 2.6 Maven
A . vy
': ™ ' ™y
Pythan 2.6 Container with NET Core 2.X Container with
PIP Sonar Runner 3.4

s)

Figure 3-7. Enterprise CI/CD platform with updated containers

In this pattern everything the application needs to be built, tested,
scanned, and deployed is inside the “build” container. It’s called a build
container, as all the work in the pipeline will be performed inside it. We
can illustrate this with a simple Dockerfile example. Listing 3-8 shows a
sample Dockerfile for a .NET Core 1.0 application.

Listing 3-8. Sample Dockerfile for a.NET Core 1.0 Build Container

FROM microsoft/1.0-runtime:latest

RUN apt-get update && apt-get install -y \
unzip

RUN wget http://repol.maven.org/.../sonar-runner-dist-2.4.zip && \
unzip sonar-runner-dist-2.4.zip -d /opt

ENV PATH $PATH:/opt/sonar-runner-dist-2.4/bin

In this example our build container is based on a .NET Core base
image. We update “apt-get” and install “unzip”. After that we download
Sonar Runner, unzip it, and update the “PATH” so we can easily run it.

52

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

At this point we have a build container that can build, test, and scan .NET
Core 1.0 applications. Now if the development team decides they want to
move to .NET Core 2.0 (why wouldn’t they) we simply create another build
container using the Dockerfile shown in Listing 3-9.

Listing 3-9. Sample Dockerfile for a .NET Core 2.0 Build Container

FROM microsoft/aspnetcore-build:2.0

RUN apt-get update && apt-get install -y \
unzip

RUN wget http://repol.maven.org/.../sonar-runner-dist-2.4.zip && \
unzip sonar-runner-dist-2.4.zip -d /opt

ENV PATH $PATH:/opt/sonar-runner-dist-2.4/bin

As you can see, the only thing that changed was the base image of the
Dockerfile. In this scenario we now have two build containers, all from
changing a single line of code. Contrast that with what it would take to
install a new runtime in the platform, fully test it in lower environments,
and then promote it to Production. With Docker, we can simply make a
change to a Dockerfile and test it. If it works, great! If not, you've literally
wasted about ten minutes of work.

Earlier in the chapter we saw an example architecture where the
pipeline was made up of shared components. Figure 3-8 shows us this
concept again.

53

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

.NET Service #1
.NET Service #23 = = —»
if NET if NET
NET Build NET Test
Java Service #1 else if Java else if Java Static Code Code
Java Service #2 Java Build > Java Test —> Analysis —> Deploy
) else if NG else if NG
Java Service #3 NG Build NG Test
Angular Ul ————» > —> —>

Figure 3-8. Pipeline stages using shared code

In this scenario we used Shell scripts to encapsulate shared
commands, which can be used across all of the application deployments.
Now, we can envision this taking place inside Docker containers, as shown
in Figure 3-9.

/ Docker \
/ .NET Core Build Container \

if NET it NET
NET Build NET Test s Cod d
else if Java else if Java tatic Code Code
>~ Java Build > Java Test Analysis] Deploy
else if NG else if NG
NG Build NG Test

Java Build Container

if NET if NET
NET Build NET Test
—»| elseifJava else if Java Static Code Code
Java Build Java Test Analysis > Deploy
else if NG else if NG
NG Build NG Test

> 2

Figure 3-9. Pipeline stages using shared code inside build containers

54

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Now we have common shared pipeline code loaded into build
containers that are isolated from each other. The same code is copied into
each container, but changes to a container no longer have any side effects
on the others. This is drastically different than if the CI/CD platform is
responsible for all the runtimes and plugins. As illustrated earlier, a team
can quickly and safely jump to a new version of a runtime without fear of
affecting other teams on the previous runtime. Loading the shared shell
scripts is extremely easy. All we need to do is add a COPY command to our
build container Dockerfile, as shown in Listing 3-10.

Listing 3-10. Adding Shell Scripts to Our Build Container

FROM microsoft/aspnetcore-build:2.0

COPY stages stages

RUN apt-get update && apt-get install -y \
unzip

RUN wget http://repol.maven.org/.../sonar-runner-dist-2.4.zip && \
unzip sonar-runner-dist-2.4.zip -d /opt

ENV PATH $PATH:/opt/sonar-runner-dist-2.4/bin

In this example we assume there is a directory called “stages” that
holds all the Shell scripts for our pipeline. By copying the scripts into each
build container, we have further isolated changes they may impact other
teams. A change to a script will only be reflected once the build container
is rebuilt. This is certainly not the only way to get your shell scripts into
your build container. You could copy them in as part of an application
clone, or if using a language like Python you could include them as
modules and perform a PIP installation. The main takeaway is that the
scripts are part of the build container and isolated from other code.

55

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Platform Agnostic

Running a CI/CD pipeline inside a Docker container provides you with so
many benefits. We've already seen how it can provide your development
teams isolation from other runtimes, and give them total flexibility on
what is installed in the container. Combine this with scripts loaded into the
container to execute your pipeline code, and now you're decoupled from
the underlying platform. This is a very big deal.

Many enterprise grade CI/CD platforms already allow you to share
code across pipelines; this is not a new concept. However, in most cases
the mechanisms in place to do so are clunky and not ideal. Take for
instance Jenkins, which is a very large player in this space. Jenkins allows
you to configure libraries that contain shared code for use in your pipeline.
These can be configured at the local (folder) level or globally. Figure 3-10
shows a sample configuration.

Library
Mame

my-library (7]
Default version er @
Cannat validate default version until alter saving and reconfiguring.
Load implicitly (7]
Allow default version to be overridden ‘i?‘
Include @Library changes in job recent changes @J
Retrieval method
Modem SCM (1]
© Legacy SCM &
Source Code Management
AWS CocdePipeling
D Git
Repositories o '
R Repository URL | hitps:github.comimy-devop librarygit)
Credentials - none -
o= Add » .
[2]

Advanced...

Add Repository

Figure 3-10. Folder level configuration of a shared library

56

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

In this scenario, we have a GitHub repo called “my-library” with
some shared code in it. We reference this library in our Jenkinsfile for the
pipeline to load it. Jenkins has a very specific directory structure to allow
these files to be shared. The “my-library” repo would be structured like
Listing 3-11.

Listing 3-11. Directory Structure of a Shared Library

(root - "my-library")
+- vars

| +- foo.groovy

| +- bar.groovy

| +- baz.groovy

There may be many more files in this directory but there must be a
folder named “vars,” which only contains Groovy files. While this is a fine
method for sharing code across pipelines, it leaves a lot to be desired. This
pattern also makes roper unit testing of the code more difficult, albeit still
possible. It also locks us into using Groovy for our shared code, or at least
using it as an entry point and then calling something else under the covers.

By using more generic scripts like Shell, we can already begin to
break free of the platform even without Docker in the equation. If you're
on Windows you can use PowerShell, or even now you can consider
Bash, which would not only decouple you from the platform but also
the operating system. Putting Docker into the mix gives you the same
capability; the only requirement now is that Docker be installed. You could
also explore a language like Python, which pretty much runs anywhere.

If we were to move all the code in “my-library” into Shell scripts,
our Jenkins configuration would be much simpler. In fact, all the steps
from earlier would be gone. We’d have a Docker container loaded with
our scripts, which we would simply run on Jenkins. Listing 3-12 shows a
sample Docker image run in Jenkins. This example is in Groovy, and the
Jenkins platform has the Docker plugin installed.

57

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Listing 3-12. Running a Docker cContainer in Jenkins

docker.withRegistry('YOUR-DOCKER-REGISTRY") {
docker.image('YOUR-CUSTOM-IMAGE').inside('ARGS") {

stage('Clone") {
sh("/stages/01_clone.sh")

}

stage('Build") {
sh("/stages/02_build.sh")

}

stage("Test") {
sh("/stages/03_test.sh")

}

stage("Archive") {
sh("/stages/04 archive.sh")

Note The preceding stages are the actual stages we’ll be building
in upcoming chapters. This example would assume that you have
cloned or copied your scripts into the root of the container that is
mapped to the Jenkins workspace.

Now that we have all our shared code in scripts in a GitHub repo,
we can copy that in via our Dockerfile and use the preceding command
to execute the container. You have the option to either “bake” your
scripts into the container when it’s built, or you could even do a git clone
command to bring the scripts down when the container runs. The point
here is you have some options.

58

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Now let’s consider that you have your pipeline built in a Docker
container using Shell scripts, and you're up and running on Jenkins.
Everything is going great, and then your boss comes to you and proclaims
that Jenkins is out and Circle CI is in! In most organizations around the
world this would be a major event. All your pipelines need to be rewritten
on Circle CI. It will take months to migrate everything over, not to mention
the testing and deployments and, wait a minute! We have everything
isolated in Docker containers. This won’t be so bad.

We can take the same Docker image we’ve used in Jenkins and easily
run it on another platform. Listing 3-13 shows what the same setup may
look like in Circle CI.

Listing 3-13. Running the Docker Container in Circle CI

version: 2
jobs:
build:
docker:
- image: YOUR-DOCKER-REGISTRY/YOUR-CUSTOM-IMAGE
steps:
- setup _remote docker:
docker layer caching: true
- run:
name: Clone
command: /stages/01_clone.sh
- run:
name: Build
command: /stages/02_build.sh
- run:
name: Test
command: /stages/03_test.sh

59

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

- run:
name: Archive
command: /stages/04 archive.sh

At this point the beauty of the pattern should be clear. While we are
just looking at configuration files, you should readily see the similarities.
On either platform, we use our Docker image as the basis for running the
pipeline. Stages or Steps are defined and given names, like Clone, Build,
Test, etc. Next, a Shell script is executed in each section. Since everything
runs inside a container, there are no surprises when we execute the
pipeline. It will run the same on each platform!

Note At this point you may be thinking this is way too easy. While
this pattern makes moving the code and executing it on another
platform crazy easy, you still need to keep in mind the other aspects
of running a CI/CD platform. Each will have its own ways of being
configured, dealing with networking, etc. However, not having to
worry about how to port a pipeline will provide a lot of breathing
room if you need to make a switch.

To further illustrate the point of being agnostic, let’s look at what this
pipeline looks like on another platform. Listing 3-14 shows what the same
setup may look like in Travis CI.

Listing 3-14. Running the Docker Container in Travis CI

services:
- docker
before script:
- |
docker run -it -d \
-v /var/run/docker.sock:/var/run/docker.sock \
-e DOCKER_USERNAME=${DOCKER_USERNAME} \

60

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

-e DOCKER PASSWORD=${DOCKER _PASSWORD} \

-e GITHUB URL=${GITHUB URL} \

--name MY-PIPELINE \

YOUR-DOCKER-REGISTRY/YOUR-CUSTOM-IMAGE
script:
docker exec MY-PIPELINE /stages/01 clone.sh
docker exec MY-PIPELINE /stages/02_build.sh
docker exec MY-PIPELINE /stages/03_test.sh
docker exec MY-PIPELINE /stages/04 archive.sh

In later chapters we'll be using Circle CI and Travis CI to build a very
simple pipeline. We'll use the same Docker container and Shell scripts to
build, test, and archive an application on both platforms. In fact, the Yaml
files shown will be used in those examples!

