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What this book covers
Chapter 1, Getting Started with TensorFlow 2.0, provides a quick bird's-eye view of the architectural and API-level changes in TensorFlow 2.0. It covers TensorFlow 2.0 installation and setup, compares how it has changed compared to TensorFlow 1.x (such as Keras APIs and layer APIs), and also presents the addition of rich extensions such as TensorFlow Probability, Tensor2Tensor, Ragged Tensors, and the newly available custom training logic for loss functions.
Chapter 2, Keras Default Integration and Eager Execution, goes deeper into high-level TensorFlow 2.0 APIs using Keras. It presents a detailed perspective of how graphs are evaluated in TensorFlow 1.x compared to TensorFlow 2.0. It explains lazy evaluation and eager execution and how they are different in TensorFlow 2.0, and it also shows how to use Keras model subclassing to incorporate TensorFlow 2.0 lower APIs for custom-built models.
Chapter 3, Designing and Constructing Input Data Pipelines, gives an overview of how to build complex input data pipelines for ingesting large training and inference datasets in most common formats, such as CSV, images, and text using TFRecords and tf.data.Dataset. It gives a general explanation of protocol buffers and protocol messages and how are they implemented using tf.Example. It also explains the best practices of using tf.data.Dataset with regard to the shuffling, prefetching, and batching of data, and provides recommendations for building data pipelines.
Chapter 4, Model Training and Use of TensorBoard, covers an overall model training pipeline to enable you to build, train, and validate state-of-the-art models. It talks about how to integrate input data pipelines, create tf.keras models, run training in a distributed manner, and run validations to fine-tune hyperparameters. It explains how to export TensorFlow models for deployment or inferencing, and it outlines the usage of TensorBoard, the changes to it in TensorFlow 2.0, and how to use it for debugging and profiling a model's speed and performance.
Chapter 5, Model Inference Pipelines – Multi-platform Deployments, shows us some deployment strategies for using the trained model to build software applications at scale in a live production environment. Models trained in TensorFlow 2.0 can be deployed on platforms such as servers and web browsers using a variety of programming languages, such as Python and JavaScript.
Chapter 6, AIY Projects and TensorFlow Lite, shows us how to deploy models trained in TensorFlow 2.0 on low-powered embedded systems such as edge devices and mobile systems including Android, iOS, the Raspberry Pi, Edge TPUs, and the NVIDIA Jetson Nano. It also contains details about training and deploying models on Google's AIY kits.
Chapter 7, Migrating From TensorFlow 1.x to 2.0, shows us the conceptual differences between TensorFlow 1.x and TensorFlow 2.0, the compatibility criteria between them, and ways to migrate between them, syntactically and semantically. It also shows several examples of syntactic and semantic migration from TensorFlow 1.x to TensorFlow 2.0, and contains references and future information.
Table of Contents
Section 1: TensorFlow 2.0 - Architecture and API Changes
Preface
TensorFlow is one of the most popular machine learning frameworks, and its new version, TensorFlow 2.0, improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features.
What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TensorFlow Serving and other multi-platform deployments before moving on to explore the newly released AIY which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis.
By the end of the book, you'll have learned about the compatibility between TensorFlow 2.0 and TensorFlow 1.x and will be able to smoothly migrate to TensorFlow 2.0.
Who this book is for
If you're a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to, and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.
To get the most out of this book
The reader needs to have basic knowledge of Python and TensorFlow.
Download the example code files
You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0 ...
Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781838823856_ColorImages.pdf.
Conventions used
There are a number of text conventions used throughout this book.
CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system."
A block of code is set as follows:
layer_name = tf.keras.Input( shape=None, batch_size=None, name=None, dtype=None, sparse=False, tensor=None, **kwargs)
Any command-line input or output is written as follows:
python3 -m pip --help
Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an ...
Get in touch
Feedback from our readers is always welcome.
General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.
Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.
Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.
If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.
Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!
For more information about Packt, please visit packt.com.
Section 1: TensorFlow 2.0 - Architecture and API Changes
This section of the book will give you a quick summary of what is new in TensorFlow 2.0, a comparison with TensorFlow 1.x, the differences between lazy evaluation and eager execution, changes at the architectural level, and API usage with respect to tf.keras and Estimator.
This section contains the following chapters:
Getting Started with TensorFlow 2.0
This book aims to familiarize readers with the new features introduced in TensorFlow 2.0 (TF 2.0) and to empower you to unlock its potential while building machine learning applications. This chapter provides a bird's-eye view of new architectural and API-level changes in TF 2.0. We will cover TF 2.0 installation and setup, and will compare the changes with respect to TensorFlow 1.x (TF 1.x), such as Keras APIs and layer APIs. We will also cover the addition of rich extensions, such as TensorFlow Probability, Tensor2Tensor, Ragged Tensors, and the newly available custom training logic for loss functions. This chapter also summarizes the changes to the layers API and other APIs.
The following topics will ...
Technical requirements
You will need the following before you can start executing the steps described in the sections ahead:
What's new?
The philosophy of TF 2.0 is based on simplicity and ease of use. The major updates include easy model building with tf.keras and eager execution, robust model deployment for production and commercial use for any platform, powerful experimentation techniques and tools for research, and API simplification for a more intuitive organization of APIs.
The new organization of TF 2.0 is simplified by the following diagram:
The preceding diagram is focused on using the Python API for training and deploying; however, the same process is followed with the other supported languages including Julia, JavaScript, and R. The flow of TF 2.0 is ...
Changes from TF 1.x
The first major difference between TF 1.x and TF 2.0 is the API organization. TF 2.0 has reduced the redundancies in the API structure. Major changes include the removal of tf.app, tf.flags, and tf.logging in favor of other Python modules, such as absl-py and the built-in logging function.
The tf.contrib library is also now removed from the main TensorFlow repo. The code implemented in this library has either been moved to a different location or has been shifted to the TensorFlow add-ons library. The reason for this move is that the contrib module had grown beyond what could be maintained in a single repository.
Other changes include the removal of the QueueRunner module in favor of using tf.data, the removal of graph collections, and changes in how variables are treated. The QueueRunner module was a way of providing data to a model for training, but was quite complicated and harder to use than tf.data, which is now the default way of feeding data to a model. Other benefits of using tf.data for the data pipeline are explained in Chapter 3, Designing and Constructing Input Data Pipelines.
Another major change in TF 2.0 is that there are no more global variables. In TF 1.x, variables created using tf.Variable would be put on the default graph and would still be recoverable through their names. TF 1.x had all sorts of mechanisms as an attempt to help users to recover their variables, such as variable scopes, global collections, and helper methods such as tf.get_global_step and tf.global_variables_initializer. All of this is removed in TF 2.0 for the default variable behavior in Python.
TF 2.0 installation and setup
This section describes the steps required to install TF 2.0 on your system using different methods and on different system configurations. Entry-level users are recommended to start with the pip- and virtualenv-based methods. For users of the GPU version, docker is the recommended method.
Installing and using pip
For the uninitiated, pip is a popular package management system in the Python community. If this is not installed on your system, please install it before proceeding further. On many Linux installations, Python and pip are installed by default. You can check whether pip is installed by typing the following command:
python3 -m pip --help
If you see a blurb describing the different commands that pip supports, pip is installed on your system. If pip is not installed, you will see an error message, which will be something similar to No module named pip“.”
It usually is a good idea to isolate your development environment. This greatly simplifies dependency management and streamlines the software development process. We can achieve environment isolation by using a tool in Python called virtualenv. This step is optional but highly recommended:
>>mkdir .venv
>>virtualenv --python=python3.6 .venv/
>>source .venv.bin/activate
You can install TensorFlow using pip, as shown in the following command:
pip3 install tensorflow==version_tag
For example, if you want to install version 2.0.0-beta1, your command should be as follows:
pip3 install tensorflow==2.0.0-beta1
A complete list of the most recent package updates is available at https://pypi.org/project/tensorflow/#history.
You can test your installation by running the following command:
python3 -c "import tensorflow as tf; a = tf.constant(1); print(tf.math.add(a, a))"
Using Docker
If you would like to isolate your TensorFlow installation from the rest of your system, you might want to consider installing it using a Docker image. This would require you to have Docker installed on your system. Installation instructions are available at https://docs.docker.com/install/.
In order to use Docker without sudo on a Linux system, please follow the post-install steps at: https://docs.docker.com/install/linux/linux-postinstall/.
The TensorFlow team officially supports Docker images as a mode of installation. To the user, one implication of this is that updated Docker images will be made available for download at https://hub.docker.com/r/tensorflow/tensorflow/.
Download a Docker image locally using the following command: ...
GPU installation
Installing the GPU version of TensorFlow is slightly different from the process for the CPU version. It can be installed using both pip and Docker. The choice of installation process boils down to the end objective. The Docker-based process is easier as it involves installing fewer additional components. It also helps avoid library conflict. This can, though, introduce an additional overhead of managing the container environment. The pip-based version involves installing more additional components but offers a greater degree of flexibility and efficiency. It enables the resultant installation to run directly on the local host without any virtualization.
To proceed, assuming you have the necessary hardware set up, you would need the following piece of software at a minimum. Detailed instructions for installation are provided in the link for NVIDIA GPU drivers (https://www.nvidia.com/Download/index.aspx?lang=en-us).
Installing using Docker
At the time of writing this book, this option is only available for NVIDIA GPUs running on Linux hosts. If you meet the platform constraints, then this is an excellent option as it significantly simplifies the process. It also minimizes the number of additional software components that you need to install by leveraging a pre-built container. To proceed, we need to install nvidia-docker. Please refer the following links for additional details:
Once you've completed the steps described in the preceding links, take the following steps:
Installing using pip
If you would like to use TensorFlow with an NVIDIA GPU, you need to install the following additional pieces of software on your system. Detailed instructions for installation are provided in the links shared:
Once all the previous components have been installed, this is a fairly straightforward process.
Install TensorFlow using pip:
pip3 install tensorflow-gpu==version_tag
For example, if you want to install tensorflow-2.0:alpha, then you'd have to type in the following command:
pip3 install tensorflow-gpu==2.0.0-alpha0
A complete list of the most recent package updates is available at https://pypi.org/project/tensorflow/#history.
You can test your installation by running the following command:
python3 -c "import tensorflow as tf; a = tf.constant(1); print(tf.math.add(a, a))"
Using TF 2.0
TF 2.0 can be used in two main ways—using low-level APIs and using high-level APIs. To use the low-level APIs in TF 2.0, APIs such as tf.GradientTape and tf.function are implemented.
The code flow for writing low-level code is to define a forward pass inside of a function that takes the input data as an argument. This function is then annotated with the tf.function decorator in order to run it in graph mode along with all of its benefits. To record and get the gradients of the forward pass, both the decorator function and the loss function are run inside the tf.GradientTape context manager, from which gradients can be calculated and applied on the model variables.
Training code can also be written using the low-level APIs for ...
Rich extensions
Rich extensions are a set of features that have been introduced in TensorFlow to boost user productivity and expand capabilities. In this section, we will cover Ragged Tensors and how to use them, and, we will also cover the new modules introduced in TF 2.0.
Ragged Tensors
Variable-sized data is a common occurrence when both training and serving machine learning models. This issue is constant across the different underlying media types and model architectures. The contemporary solution is to use the size of the largest record, and use padding for smaller records. This is inefficient, not only in terms of memory or storage, but also computational efficiency; for example, when dealing with inputs to a recurrent model.
Ragged Tensors help address this issue. At a very high level, Ragged Tensors can be thought of as the TensorFlow analogs of variable-length linked lists. An important fact to note here is that this variability can be present in nested dimensions as well. This means that it is possible ...
What are Ragged Tensors, really?
Ragged Tensors can also be defined as tensors with one or more ragged dimensions; in other words, dimensions with variable-length slices. As most common use-cases involve dealing with a finite number of records, Ragged Tensors require the outermost dimension to be uniform, in other words, that all slices of that dimension should have the same length. Dimensions preceding the outermost dimension can be both ragged and uniform. To summarize these points, we can state that the shape of a Ragged Tensor is currently restricted to the following form:
Constructing a Ragged Tensor
TF 2.0 provides a large number of methods that can be used to create or return Ragged Tensors. One of the most straightforward ones is tf.ragged.constant(). Let's use it to create a Ragged Tensor of dimension (num_sentences, (num_words)). Please note that we've used round brackets to indicate the dimension that is ragged:
sentences = tf.ragged.constant([ ["Hello", "World", "!"], ["We", "are", "testing", "tf.ragged.constant", "."] ])print(sentences)
You should see something like this:
<tf.RaggedTensor [[b'Hello', b'World', b'!'], [b'We', b'are', b'testing', b'tf.ragged.constant', b'.']]>
It is also possible to create a Ragged Tensor from an old-style tensor or Python list with padded elements. This can be very ...
Basic operations on Ragged Tensors
Ragged Tensors can be used in a manner similar to regular tensors in many cases. TensorFlow provides over 100 operators that support Ragged Tensors. These operators can be broadly classified as fundamental mathematical operators, array operators, or string operators, among others.
The following code block shows the process of adding two Ragged Tensors:
x = tf.ragged.constant([
[1, 2, 3, 4],
[1, 2]
])
y = tf.ragged.constant([
[4, 3, 2, 1],
[5, 6]
])
print(tf.add(x, y))
This results in the following output:
<tf.RaggedTensor [[5, 5, 5, 5], [6, 8]]>
Another interesting feature is that operator overloading is defined for Ragged Tensors. This means that a programmer can intuitively use operators such as +, -, *, /, //, %, **, &, |, ^, <, <=, >, and >=, just like they would with other tensors.
The following code block shows the multiplication of a Ragged Tensor using an overloaded operator:
x = tf.ragged.constant([
[1, 2, 3, 4],
[1, 2]
])
print(x * 2) # Multiply a ragged tensor with a scalar
print(x * x) # Multiply a ragged tensor with another ragged tensor
The resultant output is as follows:
<tf.RaggedTensor [[2, 4, 6, 8], [2, 4]]>
<tf.RaggedTensor [[1, 4, 9, 16], [1, 4]]>
In addition, a variety of Ragged Tensor-specific operators are defined in the tf.ragged package. It could be worthwhile to check out the documentation of the package to learn more. Please see the following links for detailed documentation on this:
New and important packages
The arrival of TF 2.0 also comes with the arrival of many more interesting and useful packages under TensorFlow that can be installed separately. Some of these packages include TensorFlow Datasets, TensorFlow Addons, TensorFlow Text, and TensorFlow Probability.
TensorFlow Datasets is a Python module that provides easy access to over 100 datasets, ranging from audio to natural language to images. These datasets can be easily downloaded and used in models via the following code:
import tensorflow_datasets as tfdsdataset = tfds.load(name="mnist", split=tfds.Split.TRAIN)dataset = dataset.shuffle(1024).batch(32).prefetch(tf.data.experimental.AUTOTUNE)
Datasets taken from this library are tf.data.Dataset objects, which ...
Summary
TF 2.0 contains many major changes, such as API cleanup, eager execution, and an object-oriented philosophy. The API cleanup includes deprecating redundant modules that have equivalent standard Python libraries, as well as removing and reorganizing the tf.contrib module into the main API and into the TensorFlow Addons package. Eager execution and object-oriented APIs allow debugging to be much more efficient and straightforward, and also lead to variables being treated as normal Python variables. This means that variable collections and other APIs dedicated to dealing with global variables are no longer needed, and thus are removed in TF 2.0.
TF 2.0 also shifts the default high-level API from estimators in TF 1.x to tf.keras in TF 2.0 for both simplicity and scalability. The tf.keras API has three different programming types, each providing different levels of abstraction and customizability. Low-level TF 2.0 code can be written using tf.GradientTape to handle gradients of operations, and tf.function for graph-based execution.
This chapter also covered the different ways to install TF 2.0, including installation through pip and Docker, as well as the installation of the GPU version. There are many modules that are compatible with and have been released alongside TF 2.0, which further enhance and augment the possibilities of the base API. These include TensorFlow Datasets, TensorFlow Addons, TensorFlow Text, and TensorFlow Probability.
This chapter also included Ragged Tensors, which are useful for storing data with variable length and shape and hierarchical inputs. This means that Ragged Tensors are useful for storing language and sequence data.
In the next chapter, we will learn about Keras' default integration and eager execution.
Keras Default Integration and Eager Execution
This chapter covers two high-level TensorFlow 2.0 (TF 2.0) APIs—Keras and Estimators. Focusing on the concepts of lazy evaluation and eager execution, this chapter highlights the difference between how the underlying compute graphs are evaluated in TensorFlow 1.x (TF 1.x) and TF 2.0. This chapter also presents a detailed guide on building custom models (using custom low-level operations) using a high-level API such as Keras.
The following topics will be covered in this chapter:
Technical requirements
In order to run the code excerpts given in this chapter, you will need the following hardware and software:
The code files for this chapter are available at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/tree/master/Chapter02.
New abstractions in TF 2.0
Abstractions are a very popular tool used in the process of programming and software development. In a very high-level sense, an abstraction refers to the process of isolating and describing the central idea of a particular task or set of tasks without necessarily specifying the physical, spatial, or temporal details. When done right, an abstraction can significantly reduce the amount of code that needs to be written for a particular task. It also boosts the reusability of existing code and makes it compatible with TF 2.0.
While working with machine learning systems, there are some common high-level tasks, such as training data, modeling, model evaluation, prediction, model storing, and model loading, that are common ...
Diving deep into the Keras API
TF 2.0 introduces tighter-than-before coupling with Keras, especially for the high-level APIs. If you are starting out with building neural network-based models in TensorFlow, it is recommended that you start with Keras. In a nutshell, Keras exposes user-friendly APIs for performing common tasks such as loading data, constructing models, training models, evaluating models, running models, and loading and saving previous models. An important factor contributing to its flexibility is that it allows you to seamlessly operate at varying levels of abstraction.
