
Generic
Pipelines
Using Docker

The DevOps Guide to Building Reusable,
Platform Agnostic CI/CD Frameworks
—
Brandon Atkinson
Dallas Edwards

Generic Pipelines
Using Docker

The DevOps Guide to Building
Reusable, Platform Agnostic

CI/CD Frameworks

Brandon Atkinson
Dallas Edwards

Generic Pipelines Using Docker

ISBN-13 (pbk): 978-1-4842-3654-3 ISBN-13 (electronic): 978-1-4842-3655-0
https://doi.org/10.1007/978-1-4842-3655-0

Library of Congress Control Number: 2018962365

Copyright © 2018 by Brandon Atkinson, Dallas Edwards

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484236543.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Brandon Atkinson
North Chesterfield, VA, USA

Dallas Edwards
Midlothian, VA, USA

https://doi.org/10.1007/978-1-4842-3655-0

iii

About the Authors ���vii

About the Technical Reviewer ���ix

Acknowledgments ���xi

Introduction ���xiii

Table of Contents

Chapter 1: Recognizing You Are Stuck in the Past �������������������������������1

Monolithic Applications ���2

One Pipeline per Application ���5

Bad Actors ���7

Pipeline as Gatekeeper ��10

Agile Can’t Die; It Was Never Born ��12

Overview ���14

Chapter 2: Setting the Stage for the Present ��������������������������������������17

Microservices ��17

Developer Best Practices Are Key ���19

Dedicated Pipeline per Language ���21

Standards Are Key ���26

Taking Code Reuse a Step Further ��28

Microservices and Shared Pipelines are More Agile ���31

Overview ���32

iv

Chapter 3: Getting it Right with Docker and Scripts ���������������������������33

One Pipeline to Rule Them All ���34

Shell Scripts ��39

Configuration Files ���43

Docker at the Core ��47

Platform Agnostic ��56

Overview ���61

Shell Scripts ��61

Docker ���62

Build Containers ��62

Chapter 4: A Practical Example ��63

An Overview of Our Applications ���63

Spring Boot ��64

ASP�NET Core Web API ���65

Angular 5 ���66

A Deep Dive into the Pipeline ��67

The Pipeline Configuration File ��67

The Clone Stage ��71

The Build Stage ���72

The Test Stage ���74

The Archive Stage ��75

The Deploy Stage ���77

A Look at Our Build Containers ��78

Running the Pipeline ���81

Using the Command Line���82

Using IntelliJ IDEA CE ��83

Table of ConTenTsTable of ConTenTs

v

Moving to the Cloud ��89

Moving the Pipeline to Travis CI ���89

Running the Pipeline in CircleCI ��96

Overview ���104

Chapter 5: Moving Beyond the Basics ��105

Additional Stages and Steps ���105

Other Scripting Languages ���108

PowerShell ��109

Python ���112

Custom Script Hooks���115

Pre- and Postpipeline Hooks ���116

Stage Hooks ��119

Where to Go from Here��122

Index ���125

Table of ConTenTsTable of ConTenTs

vii

About the Authors

Brandon Atkinson is a software engineer with more than 14 years of

industry experience encompassing analysis, design, development, and

implementation of enterprise-level solutions. His passion is building

scalable teams and enterprise architecture that can transform businesses

and alleviate pain points. He has extensive experience in various

technologies/methodologies, including Azure, AWS, .NET, DevOps, Cloud,

JavaScript, Angular, Node.js, and more. Brandon lives in Richmond,

Virginia, USA with his wife and two daughters.

Dallas Edwards has more than ten years of experience as a software

engineer. He thrives on creating solutions that are pragmatic, scale easily,

and that are easy to test and maintain. His experience encompasses a

wide range of expertise, including software development, iOS application

development, and DevOps. Dallas lives in Richmond, Virginia, USA with

his wife and is an avid scuba diver.

ix

About the Technical Reviewer

Alex Fabian is a professional software

engineer with experience building enterprise-

scale Java systems, APIs, and web applications.

He has hands- on experience implementing

Docker-based deployment pipelines for

microservices and has spent considerable

time integrating with various offerings from

Amazon Web Services. Alex has had the

opportunity to work on large- and small-scale

projects for Fortune 500 companies, technology startups, government

contractors, and small organizations. He holds certifications from Amazon

Web Services and a B.S. in Computer Science from The University of

Virginia.

xi

Acknowledgments

Brandon Atkinson

Writing a book is very hard work, and very time consuming. I could not

have done this without the support of my family, especially my amazing

wife Jennie and my wonderful kids. I also want to thank Dallas for coming

on this journey with me. I did my best to take over your life; you’re about to

get it back! I also want to thank Chris Bowers for setting me on this DevOps

path, and providing a lot of the vision that made this pattern come true.

Dallas Edwards

There’s no way this could’ve happened without the constant support and

encouragement of my family. I am so grateful for the role each of you has

played in my life.

I’d like to thank Brandon for giving me this opportunity. I can’t wait to

see what you drag me into next!

Finally, to my wife Cierra: thank you so much for all of your advice and

sticking with me through all the late nights. I already proved it.

xiii

Introduction

DevOps (a clipped compound of “development” and “operations”) is a

software engineering culture and practice that aims at unifying software

development (Dev) and software operation (Ops). The main characteristic

of the DevOps movement is to strongly advocate automation and

monitoring at all steps of software construction, from integration, testing,

and releasing to deployment and infrastructure management.

That definition pretty much sums up what most people think of when

they hear the term DevOps. Not because it perfectly describes what it is,

however; it leaves you more confused than before you asked the question

“What is DevOps?”. DevOps comes in so many forms it can be hard to nail

down exactly what it is. I’ve worked in a lot of different shops in my time

and DevOps is always something different at each stop.

For most it involves developers writing code that is checked into

source control, which immediately kicks off a build pipeline that deploys

your application. That pipeline will perform various steps that may include

stages like building, testing, and deploying. From my experience, if you’re

just doing these simple steps through automation, you’re way ahead of

some. However, for many this is not enough to have your organization be

considered as fully embracing DevOps.

You may also want to include things like automated infrastructure

creation, security scans, static code analysis, and more. In an ideal

situation everything you do in a software shop is stored as code in source

control. This includes your application code, infrastructure scripts,

database scripts, networking setup, etc. With a push of a button everything

your application needs to run can be created on the fly. For a lot shops, this

is what it means to truly embrace DevOps.

xiv

Some organizations are more mature than others when it comes to

DevOps practices. In my experience you’re well on your way to maturity if

you’re doing the following items:

• You deploy your application via an automated pipeline.

• Once built and tested, application code binaries can be

promoted via an automated pipeline.

I realize a lot of people will look at that list and exclaim “WHAT?!”.

There are only two items, and your organization may be way beyond those.

However, most are not and would see immense improvements by just

doing these two things. If you’re one of the folks who thinks this list is crazy

small, then count yourself lucky. I know many people who would kill for

just these two items.

Automated pipelines in my opinion are the lifeblood of good DevOps

practices. They provide so many benefits to both the team of developers

as well as the business that relies on their code. A well-crafted pipeline

gives you a repeatable process for building, testing, and deploying your

application. It can be used to create artifacts that, once built, are simply

promoted, ensuring that what makes it to Production has been tested and

vetted.

Pipelines can also be a pain point for organizations as well. You may

have multiple applications, each written in different languages, and each

with their own finicky way of being built. It can be a nightmare at times

jumping between technologies, debugging the various stages, and keeping

the lights on. Luckily modern technology is helping us get around some

of these issues. Technology like Docker has given us an opportunity to

standardize our platforms. By utilizing Docker in your pipeline, you can

give your developers some peace of mind that if they can build it, so can

you.

Combine this with cloud technology like Amazon ECS or Azure

Container Service and now we can extend that piece of mind all the way

InTroduCTIonInTroduCTIon

xv

to deployment. If it runs locally in your Docker daemon, it will run in the

cloud. This even applies if you’re running an enterprise cloud platform

like Nutanix or Dell; if the destination is a container orchestration service

you’re golden. Now, consider that .NET Core is open source and can run

on Linux, and you’ve pretty much covered all your bases. It’s a great time to

be in technology!

This book aims to show how you can use all this technology to simplify

your pipelines and make them truly generic. Imagine a single pipeline that

deploys all your code regardless of the tech stack it is written in. It’s not a

dream; we’ll show you how.

 Who This Book is For
This book was written with the DevOps professional in mind who may be

struggling with writing and maintaining multiple pipelines. However, it’s

also for anyone in technology who is interested in learning about building

generic pipelines.

You don’t have to be a DevOps master to get a lot from this book;

however, you will benefit more with experience in the following areas:

• Docker: Being familiar with Docker from creating

Dockerfiles, building and running images, etc. We

won’t get very deep into Docker, but a working

knowledge is key.

• Bash Scripts: Most of the examples in this book are

written in Bash. You should have at least some minimal

experience with scripts.

• CI/CD Platform Experience: You’ll be much better off if

you already have experience with a platform like Circle

CI or Jenkins. However, throughout the book we’ll walk

you through working with these platforms.

InTroduCTIonInTroduCTIon

xvi

As you can see, having some DevOps and pipeline experience will

certainly benefit you as you read this book, but it’s not a hard requirement.

If you’re a developer of any type, you should have no issues jumping

right into the examples in this book. As stated, the future of DevOps and

pipelines is everything is code. If you’re comfortable writing code, you’ll be

fine.

 Why We Wrote This Book
This book is the culmination of a lot of hard work our team has done over

the last year. We were tasked with creating a generic, reusable pipeline

that any development team could utilize regardless of the language they

were writing in. Our organization was going through a transformation from

monolithic applications to microservices, and the old way of delivering

code wasn’t going to cut it.

After we decided on our plan of attack and began implementing, we

realized we had something special on our hands. Talking with other groups

around us, no one was tackling CI/CD pipelines in quite the same way.

Most were still building a pipeline per application. Some were taking a step

further and building tech stack–specific pipelines that could work with

teams using the same language. However, no one was going the extra step

and building a single pipeline for all.

Now that we’ve been iterating on our code for a while we’ve seen

some amazing results. Our development teams can quickly produce

microservices and on-board them to the pipeline in a matter of minutes.

By utilizing Docker locally on the developer’s machines and in the

pipeline, we can ensure that the experience is extremely similar. Using

Docker in the pipeline gives us full control over the process regardless of

what the underlying platform has installed.

We’ve seen this pattern take hold in our group and how it’s

transformed the way we deliver code. This book is our effort to share what

InTroduCTIonInTroduCTIon

xvii

we’ve learned and hopefully pass along some of that knowledge. If you

come away from this book with even a few things you find useful, we’ll take

that as a success. If you end up taking this pattern and applying it in your

organization—even better. We’ve seen its successes and believe in it 100%!

 What We Won’t Cover in This Book
This book is meant to show you how to build generic pipelines utilizing

Docker. We won’t be covering any CI/CD principles (except by reference),

or talking about the benefits of DevOps and how it can transform your

organization. We’re going to assume you are either already on-board with

these concepts or at least know about them in some way.

There are many well-written books out there that extoll the benefits of

proper continuous integration and delivery. We don’t need to hash all that

out here, nor could we do a better job than those before us. We won’t be

covering Agile principles or how to write better software. We won’t argue

which CI/CD platform is better or which language produces the best code.

While you’re in this book we’re going to focus on why monolithic

applications and their pipelines are bad. How microservices and smaller

pipelines are good. We’ll follow that up with why generic reusable

pipelines are even better. Then we’ll wrap all that up with a lot of examples.

So, if you want or need a deep dive into the benefits of DevOps and proper

CI/CD practices, search out another book. If you want to build leaner more

efficient pipelines, read on.

 What You’ll Need
Before moving on we’ll need to cover the items you’ll need to work with

the examples in this book. The first few chapters deal with why you want

to look at generic pipelines, and later chapters present implementing an

example. So, you will not immediately need all of these. If you like, you can

InTroduCTIonInTroduCTIon

xviii

read ahead and deal with these later. If you prefer to be prepared ahead of

time, here is what you’ll need:

• Mac or Windows 10

• Docker for Mac/Windows

• IntelliJ IDEA (or another IDE)

• CI/CD Platform

• Docker Hub Account

• GitHub Account

Let’s dig into each of these and walk through installing, signing up, and

configuring each.

 Mac or Windows 10
At first glance you may be thinking “Why include a section on this? Of

course we have one of these.” You would not be entirely wrong for thinking

this, but there is a good reason. If you’re on a Mac you’re all set, you are

set up well for what’s about to come. If you’re on a Windows machine, we

need to talk.

We highly recommend using Windows 10 if your only option is Windows.

The main reason for this is the Docker experience. In Windows 10, Docker

is a first-class citizen and the experience closely matches that on a Mac. In

addition, Windows 10 now supports the Linux subsystem, which allows you

to use Bash natively.

We also realize not everyone can be on the latest hardware and

operating systems. You should be able to complete all the examples in this

book with any operating system that you can install Docker on. However,

this means you may have to jump through more hoops to get everything

working correctly. As we move forward, we will assume you are either on a

Mac or Windows 10.

InTroduCTIonInTroduCTIon

xix

Caution realistically, Windows 7 is about as low as you can go
with an earlier Windows release. While it is possible to install docker
on Windows 7, some of the other items we’ll use in this book, like
bash, will be outside your reach natively on that platform. You can
still utilize them; it will just need to be within the context of a docker
container or virtual machine.

 Docker for Mac/Windows
It goes without saying that you’ll need Docker for this book—it’s in the

title! Luckily Docker provides a free Community Edition for both Mac and

Windows 10 users. Navigate to www.docker.com/docker-mac or

www.docker.com/docker-windows as shown in Figure I-1.

Click the “Download from Docker Store” button to be taken to the

official Docker Store download page as shown in Figure I-2.

Figure I-1. Download page from docker.com

InTroduCTIonInTroduCTIon

http://www.docker.com/docker-mac
http://www.docker.com/docker-windows

xx

Click the “Get Docker” link to download Docker. Follow the

instructions to install Docker on your machine. Once installed, you will

see the Docker icon in the top left of your screen as shown in Figure I-3.

Clicking the icon will open the menu.

Figure I-2. Docker Community Edition download page for Mac. The
Windows download page is almost identical.

Figure I-3. Docker icon and menu after a successful installation

InTroduCTIonInTroduCTIon

xxi

On Windows 10 the icon will appear in the bottom right tray. You

can also verify the installation by running a docker -v command in the

terminal, as shown in Figure I-4. If you’re on Windows you can run this

command from PowerShell.

Note When downloading docker, make note of the supported
versions for your operating system. as of this writing, Mac os
Yosemite 10.10.3 or above and Windows 10 Professional or
enterprise 64-bit are supported. If you are using an earlier release
of your os, you can opt to install docker Toolbox (https://docs.
docker.com/toolbox/overview/). However, please be aware
that Toolbox is not a full-fledged docker experience.

 IntelliJ IDEA
In this book we’ll be using JetBrains IntelliJ IDEA as our IDE of choice.

However, any IDE can be used and if you have one already installed and

are comfortable with it, feel to use that. If you want to use IntelliJ, then

continue reading; otherwise jump to the next section.

Figure I-4. Verifying your Docker installation via the terminal

InTroduCTIonInTroduCTIon

https://docs.docker.com/toolbox/overview/
https://docs.docker.com/toolbox/overview/

xxii

Note any screenshots taken of an Ide in this book will be of IntelliJ
on Mac. However, there is nothing stopping you from using a different
Ide. all code examples will work the same regardless of what you are
using.

JetBrains offers a free Community Edition of IntelliJ that can be

downloaded from the following URL: www.jetbrains.com/idea/

download/. There are two available downloads: a trial edition and the

Community Edition as shown in Figure I-5.

The Community Edition has more than enough features to get you

through this book and beyond. Download this edition, and follow the

normal installation. Once installed and launched, you’ll be greeted with

Figure I-5. IntelliJ download page on the JetBrains website

InTroduCTIonInTroduCTIon

http://www.jetbrains.com/idea/download/
http://www.jetbrains.com/idea/download/

xxiii

the “Welcome to IntelliJ IDEA” screen as shown in Figure I-6. If you see

this screen, your install was successful and you can move on to the next

section.

 CI/CD Platform
To showcase how you can build platform agnostic pipelines, we’ll need

some platforms to work with. We’ll work with two of the more popular

platforms on the market: Circle CI and Travis CI. Outside of being popular

options for building pipelines, they also provide free subscriptions via

Software as a Service (SaaS) offerings. This was important so you could

work through the examples without spending any money. Also, being SaaS,

Figure I-6. The welcome screen upon launching IntelliJ for the first
time

InTroduCTIonInTroduCTIon

xxiv

you don’t need to worry about downloading and installing software, which

is extremely nice!

Another reason we chose these two platforms is how different they are

in their UIs and setup. Given that this book will demonstrate a platform

agnostic approach to building pipelines, these two vendors showcase this

quite well.

We won’t cover setup here; that will come later in Chapter 4. For now

we recommend visiting their sites and poking around a little bit. We’ll

come back to these soon!

 Circle CI

Circle CI is a great option as it provides a totally free option when signing

up. To learn more, navigate to the site located at the following URL:

https://circleci.com/.

 Travis CI

Travis CI is another great option with a free tier. You can sign up and learn

more here: https://travis-ci.org/.

 Other Options

If you’ve been working in DevOps for a while, you know there are many

platforms out there to choose from. If you’re new to DevOps, have no fear.

If you don’t like an offering from a vendor, you’ll have plenty of options to

find something different.

What we present in this book will work with any platform that offers

running commands inside a Docker container. If you don’t care for the

platforms we’re using in this book, there is nothing stopping you from

using something different. These vendors were chosen because they offer

InTroduCTIonInTroduCTIon

https://circleci.com/
https://travis-ci.org/

xxv

a great product at a great price: Free! Also, these options are completely

managed with SaaS solutions. This frees you up from having to deal with

installations. However, if you like, here are some other options you can also

use:

• JetBrains Teamcity TestDrive (www.jetbrains.com/

teamcity/): JetBrains offers a 60-day trial of Teamcity

TestDrive in the cloud. However, TestDrive is meant to

be a trial in the web, and not meant for long-term use.

At the end of the trail you are expected to download the

product if you like it.