Overview

We covered a lot of material and patterns in this chapter! Let’s take a quick
moment to review what we discussed.

Shell Scripts

Shell scripts provide us a way to centralize our pipeline logic into smaller
easy to share chunks of code. We can write scripts for very specific
functionality and then use them inside “Stage” or “Step” scripts to stitch
them together. By doing so, we create scripts that are easier to test and
share across multiple pipeline implementations. Also, by using Shell we
can be guaranteed they will run across any platform. This pattern also
opens us up to using other scripts like Python or PowerShell.

61

CHAPTER 3 GETTING IT RIGHT WITH DOCKER AND SCRIPTS

Docker

Docker provides us the isolation needed to simplify the needs of the
development team while running on the platform. In the past, the platform
would need to have all the runtimes and plugins installed globally for
anyone to use. With Docker, the only requirement is that Docker be

installed for all to use.

Build Containers

Build containers provide a level of isolation on the platform. Each
team can install their own runtimes and dependencies in a container,
thus isolating their needs from others. This also provides them with
the flexibility to use anything they want, without fear of it affecting the
platform. If a team wants to us a bleeding edge release of a runtime, they
have the power to do it. They own the build container (or a DevOps team)
and are responsible for what goes in it. This allows teams to move at a
much more rapid pace than if they were dependent on the platform team.
In the next chapters we’ll move out of theory and discussion and into
actual implementation. We'll create a simple demo application that we
can use to deploy. We'll look at building out our build container and how
to implement it in Circle CI and Travis CI. You'll take everything you have
learned so far and apply it in a practical way. So let’s get started!

62

CHAPTER 4

A Practical Example

In Chapter 3 we showed you an example of how we can execute a few
simulated pipeline stages in a Docker container to create a pipeline that
can be ported to any CI server. In this chapter we're going to take it a

step further and create a pipeline that can clone, build, test, archive, and
deploy a set of working applications. Then, we’ll show you how to take the
pipeline you've created and move it from your desktop to two popular CI

platforms.

An Overview of Our Applications

In this chapter we are focused on applications written using one of three
distinct tech stacks; they are:

1. Spring Boot applications written in Java, using
Maven as a build automation tool

2. ASP.NET Core Web APIs written in C#

3. Angular applications leveraging TypeScript and
Node.js

We've created three sample projects, each using one of these
technologies. These projects include everything you need—code,
configuration files, Dockerfiles, etc.—to follow along for the rest of the
chapter. The next three sections provide a brief overview of what these

© Brandon Atkinson, Dallas Edwards 2018 63
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_4

CHAPTER 4 A PRACTICAL EXAMPLE

sample applications do and the commands we execute to build, test, and
run them. We won't go into detail on how each of the sample applications
work—there are other books better suited for that. These are barebones
implementations and aren’t meant to be used as a model for writing high-
quality applications.

Spring Boot

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker

The first application is an API written in Java using the Spring Boot
framework, and using Maven to build, test, and package the project. It’s
based off the quick start example on the Spring Boot homepage and works
with any relatively recent version of Java and Maven. For the purposes of
this book, we're using JDK 8 and Maven 3.

Note If you want to learn more about the Spring Boot framework
and how this project works, check out the quick start guide at
https://projects.spring.io/spring-boot/#quick-start.

To run the application from the command line, first compile the
source code using themvn clean package, then execute java -jar
target/hello. jar. After a few seconds the application will be up and
running. Once it is, open your web browser and navigate to http://
localhost:8080. You'll receive a simple message: “Hello World!” as shown
in Figure 4-1.

64

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker
https://projects.spring.io/spring-boot/#quick-­start

CHAPTER 4 A PRACTICAL EXAMPLE

Hello World!

Figure 4-1. The Spring Boot application

ASP.NET Core Web API

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker.

The second application is also an AP], but this time written on top
of ASP.NET Core Web API. It has a single endpoint that returns an array
containing two values. It’s based off of the ASP.NET Core Web API project
template generated by Visual Studio.

This project uses the commands built into the .NET Core CLI to
build and test the project. Using the command line, run dotnet build
ValueApi to build the project, followed by dotnet ValueApi/bin/Debug/
netcoreapp2.0/ValueApi.dll to start the API If you open a browser and
navigate to http://localhost:5000/api/values, you'll get a response like
the one in Figure 4-2.

« localtos 1 5000 api/value

[“"valuel”,"value2®)

Figure 4-2. The .NET Core application

65

­https://github.com/Apress/generic-pipelines-using-docker
­https://github.com/Apress/generic-pipelines-using-docker

CHAPTER 4 A PRACTICAL EXAMPLE

Angular 5

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker.

Our last sample project is a web application built using Angular 5,
TypeScript, and Node.js and relies on Chromium to run its test suite. It's
based on the Angular Quick Start example.

To build and run the project, first download and install the project’s
dependencies by running npm install on the command line. Next,
use npm run build to compile the project. Finally, host the projectin a
lightweight web server by running npm start. Once the server is running,
open a browser and navigate to http://localhost:4200. You will see a
simple website like the one shown in Figure 4-3.

im| < locaihost:A200

Welcome to My First Angular App!!

Here are some links to help you start:
« Tour of Heroes
« CLI Documentation

- Angular blog

Figure 4-3. The Angular 5 application

66

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker

CHAPTER 4 A PRACTICAL EXAMPLE

A Deep Dive into the Pipeline

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker.

Now that you've got a high-level overview of the sample projects
we're dealing with in this chapter, it’s time to explore the pipeline itself.
In the following sections, we explore the configuration file that drives the
behavior of the pipeline. Then we take a close look at each of the five stages
of our pipeline: clone, build, test, archive, and deploy. Finally, we take a
peek inside the build containers where all this takes place.

The Pipeline Configuration File

Alongside the source code for each application, you'll find a small JSON
file named pipeline.json that contains some crucial information about
the application. The pipeline will use this file to decide everything from
how to build the application to where the resulting artifact should be
stored for use later. The next three listings show the configuration file for
each of our sample projects:

Listing 4-1. The Pipeline Configuration File for the Sample Java
Project

{
"application”: {
"name": "Sample Java Application”,

"type": "java"
})
"build": {
"path": null,
"outputPath": null
})

67

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker

CHAPTER 4 A PRACTICAL EXAMPLE

"test": {
"enabled": true,
"path": null

}s

"archive": {
"registry": "docker.io",
"repository": "edwardsdl/sample-java"

})

"deploy": {
"containerPort": 8080

}

}

Listing 4-2. The Pipeline Configuration File for the Sample .NET
Core Project

{
"application": {
“name": "Sample .NET Core App",
"type": "netcore"
}J
"build": {
"path": null,
"outputPath": "ValueApi/bin/Release/netcoreapp2.0”
})
"test": {
"enabled": true,
"path": "ValueTests/"
})
"archive": {
"registry": "docker.io",
"repository": "edwardsdl/sample-netcore"
1

68

CHAPTER 4 A PRACTICAL EXAMPLE

"deploy": {
"containerPort": 5000
}
}

Listing 4-3. The Pipeline Configuration File for the Sample Node
Project

{
"application": {
"name": "Sample Node App",
"type": "node"
})
"build": {
"path": null,
"outputPath": "dist/"
})
"test": {
"enabled": true,
"path": null
})
"archive": {
"registry": "docker.io",
edwardsdl/sample-node"

"repository":
},
"deploy": {
"containerPort": 5000

Our pipeline configuration file is broken into four sections:
application, build, test, and archive. Some provide information about the
application, while others provide fine-grained control over specific stages
in the pipeline. Let’s take a closer look at each section.
69

CHAPTER 4 A PRACTICAL EXAMPLE

The application section stores high-level information about the
project. We use it to store the name and type of the application. In this
book we deal with three types: node, java, and netcore. It’s up to you to
decide what application types you want to support and what identifiers
to assign them. Supporting a greater number of tech stacks will give your
developers more flexibility but will require more work on their end. If
a new version of the .NET Core framework is released and maintains
backwards compatibility, netcorei, netcore2, and netcore3 applications
can all share a single build image. This is a useful trick for keeping the
number of images you have to maintain to a minimum.

The build section contains two elements: path and outputPath. The
path element is used to let the pipeline know where the applications
code can be found when it pulls it from source control. For most projects
the source code is located in the root of the repository, but we’'ve found
some teams appreciate the flexibility to put it elsewhere. The outputPath
element lets the pipeline know where to put the compiled output of the
build command.

The test section contains configuration settings for the test stage of
the pipeline. The first property, enabled, is used to determine whether this
stage is run at all. As your pipeline becomes more robust with additional
stages and features, you'll likely find yourself adding this property to other
sections too. It can be very useful to turn portions of the pipeline on and off
due to unusual situations or for nonstandard projects. The path property
in this section tells the pipeline where the tests are located relative to the
project’s root directory.

Caution If the enabled property is setting off alarm bells, that’s a
good thing! This is useful for teams who don’t yet have unit tests or
need to temporarily disable the stage while working through an issue.
This has the potential to be used as a crutch!

70

CHAPTER 4 A PRACTICAL EXAMPLE

The archive section lets the pipeline know where the build artifacts—
in our case the Docker image containing one of our sample applications—
should be stored. The registry property indicates which Docker registry
will store the image. In this case, we'll be storing the image on Docker Hub
(Docker’s public registry). If your organization is hosting their own internal
registry, you'd put that here instead. The repository property is the name
of the image and should not include any tags; the pipeline will handle all
of the tagging automatically. Your organization may require you to store
application binaries and images separately. In that case you can modify
this section to represent an array of artifact repositories.

The Clone Stage

Typically, the first step in any pipeline is to download a copy of a project’s
source, and this pipeline is no different. If you haven’t already, this would
be a good time to clone or review the GitHub examples for the book. In the
stages directory, you'll find a file named 01_clone. sh with the following
code:

Listing 4-4. The Clone Stage Shell Script
#!/usr/bin/env bash

echo
echo "Cloning Application”

git clone "${GITHUB URL:?}" .

There’s not much happening in this stage. The script starts by
outputting a brief description of the stage and then performing a git
clone, which will place the application’s source code in the current
working directory. Notice we're using an environment variable here—
GITHUB_URL. This—and others like it in subsequent stages—are expected to

71

CHAPTER 4 A PRACTICAL EXAMPLE

exist wherever the pipeline is running. Stages will also source information
from the pipeline. json file. You'll see an example of this in the next stage.
We'll cover the pipeline.json file in detail later in this chapter.