What is Keras?
Keras is a popular high-level API for building and training deep learning models. At its core, Keras is a high-level neural network API specification. It is used extensively in the machine learning community by researchers, hobbyists, and software engineers alike. It was developed with a focus on enabling fast experimentation. It has implementations for a multitude of machine learning platforms and programming languages, such as TensorFlow, MXNet, TypeScript, JavaScript, CNTK, Theano, PlaidML, Python, Scala, and CoreML. TF 2.0 contains a complete implementation of the Keras API specifications with TensorFlow-specific enhancements and optimizations. This is available in the tf.keras module.
Keras was built with the explicit ...
Building models
Machine learning, at its very core, is a series of statistical computations that are performed to achieve an end goal. These core statistical components can be encapsulated as a model. Furthermore, some standard computations can be viewed as interactions with this core. From a programmer's perspective, it can be useful to look at a model as a black box that contains a bunch of mathematical equations. Then, other actions can be described as a set of interactions with this black box.
For example, training a model can be understood as the process of computing parameters (or weights) for a model, given a set of input records. Inference can be viewed as a process that uses the mathematical core and learned parameters to generate predictions for a given set of inputs.
Keras roughly adopts the abstraction paradigm that we just discussed to help users to easily build, train, and predict using neural network-based models. In subsequent subsections, we shall look in detail at the options that Keras offers for each one of the aforementioned tasks. We shall also look at other ancillary features that make Keras a powerful force to be reckoned with.
In Keras, models are built using a combination of layers. Each Keras layer roughly corresponds to the layer in the neural network architecture. A model can also be thought of as a combination of layers. Keras offers multiple options to combine these layers to form a neural network-based model. The next two subsections focus on two of the most popular APIs that Keras exposes for building the model, also known as the mathematical and statistical cores.
The Keras layers API
In the high-level Keras APIs for model building, a Keras layer is the fundamental building block. A model is typically defined as some type of graph of these layers. These layers can also be programmed to interact with one another. As these are the fundamental building blocks, we are given the ability to define and customize the behavior of the layers during both the training and inference phases. In other terms, we are given the ability to define the behavior of the layer during both forward and backward passes (if applicable). From a programmer's perspective, a layer can be thought of as a data structure that encapsulates the state, as well as the logic, to generate specific outputs from a given set of inputs.
The layers ...
Simple model building using the Sequential API
The Sequential API is a very simple, yet powerful abstraction that Keras exposes for building models. It is recommended that you use this if you're just starting out with Keras. It is also a recommended option if you are working with single-input stage models.
The primary component of this API is tf.keras.Sequential.
This is useful for the simple, serial composition of layers. Let's say you have an n layer neural network. Let's say, these layers are defined as [layer_1, layer_2, …. , layer_n].
Please note that each one of these layers is a Keras layer, as described earlier. For our implementation, this means that the layer object will be one of the layers exposed in tf.keras.layers or a user-defined layer subclassing the base Keras layers implementation.
Constituent layers can be combined using the add() method of an instance of tf.keras.Sequential.
The general form of combining them sequentially is as follows:
my_model = tf.keras.Sequential()
my_model.add(layer_1)
.
.
my_model.add(layer_n)
Let's say you want to build a model describing a fully connected neural network (also called a multilayer perceptron (MLP)) for binary classification of one-dimensional records with five attributes. Our model consists of four fully connected layers. For purely illustrative purposes, let's assume that each fully connected layer contains 10 nodes or neurons. Each one of these layers uses rectified linear unit (ReLU) activation functions. The final output is taken over a softmax layer. Layer-specific customization can be defined in the constructor for the corresponding layer. The code for implementing this model is as follows:
model = tf.keras.Sequential()
# Adds a densely-connected layer with 10 units and rectified linear unit activations
# Accepts multiple input tensors of size 5 from user
model.add(layers.Dense(10, activation='relu', input_shape=(5,)))
# Add layer 2 with 10 units and relu activations:
model.add(layers.Dense(10, activation='relu'))
# Add layer 3 with 10 units and relu activations:
model.add(layers.Dense(10, activation='relu'))
# Add layer 4 with 10 units and relu activations:
model.add(layers.Dense(10, activation='relu'))
# Add a softmax layer with 2 output units:
model.add(layers.Dense(2, activation='softmax'))
Another way to use the Sequential API is to provide all the layers in a list or, in general, as some kind of iterator. These can be passed to the Sequential() constructor while initializing the model object. This can be especially useful when separating the layer description and model creation tasks. Let's look at the following examples to understand this better.
Consider the earlier example of trying to generate a model from a list of these layers: layer_list =[layer_1, layer_2, …. , layer_n]. The model can now be created by passing the layer_list object directly to the constructor, as shown:
new_model = tf.keras.Sequential(layer_list)
It is worth noting that the preceding statement is equivalent to the following one:
new_model = tf.keras.Sequential(layers=layer_list)
This can be used in other ways as well. One example would be to separate the layer specification and model creation processes. Let's explore this idea further. Let's say you have a use case where a model requires a number of layers that are only available at runtime.
A simple approach to do this would be to write a function for creating layers. Let's write an example function, get_layers(n), that takes an integer value of n and returns the many Dense layers one after the other. To illustrate the flexibility of the API, let's implement the function using Python generators:
def get_layers(n):
while n > 0:
yield tf.keras.Dense(10, activation='relu')
n -= 1
If you are not familiar with Python generators, please refer to https://realpython.com/introduction-to-python-generators/ before proceeding.
The function defined in the preceding code block accepts a positive integer value of n and returns a generator object. Each element produced by this generator is a layer. The following code snippet shows how we can use this function to create a model:
model_using_generator = tf.keras.Sequential(layers=get_layers(10))
Advanced model building using the functional API
As machine learning tasks grow in sophistication, models with multi-stage inputs and outputs become increasingly common. A sizable chunk of real-world use cases involve models with multi-stage inputs and outputs. An example of a real-world model with multiple inputs is a text classification model that looks at both words and character sequences in the input text.
While the Sequential API does a very good job of combining layers in a serial fashion, it cannot be used for describing parallel compositions of underlying layers. In general, it cannot be used to build layer graphs that do not have a linear topology. Its utility is also restricted in cases when a particular layer needs to be utilized ...
Training models
Training a model refers to the process of learning weights for different network components that minimize the loss function over a given set of examples. In simpler terms, training a neural network means finding the best combination of values for the network. As you might know, the training process is very closely linked to the evaluation and prediction process as well. Leveraging the power of abstractions, Keras provides powerful high-level interfaces to implement and manage the training process from end to end. Let's look at the training API it offers for models created using the sequential and functional APIs. Some of the functions that it offers for this phase are discussed as follows:
model.compile(
# Optimizer
optimizer=tf.keras.optimizers.SGD(),
# Loss function to minimize
loss=keras.losses.CategoricalCrossentropy(),
# List of metrics to monitor
metrics=[
keras.metrics.SparseCategoricalAccuracy()
]
)
model.fit(
x=train_x,
y=train_y,
epochs=30,
batch_size=32
)
results = model.evaluate(
test_x,
test_y,
batch_size=32
)
Saving and loading models
After training, it can be extremely useful to save the model for later use. Decoupling the training and inference pipelines is a good idea in many use cases. From a developer's perspective, a model can be abstracted out as a black box that accepts a set of inputs and returns some outputs. Saving a model, then, is nothing but exporting an artifact that represents this black box. Restoring or loading models then becomes the process of using this black box to perform some real work. This can also be understood as the process of serializing and deserializing the model black box.
TF 2.0 supports saving and restoring a model in multiple modes:
Loading and saving architecture and weights separately
In some use cases, it makes sense to decouple the model creation and model initialization steps. In such scenarios, model serialization would necessitate having separate processes for loading and saving architectures and model weights. Keras offers support for users to independently work with the architectures and weights.
Loading and saving architectures
In the tf.Keras Python API, the fundamental unit for architecture interchange is a Python dict. Keras models use the get_config() method to generate this dict from an existing model. This dict can then be saved to disk or any other storage medium using standard Python serialization and deserialization approaches such as Pickle or HD5. You can also directly write the Python dict to a file on disk.
Let's say you want to save the architecture of a Keras model, my_model, to disk. The following snippet illustrates how to do this:
my_model_architecture = my_model.get_config()
You can now save this Python dict to disk using your approach of choice.
For the inverse use case of generating a model from a config object, ...
Loading and saving weights
In the Python API, tensorflow.keras uses NumPy arrays as the unit of exchanging weights. This is very similar to the API for loading and saving architectures. These NumPy arrays can also be saved to disk using native Python techniques. The get_weights() and set_weights() methods are roughly analogous to get_config() and from_config(). The former returns a list of NumPy arrays corresponding to the different layers in the model. The latter accepts a list of NumPy arrays and updates the model in memory.
The following snippet illustrates how to get the weights of an existing model:
my_model_weights = my_model.get_weights()
Given a set of weights and a model replica, the inverse operation of updating the weights of the model in memory can be performed as follows:
replica_my_model.set_weights(my_model_weights)
As we can see, it is possible to store an entire model using a combination of get_config() or get_weights() with from_config or set_weights(). A limitation of this process, though, is that it doesn't store any information about the training process.
To understand this better, let's look at an example. Consider a simple model with one input layer, one hidden layer, and one output layer. We will then create a replica of this model by exclusively using the methods discussed in the preceding section. The following are the steps:
# Define layer chain
input_layer = tf.keras.layers.Input(shape=(5,))
hidden_layer = tf.keras.layers.Dense(10)(input_layer)
output_layer = tf.keras.layers.Dense(5, activation=‘softmax')(hidden_layer)
# Define Model
my_model = tf.keras.Model(inputs=input_layer, outputs=output_layer)
# Save architecture
my_model_arch = my_model.get_config()
# Save weights
my_model_weights = my_model.get_weights()
# Create replica using saved architecture
my_model_replica = tf.keras.Model.from_config(my_model_arch)
# Copy saved weights
my_model_replica.set_weights(
my_model_weights
)
As you can see, we have successfully created a copy of the source model using the save API. Furthermore, we've tested this by loading it back into a separate object memory using the load APIs described earlier. In other words, we've created a copy of the model using the load and save APIs.
Saving and loading entire models
One of the major limitations of the process described in the preceding section is that it doesn't include the training process. This can be a major impediment in use cases that involve checkpointing at some point during the training process. To overcome it, TensorFlow makes it possible to save models in their entirety. This can primarily be achieved in two ways—using the Keras API or using the SavedModel API.
In the following sections, we briefly discuss both methods and their syntax. We also provide insights into when to use each.
Using Keras
It is possible to save models built with the Sequential API or the functional API in a single file. It is also possible to load this very model from this file, independent of the code used to build the model.
This file includes the following:
Keras models created using the Sequential or functional APIs can be directly saved to disk. The files are saved using Keras' native HDF5 file format. The general form of the code to achieve this is as follows:
model.save(‘file_name.h5')
This model can be reloaded into memory using a simple Python one-liner. The general format is as follows:
loaded_model = tf.keras.models.load_model(
'path_to_model.h5'
)
This is a very straightforward approach that works well when exchanging models within the Python API.
Using the SavedModel API
SavedModel is the default way of storing objects in the TensorFlow ecosystem. Owing to this standardized nature, it can be used to exchange models across different TensorFlow implementations. Models saved using SavedModel contain actual TensorFlow code in addition to the model architectures and weights. The exact contents of the SavedModel files can be listed as follows:
In the Python API, interacting with SavedModel ...
Other features
In addition to a very powerful API specification, TensorFlow's tf.keras Keras implementation comes with a bunch of additional add-ons. We will briefly discuss two of the most relevant ones in the following sections.
The keras.applications module
The keras.applications module contains pre-built architectures with weights for popular models. These can be used directly for making predictions. Users may also use them to create input features for other networks. Prominent prebuilt implementations in the package include the following:
Each one of the ...
The keras.datasets module
The keras.datasets module includes automation to parse data from files for certain popular datasets. It also includes automation to download these files over the internet if they aren't available locally. This makes it easier and faster for users to experiment with and evaluate different models. For certain use cases, this module can replace the entire data processing stage! The various dataset modules that come with Keras include the following:
Each one of the listed datasets is a Python module. A detailed list of its components is available at https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/datasets.
An end-to-end Sequential example
Let's now use the components of the Keras API that we discussed in the preceding section for a small real-world task. Let's build a neural network using the Sequential API for classifying handwritten digits from the MNIST dataset. The steps are as follows:
import tensorflow as tfimport tensorflow.keras as keras
# Load Data(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
Estimators
When building machine learning models from the ground up, a practitioner would typically go through a number of high-level stages. These include training, evaluation, prediction, and shipping for use at scale (or exporting). Until now, developers have had to write custom code to implement each one of these steps. A lot of the boilerplate code necessary to run these processes remains the same across applications. To make things worse, this code can easily necessitate operating at low levels of abstraction. These issues, when put together, can become a huge inefficiency in the development process.
The TensorFlow team attempted to fix this problem by introducing Estimators, a high-level API that aims to abstract out a lot of the complexities incurred whilst performing different tasks in the aforementioned phases. Specifically, Estimators are a high-level API used to encapsulate tasks in the following categories:
Users can choose from a set of pre-built Estimators or even implement their own. Implementations of Estimators for a variety of commonly used machine learning and deep learning algorithms are available in the standard library.
Estimators provide the following benefits:
In TF 2.0, a lot of the functionality exposed by Estimators is already served by Keras. If you are just starting out, Keras is an easier API to learn. It is recommended that beginners use Keras APIs over Estimators. Once your use case necessitates using Estimators, you may look it up and learn more. A detailed guide is available at: https://www.tensorflow.org/guide/estimators.
Evaluating TensorFlow graphs
The central idea of TensorFlow used to be that the programmer was required to create a compute graph to specify the operations that need to be performed to achieve the desired result. Programmers then specified the hardware and other environmental parameters to compute the output of this compute graph for a given set of inputs. This meant that the values and variables didn't have any values until the graph was explicitly computed by the programmers. This added overhead for programmers to create and manage sessions when all they really wanted was the value of the quantity.
TF 2.0 aims to solve this issue by making changes to the way the underlying compute graph is evaluated and computed. In a single sentence, TF ...
Lazy loading versus eager execution
Lazy loading is a programming paradigm where the value of a quantity is not computed until the quantity is actually needed. In other words, an object isn't initialized until it is explicitly requested. The major benefit of this is that as values of quantities are computed on demand, no additional memory is used to store computed results. If used correctly, this can lead to very efficient usage of memory and can also improve speeds.
Eager execution can be understood to be the opposite of lazy loading. Here, the value of the quantity is computed as soon as it is defined, without waiting until it is called. This means that when the quantity is actually requested, the value is returned from memory instead of being computed from scratch. This helps minimize the time it takes to return the result of a query, as the user doesn't have to wait for the time taken to compute the value.
The difference between both can be illustrated using a simple operation of adding two constants: a and b. First, let's look at the versions of TensorFlow before 2.0. These required the user to define a compute graph and then use sessions to run and evaluate the graph. This can be understood as an example of lazy loading. Let's look at the following snippet to get a better idea:
# Define constants
a = tf.constant(10)
b = tf.constant(32)
# Define add operation
c = a + b
print(f”Value outside session: {c}”)
This gives the following output:
Outside session: Tensor("add_1:0", shape=(), dtype=int32)
At this stage, we can see that the value of c—that is, the result of the add operation on two constants—is actually a tensor with no actual numerical value. Thus, we can see that the graph has been constructed but not yet evaluated. In order to get the actual numerical result of the add operation, we would have to define a session to run and evaluate the underlying graph:
# Create a session and run graph in it
with tf.Session() as sess:
print(f“Value inside Session: {c}”)
You will see the following output:
Value inside Session: 42
This shows that the add operation was evaluated only after it was run in a session.
Now, let's try the same example with TF 2.0 and higher. We define the two constants with the same variable names and values. We also define a third variable to hold the result of the addition. We then print the value of the addition immediately after:
# Define constants
a = tf.constant(10)
b = tf.constant(32)
#Define add operation
c = a + b
print(f”Value outside session: {c}”)
The resultant output is as follows:
Value outside session: 42
As we can see, the outputs at this stage are different between TensorFlow versions 2.0+ and <2.0. In this case, the variable of c already contains the value of the add operation. This was computed without the programmer having to evaluate any compute graphs. In other words, the add operation was eagerly executed. This is the primary difference between 2.0+ and older versions.
TF 2.0 is tightly integrated with the Python programming language. Eager execution enables seamless use of tensors as native Python objects without having to worry about evaluating compute graphs and managing sessions or underlying hardware. The benefits don't end here. Eager execution enables programmers to leverage the powerful control flow structures of the host programming language. This adds a huge amount of value for developers as TensorFlow code now integrates much more intuitively with the rest of the platform, because it no longer requires special flow-control structures. This also adds significant value for experimentation, debugging, and notebook environments.
Summary
In this chapter, we have learned about the high-level abstractions available in TF 2.0 for model building, training, saving, and loading. Diving deep into the Keras API, we learned about how to build models by combining layers using the Sequential and functional APIs. We have also learned about how to leverage the high-level abstractions of the Keras API for training models. The chapter also looked at the intricacies of loading and saving models in various configurations and modes. We have learned about different methods of saving models, architectures, and weights, and this chapter presented an in-depth explanation of each approach and described when you should pick one over the other.
Putting together all the concepts discussed, the ...
Section 2: TensorFlow 2.0 - Data and Model Training Pipelines
This section of the book will outline the overall input data and the training model pipeline. It will also detail model creation using tf.keras APIs, training, and the validation flow.
