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Introduction

This book covers machine learning, one of the hottest topics in more recent 
years. With computing power increasing exponentially and prices decreasing 
simultaneously, there is no better time for machine learning. With machine 
learning, tasks that usually require huge processing power are now possible on 
desktop machines. Nevertheless, machine learning is not for the faint of heart—it 
requires a good foundation in statistics, as well as programming knowledge. 
Most books on the market either are too superficial or go into too much depth 
that often leaves beginning readers gasping for air.

This book will take a gentle approach to this topic. First, it will cover some of 
the fundamental libraries used in Python that make machine learning possible. 
In particular, you will learn how to manipulate arrays of numbers using the 
NumPy library, followed by using the Pandas library to deal with tabular data. 
Once that is done, you will learn how to visualize data using the matplotlib 
library, which allows you to plot different types of charts and graphs so that 
you can visualize your data easily.

Once you have a firm foundation in the basics, I will discuss machine learning 
using Python and the Scikit-Learn libraries. This will give you a solid under-
standing of how the various machine learning algorithms work behind the scenes.

For this book, I will cover the common machine learning algorithms, such 
as regression, clustering, and classification.

This book also contains a chapter where you will learn how to perform machine 
learning using the Microsoft Azure Machine Learning Studio, which allows 
developers to start building machine learning models using drag-and-drop 
without needing to code. And most importantly, without requiring a deep 
knowledge of machine learning.
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Finally, I will discuss how you can deploy the models that you have built, 
so that they can be used by client applications running on mobile and desktop 
devices.

It is my key intention to make this book accessible to as many developers as 
possible. To get the most out of this book, you should have some basic knowledge 
of Python programming, and some foundational understanding of basic statistics. 
And just like you will never be able to learn how to swim just by reading a 
book, I strongly suggest that you try out the sample code while you are going 
through the chapters. Go ahead and modify the code and see how the output 
varies, and very often you would be surprised by what you can do. 

All the sample code in this book are available as Jupyter Notebooks (avail-
able for download from Wiley’s support page for this book, www.wiley.com/go/
leepythonmachinelearning). So you could just download them and try them 
out immediately.

Without further delay, welcome to Python Machine Learning!



C H A P T E R

1

1

Welcome to Python Machine Learning! The fact that you are reading this book 
is a clear indication of your interest in this very interesting and exciting topic.

This book covers machine learning, one of the hottest programming topics in 
more recent years. Machine learning (ML) is a collection of algorithms and tech-
niques used to design systems that learn from data. These systems are then able 
to perform predictions or deduce patterns from the supplied data.

With computing power increasing exponentially and prices decreasing simulta-
neously, there is no better time for machine learning. Machine learning tasks that 
usually require huge processing power are now possible on desktop machines. 
Nevertheless, machine learning is not for the faint of heart—it requires a good 
foundation in mathematics, statistics, as well as programming knowledge. The 
majority of the books in the market on machine learning go into too much detail, 
which often leaves beginning readers gasping for air. Most of the discussion on 
machine learning revolves heavily around statistical theories and algorithms, so 
unless you are a mathematician or a PhD candidate, you will likely find them 
difficult to digest. For most people, developers in particular, what they want 
is to have a foundational understanding of how machine learning works, and 
most importantly, how to apply machine learning in their applications. It is with 
this motive in mind that I set out to write this book.

Introduction to Machine Learning

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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This book will take a gentle approach to machine learning. I will attempt to 
do the following:

 ➤ Cover the libraries in Python that lay the foundation for machine 
learning, namely NumPy, Pandas, and matplotlib.

 ➤ Discuss machine learning using Python and the Scikit-learn libraries. 
Where possible, I will manually implement the relevant machine learning 
algorithm using Python. This will allow you to understand how the 
various machine learning algorithms work behind the scenes. Once this 
is done, I will show how to use the Scikit-learn libraries, which make it 
really easy to integrate machine learning into your own apps.

 ➤ Cover the common machine learning algorithms—regressions, clustering, 
and classifications.

 T I P   It is not the intention of this book to go into a deep discussion of machine 
learning algorithms. Although there are chapters that discuss some of the 
mathematical concepts behind the algorithms, it is my intention to make the subject 
easy to understand and hopefully motivate you to learn further.

Machine learning is indeed a very complex topic. But instead of discussing the 
complex mathematical theories behind it, I will cover it using easy-to-understand 
examples and walk you through numerous code samples. This code-intensive book 
encourages readers to try out the numerous examples in the various chapters, which 
are designed to be independent, compact, and easy to follow and understand.

What Is Machine Learning?

If you have ever written a program, you will be familiar with the diagram shown 
in Figure 1.1. You write a program, feed some data into it, and get your output. 
For example, you might write a program to perform some accounting tasks for 
your business. In this case, the data collected would include your sales records, 
your inventory lists, and so on. The program would then take in the data and 
calculate your profits or loss based on your sales records. You may also perhaps 
churn out some nice and fanciful charts showing your sales performance. In 
this case, the output is the profit/loss statement, as well as other charts.

Data

Program
Output

Traditional Programming

Computer

Figure 1.1:  In traditional programming, the data and the program produce the output
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For many years, traditional desktop and web programming have dominated 
the landscape, and many algorithms and methodologies have evolved to make 
programs run more efficiently. In more recent years, however, machine learning 
has taken over the programming world. Machine learning has transformed the 
paradigm in Figure 1.1 to a new paradigm, which is shown in Figure 1.2. Instead 
of feeding the data to the program, you now use the data and the output that 
you have collected to derive your program (also known as the model). Using the 
same accounting example, with the machine learning paradigm, you would take 
the detailed sales records (which are collectively both the data and output) and 
use them to derive a set of rules to make predictions. You may use this model 
to predict the most popular items that will sell next year, or which items will 
be less popular going forward.

 T I P   Machine learning is about finding patterns in data.

What Problems Will Machine Learning Be Solving in This Book?
So, what exactly is machine learning? Machine learning (ML) is a collection  
of algorithms and techniques used to design systems that learn from data. ML 
algorithms have a strong mathematical and statistical basis, but they do not 
take into account domain knowledge. ML consists of the following disciplines:

 ■ Scientific computing

 ■ Mathematics

 ■ Statistics

A good application of machine learning is trying to determine if a particular 
credit card transaction is fraudulent. Given past transaction records, the data 
scientist’s job is to clean up and transform the data based on domain knowledge 
so that the right ML algorithm can be applied in order to solve the problem (in 
this case determine if a transaction is fraudulent). A data scientist needs to know 
about which method of machine learning will best help in completing this task 
and how to apply it. The data scientist does not necessarily need to know how 
that method works, although knowing this will always help in building a more 
accurate learning model.

Data

Output
Program

Machine Learning

Computer

Figure 1.2:  In machine learning, the data and the output produce the program
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In this book, there are three main types of problems that we want to solve 
using machine learning. These problem types are as follows:

Classification: Is this A or B?

Regression: How much or how many?

Clustering: How is this organized?

Classification

In machine learning, classification is identifying to which set of categories a new 
observation belongs based on the set of training data containing in the observed 
categories. Here are some examples of classification problems:

 ■ Predicting the winner for the U.S. 2020 Presidential Election

 ■ Predicting if a tumor is cancerous

 ■ Classifying the different types of flowers

A classification problem with two classes is known as a two-class classification 
problem. Those with more than two classes are known as multi-class classification 
problems.

The outcome of a classification problem is a discrete value indicating the 
predicted class in which an observation lies. The outcome of a classification 
problem can also be a continuous value, indicating the likelihood of an obser-
vation belonging to a particular class. For example, candidate A is predicted 
to win the election with a probability of 0.65 (or 65 percent). Here, 0.65 is the 
continuous value indicating the confidence of the prediction, and it can be 
converted to a class value (“win” in this case) by selecting the prediction with 
the highest probability.

Chapter 7 through Chapter 9 will discuss classifications in more detail.

Regression

Regression helps in forecasting the future by estimating the relationship between 
variables. Unlike classification (which predicts the class to which an observa-
tion belongs), regression returns a continuous output variable. Here are some 
examples of regression problems:

 ■ Predicting the sales number for a particular item for the next quarter

 ■ Predicting the temperatures for next week

 ■ Predicting the lifespan of a particular model of tire

Chapter 5 and Chapter 6 will discuss regressions in more detail.
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Clustering

Clustering helps in grouping similar data points into intuitive groups. Given a 
set of data, clustering helps you discover how they are organized by grouping 
them into natural clumps.

Examples of clustering problems are as follows:

 ■ Which viewers like the same genre of movies

 ■ Which models of hard drives fail in the same way

Clustering is very useful when you want to discover a specific pattern in the 
data. Chapter 10 will discuss clustering in more detail.

Types of Machine Learning Algorithms
Machine learning algorithms fall into two broad categories:

 ■ Supervised learning algorithms are trained with labeled data. In other words, 
data composed of examples of the desired answers. For instance, a model 
that identifies fraudulent credit card use would be trained from a dataset 
with labeled data points of known fraudulent and valid charges. Most 
machine learning is supervised.

 ■ Unsupervised learning algorithms are used on data with no labels, and 
the goal is to find relationships in the data. For instance, you might 
want to find groupings of customer demographics with similar buying 
habits.

Supervised Learning

In supervised learning, a labeled dataset is used. A labeled dataset means that 
a group of data has been tagged with a label. This label provides informative 
meaning to the data. Using the label, unlabeled data can be predicted to obtain 
a new label. For example, a dataset may contain a series of records containing 
the following fields, which record the size of the various houses and the prices 
for which they were sold:

House Size, Price Sold

In this very simple example, Price Sold is the label. When plotted on a chart 
(see Figure 1.3), this dataset can help you predict the price of a house that is yet 
to be sold. Predicting a price for the house is a regression problem.
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Using another example, suppose that you have a dataset containing the  
following:

Tumor Size, Age, Malignant

The Malignant field is a label indicating if a tumor is cancerous. When you 
plot the dataset on a chart (see Figure 1.4), you will be able to classify it into two 
distinct groups, with one group containing the cancerous tumors and the other 
containing the benign tumors. Using this grouping, you can now predict if a new 
tumor is cancerous or not. This type of problem is known as a classification problem.

 T I P   Chapter 6 through Chapter 9 will discuss supervised learning algorithms in 
more detail.
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Predict discrete value
Classification

Tumor Size

Ag
e x

x
x

x x

x

x

O
O

O
O

O

O

O
O

x

Figure 1.4:  Using classification to categorize data into distinct classes



 Chapter 1 ■ Introduction to Machine Learning 7

Unsupervised Learning

In unsupervised learning, the dataset used is not labeled. An easy way to visu-
alize unlabeled data is to consider the dataset containing the waist size and leg 
length of a group of people:

Waist Size, Leg Length

Using unsupervised learning, your job is to try to predict a pattern in the 
dataset. You may plot the dataset in a chart, as shown in Figure 1.5.

You can then use some clustering algorithms to find the patterns in the data-
set. The end result might be the discovery of three distinct groups of clusters 
in the data, as shown in Figure 1.6.
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Figure 1.5:  Plotting the unlabeled data
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 T I P   Chapter 10 will discuss unsupervised learning algorithms in more detail.

Getting the Tools

For this book, all of the examples are tested using Python 3 and the Scikit-learn 
library, a Python library that implements the various types of machine learning 
algorithms, such as classification, regression, clustering, decision tree, and 
more. Besides Scikit-learn, you will also be using some complementary Python 
libraries—NumPy, Pandas, and matplotlib.

While you can install the Python interpreter and the other libraries individ-
ually on your computer, the trouble-free way to install all of these libraries is 
to install the Anaconda package. Anaconda is a free Python distribution that 
comes with all of the necessary libraries that you need to create data science 
and machine learning projects.

Anaconda includes the following:

 ■ The core Python language

 ■ The various Python packages (libraries)

 ■ conda, Anaconda’s own package manager for updating Anaconda and 
packages

 ■ Jupyter Notebook (formerly known as iPython Notebook), a web-based 
editor for working with Python projects

With Anaconda, you have the flexibility to install different languages  
(R, JavaScript, Julia, and so on) to work in Jupyter Notebook.

Obtaining Anaconda
To download Anaconda, go to https://www.anaconda.com/download/. You will 
be able to download Anaconda for these operating systems (see Figure 1.7):

 ■ Windows

 ■ macOS

 ■ Linux

Download the Python 3 for the platform you are using.

 N OT E   At the time of this writing, Python is in version 3.7.

 T I P   For this book, we will be using Python 3. So be sure to download the correct 
version of Anaconda containing Python 3.
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Installing Anaconda
Installing Anaconda is mostly a non-event process. Double-click the file that 
you have downloaded, and follow the instructions displayed on the screen. In 
particular, Anaconda for Windows has the option to be installed only for the 
local user. This option does not require administrator rights, and hence it is very 
useful for users who are installing Anaconda on company-issued computers, 
which are usually locked down with limited user privileges.

Once Anaconda is installed, you will want to launch Jupyter Notebook. Jupyter 
Notebook is an open source web application, which allows you to create and 
share documents that contain documentation, code, and more.

Running Jupyter Notebook for Mac

To launch Jupyter from macOS, launch Terminal and type the following command:

$ jupyter notebook

You will see the following:

$ jupyter notebook
[I 18:57:03.642 NotebookApp] JupyterLab extension loaded from  
/Users/weimenglee/anaconda3/lib/python3.7/site-packages/jupyterlab
[I 18:57:03.643 NotebookApp] JupyterLab application directory is  
/Users/weimenglee/anaconda3/share/jupyter/lab
[I 18:57:03.648 NotebookApp] Serving notebooks from local directory:  
/Users/weimenglee/Python Machine Learning
[I 18:57:03.648 NotebookApp] The Jupyter Notebook is running at:

Figure 1.7:  Downloading Anaconda for Python 3
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[I 18:57:03.648 NotebookApp]  
http://localhost:8888/?token=3700cfe13b65982612c0e1975ce3a68107399b07f89
b85fa
[I 18:57:03.648 NotebookApp] Use Control-C to stop this server and shut 
down all kernels (twice to skip confirmation).
[C 18:57:03.649 NotebookApp] 
    
    Copy/paste this URL into your browser when you connect for the first 
time,
    to login with a token:
        http://localhost:8888/?token=3700cfe13b65982612c0e1975ce3a681073
99b07f89b85fa
[I 18:57:04.133 NotebookApp] Accepting one-time-token-authenticated 
connection from ::1

Essentially, Jupyter Notebook starts a web server listening at port 8888. After 
a while, a web browser will launch (see Figure 1.8).

 T I P   The Home page of Jupyter Notebook shows the content of the directory from 
where it is launched. Hence, it is always useful to change to the directory that contains 
your source code first, prior to launching Jupyter Notebook.

Running Jupyter Notebook for Windows

The best way to launch Jupyter Notebook in Windows is to launch it from the 
Anaconda Prompt. The Anaconda Prompt automatically runs the batch file located 
at C:\Anaconda3\Scripts\activate.bat with the following argument:

C:\Anaconda3\Scripts\activate.bat C:\Anaconda3

Figure 1.8:  The Jupyter Notebook Home page
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 T I P   Note that the exact location of the Anaconda3 folder can vary. For example, 
by default Windows 10 will install Anaconda in C:\Users\<username>\AppData\
Local\Continuum\anaconda3 instead of C:\Anaconda3.