• CloudBees Jenkins (www.cloudbees.com/): Jenkins is a

powerhouse in the DevOps world, so we’d be remiss to

leave them out of this book. CloudBees offers a seven-

day trial of their Enterprise product, which is hosted.

There are some drawbacks. You need a company-

provided email address to sign up, and did I mention

the seven days?

 Docker Hub Account
You’ll also need an account on Docker Hub. In the examples you’ll be

building custom Docker images to perform your build and unit test stages

in, so we’ll need somewhere to store those. Docker provides free accounts

on Docker Hub. To get started, navigate to https://hub.docker.com/ as

shown in Figure I-7.

InTroduCTIonInTroduCTIon

http://www.jetbrains.com/teamcity/
http://www.jetbrains.com/teamcity/
http://www.cloudbees.com/
https://hub.docker.com/

xxvi

Fill out the form on the landing page and click the “Sign Up” page and

you’ll be all set. Once you’re logged in you can create new repositories

via the “Create Repository” button, as shown in Figure I-8. You’ll need to

create a new repository before pushing any images to Hub.

 GitHub Account
Finally, you’ll need a GitHub account. As you noticed in the signup for

Circle CI and VSTS, you’ll eventually be connecting a GitHub account to

them. To create an account, navigate to https://github.com/ and fill in

the form located on the homepage, as seen in Figure I-9.

Figure I-8. Docker Hub page after you’ve logged in

Figure I-7. Docker Hub landing page

InTroduCTIonInTroduCTIon

https://github.com/

xxvii

Once you sign up, you’ll be taken to the main landing page where

you can create new projects. For now you don’t need to do anything else;

you’re all setup for the examples to come.

 Overview
This introduction has gotten you prepared for the code examples that

come later in the book. You should now have all the software installed

and have created all the accounts needed. While actual coding and

deployments come later in the book, I would encourage you to poke

around and explore Circle CI and VSTS ahead of time. There are a lot of

options available in each, and it would be good to build even a simple

“Hello World” deployment before jumping into examples.

Next, we’ll begin to look at how traditional monolithic applications and

pipelines are holding you back. We’ll explore why these came to be and

how toxic they are for rapid delivery of applications.

Figure I-9. Sign up form on the GitHub landing page

InTroduCTIonInTroduCTIon

1© Brandon Atkinson, Dallas Edwards 2018
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_1

CHAPTER 1

Recognizing You Are
Stuck in the Past
It can seem sometimes that the world has lost its mind. You’re plugging

away writing code, building new features for your business users, and

deploying code like a pro without a care in the world. Then along comes

a new pattern or a blogger talking about new ways to write software and

efficient means to deploy code. They talk about how they’ve observed that

the way your organization does things is just plain wrong, if not barbaric.

You might take it personally or get offended, and rightly so! Who are they

to tell you that what you’re doing is wrong; “we’ve always done it this way.”

Recognizing you are stuck in the past can be difficult. Some of us

refuse to acknowledge it or are comfortable in our ways of doing things,

while others of us use it as an excuse to get upset or vent frustration about

a project or the software we’re building. Oftentimes, especially when you

work for a larger company, you have no control over the situation you’re

in. I’ve worked for companies that have had feature requests pile up,

which prevented any discussions of refactoring an application. When the

business needs new features to bring in more money from demanding

clients, it’s tough to argue any other way.

In this chapter we’ll look at how some organizations are truly stuck in

the past. We’ll explore why applications tend to evolve this way, or are born

that way. We’ll also discuss how these applications can lead to stress and

2

discontent among teams, and some simple things you can do to mitigate

stress and improve morale. This is not meant to be doom and gloom, but

rather to help bring to light that things can be better.

 Monolithic Applications
Monolith—something having a uniform, massive, redoubtable, or

inflexible quality or character. ("monolith". Dictionary.com Unabridged.

Random House, Inc. Jan 30, 2018. <Dictionary.com www.dictionary.com/

browse/monolith>)

I think this sums up quite nicely some of the monolithic applications

I have worked on in the past. Massive and inflexible are great ways to

describe these applications. If you’re not a software developer by trade

and have never worked on an application like this, count yourself lucky.

Those of us who have understand these definitions and how accurate they

are. A traditional monolithic application looks like the design as shown in

Figure 1-1.

Figure 1-1. Traditional monolithic application design

Chapter 1 reCognizing You are StuCk in the paSt

http://www.dictionary.com/browse/monolith>
http://www.dictionary.com/browse/monolith>

3

Info the word redoubtable is fitting as well, defined as “that is to
be feared; formidable.” (“redoubtable”. Dictionary.com unabridged.
random house, inc. Jan 30, 2018. <Dictionary.com
www.dictionary.com/browse/redoubtable>)

Here we have a huge application that connects to a database and

has multiple configurations as it moves through various deployment

environments. Sometimes the configuration isn’t even separate, it’s baked

into the source code. In this scenario the user interface (UI) lives with,

and is usually packaged with, the application code. Applications like this

are usually built on MVC frameworks that bring front-end rendering and

server-side code all in one neat package. These frameworks are great for

rapid application development, but usually result in poor decisions in

code structure, separation of concerns, and flow.

Some teams will logically make the next jump to an architecture that

breaks the UI away from server-side code, much like the design shown in

Figure 1-2.

Figure 1-2. Monolith that has been split into two layers

Chapter 1 reCognizing You are StuCk in the paSt

http://www.dictionary.com/browse/redoubtable>

4

While this is certainly a step in the right direction, it can introduce

much more complexity. You’ve now effectively doubled up your

deployment concerns. Even though the UI and server-side code are split

from each other, they cannot be deployed independently. You’ll now have

two deployments of large code bases that must be coordinated. You may

also now need to juggle configuration files: one for the UI and one for the

server-side code.

In an ideal world you’re deploying the application into multiple

environments that may include: Development, QA, UAT, Staging, and

Production. At each stage the configuration must change to point to the

correct database. Also, presumably the database must be updated with

any data or schema changes to support the code. In almost all scenarios

changes in the application code or database are tightly coupled. So,

a change in either concern forces a complete deployment of all the

concerns. This is a lot of work if all you need to do is add a link to a page!

Now imagine if you have two or three of these applications. The

deployment process becomes so much more complicated. It would not

be unheard of that these applications have dependencies on each other

as well. Now every deployment must be coordinated across multiple

applications, or at the very least, all applications must be tested even if

only one is being deployed.

This is a sure-fire way to drive your IT teams insane. Nothing about this

process makes you feel good. Monoliths become a nightmare to maintain,

debug, or add new features to. From a developer point of view, you never

want to touch the code, especially in business-critical areas. As a system

team (DevOps or Sys Admins), you dread deployments, as they are error

prone and take a lot of time. If you’re lucky to have a CI/CD pipeline in

place to support your application, it may not be much better on the other

side of the fence.

Chapter 1 reCognizing You are StuCk in the paSt

5

 One Pipeline per Application
A lot of monolithic applications are still deployed manually, even in 2018!

I’ve worked with several clients who had a system team that consisted of

DBAs and Sys Admins. This was the de facto DevOps team, as they were

responsible for deploying application code. The deployment process

involved the developers manually building and packaging the code, and

placing it on a shared drive or FTP folder on the network. A Sys Admin

would then copy the compiled code and paste it on the production servers.

You might be reading this and thinking to yourself there is no way this

is still going on. How can organizations deploy applications like this? Well,

these practices exist for many of the same reasons as monoliths. Here’s the

short list:

• We’ve always done it this way.

• The deployment can’t be automated.

• The business won’t give us time to build it out.

• We don’t have DevOps expertise.

The list can go on and on, and some of these may be valid; however,

most simply reflect fear of doing something new or moving away from a

method that works. If they are valid, they most likely need to be addressed

and overcome. If your monolith is a commercial off-the-shelf product, you

may not be able to automate the deployment. The business may have other

very real and critical needs that need immediate attention. You may not

want to take on building a pipeline if you don’t have the expertise, or the

time to dedicate to it.

Chapter 1 reCognizing You are StuCk in the paSt

6

Note Commercial off-the-shelf (CotS) applications can pose a real
challenge. While there are many well-written and maintained CotS
products, some are a real nightmare. a quality CotS application can
be easily deployed via a pipeline. others require custom deployment
processes that make using a pipeline nearly impossible.

If you’re lucky enough to have a pipeline for your monolith, it can at

times add to your headaches. In almost all scenarios, you will build one

that is tightly coupled to your application. In fact, this practice has nothing

to do with monoliths per se. Most CI/CD pipelines and processes are

built around a single application. They are custom built to do everything

needed by the application and can include things like:

• Building the application

• Automated tests

• Running security or static code analysis

• Provisioning/configuring infrastructure

• Publishing artifacts

• Injecting configuration

• Deploying the application

These pipelines do everything they should to get the application where

it needs to go, and the state it needs to be in. You may even be able to reuse

some sections of the pipeline elsewhere, like security or static code scans.

However, in most cases the pipeline is very coupled to the specific needs

of the application being deployed. For instance, if you’re provisioning

infrastructure, configuring it, and adding application configuration, the

pipeline becomes very tightly coupled to the application.

Chapter 1 reCognizing You are StuCk in the paSt

7

If you begin adding more applications in your organization, your

overhead starts to grow quickly. You now need to build and maintain multiple

pipelines, each with their own eccentricities. If the platform you build your

CI/CD efforts on top of needs to be updated or a new version is released, you

may be in the position of rebuilding all your pipelines. This is not an ideal

situation to be in, especially if you don’t have the staff to handle it.

 Bad Actors
Having a single pipeline per application can introduce some bad behavior.

Since the pipeline is tied directly to a single codebase, it’s not uncommon

to receive requests for it to be modified to do nonstandard things. After

all, it’s a pipeline dedicated to a single application; it must support the

needs of the application. If you make a change to it, it only affects this one

application. However, these ad hoc changes can quickly put you in a very

fragile spot. Take, for instance, the flow as shown in Figure 1-3.

Figure 1-3. Source control with multiple branches, hooked up to a
deployment pipeline

Chapter 1 reCognizing You are StuCk in the paSt

8

In this example we have application code stored in source control

with multiple branches. The “master” branch is tied to the deployment

pipeline. Any commits to “master” will trigger a deployment of the code.

Developers can maintain feature or development branches that will

eventually get merged into “master.” In this scenario “master” is the source

of truth, and the only branch that ever gets deployed. This follows proper

CI/CD principles and is a very good practice.

As is often the case with larger code bases that have a dedicated

pipeline, bad practices begin to emerge. It’s not uncommon for a feature

branch to become so large that it becomes difficult to easily merge it back

into “master.” Developers work hard on this branch for an upcoming

release, and the clock is ticking. Eventually the request will come down to

have the pipeline reconfigured so it points to a feature branch, as shown in

Figure 1-4.

Figure 1-4. Source control with multiple branches, hooked up to a
deployment pipeline on a nonmaster branch

Chapter 1 reCognizing You are StuCk in the paSt

9

Now we have our pipeline deploying off a feature branch, which is

not good practice. If you have multiple teams working on several features,

which branch is now the source of truth? The team is very quickly put into

a place where “Feature Branch #1,” in this example, is the de facto “master”

branch. This very quickly gets out of hand, especially if another team

needs to begin working on a new feature at this very moment. They will be

forced to create a feature branch off a feature branch!

Another common bad practice is a request to turn off certain stages in

the pipeline, as shown in Figure 1-5.

Figure 1-5. Pipeline that has been configured to bypass unit tests

Now the pipeline is deploying code that is in a feature branch, and the

testing stage has been bypassed. If your pipeline is configured like this,

it should raise alarm bells—not for the DevOps team, but for the teams

you support. These requests can come over very quickly and are usually

the result of tight deadlines, or needing to provide a hotfix for production.

Whatever the reason, they introduce risk in the process of delivering

Chapter 1 reCognizing You are StuCk in the paSt

10

quality software. The result most often is that these changes persist past

the initial implementation, as technical debt has a way of being created but

never resolved.

Info these examples are from real-world scenarios i’ve
encountered throughout my career. it takes a village to deliver quality
software, and the pipeline needs just as much attention at times as
your application.

 Pipeline as Gatekeeper
The CI/CD pipeline plays a huge role in the software delivery lifecycle. Not

only is it responsible for delivering your application to an environment

in an automated and predictable way, it also plays a role in the quality of

that software. Quality pipelines include various stages to check not only

the quality of the code but also if it has any security or performance issues.

Typical stages include:

• Build: This stage does exactly what it says; it builds the

application from source code. The binaries created

here are what is deployed later.

• Test: This stage will run unit tests against the code. This

is your first quality check and it ensures any changes

made by the development team did not break expected

functionality.

• Static Code/Security Analysis: This is a scan of the

source files for the application. This scan will look for

vulnerabilities, technical debt, and may verify code

coverage. This stage could be broken into multiple steps,

given your choice of tools to perform the scanning.

Chapter 1 reCognizing You are StuCk in the paSt

11

• Storing Artifacts: A good process takes the binaries

created in the Build stage and saves them for later

deployments. This ensures that code that was tested

and successfully deployed can be promoted later with

confidence it passed all your checks.

• Deployment: A simple (hopefully) deployment of the

binaries to the specified environment, i.e., Dev, QA,

Production, etc.

• End to End/Performance Tests: Once the code is

deployed, you may run automated tests to ensure it

performs properly. This can be via a browser or hitting

API endpoints. This stage may also be broken up into

multiple stages, depending on your needs.

As you can see in this scenario, a CI/CD pipeline can do a lot of work

to ensure the code being delivered is a quality product. Bypassing some

of these steps is just impossible; you can’t deploy if you haven’t built the

application. However, some could absolutely be skipped, but shouldn’t.

Teams may find themselves up against tight timelines and realize that their

code coverage is beginning to slip. A request may come down to bypass

the static code analysis stage. They may import a new code library that

has a security vulnerability in it. Rather than address it, another request

is received to bypass another stage. Soon you’re left with the absolute

barebones pipeline.

Note there is an argument to be made that the Ci/CD pipeline is
not the place to enforce good behaviors. it’s really the responsibility
of the development teams to ensure the code is properly tested and
secure. however, there is no way to escape the fact that the pipeline
is often where these checks are applied.

Chapter 1 reCognizing You are StuCk in the paSt

12

This behavior is tied directly to the fact that the pipeline serves a single

application. The team believes it’s in their best interest to ignore some

best practices, as they are being pressured to deliver faster. However, if the

pipeline is not there as a proper check on what’s being deployed, the result

could be much worse.

 Agile Can’t Die; It Was Never Born
CI/CD pipelines are the perfect complement to any team using agile

methodologies. In an ideal situation development teams are building

features that are committed to source control often. Each commit kicks off

a build via the pipeline and your entire test suite is executed. The code is

deployed to a lower environment for user acceptance testing, and artifacts

are created for later promotion. Once the feature is complete, or maybe the

sprint, the new feature is deployed to production and your users are happy.

Even if you’re not using agile, these practices still make sense.

You want your code built and tested as often as possible. Performing

deployments often will also highlight any problems long before you get to

push to production. The problem you will most often face is an extremely

long lead time to deployment. With a typical monolithic application, the

time it takes to deploy from the moment work begins on a new feature can

be weeks or months, as shown in Figure 1-6.

Chapter 1 reCognizing You are StuCk in the paSt

13

In this example it’s over a month from the time development begins

on a new feature before it’s deployed to production. This cycle time

introduces a lot of risk from many different angles:

 1. Developers: This is one of the main reasons that

long-living feature branches exist. Your “master”

branch is pristine and you’re hesitant to mess with

it. However, the long cycle time means your feature

branch must also live that long. If multiple features

are being developed concurrently, by the time you

need to merge back into “master” it becomes a real

problem.

Figure 1-6. Feature development timeline on a typical monolithic
application

Chapter 1 reCognizing You are StuCk in the paSt

14

 2. Testers: In this scenario, testers don’t see the new

features for quite some time. In some cases they

don’t see compete functionality until the code is

ready to go to production. This introduces even

more risk if a bug is found.

 3. DevOps: One of the selling points of pipelines is an

automated process that is repeatable; you know

what you’re getting every time you request a new

build. If you’re only deploying once a month, that

process is not performed enough to become routine.

If you’re doing manual deployments, this means

the subtle nuances that come with that process are

forgotten. Each deployment then becomes as if it’s

the first time you’re doing it.

The longer the cycle time to develop and deploy a feature, the more

out of sync your feature branch becomes with a “master” branch. In many

scenarios changes are being introduced into the “master” branch during

this time. UI updates, bug fixes, or other features may get merged. This

puts you in a position of merging down from “master” into your feature

branch, then merging back up. In either direction you’ll most likely

encounter conflicts that need to be resolved.

 Overview
In this chapter we looked at how a monolithic application with a dedicated

pipeline can introduce risk for your deployments. This combination can

lead to bad behaviors that often result in cutting corners to meet deadlines.

However, it’s not all doom and gloom. You can absolutely have a dedicated

pipeline that performs all the tasks needed and runs smoothly. This quite

Chapter 1 reCognizing You are StuCk in the paSt

15

often requires strong leaders who are willing to say no to a risky request.

The reality is that if the business needs software out the door on a certain

date, you do what is required.

In the next chapter we’ll look at how microservices can help ease some

of these concerns. We’ll explore how these services allow you to break

away from a dedicated pipeline, into a more standardized approach. You’ll

begin to see how we can look at the pipeline in more generic ways and get

more from your deployments.

Chapter 1 reCognizing You are StuCk in the paSt

17© Brandon Atkinson, Dallas Edwards 2018
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_2

CHAPTER 2

Setting the Stage
for the Present
When you sat down with this book, you were probably fully caffeinated

and ready to dive into learning about the world of generic pipelines. You

made it through the introduction and rolled up your sleeves for Chapter 1

when bam, you were served with a healthy dose of “this is how it is.” Sorry

to rain on your parade, but a lot of companies still work that way. Maybe

you are beyond that, on a journey of exploring microservices and how they

can improve writing and deploying applications. Alternatively, maybe you

work in a shop that is already developing microservices, but struggle with

how to manage all the pipelines. It is all very individual, but the good news

is we’re here to help.