This section contains the following chapters:
Designing and Constructing Input Data Pipelines
This chapter will give an overview of how to build complex input data pipelines for ingesting large training/inference datasets in the most common formats, such as CSV files, images, text, and so on using tf.data APIs consisting of the TFRecords and tf.data.Dataset methods. You will also get a general idea about protocol buffers, protocol messages, and how they are implemented using the TFRecords and tf.Example methods in TensorFlow 2.0 (TF 2.0). This chapter also explains the best practices for using the tf.data.Dataset method with respect to the shuffling, batching, and prefetching of data, and provides recommendations in terms of TF 2.0. Finally, we will talk about the built-in TensorFlow datasets, ...
Technical requirements
You should know about standard data formats such as CSV files, images (PNG and JPG), and ASCII text formats. Needless to say, most of the chapters in this book assume that you know about basic machine learning concepts, Python programming, the numpy Python module, and that you have used TensorFlow to create some machine learning models. Though it's not required, having familiarity with tf.data APIs from TensorFlow 1.x (TF 1.x) versions will be helpful. Even if you don't have prior knowledge of tf.data APIs, you should find this chapter self-sufficient to learn about them.
Some of the topics in this chapter require Python modules such as argparse and tqdm, which are listed on this book's GitHub repository. The code for this chapter is available at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/tree/master/Chapter03.
Designing and constructing the data pipeline
One of the most important requirements when it comes to training machine learning (ML) models and deep neural networks (DNNs) is having large training datasets with distributions (mostly unknown, which we learn about during ML or DNN training) from a given sample space so that ML models and DNNs can learn from this given training data and generalize well to unseen future or separated out test data. Also, a validation dataset, which often comes from the same source as the training set distribution, is critical to fine-tuning model hyperparameters. In many cases, developers start with whatever data is available—either a little or a lot—to train machine learning models, including high capacity deep ...
Raw data
Raw data, which is used to train an ML model, can be text files, CSV files, images, videos, or custom formatted files. Raw data can even be a combination of these file types. Raw data can also be sequenced data, such as time series data—alternatively, it can even be vector representations for text, such as word embeddings. It's important to ensure that the raw input data is managed before it's fed into the model since it can affect the efficiency of the model's training at runtime.
In many cases, raw data can be stored in a database, such as MySQL, MS SQL, MongoDB, and so on. For the sake of this book, it's assumed that even tabular, SQL, or NoSQL data is raw data and that it needs to be split and converted into TFRecords for machine/deep learning model purposes. Explaining SQL and NoSQL databases is beyond the scope of this book.
Splitting data into train, validation, and test data
One of the key features of data preparation for ML model training is to be able to split existing data into train, validation, and test sets. Train data is the data that is seen and used to fit or train the model; for example, the learning weights and biases of a neural network. Validation data (sometimes referred to as development data) is used to fine-tune the hyperparameters of the model, such as the learning rate, which optimizer to use, and so on. A model sees this data on a frequent basis (for example, after every iteration or epoch) and evaluates the model.
Please note that validation data just helps you fine-tune the model; it doesn't update weights and bias.
Lastly, test data is ...
Creating TFRecords
The creation of TFRecords is core to the input data pipeline so that you can create a tf.data.Dataset object. It's worth noting that you can create datasets directly using raw data, without the creation of TFRecords (which will be explained in the next section). However, the recommended way is to create TFRecords from raw (split) data first and then use it for the dataset pipeline. This is a key part of TF 2.0's input data pipeline design. The following diagram shows the flow of the creation of TFRecords:
TFRecords help us read data efficiently by serializing data to disk, and can be stored in a set of TFRecords files. The recommended size of each file is 100 MB to 200 MB each. It should be noted that TFRecord is a binary format that can store any kind of data. As it's a binary format, it takes less disk space, as well as taking less time to copy or read from disk storage. TFRecords are also required when it comes to training data that's too large to be stored in in-memory servers, GPUs, and/or TPUs. Using TFRecords with datasets, the data can be loaded on an on-demand basis from disk in the form of batches (which will be explained a bit later in this chapter, in the Batching section).
There are four important components of TFRecords:
Please note that, in TF 2.0, tf.Examples have been used throughout high-level APIs such as TFX (https://www.tensorflow.org/tfx/).
Now, let's see how the data is stored in TFRecords. As we mentioned previously, any data that is converted into TFRecords format is stored as a sequence of binary strings. As you might guess, the structure of the data has to be specified upfront before you can read or write from tfrecord files. In order to read and write tfrecords files, we need to use tf.Example protocol messages. Please note that every little piece of information contained in the data has to be stored through the use of Etf.Example. Furthermore, to write the information to disk, tf.io.TFRecordWriter is used. To read back the information from the disk, you can use tf.io.TFRecordReader.
TensorFlow protocol messages – tf.Example
tf.Example is a {‘string':tf.train.Feature} mapping (Python dictionaries), where 'string' could be any name; for example, 'image', 'features', or 'label'.
tf.train.Feature can be one of the following three types:
tf.Example messages can be serialized, written, and read into tfrecords files by converting standard TensorFlow types using the following shortcut functions:
The functions in the following code block can be used to convert a value into a ...
tf.data dataset object creation
As we mentioned earlier, the tf.data set of APIs provide the tools for building complex and efficient input data pipelines from raw data. As an example, the input pipeline can be built from image files from a distributed filesystem. It can be also built from raw text data if you're using a natural language processing (NLP) module. The following diagram shows the flow of tf.dataset object creation:
tf.data.Dataset is the primary class in the tf.data set of APIs and represents a sequence of elements, where each element contains one or more tensor objects. There are four main types of datasets, as shown in the following diagram:
Throughout this chapter, all four types of datasets will be referred to as datasets and/or tf.data.Dataset for the sake of simplicity. Explicit types will be referred to when needed.
Definition-wise, tf.data.Dataset is a sequence of elements of one or more tensor objects, called components; each element in a dataset has the same structure. To inspect the type and shape of a dataset, developers can use two Python APIs, tf.data.Dataset.output_types and tf.data.Dataset.output_shapes, as shown in the following code block:
# Check type and shape of Dataset
dataset = tf.data.Dataset.from_tensor_slices(...)
print(dataset.output_types)
print(dataset.output_shapes)
The preceding code is an example of building an image data pipeline. The elements of the dataset could be a single piece of training data consisting of a pair of image and label Tensors.
In TF 2.0, dataset objects are Python iterables, which is a key difference from TF 1.x versions, where it needed tf.data.Iterator to iterate over dataset objects. The following code shows the difference between iterating dataset objects in TF 1.x and TF 2.0:
# The following code shows difference in iterating Dataset objects
# in TensorFlow 1.x and TensorFlow 2.0
dataset = tf.data.Dataset.from_tensor_slices(...)
dataset = dataset.shuffle(...)
dataset = dataset.map(...)
dataset = dataset.batch(...)
# TensorFlow 1.x (using one shot iterator, get_next)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
for _ in range(...):
element = sess.run(next_element)
...
# TensorFlow 2.0 (extremely simple where Datasets are Python iterables)
for element in dataset:
...
As you can see in the preceding code block, iterating through dataset objects is extremely simple now.
Creating dataset objects
Dataset objects can be created using two primary methods:
Since it's recommended to use TFRecords to create a tf.data.Dataset, let's see how that works. Then, we will cover ways to create datasets from other types of input.
Creating datasets using TFRecords
Once some TFRecords have been created, we can directly use tf.data.Dataset APIs to read them. The following is a block diagram of dataset creation using TFRecords:
You can use the following code to read tfrecords files from the dataset:
# You can read tfrecord files as below
dataset = tf.data.TFRecordDataset(tfrecords_file_names)
Creating datasets using in-memory objects and tensors
The simplest way to create tf.data.Dataset from in-memory objects is to use the from_tensor_slices() method, which slices arrays with respect to the first index in the data. We will refer to the tf.data.Dataset.map() API here, which is defined in detail in the Dataset transformation section. For now, map(...) simply means that a dataset is being modified (transformed) based on some function that is applied to every element of the dataset object.
There are two APIs that you can use to create datasets from in-memory tensors:
You can view the example code at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/blob/master/Chapter03/datasets/create_dataset_from_tensors.ipynb ...
Creating datasets using other formats directly without using TFRecords
As we mentioned previously, you can directly create a tf.data.Dataset using all the different file formats. We also explained the recommended way to create TFRecords. However, if you want to create datasets directly, without going through TFRecords, that is also possible. Here are some examples of creating a tf.data.Dataset directly from raw data:
You can use the td.data.experimental.make_csv_dataset(...) API to find the .csv file. You can define the columns that are available in the .csv file, along with batch_size, as follows. The complete code can be found at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/blob/master/Chapter03/datasets/create_dataset_from_csv.ipynb:
csv_file = "./curated_data/train.csv"
csv_columns = ['square_ft', 'house_type', 'price']
dataset = tf.data.experimental.make_csv_dataset(csv_file, column_names=csv_columns, batch_size=8)
If you need to select a few columns from the CSV file, you can do so by using select_columns arguments. For a more detailed overview, please refer to tensorflow.org.
The tf.data.TextLineDataset(...) API was designed to create a dataset from a text file. This is mainly useful for text data where each line consists of one data sample. Some examples include log messages, answers to questions, and so on. We will use the same example that we used in the previous section to show you how can we use text data to create a tf.data.Dataset. The complete code can be found at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/blob/master/Chapter03/datasets/create_dataset_from_text.ipynb:
def train_decode_line(row): cols = tf.io.decode_csv(row, record_defaults=[[0.], ['house'], [0.]]) myfeatures = {'sq_footage':cols[0], 'type':cols[1]} mylabel = cols[2] #price
return myfeatures, mylabel
def predict_decode_line(row):
cols = tf.decode_csv(row, record_defaults=[[0.], ['house']])
myfeatures = {'sq_footage':cols[0], 'type':cols[1]}
return myfeatures
line_dataset = tf.data.TextLineDataset('./curated_data/train.csv')
train_dataset = line_dataset.map(train_decode_line)
One of the most common input data pipelines is that of images, which can be either .jpeg or .png format. There could be potentially tens of thousands to millions of images in your dataset. We can't store all the images into memory due to hardware memory (CPU memory or GPU memory) limitations. tf.data.Dataset provides an efficient way to build this pipeline.
In the following example, we have several .jpeg/.jpg files, all of which we will use to create tf.data.Dataset. You can find more details at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/blob/master/Chapter03/datasets/create_dataset_from_images.ipynb:
# Get images files
file_pattern = ["./curated_data/images/*.jpeg", "./curated_data/images/*.jpg"]
image_files = tf.io.gfile.glob(file_pattern)
# Get labels
labels = []
for img_path in image_files:
labels.append(get_label(img_path))
# preprocess images
def preprocess_image(img_path, label):
img_data = tf.io.read_file(img_path)
feat = tf.image.decode_jpeg(img_data, channels=3)
feat = tf.image.convert_image_dtype(feat, tf.float32)
return feat, label, img_path
# Create dataset of all image files
image_path_dataset = tf.data.Dataset.from_tensor_slices((image_files, labels))
# Convert to image dataset
image_dataset = image_path_dataset.map(preprocess_image)
We can also create datasets from existing datasets by using the tf.data.Dataset.map(), tf.data.Dataset.zip(), and tf.data.Dataset.concatenate() APIs. These will be explained in the next section, where we will talk about transforming datasets.
Transforming datasets
Once the dataset objects have been created, they need to be transformed based on the model's requirements. The following diagram shows the flow of dataset transformation:
Some of the most important transformations are as follows:
The map function
This transformation API performs a map_func input on each element of the dataset. For those of you who have used pandas' Dataframe.apply(...), map(...) is very similar to that. As an argument of the map(...) API, it takes a function that is applied to each element of the dataset. This function, in turn, takes a tf.Tensor object that represents a single element from the input dataset and returns a newly transformed tf.Tensor object. Please note that the order of elements in the output remains the same as it is for the input dataset:
ds = tf.data.Dataset.range(1, 6) # [1, 2, 3, 4, 5]
ds.map(lambda x: x + 1)
It's important to define the input signature of map_func correctly, as per the structure of each element in the dataset:
a = [1, 2, 3, 4, 5]
ds = tf.data.Dataset.from_tensor_slices(a)
result = a.map(lambda x: ...)
b = [(2, 1), (3, 5), (6, 6)]
ds = tf.data.Dataset.from_tensor_slices(b)
def map_func(input):
output1 = input[0] + 1
output2 = input[1] + 2
return output1, output2
ds=ds.map(map_func)
The flat_map function
This transformation maps the map_func input across the input dataset and flattens the results. This is used to make sure that the order of your dataset remains the same. map_func must return a dataset here:
a = Dataset.from_tensor_slices([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ])a.flat_map(lambda x: Dataset.from_tensor_slices(x + 1)) # ==># [ 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
The zip function
This API is similar to Python's built-in zip(...) function. The difference between Python's zip(...) function and the tf.data.Dataset.zip(...) function is that the latter can take in a nested structure of datasets:
a = Dataset.range(1, 4) # ==> [ 1, 2, 3 ]
b = Dataset.range(4, 7) # ==> [ 4, 5, 6 ]
c = Dataset.range(7, 13).batch(2) # ==> [ [7, 8], [9, 10], [11, 12] ]
d = Dataset.range(13, 15) # ==> [ 13, 14 ]
# The nested structure of the `datasets` argument determines the
# structure of elements in the resulting dataset.
Dataset.zip((a, b)) # ==> [ (1, 4), (2, 5), (3, 6) ]
Dataset.zip((b, a)) # ==> [ (4, 1), (5, 2), (6, 3) ]
# The `datasets` argument may contain an arbitrary number of
# datasets.
Dataset.zip((a, b, c)) # ==> [ (1, 4, [7, 8]),
# (2, 5, [9, 10]),
# (3, 6, [11, 12]) ]
# The number of elements in the resulting dataset is the same as
# the size of the smallest dataset in `datasets`.
Dataset.zip((a, d)) # ==> [ (1, 13), (2, 14) ]
The concatenate function
This transformation API creates a new dataset by concatenating the input dataset with this dataset:
a = tf.data.Dataset.range(1, 4) # ==> [ 1, 2, 3 ]b = tf.data.Dataset.range(4, 8) # ==> [ 4, 5, 6, 7 ]c = a.concatenate(b) # ==> [ 1, 2, 3, 4, 5, 6, 7 ]
The interleave function
This API transforms each element of the dataset using map_func and interleaves the results. For example, you can use Dataset.interleave() to process many input files concurrently:
# Preprocess 4 files concurrently, and interleave blocks of 16 records from
# each file.
filenames = ["/var/data/file1.txt", "/var/data/file2.txt", ...]
dataset = (Dataset.from_tensor_slices(filenames)
.interleave(lambda x:
TextLineDataset(x).map(parse_fn, num_parallel_calls=1),
cycle_length=4, block_length=16))
The cycle_length and block_length arguments control the order in which elements are produced. cycle_length controls the number of input elements that are processed concurrently. If you set cycle_length to 1, for example, this transformation will handle one input element at a time and will produce identical results to tf.data.Dataset.flat_map. In general, this transformation will apply map_func to cycle_length input elements, open iterators on the returned dataset objects, and cycle through them, producing block_length consecutive elements from each iterator, before consuming the next input element each time it reaches the end of an iterator:
a = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ]
# NOTE: New lines indicate "block" boundaries.
a.interleave(lambda x: Dataset.from_tensors(x).repeat(6),
cycle_length=2, block_length=4)
# ==> [1, 1, 1, 1,
# 2, 2, 2, 2,
# 1, 1,
# 2, 2,
# 3, 3, 3, 3,
# 4, 4, 4, 4,
# 3, 3,
# 4, 4,
# 5, 5, 5, 5,
# 5, 5]
The order of elements yielded by this transformation is deterministic, as long as map_func is a pure function. If map_func contains any stateful operations, the order in which that state is accessed is undefined.
The take(count) function
The take(count) function creates a new dataset with the most count elements from the current dataset. This can be typically used to reduce the size of the dataset for debugging or minimalistic purposes. Also, if the count is specified as -1, or if the count is greater than the size of the dataset, the new dataset will contain all the elements of the preceding dataset.
The filter(predicate) function
This API filters the current dataset based on a conditional predicate function:
ds = tf.data.Dataset.from_tensor_slices([1, 2, 3])
ds = ds.filter(lambda x: x > 3) # ==> [1, 2]
Shuffling and repeating the use of tf.data.Dataset
Machine learning models must have a reasonable representation of data from the overall distribution of the training, validation, and test steps. In general, the raw data could be stored in a specific order, such as being stored with respect to each class together, or data could be stored in a specific source together. The raw data must be shuffled to ensure that the training, validation, and test data is spread across the overall distribution of the data. Also, it is recommended that the data is shuffled after every epoch. The following diagram shows the flow of shuffling and repeating the use of tf.data.Dataset:
A good shuffle also helps reduce variance in data, which the model uses to ...