This sets up the necessary paths for accessing Anaconda and its libraries.
To launch the Anaconda Prompt, type Anaconda Prompt in the Windows 

Run textbox. To launch Jupyter Notebook from the Anaconda Prompt, type 
the following:

(base) C:\Users\Wei-Meng Lee\Python Machine Learning>jupyter notebook

You will then see this:

[I 21:30:48.048 NotebookApp] JupyterLab beta preview extension loaded from  
C:\Anaconda3\lib\site-packages\jupyterlab
[I 21:30:48.048 NotebookApp] JupyterLab application directory is  
C:\Anaconda3\share\jupyter\lab
[I 21:30:49.315 NotebookApp] Serving notebooks from local directory:  
C:\Users\Wei-Meng Lee\Python Machine Learning
[I 21:30:49.315 NotebookApp] 0 active kernels
[I 21:30:49.322 NotebookApp] The Jupyter Notebook is running at:
[I 21:30:49.323 NotebookApp]  
http://localhost:8888/?token=482bfe023bd77731dc132b5340f335b9e450ce5e1c4
d7b2f
[I 21:30:49.324 NotebookApp] Use Control-C to stop this server and shut 
down all kernels (twice to skip confirmation).
[C 21:30:49.336 NotebookApp]
 
    Copy/paste this URL into your browser when you connect for the first 
time,
    to login with a token:
        http://localhost:8888/?token=482bfe023bd77731dc132b5340f335b9e45
0ce5e1c4d7b2f
[I 21:30:49.470 NotebookApp] Accepting one-time-token-authenticated 
connection from ::1

Essentially, Jupyter Notebook starts a web server listening at port 8888. It then 
launches your web browser showing you the page in Figure 1.9.

Creating a New Notebook

To create a new notebook, locate the New button on the right side of the screen 
and click it. You should be able to see Python 3 in the dropdown (see Figure 1.10). 
Click this option.

Your new notebook will now appear (see Figure 1.11).



12 Chapter 1 ■ Introduction to Machine Learning

Naming the Notebook

By default, your notebook will be named “Untitled”. To give it a suitable name, 
click “Untitled” and type in a new name. Your notebook will be saved in the 
directory from which you have launched Jupyter Notebook. The notebook will be 
saved with a filename that you have given it, together with the .ipynb extension. 

Figure 1.9:  Jupyter Notebook showing the Home page

Figure 1.10:  Creating a new Python 3 notebook
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 T I P   Jupyter Notebook was previously known as iPython Notebook; hence the 
.ipynb extension.

Adding and Removing Cells

A notebook contains one or more cells. You can type Python statements in each 
cell. Using Jupyter Notebook, you can divide your code into multiple snippets 
and put them into cells so that they can be run individually.

To add more cells to your notebook, click the + button. You can also use 
the Insert menu item and select the option Insert Cell Above to add a new 
cell above the current cell, or select the Insert Cell Below option to add a 
new cell below the current cell.

Figure 1.12 shows the notebook containing two cells.

Figure 1.11:  The Python 3 notebook created in Jupyter Notebook

Figure 1.12:  The notebook with two cells
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Running a Cell

Each cell in a Jupyter Notebook can be run independently. To execute (run) the 
code in a cell, press Ctrl+Enter, or click the arrow icon displayed to the left of 
the cell when you hover your mouse over it (see Figure 1.13).

When cells are run, the order in which they were executed is displayed as 
a running number. Figure 1.14 shows two cells executed in the order shown.  
The number 1 in the first cell indicates that this cell was executed first, followed by 
number 2 in the second cell. The output of the cell is displayed immediately after 
the cell. If you go back to the first cell and run it, the number will then change to 3.

As you can see, code that was executed previously in another cell retains its 
value in memory when you execute the current cell. However, you need to be 
careful when you are executing cells in various orders. Consider the example 
in Figure 1.15. Here, we have three cells. In the first cell, we initialize the value 
of s to a string and print its value in the second cell. In the third cell, we change 
the value of s to another string.

Figure 1.13:  Running (executing) the code in the cell

Figure 1.14:  The number displayed next to the cell indicates the order in which it was run
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Very often, in the midst of testing your code, it is very common that you 
may make modifications in one cell and go back to an earlier cell to retest the 
code. In this example, suppose that you go back and rerun the second cell. In 
this case, you would now print out the new value of s (see Figure 1.16). At first 
glance, you may be expecting to see the string “Welcome to Python Machine 
Learning,” but since the second cell was rerun after the third cell, the value of 
s will take on the “Python Machine Learning” string.

Figure 1.15:  The notebook with three cells

Figure 1.16:  Executing the cells in non-linear order
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To restart the execution from the first cell, you need to restart the kernel, or 
select Cell ⇨ Run All.

Restarting the Kernel

As you can run any cell in your notebook in any order, after a while things may 
get a little messy. You may want to restart the execution and start all over again. 
This is where restarting the kernel is necessary (see Figure 1.17).

 T I P   When your code goes into an infinite loop, you need to restart the kernel. 
There are two common scenarios for restarting the kernel:
Restart & Clear Output Restart the kernel and clear all of the outputs. You can now run 

any of the cells in any order you like.
Restart & Run All Restart the kernel and run all of the cells from the first to the last. This 

is very useful if you are satisfied with your code and want to test it in its entirety.

Exporting Your Notebook

Once you are done with your testing in Jupyter Notebook, you can now export 
code from your notebook to a Python file. To do so, select File ⇨ Download as 
⇨ python (.py). (See Figure 1.18.)

A file with the same name as your notebook, but now with the .py extension, 
will be downloaded to your computer. 

 T I P   Make sure that you select the python (.py) option and not the Python (.py) 
option. The latter option saves the file with an .html extension.

Figure 1.17:  Restarting the kernel
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Getting Help

You can get help in Jupyter Notebook quite easily. To get help on a function in 
Python, position your cursor on the function name and press Shift+Tab. This 
will display a pop-up known as the tooltip (see Figure 1.19).

To expand the tooltip (see Figure 1.20), click the + button on the upper-right 
corner of the tooltip. You can also get the expanded version of the tooltip when 
you press Shift+Tab+Tab.

Figure 1.18:  Exporting your notebook to a Python file
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Summary

In this chapter, you learned about machine learning and the types of problems 
that it can solve. You also studied the main difference between supervised and 
unsupervised learning. For developers who are new to Python programming, 
I strongly advise you to install Anaconda, which will provide all of the libraries 
and packages you’ll need to follow the examples in this book. I know that you 
are all eager to start learning, so let’s move onward to Chapter 2!

Figure 1.19:  The tooltip displays help information

Figure 1.20:  Expanding the tooltip to show more detail
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Extending Python Using NumPy

What Is NumPy?

In Python, you usually use the list data type to store a collection of items. The 
Python list is similar to the concept of arrays in languages like Java, C#, and 
JavaScript. The following code snippet shows a Python list:

list1 = [1,2,3,4,5]

Unlike arrays, a Python list does not need to contain elements of the same 
type. The following example is a perfectly legal list in Python:

list2 = [1,"Hello",3.14,True,5]

While this unique feature in Python provides flexibility when handling 
multiple types in a list, it has its disadvantages when processing large amounts 
of data (as is typical in machine learning and data science projects). The key 
problem with Python’s list data type is its efficiency. To allow a list to have 
non-uniform type items, each item in the list is stored in a memory location, with 
the list containing an “array” of pointers to each of these locations. A Python 
list requires the following:

 ■ At least 4 bytes per pointer.

 ■ At least 16 bytes for the smallest Python object—4 bytes for a pointer,  
4 bytes for the reference count, 4 bytes for the value. All of these together 
round up to 16 bytes.

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Due to the way that a Python list is implemented, accessing items in a large list 
is computationally expensive. To solve this limitation with Python’s list feature, 
Python programmers turn to NumPy, an extension to the Python programming 
language that adds support for large, multidimensional arrays and matrices, 
along with a large library of high-level mathematical functions to operate on 
these arrays.

In NumPy, an array is of type ndarray (n-dimensional array), and all ele-
ments must be of the same type. An ndarray object represents a multidimen-
sional, homogeneous array of fixed-size items, and it is much more efficient 
than Python’s list. The ndarray object also provides functions that operate on 
an entire array at once.

Creating NumPy Arrays

Before using NumPy, you first need to import the NumPy package (you may 
use its conventional alias np if you prefer):

import numpy as np

The first way to make NumPy arrays is to create them intrinsically, using the 
functions built right into NumPy. First, you can use the arange() function to 
create an evenly spaced array with a given interval:

a1 = np.arange(10)        # creates a range from 0 to 9
print(a1)                 # [0 1 2 3 4 5 6 7 8 9]
print(a1.shape)           # (10,)

The preceding statement creates a rank 1 array (one-dimensional) of ten ele-
ments. To get the shape of the array, use the shape property. Think of a1 as a 
10×1 matrix.

You can also specify a step in the arange() function. The following code 
snippet inserts a step value of 2:

a2 = np.arange(0,10,2)    # creates a range from 0 to 9, step 2
print(a2)                 # [0 2 4 6 8]

To create an array of a specific size filled with 0s, use the zeros() function:

a3 = np.zeros(5)          # create an array with all 0s
print(a3)                 # [ 0.  0.  0.  0.  0.]
print(a3.shape)           # (5,)

You can also create two-dimensional arrays using the zeros() function:

a4 = np.zeros((2,3))      # array of rank 2 with all 0s; 2 rows and 3  
                          # columns
print(a4.shape)           # (2,3)
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print(a4)
'''
[[ 0.  0.  0.]
 [ 0.  0.  0.]]
'''

If you want an array filled with a specific number instead of 0, use the full() 
function:

a5 = np.full((2,3), 8)    # array of rank 2 with all 8s
print(a5)
'''
[[8 8 8]
 [8 8 8]]
'''

Sometimes, you need to create an array that mirrors an identity matrix. In 
NumPy, you can do so using the eye() function:

a6 = np.eye(4)            # 4x4 identity matrix
print(a6)
'''
[[ 1.  0.  0.  0.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  1.  0.]
 [ 0.  0.  0.  1.]]
'''

The eye() function returns a 2-D array with ones on the diagonal and zeros 
elsewhere.

To create an array filled with random numbers, you can use the random() 
function from the numpy.random module:

a7 = np.random.random((2,4)) # rank 2 array (2 rows 4 columns) with  
                             # random values
                             # in the half-open interval [0.0, 1.0)
print(a7)
'''
[[ 0.48255806  0.23928884  0.99861279  0.4624779 ]
 [ 0.18721584  0.71287041  0.84619432  0.65990083]]
'''

Another way to create a NumPy array is to create it from a Python list as 
follows:

list1 = [1,2,3,4,5]  # list1 is a list in Python
r1 = np.array(list1) # rank 1 array
print(r1)            # [1 2 3 4 5]

The array created in this example is a rank 1 array.
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Array Indexing

Accessing elements in the array is similar to accessing elements in a Python list:

print(r1[0])         # 1
print(r1[1])         # 2

The following code snippet creates another array named r2, which is 
two-dimensional:

list2 = [6,7,8,9,0]
r2 = np.array([list1,list2])     # rank 2 array
print(r2)
'''
[[1 2 3 4 5]
 [6 7 8 9 0]]
'''
print(r2.shape)             # (2,5) - 2 rows and 5 columns
print(r2[0,0])              # 1
print(r2[0,1])              # 2
print(r2[1,0])              # 6

Here, r2 is a rank 2 array, with two rows and five columns.
Besides using an index to access elements in an array, you can also use a list 

as the index as follows:

list1 = [1,2,3,4,5]
r1 = np.array(list1)
print(r1[[2,4]])    # [3 5]

Boolean Indexing
In addition to using indexing to access elements in an array, there is another 
very cool way to access elements in a NumPy array. Consider the following:

print(r1>2)     # [False False  True  True  True]

This statement prints out a list containing Boolean values. What it actually 
does is to go through each element in r1 and check if each element is more than 
two. The result is a Boolean value, and a list of Boolean values is created at the 
end of the process. You can feed the list results back into the array as the index:

print(r1[r1>2])    # [3 4 5]
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This method of accessing elements in an array is known as Boolean Indexing. 
This method is very useful. Consider the following example:

nums = np.arange(20)
print(nums)        # [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
17 18 19]

If you want to retrieve all of the odd numbers from the list, you could simply 
use Boolean Indexing as follows:

odd_num = nums[nums % 2 == 1]
print(odd_num)     # [ 1  3  5  7  9 11 13 15 17 19]

Slicing Arrays
Slicing in NumPy arrays is similar to how it works with a Python list. Consider 
the following example:

a = np.array([[1,2,3,4,5],
              [4,5,6,7,8],
              [9,8,7,6,5]])    # rank 2 array
print(a)
'''
[[1 2 3 4 5]
 [4 5 6 7 8]
 [9 8 7 6 5]]
'''

To extract the last two rows and first two columns, you can use slicing:

b1 = a[1:3, :3]     # row 1 to 3 (not inclusive) and first 3 columns
print(b1)

The preceding code snippet will print out the following:

[[4 5 6]
 [9 8 7]]

Let’s dissect this code. Slicing has the following syntax: [start:stop]. For 
two-dimensional arrays, the slicing syntax becomes [start:stop, start:stop]. 
The start:stop before the comma (,) refers to the rows, and the start:stop after 
the comma (,) refers to the columns. Hence for [1:3, :3], this means that you 
want to extract the rows with index 1 right up to 3 (but not including 3), and 
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columns starting from the first column right up to index 3 (but not including 3). 
The general confusion regarding slicing is the end index. You need to remember 
that the end index is not included in the answer. A better way to visualize slicing 
is to write the index of each row and column between the numbers, instead of 
at the center of the number, as shown in Figure 2.1.

Using this approach, it is now much easier to visualize how slicing works 
(see Figure 2.2).

What about negative indices? For example, consider the following:

b2 = a[-2:,-2:]
print(b2)

Using the method just described, you can now write the negative row and 
column indices, as shown in Figure 2.3.

You should now be able to derive the answer quite easily, which is as follows:

[[7 8]
 [6 5]]

Figure 2.1:  Writing the index for row and column in between the numbers

Figure 2.2:  Performing slicing using the new approach
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NumPy Slice Is a Reference
It is noteworthy that the result of a NumPy slice is a reference and not a copy 
of the original array. Consider the following:

b3 = a[1:, 2:]      # row 1 onwards and column 2 onwards
                    # b3 is now pointing to a subset of a
print(b3)

The result is as follows:

[[6 7 8]
 [7 6 5]]

Here, b3 is actually a reference to the original array a (see Figure 2.4).