In this chapter we’ll begin to explore how you can simplify code

deployments using microservices. We’ll explore the beginnings of a truly

generic pipeline. You’ll see how this can improve your agile maturity as

well, by lowering risk and delivery time.

 Microservices
Microservices represent the true antithesis to monolithic applications.

Small and lightweight, these services usually provide specific and very

limited functionality. This allows them to focus on singular tasks, which

18

makes developing them fast, debugging issues easier, and deployments

nimbler. A true microservice can be deployed independently of other

services and is self-contained. A typical microservice architecture is shown

in Figure 2-1.

Figure 2-1. Multiple microservices with dedicated databases

In this example, each microservice has its own database. This type of

architecture allows developers to easily make changes to their services

without the need to check with other teams. The service is the source of

truth for the data and no other service should manipulate it. If another

service needs to get to this data, an API is exposed for that purpose. This

way if the developers don’t change the API, changes can move forward that

don’t break other services that consume it. This can also be accomplished

with versioned endpoints in the API.

In this architecture, teams can move as fast as they want to and can

deploy even faster. Unlike in the monolithic application, which must be

deployed as a single unit, microservices can be deployed at different times.

This gives teams the flexibility to work on multiple features at the same

time, without worrying about stepping on each other’s check-ins. Each

Chapter 2 Setting the Stage for the preSent

19

microservice is in its own repository, so teams are safe to make changes

as needed. Adopting microservices is not a magic bullet, however. Teams

will need to ensure they use proper API versioning and dependency

management.

Note While microservices can make developers and Devops lives’
easier, they also come with baggage. Usually you end up with a lot of
services, since they focus on more singular workloads. this increases
your deployments, and the complexity does not necessarily go
away. Microservices are not a silver bullet, but they do provide many
benefits, which we’ll explore in detail.

 Developer Best Practices Are Key
One of the tenants of continuous delivery is that teams produce software,

or new features, in short cycles. Microservices provide a great way to do

this. Since teams can focus solely on their service and adding new features

to it, they can move much faster. One of the benefits to this is smaller and

quicker check-ins to the “master” branch.

In most cases your deployment pipeline is configured to react to

commits to the “master” branch in your source control. A commit

will trigger a build, which creates an artifact that can be deployed.

Microservices give development teams an opportunity to practice true

CI/CD patterns. By this I mean each commit to “master” will trigger a

pipeline execution. The pipeline will build, test, and deploy the application

each time, all while producing an artifact that can be promoted to

Production. Each commit produces a potential production release.

Chapter 2 Setting the Stage for the preSent

20

Depending on how mature your organization is, this may seem like

madness! Every commit produces a production-ready artifact?! If you’re

new to microservices, this does sound strange—and even more so if you

don’t have a sophisticated pipeline. However, consider the following

scenario. You are a development team working in agile. You have two-week

sprints and plan to produce a feature during each sprint. You have a CI/CD

pipeline that performs the following steps:

• Build

• Unit Tests

• Security Scan

• Static Code Analysis

• End to End/Integration Tests

• Artifact Creation

• Deployment

• Performance Tests

In this scenario when your team has finished development and tested

locally, they can commit the new feature to the “master” branch in source

control. The commit will trigger the pipeline, where a full suite of tests is

run to ensure the code is production ready. At the end you have an artifact

of the application you can now promote to production. Microservices

allow this type of rapid deployment.

While microservices are the gateway to faster release cycles, it

takes much more to truly achieve this goal. This architecture gives you

isolation from other teams and data stores, which allows for more rapid

development. Developers need to ensure their application code is properly

unit tested. End to end tests must be written so user acceptance testing

Chapter 2 Setting the Stage for the preSent

21

can be automated. The same goes for performance tests. Security scans

and static code analysis is usually performed by third-party tools, but

developers must review the results and potentially update code based on

those results.

A great pipeline can get your code deployed in a matter of minutes,

fully scanned and tested. However, it’s a team effort to build production-

ready code. Simply developing the application is no longer enough. Proper

testing and scanning must be in place to ensure the application being

deployed works and is safe for your business.

Note there is debate about how small or large a microservice
should be. Should it cover all the possible needs of a certain business
process, for instance “Billing”? or, should it be much more granular,
for instance one for “Send Bill” and another for “process payment”.
at the end of the day, this is a business decision. however, a good
rule of thumb is if you can’t re-build it in a sprint (roughly 2-3 weeks),
then it’s too big.

 Dedicated Pipeline per Language
Microservices give us a better way of delivering application code. In

the previous chapter we looked at how a monolithic application has

a dedicated pipeline for the application itself. Let’s review what the

application looked like, as shown in Figure 2-2.

Chapter 2 Setting the Stage for the preSent

22

While this application is a monolith, it would most likely have three

pipelines to deploy it: one for the server-side application, one for the UI,

and one for the database. Even though you have split the deployment

into three components, they are all still tied to a single application. There

is little to no reuse of code in those pipelines. Microservices provide

an opportunity to improve this. Most business applications will have

some sort of UI. Let’s look at an example business application that uses

microservices, as shown in Figure 2-3.

Figure 2-2. Monolith application

Chapter 2 Setting the Stage for the preSent

23

In this scenario we still have a UI that users interact with, but now

the business logic is separated out into multiple microservices. As

more functionality is added, more microservices are added as well.

Following the monolithic approach, we’d build a pipeline per UI and/or

microservice. This may be OK if you only plan on having a few services,

but what happens if your application and business take off and you end

up with a dozen microservices. What about 20, 50, or 100? You may think

those numbers are high, but you’ll be surprised at how fast adoption grows

once you start down the microservices path.

Caution Don’t take for granted how fast microservice adoption can
take place or how many services you may end up with. netflix runs
hundreds of microservices to power its operation, reportedly over
500. You can be assured they do not have dedicated pipelines for
each service.

Figure 2-3. Application that uses microservices with a UI

Chapter 2 Setting the Stage for the preSent

24

Microservices allow for a more generic approach to building your

pipelines. It’s not uncommon for an application built with microservices

to use multiple languages such as Angular for the front end, .NET Core for

services interacting with SQL Server, and perhaps Golang for orchestration

services. Figure 2-3 showed an application that had a UI powered by three

microservices. Figure 2-4 expands on this with the addition of languages.

Figure 2-4. Application that uses microservices with a UI, with
languages added for reference

In this example our UI is Angular, but it could be React or something

similar. We have a .NET Core service and two Golang services. The

languages here are not important at all. You can easily substitute Java

for .NET, or Python for Golang. Whatever language is prominent in your

organization, you can count on microservices written in it, plus at least one

more. One of the benefits microservices provide is the ability to choose

the language that is right for the job. As mentioned, you may want to use

.NET to interact with SQL Server due to its frameworks custom built for

Chapter 2 Setting the Stage for the preSent

25

that purpose. You may choose Golang as an orchestration service due to its

speed and small footprint. You may choose an entirely different language

simply because you have a shop full of developers who already know it.

The list goes on and on. However, as you build your pipelines you must be

prepared for a new language popping up at any time.

Now that we are looking at applications built with one or more

languages, we can start to look at the pipeline as being language specific

rather than application specific. This is beneficial for a variety of reasons,

including:

• Faster on-boarding: If your pipeline is built for a

language rather than a specific application, others

can use it if they write their applications in the same

language. Teams can on-board to the pipeline faster

and begin providing business value much sooner.

• Reuse of code: You’re not spending your time writing

custom code for each application. Your pipeline code is

reused across multiple applications.

• Ease of maintenance: If a new feature is required of the

pipeline or you need to perform a bug fix, everyone gets

those changes. Imagine you have an Angular 4 pipeline

and Angular 5 is released. Simply update your Angular

pipeline, and all UIs benefit at the same time.

Language-specific pipelines provide a lot of code reuse, which will

make your life easier. This becomes very apparent once you build out a

language-specific pipeline and teams begin to on-board. In the monolith

world, a team would build an application and put in a request for a new

pipeline. With language-specific pipelines built for microservices, you can

build it once, then simply have teams utilize it. Figure 2-5 illustrates this

concept.

Chapter 2 Setting the Stage for the preSent

26

Now you’re no longer writing and rewriting code for your pipelines. Teams

using the same language will also use the same pipeline. However, this can

only be achieved with proper standards in place. Everyone must agree on a

certain baseline set of rules and patterns that the pipeline will follow. You can’t

have shared pipelines if everyone wants to do something different.

Note examples that show .net or .net Core are referencing .net
Core running on Linux. one of the benefits of shared pipelines is they
all run in Linux environments, and usually the same environment. not
jumping between Windows and Linux is a true benefit here, and you
should take advantage of it.

 Standards Are Key
We’ll be exploring standards much more in depth later in the book as we

begin to take shared pipelines even further. However, it’s an important area

that we’ll look at now because it’s crucial to making these pipelines work.

We’ll scratch the surface now, and in future chapters we’ll really dig in.

Figure 2-5. Multiple services and UIs utilizing language-specific
pipelines

Chapter 2 Setting the Stage for the preSent

27

In the previous section we talked about the need for consensus on how

things work in the pipeline. For a shared pipeline to function correctly for

all, a few key standards must be defined:

• How you build

• How you test

• How you deploy

Some of these may seem trivial, but once you begin working with

multiple teams you’ll find folks have their own ways of doing things. It’s

important that the pipeline performs the exact same commands for all

applications for a specific language. Take .NET Core as an example: you

may settle on the build command shown in Listing 2-1.

Listing 2-1. .NET Core Build Command

dotnet build -c Release -o /build-output

This command will build the application in the current directory in

Release (Production) mode and store the binaries in an output folder

called “build-output.” Listing 2-2 shows an example test command.

Listing 2-2. .Net Core Test Command

dotnet test -c Release -o /build-output

This command will unit test the application in the current directory

in Release (Production) mode and look for binaries in the folder named

“build-output.” Both commands are perfectly fine and would run without

any issues. However, what if you have a development team that wants to

run a dotnet build command, but with different arguments? Or you have

a request not to build in “Release” mode, but rather in “Debug” mode? If

you accommodate each team’s request, your pipeline will need to react

differently based on the code it is building and testing. If you’re dealing

with dozens of services, this would not be sustainable.

Chapter 2 Setting the Stage for the preSent

28

The goal of a shared pipeline is to greatly decrease cycle time and

release code faster. To do this the pipeline must be opinionated, in that

it runs certain commands and only those commands. If a team wishes to

deploy their application with your pipeline, they must play by the rules. At

first glance this does not seem like a huge ask of your development teams.

However, you may find that opinions differ on the best way to build and

test applications. People may have certain tools or patterns they prefer

over others. The key is getting a standard in place and sticking to it.

The best way to accomplish this is to interview your developers. Find

out exactly which commands they run locally to build and test. In most

cases you’ll find the commands are the same or differ only slightly. Once

you have this information, you can work with the teams to settle on the

standard commands the pipeline will run. After that, all teams must agree

to use these commands going forward. This is the easy part, as you enforce

those via the pipeline. If the application cannot be built and tested using

the standard commands, it won’t be deployed.

 Taking Code Reuse a Step Further
Once you have a language-specific pipeline in place, you may notice

that some of your steps are identical. These tend to be tasks dedicated

to various things like security scans or static code analysis. Submitting

code for scans usually involves zipping up the source code or binaries,

and uploading them to a service that performs the scan. There are many

commercial platforms and software packages that perform static code and

security analysis. They usually work with a long list of languages. What

this means for your pipeline is a generic step that any language can use.

Figure 2-6 illustrates a shared step across all your pipelines.

Chapter 2 Setting the Stage for the preSent

29

As you can see, not only are we pushing more applications through

fewer pipelines, now we’re beginning to reuse code across pipelines as

well. This illustration should begin to solidify how shared pipelines can

reduce your workload. This also illustrates how generic steps can be

utilized anywhere you need them.

Now, let’s assume that your pipeline is using static code analysis

for code quality. Let’s also assume the business has decided to utilize

containers and the cloud for deployments. Your pipeline can be further

simplified, as shown in Figure 2-7. With these changes you can share even

more code across multiple pipelines. Uploading code for a static code

analysis and deploying to the cloud are not trivial matters. However, the

underlying mechanics don’t change very much between applications.

Some simple configuration data is all that is needed for each of these steps

to operate properly.

Figure 2-6. Code reuse across common areas

Chapter 2 Setting the Stage for the preSent

30

In this example half of the pipeline is now shared code. The only steps

that are not generic are the ones tied directly to a language like build

and unit test. As your development practices begin to mature, you’ll find

additional steps that can be shared, like performance testing, artifact

storage, logging, etc. The idea with this pattern is to make steps as generic

as possible.

Most CI/CD platforms allow for code reuse either directly or indirectly.

Jenkins, for instance, allows you to pull in code from various repositories.

Circle CI and Drone CI allow you to configure scripts to run for each step,

which can easily be reused. This code reuse provides so many benefits as

your microservices begin to grow. The more code you can reuse the better

off you’ll be.

Figure 2-7. Pipeline utilizing shared steps for static code analysis and
cloud deploy

Chapter 2 Setting the Stage for the preSent

31

 Microservices and Shared Pipelines are
More Agile
Whether you like agile practices or hate them, they provide a process to

release code much faster. Microservices and shared pipelines can greatly

facilitate this process. With microservices you can begin to focus on smaller

releases, generally tied around a new feature. Figure 2-8 illustrates a release

cycle of two weeks, which could match up to the development team’s sprint.

Figure 2-8. Two-week release cycle

As the example demonstrates, development takes approximately

two weeks, at which point the feature code is committed to the “master”

branch. The pipeline is executed based on the commit and a full suite

of tests are kicked off. A release candidate artifact is created and can be

Chapter 2 Setting the Stage for the preSent

32

promoted to Production at any time. This image looks drastically different

than the one shown in the previous chapter. Microservices give you the

opportunity for rapid development, testing, and deployments.

A shared pipeline by itself does not necessarily contribute to rapid

deployments. It’s the benefits of this pattern where you see the speed:

• Teams can on-board faster: Gone are the days of

requesting a custom pipeline, meeting to discuss

needs, and waiting for it to be built and tested. Now

development teams simply apply the standard and can

on-board much faster.

• Enhancements are provided to all at the same time: If a

new feature is added to the language-specific pipeline,

everyone benefits immediately.

• Maintenance is done all at the same time: Bug fixes

don’t need to be applied to multiple pipelines. If a new

version of Node.js comes out, simply update the Node.

js pipeline and you’re done.

 Overview
In this chapter we explored how moving into a microservice architecture

can speed up development and releases, but also increase the number

of applications that need to be deployed. We looked at how a language-

specific pipeline can ease the DevOps workload by providing a reusable

shared pipeline that all teams can use. We also reviewed how code reuse is

possible in this pattern, further lightening the load and increasing output.

In the next chapter we’ll go one step further, and begin exploring the

truly generic pipeline. Not only generic from the application’s point of view

but also from the underlying platform perspective. We’ll see how Docker

can help us take our pipelines anywhere and how scripts take code reuse

to the next level.

Chapter 2 Setting the Stage for the preSent

33© Brandon Atkinson, Dallas Edwards 2018
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_3

CHAPTER 3

Getting it Right with
Docker and Scripts
Up until now we’ve looked at pipelines that work with monoliths and

microservices. We’ve explored the challenges that come with both, but

have seen how microservices can ease your pipeline workload. In the

previous chapter we saw how you can build language-specific pipelines.

These implementations allow for multiple teams to take advantage of a

single pipeline. It also makes you begin to set and enforce development

standards, which allows for code reuse across your pipelines. We’ll explore

this concept much deeper in later chapters with code examples.

Language specific pipelines are great; they allow the DevOps team to

focus on fewer pipelines by giving feature teams a shared implementation.

It lowers maintenance efforts, allows for all teams to share in upgrades

and improvements, and sets standards for how applications are deployed.

While all this is great, we can do better. Imagine if you could build a single

pipeline that could deploy any application regardless of the language it

was written in. How much time could your DevOps team get back if they

only had to support one implementation?

In this chapter we’ll begin laying the foundations of the generic

pipeline using Docker. You’ll learn the pattern and process that allows a

truly generic pipeline to work. We’ll explore how this pattern is driven by

Docker and frees you from the underlying platform the pipeline runs on. At

the end of this chapter you’ll be ready to start coding an implementation.

34

 One Pipeline to Rule Them All
Language-specific pipelines are a great first start. They allow you to break

free of application-specific implementations and begin to serve a larger

base of teams simultaneously. However, as your feature teams begin

to fully embrace microservices, it stands to reason they will begin to

embrace other languages as well. You may start off as a 100% .NET or Java

shop, and slowly turn into a true polyglot shop. This may not be a huge

concern if you’re supporting a few languages, but what about five, six, or

seven languages? This may seem like a lot, but it’s not. I have worked at

organizations that had the following languages to support:

• User Interface: Angular and React

• Server Side: .NET Core, Java, Node.js, Python, Golang

Microservices give feature teams the flexibility to try out new languages

and patterns. They allow for choosing the right language for the job as well.

Take .NET and SQL Server for instance. Let’s imagine you’ve been writing

back-end services in Node.js and now must write a new API that connects

to SQL Server. You could use Node.js for this task; however, .NET has built-

in functionality to do just that. You can very quickly spin up a .NET Core

microservice that handles CRUD operations against your SQL Server. It would

be faster to write and less error prone, since it’s inside the .NET ecosystem.

Another scenario involves hiring of new talent. Suppose you hire

an amazing developer. When they join, they talk about writing their

microservices in Golang, since it’s easy to write, easy to learn, and

compiles and deploys very fast. You try it out and like it. Suddenly Golang

services are springing up all over the place. The moral of the story is with

microservices developers, feel free to try out new languages or stray from

the standard if another language provides benefits.

As more and more languages come on the scene, you’ll find yourself

writing more and more pipeline implementations. If you’re in an

organization that supports seven languages, that would be seven pipelines.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

35

Even in a simple scenario, you’d have two languages to support, one for the

UI and one for the server side. That’s one too many! A better solution is a

single pipeline that is built to handle any language that your teams work with.

In the previous chapter we looked at shared steps of a pipeline, as

shown in Figure 3-1.