Batching
Gradient descent combined with backpropagation is the most popular learning algorithm in recent machine learning or deep neural network systems. There are three kinds of gradient descent:
Here, batch gradient descent is not practical in the majority of cases due to hardware memory limitations for large datasets. Also, stochastic gradient descent could be slow since a model learns from one piece of data at a time. Due to these reasons, mini-batch gradient descent is the most widely used algorithm. The following diagram shows the flow of batching:
Furthermore, recent machine learning algorithms and deep neural networks are trained on GPUs, TPUs, and a massive number of CPUs in a distributed manner. Each of these GPUs or TPUs have their own in-memory limitations (for example, NVIDIA's 1080Ti GPU has 11 GB of memory available, whereas the Tesla V100 GPU has 16 GB of memory available). Since backpropagation-based gradient descent is used to train and learn ML model weights and biases, developers use mini-batch gradient descent; hence, it's important to have a good batch size so that the available GPU (or TPU) doesn't run out of memory.
tf.data.Dataset provides a great way to create batches of samples in an efficient and seamless manner, as shown in the following code block:
dataset = tf.data.TFRecordsDataset(...)
dataset = dataset.shuffle(buffer_size, seed=None, reshuffle_each_iteration=None)
dataset = dataset.repeat(count = None)
dataset = dataset.batch(batch_size, drop_remainder=True)
The batch(...) API combines consecutive elements of this dataset into batches. batch_size is a hyperparameter that is passed to this API. In Chapter 4, Model Training and Use of TensorBoard, we will discuss and provide recommendations for batch size.
Prefetching
After batching is done, it's recommended to use the prefetch(...) API. This API transforms an input dataset into a new dataset that prefetches elements from the input dataset. This API is important because it collects the next batch that will be loaded into the input pipeline while the current batch is being served by the model:
dataset = tf.data.TFRecordsDataset(...)dataset = dataset.shuffle(buffer_size, seed=None, reshuffle_each_iteration=None)dataset = dataset.repeat(count = None)dataset = dataset.batch(batch_size, drop_remainder=True)dataset = dataset.prefetch(buffer_size)
In general, the buffer_size argument that's specified for the prefetch(...) function should be as big as the batch_size argument specified for the batch(...) ...
Validating your data pipeline output before feeding it to the model
So far, we have learned about building the input data pipeline with several methods and techniques to extract and transform the data. As a recommendation, it's extremely useful to verify whether your input data pipeline is extracting and transforming the right data before it feeds it to a model. In TF 2.0, it is very simple to do this since dataset objects are Python iterables now. You can just iterate through the created dataset to the print values of the data, as follows:
ds = tf.data.Dataset.from_tensor_slices([1, 2, 3])
for data in ds:
print(data)
Feeding the created dataset to the model
Once the dataset objects have been created, transformed, and shuffled, and batching has been done, it needs to be fed into a model (remember the L of ETL from the beginning of this chapter). This step has had a major change in TF 2.0.
One primary difference in input data pipeline creation in TF 2.0 is in its simplicity. TF 1.x needs an iterator to feed a dataset to a model. In order to do this, there are several iterators to iterate a batch of data. One is by using the tf.data.Iterator API from the dataset objects. There are one-shot, initializable, re-initializable, and feedable iterators in TF 1.x. While these iterators are very powerful, they add a good amount of complexity as well—both in terms ...
Examples of complete end-to-end data pipelines
So far, we have covered the creation of dataset objects and how to create batches of data to feed into a model. In this section, we will look at an example of an end-to-end input data pipeline and model training. We will build an image classifier using the CIFAR10 data.
In order to run the CIFAR10-based end-to-end example, you need to download the necessary data from https://www.cs.toronto.edu/~kriz/cifar.html. The dataset has been taken from a paper called Learning Multiple Layers of Features from Tiny Images, by Alex Krizhevsky, 2009 (https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf). This dataset contains the following information:
After downloading and untarring the dataset, you will see a folder called cifar-10-batches-py, which will have the following files:
The data_batch_* files contain the training data, whereas the test_batch file contains the test data. These files are in Python pickle format. In this end-to-end example, we will create tfrecords from the pickle files. The full code file is available in this book's GitHub repository, along with a README.md file, both of which can be found at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/blob/master/Chapter03/cifar10/README.md.
Creating tfrecords using pickle files
For illustration purposes, we will use one of the data_batch_* files as validation data. We will use the rest for training. For example, if we choose data_batch_4 as the validation data, then data_batch_1, data_batch_2, data_batch_3, and data_batch_5 will be used as training data.
def create_tfrecords(cifar10_data_folder, validation_data_idx): """ function to generate tfrecords Creates three sub-folders, train, eval, test and put resp tfr files """ batch_files = _get_file_names(validation_data_idx) tfrecords_outdir = './tfrecords' for data_type in ['train', 'eval', 'test']: input_files = [os.path.join(cifar10_data_folder, i) \ for i in batch_files[data_type]] ...
Best practices and the performance optimization of a data pipeline in TF 2.0
Here is a summary of the best practices to follow while building an efficient input data pipeline in TF 2.0:
# buffer_size could be either 1 or 2 which represents 1 or 2 batches of data
dataset = dataset.shuffle(count).repeat().batch(batch_size).prefetch(buffer_size)
Built-in datasets in TF 2.0
TF 2.0 also provides a collection of datasets that are ready to be used with TensorFlow. It handles downloading, preparing the data, and even building tf.data.Dataset on its own, which can then be directly fed into the model.
Follow these steps to use these built-in datasets:
pip3 install tensorflow-datasets
Please note that tensorflow-datasets expects you to have a correct and complete installation of TF 2.0.
import tensorflow_datasets as tfdstfds.list_builders()
This will give the following output:
['abstract_reasoning', 'bair_robot_pushing_small', 'caltech101', ...
Summary
This chapter has shown an overall approach to designing and constructing an input data pipeline using TF 2.0 APIs in a simple and suggestive manner. It has provided the building blocks of the different components of the data pipeline and given details of the APIs that are required to build the pipeline. A comparison between TF 1.x APIs and TF 2.0 APIs has been provided.
The overall flow can be summarized in two major passes: raw data management and dataset manipulation. Raw data management deals with raw data; splitting data into train, validation, and test sets; and the creation of TFRecords. Typically, this is a one-time process, which can also include offline data transformation. Dataset manipulation is an online transformation process that creates dataset objects, applies transformations, shuffles the data, and then repeats this and creates batches of the data with prefetching; these are fed into the model later on.
It's always recommended to use an input data pipeline, no matter the training data size and life cycle of the model training/inference. Since dataset objects are Python iterables in version 2.0, it's really simple to feed them into your model.
In the next chapter, we will learn about model training and using TensorBoard.
Further reading
While this chapter has tried to capture the most recent information about how to build an input data pipeline, TensorFlow is a fast-changing platform. The developers are adding new features every day. There're also thousands of open source contributors from the community, and they are adding features rapidly. It's strongly recommended to refer to https://www.tensorflow.org as much as possible to learn about correct API usages and/or changes.
Model Training and Use of TensorBoard
This chapter details a machine learning training pipeline to build, train, and validate state-of-the-art machine learning models, including deep neural networks. It describes how to integrate input data pipelines, create tf.keras-based models, perform training in a distributed manner, and run validations to fine-tune model's hyperparameters. It also touches on various concepts on how to export and save TensorFlow models for deployment and inferencing. Model debugging and visualization are the key tools used to debug and improve model accuracy and performance. This chapter also outlines the usage of TensorBoard, changes to it in TF 2.0, and how to use TensorBoard for model debugging and profiling a model's speed and performance.
TensorFlow 1.x version has strong support for low- and mid-level APIs to build machine learning models. It also has Estimator APIs, including pre-made Estimators, such as LinearClassifier and DNNRegressor, along with custom-made estimators to serve as high-level TF APIs. The support for estimators in TF 1.x was to provide high-level APIs, which are simpler to build in comparison to low- and mid-level TF APIs. Starting from TensorFlow 2.0, one of the major changes is to adopt the Keras API standard as high-level APIs instead of Estimators. This makes perfect sense for the TensorFlow development team since Keras APIs are by far the largest adopted API set in the machine learning community, and the creator of Keras, Francois Chollet, who is also a great Artificial Intelligence (AI) researcher, is now part of the TensorFlow development team. Initial support for tf.keras has been there in TensorFlow 1.x version; however, a full and complete experience of tf.keras is available in the TF 2.0 version.
In this chapter, we will skim through tf.keras APIs including sequential, functional, and model subclassing types of APIs. You will learn how to feed the input data pipeline to the model pipeline using tf.data.Dataset with the possible classified structure of the feature columns to the model. We will also touch on how to define loss functions, the most common optimizers, TensorBoard-based data, model debugging, visualization and profiling, and so on. Starting with TensorFlow 2.0, tf.keras APIs are tightly integrated into the TensorFlow ecosystem, which includes improved support for tf.data and newly available distribution strategies for distributed training across a wide variety of GPUs and TPUs. tf.keras also has seamless support for exporting trained models that can be served and deployed using TensorFlow Serving and other techniques on mobile and embedded devices using TensorFlow Lite.
We will cover the following topics in this chapter:
Technical requirements
It's assumed that readers of this chapter and this book know the basics of machine learning, neural networks, and deep neural networks. Also, as a prerequisite, it's assumed that readers know TensorFlow 1.x APIs. Further, a basic understanding of convolutional, recurrent, and feedforward layers in deep neural networks is required too.
Comparing Keras and tf.keras
tf.keras is TensorFlow's implementation of the Keras API specification. This is a high-level API to build and train models, which includes first-class support for TensorFlow-specific functionality, such as eager execution, tf.data pipelines, and estimators. tf.keras makes TensorFlow easier to use without sacrificing flexibility and performance.
Keras (the original website that defines the Keras API standard) has been an open source project that got tremendous attention from ML engineers and data scientists due to its simplicity and strength. Initially, the default backend engine for Keras (remember, Keras is a set of APIs) was Theano; however, lately, it has changed, with TensorFlow now as its default backend engine. You can also set the default backend engine to MXNet, CNTK, and so on. Keras APIs are extremely user-friendly, modular, and composable. Also, it's easy to extend for your specific needs. TensorFlow adopted Keras API standards and since then, the development of tf.keras using TensorFlow core functions has been going full swing. Now, with the release of TF 2.0, the TF development team has brought tight and efficient support of tf.keras high-level APIs. Also, it's worth mentioning that Keras and tf.keras are two entirely different packages and, as part of TF 2.0, tf.keras should be used. In terms of versioning, in TensorFlow 2.0, there is still a discrepancy with the version number of TensorFlow and tf.keras and you can try viewing this using tf.__version__ and tf.keras.__version__.
Comparing estimator and tf.keras
TensorFlow 1.x has been recommending for using tf.estimator APIs for its high-level API set, which has pre-made estimators available with built-in models, such as LinearRegressor and DNNClassifier. Also, for a more granular and customized model, TF 1.x has custom-made estimators. Starting from TF 2.0, it's recommended to use only the rich set of pre-made estimator APIs that are packaged with linear classifiers, DNN classifiers, combined DNN linear classifiers, and Gradient Boosted Trees. These models are production-ready and widely deployed to be used. For any custom models, a suggestion is to use tf.keras directly instead of tf.estimator APIs. Also, it's worth noting that, to have better synergy with tf.keras, ...
A quick review of machine learning taxonomy and TF support
Most of the learning problems can be solved using three primary kinds of machine learning techniques:
Generative and discriminative models can be used with all three of these kinds of machine learning techniques. A generative model tries to learn patterns and distributions empirically from a given dataset that has an unknown distribution and might use the learned model to generate new data as if it's coming from the same distribution. Some of the popular generative models are Gaussian mixture models, Hidden Markov model, Bayesian networks (such as Naive Bayes), and so on. An extremely popular generative model that came in 2014 is the generative adversarial model, which has attracted a lot of attention due to its strong success and potential. In addition to just learning a distribution, which can be used for unsupervised learning, generative models can also be used to do classification or prediction tasks (supervised learning), which use the conditional probability that a sample, x, belongs to a class, y, by calculating the probability P(y | x) using the Naive Bayes theorem. Contrary to generative models, discriminative models are used to directly learn conditional probability, P(y | x), for regression, classification, and other kinds of supervised learning problems. Deep neural networks can be used for building either generative or discriminative models.
TensorFlow provides rich sets of APIs to build the aforementioned generative and discriminative models. Further, in TF 2.0, there is an overall change in the philosophy of creating these models with the introduction of eager execution (explained in Chapter 2, Keras Default Integration and Eager Execution), which makes the use of tf.keras quite simple and easy to debug. Also, tf.keras APIs in TensorFlow 2.0 have enriched the overall power of what TF can do in the TF 1.x version. In this book, we mostly use tf.keras APIs to build, train, and predict neural network models and will not discuss low- or mid-level TF APIs unless mentioned otherwise.
TensorFlow's philosophy when building deep learning models and training them is to first define neural network layers (also known as building the computational graph consisting of nodes and edges); define a loss function, accuracy metric, and appropriate optimizer; and then train the model to update gradients. These three steps are reflected in tf.keras APIs using build, compile, and fit, as shown in the following diagram:
In the following section, we will first see how to build a model using tf.keras 2.0 APIs, which will detail the creation of computational graph nodes and edges. Then, we will cover compile and fit, covering the definition of loss and accuracy functions.
Creating models using tf.keras 2.0
In this section, we will learn three major types of tf.keras APIs to define neural network layers, namely the following:
The following diagram shows a Python class hierarchy for these three APIs to build tf.keras.Model:
Let's create a relatively simple neural network to build a handwriting recognition classifier ...
Sequential APIs
Sequential APIs are the simplest way to create a TF model and serve approximately 70-75% types of models. You need to create a tf.keras.models.Sequential(...) Python class and add desired layers to the model sequentially—this is also called the stacking of layers. These layers could be dense, convolutional, or even recurrent layers. You might need to provide the input shape of the first layer. The following are the steps to create a TF model using a sequential API:
model = tf.keras.models.Sequential()
num_filters = 32
kernel_size = (5, 5)
pool_size = (2, 2)
num_classes = 10
Optionally, the first layer can receive an input_shape argument:
model.add(tf.keras.layers.Conv2D(filters=num_filters,
kernel_size=kernel_size,
padding='valid', activation='relu',
input_shape=input_shape))
model.add(tf.keras.layers.Conv2D(filters=num_filters,
kernel_size=kernel_size,
padding='same', activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=pool_size))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=num_classes,
activation='softmax'))
Please note the use of tf.keras.layers instead of tf.layers. TensorFlow 2.0 explicitly recommends using tf.keras.layers. With tf.keras.layers, you can specify weights, biases, initializers, and regularizers. With tf.layers and tf.keras.layers, there could be some differences in how the weight initialization is done and to get the exact API definition; it's recommended to look at https://www.tensorflow.org/, in the respective sections.
Functional APIs
Functional APIs build more advanced models than sequential APIs. For example, if you need a model with multiple inputs and multiple outputs, it's not possible using Sequential APIs. Functional APIs provide that flexibility. Also, using functional APIs, you can define models with shared layers. Further, models with residual connections can only be defined using Functional APIs.
The creation of neural network layers using Functional APIs happens through Python callables (Python objects that can be called). As part of building deep learning models, which are usually a stack of layers, and in contrast to Sequential APIs where you first create the tf.keras.Sequential model and then add layers one by one, in Functional APIs, we ...
Model subclassing APIs
Model subclassing APIs are used to build fully customized models by subclassing (deriving) a tf.keras.Model class object. This is achieved by creating layer stacks inside the constructor __init__(...) method of the derived class and they get set as an attribute to the class. Further, you implement the forward pass graph in the call(...) function.
Let's build model subclassing using the following class:
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.num_filters = 32
self.kernel_size = (5, 5)
self.pool_size = (2, 2)
self.num_classes = 10
self.my_input_shape = (28, 28, 1)
Let's define layers now:
# first conv layer
self.conv1_layer = tf.keras.layers.Conv2D(filters=self.num_filters,
kernel_size=self.kernel_size, padding='valid', activation='relu',
input_shape=self.my_input_shape)
# Another conv2d layer
self.conv2_layer = tf.keras.layers.Conv2D(filters=self.num_filters,
kernel_size=self.kernel_size, padding='same', activation='relu')
Add a max pooling layer:
self.mp_layer = tf.keras.layers.MaxPooling2D(pool_size=self.pool_size)
And add a dropout:
self.do_layer = tf.keras.layers.Dropout(0.5)
Flatten the layers:
self.ft_layer = tf.keras.layers.Flatten()
Add a softmax layer with 10 output units:
self.outputs_layer = tf.keras.layers.Dense(self.num_classes, activation='softmax')
def call(self, inputs, training=False):
conv1 = self.conv1_layer(inputs)
conv2 = self.conv2_layer(conv1)
mp = self.mp_layer(conv2)
do = tf.keras.layers.Dropout(0.5)(mp)
ft = tf.keras.layers.Flatten()(do)
outputs = self.outputs_layer(ft)
return outputs
After creating models using any of the APIs, it's always a good idea to use model.summary() and/or tf.keras.utils.plot_model(...) to review model details.
Model compilation and training
Neural networks model complex nonlinear functions, such as sin(x), x**2, and x**3, to name a few simple ones and are made of a network (stack) of layers. These layers could be a mixture of convolutional, recurrent, or simply feedforward layers. Each layer is made up of neurons. A neuron has two ingredients to model nonlinearity—the weighted sum from previous layers followed by an activation function. The neural network tries to learn the distribution of given training data in an iterative manner. Once the neural network is built in terms of layers stack by specifying activation functions, an objective function (also known as the loss function) needs to be defined to improve model weights using an appropriate ...