The Build Stage

In the second stage the pipeline will build the application. Each tech
stack will be handled differently, but the end goal is the same: to create an
artifact we can deploy inside a container. In the stages directory, you'll
find a file named 02_build. sh with the following code:

Listing 4-5. The Netcore Build Stage Shell Script
#!/usr/bin/env bash

echo
echo "Building Application”

application_type=$(jq -r .application.type pipeline.json)

case "${application type}" in
"java")
mvn clean package
55
"netcore")
dotnet restore
dotnet build -c Release
35
"node")
npm install
35

*)

72

CHAPTER 4 A PRACTICAL EXAMPLE

echo "Unable to build application type ${application_type}"

exit 1

55
esac

This script uses jq to pull the value of application.type out of the

pipeline.json file and assign it to application_type. This should be
set to either java, netcore, or node if the pipline. json file is configured
correctly. If application_type doesn’t equal one of these values, the script
terminates with exit code 1.

Note 7jqis a fantastic tool that’s packed with functionality! You can
find a great tutorial on the official website at https://stedolan.
github.io/jq/.

For java applications, we’ll use Maven to clean the workspace, which
ensures there aren’t any cached or outdated files lying around, and then
compile the application. It's important to remember that we require all
java apps that come through the pipeline to support Maven.

If the application_typeis netcore, we'll use the .NET Core CLI
to perform a NuGet package restore by issuing the command dotnet
restore app.Then, we'll call dotnet build app -c Release to compile
the source code using the Release configuration.

Finally, if application_type is set to node, we’ll use the Node Package
Manager to download and install any required dependencies. After that,
we issue the npm run build command to compile everything.

73

﻿https://stedolan.github.io/jq/﻿
﻿https://stedolan.github.io/jq/﻿

CHAPTER 4 A PRACTICAL EXAMPLE

The Test Stage

The third stage of the pipeline handles test execution. You can find it in
03_test.sh.

Listing 4-6. The Test Stage Shell Script
#!/usr/bin/env bash

echo
echo "Testing Application”

application type=$(jq -r .application.type pipeline.json)
enabled=$(jq -r .test.enabled pipeline.json)
test _path=$(jq -r .test.path pipeline.json)

if "${enabled}"
then
echo "Skipped"
exit 0
fi

case "${application type}" in

"java")
mvn test
35

"netcore")
The path to the test project must be set until
https://github.com/Microsoft/vstest/issues/1129 is
resolved.
dotnet test "${test path}"
)

llnodell)

74

CHAPTER 4 A PRACTICAL EXAMPLE

npm run test
55
*)
echo "Unable to test application type ${application_type}"
exit 1
55
esac

The test stage uses the same pattern as our build stage, with one
exception. Before kicking off any tests, it checks the test.enabled property
in the pipeline configuration file. If it’s set to false, the stage is skipped.

Assuming the stage is enabled in the configuration file, application_
type is evaluated and the appropriate command is executed to run the test
suite. As in the build stage, unknown application types cause the stage to
fail with error code 1.

Using our sample projects, implementing this stage turns out to be
fairly trivial. In our experience though, it tends to grow in complexity and
even spawn completely new stages. For example, your organization may
want to report on code coverage or require a certain percentage of tests to
pass. Perhaps your teams have various suites of tests in several different
repositories. If your teams write both unit tests and end-to-end tests, it
might make sense to keep them in separate stages.

The Archive Stage

Now that the project has been built and tested successfully, it’s time

to package it into an artifact and place it somewhere safe. In your
organization this might be Artifactory, Nexus, GitHub, or any number of
other repositories. For our sample projects, we are using Docker Hub. If
you're unfamiliar with it, Docker Hub is simply a free, public repository
where anyone can store Docker images. The archive stage can be found in
05_archive.sh.

75

CHAPTER 4 A PRACTICAL EXAMPLE

Listing 4-7. The Archive Stage Shell Script
#!/usxr/bin/env bash

echo
echo "Archiving Application”

registry=$(jq -r .archive.registry pipeline.json)
repository=$(jq -r .archive.repository pipeline.json)
image="${registry}/${repository}:latest”

docker login \
-u "${DOCKER_USERNAME?:}" \
-p "${DOCKER_PASSWORD?:}" \
"${registry}"

docker build -t "${image}" .

docker push "${image}"

Like the build and test stages, the archive stage starts off by pulling

some information out of the pipeline configuration file. We get the

registry and repository values and then combine them to get the

desired name of the image containing the application. For now, we're just

applying the latest tag, but in the next chapter we’'ll discuss versioning

your artifacts so they won’t be overwritten and can be uniquely identified

later.

Now that we have a name, we can build and push the image. The first

step is to log in to the registry specified in the pipeline configuration file.
Like GITHUB_URL, the DOCKER_USERNAME and DOCKER_PASSWORD variables
will be passed into the container as environment variables. Because these

are credentials and thus sensitive information, they shouldn’t be stored in

the pipeline configuration file.

Assuming we were able to login successfully, the next step is to build

the image. Like we mentioned earlier, each of our sample applications

is designed to be deployed inside a container, so each of them has an

76

CHAPTER 4 A PRACTICAL EXAMPLE

associated Dockerfile. Our pipeline expects each application’s Dockerfile to
be located in the project’s root directory. Of course, you could always offer
more flexibility by introducing a new docker.dockerfilePath variable in
your pipeline configuration file. In our experience, however, that hasn’t
proved to be necessary. To kick off the build, we issue the docker build
command passing the name of the image and the build context.

The Deploy Stage

Finally, we reach the deploy stage. There are far too many deployment
targets to cover here; every organization is different. For the purposes of
this book, 05_deploy.sh will “deploy” to your local machine by simply

running the newly created image.

Listing 4-8. The Deploy Stage Shell Script
#!/usx/bin/env bash

echo
echo "Deploying Application”

container port=$(jq -r .deploy.containerPort pipeline.json)
registry=$(jq -r .archive.registry pipeline.json)
repository=$(jq -r .archive.repository pipeline.json)
image="${registry}/${repository}:latest”

docker run -dp "${container port}:${container port}" "${image}"

As mentioned before, each of our example apps are designed to
be deployed inside a container. To do that, we need a few pieces of
information from the pipeline configuration file: archive.registry,
archive.namespace, and archive.repository. We put these together
to form an image name, for example, docker.io/edwardsdl/sample-
netcore:latest. This is the image we created in the archive phase.

77

CHAPTER 4 A PRACTICAL EXAMPLE

Next, we execute the command docker run -dp "${container port}:
${container port}" "${image}". This runs the latest version of the
image containing our application in “detached” mode—meaning in the
background—and publishes the port the application is listening on. Once
this is done, the deploy script terminates, which, since it is the last of the

stage scripts, causes the pipeline container to exit.

Tip While containerizing your applications isn’t necessary to
create a generic pipeline, it certainly makes things easier. If your
organization hasn’t explored the idea of containerized applications,
| highly recommend doing so.

A Look at Our Build Containers

One of the key features of our pipeline is that it executes entirely inside a
Docker container. This allows us total control over our build environment.
We can add or update dependencies easily, set environment variables as
needed, or install software in custom locations—all without interfering with
other applications’ build environments or workflows. Of course, in order to
have a build container you must have a Dockerfile. In this section we’ll take
alook at the three Dockerfiles we use for each of our three tech stacks.

First let’s look inside Dockerfile. java. As you may have guessed,
this is the Dockerfile we use to construct the image for our Java build
containers.

Listing 4-9. The Dockerfile for the Java Build Container
FROM maven:3-jdk-8
RUN curl -fsSL get.docker.com | sh

RUN apt-get update && apt-get install -y jq zip

78

CHAPTER 4 A PRACTICAL EXAMPLE
COPY stages stages
WORKDIR /app

The Dockerfile is relatively simple. We use maven: 3-jdk-8 as our base
image because it comes out of the box with both the Java 8 JDK and Maven 3.
Admittedly this base image makes the container a little bloated, but in our
experience these containers tend to get fairly large anyway, so it’s not worth
worrying about a few extra megabytes.

Next, we install Docker inside the container. That probably sounds
strange—it did to us the first time too! The reason is simple: our
applications are designed to be deployed as containers and thus have
Dockerfiles themselves. That means we need to issue docker build and
docker push commands from inside our build containers.

Caution We chose to install Docker using this method because it’s
concise and easy to understand. However, it’s never a good idea to
run scripts without examining them first. You can find a more secure
method for installing Docker at https://docs.docker.com/
install/.

Note Using Docker inside of Docker is becoming a very common
scenario. However, if you are new to this concept you can learn more
here: https://blog.docker.com/2013/09/docker-can-now-
run-within-docker/.

The third line of our Dockerfile installs two packages: jq and zip. The
first, jq, is a command line tool that’s great for parsing and transforming
JSON data. It’s used extensively inside our stage scripts, as you saw earlier
in the chapter. The second is zip. I'm sure you can guess what that does.

79

﻿https://docs.docker.com/install/﻿
﻿https://docs.docker.com/install/﻿
﻿https://blog.docker.com/2013/09/docker-can-now-run-within-docker/﻿﻿﻿
﻿https://blog.docker.com/2013/09/docker-can-now-run-within-docker/﻿﻿﻿

CHAPTER 4 A PRACTICAL EXAMPLE

Next, we copy the pipeline stages into the container. Be aware: by
copying your code in now, you'll be required to recreate your build images
when your stage scripts change. In your implementation you may decide
to clone your stages into your container when it starts up. You'll always be
running the latest code, but it’s more difficult to determine which version
of the pipeline created a given artifact.

Finally, we set our working directory to /app. The pipeline will use this
as its primary workspace. Application code will be cloned, built, tested,
and packaged all within this directory.

We use Dockerfile.netcore to create the build container for .NET
Core projects, which looks very similar to its Spring Boot counterpart. In
this case we use microsoft/netcore:2-sdk as our base image instead of
maven:3-jdk-8. Otherwise, this file is exactly the same.

Listing 4-10. The Dockerfile for the .NET Core Pipeline Image
FROM microsoft/dotnet:2-sdk

RUN curl -fsSL get.docker.com | sh

RUN apt-get update && apt-get install -y jq zip

COPY stages stages

WORKDIR /app

The Dockerfile for the Angular tech stack follows the same pattern
as the previous two. In this case our base image will be node:9-stretch,
which uses a recent version of Debian Linux and provides easy access to
Node.js and NPM. We also install two additional dependencies: chromium
and chromium-driver. These are used by our application’s test suite. We've
named this file Dockerfile.node.

80

CHAPTER 4 A PRACTICAL EXAMPLE

Listing 4-11. The Dockerfile for the Angular Pipeline Image
FROM node:9-stretch
RUN curl -fsSL get.docker.com | sh

RUN apt-get update && apt-get install -y \
chromium \
chromium-driver \
ja\
zip

COPY stages stages

WORKDIR /app

Running the Pipeline

Now that we’ve gone over the sample applications, stage scripts, and
Dockerfiles, it’s time to run our pipeline. To begin, we'll run it locally.
Afterwards we’ll show you how to port it to several popular CI tools.

Before you move on, we suggest you fork one of our sample projects.
These applications have been thoroughly tested, and with a few simple
modifications you'll be able to run them through the pipeline locally and
in the cloud. In addition, as part of the sign-up process, both Travis CI and
CircleCI will request access to your GitHub account in order to streamline
the setup process and start builds when new code is committed to a linked
repository. In the end, we think it'll be easier for you to use one of our
applications than build your own.