Figure 3-1. Shared steps of a CI/CD pipeline

A typical pipeline may consist of the following steps:

• Build

• Unit Test

• Static Code Scan/Security Scan

• Packaging/Publishing of Artifacts

• Deploying

• End to End Tests

• Performance Tests

Chapter 3 GettinG it riGht with DoCker anD SCriptS

36

How mature your organization and CI/CD efforts will determine how

many steps you have, but these are a good target. Upon close examination,

most of these steps are not specific to a language. For instance, if you're

using commercial software for static code analysis it will usually work

with a wide variety of languages. Packaging of artifacts usually involves

zipping up binaries and shouldn’t be any different across applications.

The main differences in applications occur during the first two steps:

build and unit test. Given this, we can reuse most of our code across steps,

and consolidate code for the remaining ones using logic. For instance,

Figure 3-2 shows a fully shared code base across all steps.

Figure 3-2. Pipeline stages using shared code

In this scenario, the entire pipeline is now shared across all languages.

Logic is included in the language-specific steps to perform the appropriate

commands. This can be accomplished via if/else blocks, switch/case

statements, etc. At first glance this may seem like a lot of logic code,

especially if you’re dealing with a lot of languages. However, earlier in the

book we discussed implementing development standards in your shared

Chapter 3 GettinG it riGht with DoCker anD SCriptS

37

pipeline. In this scenario you’d have set common build commands to run

for each language. For instance, in .NET you’d use the standard “dotnet

build” command. These commands generally will be the built-in, out of

the box commands for each language. The goal is to set a standard that all

teams can follow without being overly complicated. Listing 3-1 shows an

example build step.

Listing 3-1. Sample Build Step in a Generic Pipeline

if [$language = "dotnetcore"]

then

 dotnet build -c Release -o /output

elif [$language = "java"]

then

 mvn package -s settings.xml -f /

elif [$language = "angular"]

then

 npm run build

else

 echo "Error: No valid language provided."

fi

This example shows how you can pass in a simple variable, “language”

in this case, to inform the step which language it is working with. An

if/else statement then allows you to perform the build command for

that language. Listing 3-2 shows the same example using a switch/case

statement.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

38

Listing 3-2. Sample Build Step Using a Switch/Case Statement

case $language in

"dotnetcore")

 dotnet build -c Release -o /output

 ;;

"java")

 mvn package -s settings.xml -f /

 ;;

"angular")

 npm run build

 ;;

*)

 echo "Error: No valid language provided."

 ;;

esac

In this example we’re covering three languages in the “build” step:

Angular, .NET Core, and Java. The commands in each section are

admittedly short and probably not a full set of the commands you may run.

For instance, a proper Angular build section may look more like Listing 3-3.

Listing 3-3. A More Complete Angular Build Step

"angular")

 npm set progress=false

 npm install –-registry https://registry.npmjs.org/

 npm run build

 ;;

This case statement has three times the amount of code in it, but

it’s still small for all intents and purposes. Even if you need to do more

complex things for a specific language, you will most likely not end up with

so many lines that it’s unmanageable. This is where setting standards for

Chapter 3 GettinG it riGht with DoCker anD SCriptS

39

languages becomes important. To build a truly language-agnostic pipeline

that all teams can use, you need high-quality standards. We’ll continue to

explore this throughout the book; however, in this case your Angular build

standard would be:

• Run “npm set progress=false” to turn off progress bars.

• Run “npm install” to restore packages.

• Run “npm build” to build the project.

• No other commands will be run.

With this build standard in place, all teams would need to conform to it

or in order to use your pipeline. This may seem harsh, but there are a lot of

benefits to it. Teams that share common standards on how they build and

test can more rapidly debug issues and assist other teams with issues, and

it simplifies your work in the pipeline. Now of course, there will always be

outliers who need to do things their own way. In those cases it’s important

not to deviate from the standard. You could explore things like a custom

pipeline for that application, or provide hooks into the pipeline to allow

teams to override your steps. In most cases you will need to hold strong on

the standards and say no to a lot of requests.

 Shell Scripts
For your pipeline to be truly generic and run anywhere, it needs to be

written in a way that is portable. So far we’ve explored writing shared steps.

In the previous section we saw how to combine commands from different

languages into a single step. In case you haven’t noticed, those commands

were all written in Shell. For this book we’ve chosen Shell scripts to execute

all our commands.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

40

Shell scripts were an easy choice to make for a variety of reasons. All

our examples are written in languages that run in a Linux environment.

This includes .NET Core, Angular, and Java. This was also an easy choice,

since this book is about writing pipelines with Docker. While Docker

can run on Windows, I would argue most organizations don’t utilize this

option—especially those running on Amazon Web Services using Elastic

Container Service (ECS) or Google Cloud Platform Kubernetes Engine.

A Shell environment will be present in all our containers without any

additional installations, which is nice!

No matter the container we’re working in, we’re confident a Shell

environment is available. However, this is not the case with all Shell

languages. Bash, for instance, is a very popular Shell language, but if

you’re new to Docker you’ll quickly find out that it’s not always available.

For instance, Alpine containers, which are lightweight Linux distribution

based on “musl libc” and “busybox”, have a Shell environment but do not

come with Bash installed.

While we have chosen Shell scripts for this book, there is no reason you

cannot deviate from this and use another scripting language. For instance,

you can use Bash or Python just as easily. The only caveat is you will need

to ensure those runtimes are installed in your Docker image. In fact, if

you happen to be using Windows containers, there is no reason you can’t

follow along with us. You’ll just be using PowerShell in your containers,

most likely.

Let’s take the example from the previous section and reimagine it as a

Shell script for the build step. Listing 3-4 shows what this might look like.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

41

Listing 3-4. Build Step as a Shell Script

#!/usr/bin/env sh

case $1 in

"dotnetcore")

 dotnet build -c Release -o /output

 ;;

"java")

 mvn package -s settings.xml -f /

 ;;

"angular")

 npm run build

 ;;

*)

 echo "Error: No valid language provided."

 ;;

esac

This example looks almost identical to Listing 3-2, with a couple of

small but important changes. First, we’ve include a shebang as the first

line in the file to indicate this is a Shell script. This would change based

on the language you’re using. For instance, if you wanted to use Python

3 your shebang would be #!/usr/bin/python3. Next, we’ve replaced

the “$language” variable with a “$1” indicating we’re passing it in as an

argument. While this is still a very simple implementation of a build step,

these two changes make it a fully functional step. Just save it as "build.sh"

and you’re ready to use it in your pipeline.

This also opens the door for making your pipeline logic much more

modular. Take Listing 3-3 as an example. This was a much more detailed

build command for Angular. Granted it is all of three lines, but imagine you

have a language that requires 30 lines or more. This is probably more code

Chapter 3 GettinG it riGht with DoCker anD SCriptS

42

than you care to have in a switch/case statement. Now that we’re using

Shell scripts, we can reimagine that code as a separate script as shown in

Listing 3-5.

Listing 3-5. Angular Build Commands in Their Own Shell Script

#!/usr/bin/env sh

npm set progress=false

npm install –-registry https://registry.npmjs.org/

npm run build

Now, this script can be saved as "angular_build.sh". All your build

logic is now consolidated into a separate script. If you needed to go crazy

and have dozens of lines of code, it’s isolated here. This makes writing,

maintenance, and debugging much easier. It also begins to open the

door for sharing code across multiple pipelines. If we take all our build

commands and put them into separate Shell scripts, our build step could

be simplified as shown in Listing 3-6.

Listing 3-6. Simplified Build Step Shell Script

#!/usr/bin/env sh

case $1 in

"dotnetcore")

 dotnet_build.sh

 ;;

"java")

 maven_build.sh

 ;;

"angular")

 angular_build.sh

 ;;

*)

Chapter 3 GettinG it riGht with DoCker anD SCriptS

43

 echo "Error: No valid language provided."

 ;;

esac

While we haven’t reduced the line count of the code in the file, we’ve

greatly simplified it, making it easier to read and follow. The script is no

longer cluttered with code from the various languages. If we need to add

another language, simply write the appropriate build script and then add

another case statement to the build step script.

This method introduces shared scripts that can be executed from a

step on your CI/CD platform. For instance, let’s imagine that you have

multiple lines of business in your organization, each with their own

DevOps team. Each LOB has development teams building microservices,

and each runs their own CI/CD platform. We’ll also say that all those teams

are writing microservices in Node.js. It’s not hard to imagine that each

DevOps group has its own pipeline that can build, test, and deploy Node.js

services. Each pipeline is essentially doing the same thing, and most likely

using almost identical code to do it!

If both teams adopted using Shell scripts to build their Node.js

services, then they could then easily share code. In fact, the code in

Listing 3-5 could simply be renamed “npm_build.sh” and used for all

Node.js applications! Even if each team was using different platforms for

their pipelines, running Shell scripts is supported in every major platform.

 Configuration Files
For Shell scripts to properly handle multiple languages, you must have

some way to inform your pipeline about the application you want to build.

You want to be explicit about what you are doing. A configuration file can

solve this issue for you. Development teams can place this file in their

repo and it would be cloned along with the application when the pipeline

executes. It would contain all the information the pipeline would need to

execute. Listing 3-7 shows what a simple configuration file may look like.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

44

Note this book focuses on building applications that are deployed
via Docker containers to an orchestration service like amazon eCS
or kubernetes. as such, the configuration file shown in this chapter
is specific to that. a configuration file for your applications may look
drastically different.

Listing 3-7. A Sample Configuration File

{

 "application": {

 "name": "Hello App",

 "language": "dotnetcore"

 },

 "build": {

 "path": "",

 "outputPath": "HelloApp/bin/Release/netcoreapp2.0"

 },

 "test": {

 "enabled": true,

 "path": "HelloTests/"

 },

 "archive": {

 "registry": "docker.io",

 "namespace": "YOUR-NAMESPACE",

 "repository": "YOUR-REPO"

 },

 "deploy": {

 "containerPort": 5000

 }

}

Chapter 3 GettinG it riGht with DoCker anD SCriptS

45

Let’s break this down by each section to better understand its makeup:

• Application: Contains basic information about the

application

• Name: This is a friendly name for the application.

This may be its identifier in the UI of the platform

or used for reporting.

• Language: This is the language the application is

written in. This is the most important, if not only,

variable the pipeline may care about.

• Build: Contains information about how to build the

application

• Path: This would be the directory path in the

cloned repo, in case your application is located

somewhere other than root.

• OutputPath: This tells the pipeline where the

built binaries should be placed. It is useful if other

stages require the binaries to be placed in specific

locations.

• Tests: Contains information about how to execute unit

tests

• Enabled: Would allow the application to bypass a

stage

• Path: Used if the unit tests are not located in the

same directory as the application

Chapter 3 GettinG it riGht with DoCker anD SCriptS

46

• Archive: Contains information about how to archive the

built application

• Registry: The URL to the Docker registry where the

application will be pushed

• Namespace: The namespace in the registry

• Repository: The repository name under the

namespace

• Deploy: Contains information pertaining to the

deployment

• ContainerPort: The container port number

As you can see, even a simple configuration file can get complex very

fast. However, this file contains just enough information that our pipeline

can execute its stages and deploy our application. A lot of thought needs

to go into these files to make them flexible for future changes. Additional

sections may include things like:

• Security Scans

• Static Code Analysis

• Performance Tests

• ATDD Tests

This could go on and on. The main takeaway here is that for a generic

pipeline that uses shared code to function properly, you need a way

to instruct it on which paths to take while executing. We will explore

configuration files in more detail, as well as use them in later chapters.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

47

 Docker at the Core
At the core of the generic pipeline is Docker. It is the glue that holds

everything together, as well as the magic that makes it all possible.

Docker provides a mechanism where we can isolate our pipeline from

the underlying platform. It also allows us to create an environment that

is specific to the needs of the application being deployed. For instance,

if we’re building a .NET Core application, we don’t need to worry about

having the Java runtime installed. It also allows for us to easily target

specific runtime.

If you’re in a larger organization, it’s not uncommon to have an

enterprise CI/CD platform that you must use. In these scenarios you are

often forced to use the runtimes that are installed on the platform, or face

long lead times to get new ones installed. Continuing with our .NET Core

example, imagine we have an enterprise platform with various runtimes

installed:

• Java Runtime Environment 8

• .NET Core 1.0

• Python 2.6

• .NET Standard 4.5

• Sonar Scanner 2.0

If we’re using .NET Core 1.0 we’re in good shape. It’s installed on the

platform, and we can build and deploy to our heart’s content. Figure 3-3

shows what this platform may look like.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

48

Things are humming along just fine; however, our development

team has begun working on a new version of their application and they

are using .NET Core 2.0. Well that’s not going to work; we need to get

.NET Core upgraded on the platform. In most cases this is not a quick

process. For an enterprise to run a tight ship, they need to vet installations

in lower environments first. Only after proper testing has taken place

can the upgraded version of the runtime be scheduled for a Production

deployment. That also takes time, as you need to secure a change order

and downtime window. Figure 3-4 shows the updated platform after the

installation.

Figure 3-3. Enterprise CI/CD platform

Chapter 3 GettinG it riGht with DoCker anD SCriptS

49

If your team happens to be agile, they are most likely putting you on

their impediment list! At this point the enterprise platform has become a

bottleneck slowing down the development teams. In a worst-case scenario,

you’re stifling progress and innovation because teams cannot move as fast

as they need to. Imagine that an early access release of .NET Core comes

out and a team would like to use it for their application. This would be

even more of a challenge given it’s not a release candidate!

In addition to the slowdowns that this can present, there are also a ton

of runtimes installed that most developers don’t need. To put it another

way, the Java developers don’t need .NET Core and vice versa. Now most of

the time this is not a problem, as multiple runtimes can be installed side by

side without issue. But larger platforms, like Jenkins, also come with a lot

of plugins that sometimes don’t play nice with each other. As the platform’s

popularity grows inside the organization, more and more requests for

plugins flow in. At some point there may be a conflict between plugins,

and someone will have to lose out on functionality they were counting on.

Figure 3-4. Enterprise CI/CD platform with new runtimes
installed

Chapter 3 GettinG it riGht with DoCker anD SCriptS

50

These scenarios can continue to play out in many different forms. For

instance, given our platform and the runtimes we have installed, if a team

wanted to use Golang for their project they’d have to wait for that to be

installed. Luckily all these problems can be solved with Docker. The only

requirement is that it is installed on the enterprise platform. From there we

have total control over what our applications need in the pipeline. Figure 3-5

shows the ideal platform in its purest form, with only Docker installed.

Figure 3-5. Enterprise CI/CD platform with only Docker installed

Now at this point you may be thinking to yourself, “this is insane.” Why

would I have an entire platform and only put Docker on it. Well, you’re still

going to have a lot of other things installed/configured for your enterprise.

However, you can begin to break free of installing individual runtimes and

tooling to support all the applications your platform supports. Docker

allows for teams to control their environments and only install things

specific to their applications.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

51

In the previous figures we had a platform with many runtimes installed

to support many different development teams. Let’s see what that looks

like with Docker in the mix. Figure 3-6 shows the platform once we begin

to utilize Docker.

Figure 3-6. Enterprise CI/CD platform utilizing Docker during builds

In this scenario, each application is built, tested, and deployed

inside a container that is isolated from other containers. The container

is responsible for what components and runtimes are installed, thus

relieving the platform team of being responsible for installing and

maintaining multiple runtimes on the platform. With this approach, the

previous scenario of a team switching to a new runtime version becomes

trivial. In fact, a team wanting to be bleeding edge and use an Early

Access release is not a concern for the enterprise platform team anymore.

Figure 3-7 shows an updated .NET Core 2.0 container and an Early Access

.NET Core container being utilized.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

52

In this pattern everything the application needs to be built, tested,

scanned, and deployed is inside the “build” container. It’s called a build

container, as all the work in the pipeline will be performed inside it. We

can illustrate this with a simple Dockerfile example. Listing 3-8 shows a

sample Dockerfile for a .NET Core 1.0 application.

Listing 3-8. Sample Dockerfile for a .NET Core 1.0 Build Container

FROM microsoft/1.0-runtime:latest

RUN apt-get update && apt-get install -y \

 unzip

RUN wget http://repo1.maven.org/.../sonar-runner-dist-2.4.zip && \

 unzip sonar-runner-dist-2.4.zip -d /opt

ENV PATH $PATH:/opt/sonar-runner-dist-2.4/bin

In this example our build container is based on a .NET Core base

image. We update “apt-get” and install “unzip”. After that we download

Sonar Runner, unzip it, and update the “PATH” so we can easily run it.

Figure 3-7. Enterprise CI/CD platform with updated containers

Chapter 3 GettinG it riGht with DoCker anD SCriptS

53

At this point we have a build container that can build, test, and scan .NET

Core 1.0 applications. Now if the development team decides they want to

move to .NET Core 2.0 (why wouldn’t they) we simply create another build

container using the Dockerfile shown in Listing 3-9.

Listing 3-9. Sample Dockerfile for a .NET Core 2.0 Build Container

FROM microsoft/aspnetcore-build:2.0

RUN apt-get update && apt-get install -y \

 unzip

RUN wget http://repo1.maven.org/.../sonar-runner-dist-2.4.zip && \

 unzip sonar-runner-dist-2.4.zip -d /opt

ENV PATH $PATH:/opt/sonar-runner-dist-2.4/bin

As you can see, the only thing that changed was the base image of the

Dockerfile. In this scenario we now have two build containers, all from

changing a single line of code. Contrast that with what it would take to

install a new runtime in the platform, fully test it in lower environments,

and then promote it to Production. With Docker, we can simply make a

change to a Dockerfile and test it. If it works, great! If not, you’ve literally

wasted about ten minutes of work.

Earlier in the chapter we saw an example architecture where the

pipeline was made up of shared components. Figure 3-8 shows us this

concept again.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

54

In this scenario we used Shell scripts to encapsulate shared

commands, which can be used across all of the application deployments.

Now, we can envision this taking place inside Docker containers, as shown

in Figure 3-9.

Figure 3-9. Pipeline stages using shared code inside build containers

Figure 3-8. Pipeline stages using shared code

Chapter 3 GettinG it riGht with DoCker anD SCriptS

55

Now we have common shared pipeline code loaded into build

containers that are isolated from each other. The same code is copied into

each container, but changes to a container no longer have any side effects

on the others. This is drastically different than if the CI/CD platform is

responsible for all the runtimes and plugins. As illustrated earlier, a team

can quickly and safely jump to a new version of a runtime without fear of

affecting other teams on the previous runtime. Loading the shared shell

scripts is extremely easy. All we need to do is add a COPY command to our

build container Dockerfile, as shown in Listing 3-10.