The compile() API
The tf.keras.Model.compile(...) API helps to define the loss function and optimizers, as follows:
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
Loss can be defined simply using a string such as mse or categorical_crossentropy, or by specifying tf.keras.losses.CategoricalCrossentropy, as shown in the following code block. The same is true for the optimizer as well. However, in order to specify an explicit learning rate to the optimizer, you must use a Python optimizer class such as tf.keras.optimizers.Adam, as follows:
# Specify the training configuration (optimizer, loss, metrics)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.1),
# Loss function to minimize
loss=tf.keras.losses.CategoricalCrossentropy(),
# List of metrics to monitor
metrics=[tf.keras.metrics.Accuracy()])
The fit() API
tf.keras.Model.fit(...) is the primary API to train your model. It takes input training data and, optionally, batch size, callbacks, and so on, as its inputs:
model.fit(train_dataset, epochs=10, callbacks=[tensorboard_callback], validation_data=val_dataset)
Callbacks are hooks of specific utilities during model training. They are passed to the fit(...) function to customize and extend the model's behavior during training. There are many built-in callbacks that are useful—the following are some of them:
Saving and restoring a model
Monitoring training progress is extremely important and being able to review a model at every iteration or step of training is equally important to debug the model's performance. Further, once the training has been concluded, the model needs to be loaded for inference and deployment purposes. In order to be able to do this, the model's trained weights and parameters need to be saved for future use.
TF 2.0 provides support to do this easily as models can be saved during and after training. This gives the user flexibility to allow the restoration of training from a previous checkpoint and to avoid restarting the model's training completely to cut down a long training time. Further, these saved models can be shared between teams for further work. In this section, we will primarily discuss saving tf.keras.Models.
TF gives the flexibility to save model weights only or the entire model, including model weights, configuration, and optimizer details, and so on.
Saving checkpoints as the training progresses
Saving checkpoints can be simply achieved using tf.keras.callbacks, as follows:
# Create checkpoint callbackcp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1)model.fit(train_dataset, epochs=10, callbacks=[cp_callback], validation_data=val_dataset)
The preceding callback creates multiple TensorFlow checkpoint files, which are updated after each epoch training is done. Further, to use these checkpoints, recreate the model using exactly the same architecture as the original model for which the checkpoints were saved, build it, and load weights from any of the checkpoints using the tf.keras.Model.load_weight(...) API and use it for evaluation:
model.load_weights(checkpoint_path) ...
Manually saving and restoring weights
The model weights can also be saved in checkpoint files. This can be used to save trained weights for further training in the future:
# Save the weights
model.save_weights('./checkpoints/my_checkpoint')
# Restore the weights
model = create_model()
model.load_weights('./checkpoints/my_checkpoint')
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))
Saving and restoring an entire model
TF can also save and restore an entire model including weights, variables, parameters, and the model's configuration. This gives the flexibility to load the entire model without having the original code with which the model was trained. The entire model can be stored either in an HDF5 file format or the upcoming TF internal format using tf.keras.experimental.export_saved_model. At this point, the latter is still experimental so we will not describe that yet:
model = create_model()model.fit(train_images, train_labels, epochs=5)
Save the entire model to an HDF5 file:
model.save('my_model.h5')
Recreate the exact same model, including weights and optimizer:
new_model = keras.models.load_model('my_model.h5') ...
Custom training logic
As mentioned earlier, TF 2.0 brings about default eager execution, which means that legacy TF 1.x custom training logic implementations based on a graph-based code flow are now obsolete. To implement such custom training logic in TF 2.0 with regard to eager execution, tf.GradientTape can be used. The purpose of tf.GradientTape is to record operations for automatic differentiation or for computing the gradient of an operation or computation with respect to its input variables. This is done by using tf.GradientTape as a context manager. TensorFlow records all operations executed in the context of tf.GradientTape onto a tape, which is then, along with the gradients, associated with those operations to compute the gradient of the recorded operation using reverse mode differentiation.
For example, the gradient of a simple cube operation can be calculated as follows:
x = tf.constant(2.0)
with tf.GradientTape() as tape:
tape.watch(x)
y = x ** 3
dy_dx = tape.gradient(y, x) # 12.0
tf.GradientTape records all operations that involve watched tensors, such as x in the preceding example. All trainable variables that appear in the tf.GradientTape context are automatically watched and recorded on the tape. This functionality can be disabled by setting watch_accessed_variables to False so that only the variables that are specifically watched by the programmer will be recorded.
Higher-order derivatives can also be calculated using tf.GradientTape by stacking the context managers onto each other and computing the gradient with respect to the previous order derivative.
tf.GradientTape also allows for more custom training logic since it provides options to manipulate the gradient before using an optimizer. This provides an alternate, more involved, and powerful method of training deep learning models than built-in tf.keras.Model.fit. To do this, all forward pass operations get recorded on tape and, to compute the gradient of those operations, the tape is played backward and then discarded. An important thing to note here is that a particular tf.GradientTape model can only compute one gradient.
To first implement the simple training of a model with tf.GradientTape, call the forward pass on the input tensor inside the tf.GradentTape context manager and then compute the loss function. This ensures that all of the computations will be recorded on the gradient tape. Then, compute the gradients with regard to all of the trainable variables in the model. Once the gradients are computed, any desired gradient clipping, normalization, or transformation can be performed before passing them to the optimizer to apply them to the model variables. Take a look at the following example:
NUM_EXAMPLES = 2000
input_x = tf.random.normal([NUM_EXAMPLES])
noise = tf.random.normal([NUM_EXAMPLES])
input_y = input_x * 5 + 2 + noise
def loss_fn(model, inputs, targets):
error = model(inputs) - targets
return tf.reduce_mean(tf.square(error))
def gradients(model, inputs, targets):
with tf.GradientTape() as tape:
loss_value = loss_fn(model, inputs, targets)
return tape.gradient(loss_value, model.trainable_variables)
model = tf.keras.Sequential(tf.keras.layers.Dense(1))
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
print("Initial loss: {:.3f}".format(loss_fn(model, input_x, input_y)))
for i in range(500):
grads = gradients(model, input_x, input_y)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if i % 20 == 0:
print("Loss at step {:03d}: {:.3f}".format(i, loss_fn(model, input_x, input_y)))
print("Final loss: {:.3f}".format(loss(model, input_x, input_y)))
print("W = {}, B = {}".format(*model.trainable_variables))
Another feature added in TF 2.0 is the tf.function decorator. When a function is annotated with tf.function, it still works like any other Python function but will be compiled into a graph, which provides benefits, such as faster execution and GPU and TPU acceleration, and it makes it easy to export to SavedModel.
Not all functions need to be annotated with tf.function, as any function called inside an annotated function will also run in graph mode. Such functions are faster for graphs with multiple smaller operations, but others, with more expensive operations, such as convolutions, will see less improvement.
The tf.function decorator can also graph Python control flow, such as if, while, for, break, continue, and return. Running these functions allows for faster evaluation and hardware acceleration.
tf.function can also be used inside tf.keras models and training loops. The tf.function decorator is typically used on the model's call method to provide graph mode evaluation. Another more common practice is to use tf.function for one loop of training, as it simply controls flow. This way, more of the computations of the training process can be brought inside TensorFlow and will benefit from optimized operations.
The following snippet is an example of tf.function in tf.keras:
class CustomModel(tf.keras.models.Model):
@tf.function
def call(self, input_data):
if tf.reduce_mean(input_data) > 0:
return input_data
else:
return input_data // 2
The following snippet is an example of tf.function in training:
compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
def train_one_step(model, optimizer, x, y):
with tf.GradientTape() as tape:
logits = model(x)
loss = compute_loss(y, logits)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
compute_accuracy(y, logits)
return loss
@tf.function
def train(model, optimizer):
train_ds = mnist_dataset()
step = 0
loss = 0.0
accuracy = 0.0
for x, y in train_ds:
step += 1
loss = train_one_step(model, optimizer, x, y)
if tf.equal(step % 10, 0):
tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result())
return step, loss, accuracy
TF 2.0 also provides a way to create custom gradients to override the default gradient calculation. This is done by using the tf.custom_gradient decorator. A common reason to use custom gradients is to provide a numerically stable gradient for a series of operations, and they can also be used to clip the norm of the gradients.
To use the tf.custom_gradient decorator, we must define a function that both returns the desired computation's result and returns the gradient of the computation. An example of this is the implementation of gradient clipping during backpropagation:
@tf.custom_gradient
def clip_gradient_by_norm(x, norm):
y = tf.identity(x)
def grad_fn(dresult):
return [tf.clip_by_norm(dresult, norm), None]
return y, grad_fn
As we can see in the preceding example, the function not only returns a copy of the input tensor but also a function that takes the default gradients as an argument and returns the clipped gradient.
The tf.custom_gradient decorator's primary use is to allow for fine-grained of over the gradients of a series of operations and can be used to create a more efficient and stable implementation of a sequence of operations.
More examples on how to use tf.custom_gradient can be found at https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/custom_gradient.
Distributed training
One of the strengths of TF 2.0 is to be able to train and inference your model in a distributed manner on multiple GPUs and TPUs without writing a lot of code. This is simplified using the distribution strategy API, tf.distribute.Strategy(...), which is readily available for use. The fit() API section, which explains tf.keras.Model.fit(...), showed how this function was used to train a model. In this section, we will show how to train tf.keras-based models across multiple GPUs and TPUs using a distribution strategy. It's worth noting that tf.distribute.Strategy(...) is available with high-level APIs such as tf.keras and tf.estimator, along with having support for custom training loops as well or for any computation in ...
TensorBoard
TensorBoard is one of the most important strengths of the TensorFlow platform and with TF 2.0, TensorBoard has gone to the next level. In machine learning, to improve your model weights, you often need to be able to measure them. TensorBoard is a tool for providing the measurements and visualizations needed during the machine learning workflow. It enables tracking experiment metrics such as loss and accuracy, visualizing the model graph, projecting embeddings to a lower dimensional space, and much more. In contrast to TF 1.x, TF 2.0 provides a very simple way to integrate and invoke TensorBoard using callbacks, which were explained in The fit() API section. Also, TensorBoard provides several tricks to measure and visualize your data and model graphs, and it has a what-if and profiling tool. It also extends itself to be able to debug.
Hooking up TensorBoard with callbacks and invocation
TensorBoard can be used in two primary ways in TF 2.0. One way is to use it as a callback when training a model using tf.keras.Model.fit(), and the other way is to use tf.summary for lower-level models using tf.GradientTape.
To use TensorBoard in Keras model training, we need to specify a TensorBoard callback, which takes logdir in as a parameter. Other parameters of the TensorBoard callback include histogram_freq, write_graph, write_images, and update_freq. histogram_freq allows the user to specify how often the activation and weight histograms should be computed and requires validation data to be specified. write_graph specifies whether the graph of the model is to be visualized in TensorBoard, ...
Visualization of scalar, metrics, tensors, and image data
TensorBoard also provides functionality to visualize custom scalars and image data. This is in addition to the metric visualization described previously. Custom scalar logging can be used to log a dynamic learning rate. To do this, use the following steps:
logdir = "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")
file_writer = tf.summary.create_file_writer(logdir + "/metrics")
file_writer.set_as_default()
def lr_schedule(epoch):
"""
Returns a custom learning rate that decreases as epochs progress.
"""
learning_rate = 0.2
if epoch > 10:
learning_rate = 0.02
if epoch > 20:
learning_rate = 0.01
if epoch > 50:
learning_rate = 0.005
tf.summary.scalar('learning rate', data=learning_rate, step=epoch)
return learning_rate
lr_callback = keras.callbacks.LearningRateScheduler(lr_schedule)
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)
model = keras.models.Sequential([
keras.layers.Dense(16, input_dim=1),
keras.layers.Dense(1),
])
model.compile(
loss='mse', # keras.losses.mean_squared_error
optimizer=keras.optimizers.SGD(),
)
training_history = model.fit(
x_train, # input
y_train, # output
batch_size=train_size,
epochs=100,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback, lr_callback],
)
Generally speaking, to log a custom scalar we need to use tf.summary.scalar() with a file writer, which is responsible for writing data for the run to a specific directory and is implicitly used.
A file writer is also used when writing image data for visualization in TensorBoard. The TensorFlow Image Summary API can be used to easily log tensors and arbitrary images and view them in TensorBoard. This can be helpful to sample and examine the input data and to visualize model weights and generated images.
To visualize images, tf.summary.image() is used to log one or more images when called in the context of the file writer. This function takes a rank 4 tensor in the form of (batch, height, width, channels), so any images not in that format must be reshaped before logging them to TensorBoard. This API can also be used to log any kind of arbitrary image data, such as a Matplotlib figure, given that it is converted into a tensor.
The following code snippet is an example of how to log a single image to TensorBoard:
img = np.reshape(train_images[0], (-1, 28, 28, 1))
# Sets up a timestamped log directory.
logdir = "logs/train_data/" + datetime.now().strftime("%Y%m%d-%H%M%S")
# Creates a file writer for the log directory.
file_writer = tf.summary.create_file_writer(logdir)
# Using the file writer, log the reshaped image.
with file_writer.as_default():
tf.summary.image("Training data", img, step=0)
Graph dashboard
TensorBoard's graph dashboard provides the capability to visualize and examine a TensorFlow model. We can use this to quickly view the conceptual graph of a model's structure to verify its design or view an op-level graph to understand how TensorFlow understands and executes a program. Examining an op-level graph can also give an insight into how to redesign a model for a more optimal runtime.
Viewing an op-level graph is very simple in TF 2.0 with the following steps:
Hyperparameter tuning
One of the most important parts of building a good deep learning model is choosing optimal hyperparameters for training the model itself. A hyperparameter is a parameter set by the engineer before model training. Some common hyperparameters include the dropout rate, learning rate, and type of optimizer used. The optimization of hyperparameters is a time-exhaustive process that involves training a model multiple times with different hyperparameters to find the optimal one, as there is no current insight on how to choose hyperparameters.
As such, TF 2.0 provides a tool to intelligently perform hyperparameter tuning, doing so by assisting in the process of identifying the best experiment to perform and the most promising hyperparameters to try.
To do this, use the following steps:
def train_test_model(hparams):
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(hparams[HP_NUM_UNITS], activation=tf.nn.relu),
tf.keras.layers.Dropout(hparams[HP_DROPOUT]),
tf.keras.layers.Dense(10, activation=tf.nn.softmax),
])
model.compile(
optimizer=hparams[HP_OPTIMIZER],
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
)
model.fit(
...,
callbacks=[
tf.keras.callbacks.TensorBoard(logdir), # log metrics
hp.KerasCallback(logdir, hparams), # log hparams
],
)
_, accuracy = model.evaluate(x_test, y_test)
return accuracy
session_num = 0
for num_units in HP_NUM_UNITS.domain.values:
for dropout_rate in (HP_DROPOUT.domain.min_value, HP_DROPOUT.domain.max_value):
for optimizer in HP_OPTIMIZER.domain.values:
hparams = {
HP_NUM_UNITS: num_units,
HP_DROPOUT: dropout_rate,
HP_OPTIMIZER: optimizer,
}
run_name = "run-%d" % session_num
print('--- Starting trial: %s' % run_name)
print({h.name: hparams[h] for h in hparams})
run('logs/hparam_tuning/' + run_name, hparams)
session_num += 1
For more complex hyperparameter tuning, a random search is more effective and efficient. This can be conducted by choosing each hyperparameter randomly and running the experiment, which can explore the hyperparameter space much faster than a grid search. Other more complex algorithms can be used as well.
The left pane of the dashboard allows the user to filter logs by hyperparameters for ease of access and use. The hyperparameter dashboard has three views—TABLE VIEW, PARALLEL COORDINATES VIEW, and SCATTER PLOT MATRIX VIEW—each providing a different way to visualize the results. TABLE VIEW lists the runs and hyperparameters and displays the metrics. PARALLEL COORDINATES VIEW shows each run as a line going through an axis for each hyperparameter and metric and can be used to see which hyperparameter is more important. SCATTER PLOT MATRIX VIEW shows plots comparing each hyperparameter and metric and helps to identify correlations.
This tool provides easy tuning of hyperparameters and detailed logs and visualizations of the results in TensorBoard.
What-If Tool
TensorFlow 2.0 has introduced an extremely powerful tool viz What-If Tool (WIT), which helps with an easy-to-use interface inside the TensorBoard dashboard. However, you can use WIT only if the model has been served using TensorFlow Serving. TensorFlow Serving was explained in Chapter 5, Model Inference Pipelines – Multi-platform Deployments. Also, in order to use WIT, the inference dataset must be in TFRecords format.
Some of the functionality of WIT is the ability to compare multiple models with the same workflow, the visualization of inference results, similarity-based data arrangement, and the ability to perform a sensitivity analysis of the model by editing a data point.
Profiling tool
When using TensorBoard, which is available with TF 2.0, if you build and train your model using tf.keras APIs, there is already a PROFILE dashboard tab available, which can be used to see the various training times taken by your model:
Summary
This chapter provided details on how to build a training pipeline using TF 2.0 tf.keras APIs and how to view build, compile, and fit a model using various available loss functions, optimizers, and hyperparameters in a distributed manner on GPUs using a distribution strategy. It also detailed out how to save, restore your model at training time for future training, and inference. With TensorBoard being one of the major strengths of TF 2.0, we provided details about how to efficiently use it to monitor training performance for loss and accuracy and to how debug and profile it.
In the next chapter, we will learn about model inference pipelines and deploy them on multi-platforms.
Questions
Should I use tf.keras APIs or TF's low- and mid-level APIs?
Check the chapter and try finding the answer to this.
When should I use tf.keras Sequential and Functional APIs? Why do I need model subclassing?
In general, for simpler models, tf.keras Sequential should be used. Most of models can be written using Sequential APIs. However, for those models that require multiple inputs and outputs and some specific connections, such as residual, Functional APIs should be used. For really customized models, you can use model subclassing.
Further reading
Users are encouraged to read tensorflow.org guides for transfer learning, which reuses pre-trained model weights and variables and transfer learning representations to another dataset, at https://www.tensorflow.org/beta/tutorials/images/transfer_learning.
Section 3: TensorFlow 2.0 - Model Inference and Deployment and AIY
This section of the book will focus on overall conceptual changes needed to migrate to TensorFlow 2.0 if you have used TensorFlow 1.x. It will also teach you about various AIY projects that you can do using TensorFlow. Finally, this section shows you how to use TensorFlow Lite with low-powered devices across multiple platforms.