Hence, if you were to change one of the elements in b3 as follows:

b3[0,2] = 88         # b3[0,2] is pointing to a[1,4]; modifying it will  
                     # modify the original array
print(a)

Figure 2.3:  Writing the negative indices for rows and columns

Figure 2.4:  Slicing returns a reference to the original array and not a copy
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The result will affect the content of a like this:

[[ 1  2  3  4  5]
 [ 4  5  6  7 88]
 [ 9  8  7  6  5]]

Another salient point to note is that the result of the slicing is dependent on 
how you slice it. Here is an example:

b4 = a[2:, :]       # row 2 onwards and all columns
print(b4)
print(b4.shape)

In the preceding statement, you are getting rows with index 2 and above and 
all of the columns. The result is a rank 2 array, like this:

[[9 8 7 6 5]]
(1,5)

If you have the following instead . . .

b5 = a[2, :]         # row 2 and all columns
print(b5)            # b5 is rank 1

. . . then the result would be a rank 1 array:

[9 8 7 6 5]

Printing the shape of the array confirms this:

print(b5.shape)      # (5,)

Reshaping Arrays

You can reshape an array to another dimension using the reshape() function. 
Using the b5 (which is a rank 1 array) example, you can reshape it to a rank 2 
array as follows:

b5 = b5.reshape(1,-1)
print(b5)
'''
[[9 8 7 6 5]]
'''

In this example, you call the reshape() function with two arguments. The 
first 1 indicates that you want to convert it into rank 2 array with 1 row, and the 
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-1 indicates that you will leave it to the reshape() function to create the correct 
number of columns. Of course, in this example, it is clear that after reshaping 
there will be five columns, so you can call the reshape() function as reshape(1,5). 
In more complex cases, however, it is always convenient to be able to use -1 to 
let the function decide on the number of rows or columns to create.

Here is another example of how to reshape b4 (which is a rank 2 array) to rank 1:

b4.reshape(-1,)
'''
[9 8 7 6 5]
'''

The -1 indicates that you let the function decide how many rows to create as 
long as the end result is a rank 1 array.

 T I P   To convert a rank 2 array to a rank 1 array, you can also use the flatten() or 
ravel() functions. The flatten() function always returns a copy of the array, while 
the ravel() and reshape() functions return a view (reference) of the original array.

Array Math

You can perform array math very easily on NumPy arrays. Consider the fol-
lowing two rank 2 arrays:

x1 = np.array([[1,2,3],[4,5,6]])
y1 = np.array([[7,8,9],[2,3,4]])

To add these two arrays together, you use the + operator as follows:

print(x1 + y1)

The result is the addition of each individual element in the two arrays:

[[ 8 10 12]
 [ 6  8 10]]

Array math is important, as it can be used to perform vector calculations.  
A good example is as follows:

x = np.array([2,3])
y = np.array([4,2])
z = x + y
'''
[6 5]
'''
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Figure 2.5 shows the use of arrays to represent vectors and uses array addition 
to perform vector addition.

Besides using the + operator, you can also use the np.add() function to add 
two arrays:

np.add(x1,y1)

Apart from addition, you can also perform subtraction, multiplication, as well 
as division with NumPy arrays:

print(x1 - y1)     # same as np.subtract(x1,y1)
'''
[[-6 -6 -6]
 [ 2  2  2]]
'''
 
print(x1 * y1)     # same as np.multiply(x1,y1)
'''
[[ 7 16 27]
 [ 8 15 24]]
'''
 
print(x1 / y1)     # same as np.divide(x1,y1)
'''
[[ 0.14285714  0.25        0.33333333]
 [ 2.          1.66666667  1.5       ]]
'''

What’s a practical use of the ability to multiply or divide two arrays? As an 
example, suppose you have three arrays: one containing the names of a group 
of people, another the corresponding heights of these individuals, and the last 
one the corresponding weights of the individuals in the group:

names   = np.array(['Ann','Joe','Mark'])
heights = np.array([1.5, 1.78, 1.6])
weights = np.array([65, 46, 59])

Figure 2.5:  Using array addition for vector addition



 Chapter 2 ■ Extending Python Using NumPy 29

Now say that you want to calculate the Body Mass Index (BMI) of this group 
of people. The formula to calculate BMI is as follows:

 ■ Divide the weight in kilograms (kg) by the height in meters (m)

 ■ Divide the answer by the height again

Using the BMI, you can classify a person as healthy, overweight, or under-
weight using the following categories:

 ■ Underweight if BMI < 18.5

 ■ Overweight if BMI > 25

 ■ Normal weight if 18.5 <= BMI <= 25

Using array division, you could simply calculate BMI using the following 
statement:

bmi = weights/heights **2            # calculate the BMI
print(bmi)                           # [ 28.88888889  14.51836889  
23.046875  ]

Finding out who is overweight, underweight, or otherwise is now very easy:

print("Overweight: " , names[bmi>25])                  
# Overweight:  ['Ann']
print("Underweight: " , names[bmi<18.5])               
# Underweight:  ['Joe']
print("Healthy: " , names[(bmi>=18.5) & (bmi<=25)])    
# Healthy:  ['Mark']

Dot Product
Note that when you multiply two arrays, you are actually multiplying each of 
the corresponding elements in the two arrays. Very often, you want to perform 
a scalar product (also commonly known as dot product). The dot product is an 
algebraic operation that takes two coordinate vectors of equal size and returns 
a single number. The dot product of two vectors is calculated by multiplying 
corresponding entries in each vector and adding up all of those products. For 
example, given two vectors—a = [a1, a2, . . ., an] and b = [b1, b2, . . ., bn]—the dot 
product of these two vectors is a1b1 + a2b2 + . . . + anbn.

In NumPy, dot product is accomplished using the dot() function:

x = np.array([2,3])
y = np.array([4,2])
np.dot(x,y)  # 2x4 + 3x2 = 14 
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Dot products also work on rank 2 arrays. If you perform a dot product of two 
rank 2 arrays, it is equivalent to the following matrix multiplication:

x2 = np.array([[1,2,3],[4,5,6]])
y2 = np.array([[7,8],[9,10], [11,12]])
print(np.dot(x2,y2))                     # matrix multiplication
'''
[[ 58  64]
 [139 154]]
 '''

Figure 2.6 shows how matrix multiplication works. The first result, 58, is 
derived from the dot product of the first row of the first array and the first 
column of the second array—1 × 7 + 2 × 9 + 3 × 11 = 58. The second result of 64 
is obtained by the dot product of the first row of the first array and the second 
column of the second array—1 × 8 + 2 × 10 + 3 × 12 = 64. And so on.

Matrix
NumPy provides another class in addition to arrays (ndarray): matrix. The 
matrix class is a subclass of the ndarray, and it is basically identical to the ndar-
ray with one notable exception—a matrix is strictly two-dimensional, while an 
ndarray can be multidimensional. Creating a matrix object is similar to creating 
a NumPy array:

x2 = np.matrix([[1,2],[4,5]])
y2 = np.matrix([[7,8],[2,3]])

You can also convert a NumPy array to a matrix using the asmatrix() function:

x1 = np.array([[1,2],[4,5]])
y1 = np.array([[7,8],[2,3]])
x1 = np.asmatrix(x1)
y1 = np.asmatrix(y1)

Figure 2.6:  Performing matrix multiplication on two arrays
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Another important difference between an ndarray and a matrix occurs when 
you perform multiplications on them. When multiplying two ndarray objects, 
the result is the element-by-element multiplication that we have seen earlier. 
On the other hand, when multiplying two matrix objects, the result is the dot 
product (equivalent to the np.dot() function):

x1 = np.array([[1,2],[4,5]])
y1 = np.array([[7,8],[2,3]])
print(x1 * y1)     # element-by-element multiplication
'''
[[ 7 16]
 [ 8 15]]
'''
 
x2 = np.matrix([[1,2],[4,5]])
y2 = np.matrix([[7,8],[2,3]])
print(x2 * y2)    # dot product; same as np.dot()
'''
[[11 14]
 [38 47]]
'''

Cumulative Sum
Very often, when dealing with numerical data, there is a need to find the 
cumulative sum of numbers in a NumPy array. Consider the following array:

a = np.array([(1,2,3),(4,5,6), (7,8,9)])
print(a)
'''
[[1 2 3]
 [4 5 6]
 [7 8 9]]
'''

You can call the cumsum() function to get the cumulative sum of the elements:

print(a.cumsum())   # prints the cumulative sum of all the
                    # elements in the array
                    # [ 1  3  6 10 15 21 28 36 45]

In this case, the cumsum() function returns a rank 1 array containing the 
cumulative sum of all of the elements in the a array. The cumsum() function also 
takes in an optional argument—axis. Specifying an axis of 0 indicates that you 
want to get the cumulative sum of each column:

print(a.cumsum(axis=0))  # sum over rows for each of the 3 columns
'''
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[[ 1  2  3]
 [ 5  7  9]
 [12 15 18]]
'''

Specifying an axis of 1 indicates that you want to get the cumulative sum of 
each row:

print(a.cumsum(axis=1))  # sum over columns for each of the 3 rows
'''
[[ 1  3  6]
 [ 4  9 15]
 [ 7 15 24]]
'''

Figure 2.7 makes it easy to understand how the axis parameter affects the 
way that cumulative sums are derived.

NumPy Sorting
NumPy provides a number of efficient sorting functions that make it very easy 
to sort an array. The first function for sorting is sort(), which takes in an array 
and returns a sorted array. Consider the following:

ages = np.array([34,12,37,5,13])
sorted_ages = np.sort(ages)   # does not modify the original array
print(sorted_ages)            # [ 5 12 13 34 37]
print(ages)                   # [34 12 37  5 13]

Figure 2.7:  Performing cumulative sums on columns and rows
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As you can see from the output, the sort() function does not modify the 
original array. Instead it returns a sorted array. If you want to sort the original 
array, call the sort() function on the array itself as follows:

ages.sort()                   # modifies the array
print(ages)                   # [ 5 12 13 34 37]

There is another function used for sorting—argsort(). To understand how 
it works, it is useful to examine the following code example:

ages = np.array([34,12,37,5,13])
print(ages.argsort())         # [3 1 4 0 2]

The argsort() function returns the indices that will sort an array. In the 
preceding example, the first element (3) in the result of the argsort() function 
means that the smallest element after the sort is in index 3 of the original array, 
which is the number 5. The next number is in index 1, which is the number 12, 
and so on. Figure 2.8 shows the meaning of the sort indices.

To print the sorted ages array, use the result of argsort() as the index to the 
ages array:

print(ages[ages.argsort()])   # [ 5 12 13 34 37]

What is the real use of argsort()? Imagine that you have three arrays repre-
senting a list of people, along with their ages and heights:

persons = np.array(['Johnny','Mary','Peter','Will','Joe'])
ages    = np.array([34,12,37,5,13])
heights = np.array([1.76,1.2,1.68,0.5,1.25])

Suppose that you want to sort this group of people by age. If you simply sort 
the ages array by itself, the other two arrays would not be sorted correctly based 
on age. This is where argsort() comes in really handy:

sort_indices = np.argsort(ages)  # performs a sort based on ages
                                 # and returns an array of indices
                                 # indicating the sort order

Figure 2.8:  Understanding the meaning of the result of the argsort() function
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Once the sort indices are obtained, simply feed them into the three arrays:

print(persons[sort_indices])      # ['Will' 'Mary' 'Joe' 'Johnny' 
'Peter']
print(ages[sort_indices])         # [ 5 12 13 34 37]
print(heights[sort_indices])      # [ 0.5   1.2   1.25  1.76  1.68]

They would now be sorted based on age. As you can see, Will is the youngest, 
followed by Mary, and so on. The corresponding height for each person would 
also be in the correct order.

If you wish to sort based on name, then simply use argsort() on the persons 
array and feed the resulting indices into the three arrays:

sort_indices = np.argsort(persons)   # sort based on names
print(persons[sort_indices])         # ['Joe' 'Johnny' 'Mary' 'Peter' 
'Will']
print(ages[sort_indices])            # [13 34 12 37  5]
print(heights[sort_indices])         # [ 1.25  1.76  1.2   1.68  0.5 ]

To reverse the order of the names and display them in descending order, use 
the Python[::-1] notation:

reverse_sort_indices = np.argsort(persons)[::-1] # reverse the order of a list
print(persons[reverse_sort_indices])     # ['Will' 'Peter' 'Mary'  
                                         #  'Johnny' 'Joe']
print(ages[reverse_sort_indices])        # [ 5 37 12 34 13]
print(heights[reverse_sort_indices])     # [ 0.5   1.68  1.2   1.76   
                                         #   1.25]

Array Assignment

When assigning NumPy arrays, you have to take note of how arrays are assigned. 
Following are a number of examples to illustrate this.

Copying by Reference
Consider an array named a1:

list1 = [[1,2,3,4], [5,6,7,8]]
a1 = np.array(list1)
print(a1)
'''
[[1 2 3 4]
 [5 6 7 8]]
'''
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When you try to assign a1 to another variable, a2, a copy of the array is created:

a2 = a1    # creates a copy by reference
print(a1)
'''
[[1 2 3 4]
 [5 6 7 8]]
'''
 
print(a2)
'''
[[1 2 3 4]
 [5 6 7 8]]
'''

However, a2 is actually pointing to the original a1. So, any changes made to 
either array will affect the other as follows:

a2[0][0] = 11      # make some changes to a2
print(a1)          # affects a1
'''
[[11  2  3  4]
 [ 5  6  7  8]]
'''
 
print(a2)
'''
[[11  2  3  4]
 [ 5  6  7  8]]
'''

 T I P   In the “Reshaping Arrays” section earlier in this chapter, you saw how to 
change the shape of an ndarray using the reshape() function. In addition to using 
the reshape() function, you can also use the shape property of the ndarray to 
change its dimension.

If a1 now changes shape, a2 will also be affected as follows:

a1.shape = 1,-1   # reshape a1
print(a1)
'''
[[11  2  3  4  5  6  7  8]]
'''
 
print(a2)         # a2 also changes shape
'''
[[11  2  3  4  5  6  7  8]]
'''
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Copying by View (Shallow Copy)
NumPy has a view() function that allows you to create a copy of an array by ref-
erence, while at the same time ensuring that changing the shape of the original 
array does not affect the shape of the copy. This is known as a shallow copy. Let’s 
take a look at an example to understand how this works:

a2 = a1.view()    # creates a copy of a1 by reference; but changes
                  # in dimension in a1 will not affect a2
print(a1)
'''
[[1 2 3 4]
 [5 6 7 8]]
'''
 
print(a2)
'''
[[1 2 3 4]
 [5 6 7 8]]
'''

As usual, modify a value in a1 and you will see the changes in a2:

a1[0][0] = 11     # make some changes in a1
print(a1)
'''
[[11  2  3  4]
 [ 5  6  7  8]]
'''
 
print(a2)         # changes is also seen in a2
'''
[[11  2  3  4]
 [ 5  6  7  8]]
'''

Up until now, the shallow copy is identical to the copying performed in the 
previous section. But with shallow copying, when you change the shape of a1, 
a2 is unaffected:

a1.shape = 1,-1   # change the shape of a1
print(a1)
'''
[[11  2  3  4  5  6  7  8]]
'''
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print(a2)         # a2 does not change shape
'''
[[11  2  3  4]
 [ 5  6  7  8]]
'''

Copying by Value (Deep Copy)
If you want to copy an array by value, use the copy() function, as in the fol-
lowing example:

list1 = [[1,2,3,4], [5,6,7,8]]
a1 = np.array(list1)
a2 = a1.copy()     # create a copy of a1 by value (deep copy)

The copy() function creates a deep copy of the array—it creates a complete 
copy of the array and its data. When you assign the copy of the array to another 
variable, any changes made to the shape of the original array will not affect its 
copy. Here’s the proof:

a1[0][0] = 11     # make some changes in a1
print(a1)
'''
[[11  2  3  4]
 [ 5  6  7  8]]
'''
 
print(a2)         # changes is not seen in a2
'''
[[1 2 3 4]
 [5 6 7 8]]
'''
 
a1.shape = 1,-1   # change the shape of a1
print(a1)
'''
[[11  2  3  4  5  6  7  8]]
'''
 
print(a2)         # a2 does not change shape
'''
[[1 2 3 4]
 [5 6 7 8]]
'''
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Summary

In this chapter, you learned about the use of NumPy as a way to represent data 
of the same type. You also learned how to create arrays of different dimensions, 
as well as how to access data stored within the arrays. An important feature of 
NumPy arrays is their ability to perform array math very easily and efficiently, 
without requiring you to write lots of code.