Listing 3-10. Adding Shell Scripts to Our Build Container

FROM microsoft/aspnetcore-build:2.0

COPY stages stages

RUN apt-get update && apt-get install -y \

 unzip

RUN wget http://repo1.maven.org/.../sonar-runner-dist-2.4.zip && \

 unzip sonar-runner-dist-2.4.zip -d /opt

ENV PATH $PATH:/opt/sonar-runner-dist-2.4/bin

In this example we assume there is a directory called “stages” that

holds all the Shell scripts for our pipeline. By copying the scripts into each

build container, we have further isolated changes they may impact other

teams. A change to a script will only be reflected once the build container

is rebuilt. This is certainly not the only way to get your shell scripts into

your build container. You could copy them in as part of an application

clone, or if using a language like Python you could include them as

modules and perform a PIP installation. The main takeaway is that the

scripts are part of the build container and isolated from other code.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

56

 Platform Agnostic
Running a CI/CD pipeline inside a Docker container provides you with so

many benefits. We’ve already seen how it can provide your development

teams isolation from other runtimes, and give them total flexibility on

what is installed in the container. Combine this with scripts loaded into the

container to execute your pipeline code, and now you’re decoupled from

the underlying platform. This is a very big deal.

Many enterprise grade CI/CD platforms already allow you to share

code across pipelines; this is not a new concept. However, in most cases

the mechanisms in place to do so are clunky and not ideal. Take for

instance Jenkins, which is a very large player in this space. Jenkins allows

you to configure libraries that contain shared code for use in your pipeline.

These can be configured at the local (folder) level or globally. Figure 3-10

shows a sample configuration.

Figure 3-10. Folder level configuration of a shared library

Chapter 3 GettinG it riGht with DoCker anD SCriptS

57

In this scenario, we have a GitHub repo called “my-library” with

some shared code in it. We reference this library in our Jenkinsfile for the

pipeline to load it. Jenkins has a very specific directory structure to allow

these files to be shared. The “my-library” repo would be structured like

Listing 3-11.

Listing 3-11. Directory Structure of a Shared Library

(root – "my-library")

+- vars

| +- foo.groovy

| +- bar.groovy

| +- baz.groovy

There may be many more files in this directory but there must be a

folder named “vars,” which only contains Groovy files. While this is a fine

method for sharing code across pipelines, it leaves a lot to be desired. This

pattern also makes roper unit testing of the code more difficult, albeit still

possible. It also locks us into using Groovy for our shared code, or at least

using it as an entry point and then calling something else under the covers.

By using more generic scripts like Shell, we can already begin to

break free of the platform even without Docker in the equation. If you’re

on Windows you can use PowerShell, or even now you can consider

Bash, which would not only decouple you from the platform but also

the operating system. Putting Docker into the mix gives you the same

capability; the only requirement now is that Docker be installed. You could

also explore a language like Python, which pretty much runs anywhere.

If we were to move all the code in “my-library” into Shell scripts,

our Jenkins configuration would be much simpler. In fact, all the steps

from earlier would be gone. We’d have a Docker container loaded with

our scripts, which we would simply run on Jenkins. Listing 3-12 shows a

sample Docker image run in Jenkins. This example is in Groovy, and the

Jenkins platform has the Docker plugin installed.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

58

Listing 3-12. Running a Docker cContainer in Jenkins

docker.withRegistry('YOUR-DOCKER-REGISTRY') {

 docker.image('YOUR-CUSTOM-IMAGE').inside('ARGS') {

 stage('Clone') {

 sh("/stages/01_clone.sh")

 }

 stage('Build') {

 sh("/stages/02_build.sh")

 }

 stage("Test") {

 sh("/stages/03_test.sh")

 }

 stage("Archive") {

 sh("/stages/04_archive.sh")

 }

 }

}

Note the preceding stages are the actual stages we’ll be building
in upcoming chapters. this example would assume that you have
cloned or copied your scripts into the root of the container that is
mapped to the Jenkins workspace.

Now that we have all our shared code in scripts in a GitHub repo,

we can copy that in via our Dockerfile and use the preceding command

to execute the container. You have the option to either “bake” your

scripts into the container when it’s built, or you could even do a git clone

command to bring the scripts down when the container runs. The point

here is you have some options.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

59

Now let’s consider that you have your pipeline built in a Docker

container using Shell scripts, and you’re up and running on Jenkins.

Everything is going great, and then your boss comes to you and proclaims

that Jenkins is out and Circle CI is in! In most organizations around the

world this would be a major event. All your pipelines need to be rewritten

on Circle CI. It will take months to migrate everything over, not to mention

the testing and deployments and, wait a minute! We have everything

isolated in Docker containers. This won’t be so bad.

We can take the same Docker image we’ve used in Jenkins and easily

run it on another platform. Listing 3-13 shows what the same setup may

look like in Circle CI.

Listing 3-13. Running the Docker Container in Circle CI

version: 2

jobs:

 build:

 docker:

 - image: YOUR-DOCKER-REGISTRY/YOUR-CUSTOM-IMAGE

 steps:

 - setup_remote_docker:

 docker_layer_caching: true

 - run:

 name: Clone

 command: /stages/01_clone.sh

 - run:

 name: Build

 command: /stages/02_build.sh

 - run:

 name: Test

 command: /stages/03_test.sh

Chapter 3 GettinG it riGht with DoCker anD SCriptS

60

 - run:

 name: Archive

 command: /stages/04_archive.sh

At this point the beauty of the pattern should be clear. While we are

just looking at configuration files, you should readily see the similarities.

On either platform, we use our Docker image as the basis for running the

pipeline. Stages or Steps are defined and given names, like Clone, Build,

Test, etc. Next, a Shell script is executed in each section. Since everything

runs inside a container, there are no surprises when we execute the

pipeline. It will run the same on each platform!

Note at this point you may be thinking this is way too easy. while
this pattern makes moving the code and executing it on another
platform crazy easy, you still need to keep in mind the other aspects
of running a Ci/CD platform. each will have its own ways of being
configured, dealing with networking, etc. however, not having to
worry about how to port a pipeline will provide a lot of breathing
room if you need to make a switch.

To further illustrate the point of being agnostic, let’s look at what this

pipeline looks like on another platform. Listing 3-14 shows what the same

setup may look like in Travis CI.

Listing 3-14. Running the Docker Container in Travis CI

services:

 - docker

before_script:

 - |

 docker run -it -d \

 -v /var/run/docker.sock:/var/run/docker.sock \

 -e DOCKER_USERNAME=${DOCKER_USERNAME} \

Chapter 3 GettinG it riGht with DoCker anD SCriptS

61

 -e DOCKER_PASSWORD=${DOCKER_PASSWORD} \

 -e GITHUB_URL=${GITHUB_URL} \

 --name MY-PIPELINE \

 YOUR-DOCKER-REGISTRY/YOUR-CUSTOM-IMAGE

script:

 - docker exec MY-PIPELINE /stages/01_clone.sh

 - docker exec MY-PIPELINE /stages/02_build.sh

 - docker exec MY-PIPELINE /stages/03_test.sh

 - docker exec MY-PIPELINE /stages/04_archive.sh

In later chapters we’ll be using Circle CI and Travis CI to build a very

simple pipeline. We’ll use the same Docker container and Shell scripts to

build, test, and archive an application on both platforms. In fact, the Yaml

files shown will be used in those examples!

 Overview
We covered a lot of material and patterns in this chapter! Let’s take a quick

moment to review what we discussed.

 Shell Scripts
Shell scripts provide us a way to centralize our pipeline logic into smaller

easy to share chunks of code. We can write scripts for very specific

functionality and then use them inside “Stage” or “Step” scripts to stitch

them together. By doing so, we create scripts that are easier to test and

share across multiple pipeline implementations. Also, by using Shell we

can be guaranteed they will run across any platform. This pattern also

opens us up to using other scripts like Python or PowerShell.

Chapter 3 GettinG it riGht with DoCker anD SCriptS

62

 Docker
Docker provides us the isolation needed to simplify the needs of the

development team while running on the platform. In the past, the platform

would need to have all the runtimes and plugins installed globally for

anyone to use. With Docker, the only requirement is that Docker be

installed for all to use.

 Build Containers
Build containers provide a level of isolation on the platform. Each

team can install their own runtimes and dependencies in a container,

thus isolating their needs from others. This also provides them with

the flexibility to use anything they want, without fear of it affecting the

platform. If a team wants to us a bleeding edge release of a runtime, they

have the power to do it. They own the build container (or a DevOps team)

and are responsible for what goes in it. This allows teams to move at a

much more rapid pace than if they were dependent on the platform team.

In the next chapters we’ll move out of theory and discussion and into

actual implementation. We’ll create a simple demo application that we

can use to deploy. We’ll look at building out our build container and how

to implement it in Circle CI and Travis CI. You’ll take everything you have

learned so far and apply it in a practical way. So let’s get started!

Chapter 3 GettinG it riGht with DoCker anD SCriptS

63© Brandon Atkinson, Dallas Edwards 2018
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_4

CHAPTER 4

A Practical Example
In Chapter 3 we showed you an example of how we can execute a few

simulated pipeline stages in a Docker container to create a pipeline that

can be ported to any CI server. In this chapter we’re going to take it a

step further and create a pipeline that can clone, build, test, archive, and

deploy a set of working applications. Then, we’ll show you how to take the

pipeline you’ve created and move it from your desktop to two popular CI

platforms.

 An Overview of Our Applications
In this chapter we are focused on applications written using one of three

distinct tech stacks; they are:

 1. Spring Boot applications written in Java, using

Maven as a build automation tool

 2. ASP.NET Core Web APIs written in C#

 3. Angular applications leveraging TypeScript and

Node.js

We’ve created three sample projects, each using one of these

technologies. These projects include everything you need—code,

configuration files, Dockerfiles, etc.—to follow along for the rest of the

chapter. The next three sections provide a brief overview of what these

64

sample applications do and the commands we execute to build, test, and

run them. We won’t go into detail on how each of the sample applications

work—there are other books better suited for that. These are barebones

implementations and aren’t meant to be used as a model for writing high-

quality applications.

 Spring Boot

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker

The first application is an API written in Java using the Spring Boot

framework, and using Maven to build, test, and package the project. It’s

based off the quick start example on the Spring Boot homepage and works

with any relatively recent version of Java and Maven. For the purposes of

this book, we’re using JDK 8 and Maven 3.

Note If you want to learn more about the Spring Boot framework
and how this project works, check out the quick start guide at
https://projects.spring.io/spring-boot/#quick- start.

To run the application from the command line, first compile the

source code using the mvn clean package, then execute java -jar

target/hello.jar. After a few seconds the application will be up and

running. Once it is, open your web browser and navigate to http://

localhost:8080. You’ll receive a simple message: “Hello World!” as shown

in Figure 4-1.

Chapter 4 a praCtICal example

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker
https://projects.spring.io/spring-boot/#quick-start

65

 ASP.NET Core Web API

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker.

The second application is also an API, but this time written on top

of ASP.NET Core Web API. It has a single endpoint that returns an array

containing two values. It’s based off of the ASP.NET Core Web API project

template generated by Visual Studio.

This project uses the commands built into the .NET Core CLI to

build and test the project. Using the command line, run dotnet build

ValueApi to build the project, followed by dotnet ValueApi/bin/Debug/

netcoreapp2.0/ValueApi.dll to start the API. If you open a browser and

navigate to http://localhost:5000/api/values, you’ll get a response like

the one in Figure 4-2.

Figure 4-1. The Spring Boot application

Figure 4-2. The .NET Core application

Chapter 4 a praCtICal example

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker

66

 Angular 5

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker.

Our last sample project is a web application built using Angular 5,

TypeScript, and Node.js and relies on Chromium to run its test suite. It’s

based on the Angular Quick Start example.

To build and run the project, first download and install the project’s

dependencies by running npm install on the command line. Next,

use npm run build to compile the project. Finally, host the project in a

lightweight web server by running npm start. Once the server is running,

open a browser and navigate to http://localhost:4200. You will see a

simple website like the one shown in Figure 4-3.

Figure 4-3. The Angular 5 application

Chapter 4 a praCtICal example

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker

67

 A Deep Dive into the Pipeline

Note You can find the source code for this project at https://
github.com/Apress/generic-pipelines-using-docker.

Now that you’ve got a high-level overview of the sample projects

we’re dealing with in this chapter, it’s time to explore the pipeline itself.

In the following sections, we explore the configuration file that drives the

behavior of the pipeline. Then we take a close look at each of the five stages

of our pipeline: clone, build, test, archive, and deploy. Finally, we take a

peek inside the build containers where all this takes place.

 The Pipeline Configuration File
Alongside the source code for each application, you’ll find a small JSON

file named pipeline.json that contains some crucial information about

the application. The pipeline will use this file to decide everything from

how to build the application to where the resulting artifact should be

stored for use later. The next three listings show the configuration file for

each of our sample projects:

Listing 4-1. The Pipeline Configuration File for the Sample Java

Project

{

 "application": {

 "name": "Sample Java Application",

 "type": "java"

 },

 "build": {

 "path": null,

 "outputPath": null

 },

Chapter 4 a praCtICal example

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker

68

 "test": {

 "enabled": true,

 "path": null

 },

 "archive": {

 "registry": "docker.io",

 "repository": "edwardsdl/sample-java"

 },

 "deploy": {

 "containerPort": 8080

 }

}

Listing 4-2. The Pipeline Configuration File for the Sample .NET

Core Project

{

 "application": {

 "name": "Sample .NET Core App",

 "type": "netcore"

 },

 "build": {

 "path": null,

 "outputPath": "ValueApi/bin/Release/netcoreapp2.0"

 },

 "test": {

 "enabled": true,

 "path": "ValueTests/"

 },

 "archive": {

 "registry": "docker.io",

 "repository": "edwardsdl/sample-netcore"

 },

Chapter 4 a praCtICal example

69

 "deploy": {

 "containerPort": 5000

 }

}

Listing 4-3. The Pipeline Configuration File for the Sample Node

Project

{

 "application": {

 "name": "Sample Node App",

 "type": "node"

 },

 "build": {

 "path": null,

 "outputPath": "dist/"

 },

 "test": {

 "enabled": true,

 "path": null

 },

 "archive": {

 "registry": "docker.io",

 "repository": " edwardsdl/sample-node"

 },

 "deploy": {

 "containerPort": 5000

 }

}

Our pipeline configuration file is broken into four sections:

application, build, test, and archive. Some provide information about the

application, while others provide fine-grained control over specific stages

in the pipeline. Let’s take a closer look at each section.

Chapter 4 a praCtICal example

70

The application section stores high-level information about the

project. We use it to store the name and type of the application. In this

book we deal with three types: node, java, and netcore. It’s up to you to

decide what application types you want to support and what identifiers

to assign them. Supporting a greater number of tech stacks will give your

developers more flexibility but will require more work on their end. If

a new version of the .NET Core framework is released and maintains

backwards compatibility, netcore1, netcore2, and netcore3 applications

can all share a single build image. This is a useful trick for keeping the

number of images you have to maintain to a minimum.

The build section contains two elements: path and outputPath. The

path element is used to let the pipeline know where the applications

code can be found when it pulls it from source control. For most projects

the source code is located in the root of the repository, but we’ve found

some teams appreciate the flexibility to put it elsewhere. The outputPath

element lets the pipeline know where to put the compiled output of the

build command.

The test section contains configuration settings for the test stage of

the pipeline. The first property, enabled, is used to determine whether this

stage is run at all. As your pipeline becomes more robust with additional

stages and features, you’ll likely find yourself adding this property to other

sections too. It can be very useful to turn portions of the pipeline on and off

due to unusual situations or for nonstandard projects. The path property

in this section tells the pipeline where the tests are located relative to the

project’s root directory.

Caution If the enabled property is setting off alarm bells, that’s a
good thing! this is useful for teams who don’t yet have unit tests or
need to temporarily disable the stage while working through an issue.
this has the potential to be used as a crutch!

Chapter 4 a praCtICal example

71

The archive section lets the pipeline know where the build artifacts—

in our case the Docker image containing one of our sample applications—

should be stored. The registry property indicates which Docker registry

will store the image. In this case, we’ll be storing the image on Docker Hub

(Docker’s public registry). If your organization is hosting their own internal

registry, you’d put that here instead. The repository property is the name

of the image and should not include any tags; the pipeline will handle all

of the tagging automatically. Your organization may require you to store

application binaries and images separately. In that case you can modify

this section to represent an array of artifact repositories.

 The Clone Stage
Typically, the first step in any pipeline is to download a copy of a project’s

source, and this pipeline is no different. If you haven’t already, this would

be a good time to clone or review the GitHub examples for the book. In the

stages directory, you’ll find a file named 01_clone.sh with the following

code:

Listing 4-4. The Clone Stage Shell Script

#!/usr/bin/env bash

echo

echo "Cloning Application"

git clone "${GITHUB_URL:?}" .

There’s not much happening in this stage. The script starts by

outputting a brief description of the stage and then performing a git

clone, which will place the application’s source code in the current

working directory. Notice we’re using an environment variable here—

GITHUB_URL. This—and others like it in subsequent stages—are expected to

Chapter 4 a praCtICal example

72

exist wherever the pipeline is running. Stages will also source information

from the pipeline.json file. You’ll see an example of this in the next stage.

We’ll cover the pipeline.json file in detail later in this chapter.

 The Build Stage
In the second stage the pipeline will build the application. Each tech

stack will be handled differently, but the end goal is the same: to create an

artifact we can deploy inside a container. In the stages directory, you’ll

find a file named 02_build.sh with the following code:

Listing 4-5. The Netcore Build Stage Shell Script

#!/usr/bin/env bash

echo

echo "Building Application"

application_type=$(jq -r .application.type pipeline.json)

case "${application_type}" in

 "java")

 mvn clean package

 ;;

 "netcore")

 dotnet restore

 dotnet build -c Release

 ;;

 "node")

 npm install

 ;;

 *)

Chapter 4 a praCtICal example

73

 echo "Unable to build application type ${application_type}"

 exit 1

 ;;

esac

This script uses jq to pull the value of application.type out of the

pipeline.json file and assign it to application_type. This should be

set to either java, netcore, or node if the pipline.json file is configured

correctly. If application_type doesn’t equal one of these values, the script

terminates with exit code 1.