For the rest of the chapter we’ll be using our sample .NET Core project.
You can find it at https://github.com/Apress/generic-pipelines-
using-docker. If you're using GitHub, forking our sample projects is easy!
Just navigate to its repository on GitHub and click the “Fork” button in the
top right. This will create a copy of the repository in your account.

81

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker

CHAPTER 4 A PRACTICAL EXAMPLE

Using the Command Line

Running the pipeline from the command line is pretty straightforward.
First you build the Docker image for the pipeline you want to use by
issuing the docker build command. Next you run the image passing
along all of the required arguments to mount the Docker socket and set the
appropriate environment variables. For example, if you want to build the
sample .NET Core app, you'd issue the following commands from the root
of the directory containing your application:

Listing 4-12. Building and Running the Pipeline
docker build -t pipeline -f <Dockerfile> .

docker run \
-v /var/run/docker.sock:/var/run/docker.sock \
--env GITHUB_URL=https://github.com/edwardsdl/sample-netcore.
git \
--env DOCKER_USERNAME=AzureDiamond \
--env DOCKER_PASSWORD=hunter2 \
pipeline \
/stages/00_run.sh

Obviously, the values for GITHUB_URL, DOCKER_USERNAME, and DOCKER _
PASSWORD are placeholders. You need to replace them with the path for
your fork and your Docker Hub credentials. Remember to use your Docker
repository URL as well! Once you've run the docker run command, you'll
see the pipeline go through each of the stages we described earlier. Your
output should look like that in Figure 4-4.

82

CHAPTER 4 A PRACTICAL EXAMPLE

Cloning Application
Cloning into '.'...

Building Application
Restoring packages for /app/ValueTests/ValueTests.csproj...
Restoring packages for /app/ValueTests/ValueTests.csproj...
Restoring packages for /app/ValueApi/ValueApi.csproj...
Restoring packages for /fapp/ValueApi/ValueApi.csproj...
Installing Microsoft.VisualStudio.Web.CodeGeneration.Contracts 2.8.1.
Installing Microsoft.VisualStudio.Web.CodeGeneration.Tools 2.8.1.
Restore completed in 1.34 sec for /app/ValueApi/ValueApi.csproj.
Installing Microsoft.AspNetCore.SpaServices 2.0.1.
Installing Microsoft.AspNetCore.NodeServices 2.0.1.
Installing Microsoft.AspNetCore.Mvc.Core 2.6.1.
Installing Microsoft.AspNetCore.Mvc.RazorPages 2.0.
Installing Microsoft.AspNetCore.Mvc.ViewFeatures 2.
Installing Microsoft.AspNetCore.All 2.6.3.
Installing Microsoft.AspNetCore.Mvc.Cors 2.68.1.
Installing Microsoft.AspNetCore.Mvc.Razor 2.6.1.
Installing Microsoft.AspNetCore.Mvc.DataAnnotations 2.0.1.
Installing Microsoft.AspNetCore.Mvc 2.6.1.
Installing Microsoft.AspNetCore.Mvc.Abstractions 2.6.1.
Installing Microsoft.AspNetCore.Mvc.ApiExplorer 2.0.1.

1.
e.1.

Figure 4-4. Running the pipeline from the command line

In its final stage, the pipeline will “deploy” the sample .NET Core
application locally. When you issue the docker ps command as in
Figure 4-5, you'll see you have one container running—the one running
the sample application! Using your browser, navigate to http://
localhost:5000/api/values to verify it's working.

$ docker ps

CONTAINER ID IMAGE COMMAND
baB8f237dced edwardsdl/sample-netcore:latest "dotnet /app/ValueAp.."
sl

Figure 4-5. Inspecting the deployed application

Using IntelliJ IDEA CE

If you're more comfortable using an IDE, Intellij IDEA has wonderful support
for building Docker images. You can use the “Docker Integration” plugin,
which is incredibly helpful. Setup is a little more involved, but once you're
done you have a powerful development environment at your fingertips.

83

CHAPTER 4 A PRACTICAL EXAMPLE

Tip If you run into trouble when adding new Docker configuration
profiles, check out JetBrains’ help page at www. jetbrains.com/
help/idea/run-debug-configuration-docker.html.

To begin, we will create a few new configurations in our IDE. In the top
right corner, click the “Select Run/Debug Configuration” drop-down box

and click “Edit Configurations...” as in Figure 4-6.

v

~ Edit Configurations...

Figure 4-6. Creating a new configuration

On the Run/Debug Configuration window, create a new Docker
configuration by clicking on the “Add New Configuration” button in the

top left. Under the “Docker” menu item, select “Dockerfile” as shown in

Figure 4-7.

Click the 4+ button tc

Add New Configuration
=¥ Android JUnit

Ant Target fests
=] Applet
= Application
¥ Compound _ _
= Docker (B Add New 'Docker' Configuration

(®> Gradle + Docker Image

@ Griffon «» Docker-compose
~ JAR Application o Dockerfile

Figure 4-7. Adding a new Dockerfile configuration

84

﻿https://www.jetbrains.com/help/idea/run-debug-configuration-docker.html﻿
﻿https://www.jetbrains.com/help/idea/run-debug-configuration-docker.html﻿

CHAPTER 4 A PRACTICAL EXAMPLE

The first configuration we'll create will allow us to run the .NET Core
pipeline. We'll name this new configuration, “Run .NET Core Pipeline.”
In the Dockerfile drop-down box, select “Dockerfile.netcore.” Now, select
the checkbox labelled “Run built image” and set the container name to
netcore-pipeline. Next, in the executable section, set the command to
/stages/00_run.sh.

Now we need to mount the host’s Docker socket inside the container.
This is what makes it possible for us to execute Docker commands inside
the container. To do this, click the button labelled, “..” to the right of the
bind mounts textbox. In the “Bind Mounts” window, add a new bind
mount setting both the host path and the container path to /var/run/
docker.sock (Figure 4-8).

Host path Container path Read only
[varfrun/docker.sock [varfrun/docker.sock e

Figure 4-8. Mounting the Docker socket

Tip If you want to learn more about the history of issuing Docker
commands inside a container and mounting the Docker socket,
Jérome Petazzoni has written an excellent blog post at https://
jpetazzo.github.i0/2015/09/03/do-not-use-docker-in-
docker-for-ci/.

Next, we'll need to add a few environment variables (Figure 4-9),
specifically GITHUB_URL, DOCKER_USERNAME, and DOCKER _PASSWORD.
The value of GITHUB_URL will be DOCKER_PASSWORD will be your Docker
Hub username and password, respectively. The values we use here are
placeholders and won’t work for you.es we use here are placeholders and
won’t work for you.

85

﻿https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/﻿
﻿https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/﻿
﻿https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/﻿

CHAPTER 4 A PRACTICAL EXAMPLE

Name Value

GITHUB_URL https://github.com/edwardsdl/sa...
DOCKER_USERNAME AzureDiamond

DOCKER_PASSWORD hunter2

Figure 4-9. Adding environment variables

Note If you have forked the sample GitHub repo, remember to use
your GITHUB_URL in these examples!

After you've added the environment variables, click the OK button to
return to the Run/Debug Configurations screen. Confirm that your settings
look like those in Figure 4-10, and then click “Apply.”

Name: Run .NET Core Pipeline Share Single instance only
Server: & Docker B
Dockerfile: Dockerfile.netcore n
Image tag: netcore-pipeline

Build args:

Run built image

Container name: netcore-pipeline

Executable
Entrypoint:
Command: /stages/@@_run.sh

Publish exposed ports to the host interfaces: All o Specify
Bind ports:

Bind mounts: [var/run/docker.sock:/varfrun/docker.sock

Environment variables: it; DOCKER_USERNAME=AzureDiamond; DOCKER_PASSWORD=hunter2

Command line options:

-name netcore-pipeline netcore-pipeline /stages/@@_run.sh

Figure 4-10. Adding the Run .NET Core Pipeline configuration
86

CHAPTER 4 A PRACTICAL EXAMPLE

Next, we'll repeat this process to create additional configuration
profiles for our Java and Node pipelines. Most of the process is
identical, but you'll want to be sure to choose the correct Dockerfile
and GITHUB_URL values. Reference Figures 4-11 and 4-12 to ensure
your settings are correct.

Name: Run Java Pipeline Share Single instance only
Server: & Docker B
Dockerfile: Dockerfile.java n
Image tag: java-pipeline

Build args:

Run built image

Container name: java-pipeline

Executable
Entrypoint:
Command: /stages/@@_run.sh

Publish exposed ports to the host interfaces: Al © specify
Bind ports:

Bind mounts: Jvar/run/docker.sock:/varfrun/docker.sock

Environment variables: GITHUB_URL=https://github.com/edwardsdl/sample-java.git; DOCKER_U
Command line options:

.er2 ——name java-pipeline java-pipeline /stages/@@_run.sh

Figure 4-11. Adding the Run Java Pipeline configuration

87

CHAPTER 4 A PRACTICAL EXAMPLE

Name: Run Node Pipeline Share Single instance only
Server: & Docker B
Dockerfile: Dockerfile.node n
Image tag: node-pipeline

Build args:

Run built image

Container name: node-pipeline

Executable
Entrypoint:
Command: /stages/@@_run.sh

Publish exposed ports to the host interfaces: All o Specify
Bind ports:

Bind mounts: [var/run/docker.sock:/varfrun/docker.sock

Environment variables: GITHUB_URL=https://github.com/edwardsdl/sample-node.git; DOCKER_
Command line options:

:er2 --name node-pipeline node-pipeline /stages/@@_run.sh
Figure 4-12. Adding the Run Node Pipeline configuration

Once you've added the last configuration profile, click the OK button
to close the window. Now the Select Run/Debug Configuration drop-
down box should contain three items: Run .NET Core Pipeline, Run Java
Pipeline, and Run Node Pipeline (Figure 4-13).

= Run Node Pipeline + P @
Edit Configurations...

« Run .NET Core Pipeline
« Run Java Pipeline
«» Run Node Pipeline

Figure 4-13. Listing the newly created configuration profiles
88

CHAPTER 4 A PRACTICAL EXAMPLE

Moving to the Cloud

Now that we’ve seen the pipeline work on our local machine, it’s time

to get it working using a real continuous integration tool. We'll start by
forking one of our sample projects in GitHub. Next, we’ll show you how

to run our pipeline in Travis CI by converting the 00_run.sh script to a
.travis.yml file. Finally, we’ll walk you through porting our pipeline from
Travis CI to CircleCI.

Moving the Pipeline to Travis ClI

As mentioned, we’ll be showing you how to use the pipeline with two

continuous integration platforms. Up first, we'll be looking at Travis CI.
Travis CI was one of the first—if not the first—CI/CD SaaS offering.

It provides an intuitive interface, free accounts for open source projects,

good documentation, and a large number of integrations. Because of this,

Travis ClI is wildly popular, especially amongst open source projects.