In the next chapter, you will learn about another important library that makes 
dealing with tabular data easy—Pandas.
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What Is Pandas?

While NumPy arrays are a much-improved N-dimensional array object ver-
sion over Python’s list, it is insufficient to meet the needs of data science. In the 
real world, data are often presented in table formats. For example, consider the 
content of the CSV file shown here:

,DateTime,mmol/L
0,2016-06-01 08:00:00,6.1
1,2016-06-01 12:00:00,6.5
2,2016-06-01 18:00:00,6.7
3,2016-06-02 08:00:00,5.0
4,2016-06-02 12:00:00,4.9
5,2016-06-02 18:00:00,5.5
6,2016-06-03 08:00:00,5.6
7,2016-06-03 12:00:00,7.1
8,2016-06-03 18:00:00,5.9
9,2016-06-04 09:00:00,6.6
10,2016-06-04 11:00:00,4.1
11,2016-06-04 17:00:00,5.9
12,2016-06-05 08:00:00,7.6
13,2016-06-05 12:00:00,5.1
14,2016-06-05 18:00:00,6.9
15,2016-06-06 08:00:00,5.0

Manipulating Tabular Data Using 
Pandas

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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16,2016-06-06 12:00:00,6.1
17,2016-06-06 18:00:00,4.9
18,2016-06-07 08:00:00,6.6
19,2016-06-07 12:00:00,4.1
20,2016-06-07 18:00:00,6.9
21,2016-06-08 08:00:00,5.6
22,2016-06-08 12:00:00,8.1
23,2016-06-08 18:00:00,10.9
24,2016-06-09 08:00:00,5.2
25,2016-06-09 12:00:00,7.1
26,2016-06-09 18:00:00,4.9

The CSV file contains rows of data that are divided into three columns—
index, date and time of recording, and blood glucose readings in mmol/L. To be  
able to deal with data stored as tables, you need a new data type that is more 
suited to deal with it—Pandas. While Python supports lists and dictionaries for 
manipulating structured data, it is not well suited for manipulating numerical 
tables, such as the one stored in the CSV file. Pandas is a Python package providing 
fast, flexible, and expressive data structures designed to make working with 
“relational” or “labeled” data both easy and intuitive.

 N OT E   Pandas stands for Panel Data Analysis.

Pandas supports two key data structures: Series and DataFrame. In this 
chapter, you will learn how to work with Series and DataFrames in Pandas.

Pandas Series

A Pandas Series is a one-dimensional NumPy-like array, with each element hav-
ing an index (0, 1, 2, . . . by default); a Series behaves very much like a dictionary 
that includes an index. Figure 3.1 shows the structure of a Series in Pandas.

0 1

index element
SERIES

1 2

2 3

3 4

4 5

Figure 3.1:  A Pandas Series
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To create a Series, you first need to import the pandas library (the convention 
is to use pd as the alias) and then use the Series class:

import pandas as pd
series = pd.Series([1,2,3,4,5])
print(series)

The preceding code snippet will print the following output:

0    1
1    2
2    3
3    4
4    5
dtype: int64

By default, the index of a Series starts from 0.

Creating a Series Using a Specified Index
You can specify an optional index for a Series using the index parameter:

series = pd.Series([1,2,3,4,5], index=['a','b','c','d','c'])
print(series)

The preceding code snippet prints out the following:

a    1
b    2
c    3
d    4
c    5
dtype: int64

It is worth noting that the index of a Series need not be unique, as the  
preceding output shows.

Accessing Elements in a Series
Accessing an element in a Series is similar to accessing an element in an array. 
You can use the position of the element as follows:

print(series[2])          # 3
# same as
print(series.iloc[2])     # 3  - based on the position of the index

The iloc indexer allows you to specify an element via its position.



42 Chapter 3 ■ Manipulating Tabular Data Using Pandas

Alternatively, you can also specify the value of the index of the element you 
wish to access like this:

print(series['d'])        # 4
# same as
print(series.loc['d'])    # 4 - based on the label in the index

The loc indexer allows you to specify the label (value) of an index.
Note that in the preceding two examples, the result is an integer (which is 

the type of this Series). What happens if we do the following?

print(series['c'])        # more than 1 row has the index 'c'

In this case, the result would be another Series:

c    3
c    5
dtype: int64

You can also perform slicing on a Series:

print(series[2:])         # returns a Series
print(series.iloc[2:])    # returns a Series

The preceding code snippet generates the following output:

c    3
d    4
c    5
dtype: int64

Specifying a Datetime Range as the Index of a Series
Often, you want to create a timeseries, such as a running sequence of dates in 
a month. You could use the date _ range() function for this purpose:

dates1 = pd.date_range('20190525', periods=12)
print(dates1)

The preceding code snippet will display the following:

DatetimeIndex(['2019-05-25', '2019-05-26', '2019-05-27', '2019-05-28',
               '2019-05-29', '2019-05-30', '2019-05-31', '2019-06-01',
               '2019-06-02', '2019-06-03', '2019-06-04', '2019-06-05'],
              dtype='datetime64[ns]', freq='D')
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To assign the range of dates as the index of a Series, use the index property 
of the Series like this:

series = pd.Series([1,2,3,4,5,6,7,8,9,10,11,12])
series.index = dates1
print(series)

You should see the following output:

2019-05-25     1
2019-05-26     2
2019-05-27     3
2019-05-28     4
2019-05-29     5
2019-05-30     6
2019-05-31     7
2019-06-01     8
2019-06-02     9
2019-06-03    10
2019-06-04    11
2019-06-05    12
Freq: D, dtype: int64

Date Ranges
In the previous section, you saw how to create date ranges using the date _

range() function. The periods parameter specifies how many dates you want 
to create, and the default frequency is D (for Daily). If you want to change the 
frequency to month, use the freq parameter and set it to M:

dates2 = pd.date_range('2019-05-01', periods=12, freq='M')
print(dates2)

This will print out the following dates:

DatetimeIndex(['2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',
               '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31',
               '2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30'],
              dtype='datetime64[ns]', freq='M')

Notice that when the frequency is set to month, the day of each date will be 
the last day of the month. If you want the date to start with the first day of the 
month, set the freq parameter to MS:

dates2 = pd.date_range('2019-05-01', periods=12, freq='MS')
print(dates2)
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You should now see that each of the dates starts with the first day of every 
month:

DatetimeIndex(['2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
               '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01',
               '2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01'],
              dtype='datetime64[ns]', freq='MS')

 T I P   For other date frequencies, check out the Offset Aliases section of the  
documentation at:
http://pandas.pydata.org/pandas-docs/stable/timeseries 

.html#offset-aliases

Notice that Pandas automatically interprets the date you specified. In this 
case, 2019-05-01 is interpreted as 1st May, 2019. In some regions, developers 
will specify the date in the dd-mm-yyyy format. Thus to represent 5th January, 
2019, you would specify it as follows:

dates2 = pd.date_range('05-01-2019', periods=12, freq='MS')
print(dates2)

Note however that in this case, Pandas will interpret 05 as the month, 01 as 
the day, and 2019 as the year, as the following output proves:

DatetimeIndex(['2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
               '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01',
               '2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01'],
              dtype='datetime64[ns]', freq='MS')

In addition to setting dates, you can also set the time:

dates3 = pd.date_range('2019/05/17 09:00:00', periods=8, freq='H')
print(dates3)

You should see the following output:

DatetimeIndex(['2019-05-17 09:00:00', '2019-05-17 10:00:00',
               '2019-05-17 11:00:00', '2019-05-17 12:00:00',
               '2019-05-17 13:00:00', '2019-05-17 14:00:00',
               '2019-05-17 15:00:00', '2019-05-17 16:00:00'],
              dtype='datetime64[ns]', freq='H')

 T I P   If you review each of the code snippets that you have seen in this section, you 
will see that Pandas allows you to specify the date in different formats, such as mm-
dd-yyyy, yyyy-mm-dd, and yyyy/mm/dd, and it will automatically try to make sense of 
the dates specified. When in doubt, it is always useful to print out the range of dates to 
confirm.
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Pandas DataFrame

A Pandas DataFrame is a two-dimensional NumPy-like array. You can think of 
it as a table. Figure 3.2 shows the structure of a DataFrame in Pandas. It also 
shows you that an individual column in a DataFrame (together with the index) 
is a Series.

A DataFrame is very useful in the world of data science and machine learning, 
as it closely mirrors how data are stored in real-life. Imagine the data stored in a 
spreadsheet, and you would have a very good visual impression of a DataFrame. 
A Pandas DataFrame is often used when representing data in machine learning. 
Hence, for the remaining sections in this chapter, we are going to invest significant 
time and effort in understanding how it works.

Creating a DataFrame
You can create a Pandas DataFrame using the DataFrame() class:

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.randn(10,4),
                  columns=list('ABCD'))
print(df)

In the preceding code snippet, a DataFrame of 10 rows and 4 columns was 
created, and each cell is filled with a random number using the randn() function. 
Each column has a label: “A”, “B”, “C”, and “D”:

          A         B         C         D
0  0.187497  1.122150 -0.988277 -1.985934

0 x x

index a b

columns

rows

Series

DataFrame

1 x

2 x

3 x

4 x

x

x

x

x

Figure 3.2:  A Pandas DataFrame
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1  0.360803 -0.562243 -0.340693 -0.986988
2 -0.040627  0.067333 -0.452978  0.686223
3 -0.279572 -0.702492  0.252265  0.958977
4  0.537438 -1.737568  0.714727 -0.939288
5  0.070011 -0.516443 -1.655689  0.246721
6  0.001268  0.951517  2.107360 -0.108726
7 -0.185258  0.856520 -0.686285  1.104195
8  0.387023  1.706336 -2.452653  0.260466
9 -1.054974  0.556775 -0.945219 -0.030295

 N OT E   Obviously, you will see a different set of numbers in your own DataFrame, 
as the numbers are generated randomly.

More often than not, a DataFrame is usually loaded from a text file, such  
as a CSV file. Suppose that you have a CSV file named data.csv with the  
following content:

A,B,C,D
0.187497,1.122150,-0.988277,-1.985934
0.360803,-0.562243,-0.340693,-0.986988
-0.040627,0.067333,-0.452978,0.686223
-0.279572,-0.702492,0.252265,0.958977
0.537438,-1.737568,0.714727,-0.939288
0.070011,-0.516443,-1.655689,0.246721
0.001268,0.951517,2.107360,-0.108726
-0.185258,0.856520,-0.686285,1.104195
0.387023,1.706336,-2.452653,0.260466
-1.054974,0.556775,-0.945219,-0.030295

You can load the content of the CSV file into a DataFrame using the read _

csv() function:

df = pd.read_csv('data.csv')

Specifying the Index in a DataFrame
Notice that the DataFrame printed in the previous section has an index starting 
from 0. This is similar to that of a Series. Like a Series, you can also set the index 
for the DataFrame using the index property, as in the following code snippet:

df = pd.read_csv('data.csv')
days = pd.date_range('20190525', periods=10)
df.index = days
print(df)
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You should see the following output:

                   A         B         C         D
2019-05-25  0.187497  1.122150 -0.988277 -1.985934
2019-05-26  0.360803 -0.562243 -0.340693 -0.986988
2019-05-27 -0.040627  0.067333 -0.452978  0.686223
2019-05-28 -0.279572 -0.702492  0.252265  0.958977
2019-05-29  0.537438 -1.737568  0.714727 -0.939288
2019-05-30  0.070011 -0.516443 -1.655689  0.246721
2019-05-31  0.001268  0.951517  2.107360 -0.108726
2019-06-01 -0.185258  0.856520 -0.686285  1.104195
2019-06-02  0.387023  1.706336 -2.452653  0.260466
2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

To get the index of the DataFrame, use the index property as follows:

print(df.index)

You will see the following output:

DatetimeIndex(['2019-05-25', '2019-05-26', '2019-05-27', '2019-05-28',
               '2019-05-29', '2019-05-30', '2019-05-31', '2019-06-01',
               '2019-06-02', '2019-06-03'],
              dtype='datetime64[ns]', freq='D')

If you want to get the values of the entire DataFrame as a two-dimensional 
ndarray, use the values property:

print(df.values)

You should see the following output:

[[ 1.874970e-01  1.122150e+00 -9.882770e-01 -1.985934e+00]
 [ 3.608030e-01 -5.622430e-01 -3.406930e-01 -9.869880e-01]
 [-4.062700e-02  6.733300e-02 -4.529780e-01  6.862230e-01]
 [-2.795720e-01 -7.024920e-01  2.522650e-01  9.589770e-01]
 [ 5.374380e-01 -1.737568e+00  7.147270e-01 -9.392880e-01]
 [ 7.001100e-02 -5.164430e-01 -1.655689e+00  2.467210e-01]
 [ 1.268000e-03  9.515170e-01  2.107360e+00 -1.087260e-01]
 [-1.852580e-01  8.565200e-01 -6.862850e-01  1.104195e+00]
 [ 3.870230e-01  1.706336e+00 -2.452653e+00  2.604660e-01]
 [-1.054974e+00  5.567750e-01 -9.452190e-01 -3.029500e-02]]

Generating Descriptive Statistics on the DataFrame
The Pandas DataFrame comes with a few useful functions to provide you with 
some detailed statistics about the values in the DataFrame. For example, you 
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can use the describe() function to get values such as count, mean, standard 
deviation, minimum and maximum, as well as the various quartiles:

print(df.describe())

Using the DataFrame that you have used in the previous section, you should 
see the following values:

               A          B          C          D
count  10.000000  10.000000  10.000000  10.000000
mean   -0.001639   0.174188  -0.444744  -0.079465
std     0.451656   1.049677   1.267397   0.971164
min    -1.054974  -1.737568  -2.452653  -1.985934
25%    -0.149100  -0.550793  -0.977513  -0.731647
50%     0.035640   0.312054  -0.569632   0.108213
75%     0.317477   0.927768   0.104026   0.579784
max     0.537438   1.706336   2.107360   1.104195

If you simply want to compute the mean in the DataFrame, you can use the 
mean() function, indicating the axis:

print(df.mean(0))    # 0 means compute the mean for each columns

You should get the following output:

A   -0.001639
B    0.174188
C   -0.444744
D   -0.079465
dtype: float64

If you want to get the mean for each row, set the axis to 1:

print(df.mean(1))   # 1 means compute the mean for each row

You should get the following output:

2019-05-25   -0.416141
2019-05-26   -0.382280
2019-05-27    0.064988
2019-05-28    0.057294
2019-05-29   -0.356173
2019-05-30   -0.463850
2019-05-31    0.737855
2019-06-01    0.272293
2019-06-02   -0.024707
2019-06-03   -0.368428
Freq: D, dtype: float64
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Extracting from DataFrames
In Chapter 2, “Extending Python Using NumPy,” you learned about NumPy and 
how slicing allows you to extract part of a NumPy array. Likewise, in Pandas, 
slicing applies to both Series and DataFrames.