Note jq is a fantastic tool that’s packed with functionality! You can
find a great tutorial on the official website at https://stedolan.
github.io/jq/.

For java applications, we’ll use Maven to clean the workspace, which

ensures there aren’t any cached or outdated files lying around, and then

compile the application. It’s important to remember that we require all

java apps that come through the pipeline to support Maven.

If the application_type is netcore, we’ll use the .NET Core CLI

to perform a NuGet package restore by issuing the command dotnet

restore app. Then, we’ll call dotnet build app -c Release to compile

the source code using the Release configuration.

Finally, if application_type is set to node, we’ll use the Node Package

Manager to download and install any required dependencies. After that,

we issue the npm run build command to compile everything.

Chapter 4 a praCtICal example

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

74

 The Test Stage
The third stage of the pipeline handles test execution. You can find it in

03_test.sh.

Listing 4-6. The Test Stage Shell Script

#!/usr/bin/env bash

echo

echo "Testing Application"

application_type=$(jq -r .application.type pipeline.json)

enabled=$(jq -r .test.enabled pipeline.json)

test_path=$(jq -r .test.path pipeline.json)

if "${enabled}"

then

 echo "Skipped"

 exit 0

fi

case "${application_type}" in

 "java")

 mvn test

 ;;

 "netcore")

 # The path to the test project must be set until

 # https://github.com/Microsoft/vstest/issues/1129 is

 # resolved.

 dotnet test "${test_path}"

 ;;

 "node")

Chapter 4 a praCtICal example

75

 npm run test

 ;;

 *)

 echo "Unable to test application type ${application_type}"

 exit 1

 ;;

esac

The test stage uses the same pattern as our build stage, with one

exception. Before kicking off any tests, it checks the test.enabled property

in the pipeline configuration file. If it’s set to false, the stage is skipped.

Assuming the stage is enabled in the configuration file, application_

type is evaluated and the appropriate command is executed to run the test

suite. As in the build stage, unknown application types cause the stage to

fail with error code 1.

Using our sample projects, implementing this stage turns out to be

fairly trivial. In our experience though, it tends to grow in complexity and

even spawn completely new stages. For example, your organization may

want to report on code coverage or require a certain percentage of tests to

pass. Perhaps your teams have various suites of tests in several different

repositories. If your teams write both unit tests and end-to-end tests, it

might make sense to keep them in separate stages.

 The Archive Stage
Now that the project has been built and tested successfully, it’s time

to package it into an artifact and place it somewhere safe. In your

organization this might be Artifactory, Nexus, GitHub, or any number of

other repositories. For our sample projects, we are using Docker Hub. If

you’re unfamiliar with it, Docker Hub is simply a free, public repository

where anyone can store Docker images. The archive stage can be found in

05_archive.sh.

Chapter 4 a praCtICal example

76

Listing 4-7. The Archive Stage Shell Script

#!/usr/bin/env bash

echo

echo "Archiving Application"

registry=$(jq -r .archive.registry pipeline.json)

repository=$(jq -r .archive.repository pipeline.json)

image="${registry}/${repository}:latest"

docker login \

 -u "${DOCKER_USERNAME?:}" \

 -p "${DOCKER_PASSWORD?:}" \

 "${registry}"

docker build -t "${image}" .

docker push "${image}"

Like the build and test stages, the archive stage starts off by pulling

some information out of the pipeline configuration file. We get the

registry and repository values and then combine them to get the

desired name of the image containing the application. For now, we’re just

applying the latest tag, but in the next chapter we’ll discuss versioning

your artifacts so they won’t be overwritten and can be uniquely identified

later.

Now that we have a name, we can build and push the image. The first

step is to log in to the registry specified in the pipeline configuration file.

Like GITHUB_URL, the DOCKER_USERNAME and DOCKER_PASSWORD variables

will be passed into the container as environment variables. Because these

are credentials and thus sensitive information, they shouldn’t be stored in

the pipeline configuration file.

Assuming we were able to login successfully, the next step is to build

the image. Like we mentioned earlier, each of our sample applications

is designed to be deployed inside a container, so each of them has an

Chapter 4 a praCtICal example

77

associated Dockerfile. Our pipeline expects each application’s Dockerfile to

be located in the project’s root directory. Of course, you could always offer

more flexibility by introducing a new docker.dockerfilePath variable in

your pipeline configuration file. In our experience, however, that hasn’t

proved to be necessary. To kick off the build, we issue the docker build

command passing the name of the image and the build context.

 The Deploy Stage
Finally, we reach the deploy stage. There are far too many deployment

targets to cover here; every organization is different. For the purposes of

this book, 05_deploy.sh will “deploy” to your local machine by simply

running the newly created image.

Listing 4-8. The Deploy Stage Shell Script

#!/usr/bin/env bash

echo

echo "Deploying Application"

container_port=$(jq -r .deploy.containerPort pipeline.json)

registry=$(jq -r .archive.registry pipeline.json)

repository=$(jq -r .archive.repository pipeline.json)

image="${registry}/${repository}:latest"

docker run -dp "${container_port}:${container_port}" "${image}"

As mentioned before, each of our example apps are designed to

be deployed inside a container. To do that, we need a few pieces of

information from the pipeline configuration file: archive.registry,

archive.namespace, and archive.repository. We put these together

to form an image name, for example, docker.io/edwardsdl/sample-

netcore:latest. This is the image we created in the archive phase.

Chapter 4 a praCtICal example

78

Next, we execute the command docker run -dp "${container_port}:

${container_port}" "${image}". This runs the latest version of the

image containing our application in “detached” mode—meaning in the

background—and publishes the port the application is listening on. Once

this is done, the deploy script terminates, which, since it is the last of the

stage scripts, causes the pipeline container to exit.

Tip While containerizing your applications isn’t necessary to
create a generic pipeline, it certainly makes things easier. If your
organization hasn’t explored the idea of containerized applications,
I highly recommend doing so.

 A Look at Our Build Containers
One of the key features of our pipeline is that it executes entirely inside a

Docker container. This allows us total control over our build environment.

We can add or update dependencies easily, set environment variables as

needed, or install software in custom locations—all without interfering with

other applications’ build environments or workflows. Of course, in order to

have a build container you must have a Dockerfile. In this section we’ll take

a look at the three Dockerfiles we use for each of our three tech stacks.

First let’s look inside Dockerfile.java. As you may have guessed,

this is the Dockerfile we use to construct the image for our Java build

containers.

Listing 4-9. The Dockerfile for the Java Build Container

FROM maven:3-jdk-8

RUN curl -fsSL get.docker.com | sh

RUN apt-get update && apt-get install -y jq zip

Chapter 4 a praCtICal example

79

COPY stages stages

WORKDIR /app

The Dockerfile is relatively simple. We use maven:3-jdk-8 as our base

image because it comes out of the box with both the Java 8 JDK and Maven 3.

Admittedly this base image makes the container a little bloated, but in our

experience these containers tend to get fairly large anyway, so it’s not worth

worrying about a few extra megabytes.

Next, we install Docker inside the container. That probably sounds

strange—it did to us the first time too! The reason is simple: our

applications are designed to be deployed as containers and thus have

Dockerfiles themselves. That means we need to issue docker build and

docker push commands from inside our build containers.

Caution We chose to install Docker using this method because it’s
concise and easy to understand. however, it’s never a good idea to
run scripts without examining them first. You can find a more secure
method for installing Docker at https://docs.docker.com/
install/.

Note Using Docker inside of Docker is becoming a very common
scenario. however, if you are new to this concept you can learn more
here: https://blog.docker.com/2013/09/docker-can-now-
run-within-docker/.

The third line of our Dockerfile installs two packages: jq and zip. The

first, jq, is a command line tool that’s great for parsing and transforming

JSON data. It’s used extensively inside our stage scripts, as you saw earlier

in the chapter. The second is zip. I’m sure you can guess what that does.

Chapter 4 a praCtICal example

https://docs.docker.com/install/
https://docs.docker.com/install/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/

80

Next, we copy the pipeline stages into the container. Be aware: by

copying your code in now, you’ll be required to recreate your build images

when your stage scripts change. In your implementation you may decide

to clone your stages into your container when it starts up. You’ll always be

running the latest code, but it’s more difficult to determine which version

of the pipeline created a given artifact.

Finally, we set our working directory to /app. The pipeline will use this

as its primary workspace. Application code will be cloned, built, tested,

and packaged all within this directory.

We use Dockerfile.netcore to create the build container for .NET

Core projects, which looks very similar to its Spring Boot counterpart. In

this case we use microsoft/netcore:2-sdk as our base image instead of

maven:3-jdk-8. Otherwise, this file is exactly the same.

Listing 4-10. The Dockerfile for the .NET Core Pipeline Image

FROM microsoft/dotnet:2-sdk

RUN curl -fsSL get.docker.com | sh

RUN apt-get update && apt-get install -y jq zip

COPY stages stages

WORKDIR /app

The Dockerfile for the Angular tech stack follows the same pattern

as the previous two. In this case our base image will be node:9-stretch,

which uses a recent version of Debian Linux and provides easy access to

Node.js and NPM. We also install two additional dependencies: chromium

and chromium-driver. These are used by our application’s test suite. We’ve

named this file Dockerfile.node.

Chapter 4 a praCtICal example

81

Listing 4-11. The Dockerfile for the Angular Pipeline Image

FROM node:9-stretch

RUN curl -fsSL get.docker.com | sh

RUN apt-get update && apt-get install -y \

 chromium \

 chromium-driver \

 jq \

 zip

COPY stages stages

WORKDIR /app

 Running the Pipeline
Now that we’ve gone over the sample applications, stage scripts, and

Dockerfiles, it’s time to run our pipeline. To begin, we’ll run it locally.

Afterwards we’ll show you how to port it to several popular CI tools.

Before you move on, we suggest you fork one of our sample projects.

These applications have been thoroughly tested, and with a few simple

modifications you’ll be able to run them through the pipeline locally and

in the cloud. In addition, as part of the sign-up process, both Travis CI and

CircleCI will request access to your GitHub account in order to streamline

the setup process and start builds when new code is committed to a linked

repository. In the end, we think it’ll be easier for you to use one of our

applications than build your own.

For the rest of the chapter we’ll be using our sample .NET Core project.

You can find it at https://github.com/Apress/generic-pipelines-

using-docker. If you’re using GitHub, forking our sample projects is easy!

Just navigate to its repository on GitHub and click the “Fork” button in the

top right. This will create a copy of the repository in your account.

Chapter 4 a praCtICal example

https://github.com/Apress/generic-pipelines-using-docker
https://github.com/Apress/generic-pipelines-using-docker

82

 Using the Command Line
Running the pipeline from the command line is pretty straightforward.

First you build the Docker image for the pipeline you want to use by

issuing the docker build command. Next you run the image passing

along all of the required arguments to mount the Docker socket and set the

appropriate environment variables. For example, if you want to build the

sample .NET Core app, you’d issue the following commands from the root

of the directory containing your application:

Listing 4-12. Building and Running the Pipeline

docker build -t pipeline -f <Dockerfile> .

docker run \

 -v /var/run/docker.sock:/var/run/docker.sock \

 --env GITHUB_URL=https://github.com/edwardsdl/sample-netcore.

git \

 --env DOCKER_USERNAME=AzureDiamond \

 --env DOCKER_PASSWORD=hunter2 \

 pipeline \

 /stages/00_run.sh

Obviously, the values for GITHUB_URL, DOCKER_USERNAME, and DOCKER_

PASSWORD are placeholders. You need to replace them with the path for

your fork and your Docker Hub credentials. Remember to use your Docker

repository URL as well! Once you’ve run the docker run command, you’ll

see the pipeline go through each of the stages we described earlier. Your

output should look like that in Figure 4-4.

Chapter 4 a praCtICal example

83

In its final stage, the pipeline will “deploy” the sample .NET Core

application locally. When you issue the docker ps command as in

Figure 4-5, you’ll see you have one container running—the one running

the sample application! Using your browser, navigate to http://

localhost:5000/api/values to verify it’s working.

Figure 4-4. Running the pipeline from the command line

Figure 4-5. Inspecting the deployed application

 Using IntelliJ IDEA CE
If you’re more comfortable using an IDE, Intellij IDEA has wonderful support

for building Docker images. You can use the “Docker Integration” plugin,

which is incredibly helpful. Setup is a little more involved, but once you’re

done you have a powerful development environment at your fingertips.

Chapter 4 a praCtICal example

84

Tip If you run into trouble when adding new Docker configuration
profiles, check out JetBrains’ help page at www.jetbrains.com/
help/idea/run-debug-configuration-docker.html.

To begin, we will create a few new configurations in our IDE. In the top

right corner, click the “Select Run/Debug Configuration” drop-down box

and click “Edit Configurations…” as in Figure 4-6.

Figure 4-6. Creating a new configuration

On the Run/Debug Configuration window, create a new Docker

configuration by clicking on the “Add New Configuration” button in the

top left. Under the “Docker” menu item, select “Dockerfile” as shown in

Figure 4-7.

Figure 4-7. Adding a new Dockerfile configuration

Chapter 4 a praCtICal example

https://www.jetbrains.com/help/idea/run-debug-configuration-docker.html
https://www.jetbrains.com/help/idea/run-debug-configuration-docker.html

85

The first configuration we’ll create will allow us to run the .NET Core

pipeline. We’ll name this new configuration, “Run .NET Core Pipeline.”

In the Dockerfile drop-down box, select “Dockerfile.netcore.” Now, select

the checkbox labelled “Run built image” and set the container name to

netcore-pipeline. Next, in the executable section, set the command to

/stages/00_run.sh.

Now we need to mount the host’s Docker socket inside the container.

This is what makes it possible for us to execute Docker commands inside

the container. To do this, click the button labelled, “…” to the right of the

bind mounts textbox. In the “Bind Mounts” window, add a new bind

mount setting both the host path and the container path to /var/run/

docker.sock (Figure 4-8).

Figure 4-8. Mounting the Docker socket

Tip If you want to learn more about the history of issuing Docker
commands inside a container and mounting the Docker socket,
Jérôme petazzoni has written an excellent blog post at https://
jpetazzo.github.io/2015/09/03/do-not-use-docker-in-
docker-for-ci/.

Next, we’ll need to add a few environment variables (Figure 4-9),

specifically GITHUB_URL, DOCKER_USERNAME, and DOCKER_PASSWORD.

The value of GITHUB_URL will be DOCKER_PASSWORD will be your Docker

Hub username and password, respectively. The values we use here are

placeholders and won’t work for you.es we use here are placeholders and

won’t work for you.

Chapter 4 a praCtICal example

https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/

86

Note If you have forked the sample Github repo, remember to use
your GIthUB_Url in these examples!

After you’ve added the environment variables, click the OK button to

return to the Run/Debug Configurations screen. Confirm that your settings

look like those in Figure 4-10, and then click “Apply.”

Figure 4-9. Adding environment variables

Figure 4-10. Adding the Run .NET Core Pipeline configuration

Chapter 4 a praCtICal example

87

Next, we’ll repeat this process to create additional configuration

profiles for our Java and Node pipelines. Most of the process is

identical, but you’ll want to be sure to choose the correct Dockerfile

and GITHUB_URL values. Reference Figures 4-11 and 4-12 to ensure

your settings are correct.

Figure 4-11. Adding the Run Java Pipeline configuration

Chapter 4 a praCtICal example

88

Once you’ve added the last configuration profile, click the OK button

to close the window. Now the Select Run/Debug Configuration drop-

down box should contain three items: Run .NET Core Pipeline, Run Java

Pipeline, and Run Node Pipeline (Figure 4-13).

Figure 4-12. Adding the Run Node Pipeline configuration

Figure 4-13. Listing the newly created configuration profiles

Chapter 4 a praCtICal example

89

 Moving to the Cloud
Now that we’ve seen the pipeline work on our local machine, it’s time

to get it working using a real continuous integration tool. We’ll start by

forking one of our sample projects in GitHub. Next, we’ll show you how

to run our pipeline in Travis CI by converting the 00_run.sh script to a

.travis.yml file. Finally, we’ll walk you through porting our pipeline from

Travis CI to CircleCI.

 Moving the Pipeline to Travis CI
As mentioned, we’ll be showing you how to use the pipeline with two

continuous integration platforms. Up first, we’ll be looking at Travis CI.

Travis CI was one of the first—if not the first—CI/CD SaaS offering.

It provides an intuitive interface, free accounts for open source projects,

good documentation, and a large number of integrations. Because of this,

Travis CI is wildly popular, especially amongst open source projects.

 Creating a Travis CI Account

Before we can move our pipeline to Travis CI, we’ll need to create a new

account. If you don’t need help, skip ahead to the next section.

Open a browser and navigate to https://travis-ci.org, then click

the button labeled, “Sign Up” (Figure 4-14). If prompted, enter your

GitHub username and password. If you are already signed in to GitHub,

you won’t be asked to do so again.

Caution Check that top-level domain! You want https://
travis-ci.org not https://travis-ci.com. the latter is for
paid projects only!

Chapter 4 a praCtICal example

https://travis-ci.org
https://travis-ci.org
https://travis-ci.org
https://travis-ci.com

90

Grant Travis CI access to your email address and permission to add

new webhooks to your repositories. The service will use this to help you

set up new builds, to trigger builds when new code is committed to your

repositories, and notify you when things go wrong.

After granting Travis CI access, you’ll be dropped on a “Getting

Started” page. Take a minute to read through this page. It details the steps

required to add a new repository and start building it.

 Adding a New Repository

Now that your account has been created, you’re ready to add a new

repository to Travis CI. This is where it all comes together. Once you’re

done setting up the repository, you’ll get to see the generic pipeline in

action.

Head to your profile page by using the link in the instructions.

Alternatively, you can click the “Profile” link in the drop-down menu

located in the top right of the navigation bar, as shown in Figure 4-15.