This section contains the following chapters:
Model Inference Pipelines - Multi-platform Deployments
What do you do after a model has been trained to perfection? Use it? If the answer is yes, then how do you use it? The answer you're looking for is inference. Simply put, the process of inference is what is needed to ensure that machine learning models can be used for serving the needs of actual users. Formally put, inference is the process of computing trained machine learning models efficiently to serve the user's needs. Inference can be performed on a variety of hardware types including servers, and end user devices such as phones and web browsers. As per user requirements, it can also be performed on different operating systems.
Previous chapters have focused on the process of how ...
Technical requirements
In order to run the code excerpts given in this chapter, you will need the following hardware and software:
Each one of the Python code snippets in this chapter assumes that TF 2.0 is installed and has already been imported into the namespace. This means that, before executing any code block, please type in the following line first:
import tensorflow as tf
The code files for this chapter are available at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/tree/master/Chapter05.
Machine learning workflow – the inference phase
One of the most common subsets of machine learning applications follow the build once, use many times paradigm. This type of application involves what is called the inference phase. In the inference phase, developers have to focus on running the model to serve user needs. Serving user needs might involve taking in input from the user and processing it to return the appropriate output. The following diagram describes a typical high-level machine learning application workflow:
From the preceding diagram, we can see how the inference process fits into the overall picture. In applications that follow ...
Understanding a model from an inference perspective
One thing that developers implementing machine learning-based applications can rely on to make life easy is that the process to serve models to users is more or less the same, regardless of the actual computations in the models being served. This implies that, if implemented correctly, engineers potentially wouldn't have to rebuild the deployment pipelines every time data scientists update the models. This can be achieved by leveraging the power of abstractions. A key abstraction here is the format in which models are stored and loaded. By introducing a standardized format, TF 2.0 makes it easy to train a model in one environment and then use it across platforms. In TF 2.0, the standard way to do this is through the SavedModel format. This standardized format is analogous to a build artifact in the software development pipeline. Readers can think of a model artifact as a snapshot that can be used to re-create a model without access to the actual code that created it.
Effectively, a model, at the time of inference, gets reduced to a black box with a set of predefined inputs and outputs and a uniform interface to interact with the underlying model. All a developer now needs to do is to build the infrastructure necessary to implement and execute this black box in a given environment. In the following sections, we will learn how to build pipelines to serve models across a variety of popular software and hardware environments.
Model artifact – the SavedModel format
The SavedModel format is the default model serialization and deserialization format used by TensorFlow. In layman's terms, this can be understood as a container that holds everything there is to reproduce a model from scratch elsewhere without access to the original code that created it. We can use SavedModel to transfer trained models from the training to the inference phase or even to transfer state between different parts of the training process. In a nutshell, it can be said that SavedModel contains a complete TensorFlow program along with model weights and descriptions of the various compute operations described. While working with the Python API of TF 2.0, it is now possible to export certain native ...
Understanding the core dataflow model
Before we look at the nuances of the SavedModel format, it is important to possess a first-principles understanding of what a TensorFlow model actually is. For the uninitiated, TensorFlow implements the dataflow programming paradigm. Under this paradigm, programs are modeled as a directed graph of data flowing between different compute operations. This means that each node represents an operation (or computation) and edges represent the data. An incoming edge would represent an input to the node, while an outgoing edge would correspond to the output produced by the compute node. To illustrate this idea, let's look at the (rough) dataflow representation of the tf.add() operation. As we can see in the following diagram, the incoming edges correspond to the inputs of x and y. The outgoing edge, z (x + y), corresponds to the output of the node, which happens to be the sum of the inputs in this specific case:
Using the dataflow paradigm allows TensorFlow to leverage a certain set of benefits when executing user code:
We have seen how a simple operation can be represented using the dataflow paradigm. A real-world TensorFlow program or model would be comprised of many such simple operations. This implies that the dataflow representation for such a program would be a composition of many such simple representations, with usually one or more nodes per operation. The SavedModel format can be understood as a serialization of this underlying dataflow graph. The role of higher-level APIs such as Keras and Estimators is interesting to mention here. Effectively, they abstract out the details of this dataflow graph from the users to the degree that users do not even have to think about it. They provide a set of high-level operations for the users to implement and then translate those into this dataflow graph that TensorFlow can execute. What this means is that, at the end of the day, any model created in TensorFlow, regardless of how it was created, translates into a uniform compute graph. This makes it possible to save and load all models using a single uniform format.
The tf.function API
As we have seen in Chapter 1, Getting Started with TensorFlow 2.0, and Chapter 2, Keras Default Integration and Eager Execution, eager execution enabled by default is one of the major changes introduced in TF 2.0. Chapter 1, Getting Started with TensorFlow 2.0, also briefly mentions that TF 2.0 is more closely coupled with the Python programming language. At the heart of this change is the low-level tf.function API. What this really does is blend the power of TensorFlow 1.x with the benefits of eager execution by enabling users to create TensorFlow graphs from Python functions. This is available for use, both as a callable function and a decorator. In this section, we shall briefly look at how it can be used in each one ...
The tf.autograph function
So far, we've seen how to create TensorFlow graph code from Python functions. TF 2.0 takes the Python-TensorFlow coupling to a completely new level. The newly introduced AutoGraph (tf.autograph) function lets users write graph code using native Python syntax.
Currently, this feature only supports a limited subset of Python syntax. A detailed list of what syntax elements are currently supported is available at https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md.
A major advantage of this is that it enables developers to write intuitive Python code to achieve a certain task, which then automatically gets converted into highly performant TensorFlow Graph code. This means that developers can describe fundamental programming language constructs such as loops and conditionals in their intuitive Pythonic form, as opposed to the TensorFlow equivalents, with comparable performance.
In TF 2.0, AutoGraph is automatically invoked when tf.function is called. Users do not need to call it separately. The tf.autograph module contains low-level modules. Beginner or intermediate-level users are far less likely to have to use them directly and can safely ignore the details for now.
Let's look at examples to do this. Consider a function that computes the sum of all values in a given tensor. Let's implement it entirely using Pythonic syntax and then use tf.function to convert it into native TensorFlow compute graph code:
@tf.function
def sum_of_cubes(numbers):
_sum = 0
for number in numbers:
_sum += number ** 3
return _sum
To test the code we've written so far, let's create a tensor of integers between 1 and 5 (both inclusive). We then pass these to our function:
input_values = tf.constant([1, 2, 3, 4, 5])
result = sum_of_cubes(input_values)
print(type(result))
print(result)
This will result in the following output:
<class 'tensorflow.python.framework.ops.EagerTensor'>
tf.Tensor(225, shape=(), dtype=int32)
As we can see in the output extracted, the pure Python function we've written now gets transformed into a TensorFlow graph. This is evinced by the fact that the function now returns a tensor instead of a single number. The value of the output is the same as what is expected. Effectively, what we've demonstrated is that Python-specific syntax constructs such as a for loop and exponentiation operators were successfully translated into the TensorFlow graph code. This is the real power of tf.function and AutoGraph. As we've now effectively translated native Python code into a TensorFlow compute graph, it becomes possible to share this across environments using the SavedModel format.
Exporting your own SavedModel model
As we've seen in preceding sections, the SavedModel format is used to produce a reproducible representation of the current compute graph (the dataflow graph). This representation is independent of the specific code that was used to create the compute graph. It is also independent of the specific process used to construct this graph. For example, the SavedModel format doesn't actively distinguish between compute graphs created using native TensorFlow operations, Keras, or even tf.function. Though we interchangeably refer to this compute graph as a model, technically, it can also be considered a combination of a trained mathematical model and some additional code written around it for performing supporting ...
Using the tf.function API
As we've seen in earlier sections, the tf.function API enables us to write TensorFlow graphs and models using simple Python. Let's start things off by building a simple model that accepts a number or a list of numbers and returns the squares of the values in the list. We will then export the model thereby created into the SavedModel format. This is an important step for most of the following sections in this chapter. We will use this SavedModel artifact almost everywhere.
To get started, let's first write out a simple Python function that computes squares. We can then work our way backward from there:
def compute_square(number):
return number ** 2
As we can see, the preceding Python method accepts a number as input and returns its square. Our end goal is to build a TensorFlow graph for performing this computation. Leveraging our learning from earlier sections, we know that one way to do this is by using tf.function. We choose to use the decorator form of tf.function. If you carefully observe the code snippet we've just written, you'll realize that we assume that the value passed to the number variable is a numerical value. This may not necessarily be the case in a real-world situation. To address this, we can specify what types of values can be accepted by this method in the decorator. This is done by fixing an input signature in the decorator. We fix this to be a one-dimensional tensor comprising 32-bit floats. Any inputs not meeting this criterion will automatically be discarded. Our modified code snippet, with error checking implemented now looks like this:
@tf.function(input_signature=[tf.TensorSpec(shape=None, dtype=tf.float32)])
def compute_square(number):
return number ** 2
So far, we have managed to implement a TensorFlow compute graph that computes the squares for a given one-dimensional tensor. The only thing left to do now is to export this graph to disk in the SavedModel format. As you might recall, the API for working with SavedModel is available in the tf.saved_model module. On reading the documentation for this module (https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/saved_model), we see that the save method might be helpful to us. One rough edge is that the tf.saved_model.save method only works with objects of the Trackable type while what we have is a tf.function() object (which is of the Trackable type or a subclass of it). To overcome this, we simply wrap up our code in a class that implements the Trackable interface:
class Square(tf.Module):
@tf.function(
input_signature=[
tf.TensorSpec(shape=None, dtype=tf.float32)
]
)
def compute_square(self, number):
return number ** 2
We now have our logic enclosed in a representation that is supported by the save method. Last, we create an object of the Square class (inherited from Trackable) and pass it to the save method:
sos = Square()
tf.saved_model.save(sos, './square/1')
You will now see that the model has successfully been exported to the ./square/1 directory. This can be verified by listing the contents of the preceding directory. Open the Terminal and type in the following:
cd <directory-containing-your-code>
ls -ax ./square/1
You will see something like this:
. .. assets saved_model.pb variables
In the upcoming section on analyzing SavedModel artifacts, we will look at what each one of these files contains and what role they play in the process of saving models.
Analyzing SavedModel artifacts
In this subsection, we shall have a detailed look at how SavedModel serializes and deserializes TensorFlow graphs. We shall also look at the SavedModel command-line interface, a powerful tool for analyzing the contents of SavedModel on disk and even running SavedModel locally!
The SavedModel format essentially describes a way to store a TensorFlow graph on disk. At a lower level, a part of what it does is codifies a format for representing this graph in files. As per this format, each graph is represented using a combination of constituent lower-level functions and their state. In TensorFlow parlance, these constituent functions identified with a name and are referred to as signatures or named signatures. These ...
The SavedModel command-line interface
The SavedModel command-line interface (CLI) is a very handy tool that can be used to analyze various SavedModel instances and run them. It is very useful while debugging models on disk and can be used without reading, writing, or modifying any code. In this section, we shall briefly look at how to install this tool, use it to analyze the different components of the graph and run the compute graph.
This tool comes bundled with TensorFlow binaries. If you've installed TensorFlow by building it from source, you'll have to install it separately. For installation instructions, please see https://www.tensorflow.org/beta/guide/saved_model#details_of_the_savedmodel_command_line_interface.
The two commands worth discussing briefly here are show and run. The former can be used to list the MetaGraph information whilst the latter can be used to execute the graph on a set of inputs via the command line. Detailed instructions can be obtained at each step by running the tool with the -h argument:
saved_model_cli -h
Instructions for specific commands can be obtained by calling the -h argument after the command's name. For example, if you would like detailed instructions about the run command, you'd type the following:
saved_model_cli run -h
To get a hands-on feel for this tool, let's go back to the model we built and trained in an earlier section on the tf.function API. As you might recall, the model accepts a tensor of numbers of any dimension and returns a tensor of the same shape containing the squares of the original elements. Let's first look at the number of metagraphs present in our model. To do so, type the following in a Terminal window:
saved_model_cli show --dir <path-to-model-dir>
For our model that computes squares, you should see the following:
The given SavedModel contains the following tag-sets:
serve
As discussed earlier, a metagraph is identified using tag-sets. Here, we can see that we only have one tag-set named serve. We might want to also look at the constituent functions making up this metagraph. To view the SignatureDefs (for details, refer to https://www.tensorflow.org/tfx/serving/signature_defs) making up this tag-set, you may type the following command:
saved_model_cli show \
--dir <path-to-model-dir> \
--tag_set serve
For our model that computes squares, you should see the following:
The given SavedModel MetaGraphDef contains SignatureDefs with the following keys:
SignatureDef key: "__saved_model_init_op"
SignatureDef key: "serving_default"
Let's now see how we can use the run function to interact with this TensorFlow compute graph saved using SavedModel directly from the command line, without writing any code. As we can see in the output of the previous stage, there are two component functions. Of these, we choose to use the serving_default SignatureDef. We can now run it via the command line by providing the required inputs and obtaining the desired results. To do so, we need to pass a path to the model, the tagset(s), the input values, and the name of the component to run. For the purposes of this test, the tensor we would like to compute the square of is given by [1, 2 , 3]. The exact command is given as follows:
saved_model_cli run \
--dir <path-to-model> \
--tag_set serve \
--input_exprs "number"="[1, 2, 3]" \
--signature_def serving_default
The following is the output:
Result for output key output_0:
[1. 4. 9.]
From the output of the preceding stage, we can observe the following:
Both these observations affirm that SavedModel is working correctly.
In subsequent sections, we will look at ways to serve this model in a variety of hardware and software environments.
Inference on backend servers
In today's world, distributed systems are everywhere. Ranging from the websites we browse to the apps that we use on our phones, hardly a day passes when we do not use distributed systems. Given this omnipresent nature, it is an obvious choice to adapt this paradigm for building machine learning systems. A typical pattern in building distributed systems is to perform resource-intensive (and data-sensitive) computations on backend servers whilst pushing lighter (and comparatively independent) compute tasks to the user's device. A large subset of machine learning applications falls into the resource-intensive category. Furthermore, machine learning models are built using data. In a significant fraction of real-world ...
TensorFlow Serving
TensorFlow Serving is an integral part of the TensorFlow Extended (TFX) platform. As the name suggests, it is designed to be used for serving machine learning models. In a nutshell, it is a high-performance serving system designed for production environments. An important feature of TensorFlow Serving is that it exposes a consistent API to the downstream user, that is independent of the actual contents of the model being served. This makes it easy to experiment and re-deploy quickly without making any additional changes to the rest of the software stack. It ships with built-in support for TensorFlow models and can be extended to serve other types of models as well.
In this section, we will have a detailed look at TensorFlow Serving. Starting off with basic installation and setup, the following subsections describe how to set up a server to serve SavedModel through a series of hands-on examples. We will also briefly look at some of the key APIs made available by TensorFlow Serving.
Setting up TensorFlow Serving
Like most other components of the TensorFlow platform, TensorFlow Serving too can be installed in multiple ways. Using it via Docker images is the recommended approach here as it is relatively straightforward.
If container images don't work for you, a summary of other methods to install TensorFlow Serving is available at https://www.tensorflow.org/tfx/serving/setup.
Setting up TensorFlow Serving using Docker involves one simple step. This step though requires Docker to be installed on the host. For instructions on setting up Docker, please refer to Chapter 1, Getting Started with TensorFlow 2.0, or the Technical requirements section of this chapter. All you need to do is to pull the relevant Docker image for ...
Setting up and running an inference server
Now that we have TensorFlow Serving set up, let's use it to perform some real-world tasks. We can look at how to set up a backend server to serve the SavedModel format that we built in the preceding sections. We can use the Docker image downloaded in the preceding section to run this SavedModelformat. To do so, we need to do two things:
The general form of the command to do this is given as follows:
docker run -t --rm \
-p <port-on-host>:8501 \
-v <path-to-model-on-host>:/models/<model_name> \
-e MODEL_NAME=<model_name> \
tensorflow/serving&
The model server should now be running on your host at the port you've specified in <port-on-host>.
Let's now test our model by sending it some data for inference. We can interact with the model via the RESTful API. We should send an HTTP POST request with our input values to the server. To do so, type the following command in a Terminal window:
curl -X POST \
http://localhost:<port-on-host>/v1/models/square:predict \
-H 'Content-Type: application/json' \
-d '{"instances": [1.0, 2.0, 3.0, 4.0]}'
You should see the following output:
{
"predictions": [1.0, 4.0, 9.0, 16.0]
}
We have now seen how to use TensorFlow Serving to serve SavedModel on a backend server. This model is accessible via both gRPC and RESTful APIs. For details on these, please see the following links:
Please keep in mind that each time you invoke docker run, a new Docker container is started on your host. This container might keep respawning and running in the background even after you've stopped interacting with it or even closed the Terminal window. This can lead to significant hidden memory consumption. A conscious effort is required to stop the container. To do so, perform the following steps:
Figure out the name or ID of the container that you've just started. Type the following into a Terminal window:
docker ps
As you can see in the output of the preceding command, each container has a name and ID. Either one of these can be used to uniquely identify the container. We need to use this to stop the container we've started. This can be done as follows:
docker stop <container-name>
You may also use the following:
docker stop <container-id>
You can now be assured that the container has been stopped and isn't consuming any of your computer's memory.
When TensorFlow.js meets Node.js
The introduction of TensorFlow.js has made it possible to run TensorFlow models in a JavaScript environment. As some of you might already know, Node.js is a cross-platform runtime environment that executes JavaScript code outside a browser. This makes it possible to use JavaScript code to write backend services. Integrating Node.js with TensorFlow.js makes it possible to serve machine learning services on backend servers from a JavaScript environment. Please see the documentation on how to go about this at https://www.tensorflow.org/js/tutorials/setup.