Creating a Travis Cl Account

Before we can move our pipeline to Travis CI, we’ll need to create a new
account. If you don’t need help, skip ahead to the next section.

Open a browser and navigate to https://travis-ci.org, then click
the button labeled, “Sign Up” (Figure 4-14). If prompted, enter your
GitHub username and password. If you are already signed in to GitHub,
you won't be asked to do so again.

Caution Check that top-level domain! You want https://
travis-ci.orgnot https://travis-ci.com. The latter is for
paid projects only!

89

https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.com

CHAPTER 4 A PRACTICAL EXAMPLE

wavis-ci ooy

« s € .
Travis C| #boutus Blog Ststus Help Sign inwith GeHub &7

TﬁST and Dﬂplo\s wmh Conﬁdenfe

Easily sync your GitHub pro; with Tr. Cl and you'll be your code in minutes

Figure 4-14. The Travis CI homepage

Grant Travis CI access to your email address and permission to add
new webhooks to your repositories. The service will use this to help you
set up new builds, to trigger builds when new code is committed to your
repositories, and notify you when things go wrong.

After granting Travis CI access, you'll be dropped on a “Getting
Started” page. Take a minute to read through this page. It details the steps
required to add a new repository and start building it.

Adding a New Repository

Now that your account has been created, you're ready to add a new
repository to Travis CI. This is where it all comes together. Once you're
done setting up the repository, you'll get to see the generic pipeline in
action.

Head to your profile page by using the link in the instructions.
Alternatively, you can click the “Profile” link in the drop-down menu
located in the top right of the navigation bar, as shown in Figure 4-15.

90

CHAPTER 4 A PRACTICAL EXAMPLE

o

ot 5

Dallas Edwards @

Profile

Sign Out

Figure 4-15. The “Getting Started” page

On your profile page, search for “sample.” This will return a list of any
of our sample projects you forked. Click the gray toggle switch to the left
of “sample-netcore” to allow Travis CI to integrate with the repository
(Figure 4-16).

Legacy Services Integration

== sample (<]

[] sample-java % Settings
] sample-node 1 Settings
[sample-netcore PP settings

Figure 4-16. Adding the .NET Core sample repository to Travis CI

Now click on the “Settings” button to the right of the toggle switch to
navigate to the settings for this repository. Before we start the first build, we
need to tell Travis CI what environment variables to pass to our container
(Figure 4-17). These will be the same values you used when running the
pipeline locally: DOCKER_USERNAME, DOCKER_PASSWORD, and GITHUB_URL.

91

CHAPTER 4 A PRACTICAL EXAMPLE

Environment Variables
Motice that the values are not escaped when your builds 2re executed. Special characters (for bash) should be escaped accordingly.

DOCKER_PASSWORD
DOCKER_USERNAME Azureliamond

GITHUB_URL

Figure 4-17. Adding environment variables to the build

Caution Make sure to toggle the “Display value in build log” switch
to the OFF position for the DOCKER _PASSWORD environment variable.
You don’t want your password showing up in the build log!

Now everything is ready for us to kick off our first build! Click the
“More options” button on the top right side of the page and select “Trigger
build” from the drop-down menu (Figure 4-18).

) Build pushed branches
) Build pushed pull requests

Figure 4-18. Triggering the first build

You'll be prompted to select a branch and add a custom commit
message and custom configuration. Essentially Travis Cl is simulating a
commit to your Git repository; nothing is actually pushed. This is actually
an incredibly useful feature, especially when you're getting started! It
allows you to quickly test changes to your configuration file without having
to go through the change, commit, push loop over and over again. For now,
just click the “Trigger custom build” button at the bottom (Figure 4-19).

92

CHAPTER 4 A PRACTICAL EXAMPLE
X
Trigger a custom build

Custom builds exist only on Travis Cl and will not appear in your Git history.

SELECT A BRANCH

ar

master

CUSTOM COMMIT MESSAGE

Commit message

CUSTOM CONFIG Enter config as YAML

script: echo 'Hello, World'

Trigger custom build

Figure 4-19. Triggering a custom build

Note For more information about this feature, check out the blog
post announcing its release at https://blog.travis-ci.
com/2017-08-24-trigger-custom-build.

You'll be redirected to a page showing you a detailed, real-time status
of your first build (Figure 4-20). If you scroll through the logs at the bottom,
you'll notice some familiar messages! The application is being cloned,
built, tested, and archived just like it was when you ran the pipeline locally!

93

https://blog.travis-ci.com/2017-08-24-trigger-custom-build
https://blog.travis-ci.com/2017-08-24-trigger-custom-build

CHAPTER 4 A PRACTICAL EXAMPLE

> ! Worker information
= 0 Build system information

4 metwork availability confirmed.

¥ 410 8 sudo service docker start

* 120 $ git clone D =-br https://github ple-netcore.git edwardsdl/sample-

425
426 Satting environment variables from repository settings

427 % export DOCKER_USERNAME=AzureDiamond

128 % export DOCKER_PASSWORD=[secure]

120§ export GITHUB_URL=https://github.con/edwardsdl/sample-notcore.git

431 bisabling Gradle daeson

437 % mkdir -p ~/.gradle & echo "org.gradle. daeson=false” >> -/ gradle/gradle. properties
® 435 $ rvm use default (e
» 445 % ruby --version (em——

Figure 4-20. Running the pipeline in Travis CI

A Look at the Travis Cl Configuration File

So how does Travis know how to run our pipeline? It uses the .travis.yml
file located in the root of our Git repository. Let’s take a look at what's inside!

Listing 4-13. The Travis CI Configuration File

services:
- docker
before script:
- |
docker run -it -d \
-v /var/run/docker.sock:/var/run/docker.sock \
-e DOCKER_USERNAME=${DOCKER_USERNAME} \
-e DOCKER_PASSWORD=${DOCKER_PASSWORD} \
-e GITHUB URL=${GITHUB URL} \
--name netcore-pipeline \
edwardsdl/netcore-pipeline:latest
script:
- docker exec netcore-pipeline /stages/01_clone.sh
- docker exec netcore-pipeline /stages/02_build.sh
- docker exec netcore-pipeline /stages/03 test.sh
- docker exec netcore-pipeline /stages/04 archive.sh

94

CHAPTER 4 A PRACTICAL EXAMPLE

It turns out the configuration file looks pretty similar to our 00_run.sh
script. That’s by design! One of the primary benefits of this architecture is
the ease with which you can move from one CI platform to another.

The services section describes any custom services—like MongoDB,
Memcached, or RabbitMQ—your build requires. Travis CI will include
these in your build environment. In our case, we ask that Docker be
installed.

The before_script section lets us run any last-minute commands
before the build really gets started. We'll use it to pull and run the latest
version of the netcore-pipeline Docker image. Just like when we ran
it locally, we mount the Docker socket and pass the DOCKER _USERNAME,
DOCKER_PASSWORD, and GITHUB_URL environment variables to the container.

Note You may have noticed our docker run command is
preceded by a vertical bar (|). This is called the literal block
scalar style and it allows our command to span multiple lines. If
you’re fascinated by formal language grammars, check out the
YAML specification at http://yaml.org/spec/1.2/spec.
html#id2795688.

The script section is where we instruct Travis CI to run the stages
we've included inside the container. Starting at 01_clone. sh, we simply
work our way through each script until we're done. If any stage fails, Travis
will stop execution and mark the build as failing.

Note For more information about configuring your Travis Cl build,
visit https://docs.travis-ci.com/user/customizing-the-
build/.

95

﻿http://yaml.org/spec/1.2/spec.html#id2795688﻿
﻿http://yaml.org/spec/1.2/spec.html#id2795688﻿
https://docs.travis-ci.com/user/customizing-the-­build/
https://docs.travis-ci.com/user/customizing-the-­build/

CHAPTER 4 A PRACTICAL EXAMPLE

Running the Pipeline in CircleCl

It’s not unusual for organizations to transition from one CI/CD platform
to another. Even upgrading from one version to another can be a huge
undertaking. In this section, we’ll see what it takes to move our pipeline
from Travis CI to CircleCI.

CircleClI is one of the world’s most popular CI/CD platforms. Like
Travis CI, CircleCl is hosted in the cloud, offers free accounts, and is very
easy to get up and running. On top of all that, it’s arguably an even better fit
for our pipeline than Travis CI, as it was built with containerized pipelines
in mind!

Creating a CircleCl Account

Tip For more information about getting started with CircleCl,
visit the 2.0 documentation page at https://circleci.com/
docs/2.0/.

This section will guide you through the process of creating an account.
The process is fairly straightforward and very similar to that of Travis CI. If
you've got experience working with CircleCI or are confident you don'’t
need help, feel free to skip to the next section.

To begin, open a browser and navigate to https://circleci.com. In
the top right corner, click the button labelled “Sign Up” (Figure 4-21).

4
O h ﬁl.+

Support Log In Sign Up

Figure 4-21. The CircleCI home page

96

https://circleci.com/docs/2.0/
https://circleci.com/docs/2.0/
https://circleci.com

CHAPTER 4 A PRACTICAL EXAMPLE

CircleCI will ask you to decide whether you want to sign up using
GitHub or BitBucket (Figure 4-22). We'll be using GitHub; but if you want
to use BitBucket, it should be easy to follow along, as the process is almost
identical.

Sign Up Now S

Start on our free plan which you unlimited O Sign Up with GitHub
P s. If y a itHub and not ready

for private proj se public repos.
B sign Up with Bitbucket

Figure 4-22. Signing up with CircleCI

If prompted, enter your GitHub username and password (Figure 4-23).
If you are already signed in to GitHub, you won'’t be asked to do so again.

O

Sign in to GitHub
to continue to CircleClI

Username or email address

edwardsdl|

Password Forgot password?

Figure 4-23. Signing up using GitHub

97

CHAPTER 4 A PRACTICAL EXAMPLE

Next, CircleCI will request access to your email address and read access
to your repositories (Figure 4-24). Like Travis CI, this information will be
used to help set up your projects and notify you when your builds break.

CircleCl by circleci
wants to access your edwardsdl account

I Personal user data v
Email addresses (read-only)
: Repositories v
‘% Public and private

Authorize circleci

Authorizing will redirect to
https://circleci.com

Figure 4-24. Authorizing CircleCl to access GitHub repositories

Creating a New CircleCl Project

After creating your account, you'll be sent to your dashboard. This is where
you'll go to view the latest information on all your builds. At the moment,
however, you have no projects. Instead of build information, you'll be
presented with a page welcoming you to the platform and directing you to
add a new project (Figure 4-25). That sounds like a great idea!

O this page, projects 1o populate your e oves that ane already bullding an Ciclet)

I the nest view, youll be abl up propects, If you o to fodow ary of beelow, or P any projects with you can siop ahend b et Up new projects

> e edwardsdl o projects buiiding on CHelCL SHP 10 $30 UD NoW Projects Hudd projects

Figure 4-25. The builds screen

98

CHAPTER 4 A PRACTICAL EXAMPLE

To begin, click the blue “Add projects” button in the center of the page.
This will take you to a list of all the repositories in your GitHub or BitBucket
account.