Because extracting rows and columns in DataFrames is one of the most common 
tasks that you will perform with DataFrames (and potentially can be confusing), 
let’s walk through the various methods one step at a time so that you have time 
to digest how they work.

Selecting the First and Last Five Rows

Sometimes, the DataFrame might be too lengthy, and you just want to take a 
glimpse of the first few rows in the DataFrame. For this purpose, you can use 
the head() function:

print(df.head())

The head() function prints out the first five rows in the DataFrame:

                   A         B         C         D
2019-05-25  0.187497  1.122150 -0.988277 -1.985934
2019-05-26  0.360803 -0.562243 -0.340693 -0.986988
2019-05-27 -0.040627  0.067333 -0.452978  0.686223
2019-05-28 -0.279572 -0.702492  0.252265  0.958977
2019-05-29  0.537438 -1.737568  0.714727 -0.939288

If you want more than five rows (or less than five), you can indicate the number 
of rows that you want in the head() function as follows:

print(df.head(8))     # prints out the first 8 rows

There is also a tail() function:

print(df.tail())

The tail() function prints the last five rows:

                   A         B         C         D
2019-05-30  0.070011 -0.516443 -1.655689  0.246721
2019-05-31  0.001268  0.951517  2.107360 -0.108726
2019-06-01 -0.185258  0.856520 -0.686285  1.104195
2019-06-02  0.387023  1.706336 -2.452653  0.260466
2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

Like the head() function, the tail() function allows you to specify the number 
of rows to print:

print(df.tail(8))     # prints out the last 8 rows
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Selecting a Specific Column in a DataFrame

To obtain one or more columns in a DataFrame, you can specify the column 
label as follows:

print(df['A'])
# same as
print(df.A)

This will print out the “A” column together with its index:

2019-05-25    0.187497
2019-05-26    0.360803
2019-05-27   -0.040627
2019-05-28   -0.279572
2019-05-29    0.537438
2019-05-30    0.070011
2019-05-31    0.001268
2019-06-01   -0.185258
2019-06-02    0.387023
2019-06-03   -1.054974
Freq: D, Name: A, dtype: float64

Essentially, what you get in return is a Series. If you want to retrieve more 
than one column, pass in a list containing the column labels:

print(df[['A', 'B']])

You should see the following output:

                   A         B
2019-05-25  0.187497  1.122150
2019-05-26  0.360803 -0.562243
2019-05-27 -0.040627  0.067333
2019-05-28 -0.279572 -0.702492
2019-05-29  0.537438 -1.737568
2019-05-30  0.070011 -0.516443
2019-05-31  0.001268  0.951517
2019-06-01 -0.185258  0.856520
2019-06-02  0.387023  1.706336
2019-06-03 -1.054974  0.556775

In this case, instead of a Series, you are now getting a DataFrame.

Slicing Based on Row Number

First, let’s extract a range of rows in the DataFrame:

print(df[2:4])
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This extracts row numbers 2 through 4 (not including row 4) from the 
DataFrame, and you should see the following output:

                   A         B         C         D
2019-05-27 -0.040627  0.067333 -0.452978  0.686223
2019-05-28 -0.279572 -0.702492  0.252265  0.958977

You can also use the iloc indexer for extracting rows based on row number:

print(df.iloc[2:4])

This will produce the same output as the preceding code snippet.
Note that if you wish to extract specific rows (and not a range of rows) using 

row numbers, you need to use the iloc indexer like this:

print(df.iloc[[2,4]])

This will print the following output:

                   A         B         C         D
2019-05-27 -0.040627  0.067333 -0.452978  0.686223
2019-05-29  0.537438 -1.737568  0.714727 -0.939288

Without using the iloc indexer, the following will not work:

print(df[[2,4]])   # error; need to use the iloc indexer

The same applies when extracting a single row using a row number; you 
need to use iloc:

print(df.iloc[2])  # prints out row number 2

Slicing Based on Row and Column Numbers

If you wish to extract specific rows and columns in a DataFrame, you need to 
use the iloc indexer. The following code snippet extracts row numbers 2 to 3, 
and column numbers 1 to 3:

print(df.iloc[2:4, 1:4])

You should get the following output:

                   B         C         D
2019-05-27  0.067333 -0.452978  0.686223
2019-05-28 -0.702492  0.252265  0.958977

You can also extract specific rows and columns using a list as follows:

print(df.iloc[[2,4], [1,3]])



52 Chapter 3 ■ Manipulating Tabular Data Using Pandas

The preceding statement prints out row numbers 2 and 4, and column num-
bers 1 and 3:

                   B         D
2019-05-27  0.067333  0.686223
2019-05-29 -1.737568 -0.939288

 T I P   To summarize, if you want to extract a range of rows using slicing, you can 
simply use the following syntax: df[start _ row:end _ row]. If you want to extract 
specific rows or columns, use the iloc indexer: df.iloc[[row _ 1,row _ 2,...,row

_ n],[column _ 1,column _ 2,...,column _ n]].

Slicing Based on Labels

Besides extracting rows and columns using their row and column numbers, you 
can also extract them by label (value). For example, the following code snippet 
extracts a range of rows using their index values (which is of DatetimeIndex type):

print(df['20190601':'20190603'])

This will print out the following output:

                   A         B         C         D
2019-06-01 -0.185258  0.856520 -0.686285  1.104195
2019-06-02  0.387023  1.706336 -2.452653  0.260466
2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

You can also use the loc indexer as follows:

print(df.loc['20190601':'20190603'])

Using the loc indexer is mandatory if you want to extract the columns using 
their values, as the following example shows:

print(df.loc['20190601':'20190603', 'A':'C'])

The preceding statement prints out the following:

                   A         B         C
2019-06-01 -0.185258  0.856520 -0.686285
2019-06-02  0.387023  1.706336 -2.452653
2019-06-03 -1.054974  0.556775 -0.945219

 T I P   Unlike slicing by number, where start:end means extracting row start through 
row end but not including end, slicing by value will include the end row.
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You can also extract specific columns:

print(df.loc['20190601':'20190603', ['A','C']])

The preceding statement prints out the following:

                   A         C
2019-06-01 -0.185258 -0.686285
2019-06-02  0.387023 -2.452653
2019-06-03 -1.054974 -0.945219

If you want to extract a specific row, use the loc indexer as follows:

print(df.loc['20190601'])

It will print out the following:

A   -0.185258
B    0.856520
C   -0.686285
D    1.104195
Name: 2019-06-01 00:00:00, dtype: float64

Oddly, if you want to extract specific rows with datetime as the index, you 
cannot simply pass the date value to the loc indexer as follows:

print(df.loc[['20190601','20190603']])   # KeyError

First, you need to convert the date into a datetime format:

from datetime import datetime
date1 = datetime(2019, 6, 1, 0, 0, 0)
date2 = datetime(2019, 6, 3, 0, 0, 0)
print(df.loc[[date1,date2]])

You will now see the output like this:

                   A         B         C         D
2019-06-01 -0.185258  0.856520 -0.686285  1.104195
2019-06-03 -1.054974  0.556775 -0.945219 -0.030295

If you want a specific row and specific columns, you can extract them as follows:

print(df.loc[date1, ['A','C']])

And the output will look like this:

A   -0.185258
C   -0.686285
Name: 2019-06-01 00:00:00, dtype: float64

In the preceding example, because there is only a single specified date, the 
result is a Series.
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 T I P   To summarize, if you want to extract a range of rows using their labels, you can 
simply use the following syntax: df[start _ label:end _ label]. If you want to 
extract specific rows or columns, use the loc indexer with the following syntax: df 
.loc[[row _ 1 _ label,row _ 2 _ label,...,row _ n _ label],[column _ 1 _

label,column _ 2 _ label,...,column _ n _ label]].

Selecting a Single Cell in a DataFrame
If you simply wish to access a single cell in a DataFrame, there is a function that 
does just that: at(). Using the same example as in the previous section, if you 
want to get the value of a specific cell, you can use the following code snippet:

from datetime import datetime
d = datetime(2019, 6, 3, 0, 0, 0)
print(df.at[d,'B'])

You should see the following output:

0.556775

Selecting Based on Cell Value
If you want to select a subset of the DataFrame based on certain values in the 
cells, you can use the Boolean Indexing method, as described in Chapter 2. The 
following code snippet prints out all of the rows that have positive values in 
the A and B columns:

print(df[(df.A > 0) & (df.B>0)])

You should see the following output:

                   A         B         C         D
2019-05-25  0.187497  1.122150 -0.988277 -1.985934
2019-05-31  0.001268  0.951517  2.107360 -0.108726
2019-06-02  0.387023  1.706336 -2.452653  0.260466

Transforming DataFrames
If you need to reflect the DataFrame over its main diagonal (converting columns 
to rows and rows to columns), you can use the transpose() function:

print(df.transpose())

Alternatively, you can just use the T property, which is an accessor to the 
transpose() function:

print(df.T)
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In either case, you will see the following output:

   2019-05-25  2019-05-26  2019-05-27  2019-05-28  2019-05-29  2019-05-30  \
A    0.187497    0.360803   -0.040627   -0.279572    0.537438    0.070011
B    1.122150   -0.562243    0.067333   -0.702492   -1.737568   -0.516443
C   -0.988277   -0.340693   -0.452978    0.252265    0.714727   -1.655689
D   -1.985934   -0.986988    0.686223    0.958977   -0.939288    0.246721
 
   2019-05-31  2019-06-01  2019-06-02  2019-06-03
A    0.001268   -0.185258    0.387023   -1.054974
B    0.951517    0.856520    1.706336    0.556775
C    2.107360   -0.686285   -2.452653   -0.945219
D   -0.108726    1.104195    0.260466   -0.030295

Checking to See If a Result Is a DataFrame or Series
One of the common problems that you will face with Pandas is knowing if the 
result that you have obtained is a Series or a DataFrame. To solve this mystery, 
here is a function that can make your life easier:

def checkSeriesOrDataframe(var):
    if isinstance(var, pd.DataFrame):
        return 'Dataframe'
    if isinstance(var, pd.Series):
        return 'Series'

Sorting Data in a DataFrame
There are two ways that you can sort the data in a DataFrame:

1. Sort by labels (axis) using the sort _ index() function

2. Sort by value using the sort _ values() function

Sorting by Index

To sort using the axis, you need to specify if you want to sort by index or column. 
Setting the axis parameter to 0 indicates that you want to sort by index:

print(df.sort_index(axis=0, ascending=False))  # axis = 0 means sort by
                                               # index

Based on the preceding statement, the DataFrame is now sorted according 
to the index in descending order:

                   A         B         C         D
2019-06-03 -1.054974  0.556775 -0.945219 -0.030295
2019-06-02  0.387023  1.706336 -2.452653  0.260466
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2019-06-01 -0.185258  0.856520 -0.686285  1.104195
2019-05-31  0.001268  0.951517  2.107360 -0.108726
2019-05-30  0.070011 -0.516443 -1.655689  0.246721
2019-05-29  0.537438 -1.737568  0.714727 -0.939288
2019-05-28 -0.279572 -0.702492  0.252265  0.958977
2019-05-27 -0.040627  0.067333 -0.452978  0.686223
2019-05-26  0.360803 -0.562243 -0.340693 -0.986988
2019-05-25  0.187497  1.122150 -0.988277 -1.985934

 T I P   Note that the sort _ index() function returns the sorted DataFrame. The 
original DataFrame is not affected. If you want the original DataFrame to be sorted, 
use the inplace parameter and set it to True. In general, most operations involving 
DataFrames do not alter the original DataFrame. So inplace is by default set to 
False. When inplace is set to True, the function returns None as the result.

Setting the axis parameter to 1 indicates that you want to sort by column labels:

print(df.sort_index(axis=1, ascending=False))  # axis = 1 means sort by
                                               # column

The DataFrame is now sorted based on the column labels (in descending order):

                   D         C         B         A
2019-05-25 -1.985934 -0.988277  1.122150  0.187497
2019-05-26 -0.986988 -0.340693 -0.562243  0.360803
2019-05-27  0.686223 -0.452978  0.067333 -0.040627
2019-05-28  0.958977  0.252265 -0.702492 -0.279572
2019-05-29 -0.939288  0.714727 -1.737568  0.537438
2019-05-30  0.246721 -1.655689 -0.516443  0.070011
2019-05-31 -0.108726  2.107360  0.951517  0.001268
2019-06-01  1.104195 -0.686285  0.856520 -0.185258
2019-06-02  0.260466 -2.452653  1.706336  0.387023
2019-06-03 -0.030295 -0.945219  0.556775 -1.054974

Sorting by Value

To sort by value, use the sort _ values() function. The following statement sorts 
the DataFrame based on the values in column “A”:

print(df.sort_values('A', axis=0))

The output now is now sorted (in ascending order) based on the value of 
column “A” (the values are highlighted). Notice that the index is now jumbled up:

                   A         B         C         D
2019-06-03 -1.054974  0.556775 -0.945219 -0.030295
2019-05-28 -0.279572 -0.702492  0.252265  0.958977
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2019-06-01 -0.185258  0.856520 -0.686285  1.104195
2019-05-27 -0.040627  0.067333 -0.452978  0.686223
2019-05-31  0.001268  0.951517  2.107360 -0.108726
2019-05-30  0.070011 -0.516443 -1.655689  0.246721
2019-05-25  0.187497  1.122150 -0.988277 -1.985934
2019-05-26  0.360803 -0.562243 -0.340693 -0.986988
2019-06-02  0.387023  1.706336 -2.452653  0.260466
2019-05-29  0.537438 -1.737568  0.714727 -0.939288

To sort based on a particular index, set the axis parameter to 1:

print(df.sort_values('20190601', axis=1))

You can see that the DataFrame is now sorted (in ascending order) based on 
the row whose index is 2019-06-01 (the values are highlighted):

                   C         A         B         D
2019-05-25 -0.988277  0.187497  1.122150 -1.985934
2019-05-26 -0.340693  0.360803 -0.562243 -0.986988
2019-05-27 -0.452978 -0.040627  0.067333  0.686223
2019-05-28  0.252265 -0.279572 -0.702492  0.958977
2019-05-29  0.714727  0.537438 -1.737568 -0.939288
2019-05-30 -1.655689  0.070011 -0.516443  0.246721
2019-05-31  2.107360  0.001268  0.951517 -0.108726
2019-06-01 -0.686285 -0.185258  0.856520  1.104195
2019-06-02 -2.452653  0.387023  1.706336  0.260466
2019-06-03 -0.945219 -1.054974  0.556775 -0.030295

Applying Functions to a DataFrame
You can also apply functions to values in a DataFrame using the apply() function. 
First, let’s define two lambda functions as follows:

import math
sq_root = lambda x: math.sqrt(x) if x > 0 else x
sq      = lambda x: x**2

The first function, sq _ root(), takes the square root of the value x if it is a 
positive number. The second function, sq(), takes the square of the value x.

It is important to note that objects passed to the apply() function are Series 
objects whose index is either the DataFrame’s index (axis=0) or the DataFrame’s 
columns (axis=1).