Inference in the browser
As you might recall, in an earlier section, we briefly discussed distributed systems. There, we discussed the scenario where the machine learning-based computation is primarily performed on host servers. Here, we will look at the scenario where these computations are performed on the user side, in the browser. Two significant advantages of doing this are as follows:
The workflow described in the preceding diagram illustrates the end-to-end pipeline of building a model from scratch and then enabling end users to run it within their web browsers. We see that the process is divided into two major phases: training and inference. In the training phase, the data scientists and other ML practitioners get together and build and train the model. This model is now exported in SavedModel format. However, TensorFlow.js doesn't directly support SavedModel formats yet. Hence, it becomes necessary to convert the model to a format supported by TensorFlow.js.
For details on how to perform the conversion, please see https://www.tensorflow.org/js/tutorials/conversion/import_saved_model.
This converted model is now served to users through a web server, the same way as any other JavaScript code would be. Users provide the necessary inputs to the model. The TensorFlow.js model processes these inputs within the user's browser and returns the appropriate outputs.
Detailed resources for getting started with TensorFlow.js are available at the following links:
Inference on mobile and IoT devices
Smartphone use has grown exponentially over the last few years and continues to grow in an unabated fashion. Other IoT devices are also becoming increasingly commonplace in our day-to-day lives. These upward trends in usage adoption have interesting consequences for machine learning systems. These platforms are typically resource-constrained in comparison to normal host machines. As a result, additional optimizations are required to run inference on such devices. The TensorFlow platform supports building machine learning and deep learning-based applications that can run on different kinds of edge devices such as mobile phones and other IoT devices. The primary tool made available to this effect is the ...
Summary
In this chapter, we have taken a detailed look at the inference stage. Starting off by obtaining a basic understanding of what the end-to-end machine learning workflow looks like, we learned about the main steps involved in each stage. We also learned about the different abstractions that come into play while transferring models from the training phase to the inference phase. Taking a detailed look at the SavedModel format and the underlying dataflow model, we learned about the different options available to build and export models. We also learned about cool features such as tf.function and tf.autograph, which enable us to build TensorFlow graphs using native Python code. In the latter half of this chapter, we learned how to build inference pipelines for running TensorFlow models in different environments such as backend servers, web browsers, and even edge devices.
In the next chapter, we will learn more about AIY Projects and TensorFlow Lite.
AIY Projects and TensorFlow Lite
This chapter details how to deploy TensorFlow 2.0 (TF2.0) trained models on low-powered embedded systems, such as edge devices, mobile systems (such as Android, iOS, and Raspberry Pi), Edge TPUs, and the NVIDIA Jetson Nano. This chapter also covers training and deploying models on do-it-yourself kits, such as Google Artificial Intelligence Yourself (AIY) kits. Other topics this chapter covers are how to convert trained TensorFlow (TF) models into TensorFlow Lite (TFLite) models, the key differences between them, and the advantages of the two.
This chapter is slightly different than the previous chapters, in the sense that it is simply an introduction to a wider concern of TF2.0; that is, the areas of hardware ...
Introduction to TFLite
TFLite is a set of tools to help developers run TF models on devices with small binary sizes and low latency. TFLite consists of two main components: the TFLite interpreter (tf.lite.Interpreter) and the TFLite converter (tf.lite.TFLiteConverter). The TFLite interpreter is what actually runs the TFLite model on low-power devices, such as mobile phones, embedded Linux devices, and microcontrollers. The TFLite converter, on the other hand, is run on powerful devices that can be used to train the TF model, and it converts the trained TF model into an efficient form for the interpreter.
TFLite is designed to make it easy to perform machine learning on devices without sending any data over a network connection. This improves latency (since there is no data transfer over networks), more privacy (as no data will ever leave the device), and offline capability (as an internet connection is not needed to send the data anywhere).
Some key features of TFLite include a tuned and optimized interpreter specific to the device (which supports a set of core operations optimized on devices with a small binary size), APIs for multiple languages (such as Swift, C, C++, Java, and Python), and pre-trained models and tutorials (which allow a novice to easily deploy machine learning models on low-power devices). TFLite is designed to be highly efficient and optimized, with hardware acceleration and pre-fused activations and biases.
The basic development workflow of TFLite is picking a model, converting it, deploying it to the desired device, and optimizing the model. The model can be anything, from a tf.keras custom-trained model to a pre-trained model taken from TF itself.
Getting started with TFLite
The first step of using TFLite is choosing a model to convert and use. This includes using pre-trained models, custom-trained models, or fine-tuned models. The TFLite team provides a set of pre-trained and pre-converted models that solve a variety of machine learning problems. These include image classification, object detection, smart reply, pose estimation, and segmentation. Using fine-tuned models or custom-trained models requires another step where they are converted into TFLite format.
TFLite is designed to execute models efficiently on devices, and some of this efficiency comes inherently from the special format used to store the models. TF models must be converted into this format before they can be used ...
Running TFLite on mobile devices
In this section, we will cover how TFLite can be run on the two major mobile OSes: Android and iOS.
TFLite on Android
Using TFLite on Android is as easy as adding TFLite to the dependencies field in the build.gradle file in Android Studio, and importing it into Android Studio:
dependencies { implementation 'org.tensorflow:tensorflow-lite:0.0.0-nightly'}import org.tensorflow.lite.Interpreter;
Once this is done, the next step is to create an instance of the interpreter and load the model. This can be done using a helper function from the TFLite sample on GitHub called getModelPath, and by using loadModelFile to load the converted TFLite file. Now, to run the model, simply use the .run method of the interpreter class and give it the required input data, like in this example:
tflite.run(inp,out);
The inp argument is the input data that will ...
TFLite on iOS
Using TFLite on iOS is a similar process, which includes installing the TFLite interpreter, loading the model, and running it. Once again, follow the steps in the Getting started with TFLite section in order to create and convert a machine learning model for use on a smartphone. We will use the following steps to implement TFLite on iOS:
use_frameworks!
pod 'TensorFlowLiteSwift'
Install the package by running pod install, which will install all the packages included in the pod file, including the newly added TFLite package. Once installed, the package can be imported by adding import TensorFlowLite near the top of the swift file.
let outputTensor: Tensor
do {
try interpreter.allocateTensors()
let inputTensor = try interpreter.input(at: 0)
guard let rgbData = rgbDataFromBuffer(
thumbnailPixelBuffer,
byteCount: batchSize * inputWidth * inputHeight * inputChannels,
isModelQuantized: inputTensor.dataType == .uInt8
) else {
print("Failed to convert the image buffer to RGB data.")
return
}
try interpreter.copy(rgbData, toInputAt: 0)
try interpreter.invoke()
outputTensor = try interpreter.output(at: 0)
} catch let error {
print("Failed to invoke the interpreter with error: \(error.localizedDescription)")
return
}
The results can then be processed and displayed in the app.
Running TFLite on low-power machines
TFLite's capability of being able to run on low-power and low-binary machines makes it very powerful when run on embedded Linux machines. TFLite can be run on many of the popular embedded Linux machines, and as well as on the Coral Dev Board. In this section, we will cover the building, compiling, and running of TFLite on three devices. The first device that's covered is the Coral Dev Board with the Edge TPU processor, the second device is the NVIDIA Jetson Nano, and the final one is the Raspberry Pi. The NVIDIA Jetson Nano is a small and powerful computer from NVIDIA that runs multiple neural networks in parallel in applications such as image classification, object detection, segmentation, and speech ...
Running TFLite on an Edge TPU processor
The Edge TPU is a small processor that is capable of executing deep feedforward networks, such as convolutional neural networks. However, it only supports quantized TFLite models. Quantization is an optimization technique that converts all of the 32-bit floating-point numbers into the nearest 8-bit fixed-point numbers. This makes the model smaller and faster, albeit a bit less precise and accurate.
Two types of quantization are supported in TF. The first style of quantization is post-training quantization. This is done at the time of conversion of the TF model into a TFLite model by setting the model optimization attribute to a list with tf.lite.Optimize.OPTIMIZE_FOR_SIZE. This causes the weights to be converted into 8-bit precision to increase latency by up to 3x. Other more compute-intensive operations in a network are converted into hybrid operations with fixed-point operations, but with floating-point memory.
The other type of quantization is quantization-aware training, which uses fake quantization nodes to simulate the effect of quantization in the forward-pass and the backward-pass models; this quantization is a straight-through estimation. This is the only quantization that is supported by the Edge TPU and allows the TFLite model to be run on it.
The Edge TPU is available in two ways:
The USB accelerator is compatible with any Linux computer with a USB port running Debian. To set up the USB accelerator, download the .tar file from https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz--trust-server-names/, then untar it and run install.sh.
Something to note here is that, during the installation, the setup will ask to enable maximum operating frequency, which will speed up inference time significantly but also make the TPU very hot to touch.
The following diagram shows the process through which a TF model can be converted into an Edge TPU model and run on it:
However, the Edge TPU has a couple of constraints. As we mentioned previously, the Tensor parameters must be quantized using quantize-aware training; the tensor sizes must be constant (so there can be no dynamic sizes); the model parameters must be constant; and tensors must either be one-, two-, or three-dimensional tensors or tensors whose three innermost dimensions are more than three, and must only contain those operations supported by the Edge TPU. If these requirements are not met, then only some of the models will compile. The first point in the model graph, where an unsupported operation occurs, is where the compiler splits the graph into two: one part containing all the operations the Edge TPU can compute, and the other part containing the operations it cannot compute, which are run on the CPU:
Once the TFLite model has been compiled and ready to run, it can be executed using the Edge TPU runtime and API library. The Edge TPU API has three key APIs for inferencing:
The performance of the Edge TPU is far superior to many of the most powerful CPUs. An individual Edge TPU is capable of performing 4 trillion operations per second using a total of 2 watts, when models were tested on an Intel Xeon(R) 3.60 GHz processor with and without the USB accelerator; an embedded 1.5 GHz CPU; and the Coral Dev Board. When running the DeepLab network, the Intel Xeon took 301 ms, the Intel Xeon with the accelerator took 35 ms, the embedded CPU took 1,210 ms, and the Coral Dev Board took 156 ms. It is clear that the Edge TPU has a major impact on the latency of the model.
Running TF on the NVIDIA Jetson Nano
The NVIDIA Jetson Nano is another embedded device that provides powerful computing power for machine learning applications. The premise of the Jetson Nano is different from the Edge TPU in the sense that the Jetson Nano is a small yet powerful GPU computer. The Jetson Nano can be used like any machine configured for deep learning, and the GPU version of TF can be installed simply enough. The installation of CUDA and cuDNN is also not needed as it is preinstalled on the system.
Comparing TFLite and TF
As we mentioned previously, TFLite models are quite different from the normal TF models. TFLite models are much faster, smaller in size, and less computationally expensive. This distinction comes from the special way TFLite models are stored and interpreted.
The first speed increase comes from the fundamental format the model is stored in. The .tflite model file is stored in a FlatBuffer format, containing a reduced and binary representation of the model. FlatBuffer is an efficient cross-platform serialization library for many popular languages and was created by Google for game development and other performance-critical applications. The FlatBuffer format plays an essential role in effectively serializing model data and providing quick access to that data while maintaining a small binary size. This is useful for model storage due to the huge amount of numerical data, which typically creates a lot of latency in read operations. By using FlatBuffers, TFLite can bypass many traditional file parsing and unparsing operations, which is very computationally expensive.
TFLite model optimizations also stretch all the way to the hardware on the device. This is because, due to the limitations of phone processors and embedded CPUs, all processors must be utilized at a hyper-efficient standard. When running TFLite on Android, the Android Neural Network API, which provides access to hardware-accelerated inference operations in Android, is interfaced to leverage advantageous hardware acceleration to the device being used. TFLite can also use the built-in GPUs in phones and other devices so that models with excess parallelizable operations and quantization-sensitive accuracy can be sped up by nearly 7x.
As we explained previously, quantization is another very impactful optimization technique. Quantization is viewed as a compression technique in TF. The weights and activations in neural networks tend to have three values that are distributed across relatively small ranges, so quantization can be used in great effect to compress the values. Since neural networks tend to be robust to noise in their weights, the noise that quantization and rounding add to the parameters has a minimal effect on the overall accuracy of the model. The benefits of a quantized model are that it efficiently represents an arbitrary magnitude of ranges, their linear spread makes multiplications straightforward, and the quantized weights have a symmetric range that enables downstream hardware optimizations that aren't possible with 32-bit floating point numbers.
As seen in the following graph, converting a model from TF into a quantized TFLite model greatly decreases the inference time and latency of a model:
AIY
Google released their own maker kits for both voice and vision applications called AIY. These kits come shipped with all the required parts and components, along with easy-to-understand tutorials online. There are two kits currently offered by AIY—the Voice Kit and the Vision Kit.
The Voice Kit
The Voice Kit provides the functionality to build a natural language processor and connect it to the Google Assistant or the Cloud Speech-to-Text service. This kit comes shipped with a Raspberry Pi Zero, along with a custom-designed Voice Bonnet and a speaker for the audio capabilities. The kit also comes with an SD card that can be inserted into the Pi, and a multitude of demos, samples, and snippets for many of the most common applications. It also comes with an application that runs Google Assistant on the device and turns it into a smart home device.
To get started with the Voice Kit, follow the instructions to build the device at https://aiyprojects.withgoogle.com/voice/#assembly-guide. The device is well designed and is easy to assemble and set up. To set up the device, either a computer or a mobile phone can be used. The setup of the kit is simple and can be done through Secure Shell (SSH) or an HDMI connection. Once completed, there are many demos that can be run to further understand and explore the kit, such as the aforementioned Google Assistant application.
Some things that can be done with the Voice Kit include creating a custom voice user interface and controlling an IoT device using the Assistant.
Creating a custom voice user interface on the Voice Kit can be done by using the Google Cloud Speech-to-Text API and the AIY APIs included in the demo folder of the kit. This API adds functionality for using the Cloud Speech API, Speech-to-Text, and for controlling the GPIO pins on the Vision Bonnet.
To control an IoT device using the Voice Kit and the Assistant, you can use a couple of powerful technologies. The Particle Photon, a Wi-Fi development kit for IoT projects, and DialogFlow, used to create the conversational interface, are both used. The demo included in the Voice Kit provides the code to turn an LED connected to the Photon on and off.
The Vision Kit
The Vision Kit provides the functionality to build an intelligent camera that can see and recognize objects using machine learning, and even run a custom TF model on it. Like the Voice Kit, this kit ships with a Raspberry Pi Zero, along with a custom-designed Vision Bonnet, a piezo buzzer, and the Raspberry Pi Camera V2. This kit comes with an SD card that is pre-flashed with the AIY system image, which includes demos for many kinds of computer vision applications such as image classification, object detection, face detection, food classification, and automatic photo-taking.
As before, the Vision Kit can be assembled by following the directions at https://aiyprojects.withgoogle.com/vision/#assembly-guide. The device has a simple ...
Summary
TFLite is a feature of TF2.0 that takes a TF model and compresses and optimizes it to run on an embedded Linux device, or a low-power and low-binary device. Converting a TF model into a TFLite model can be done in three ways: from a saved model, a tf.keras model, or a concrete function. Once the model has been converted, a .tflite file will be created, which can then be transferred to the desired device and run using the TFLite interpreter. This model is optimized to use hardware acceleration and is stored in FlatBuffer format for quick read speeds. Other optimization techniques can be applied to the model, such as quantization, which converts the 32-bit floating point numbers into 8-bit fixed-point numbers, with a tradeoff of a minimal amount of accuracy. Some devices that TFLite can be run on are the Edge TPU, the NVIDIA Jetson Nano, and the Raspberry Pi. Google also provides two kits that start users with the hardware needed to create vision- and voice-related machine learning applications.
In the next chapter, we will learn how to migrate from TF1.x to TF2.0.
Section 4: TensorFlow 2.0 - Migration, Summary
This section of the book will summarize the use of TensorFlow 2.0 (TF 2.0) in a high-level approach, as well as the compatibility differences of TF 2.0 compared with previous versions. This part of the book will focus on how to migrate to TF 2.0 if you have used TensorFlow 1.x (TF 1.x). Though there is a migration API to convert TF 1.x code to TF 2.0, it just does a syntax-to-syntax translation. This part will also dive deeper into guiding you through the code-level changes needed to convert TF 1.x code to TF 2.0 semantically.
This section contains the following chapter:
Migrating From TensorFlow 1.x to 2.0
This chapter will cover how you can convert TensorFlow 1.x (TF 1.x) code into TensorFlow 2.0 (TF 2.0) code in two ways. The first method is to use the update script, which changes most of the TF 1.x code so that it can run in TF 2.0. This, however, simply converts all tf.x API calls into tf.compat.v1.x format. The other method is to convert TF 1.x code into idiomatic TF2.0 code by taking into account the core changes that have been made to the library. We will discuss the conceptual differences between TF 1.x and TF 2.0, the compatibility criteria between them, and the ways we can migrate syntactically and semantically. We will also show several examples of syntactic and semantic migration from TF 1.x to TF 2.0, with which we will provide references and future information.
The following topics will be covered in this chapter:
Major changes in TF 2.0
The major changes that you will experience while migrating from TF 1.x to TF 2.0 concern API cleanup.
Many of the APIs in TF 2.0 have either been removed or moved. Major changes include the removal of tf.app, tf.flags, and tf.logging in favor of other Python modules, such as absl-py and the built-in logging system.
One of the largest changes that has been made in TF 2.0 code-wise is eager execution. TF 1.x requires users to manually stitch an abstract syntax tree using tf.* calls to build a computational graph, which it will run with session.run(). This means that TF 2.0 code runs line by line, and so tf.control_dependancies() is no longer needed.