Figure 4-14. The Travis CI homepage

Chapter 4 a praCtICal example

91

On your profile page, search for “sample.” This will return a list of any

of our sample projects you forked. Click the gray toggle switch to the left

of “sample-netcore” to allow Travis CI to integrate with the repository

(Figure 4-16).

Figure 4-15. The “Getting Started” page

Figure 4-16. Adding the .NET Core sample repository to Travis CI

Now click on the “Settings” button to the right of the toggle switch to

navigate to the settings for this repository. Before we start the first build, we

need to tell Travis CI what environment variables to pass to our container

(Figure 4-17). These will be the same values you used when running the

pipeline locally: DOCKER_USERNAME, DOCKER_PASSWORD, and GITHUB_URL.

Chapter 4 a praCtICal example

92

Caution make sure to toggle the “Display value in build log” switch
to the OFF position for the DOCKER_PASSWORD environment variable.
You don’t want your password showing up in the build log!

Now everything is ready for us to kick off our first build! Click the

“More options” button on the top right side of the page and select “Trigger

build” from the drop-down menu (Figure 4-18).

Figure 4-17. Adding environment variables to the build

Figure 4-18. Triggering the first build

You’ll be prompted to select a branch and add a custom commit

message and custom configuration. Essentially Travis CI is simulating a

commit to your Git repository; nothing is actually pushed. This is actually

an incredibly useful feature, especially when you’re getting started! It

allows you to quickly test changes to your configuration file without having

to go through the change, commit, push loop over and over again. For now,

just click the “Trigger custom build” button at the bottom (Figure 4-19).

Chapter 4 a praCtICal example

93

Note For more information about this feature, check out the blog
post announcing its release at https://blog.travis-ci.
com/2017-08-24-trigger-custom-build.

You’ll be redirected to a page showing you a detailed, real-time status

of your first build (Figure 4-20). If you scroll through the logs at the bottom,

you’ll notice some familiar messages! The application is being cloned,

built, tested, and archived just like it was when you ran the pipeline locally!

Figure 4-19. Triggering a custom build

Chapter 4 a praCtICal example

https://blog.travis-ci.com/2017-08-24-trigger-custom-build
https://blog.travis-ci.com/2017-08-24-trigger-custom-build

94

 A Look at the Travis CI Configuration File

So how does Travis know how to run our pipeline? It uses the .travis.yml

file located in the root of our Git repository. Let’s take a look at what’s inside!

Listing 4-13. The Travis CI Configuration File

services:

 - docker

before_script:

 - |

 docker run -it -d \

 -v /var/run/docker.sock:/var/run/docker.sock \

 -e DOCKER_USERNAME=${DOCKER_USERNAME} \

 -e DOCKER_PASSWORD=${DOCKER_PASSWORD} \

 -e GITHUB_URL=${GITHUB_URL} \

 --name netcore-pipeline \

 edwardsdl/netcore-pipeline:latest

script:

 - docker exec netcore-pipeline /stages/01_clone.sh

 - docker exec netcore-pipeline /stages/02_build.sh

 - docker exec netcore-pipeline /stages/03_test.sh

 - docker exec netcore-pipeline /stages/04_archive.sh

Figure 4-20. Running the pipeline in Travis CI

Chapter 4 a praCtICal example

95

It turns out the configuration file looks pretty similar to our 00_run.sh

script. That’s by design! One of the primary benefits of this architecture is

the ease with which you can move from one CI platform to another.

The services section describes any custom services—like MongoDB,

Memcached, or RabbitMQ—your build requires. Travis CI will include

these in your build environment. In our case, we ask that Docker be

installed.

The before_script section lets us run any last-minute commands

before the build really gets started. We’ll use it to pull and run the latest

version of the netcore-pipeline Docker image. Just like when we ran

it locally, we mount the Docker socket and pass the DOCKER_USERNAME,

DOCKER_PASSWORD, and GITHUB_URL environment variables to the container.

Note You may have noticed our docker run command is
preceded by a vertical bar (|). this is called the literal block
scalar style and it allows our command to span multiple lines. If
you’re fascinated by formal language grammars, check out the
Yaml specification at http://yaml.org/spec/1.2/spec.
html#id2795688.

The script section is where we instruct Travis CI to run the stages

we’ve included inside the container. Starting at 01_clone.sh, we simply

work our way through each script until we’re done. If any stage fails, Travis

will stop execution and mark the build as failing.

Note For more information about configuring your travis CI build,
visit https://docs.travis-ci.com/user/customizing-the-
build/.

Chapter 4 a praCtICal example

http://yaml.org/spec/1.2/spec.html#id2795688
http://yaml.org/spec/1.2/spec.html#id2795688
https://docs.travis-ci.com/user/customizing-the-build/
https://docs.travis-ci.com/user/customizing-the-build/

96

 Running the Pipeline in CircleCI
It’s not unusual for organizations to transition from one CI/CD platform

to another. Even upgrading from one version to another can be a huge

undertaking. In this section, we’ll see what it takes to move our pipeline

from Travis CI to CircleCI.

CircleCI is one of the world’s most popular CI/CD platforms. Like

Travis CI, CircleCI is hosted in the cloud, offers free accounts, and is very

easy to get up and running. On top of all that, it’s arguably an even better fit

for our pipeline than Travis CI, as it was built with containerized pipelines

in mind!

 Creating a CircleCI Account

Tip For more information about getting started with CircleCI,
visit the 2.0 documentation page at https://circleci.com/
docs/2.0/.

This section will guide you through the process of creating an account.

The process is fairly straightforward and very similar to that of Travis CI. If

you’ve got experience working with CircleCI or are confident you don’t

need help, feel free to skip to the next section.

To begin, open a browser and navigate to https://circleci.com. In

the top right corner, click the button labelled “Sign Up” (Figure 4-21).

Figure 4-21. The CircleCI home page

Chapter 4 a praCtICal example

https://circleci.com/docs/2.0/
https://circleci.com/docs/2.0/
https://circleci.com

97

CircleCI will ask you to decide whether you want to sign up using

GitHub or BitBucket (Figure 4-22). We’ll be using GitHub; but if you want

to use BitBucket, it should be easy to follow along, as the process is almost

identical.

Figure 4-22. Signing up with CircleCI

Figure 4-23. Signing up using GitHub

If prompted, enter your GitHub username and password (Figure 4-23).

If you are already signed in to GitHub, you won’t be asked to do so again.

Chapter 4 a praCtICal example

98

Next, CircleCI will request access to your email address and read access

to your repositories (Figure 4-24). Like Travis CI, this information will be

used to help set up your projects and notify you when your builds break.

Figure 4-24. Authorizing CircleCI to access GitHub repositories

Figure 4-25. The builds screen

 Creating a New CircleCI Project

After creating your account, you’ll be sent to your dashboard. This is where

you’ll go to view the latest information on all your builds. At the moment,

however, you have no projects. Instead of build information, you’ll be

presented with a page welcoming you to the platform and directing you to

add a new project (Figure 4-25). That sounds like a great idea!

Chapter 4 a praCtICal example

99

To begin, click the blue “Add projects” button in the center of the page.

This will take you to a list of all the repositories in your GitHub or BitBucket

account.

In the list of repositories, find the fork you created of the sample .NET

Core repository and click the “Set Up Project” button (Figure 4-26).

Figure 4-26. Adding a new project

Tip make sure the “Show Forks” checkbox is selected, otherwise
your repository won’t show up in the list.

On the Add Project screen, select Linux as the operating system and

choose “Other” under the Language section (Figure 4-27). Out of the box,

CircleCI comes with the ability to intelligently build and test projects

written using some popular technologies. While this is a wonderful feature,

we won’t be using it for this or any of our other sample applications. All of

our projects include a configuration file that tells CircleCI exactly what to

commands to execute. We’ll take a closer look at this file a little later.

Figure 4-27. Setting up the sample .NET Core project

Chapter 4 a praCtICal example

100

After configuring the project, click the “Start building” button to create

the CircleCI project and start a build.

Once you’ve started the build, you’ll be taken to a new page showing

you its status (Figure 4-28). The build starts by pulling down our pipeline

image, in this case edwardsdl/netcore-pipeline:latest, and then it

begins executing the instructions found in the sample project’s config.

yml file. Almost immediately however, the build fails! Checking the output

of the Clone section makes the problem obvious: stages/01_clone.sh:

line 6: GITHUB_URL: parameter null or not set. We never set the

GITHUB_URL environment variable!

Figure 4-28. The first build of the sample .NET Core project

To fix this, you’ll need to navigate to the build settings for the project

and set a few environment variables (Figure 4-29). Go to the settings

page by clicking the button with the gear shaped icon at the top right.

Then click the “Environment Variables” link under the “Build Settings”

section (Figure 4-30). Next use the “Add Variable” button to add three

Chapter 4 a praCtICal example

101

new environment variables: GITHUB_URL, DOCKER_USERNAME, and DOCKER_

PASSWORD. Unlike Travis CI, the values you set here cannot be exposed in

plain text.

Figure 4-29. Projects page in Circle CI

Figure 4-30. Adding environment variables

Now that we’ve set our environment variables, go back to the list of

builds by clicking the “Builds” button at the top of the navigation bar on

the left side. You should see a single row giving a summary of our failed

build (Figure 4-31). Find the “rebuild” link on this row and click it.

Figure 4-31. Rebuilding the project

Chapter 4 a praCtICal example

102

After you click the “rebuild” link, you’ll be taken back to the

build details page (Figure 4-32). This time the build should complete

successfully! If you examine the build actions list, the output should look

familiar. All of our stages are listed, and the output is the same as we saw

when running the pipeline locally!

Figure 4-32. Running the job a second time

 A Look at the CircleCI Configuration File

So how did CircleCI know how to execute our stages? Take a look at one of

our sample projects and you’ll find a hidden directory named .circleci.

Inside this directory you’ll find a single file named config.yml. This is the

CircleCI configuration file, and it tells CircleCI everything it needs to know.

In the sample .NET Core app, this YAML file looks like this:

Chapter 4 a praCtICal example

103

Listing 4-14. The sample-netcore config.yml File

version: 2

jobs:

 build:

 docker:

 - image: edwardsdl/netcore-pipeline:latest

 steps:

 - setup_remote_docker:

 docker_layer_caching: true

 - run:

 name: Clone

 command: /stages/01_clone.sh

 - run:

 name: Build

 command: /stages/02_build.sh

 - run:

 name: Test

 command: /stages/03_test.sh

 - run:

 name: Archive

 command: /stages/04_archive.sh

The file starts by specifying the Docker image to use when executing

the pipeline steps. Those steps are defined in the next section. Most of this

should look familiar—the clone stage is run first, followed by the build,

test, and archive stages. The setup_remote_docker step is new though.

This is what allows us to run Docker commands inside our container.

Note You can find more information about CircleCI’s config.yml
file at https://circleci.com/docs/2.0/configuration-
reference/.

Chapter 4 a praCtICal example

https://circleci.com/docs/2.0/configuration-reference/
https://circleci.com/docs/2.0/configuration-reference/

104

 Overview
In this chapter we took a deep dive into all the components necessary

to build a simple, albeit fully functional, generic pipeline. We gave

examples of several critical pipeline stages: clone, build, test, archive, and

deploy. We then took a look at the Dockerfiles we use to create our build

environments.

We then put it all together and used our pipeline to build and deploy

several sample applications on our local machines. Taking it one step

further, we showed you how easy it is to migrate the pipeline from your

local machine to Travis CI and then to CircleCI.

In the next chapter, we cover more advanced topics and show you

how to tackle some of the problems that tend to show up in real-world

implementations.

Chapter 4 a praCtICal example

105© Brandon Atkinson, Dallas Edwards 2018
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0_5

CHAPTER 5

Moving Beyond
the Basics
We’ve covered a lot in this book so far. You’ve seen the transition from

monolithic one pipeline per application style CI/CD processes all the

way to a fully generic implementation. At this point we’ve created a truly

generic and platform-independent pipeline that can deploy any number

of languages expanded upon and even look at implementations in some

other scripting languages. The goal of this chapter is to expand on the

knowledge gained so far, and to further explore and emphasize the power

of generic pipelines.

By the end of this chapter we’ll have seen what the generic pipeline

may look like in a true enterprise implementation. We’ll also look at the

role each team plays in its implementation and how a federated DevOps

team may come into play. We’ll even explore how you can empower your

development teams to take control of the pipeline and run custom scripts.

 Additional Stages and Steps
So far we’ve built a somewhat basic pipeline with a minimum number

of stages. While this is more than enough to get you up to speed on how

to build a generic pipeline, we’ve only scratched the surface of what

106

the pipeline would look like in a production environment. Our pipeline

consists of the following stages:

• Clone

• Build

• Unit Test

• Deploy

There are many organizations that would be thrilled to simply have

a pipeline with these stages. We talked in Chapter 1 about how there are

companies, even today, that still deploy code manually. A simple pipeline

like the one in this book would be a godsend for them. However, for

companies that truly embrace DevOps and automated CI/CD pipelines,

this is simply not enough to meet their needs.

A proper enterprise-ready pipeline requires stages that cover much

more, including:

• Static Code Analysis: This stage would perform code

coverage checks and linting on your application source

code.

• Security Scan: This stage would perform security and

vulnerability scanning on the source code. This stage

is crucial to ensure the application is secure and not

vulnerable to cyberattacks.

• Licensing Scan: This stage would perform licensing

checks on any third-party code incorporated into

the application. Some organizations have strict rules

around the licensing of code and may restrict what can

be deployed.

Chapter 5 Moving Beyond the BasiCs

107

• Artifact Storage: This stage would take the built

application code and store it in a repository for later

use. This allows for easy promotion of code that has

been built and tested and has passed all the necessary

checks before being released to Production.

• End to End Tests: This stage would perform any

automated tests against the deployed application.

This is where you can initiate test suites to test any

functionality that is required to go to Production.

• Performance Tests: This stage would kick off any

performance tests that are needed to exert a load on the

application. This could be combined with End to End

tests if needed.

That is a total of ten stages including the ones we included in the

earlier chapters! As you can see, an enterprise CI/CD pipeline can be quite

complex. Each stage may interact with one or more systems, one or more

times! It’s quite easy to imagine some of these stages making multiple calls

to the same system as well. For instance, you may need to submit source

code for a security scan, and then make another call to check the results.

We haven’t even talked about pipelines that may need to also provision

infrastructure as part of their deployments. Some enterprises use the

deployment of new code to also create a new server stack in the process.

This is common with cloud providers like AWS. If you have an application

that runs on EC2 instances, for example, you may want to provision a new

instance with a fresh copy of the underlying OS on each deployment. This

gives you an opportunity to get the latest security patches on the OS each

time you deploy.

The number of stages you have can be limitless. However, the ones

listed earlier would be the most commonly used. The main takeaway is

that your pipeline may consist of multiple stages and may need to handle

Chapter 5 Moving Beyond the BasiCs

108

multiple languages. The nice part is, outside of the build and unit test

stages, most of the remaining stages are generally not language specific.

This makes building and testing those much easier.

Again, we must stress that standards are your friends with regard

to all your stages. The generic pipeline is built to handle any number of

languages passed to it, so your stages must handle those accordingly. If

you’re using enterprise-grade tools for scanning, this is probably not going

to be an issue. For instance, more static code scanning tools can handle

pretty much any code language you can throw at it. The goal in the later

stages of the pipeline is to continue to enforce standards and further push

the generic pattern.

 Other Scripting Languages
While shell scripts are very powerful and almost guaranteed to run

anywhere, you may find yourself in a situation where you either don’t want

to use Shell scripts, or can’t. One of the benefits of the pattern covered in

this book is that it can be applied to any scripting language you wish. In

fact, it doesn’t even have to be a scripting language! You could accomplish

the same goals using any language: for instance, Golang may be a nice

option.

We talked at length in the book about why we chose Shell over other

languages. Scripting languages are interpreted rather than compiled;

this provides many benefits. For instance, using Shell allows us to pretty

much run in any Linux environment without issues. Bash would be

another excellent choice with the introduction of native Bash in Windows

environments. This is what makes scripting languages a great choice for

this pattern.

Chapter 5 Moving Beyond the BasiCs

109

Note Windows 10 is required for native Bash in Windows. the
Windows subsystem for Linux allows you to run Linux environments
without the overhead of a virtual machine. you can learn more at
the following link: https://docs.microsoft.com/en-us/
windows/wsl/about.

Using a compiled language like Golang or C# is not a horrible choice,

but it introduces additional hurdles. Aside from needing to recompile your

code each time you make a change, it also requires you to install a runtime,

deal with versioning problems, and work around platform specific

issues. If you needed to jump from a Windows environment to a Linux

environment, you would need to compile it separately for each one. If you

were using Bash scripts, you would not need to be bothered; simply pick

up the code and change operating systems.

We’ve explored Shell scripts in detail. Now let’s look at the same

examples but in other languages. We’ll basically show each stage we’ve

seen already but presented in another language.

 PowerShell
Listing 5-1 shows the build stage in PowerShell.

Listing 5-1. PowerShell Build Stage Script

$application_type = application.type

switch ($application_type)

{

 java

 {

 mvn clean package

 }

Chapter 5 Moving Beyond the BasiCs

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

110

 netcore

 {

 dotnet restore

 dotnet build -c Release

 }

 node

 {

 npm install

 }

 default

 {

 Write-Host "Unable to build application type

$application_type."

 exit 1

 }

}

This script assumes that you have parsed your JSON configuration file

and the application type is accessible via an object. Listing 5-2 shows the

test stage script.

Listing 5-2. PowerShell Unit Test Stage Script

$application_type = application.type

$test_path = test.path

switch ($application_type)

{

 java

 {

 mvn test

 }

Chapter 5 Moving Beyond the BasiCs

111

 netcore

 {

 dotnet test $test_path

 }

 node

 {

 npm run test

 }

 default

 {

 Write-Host "Unable to test application type

$application_type."

 exit 1

 }

}

You should be noticing a familiar pattern at this point. Even with

PowerShell, the same patterns from the Shell scripts are in place. As

with the build stage, your JSON configuration file has been parsed and is

available to your script. Listing 5-3 illustrates the archive stage.

Listing 5-3. PowerShell Archive Stage Script

$registry = archive.registry

$namespace = archive.namespace

$repository = archive.repository

$image = "$registry/$namespace/$repository:latest"

docker login `

 -u $DOCKER_USERNAME `

 -p $DOCKER_PASSWORD `

 $registry

docker build -t $image

docker push $image

Chapter 5 Moving Beyond the BasiCs

112

Finally, listing 5-4 illustrates the deploy stage.