We can now apply the functions to the DataFrame. First, apply the sq _ root() 
function to column “B”:

print(df.B.apply(sq_root))
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Since the result of df.B is a Series, we can apply the sq _ root() function to 
it and it will return the following results:

2019-05-25    1.029231
2019-05-26   -0.562243
2019-05-27    0.509398
2019-05-28   -0.702492
2019-05-29   -1.737568
2019-05-30   -0.516443
2019-05-31    0.987652
2019-06-01    0.962021
2019-06-02    1.142921
2019-06-03    0.863813
Freq: D, Name: B, dtype: float64

You can also apply the sq() function to df.B:

print(df.B.apply(sq))

You should see the following results:

2019-05-25    1.122150
2019-05-26    0.316117
2019-05-27    0.067333
2019-05-28    0.493495
2019-05-29    3.019143
2019-05-30    0.266713
2019-05-31    0.951517
2019-06-01    0.856520
2019-06-02    1.706336
2019-06-03    0.556775
Freq: D, Name: B, dtype: float64

If you apply the sq _ root() function to the DataFrame as shown here,

df.apply(sq_root)    # ValueError

you will get the following error:

ValueError: ('The truth value of a Series is ambiguous. Use a.empty, 
a.bool(), a.item(), a.any() or a.all().', 'occurred at index A')

This is because the object passed into the apply() function in this case is a 
DataFrame, not a Series. Interestingly, you can apply the sq() function to the 
DataFrame:

df.apply(sq)    

This will print out the following:

                   A         B         C         D
2019-05-25  0.035155  1.259221  0.976691  3.943934
2019-05-26  0.130179  0.316117  0.116072  0.974145
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2019-05-27  0.001651  0.004534  0.205189  0.470902
2019-05-28  0.078161  0.493495  0.063638  0.919637
2019-05-29  0.288840  3.019143  0.510835  0.882262
2019-05-30  0.004902  0.266713  2.741306  0.060871
2019-05-31  0.000002  0.905385  4.440966  0.011821
2019-06-01  0.034321  0.733627  0.470987  1.219247
2019-06-02  0.149787  2.911583  6.015507  0.067843
2019-06-03  1.112970  0.309998  0.893439  0.000918

If you want to apply the sq _ root() function to the entire DataFrame, you 
can iterate through the columns and apply the function to each column:

for column in df:
    df[column] = df[column].apply(sq_root)
print(df)

The result will now look like this:

                   A         B         C         D
2019-05-25  0.433009  1.059316 -0.988277 -1.985934
2019-05-26  0.600669 -0.562243 -0.340693 -0.986988
2019-05-27 -0.040627  0.259486 -0.452978  0.828386
2019-05-28 -0.279572 -0.702492  0.502260  0.979274
2019-05-29  0.733102 -1.737568  0.845415 -0.939288
2019-05-30  0.264596 -0.516443 -1.655689  0.496710
2019-05-31  0.035609  0.975457  1.451675 -0.108726
2019-06-01 -0.185258  0.925484 -0.686285  1.050807
2019-06-02  0.622112  1.306268 -2.452653  0.510359
2019-06-03 -1.054974  0.746174 -0.945219 -0.030295

The apply() function can be applied on either axis: index (0; apply function to 
each column) or column (1; apply function to each row). For the two particular 
lambda functions that we have seen thus far, it does not matter which axis you 
apply it to, and the result would be the same. However, for some functions, the 
axis that you apply it to does matter. For example, the following statement uses 
the sum() function from NumPy and applies it to the rows of the DataFrame:

print(df.apply(np.sum, axis=0))

Essentially, you are summing up all of the values in each column. You should 
see the following:

A    1.128665
B    1.753438
C   -4.722444
D   -0.185696
dtype: float64
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If you set axis to 1 as follows,

print(df.apply(np.sum, axis=1))

you will see the summation applied across each row:

2019-05-25   -1.481886
2019-05-26   -1.289255
2019-05-27    0.594267
2019-05-28    0.499470
2019-05-29   -1.098339
2019-05-30   -1.410826
2019-05-31    2.354015
2019-06-01    1.104747
2019-06-02   -0.013915
2019-06-03   -1.284314
Freq: D, dtype: float64

Adding and Removing Rows and Columns in a DataFrame
So far, all of the previous sections have involved extracting rows and columns 
from DataFrames, as well as how to sort DataFrames. In this section, we will 
focus on how to add and remove columns in DataFrames.

Consider the following code snippet, where a DataFrame is created from a 
dictionary:

import pandas as pd
 
data = {'name': ['Janet', 'Nad', 'Timothy', 'June', 'Amy'],
        'year': [2012, 2012, 2013, 2014, 2014],
        'reports': [6, 13, 14, 1, 7]}
 
df = pd.DataFrame(data, index =
       ['Singapore', 'China', 'Japan', 'Sweden', 'Norway'])
print(df)

The DataFrame looks like this:

             name   reports  year
Singapore    Janet        6  2012
China          Nad       13  2012
Japan      Timothy       14  2013
Sweden        June        1  2014
Norway         Amy        7  2014
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Adding a Column

The following code snippet shows you how to add a new column named “school” 
to the DataFrame:

import numpy as np
 
schools = np.array(["Cambridge","Oxford","Oxford","Cambridge","Oxford"])
df["school"] = schools
print(df)

Printing the DataFrame will look like this:

              name  reports  year     school     
Singapore    Janet        6  2012  Cambridge
China          Nad       13  2012     Oxford
Japan      Timothy       14  2013     Oxford
Sweden        June        1  2014  Cambridge
Norway         Amy        7  2014     Oxford

Removing Rows

To remove one or more rows, use the drop() function. The following code snip-
pet removes the two rows whose index value is “China” and “Japan”:

print(df.drop(['China', 'Japan'])) # drop rows based on value of index

The following output proves that the two rows are removed:

            name  reports  year     school     
Singapore  Janet        6  2012  Cambridge
Sweden      June        1  2014  Cambridge
Norway       Amy        7  2014     Oxford

 T I P   Like the sort _ index() function, by default the drop() function does not 
affect the original DataFrame. Use the inplace parameter if you want to modify the 
original DataFrame.

If you want to drop a row based on a particular column value, specify the 
column name and the condition like this:

print(df[df.name != 'Nad'])         # drop row based on column value

The preceding statement drops the row whose name is “Nad”:

              name  reports  year     school     
Singapore    Janet        6  2012  Cambridge  
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Japan      Timothy       14  2013     Oxford     
Sweden        June        1  2014  Cambridge  
Norway         Amy        7  2014     Oxford     

You can also remove rows based on row number:

print(df.drop(df.index[1]))

The preceding statement drops row number 1 (the second row):

              name  reports  year     school     
Singapore    Janet        6  2012  Cambridge  
Japan      Timothy       14  2013     Oxford     
Sweden        June        1  2014  Cambridge  
Norway         Amy        7  2014     Oxford     

Since df.index[1] returns “China”, the preceding statement is equivalent to 
df.drop['China'].

If you want to drop multiple rows, specify the row numbers represented as 
a list:

print(df.drop(df.index[[1,2]]))                # remove the second and 
third row

The preceding statement removes row numbers 1 and 2 (the second and the 
third row):

            name  reports  year     school     
Singapore  Janet        6  2012  Cambridge  
Sweden      June        1  2014  Cambridge  
Norway       Amy        7  2014     Oxford     

The following removes the second to last row:

print(df.drop(df.index[-2]))                   # remove second last row

You should see the following output:

              name  reports  year     school     
Singapore    Janet        6  2012  Cambridge  
China          Nad       13  2012     Oxford     
Japan      Timothy       14  2013     Oxford     
Norway         Amy        7  2014     Oxford     

Removing Columns

The drop() function drops rows by default, but if you want to drop columns 
instead, set the axis parameter to 1 like this:

print(df.drop('reports', axis=1))   # drop column
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The preceding code snippet drops the reports column:

              name  year     school     
Singapore    Janet  2012  Cambridge  
China          Nad  2012     Oxford     
Japan      Timothy  2013     Oxford     
Sweden        June  2014  Cambridge  
Norway         Amy  2014     Oxford     

If you want to drop by column number, specify the column number using 
the columns indexer:

print(df.drop(df.columns[1], axis=1))   # drop using columns number

This will drop the second column (“reports”):

              name  year     school
Singapore    Janet  2012  Cambridge
China          Nad  2012     Oxford
Japan      Timothy  2013     Oxford
Sweden        June  2014  Cambridge
Norway         Amy  2014     Oxford

You can also drop multiple columns:

print(df.drop(df.columns[[1,3]], axis=1))   # drop multiple columns

This will drop the second and fourth columns (“reports” and “school”):

              name  year
Singapore    Janet  2012
China          Nad  2012
Japan      Timothy  2013
Sweden        June  2014
Norway         Amy  2014

Generating a Crosstab
In statistics, a crosstab is used to aggregate and jointly display the distribution 
of two or more variables. It shows the relationships between these variables. 
Consider the following example:

df = pd.DataFrame(
    {
        "Gender": ['Male','Male','Female','Female','Female'],
        "Team"  : [1,2,3,3,1]
    })
print(df)
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Here you are creating a DataFrame using a dictionary. When the DataFrame 
is printed out, you will see the following:

   Gender  Team
0    Male     1
1    Male     2
2  Female     3
3  Female     3
4  Female     1

This DataFrame shows the gender of each person and the team to which the 
person belongs. Using a crosstab, you would be able to summarize the data and 
generate a table to show the distribution of each gender for each team. To do 
that, you use the crosstab() function:

print("Displaying the distribution of genders in each team")
print(pd.crosstab(df.Gender, df.Team))

You will see the following output:
Displaying the distribution of genders in each team

Team    1  2  3
Gender
Female  1  0  2
Male    1  1  0

If you want to see the distribution of each team for each gender, you simply 
reverse the argument:

print(pd.crosstab(df.Team, df.Gender))

You will see the following output:

Gender  Female  Male
Team
1            1     1
2            0     1
3            2     0

Summary

In this chapter, you witnessed the use of Pandas to represent tabular data. You 
learned about the two main Pandas data structures: Series and DataFrame. I 
attempted to keep things simple and to show you some of the most common 
operations that you would perform on these data structures. As extracting 
rows and columns from DataFrames is so common, I have summarized some 
of these operations in Table 3.1.
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Table 3.1: Common DataFrame Operations

DESCRIPTION CODE EXAMPLES

Extract a range of rows using row numbers df[2:4]

df.iloc[2:4]

Extract a single row using row number df.iloc[2]

Extract a range of rows and range of columns df.iloc[2:4, 1:4]

Extract a range of rows and specific columns 
using positional values

df.iloc[2:4, [1,3]]

Extract specific row(s) and column(s) df.iloc[[2,4], [1,3]]

Extract a range of rows using labels df['20190601':'20190603']

Extract a single row based on its label df.loc['20190601']

Extract specific row(s) using their labels df.loc[[date1,date2]]

Extract specific row(s) and column(s) using their 
labels

df.loc[[date1,date2], ['A','C']]

df.loc[[date1,date2], 'A':'C']

Extract a range of rows and columns using their 
labels

df.loc[date1:date2, 'A':'C']
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4

What Is matplotlib?

As the adage goes, “A picture is worth a thousand words.” This is probably most 
true in the world of machine learning. No matter how large or how small your 
dataset, it is often very useful (and many times, essential) that you are able to 
visualize the data and see the relationships between the various features within 
it. For example, given a dataset containing a group of students with their family 
details (such as examination results, family income, educational background of 
parents, and so forth), you might want to establish a relationship between the 
students’ results with their family income. The best way to do this would be to 
plot a chart displaying the related data. Once the chart is plotted, you can then 
use it to draw your own conclusions and determine whether the results have a 
positive relationship to family income.

In Python, one of the most commonly used tools for plotting is matplotlib. 
Matplotlib is a Python 2D plotting library that you can use to produce publication-
quality charts and figures. Using matplotlib, complex charts and figures can 
be generated with ease, and its integration with Jupyter Notebook makes it an 
ideal tool for machine learning.

In this chapter, you will learn the basics of matplotlib. In addition, you will 
also learn about Seaborn, a complementary data visualization library that is 
based on matplotlib.

Data Visualization Using 
matplotlib

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Plotting Line Charts

To see how easy it is to use matplotlib, let’s plot a line chart using Jupyter 
Notebook. Here is a code snippet that plots a line chart:

%matplotlib inline
import matplotlib.pyplot as plt
 
plt.plot(
    [1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2]
)

Figure 4.1 shows the line chart plotted.

The first statement tells matplotlib to display the output of the plotting com-
mands in line within front-ends likes Jupyter Notebook. In short, it means 
display the chart within the same page as your Jupyter Notebook:

%matplotlib inline

To use matplotlib, you import the pyplot module and name it plt (its com-
monly used alias):

import matplotlib.pyplot as plt

To plot a line chart, you use the plot() function from the pyplot module, 
supplying it with two arguments as follows:

1. A list of values representing the x-axis

2. A list of values representing the y-axis
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Figure 4.1:  A line graph plotted using matplotlib
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[1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2]

That’s it. The chart will be shown in your Jupyter Notebook when you run it.

Adding Title and Labels
A chart without title and labels does not convey meaningful information. 
Matplotlib allows you to add a title and labels to the axes using the title(), 
xlabel(), and ylabel() functions as follows:

%matplotlib inline
import matplotlib.pyplot as plt
 
plt.plot(
    [1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2]
)
plt.title("Results")     # sets the title for the chart
plt.xlabel("Semester")   # sets the label to use for the x-axis
plt.ylabel("Grade")      # sets the label to use for the y-axis

Figure 4.2 shows the chart with the title, as well as the labels for the x- and 
y-axes.

Styling
Matplotlib lets you adjust every aspect of your plot and create beautiful charts. 
However, it is very time consuming to create really beautiful charts and plots. 
To help with this, matplotlib ships with a number of predefined styles. Styles 
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Figure 4.2:  The line chart with the title and the labels for the x- and y-axes added
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allow you to create professional-looking charts using a predefined look-and-
feel without requiring you to customize each element of the chart individually.

The following example uses the ggplot style, based on a popular data visu-
alization package for the statistical programming language R:

 T I P   The “gg” in ggplot comes from Leland Wilkinson’s landmark 1999 book, The 
Grammar of Graphics: Statistics and Computing, (Springer, 2005).

%matplotlib inline
import matplotlib.pyplot as plt
 
from matplotlib import style
style.use("ggplot")
 
plt.plot(
    [1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2]
)
plt.title("Results")     # sets the title for the chart
plt.xlabel("Semester")   # sets the label to use for the x-axis
plt.ylabel("Grade")      # sets the label to use for the y-axis

The chart styled using ggplot is shown in Figure 4.3.

Figure 4.4 shows the same chart with the grayscale styled applied.
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Figure 4.3:  The chart with the ggplot style applied to it
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You can use the style.available property to see the list of styles supported:

print(style.available)

Here is a sample output:

['seaborn-dark', 'seaborn-darkgrid', 'seaborn-ticks', 'fivethirtyeight', 
'seaborn-whitegrid', 'classic', '_classic_test', 'fast', 'seaborn-talk', 
'seaborn-dark-palette', 'seaborn-bright', 'seaborn-pastel', 'grayscale', 
'seaborn-notebook', 'ggplot', 'seaborn-colorblind', 'seaborn-muted', 
'seaborn', 'Solarize_Light2', 'seaborn-paper', 'bmh', 'seaborn-white', 
'dark_background', 'seaborn-poster', 'seaborn-deep']

Plotting Multiple Lines in the Same Chart
You can plot multiple lines in the same chart by calling the plot() function one 
more time, as the following example shows:

%matplotlib inline
import matplotlib.pyplot as plt
 
from matplotlib import style
style.use("ggplot")
 
plt.plot(
    [1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2]
)
 
plt.plot(
    [1,2,3,4,5,6,7,8,9,10],
    [3,4,2,5,2,4,2.5,4,3.5,3]
)
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Figure 4.4:  The chart with the grayscale style applied to it
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plt.title("Results")     # sets the title for the chart
plt.xlabel("Semester")   # sets the label to use for the x-axis
plt.ylabel("Grade")      # sets the label to use for the y-axis

Figure 4.5 shows the chart now containing two line graphs.