In the list of repositories, find the fork you created of the sample .NET
Core repository and click the “Set Up Project” button (Figure 4-26).

samgie B Show Forks

i ez
tarple-jae Sart Up Project
v =3

Figure 4-26. Adding a new project

Tip Make sure the “Show Forks” checkbox is selected, otherwise
your repository won’t show up in the list.

On the Add Project screen, select Linux as the operating system and
choose “Other” under the Language section (Figure 4-27). Out of the box,
CircleCI comes with the ability to intelligently build and test projects
written using some popular technologies. While this is a wonderful feature,
we won't be using it for this or any of our other sample applications. All of
our projects include a configuration file that tells CircleCI exactly what to
commands to execute. We'll take a closer look at this file a little later.

Operating System

B Linux & mocos
Language
£ Clojure €8 Elooe 0 Go €3 Gradie (Java) L Maven (Jaw) £ Nede & PHP 1 Python 0 Ruby
0 Soala 0 Other
Mext Steps
You'ra sl thersl Wee going 1o watk y vp 8 configuration fie, o wting it ard 1rTing on our istener 50 Uhal CrckiCl can test your comeits
Want 10 skip shead? Jump right 510 our dacumentstion, et up &yl file, and kick off your build with the button below
T Create a folder named .circleci and add afile canfig.ysl (so that the flepathbein .circleci/config.ynl }
FA Populate the config.ymi with the cortents of the sample ymi {shown Selow) Cogy To Chpboard

Figure 4-27. Setting up the sample .NET Core project
99

CHAPTER 4 A PRACTICAL EXAMPLE

After configuring the project, click the “Start building” button to create
the CircleClI project and start a build.

Once you've started the build, you'll be taken to a new page showing
you its status (Figure 4-28). The build starts by pulling down our pipeline
image, in this case edwardsdl/netcore-pipeline:latest, and then it
begins executing the instructions found in the sample project’s config.
yml file. Almost immediately however, the build fails! Checking the output
of the Clone section makes the problem obvious: stages/01_clone.sh:
line 6: GITHUB URL: parameter null or not set. We never set the
GITHUB_URL environment variable!

Builds » edwardsdl = sample-netcore » master = 1 3 Rebald » n &

2 Mo munw QS e 3o
b e age (DLAT) Troutalde DOOHwNIAG + 0001 guee vaics (T By
erfil
Teat Summary Queun (0001) Actifacts Conbauration Bukd Timing
S0t U Taret Summsary
Srow contanars: A1) Fulsd (1]

Figure 4-28. The first build of the sample .NET Core project

To fix this, you'll need to navigate to the build settings for the project
and set a few environment variables (Figure 4-29). Go to the settings
page by clicking the button with the gear shaped icon at the top right.
Then click the “Environment Variables” link under the “Build Settings”
section (Figure 4-30). Next use the “Add Variable” button to add three

100

CHAPTER 4 A PRACTICAL EXAMPLE

new environment variables: GITHUB_URL, DOCKER_USERNAME, and DOCKER _
PASSWORD. Unlike Travis CI, the values you set here cannot be exposed in
plain text.

CRBANTATION SETTINGS Followed projects

sdwardsdl/sample-netzore 0o
G edwardscl
CREANITATION
Untested projects
1 il (v]
Jwardsel/samy o
edwardsdl/zampie-node [y -]
. . . .
Figure 4-29. Projects page in Circle CI
FRGMET RTINS Environment Variables
Org Settings
conman Vatabs for ehadeamlentor rvevrss |
BUALD SETTINGE m
Buikd EmAmamest Add enmvironment varisbles 1o the bulld. You can add sensitive data (1.9 &P keys) here, rather than placing thern in the repositony. The values can be sny bash
Al such o3 setting MZ_HAVEN to S(HOME}/ n2) .
Nawre Value Remove
DOCKER PASSHORD o
DOCKER_USERNAME orzmend
GITHUE_URL e git

Figure 4-30. Adding environment variables

Now that we’ve set our environment variables, go back to the list of
builds by clicking the “Builds” button at the top of the navigation bar on
the left side. You should see a single row giving a summary of our failed
build (Figure 4-31). Find the “rebuild” link on this row and click it.

My builds All builds

master #1 3 min ago 00.40
 rabuild @ 1cd Dockerfile 5e61968

Figure 4-31. Rebuilding the project
101

CHAPTER 4 A PRACTICAL EXAMPLE

After you click the “rebuild” link, you’ll be taken back to the
build details page (Figure 4-32). This time the build should complete
successfully! If you examine the build actions list, the output should look
familiar. All of our stages are listed, and the output is the same as we saw
when running the pipeline locally!

Builds » edwardsdl » sample-netcore » master » 2 £ Rebuld » N @

Lo I o Prosaus Faralefism Crmed Triggerad by,
40 aga 01 52 ool i 008 wEIG + 000T i quee Dallas Edwards (roried 1)
—"
Teat Summary Cues (0002) Actifacts Corbguration Buld Timng
S Up Tewr Summary.
Sow contaners: MI(1) Susoesehd (1)

| B Chas wau
= -
i

Figure 4-32. Running the job a second time

A Look at the CircleCl Configuration File

So how did CircleCI know how to execute our stages? Take a look at one of
our sample projects and you'll find a hidden directory named .circleci.
Inside this directory you'll find a single file named config.yml. This is the
CircleClI configuration file, and it tells CircleCI everything it needs to know.
In the sample .NET Core app, this YAML file looks like this:

102

CHAPTER 4 A PRACTICAL EXAMPLE

Listing 4-14. The sample-netcore config.yml File

version: 2
jobs:
build:
docker:

- image: edwardsdl/netcore-pipeline:latest
steps:
- setup_remote docker:
docker layer caching: true
- run:
name: Clone
command: /stages/01_clone.sh
- run:
name: Build
command: /stages/02_build.sh
- run:
name: Test
command: /stages/03_test.sh
- run:
name: Archive
command: /stages/04_archive.sh

The file starts by specifying the Docker image to use when executing
the pipeline steps. Those steps are defined in the next section. Most of this
should look familiar—the clone stage is run first, followed by the build,
test, and archive stages. The setup_remote_docker step is new though.

This is what allows us to run Docker commands inside our container.

Note You can find more information about CircleCl’'s config.yml
file at https://circleci.com/docs/2.0/configuration-
reference/.

103

https://circleci.com/docs/2.0/configuration-reference/
https://circleci.com/docs/2.0/configuration-reference/

CHAPTER 4 A PRACTICAL EXAMPLE

Overview

In this chapter we took a deep dive into all the components necessary

to build a simple, albeit fully functional, generic pipeline. We gave
examples of several critical pipeline stages: clone, build, test, archive, and
deploy. We then took a look at the Dockerfiles we use to create our build
environments.

We then put it all together and used our pipeline to build and deploy
several sample applications on our local machines. Taking it one step
further, we showed you how easy it is to migrate the pipeline from your
local machine to Travis CI and then to CircleCI.

In the next chapter, we cover more advanced topics and show you
how to tackle some of the problems that tend to show up in real-world
implementations.

104

CHAPTER 5

Moving Beyond
the Basics

We've covered a lot in this book so far. You've seen the transition from
monolithic one pipeline per application style CI/CD processes all the
way to a fully generic implementation. At this point we've created a truly
generic and platform-independent pipeline that can deploy any number
of languages expanded upon and even look at implementations in some
other scripting languages. The goal of this chapter is to expand on the
knowledge gained so far, and to further explore and emphasize the power
of generic pipelines.

By the end of this chapter we’ll have seen what the generic pipeline
may look like in a true enterprise implementation. We’ll also look at the
role each team plays in its implementation and how a federated DevOps
team may come into play. We'll even explore how you can empower your
development teams to take control of the pipeline and run custom scripts.

Additional Stages and Steps

So far we've built a somewhat basic pipeline with a minimum number
of stages. While this is more than enough to get you up to speed on how
to build a generic pipeline, we've only scratched the surface of what

© Brandon Atkinson, Dallas Edwards 2018 105
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_5

CHAPTER 5 MOVING BEYOND THE BASICS

the pipeline would look like in a production environment. Our pipeline
consists of the following stages:

e Clone

e Build

e Unit Test
e Deploy

There are many organizations that would be thrilled to simply have
a pipeline with these stages. We talked in Chapter 1 about how there are
companies, even today, that still deploy code manually. A simple pipeline
like the one in this book would be a godsend for them. However, for
companies that truly embrace DevOps and automated CI/CD pipelines,
this is simply not enough to meet their needs.

A proper enterprise-ready pipeline requires stages that cover much
more, including:

o Static Code Analysis: This stage would perform code
coverage checks and linting on your application source
code.

e Security Scan: This stage would perform security and
vulnerability scanning on the source code. This stage
is crucial to ensure the application is secure and not
vulnerable to cyberattacks.

e Licensing Scan: This stage would perform licensing
checks on any third-party code incorporated into
the application. Some organizations have strict rules
around the licensing of code and may restrict what can
be deployed.

106

CHAPTER5 MOVING BEYOND THE BASICS

o Artifact Storage: This stage would take the built
application code and store it in a repository for later
use. This allows for easy promotion of code that has
been built and tested and has passed all the necessary
checks before being released to Production.

e End to End Tests: This stage would perform any
automated tests against the deployed application.
This is where you can initiate test suites to test any
functionality that is required to go to Production.

e Performance Tests: This stage would kick off any
performance tests that are needed to exert a load on the
application. This could be combined with End to End
tests if needed.

That is a total of ten stages including the ones we included in the
earlier chapters! As you can see, an enterprise CI/CD pipeline can be quite
complex. Each stage may interact with one or more systems, one or more
times! It’s quite easy to imagine some of these stages making multiple calls
to the same system as well. For instance, you may need to submit source
code for a security scan, and then make another call to check the results.

We haven'’t even talked about pipelines that may need to also provision
infrastructure as part of their deployments. Some enterprises use the
deployment of new code to also create a new server stack in the process.
This is common with cloud providers like AWS. If you have an application
that runs on EC2 instances, for example, you may want to provision a new
instance with a fresh copy of the underlying OS on each deployment. This
gives you an opportunity to get the latest security patches on the OS each
time you deploy.

The number of stages you have can be limitless. However, the ones
listed earlier would be the most commonly used. The main takeaway is
that your pipeline may consist of multiple stages and may need to handle

107

CHAPTER 5 MOVING BEYOND THE BASICS

multiple languages. The nice part is, outside of the build and unit test
stages, most of the remaining stages are generally not language specific.
This makes building and testing those much easier.

Again, we must stress that standards are your friends with regard
to all your stages. The generic pipeline is built to handle any number of
languages passed to it, so your stages must handle those accordingly. If
you're using enterprise-grade tools for scanning, this is probably not going
to be an issue. For instance, more static code scanning tools can handle
pretty much any code language you can throw at it. The goal in the later
stages of the pipeline is to continue to enforce standards and further push
the generic pattern.