Listing 5-4. PowerShell Deploy Stage Script

$registry = archive.registry

$namespace = archive.namespace

$repository = archive.repository

$image = "$registry/$namespace/$repository:latest"

docker run -dP $image

What is truly amazing here are the similarities between the Shell script

and PowerShell. Even though they are completely different scripting

languages, the code looks nearly identical. Again, this is the power of

standards coming into play. By keeping your code lean and sticking to

the core commands in each language, you will find your scripts are small,

lightweight, and ultimately easily transferrable to another language.

PowerShell may not be the best example of porting your pipeline code

to another language. For this book we’ve used Shell scripts running in

Linux environments. A more realistic conversion would be to a language

that gives you more power than Shell, but is still very Linux friendly. So

now, let’s look at these scripts written in Python.

 Python
Listing 5-5 shows the build stage in Python.

Listing 5-5. Python Build Stage Script

application_type = application.type

if application_type == 'java':

 subprocess.run(['mvn', 'clean', 'package'], check=True)

elif application_type == 'netcore':

 subprocess.run(['dotnet', 'restore'], check=True)

Chapter 5 Moving Beyond the BasiCs

113

 subprocess.run(['dotnet', 'build', '-c', 'Release'],

check=True)

elif application_type == 'node':

 subprocess.run(['npm', 'install'], check=True)

else

 raise Exception(f'Unable to build application type

{application_type}.')

Much like the Shell script and the PowerShell script, we simply

determine the application type and perform the standard build commands

for each language. Listing 5-6 illustrates the unit test stage.

Note this is a slimmed down python script. it does not include the
shebang or any import statements that would be required. We’re focusing
solely on the logic in the script. the version of python shown here is 3.6.

Listing 5-6. Python Unit Test Stage Script

application_type = application.type

test_path = test.path

if application_type == 'java':

 subprocess.run(['mvn', 'test'], check=True)

elif application_type == 'netcore':

 subprocess.run(['dotnet', 'test', test_path], check=True)

elif application_type == 'node':

 subprocess.run(['npm', 'run', 'test'], check=True)

else

 raise Exception(f'Unable to test application type

{application_type}.')

Chapter 5 Moving Beyond the BasiCs

114

By now the beauty and simplicity of the pattern should be taking hold.

You’ve seen Shell, PowerShell, and now Python. Even if you don’t

regularly use these languages, by sticking with standards and keeping

things simple, the code is very easy to read. More importantly, it’s very

easy to port should that need ever arise. Listing 5-7 shows the archive

stage.

Listing 5-7. Python Archive Stage Script

registry = archive.registry

namespace = archive.namespace

repository = archive.repository

image = f'{registry}/{namespace}/{repository}:latest'

subprocess.run(['docker', 'login', registry,

 '-u', docker_username, '-p', docker_password], check=True)

subprocess.run(['docker', 'build', '-t', image], check=True)

subprocess.run(['docker', 'push', image], check=True)

Finally, listing 5-8 illustrates the deploy stage.

Listing 5-8. Python Deploy Stage Script

registry = archive.registry

namespace = archive.namespace

repository = archive.repository

image = f'{registry}/{namespace}/{repository}:latest'

subprocess.run(['docker', 'run', '-dP', image], check=True)

Now imagine your team decides that all this Shell and PowerShell

and Python stuff is for the birds; they want to use Golang! Not a problem,

you say! At this point it would be a trivial task to research how to issue

commands via Golang, and rewrite the pipeline. Of course, this all

Chapter 5 Moving Beyond the BasiCs

115

depends on how complex your pipeline is. However, by sticking to

standards and not having a lot of “one-off” code, this task becomes

much easier.

 Custom Script Hooks
The most important rule of the generic pipeline, without a doubt, is to

strictly adhere to standards. Standards are your friends; do not deviate

from them. They are the only thing that makes a generic pipeline

work, period. Standards keep the playing field level and ensure that all

applications are handled in the exact same manner, every time.

This is invaluable when it comes to placing new languages on the

pipeline, debugging, as well as adding new features. Without a doubt

teams will come to you and ask (or even expect) for one-off changes that

may apply only to their application. Do not give in to these requests! It may

seem benign at first, and you’re happy to oblige. But over time all those

tweaks begin to add up. Bugs start to creep in and it becomes increasingly

difficult to diagnose and fix issues. The cost and effort required to maintain

the overall pipeline skyrockets. And let’s not forget, a fix here may break

another application over there.

By making all development teams play by the same rules, you ensure

everyone gets treated the same and the pipeline remains very stable.

You’re going to make some people unhappy, and you may be faced with

having to turn some teams away. If a team has an application that requires

a lot of custom work, you may have to say “sorry, build your own pipeline.”

This is life with a generic pipeline.

However, being a DevOps team, you don’t want to be too rigid. After

all, the development teams are your customers. And we want to have

happy customers! So what options do we have if want to keep standards

in place but also give the teams some flexibility in customizing things. You

can offer your teams script hooks.

Chapter 5 Moving Beyond the BasiCs

116

Script hooks are simply an opportunity for teams to inject their own

functionality via scripts into the pipeline. This can be a happy medium in

keeping the pipeline clean from a lot of custom logic and allowing your

development teams to do custom stuff. Let’s look at what script hooks look

like and how you can incorporate them into your pipeline.

 Pre- and Postpipeline Hooks
Common areas for custom hooks are at the beginning and end of the

pipeline. This allows a development team to define custom actions that are

to be performed before or after their application is built or deployed. Some

common actions may include:

• Installing any custom software, plug-ins, packages, etc.

that are required by the application

• Performing any clean-up actions needed by a new

version of the application

• Performing any data migrations or clean-up that may

be needed

What is nice about these hooks is while they give development teams

more flexibility, they’re also quite easy for the DevOps team to implement.

Providing a hook at the beginning and end of the pipeline is accomplished

by simply running a Shell script that is provided by the development team.

Figure 5-1 illustrates the flow.

Chapter 5 Moving Beyond the BasiCs

117

As Figure 5-1 shows, we’re still running inside a container specific to

our language. Nothing has changed in that regard. However, you now are

executing custom scripts at the beginning and end of the pipeline. In this

scenario the development teams would provide a directory in their code

repository containing the scripts. The naming convention of the directory

and scripts would be standardized for the pipeline. Imagine a directory

structure like the following:

• Code Repo

• /src

• /pipeline_scripts

 ■ pre.sh

 ■ post.sh

• /assets

• /scripts

• index.html

Figure 5-1. Implementing pre- and post scripts in the pipeline

Chapter 5 Moving Beyond the BasiCs

118

This is obviously a simplistic application, but let’s just focus on the

structure. In this scenario there is a “pipeline_scripts” folder that contains

any Shell script the developers wish to run during the pipeline execution.

"pre.sh" is run at the beginning of the pipeline, and "post.sh" is run

at the end. This naming convention allows for any development team to

include custom scripts. The pipeline will simply look in the agreed upon

directory and, if the scripts are present, execute them.

While this option provides a lot of flexibility to your development

teams, its power is also its weakness. The DevOps team forfeits a lot of

control with this pattern. When development teams first begin to utilize

this feature, many things may go wrong. Luckily, you’re running inside

a container that will be destroyed at the end of the pipeline execution.

This provides a good number of protections and eases some concerns.

If a team commits a bad hook script and wrecks the pipeline execution,

we can simply throw away the container and try again. This is the beauty

of running in a containerized environment. However, there are still a few

guidelines that should be followed when implementing pipeline hooks:

• Run Custom Scripts with Least Privilege: There will be

many stages in the pipeline that require logging into

third-party systems or performing actions that require

higher access. This is fine if you wrote the code and

know what it’s doing. It becomes more challenging

when you’re running custom scripts. Always run

custom scripts with a lower level account that has fewer

permissions. The last thing you want is a stray script

doing horrible things with an administrator account.

Chapter 5 Moving Beyond the BasiCs

119

• You Wrote It, You Own It: When providing this feature

to teams, it’s extremely important to limit the amount

of support your team provides when issues arise from

custom scripts. The main reason is you will quickly

become a support team for scripts you did not write. You

must be firm and inform teams that if they choose to write

custom scripts, they must support them. It’s your job to

provide proper logging so they know what went wrong.

• Always, Always Run Inside a Container: These scripts

will most likely do things that change the environment,

install packages, etc. You want to ensure this happens

in a container so it does not affect your platform or

other pipeline executions.

• Trust No One, and Log Everything: Don’t trust that any

script is safe. Remember the first point, run with fewer

permissions, and log everything the script does!

If that list didn’t scare you off, then it’s time to talk about taking this

pattern one step further with stage hooks.

 Stage Hooks
Pre- and postscript hooks provide a great deal of functionality. In fact,

it’s rare to have this level of control over how the pipeline executes. And

even when development teams do have a lot of pipeline control, it’s

administered via normal work processes. A feature request is raised with

the DevOps team who then implements a change. By using stage hooks,

this process is turned on its head.

Chapter 5 Moving Beyond the BasiCs

120

Supporting pre- and post hooks will encourage teams to add more

custom functionality at the stage level and less custom functionality in the

before and after hooks. Common pre- and posthook actions are similar to

before and after hook actions. They typically include:

• Installing additional packages that are needed for build

and unit tests

• Using a different unit test framework than what is

currently supported by the DevOps team

• Running additional tests, then combining test coverage

reports

Just like with the pre- and post scripts, the custom stage scripts get

picked up and run before each stage, as shown in Figure 5-2.

Figure 5-2. Build and Unit Test custom scripts being injected

Chapter 5 Moving Beyond the BasiCs

121

In this scenario, we provide the development teams with a prebuild

and preunit test script hook. These would be the most common areas for

hooks to be present. For instance, it’s unlikely to need any kind of hook

for static code analysis, security scans, or deployments. Those are stages

that are sacred and should not be altered. Build and Unit Test, however,

are areas in which the teams may have legitimate needs for custom

functionality. As with pre- and post scripts, standardization is your friend.

The application repo may look like the following:

• Code Repo

• /src

• /pipeline_scripts

 ■ pre.sh

 ■ post.sh

 ■ pre-build.sh

 ■ pre-test.sh

• /assets

• /scripts

• index.html

The script naming here is subtle but very important. By prefixing the

scripts with “pre” it’s an indicator to the development teams that this is

a prebuild script only. You still intend to execute your pipeline code, and

you should. These are not meant to be full overrides of your pipeline code,

although you could certainly do that if you wish. However, it’s been our

experience that doing that invites a lot of support requests and broken

pipeline executions.

Custom script hooks are actually meant to provide the DevOps team

with a bit of breathing room. It allows you to give your development teams

Chapter 5 Moving Beyond the BasiCs

122

options for expanding the capabilities of the pipeline to meet their needs,

but in a controlled setting. If done properly, you can keep your standards-

based pipeline running smoothly while giving your development teams

the flexibility to tailor parts of the pipeline to their specific needs.

 Where to Go from Here
You’ve now been introduced to a shared generic pipeline with Docker.

You’ve seen how you can extend its functionality and provide your

development teams with all the features they need and then some. So

where do you go from here?

Hopefully we’ve shown you some things that you can practically apply

to your own pipelines. Even if you don’t go out and refactor your pipelines

to be generic across the board, you may have seen some things that can

help in your day to day activities. This book was written from practical

knowledge from folks who’ve been down this road. If you decide to embark

on the truly generic shared pipeline, remember these tips:

• Standards, Standards, Standards: We were absolutely

a broken record with this, but it’s true. The only way

a generic pipeline will succeed is with clearly defined

standards and only one way to do things (i.e., build, test,

etc.). The more customization you place in the pipeline,

the harder it will be to maintain and troubleshoot.

• Say No, and Often: Development teams will always ask

for more—new features, customization requests, and

special exceptions for their team or project. You have to

say no more often than you say yes. A generic pipeline

is meant for all teams to use, and if that is the case it

must be truly generic. Learn to say no; that word is one

of your best friends.

Chapter 5 Moving Beyond the BasiCs

123

• Over Communicate with Teams: As you build the

pipeline and maintain it, you’ll need to make changes

from time to time. Some of these are big; some go

unnoticed. It’s very important to over communicate

with your development teams. They are putting a lot

of trust in your pipeline and they want to know what’s

going on. Even if there is a small change, publicize

it. Ensure everyone knows what is happening with

upcoming changes long before you do them.

Now you’re ready to tackle the generic pipeline. By using Docker

and strictly adhering to standards, you can deliver a CI/CD experience

unlike most others. When done properly, you will not only support your

development teams but quite possibly the whole organization. Don’t be

surprised if teams come knocking at your door to get on board. Embrace

the change, and you and your team can deliver great things.

Chapter 5 Moving Beyond the BasiCs

125© Brandon Atkinson, Dallas Edwards 2018
B. Atkinson and D. Edwards, Generic Pipelines Using Docker,
https://doi.org/10.1007/978-1-4842-3655-0

Index

A
Alpine containers, 40
Angular 5 application, 66

configuration file, 69
Dockerfile, 80–81
using IntelliJ IDEA CE, 88

Artifact storage, 107
ASP.NET Core Web APIs

build stage, 72–73
command line, 65, 82
configuration file, 68
deploy, 83
Dockerfile, 80
using IntelliJ IDEA

CE, 83, 85–86

B
Bash, 108–109
Bypass unit tests, 9

C
CI/CD pipeline, 10–11
CircleCI

account, creation, 96–97
authorizing, 98

project creation
build screen, 98–99
configuration file, 102
environment

variables, 100–101
.NET Core

project, 99–100
rebuild, 101–102

signing up, 81, 97–98
Commercial off-the-shelf

(COTS), 6

D
DevOps, 14

E, F
End to end tests, 11, 107
Enterprise CI/CD pipeline

deployments, 107
stages, 106–107

Enterprise CI/CD platform
Circle CI, 59
containers, 51–52
Docker

builds, 51
install, 50

https://doi.org/10.1007/978-1-4842-3655-0

126

.NET Core 1.0, 52

.NET Core 2.0, 53
Jenkins (see Jenkins)
.NET Core, 47–49
shared code, 53–54
shell scripts, 55
Travis CI, 60–61

G, H
Generic pipeline

pre-and postpipeline
hooks, 116–119

script hooks, 115–116
stage hooks, 119–122
stages, 106
tips, 122

Golang, 108–109

I
IntelliJ IDEA CE, 83–88

J, K
Jenkins

configure libraries, 56–57
directory structure, 57
Docker plugin, 57–58
vars folder, 57

jq tool, 73

L
Language-specific pipelines

benefits, 25
build step

angular, 38–39
generic pipeline, 37
switch/case statement, 37–38

code reuse, 29–30
configuration file, 43, 45–46
DevOps team, 33
microservices, 34
shell scripts, 40–43
UIs, 26
using shared code, 36

Licensing scanning, 106
Lines of business (LOBs), 43

M, N, O
Microservices

architecture, 18
CI/CD pipeline steps, 20–21
monolithic application, 21
two-week release cycle, 31–32
with UI, 23–24

Monolithic application
bypass unit tests, 9
CI/CD pipeline

definiton, 10
processes, 6–7
static code analysis, 11

deployment pipeline, 7–8

Enterprise CI/CD platform (cont.)

Index

127

deployment process, 5
design, 2
feature development timeline

risks, 12–14
MVC frameworks, 3–4
quality pipeline stages, 10–11

P, Q, R
Performance tests, 11, 107
Pipeline

archive stage, 75–77
build stage, 72–73
clone stage, 71
configuration file, 67–71
deploy stage, 77–78
running, 81
test stage, 74–75
Travis CI (see Travis CI)

PowerShell
archive stage, 111
build stage, 109–110
deploy stage, 112
unit test stage, 110–111

Python
archive stage, 114
build stage, 112–113
deploy stage, 114
unit test stage, 113

S
Script hooks, 115–116, 121
Security scanning, 106
Shared pipeline

benefits, 26
goal, 28
standards, 27–28

Shell scripts, 108–109
Spring Boot applications

configuration file, 67
Dockerfile, 78–80
Hello World message, 64
using IntelliJ IDEA CE, 87

Stage hooks, 119–122
Static code analysis, 106

T, U, V, W, X, Y, Z
Travis CI

account, creation, 89–90
configuration file, 94–95
environment

variables, 91
.NET Core sample

repository, 91
run pipeline, 93
sign-up process, 81
trigger building, 92–93

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Recognizing You Are Stuck in the Past
	Monolithic Applications
	One Pipeline per Application
	Bad Actors
	Pipeline as Gatekeeper

	Agile Can’t Die; It Was Never Born
	Overview

	Chapter 2: Setting the Stage for the Present
	Microservices
	Developer Best Practices Are Key

	Dedicated Pipeline per Language
	Standards Are Key
	Taking Code Reuse a Step Further

	Microservices and Shared Pipelines are More Agile
	Overview

	Chapter 3: Getting it Right with Docker and Scripts
	One Pipeline to Rule Them All
	Shell Scripts
	Configuration Files

	Docker at the Core
	Platform Agnostic
	Overview
	Shell Scripts
	Docker
	Build Containers

	Chapter 4: A Practical Example
	An Overview of Our Applications
	Spring Boot
	ASP.NET Core Web API
	Angular 5

	A Deep Dive into the Pipeline
	The Pipeline Configuration File
	The Clone Stage
	The Build Stage
	The Test Stage
	The Archive Stage
	The Deploy Stage
	A Look at Our Build Containers

	Running the Pipeline
	Using the Command Line
	Using IntelliJ IDEA CE

	Moving to the Cloud
	Moving the Pipeline to Travis CI
	Creating a Travis CI Account
	Adding a New Repository
	A Look at the Travis CI Configuration File

	Running the Pipeline in CircleCI
	Creating a CircleCI Account
	Creating a New CircleCI Project
	A Look at the CircleCI Configuration File

	Overview

	Chapter 5: Moving Beyond the Basics
	Additional Stages and Steps
	Other Scripting Languages
	PowerShell
	Python

	Custom Script Hooks
	Pre- and Postpipeline Hooks
	Stage Hooks

	Where to Go from Here

	Index