Adding a Legend
As you add more lines to a chart, it becomes more important to have a way 
to distinguish between the lines. Here is where a legend is useful. Using the 
previous example, you can add a label to each line plot and then show a legend 
using the legend() function as follows:

%matplotlib inline
import matplotlib.pyplot as plt
 
from matplotlib import style
style.use("ggplot")
 
plt.plot(
    [1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2],
    label="Jim"
)
 
plt.plot(
    [1,2,3,4,5,6,7,8,9,10],
    [3,4,2,5,2,4,2.5,4,3.5,3],
    label="Tom"
)
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Figure 4.5:  The chart with two line graphs
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plt.title("Results")     # sets the title for the chart
plt.xlabel("Semester")   # sets the label to use for the x-axis
plt.ylabel("Grade")      # sets the label to use for the y-axis
plt.legend()

Figure 4.6 shows the chart with a legend displayed.

Plotting Bar Charts

Besides plotting line charts, you can also plot bar charts using matplotlib. Bar 
charts are useful for comparing data. For example, you want to be able to com-
pare the grades of a student over a number of semesters.

Using the same dataset that you used in the previous section, you can plot a 
bar chart using the bar() function as follows:

%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib import style
 
style.use("ggplot")
 
plt.bar(
    [1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2],
    label = "Jim",
    color = "m",                    # m for magenta
    align = "center"
)
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Figure 4.6:  The chart with a legend displayed
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plt.title("Results")
plt.xlabel("Semester")
plt.ylabel("Grade")
 
plt.legend()
plt.grid(True, color="y")

Figure 4.7 shows the bar chart plotted using the preceding code snippet.

Adding Another Bar to the Chart
Just like adding an additional line chart to the chart, you can add another bar 
graph to an existing chart. The following statements in bold do just that:

%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib import style
 
style.use("ggplot")
 
plt.bar(
    [1,2,3,4,5,6,7,8,9,10],
    [2,4.5,1,2,3.5,2,1,2,3,2],
    label = "Jim",
    color = "m",                    # for magenta
    align = "center",
    alpha = 0.5
)
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Figure 4.7:  Plotting a bar chart
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plt.bar(
    [1,2,3,4,5,6,7,8,9,10],
    [1.2,4.1,0.3,4,5.5,4.7,4.8,5.2,1,1.1],
    label = "Tim",
    color = "g",                   # for green
    align = "center",
    alpha = 0.5
)
 
 
plt.title("Results")
plt.xlabel("Semester")
plt.ylabel("Grade")
 
plt.legend()
plt.grid(True, color="y")

Because the bars might overlap each with other, it is important to be able 
to distinguish them by setting their alpha to 0.5 (making them translucent). 
Figure 4.8 shows the two bar graphs in the same chart.

Changing the Tick Marks
So far in our charts, the tick marks on the x-axis always displays the value that 
was supplied (such as 2, 4, 6, and so on). But what if your x-axis label is in the 
form of strings like this?

rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
months = ['Jan','Feb','Mar','Apr','May','Jun',
          'Jul','Aug','Sep','Oct','Nov','Dec']
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Figure 4.8:  Plotting two overlapping bar charts on the same figure
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In this case, you might be tempted to plot the chart directly as follows:

%matplotlib inline
import matplotlib.pyplot as plt
 
rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
months = ['Jan','Feb','Mar','Apr','May','Jun',
          'Jul','Aug','Sep','Oct','Nov','Dec']
 
plt.bar(months, rainfall, align='center', color='orange' )
plt.show()

The preceding code snippet will create the chart shown in Figure 4.9.

Look carefully at the x-axis: the labels have been sorted alphabetically, and 
hence the chart does not show the amount of rainfall from Jan to Dec in the 
correct order. To fix this, create a range object matching the size of the rainfall 
list, and use it to plot the chart. To ensure that the month labels are displayed 
correctly on the x-axis, use the xticks() function:

%matplotlib inline
import matplotlib.pyplot as plt
 
rainfall = [17,9,16,3,21,7,8,4,6,21,4,1]
months = ['Jan','Feb','Mar','Apr','May','Jun',
          'Jul','Aug','Sep','Oct','Nov','Dec']
 
plt.bar(range(len(rainfall)), rainfall, align='center', color='orange' )
plt.xticks(range(len(rainfall)), months, rotation='vertical')
plt.show()
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Figure 4.9:  The bar chart with the alphabetically arranged x-axis
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The xticks() function sets the tick labels on the x-axis, as well the positioning 
of the ticks. In this case, the labels are displayed vertically, as shown in Figure 4.10.

Plotting Pie Charts

Another chart that is popular is the pie chart. A pie chart is a circular statistical 
graphic divided into slices to illustrate numerical proportions. A pie chart is 
useful when showing percentage or proportions of data. Consider the following 
sets of data representing the various browser market shares:

labels      = ["Chrome", "Internet Explorer", "Firefox",  
               "Edge","Safari","Sogou Explorer","Opera","Others"]
marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]

In this case, it would be really beneficial to be able to represent the total 
market shares as a complete circle, with each slice representing the percentage 
held by each browser.

The following code snippet shows how you can plot a pie chart using the 
data that we have:

%matplotlib inline
import matplotlib.pyplot as plt
 
labels      = ["Chrome", "Internet Explorer",
               "Firefox", "Edge","Safari",
               "Sogou Explorer","Opera","Others"]
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Figure 4.10:  The bar chart with the correct x-axis
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marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]
explode     = (0,0,0,0,0,0,0,0)
 
plt.pie(marketshare,
        explode = explode,  # fraction of the radius with which to  
                            # offset each wedge
        labels = labels,
        autopct="%.1f%%",   # string or function used to label the  
                            # wedges with their numeric value
        shadow=True,
        startangle=45)      # rotates the start of the pie chart by  
                             # angle degrees counterclockwise from the 

# x-axis

plt.axis("equal")           # turns off the axis lines and labels
plt.title("Web Browser Marketshare - 2018")
plt.show()

Figure 4.11 shows the pie chart plotted. Note that matplotlib will decide on 
the colors to use for each of the slices in the pie chart.

Exploding the Slices
The explode parameter specifies the fraction of the radius with which to offset each 
wedge. In the preceding example, we have set the explode parameter to all zeros:

explode     = (0,0,0,0,0,0,0,0)

Say that we need to highlight the market share of the Firefox and Safari 
browsers. In that case, we could modify the explode list as follows:

explode     = (0,0,0.5,0,0.8,0,0,0)
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Figure 4.11:  Plotting a pie chart
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Refreshing the chart, you will see the two slices exploding (separating) from 
the main pie (see Figure 4.12).

Displaying Custom Colors
By default, matplotlib will decide on the colors to use for each of the slices in 
the pie chart. Sometimes the colors that are selected may not appeal to you. 
But you can certainly customize the chart to display using your desired colors.

You can create a list of colors and then pass it to the colors parameter:

%matplotlib inline
import matplotlib.pyplot as plt
 
labels      = ["Chrome", "Internet Explorer",
               "Firefox", "Edge","Safari",
               "Sogou Explorer","Opera","Others"]
 
marketshare = [61.64, 11.98, 11.02, 4.23, 3.79, 1.63, 1.52, 4.19]
explode     = (0,0,0.5,0,0.8,0,0,0)
colors      = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']
 
plt.pie(marketshare,
        explode = explode,  # fraction of the radius with which to  
                            # offset each wedge
        labels = labels,
        colors = colors,
        autopct="%.1f%%",   # string or function used to label the  
                            # wedges with their numeric value
        shadow=True,
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Figure 4.12:  The pie chart with two exploded slices
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        startangle=45)      # rotates the start of the pie chart by  
                             # angle degrees counterclockwise from the 

# x-axis
plt.axis("equal")           # turns off the axis lines and labels
plt.title("Web Browser Marketshare - 2018")
plt.show()

Since there are more slices than the colors you specified, the colors will be 
recycled. Figure 4.13 shows the pie chart with the new colors.

Rotating the Pie Chart
Observe that we have set the startangle parameter to 45. This parameter spec-
ifies the degrees by which to rotate the start of the pie chart, counterclockwise  
from the x-axis. Figure 4.14 shows the effect of setting the startangle to 0 versus 45.
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Figure 4.13:  Displaying the pie chart with custom colors
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Displaying a Legend
Like the line and bar charts, you can also display a legend in your pie charts. 
But before you can do that, you need to handle the return values from the pie() 
function:

pie = plt.pie(marketshare,
        explode = explode,  # fraction of the radius with which to  
                            # offset each wedge
        labels = labels,
        colors = colors,
        autopct="%.1f%%",   # string or function used to label the  
                            # wedges with their numeric value
        shadow=True,
        startangle=45)      # rotates the start of the pie chart by  
                             # angle degrees counterclockwise from the  

# x-axis

The pie() function returns a tuple containing the following values:

patches: A list of matplotlib.patches.Wedge instances.
texts: A list of the label matplotlib.text.Text instances.
autotexts: A list of Text instances for the numeric labels. This will only be 

returned if the parameter autopct is not None.

To display the legend, use the legend() function as follows:

plt.axis("equal")           # turns off the axis lines and labels
plt.title("Web Browser Marketshare - 2018")
plt.legend(pie[0], labels, loc="best")
plt.show()

Figure 4.15 shows the legend displaying on the pie chart.
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Figure 4.15:  Displaying the legend on the pie chart
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 T I P   If the autopct parameter is not set to None, the pie() function returns the 
tuple (patches, texts, autotexts).

The positioning of the legend can be modified through the loc parameter. It 
can take in either a string value or an integer value. Table 4.1 shows the various 
values that you can use for the loc parameter.

Saving the Chart
So far, you have been displaying the charts in a browser. At times, it is useful 
to be able to save the image to disk. You can do so using the savefig() function 
as follows:

%matplotlib inline
import matplotlib.pyplot as plt
 
labels      = ["Chrome", "Internet Explorer",
               "Firefox", "Edge","Safari",
               "Sogou Explorer","Opera","Others"]
 
...
plt.axis("equal")           # turns off the axis lines and labels
plt.title("Web Browser Marketshare - 2018")
plt.savefig("Webbrowsers.png", bbox_inches="tight")
plt.show()

Setting the bbox_inches parameter to tight removes all of the extra white 
space around your figure.

Table 4.1: Location Strings and Corresponding Location Codes

LOCATION STRING LOCATION CODE

’best’ 0

’upper right’ 1

’upper left’ 2

’lower left’ 3

’lower right’ 4

’right’ 5

’center left’ 6

’center right’ 7

’lower center’ 8

’upper center’ 9

’center’ 10
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Plotting Scatter Plots

A scatter plot is a two-dimensional chart that uses dots (or other shapes) to rep-
resent the values for two different variables. Scatter plots are often used to show 
how much the value of one variable is affected by another.

The following code snippet shows a scatter plot with the x-axis containing a 
list of numbers from 1 to 4, and the y-axis showing the cube of the x-axis values:

%matplotlib inline
import matplotlib.pyplot as plt
 
plt.plot([1,2,3,4],        # x-axis
         [1,8,27,64],      # y-axis
         'bo')             # blue circle marker
plt.axis([0, 4.5, 0, 70])  # xmin, xmax, ymin, ymax
plt.show()

Figure 4.16 shows the scatter plot.

Combining Plots
You can combine multiple scatter plots into one chart as follows:

%matplotlib inline
import matplotlib.pyplot as plt
 
import numpy as np
 
a = np.arange(1,4.5,0.1)   # 1.0, 1.1, 1.2, 1.3...4.4
plt.plot(a, a**2, 'y^',    # yellow triangle_up marker
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Figure 4.16:  Plotting a scatter plot
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         a, a**3, 'bo',    # blue circle
         a, a**4, 'r--',)  # red dashed line
 
plt.axis([0, 4.5, 0, 70])  # xmin, xmax, ymin, ymax
plt.show()

Figure 4.17 shows the chart displaying three scatter plots. You can customize 
the shape of the points to draw on the scatter plot. For example, y^ indicates a 
yellow triangle-up marker, bo indicates a blue circle, and so on.

Subplots
You can also plot multiple scatter plots separately and combine them into a 
single figure:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
 
a = np.arange(1,5,0.1)
 
plt.subplot(121)            # 1 row, 2 cols, chart 1
plt.plot([1,2,3,4,5],
         [1,8,27,64,125],
         'y^')
 
plt.subplot(122)            # 1 row, 2 cols, chart 2
plt.plot(a, a**2, 'y^',
         a, a**3, 'bo',
         a, a**4, 'r--',)
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Figure 4.17:  Combining multiple scatter plots into a single chart
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plt.axis([0, 4.5, 0, 70])   # xmin, xmax, ymin, ymax
plt.show()

Figure 4.18 shows two charts displayed in a single figure.

The subplot() function adds a subplot to the current figure. One of the argu-
ments it takes in has the following format: nrow,ncols,index. In the preceding 
example, the 121 means “1 row, 2 columns, and chart 1.” Using this format, you 
can have up to a maximum of nine figures. The subplot() function can also be 
called with the following syntax:

plt.subplot(1,2,1)            # 1 row, 2 cols, chart 1

Using this syntax, you can now have more than 10 charts in a single figure.

 T I P   The scatter() function draws points without lines connecting them, 
whereas the plot() function may or may not plot the lines, depending on the 
arguments.

Plotting Using Seaborn

While matplotlib allows you to plot a lot of interesting charts, it takes a bit of 
effort to get the chart that you want. This is especially true if you are dealing 
with a large amount of data and would like to examine the relationships be -
tween multiple variables.

Introducing Seaborn, a complementary plotting library that is based on the 
matplotlib data visualization library. Seaborn’s strength lies in its ability to 
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Figure 4.18:  Combining two charts into a single figure
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make statistical graphics in Python, and it is closely integrated with the Pandas 
data structure (covered in Chapter 3). Seaborn provides high-level abstractions 
to allow you to build complex visualizations for your data easily. In short, you 
write less code with Seaborn than with matplotlib, while at the same time you get 
more sophisticated charts.

Displaying Categorical Plots
The first example that you will plot is called a categorical plot (formerly known 
as a factorplot). It is useful in cases when you want to plot the distribution of a 
certain group of data. Suppose that you have a CSV file named drivinglicense 
.csv containing the following data:

gender,group,license
men,A,1
men,A,0
men,A,1
women,A,1
women,A,0
women,A,0
men,B,0
men,B,0
men,B,0
men,B,1
women,B,1
women,B,1
women,B,1
women,B,1

This CSV file shows the distribution of men and women in two groups, A and 
B, with 1 indicating that the person has a driver’s license and a 0 indicating no 
driver’s license. If you are tasked with plotting a chart to show the proportion 
of men and women in each group that has a driver’s license, you can use Sea-
born’s categorical plot.