The session.run() call in TF 1.x is very similar to ...
Recommended techniques to employ for idiomatic TF 2.0
The first recommendation concerns dealing with a general code workflow in TF 2.0. A common workflow in TF 1.x was to use a waterfall strategy, where all of the computations were laid out onto the default graph. Then, selected tensors were run using session.run(). In TF 2.0, code should be refactored into smaller functions that will be called as needed. These functions can be normal Python functions and can still be run in graph mode if they're called inside another function annotated with tf.function. This means that tf.function should only be used to annotate high-level computations, such as the forward pass of a model or a single training step.
Previously, all of the computations that were needed for the model and training loop would be predetermined and written, and were executed using session.run(). This made TF 1.x code difficult to follow for most coders as the flow of the model could be significantly different from the way it was coded, as the graph was run at the very end. Eager execution and tf.function were created specifically to simplify TensorFlow code dynamics and make it easier for other developers to understand prewritten code.
Managing and keeping track of variables was another complicated process in TF 1.x. Many methods were used to control and access these variables, which added even more dimensions to what should be linear code. TF 2.0 places more emphasis on using tf.keras layers and tf.estimator models to manage the variables in a model.
This is a contrast from hand-rolling neural network layers and creating the variables manually. In the following example, the weight and bias variables have to be kept track of, with their shapes defined away from the model's creation. This makes it difficult to change and adapt the model to different architectures and datasets:
def dense(x, W, b):
return tf.nn.sigmoid(tf.matmul(x, W) + b)
@tf.function
def multilayer_perceptron(x, w0, b0, w1, b1, w2, b2 ...):
x = dense(x, w0, b0)
x = dense(x, w1, b1)
x = dense(x, w2, b2)
...
The tf.keras implementation of this code is straightforward, concise, and ensures that the developer doesn't worry about the organization and management of variables and variable names. It provides easy access to the trainable variables in the model as well:
layers = [tf.keras.layers.Dense(hidden_size, activation=tf.nn.sigmoid) for _ in range(n)]
perceptron = tf.keras.Sequential(layers)
# layers[3].trainable_variables => returns [w3, b3]
# perceptron.trainable_variables => returns [w0, b0, ...]
tf.keras models also inherit methods from the tf.train.Checkpointable model and are integrated with tf.function so that they can be directly saved to a checkpoint and exported to SavedModels.
The following is an example of a transfer learning implementation, and shows how tf.keras makes it easy to collect a subset of relevant values, calculate their gradients, and tune them based on the gradients:
trunk = tf.keras.Sequential([...])
head1 = tf.keras.Sequential([...])
head2 = tf.keras.Sequential([...])
path1 = tf.keras.Sequential([trunk, head1])
path2 = tf.keras.Sequential([trunk, head2])
# Train on primary dataset
for x, y in main_dataset:
with tf.GradientTape() as tape:
prediction = path1(x)
loss = loss_fn_head1(prediction, y)
# Simultaneously optimize trunk and head1 weights.
gradients = tape.gradient(loss, path1.trainable_variables)
optimizer.apply_gradients(zip(gradients, path1.trainable_variables))
# Fine-tune second head, reusing the trunk
for x, y in small_dataset:
with tf.GradientTape() as tape:
prediction = path2(x)
loss = loss_fn_head2(prediction, y)
# Only optimize head2 weights, not trunk weights
gradients = tape.gradient(loss, head2.trainable_variables)
optimizer.apply_gradients(zip(gradients, head2.trainable_variables))
# You can publish just the trunk computation for other people to reuse.
tf.saved_model.save(trunk, output_path)
All of the datasets that aren't already stored in memory should be stored and streamed using tf.dataset. Datasets are iterables in TF 2.0, and so they can be used like any other Python iterable, such as lists and tuples, in eager execution mode. You can also take advantage of dataset async prefetching and streaming features by wrapping a dataset iteration with tf.function, which converts a Python interaction into the equivalent graph operations with AutoGraph. As we mentioned earlier in the book, AutoGraph takes the default Python flow and converts it into graph-based code. For example, control flows such as if...else blocks are converted into tf.condition statements. The following code block shows you how to train a model with a for block:
@tf.function
def train(model, dataset, optimizer):
for x, y in dataset:
with tf.GradientTape() as tape:
prediction = model(x)
loss = loss_fn(prediction, y)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
However, if you're using Keras' model.fit, then this isn't something to be worried about. To train a model on a dataset using model.fit, simply pass the dataset to the method. It will take care of everything else:
model.compile(optimizer=optimizer, loss=loss_fn)
model.fit(dataset)
Making code TF 2.0-native
The simplest way to make TF 1.x code compatible with TF 2.0 code is to run the update script that's installed on your system, along with the TF 2.0 installation. The update script makes use of the tf.compat.v1 module.
As a way to provide backward compatibility for code written for TF 1.x, the tf.compat.v1 module was introduced in TF 2.0. The tf.compat.v1 module replaces all TF 1.x symbols, such as tf.foo and tf.compat.v1.foo. This module allows most of the code that's been written for TF 1.x to be converted so that it can be run in TF 2.0.
As a way to streamline this process, TensorFlow provides a tf_upgrade_v2 utility, which helps streamline the transition as much as possible. This utility is preinstalled with the ...
Converting TF 1.x models
The first step is to replace all tf.Session.run() calls with a Python function. This means turning tf.placeholder and feed_dict into function arguments. These become the function's return value. This change means that standard Python tools such as pdb can be used to step through and debug the function, unlike TF 1.x. Once the function has been built, the tf.function annotation can be added to run the function in graph mode, along with the efficiency of the equivalent tf.Session.run calls in TF 1.x.
TF 1.x models that are created using the tf.layers API can be converted into TF 2.0 with relative ease. The tf.layers module was used to contain layer functions that relied on tf.variable_scope to define and reuse variables.
The following code block is an implementation of a small convolutional neural network in TF 1.x that's been written using the tf.layers API:
def model(x, training, scope='model'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
x = tf.layers.conv2d(x, 32, 3, activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.04))
x = tf.layers.max_pooling2d(x, (2, 2), 1)
x = tf.layers.flatten(x)
x = tf.layers.dropout(x, 0.1, training=training)
x = tf.layers.dense(x, 64, activation=tf.nn.relu)
x = tf.layers.batch_normalization(x, training=training)
x = tf.layers.dense(x, 10, activation=tf.nn.softmax)
return x
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
The simplest way to convert this model into TF 2.0 is by using tf.keras.Sequential since this model is made up of linear layers. There is a one-to-one conversion from tf.layers to tf.keras.layers, with a couple of differences. In TF 2.0 code, the training argument is no longer passed to each layer as the model handles that automatically.
Here is the code in TF 2.0:
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.04),
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10, activation='softmax')
])
train_data = tf.ones(shape=(1, 28, 28, 1))
test_data = tf.ones(shape=(1, 28, 28, 1))
train_out = model(train_data)
test_out = model(test_data, training=False)
As we can see, tf.variable_scope isn't used to organize the variables that were created for the model. In TF 1.x, this scope would be used to recover the variables from the model. In TF 2.0, the model variables can be listed using model.trainable_variables.
Although converting from tf.layers to tf.keras.layers is relatively simple, the conversion becomes more involved due to differences in code flow.
Some examples of low-level APIs in TF 1.x include using variable scopes to control reuse, creating variables using tf.get_variable, accessing collections regularly, using tf.placeholder and session.run, and initializing variables manually. Many of these techniques and strategies are now obsolete due to the introduction of system-wide eager execution, so code written in low-level APIs need a larger change than those written in high-level APIs, such as tf.keras and tf.layers.
The following is an example of some code that was written in the low-level APIs of TF 1.x:
in_a = tf.placeholder(dtype=tf.float32, shape=(2))
in_b = tf.placeholder(dtype=tf.float32, shape=(2))
def forward(x):
with tf.variable_scope("matmul", reuse=tf.AUTO_REUSE):
W = tf.get_variable("W", initializer=tf.ones(shape=(2,2)),
regularizer=tf.contrib.layers.l2_regularizer(0.04))
b = tf.get_variable("b", initializer=tf.zeros(shape=(2)))
return W * x + b
out_a = forward(in_a)
out_b = forward(in_b)
reg_loss = tf.losses.get_regularization_loss(scope="matmul")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
outs = sess.run([out_a, out_b, reg_loss],
feed_dict={in_a: [1, 0], in_b: [0, 1]})
This code can be converted by changing the forward function to a function annotated with tf.function for graph-based computation, and removing the session.run function and variable scope and adding a simple function call. The regularization will not be called globally on the W variable; instead, it will be called manually, without needing to refer to a global collection:
W = tf.Variable(tf.ones(shape=(2,2)), name="W")
b = tf.Variable(tf.zeros(shape=(2)), name="b")
@tf.function
def forward(x):
return W * x + b
out_a = forward([1,0])
out_b = forward([0,1])
regularizer = tf.keras.regularizers.l2(0.04)
reg_loss = regularizer(W)
As we can see, the TF 2.0 code is much more Pythonic and concise than the previous TF 1.x code.
One of the benefits of using tf.placeholder was that the shape of the input of the graph could be controlled and would return an error if it did not match the predetermined shape. This can still be done in TF 2.0 through the use of the assert command that's built into Python. This can be used to assert that the shape of the input arguments to the function matches what is expected from the input arguments.
Existing TF 1.x code often includes both lower-level TF 1.x variables and operations with higher-level tf.layers. This means that neither of the preceding examples will be sufficient to convert the TF 1.x code, and requires a more complex form of tf.keras programming called model or layer subclassing.
The following is the original code that was written in TF 1.x that uses both tf.get_variable and tf.layers:
def model(x, training, scope='model'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
W = tf.get_variable(
"W", dtype=tf.float32,
initializer=tf.ones(shape=x.shape),
regularizer=tf.contrib.layers.l2_regularizer(0.04),
trainable=True)
if training:
x = x + W
else:
x = x + W * 0.5
x = tf.layers.conv2d(x, 32, 3, activation=tf.nn.relu)
x = tf.layers.max_pooling2d(x, (2, 2), 1)
x = tf.layers.flatten(x)
return x
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
This code can be converted by wrapping all of the low-level operations and variables inside a custom created Keras layer. This can be done by creating a class that inherits from the tf.keras.layers.Layer class:
# Create a custom layer for part of the model
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, *args, **kwargs):
super(CustomLayer, self).__init__(*args, **kwargs)
def build(self, input_shape):
self.w = self.add_weight(
shape=input_shape[1:],
dtype=tf.float32,
initializer=tf.keras.initializers.ones(),
regularizer=tf.keras.regularizers.l2(0.02),
trainable=True)
# Call method will sometimes get used in graph mode,
# training will get turned into a tensor
@tf.function
def call(self, inputs, training=None):
if training:
return inputs + self.w
else:
return inputs + self.w * 0.5
The preceding code creates a class called CustomLayer, which inherits attributes from the tf.keras.layers.Layer class. This is a technique that allows any sort of low-level code to be used inside of a tf.keras model, regardless of whether it is a model that uses the Sequential API or functional API. There are two methods inside this class:
Once this custom layer has been written, it can be used anywhere in the tf.keras module. For this conversion, the Sequential API will be used:
train_data = tf.ones(shape=(1, 28, 28, 1))
test_data = tf.ones(shape=(1, 28, 28, 1))
# Build the model including the custom layer
model = tf.keras.Sequential([
CustomLayer(input_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
])
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
Upgrading training loops
The second step of converting TF 1.x code into idiomatic TF 2.0 code is to upgrade the training pipelines. TF 1.x training pipelines involve multiple tf.Session.run() calls for the optimizer, losses, and predictions. Such training loops also involve boilerplate code that's written to log the training results to the console for easy supervision.
In TF 2.0, three types of training loops can be used. Each of these loops has different advantages and disadvantages and varies in difficulty, API level, and complexity. They are as follows:
Other things to note when converting
There are a couple of other major conversions that are required when migrating from TF 1.x to TF 2.0. A conversation that is significantly more difficult than the ones we previously described is converting code written in TF-Slim to TF 2.0.
Since TF-Slim was packaged under the tf.contrib.layers library, it is not available in TF 2.0, even in the compatibility module. This means that to convert TF-Slim code into TF 2.0 format, the entire code dynamic often needs to be changed.
This includes removing argument scopes from code, as all arguments should be explicit in TF 2.0. The normalizer_fn and activation_fn functions should be split into their own layers. Note that TF-Slim layers have different argument names and default values than tf.keras layers.
The easiest way to convert a TF-Slim model into TF 2.0 is to convert it into the tf.layers API in TF 1.x, and then convert that into tf.keras.layers.
Another conversion detail to note is that, in TF 2.0, all metrics are objects that have three main methods: update_state(), which adds new observations, result(), which gets the current result of the metric, and reset_states(), which clears all observations.
Metrics objects are also callable, and when called on new observations, they accumulate the values and return the latest result.
The following example shows us how to use metrics in a custom training loop:
loss_metric = tf.keras.metrics.Mean(name='train_loss')
accuracy_metric = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
@tf.function
def train_step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
regularization_loss = tf.math.add_n(model.losses)
pred_loss = loss_fn(labels, predictions)
total_loss = pred_loss + regularization_loss
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
loss_metric.update_state(total_loss)
accuracy_metric.update_state(labels, predictions)
for epoch in range(NUM_EPOCHS):
loss_metric.reset_states()
accuracy_metric.reset_states()
for inputs, labels in train_data:
train_step(inputs, labels)
mean_loss = loss_metric.result()
mean_accuracy = accuracy_metric.result()
print('Epoch: ', epoch)
print(' loss: {:.3f}'.format(mean_loss))
print(' accuracy: {:.3f}'.format(mean_accuracy))
Frequently asked questions
In this section, some frequently asked questions about the migration from TF 1.x to TF 2.0 will be addressed.
Does code written in TF 2.0 have the same speed as graph-based TF 1.x code?
Yes, code written in TF 2.0 using tf.function or tf.keras will have the same speed and optimality as it does in TF 1.x. As we mentioned earlier in this chapter, using tf.function to annotate major functions allows the model to be run in graph mode, and all the computations and logic in the function will be compiled into a computational graph. The same goes for using tf.keras to define and train TensorFlow models. Using the model.fit method will also train the model in graph mode and has all of the benefits and optimizations that ...
The future of TF 2.0
TF 2.0 is currently in beta and hence is still under development. Some key features that are coming up include modifications to packages such as TensorBoard, TensorFlow Lite, TensorFlow.js, Swift for TensorFlow, and TensorFlow Extended, and small changes being made to the base API. TensorBoard will see enhancements such as improved hyperparameter-tuning capabilities, the introduction of hosting capabilities to make sharing dashboards easy, and enabling plugins to use different frontend technologies, such as ReactJS. TensorFlow Lite will see increased coverage of supported operations, an easier conversion of TF 2.0 models to TFLite, and extended support for Edge TPUs and AIY boards. Both TensorFlow.js and Swift for TensorFlow will see improvements in speed and performance, and will soon include a rich set of examples and getting-started guides with end-to-end tutorials. TF Extended will soon have complete integration with the TF 2.0 base API and will include fully orchestrated end-to-end workflows and training features.
The TF 2.0 base API will include more premade estimators for tasks, such as boosted trees, random forests, nearest neighbor search, and k-means clustering. The tf.distribute.Strategy model will expand its support for Keras subclassed models, TPUs, and multi-node training for more optimized and faster training on multiple processors.
Another major addition that is currently being developed is the tf-agents module. This module implements the core reinforcement learning algorithms as agents, which define a policy for interacting with the environment and training the policy from a collective experience. TF-agents is implemented alongside the OpenAI Gym framework and abstracts many key reinforcement learning algorithms for use in development. This module is currently in its prerelease state, but it will be released later this year.
More resources to look at
Tutorials and many other resources can be found on the TensorFlow Beta website, which contains information on key factors in creating and training machine learning models. This page also has many useful end-to-end tutorials for many of the prominent technologies in the field (https://www.tensorflow.org/beta).
The official documentation for TF 2.0 can be found on the website, as well as detailed documentation on each of the APIs in the module. This site also has links to other TensorFlow modules and features (https://www.tensorflow.org/versions/r2.0/api_docs/python/tf).
The TensorFlow Medium blog also features many updates on the state of TensorFlow libraries and services and has a steady flow of useful news and ...
Summary
This chapter covered two ways to convert TF 1.x code into TF 2.0 code. The first way is to use the included upgrade script, which changes all API calls from tf.x to tf.compat.v1.x. This allows TF 1.x code to run in TF 2.0, but will not benefit from the upgrades that were brought in TF 2.0. The second way is to change TF 1.x to idiomatic TF 2.0 code, which involves two steps. The first step is to change all model creation code into TF 2.0 code, which involves changing tensors using sess.run calls into functions, and placeholders and feed dicts into arguments for the function. Models that are created using the tf.layers API have a one-to-one comparison to tf.keras.layers. The second step is to upgrade the training pipeline by using either tf.keras.Model.fit or a custom training loop with tf.GradientTape.
TF 2.0 brings many changes in the way TensorFlow code is written and organized. Some major changes in TF 2.0 are the reorganization and cleanup of the APIs in the main module. This includes the removal of the tf.contrib module. Other changes include the addition of code-wide eager execution to allow for easier debugging and simpler usage. Because of eager execution, variables that are created in TF 2.0 will behave like normal Python variables. This means that TF 1.x APIs for handling global variables are obsolete and thus have been removed in TF 2.0. This brings us to the end of the book!
Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:
TensorFlow 2.0 Quick Start Guide Tony Holdroyd
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