Other Scripting Languages

While shell scripts are very powerful and almost guaranteed to run
anywhere, you may find yourself in a situation where you either don’t want
to use Shell scripts, or can’t. One of the benefits of the pattern covered in
this book is that it can be applied to any scripting language you wish. In
fact, it doesn’t even have to be a scripting language! You could accomplish
the same goals using any language: for instance, Golang may be a nice
option.

We talked at length in the book about why we chose Shell over other
languages. Scripting languages are interpreted rather than compiled;
this provides many benefits. For instance, using Shell allows us to pretty
much run in any Linux environment without issues. Bash would be
another excellent choice with the introduction of native Bash in Windows
environments. This is what makes scripting languages a great choice for
this pattern.

108

CHAPTER5 MOVING BEYOND THE BASICS

Note Windows 10 is required for native Bash in Windows. The
Windows Subsystem for Linux allows you to run Linux environments
without the overhead of a virtual machine. You can learn more at
the following link: https://docs.microsoft.com/en-us/
windows/ws1/about.

Using a compiled language like Golang or C# is not a horrible choice,
but it introduces additional hurdles. Aside from needing to recompile your
code each time you make a change, it also requires you to install a runtime,
deal with versioning problems, and work around platform specific
issues. If you needed to jump from a Windows environment to a Linux
environment, you would need to compile it separately for each one. If you
were using Bash scripts, you would not need to be bothered; simply pick
up the code and change operating systems.

We've explored Shell scripts in detail. Now let’s look at the same
examples but in other languages. We'll basically show each stage we've
seen already but presented in another language.

PowerShell

Listing 5-1 shows the build stage in PowerShell.

Listing 5-1. PowerShell Build Stage Script
$application type = application.type

switch ($application type)
{

java

{

mvn clean package

109

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

CHAPTER 5 MOVING BEYOND THE BASICS

netcore

{

dotnet restore
dotnet build -c Release

}

node

{
npm install

}

default

{
Write-Host "Unable to build application type
$application type."
exit 1

}

This script assumes that you have parsed your JSON configuration file
and the application type is accessible via an object. Listing 5-2 shows the
test stage script.

Listing 5-2. PowerShell Unit Test Stage Script

$application type = application.type
$test path = test.path

switch ($application type)
{

java

{

mvn test

110

CHAPTER5 MOVING BEYOND THE BASICS

netcore
{
dotnet test $test path
}
node
{
npm run test
}
default
{
Write-Host "Unable to test application type
$application_type."
exit 1
}

You should be noticing a familiar pattern at this point. Even with
PowerShell, the same patterns from the Shell scripts are in place. As
with the build stage, your JSON configuration file has been parsed and is
available to your script. Listing 5-3 illustrates the archive stage.

Listing 5-3. PowerShell Archive Stage Script

$registry = archive.registry

$namespace = archive.namespace

$repository = archive.repository

$image = "$registry/$namespace/$repository:latest”

docker login ~
-u $DOCKER USERNAME ~
-p $DOCKER_PASSWORD *
$registry

docker build -t $image

docker push $image

111

CHAPTER 5 MOVING BEYOND THE BASICS

Finally, listing 5-4 illustrates the deploy stage.

Listing 5-4. PowerShell Deploy Stage Script

$registry = archive.registry

$namespace = archive.namespace

$repository = archive.repository

$image = "$registry/$namespace/$repository:latest”
docker run -dP $image

What is truly amazing here are the similarities between the Shell script
and PowerShell. Even though they are completely different scripting
languages, the code looks nearly identical. Again, this is the power of
standards coming into play. By keeping your code lean and sticking to
the core commands in each language, you will find your scripts are small,
lightweight, and ultimately easily transferrable to another language.

PowerShell may not be the best example of porting your pipeline code
to another language. For this book we've used Shell scripts running in
Linux environments. A more realistic conversion would be to a language
that gives you more power than Shell, but is still very Linux friendly. So
now, let’s look at these scripts written in Python.

Python

Listing 5-5 shows the build stage in Python.

Listing 5-5. Python Build Stage Script
application _type = application.type

if application_type == 'java':
subprocess.run(['mvn', 'clean', 'package'], check=True)
elif application type == 'netcore':
subprocess.run(['dotnet', 'restore'], check=True)

112

CHAPTER5 MOVING BEYOND THE BASICS

subprocess.run(['dotnet', 'build', '-c', 'Release'l],
check=True)

elif application_type == 'node':
subprocess.run(['npm', "'install'], check=True)

else
raise Exception(f'Unable to build application type
{application_type}.")

Much like the Shell script and the PowerShell script, we simply
determine the application type and perform the standard build commands
for each language. Listing 5-6 illustrates the unit test stage.

Note This is a slimmed down Python script. It does not include the
shebang or any import statements that would be required. We’re focusing
solely on the logic in the script. The version of Python shown here is 3.6.

Listing 5-6. Python Unit Test Stage Script

application_type = application.type
test path = test.path

if application_type == 'java':

subprocess.run(['mvn', 'test'], check=True)
elif application_type == 'netcore':

subprocess.run(['dotnet', 'test', test path], check=True)
elif application_type == 'node':

subprocess.run(['npm', 'run', 'test'], check=True)
else

raise Exception(f'Unable to test application type
{application type}.")

113

CHAPTER 5 MOVING BEYOND THE BASICS

By now the beauty and simplicity of the pattern should be taking hold.
You've seen Shell, PowerShell, and now Python. Even if you don’t
regularly use these languages, by sticking with standards and keeping
things simple, the code is very easy to read. More importantly, it’s very
easy to port should that need ever arise. Listing 5-7 shows the archive
stage.

Listing 5-7. Python Archive Stage Script

registry = archive.registry

namespace = archive.namespace

repository = archive.repository

image = f'{registry}/{namespace}/{repository}:latest’

subprocess.run(['docker', 'login', registry,

"-u', docker username, '-p', docker password], check=True)
subprocess.run(['docker', 'build', '-t', image], check=True)
subprocess.run(['docker', 'push', image], check=True)

Finally, listing 5-8 illustrates the deploy stage.

Listing 5-8. Python Deploy Stage Script

registry = archive.registry

namespace = archive.namespace

repository = archive.repository

image = f'{registry}/{namespace}/{repository}:latest’
subprocess.run(['docker', 'run', '-dP', image], check=True)

Now imagine your team decides that all this Shell and PowerShell
and Python stuff is for the birds; they want to use Golang! Not a problem,
you say! At this point it would be a trivial task to research how to issue
commands via Golang, and rewrite the pipeline. Of course, this all

114

CHAPTER5 MOVING BEYOND THE BASICS

depends on how complex your pipeline is. However, by sticking to
standards and not having a lot of “one-off” code, this task becomes
much easier.

Custom Script Hooks

The most important rule of the generic pipeline, without a doubt, is to
strictly adhere to standards. Standards are your friends; do not deviate
from them. They are the only thing that makes a generic pipeline
work, period. Standards keep the playing field level and ensure that all
applications are handled in the exact same manner, every time.

This is invaluable when it comes to placing new languages on the
pipeline, debugging, as well as adding new features. Without a doubt
teams will come to you and ask (or even expect) for one-off changes that
may apply only to their application. Do not give in to these requests! It may
seem benign at first, and you're happy to oblige. But over time all those
tweaks begin to add up. Bugs start to creep in and it becomes increasingly
difficult to diagnose and fix issues. The cost and effort required to maintain
the overall pipeline skyrockets. And let’s not forget, a fix here may break
another application over there.

By making all development teams play by the same rules, you ensure
everyone gets treated the same and the pipeline remains very stable.
You're going to make some people unhappy, and you may be faced with
having to turn some teams away. If a team has an application that requires
a lot of custom work, you may have to say “sorry, build your own pipeline.”
This is life with a generic pipeline.

However, being a DevOps team, you don’t want to be too rigid. After
all, the development teams are your customers. And we want to have
happy customers! So what options do we have if want to keep standards
in place but also give the teams some flexibility in customizing things. You
can offer your teams script hooks.

115

CHAPTER 5 MOVING BEYOND THE BASICS

Script hooks are simply an opportunity for teams to inject their own
functionality via scripts into the pipeline. This can be a happy medium in
keeping the pipeline clean from a lot of custom logic and allowing your
development teams to do custom stuff. Let’s look at what script hooks look
like and how you can incorporate them into your pipeline.

Pre- and Postpipeline Hooks

Common areas for custom hooks are at the beginning and end of the
pipeline. This allows a development team to define custom actions that are
to be performed before or after their application is built or deployed. Some
common actions may include:

o Installing any custom software, plug-ins, packages, etc.
that are required by the application

e Performing any clean-up actions needed by a new
version of the application

e Performing any data migrations or clean-up that may
be needed

What is nice about these hooks is while they give development teams
more flexibility, they’'re also quite easy for the DevOps team to implement.
Providing a hook at the beginning and end of the pipeline is accomplished
by simply running a Shell script that is provided by the development team.
Figure 5-1 illustrates the flow.

116

CHAPTER5 MOVING BEYOND THE BASICS

.NET Core Build Container

/ Docker

Pre- . . Static Code Code Post-
—»| —> -
Script Build Unit Test —»] Analysis > Deploy — Sript

Java Build Container

Pre- - Build .y Static Code - Code Post- }

Script UnitTest = analysis Deploy Sript

-

Figure 5-1. Implementing pre- and post scripts in the pipeline

As Figure 5-1 shows, we're still running inside a container specific to
our language. Nothing has changed in that regard. However, you now are
executing custom scripts at the beginning and end of the pipeline. In this
scenario the development teams would provide a directory in their code
repository containing the scripts. The naming convention of the directory
and scripts would be standardized for the pipeline. Imagine a directory
structure like the following:

e CodeRepo
e /src

e /pipeline scripts

= pre.sh
= post.sh
o /assets

o /scripts

o index.html

117

CHAPTER 5 MOVING BEYOND THE BASICS

This is obviously a simplistic application, but let’s just focus on the
structure. In this scenario there is a “pipeline_scripts” folder that contains
any Shell script the developers wish to run during the pipeline execution.
"pre.sh" is run at the beginning of the pipeline, and "post.sh" is run
at the end. This naming convention allows for any development team to
include custom scripts. The pipeline will simply look in the agreed upon
directory and, if the scripts are present, execute them.

While this option provides a lot of flexibility to your development
teams, its power is also its weakness. The DevOps team forfeits a lot of
control with this pattern. When development teams first begin to utilize
this feature, many things may go wrong. Luckily, you're running inside
a container that will be destroyed at the end of the pipeline execution.
This provides a good number of protections and eases some concerns.

If a team commits a bad hook script and wrecks the pipeline execution,
we can simply throw away the container and try again. This is the beauty
of running in a containerized environment. However, there are still a few
guidelines that should be followed when implementing pipeline hooks:

e Run Custom Scripts with Least Privilege: There will be
many stages in the pipeline that require logging into
third-party systems or performing actions that require
higher access. This is fine if you wrote the code and
know what it’s doing. It becomes more challenging
when you're running custom scripts. Always run
custom scripts with a lower level account that has fewer
permissions. The last thing you want is a stray script
doing horrible things with an administrator account.

118

CHAPTER5 MOVING BEYOND THE BASICS

You Wrote It, You Own It: When providing this feature

to teams, it’s extremely important to limit the amount

of support your team provides when issues arise from
custom scripts. The main reason is you will quickly
become a support team for scripts you did not write. You
must be firm and inform teams that if they choose to write
custom scripts, they must support them. It’s your job to
provide proper logging so they know what went wrong.

Always, Always Run Inside a Container: These scripts
will most likely do things that change the environment,
install packages, etc. You want to ensure this happens
in a container so it does not affect your platform or
other pipeline executions.

Trust No One, and Log Everything: Don’t trust that any
script is safe. Remember the first point, run with fewer
permissions, and log everything the script does!

If that list didn’t scare you off, then it’s time to talk about taking this
pattern one step further with stage hooks.

Stage Hooks

Pre- and postscript hooks provide a great deal of functionality. In fact,

it’s rare to have this level of control over how the pipeline executes. And

even when development teams do have a lot of pipeline control, it’s

administered via normal work processes. A feature request is raised with

the DevOps team who then implements a change. By using stage hooks,

this process is turned on its head.

119

CHAPTER 5

MOVING BEYOND THE BASICS

Supporting pre- and post hooks will encourage teams to add more

custom functionality at the stage level and less custom functionality in the

before and after hooks. Common pre- and posthook actions are similar to

before and after hook actions. They typically include:

» Installing additional packages that are needed for build
and unit tests

e Using a different unit test framework than what is
currently supported by the DevOps team

o Running additional tests, then combining test coverage

reports

Just like with the pre- and post scripts, the custom stage scripts get

picked up and run before each stage, as shown in Figure 5-2.

Docker

//

.NET Core Build Container
Build-Seript | I Test-Seript
Pre- Static Code Code Post-
—> —> -
i Analysis i
Seript Build Unit Test v Deploy Sript
Java Build Container
| Build-script | | Test-script
sPcrrei.l- Ly |y itat:c Code Code qul-
o Build Unit Test nalysis Deploy Sript

)
|

-

2/

Figure 5-2. Build and Unit Test custom scripts being injected

120

CHAPTER5 MOVING BEYOND THE BASICS

In this scenario, we provide the development teams with a prebuild
and preunit test script hook. These would be the most common areas for
hooks to be present. For instance, it’s unlikely to need any kind of hook
for static code analysis, security scans, or deployments. Those are stages
that are sacred and should not be altered. Build and Unit Test, however,
are areas in which the teams may have legitimate needs for custom
functionality. As with pre- and post scripts, standardization is your friend.
The application repo may look like the following:

e Code Repo

e /src

o /pipeline_scripts
= pre.sh
= post.sh
= pre-build.sh
= pre-test.sh

o /assets

o /scripts

e index.html

The script naming here is subtle but very important. By prefixing the
scripts with “pre” it’s an indicator to the development teams that this is
a prebuild script only. You still intend to execute your pipeline code, and
you should. These are not meant to be full overrides of your pipeline code,
although you could certainly do that if you wish. However, it’s been our
experience that doing that invites a lot of support requests and broken
pipeline executions.

Custom script hooks are actually meant to provide the DevOps team
with a bit of breathing room. It allows you to give your development teams

121

CHAPTER 5 MOVING BEYOND THE BASICS

options for expanding the capabilities of the pipeline to meet their needs,
but in a controlled setting. If done properly, you can keep your standards-
based pipeline running smoothly while giving your development teams
the flexibility to tailor parts of the pipeline to their specific needs.

Where to Go from Here

You've now been introduced to a shared generic pipeline with Docker.
You've seen how you can extend its functionality and provide your
development teams with all the features they need and then some. So
where do you go from here?

Hopefully we’ve shown you some things that you can practically apply
to your own pipelines. Even if you don’t go out and refactor your pipelines
to be generic across the board, you may have seen some things that can
help in your day to day activities. This book was written from practical
knowledge from folks who've been down this road. If you decide to embark
on the truly generic shared pipeline, remember these tips:

e Standards, Standards, Standards: We were absolutely
a broken record with this, but it’s true. The only way
a generic pipeline will succeed is with clearly defined
standards and only one way to do things (i.e., build, test,
etc.). The more customization you place in the pipeline,
the harder it will be to maintain and troubleshoot.

e Say No, and Often: Development teams will always ask
for more—new features, customization requests, and
special exceptions for their team or project. You have to
say no more often than you say yes. A generic pipeline
is meant for all teams to use, and if that is the case it
must be truly generic. Learn to say no; that word is one
of your best friends.

122

CHAPTER5 MOVING BEYOND THE BASICS

e Over Communicate with Teams: As you build the
pipeline and maintain it, you'll need to make changes
from time to time. Some of these are big; some go
unnoticed. It’s very important to over communicate
with your development teams. They are putting a lot
of trust in your pipeline and they want to know what'’s
going on. Even if there is a small change, publicize
it. Ensure everyone knows what is happening with
upcoming changes long before you do them.

Now you're ready to tackle the generic pipeline. By using Docker
and strictly adhering to standards, you can deliver a CI/CD experience
unlike most others. When done properly, you will not only support your
development teams but quite possibly the whole organization. Don’t be
surprised if teams come knocking at your door to get on board. Embrace
the change, and you and your team can deliver great things.

123

Index

A

Alpine containers, 40
Angular 5 application, 66
configuration file, 69
Dockerfile, 80-81
using Intelli] IDEA CE, 88
Artifact storage, 107
ASP.NET Core Web APIs
build stage, 72-73
command line, 65, 82
configuration file, 68
deploy, 83
Dockerfile, 80
using Intelli] IDEA
CE, 83, 85-86

B

Bash, 108-109
Bypass unit tests, 9

C

CI/CD pipeline, 10-11
CircleCI
account, creation, 96-97
authorizing, 98

© Brandon Atkinson, Dallas Edwards 2018

project creation
build screen, 98-99
configuration file, 102
environment
variables, 100-101
.NET Core
project, 99-100
rebuild, 101-102
signing up, 81, 97-98
Commercial off-the-shelf
(COTS), 6

D

DevOps, 14

E,F
End to end tests, 11, 107
Enterprise CI/CD pipeline
deployments, 107
stages, 106-107
Enterprise CI/CD platform
Circle CI, 59
containers, 51-52
Docker
builds, 51
install, 50

B. Atkinson and D. Edwards, Generic Pipelines Using Docker,

https://doi.org/10.1007/978-1-4842-3655-0

125

https://doi.org/10.1007/978-1-4842-3655-0

INDEX

Enterprise CI/CD platform (cont.) L
.NET Core 1.0, 52
.NET Core 2.0, 53
Jenkins (see Jenkins)
.NET Core, 47-49
shared code, 53-54
shell scripts, 55
Travis CI, 60-61

Language-specific pipelines
benefits, 25
build step
angular, 38-39
generic pipeline, 37
switch/case statement, 37-38
code reuse, 29-30
configuration file, 43, 45-46
G, H DevOps team, 33
microservices, 34
shell scripts, 40-43
Uls, 26
using shared code, 36
Licensing scanning, 106
Lines of business (LOBs), 43

Generic pipeline
pre-and postpipeline
hooks, 116-119
script hooks, 115-116
stage hooks, 119-122

stages, 106
tips, 122
Golang, 108-109 M ’ N ’ O
Microservices
architecture, 18
I CI/CD pipeline steps, 20-21
Intelli] IDEA CE, 83-88 monolithic application, 21
two-week release cycle, 31-32
with UI, 23-24
J! K Monolithic application
Jenkins bypass unit tests, 9
configure libraries, 56-57 CI/CD pipeline
directory structure, 57 definiton, 10
Docker plugin, 57-58 processes, 6-7
vars folder, 57 static code analysis, 11
jq tool, 73 deployment pipeline, 7-8

126

deployment process, 5

design, 2

feature development timeline
risks, 12-14

MVC frameworks, 3-4

quality pipeline stages, 10-11

P QR

Performance tests, 11, 107
Pipeline
archive stage, 75-77
build stage, 72-73
clone stage, 71
configuration file, 67-71
deploy stage, 77-78
running, 81
test stage, 74-75
Travis CI (see Travis CI)
PowerShell
archive stage, 111
build stage, 109-110
deploy stage, 112
unit test stage, 110-111
Python
archive stage, 114
build stage, 112-113
deploy stage, 114
unit test stage, 113

INDEX

S

Script hooks, 115-116, 121
Security scanning, 106
Shared pipeline
benefits, 26
goal, 28
standards, 27-28
Shell scripts, 108-109
Spring Boot applications
configuration file, 67
Dockerfile, 78-80
Hello World message, 64
using Intelli] IDEA CE, 87
Stage hooks, 119-122
Static code analysis, 106

LUVWXY,Z
Travis CI
account, creation, 89-90
configuration file, 94-95
environment
variables, 91
.NET Core sample
repository, 91
run pipeline, 93
sign-up process, 81
trigger building, 92-93

127

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Recognizing You Are Stuck in the Past
	Monolithic Applications
	One Pipeline per Application
	Bad Actors
	Pipeline as Gatekeeper

	Agile Can’t Die; It Was Never Born
	Overview

	Chapter 2: Setting the Stage for the Present
	Microservices
	Developer Best Practices Are Key

	Dedicated Pipeline per Language
	Standards Are Key
	Taking Code Reuse a Step Further

	Microservices and Shared Pipelines are More Agile
	Overview

	Chapter 3: Getting it Right with Docker and Scripts
	One Pipeline to Rule Them All
	Shell Scripts
	Configuration Files

	Docker at the Core
	Platform Agnostic
	Overview
	Shell Scripts
	Docker
	Build Containers

	Chapter 4: A Practical Example
	An Overview of Our Applications
	Spring Boot
	ASP.NET Core Web API
	Angular 5

	A Deep Dive into the Pipeline
	The Pipeline Configuration File
	The Clone Stage
	The Build Stage
	The Test Stage
	The Archive Stage
	The Deploy Stage
	A Look at Our Build Containers

	Running the Pipeline
	Using the Command Line
	Using IntelliJ IDEA CE

	Moving to the Cloud
	Moving the Pipeline to Travis CI
	Creating a Travis CI Account
	Adding a New Repository
	A Look at the Travis CI Configuration File

	Running the Pipeline in CircleCI
	Creating a CircleCI Account
	Creating a New CircleCI Project
	A Look at the CircleCI Configuration File

	Overview

	Chapter 5: Moving Beyond the Basics
	Additional Stages and Steps
	Other Scripting Languages
	PowerShell
	Python

	Custom Script Hooks
	Pre- and Postpipeline Hooks
	Stage Hooks

	Where to Go from Here

	Index