First, import the relevant modules:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

Load the data into a Pandas dataframe:

#---load data---
data = pd.read_csv('drivinglicense.csv')
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Call the catplot() function with the following arguments:

#---plot a factorplot---
g = sns.catplot(x="gender", y="license", col="group",
        data=data, kind="bar", ci=None, aspect=1.0)

You pass in the dataframe through the data parameter, and you specify the 
gender as the x-axis. The y-axis will tabulate the proportion of men and women 
who have a driver’s license, and hence you set y to license. You want to separate 
the chart into two groups based on group, hence you set col to group.

Next, you set the labels on the chart:

#---set the labels---
g.set_axis_labels("", "Proportion with Driving license")
g.set_xticklabels(["Men", "Women"])
g.set_titles("{col_var} {col_name}")
 
#---show plot---
plt.show()

Figure 4.19 shows the categorical plot drawn by Seaborn. As you can see, 2/3 
of the men and 1/3 of the women have driver’s licenses in Group A, while in 
Group B, 1/4 of the men and all the women have driver’s licenses. Neat, isn’t it?

Let’s take a look at another example of catplot. Using the Titanic dataset, let’s 
plot a chart and see what the survival rate of men, women, and children looks 
like in each of the three classes.
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Figure 4.19:  Displaying a factorplot showing the distribution of men and women who have 
driver’s licenses in each group
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 T I P   Seaborn has a built-in dataset that you can load directly using the load_
dataset() function. To see the names of the dataset that you can load, use the sns 
.get_dataset_names() function. Alternatively, if you want to download the data-
set for offline use, check out https://github.com/mwaskom/seaborn-data. 
Note that you would need to have an Internet connection, as the load_dataset() 
function loads the specified dataset from the online repository.

import matplotlib.pyplot as plt
import seaborn as sns
 
titanic = sns.load_dataset("titanic")
g = sns.catplot(x="who", y="survived", col="class",
        data=titanic, kind="bar", ci=None, aspect=1)
 
g.set_axis_labels("", "Survival Rate")
g.set_xticklabels(["Men", "Women", "Children"])
g.set_titles("{col_name} {col_var}")
 
#---show plot---
plt.show()

Figure 4.20 shows the distribution of the data based on classes. As you can 
see, both women and children have a higher chance of survival if they are in 
the first- and second-class cabins.

Displaying Lmplots
Another plot that is popular in Seaborn is the lmplot. An lmplot is a scatter plot. 
Using another built-in dataset from Seaborn, you can plot the relationships bet-
ween the petal width and petal length of an iris plant and use it to determine 
the type of iris plants: setosa, versicolor, or virginica.
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Figure 4.20:  A factorplot showing the survival rate of men, women, and children in each of the 
cabin classes in the Titanic dataset
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import seaborn as sns
import matplotlib.pyplot as plt
 
#---load the iris dataset---
iris = sns.load_dataset("iris")
 
#---plot the lmplot---
sns.lmplot('petal_width', 'petal_length', data=iris,
           hue='species', palette='Set1',
           fit_reg=False, scatter_kws={"s": 70})
 
#---get the current polar axes on the current figure---
ax = plt.gca()
ax.set_title("Plotting using the Iris dataset")
 
#---show the plot---
plt.show()

Figure 4.21 shows the scatter plot created using the lmplot() function.
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Figure 4.21:  An lmplot showing the relationship between the petal length and width of the  
iris dataset
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Displaying Swarmplots
A swarmplot is a categorical scatterplot with nonoverlapping points. It is useful 
for discovering the distribution of data points in a dataset. Consider the follow-
ing CSV file named salary.csv, which contains the following content:

gender,salary
men,100000
men,120000
men,119000
men,77000
men,83000
men,120000
men,125000
women,30000
women,140000
women,38000
women,45000
women,23000
women,145000
women,170000

You want to show the distribution of salaries for men and women. In this 
case, a swarmplot is an ideal fit. The following code snippet does just that:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
 
sns.set_style("whitegrid")
 
#---load data---
data = pd.read_csv('salary.csv')
 
#---plot the swarm plot---
sns.swarmplot(x="gender", y="salary", data=data)
 
ax = plt.gca()
ax.set_title("Salary distribution")
 
#---show plot---
plt.show()

Figure 4.22 shows that, in this group, even though women have the highest 
salary, it also has the widest income disparity.
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Summary

In this chapter, you learned how to use matplotlib to plot the different types of 
charts that are useful for discovering patterns and relationships in a dataset. A 
complementary plotting library, Seaborn, simplifies plotting more sophisticated 
charts. While this chapter does not contain an exhaustive list of charts that you 
can plot with matplotlib and Seaborn, subsequent chapters will provide more 
samples and uses for them.
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Figure 4.22:  A swarmplot showing the distribution of salaries for men and women
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5

Introduction to Scikit-learn

In Chapters 2–4, you learned how to use Python together with libraries such 
as NumPy and Pandas to perform number crunching, data visualization, and 
analysis. For machine learning, you can also use these libraries to build your 
own learning models. However, doing so would require you to have a strong 
appreciation of the mathematical foundation for the various machine learning 
algorithms—not a trivial matter.

Instead of implementing the various machine learning algorithms manually 
by hand, fortunately, someone else has already done the hard work for you. 
Introducing Scikit-learn, a Python library that implements the various types 
of machine learning algorithms, such as classification, regression, clustering, 
decision tree, and more. Using Scikit-learn, implementing machine learning is 
now simply a matter of calling a function with the appropriate data so that you 
can fit and train the model.

In this chapter, first you will learn the various venues where you can get the 
sample datasets to learn how to perform machine learning. You will then learn 
how to use Scikit-learn to perform simple linear regression on a simple dataset. 
Finally, you will learn how to perform data cleansing.

Getting Started with Scikit-learn 
for Machine Learning

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Getting Datasets

Often, one of the challenges in machine learning is obtaining sample datasets 
for experimentation. In machine learning, when you are just getting started 
with an algorithm, it is often useful to get started with a simple dataset that you 
can create yourself to test that the algorithm is working correctly according to 
your understanding. Once you clear this stage, it is time to work with a large 
dataset, and for this you would need to find the relevant source so that your 
machine learning model can be as realistic as possible.

Here are some places where you can get the sample dataset to practice your 
machine learning:

 ■ Scikit-learn’s built-in dataset

 ■ Kaggle dataset

 ■ UCI (University of California, Irvine) Machine Learning Repository

Let’s take a look at each of these in the following sections.

Using the Scikit-learn Dataset
Scikit-learn comes with a few standard sample datasets, which makes learning 
machine learning easy. To load the sample datasets, import the datasets module 
and load the desired dataset. For example, the following code snippets load the 
Iris dataset:

from sklearn import datasets
iris = datasets.load_iris()   # raw data of type Bunch

 T I P   The Iris flower dataset or Fisher’s Iris dataset is a multivariate dataset intro-
duced by the British statistician and biologist Ronald Fisher. The dataset consists of  
50 samples from each of three species of Iris (Iris setosa, Iris virginica, and Iris versi-
color). Four features were measured from each sample: the length and the width  
of the sepals and petals in centimeters. Based on the combination of these four  
features, Fisher developed a linear discriminant model to distinguish the species  
from each other.

The dataset loaded is represented as a Bunch object, a Python dictionary 
that provides attribute-style access. You can use the DESCR property to obtain 
a description of the dataset:

print(iris.DESCR)
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More importantly, however, you can obtain the features of the dataset using 
the data property:

print(iris.data)                        # Features

The preceding statement prints the following:

[[ 5.1  3.5  1.4  0.2]
 [ 4.9  3.   1.4  0.2]
   ...
 [ 6.2  3.4  5.4  2.3]
 [ 5.9  3.   5.1  1.8]]

You can also use the feature_names property to print the names of the features:

print(iris.feature_names)      # Feature Names

The preceding statement prints the following:

['sepal length (cm)', 'sepal width (cm)',
 'petal length (cm)', 'petal width (cm)']

This means that the dataset contains four columns—sepal length, sepal width, 
petal length, and petal width. If you are wondering what a petal and sepal are, 
Figure 5.1 shows the Tetramerous flower of Ludwigia octovalvis showing petals 
and sepals (source: https://en.wikipedia.org/wiki/Sepal).

Figure 5.1:  The petal and sepal of a flower
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To print the label of the dataset, use the target property. For the label names, 
use the target_names property:

print(iris.target)                 # Labels
print(iris.target_names)           # Label names

This prints out the following:

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 2 2 2 2 2 2
 2 2]
['setosa' 'versicolor' 'virginica']

In this case, 0 represents setosa, 1 represents versicolor, and 2 represents virginica.

 T I P   Note that not all sample datasets in Scikit-learn support the feature_names 
and target_names properties.

Figure 5.2 summarizes what the dataset looks like.

Often, it is useful to convert the data to a Pandas dataframe, so that you can 
manipulate it easily:

import pandas as pd
df = pd.DataFrame(iris.data)   # convert features
                               # to dataframe in Pandas
print(df.head())

These statements print out the following:

     0    1    2    3
0  5.1  3.5  1.4  0.2
1  4.9  3.0  1.4  0.2
2  4.7  3.2  1.3  0.2
3  4.6  3.1  1.5  0.2
4  5.0  3.6  1.4  0.2

sepal length
5.1
4.9
...
5.9

sepal width
3.5
3.0
...
3.0

petal length
1.4
1.4
...
5.1

0 represents setosa, 1 represents versicolor, 2 represents virginica

petal width
0.2
0.2
...
1.8

target
0
0
...
2

Figure 5.2:  The fields in the Iris dataset and its target
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Besides the Iris dataset, you can also load some interesting datasets in Scikit-
learn, such as the following:

# data on breast cancer
breast_cancer = datasets.load_breast_cancer()
 
# data on diabetes
diabetes = datasets.load_diabetes()
 
# dataset of 1797 8x8 images of hand-written digits
digits = datasets.load_digits()

For more information on the Scikit-learn dataset, check out the documenta-
tion at http://scikit-learn.org/stable/datasets/index.html.

Using the Kaggle Dataset
Kaggle is the world’s largest community of data scientists and machine learners. 
What started off as a platform for offering machine learning competitions, Kaggle 
now also offers a public data platform, as well as a cloud-based workbench for 
data scientists. Google acquired Kaggle in March 2017.

For learners of machine learning, you can make use of the sample datasets 
provided by Kaggle at https://www.kaggle.com/datasets/. Some of the inter-
esting datasets include:

 ■ Women’s Shoe Prices: A list of 10,000 women’s shoes and the prices at 
which they are sold (https://www.kaggle.com/datafiniti/womens- 
shoes-prices)

 ■ Fall Detection Data from China: Activity of elderly patients along with 
their medical information (https://www.kaggle.com/pitasr/falldata)

 ■ NYC Property Sales: A year’s worth of properties sold on the NYC real 
estate market (https://www.kaggle.com/new-york-city/nyc-property-
sales#nyc-rolling-sales.csv)

 ■ US Flight Delay: Flight Delays for year 2016 (https://www.kaggle.com/
niranjan0272/us-flight-delay)

Using the UCI (University of California, Irvine) Machine 
Learning Repository
The UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/ 
datasets.html) is a collection of databases, domain theories, and data generators 
that are used by the machine learning community for the empirical analysis 
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of machine learning algorithms. Here are some interesting ones from the huge 
dataset it contains:

 ■ Auto MPG Data Set: A collection of data about the fuel efficiency of dif-
ferent types of cars (https://archive.ics.uci.edu/ml/datasets/Auto+MPG)

 ■ Student Performance Data Set: Predict student performance in secondary 
education (high school) (https://archive.ics.uci.edu/ml/datasets/
Student+Performance)

 ■ Census Income Data Set: Predict whether income exceeds $50K/yr. based 
on census data (https://archive.ics.uci.edu/ml/datasets/census+income)

Generating Your Own Dataset
If you cannot find a suitable dataset for experimentation, why not generate one 
yourself? The sklearn.datasets.samples_generator module from the Scikit-
learn library contains a number of functions to let you generate different types 
of datasets for different types of problems. You can use it to generate datasets of 
different distributions, such as the following:

 ■ Linearly distributed datasets

 ■ Clustered datasets

 ■ Clustered datasets distributed in circular fashion

Linearly Distributed Dataset

The make_regression() function generates data that is linearly distributed. 
You can specify the number of features that you want, as well as the standard 
deviation of the Gaussian noise applied to the output:

%matplotlib inline
from matplotlib import pyplot as plt
from sklearn.datasets.samples_generator import make_regression
 
X, y = make_regression(n_samples=100, n_features=1, noise=5.4)
plt.scatter(X,y)

Figure 5.3 shows the scatter plot of the dataset generated.

Clustered Dataset

The make_blobs() function generates n number of clusters of random data. This 
is very useful when performing clustering in unsupervised learning (Chapter 9, 
“Supervised Learning—Classification using K Nearest Neighbors (KNN)”):
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%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
 
X, y = make_blobs(500, centers=3)  # Generate isotropic Gaussian
                                   # blobs for clustering
 
rgb = np.array(['r', 'g', 'b'])
 
# plot the blobs using a scatter plot and use color coding
plt.scatter(X[:, 0], X[:, 1], color=rgb[y])

Figure 5.4 shows the scatter plot of the random dataset generated.
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Figure 5.3:  Scatter plot showing the linearly distributed data points
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Figure 5.4:  Scatter plot showing the three clusters of data points generated
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Clustered Dataset Distributed in Circular Fashion

The make_circles() function generates a random dataset containing a large circle 
embedding a smaller circle in two dimensions. This is useful when performing 
classifications, using algorithms like SVM (Support Vector Machines). SVM will 
be covered in Chapter 8, “Supervised Learning—Classification using SVM.”

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_circles
 
X, y = make_circles(n_samples=100, noise=0.09)
 
rgb = np.array(['r', 'g', 'b'])
plt.scatter(X[:, 0], X[:, 1], color=rgb[y])

Figure 5.5 shows the scatter plot of the random dataset generated.

Getting Started with Scikit-learn

The easiest way to get started with machine learning with Scikit-learn is to start 
with linear regression. Linear regression is a linear approach for modeling the 
relationship between a scalar dependent variable y and one or more explana-
tory variables (or independent variables). For example, imagine that you have 
a set of data comprising the heights (in meters) of a group of people and their 
corresponding weights (in kg):

%matplotlib inline
import matplotlib.pyplot as plt
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Figure 5.5:  Scatter plot showing the two clusters of data points distributed in circular fashion
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# represents the heights of a group of people in meters
heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]
 
# represents the weights of a group of people in kgs
weights = [[60], [65], [72.3], [75], [80]]
 
plt.title('Weights plotted against heights')
plt.xlabel('Heights in meters')
plt.ylabel('Weights in kilograms')
 
plt.plot(heights, weights, 'k.')
 
# axis range for x and y
plt.axis([1.5, 1.85, 50, 90])
plt.grid(True)

When you plot a chart of weights against heights, you will see the chart as 
shown in Figure 5.6.

From the chart, you can see that there is a positive correlation between the 
weights and heights for this group of people. You could draw a straight line 
through the points and use that to predict the weight of another person based 
on their height.

Using the LinearRegression Class for Fitting the Model
So how do we draw the straight line that cuts though all of the points? It turns 
out that the Scikit-learn library has the LinearRegression class that helps you 
to do just that. All you need to do is to create an instance of this class and use 
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Figure 5.6:  Plotting the weights against heights for a group of people
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the heights and weights lists to create a linear regression model using the fit() 
function, like this:

from sklearn.linear_model import LinearRegression
 
# Create and fit the model
model = LinearRegression()
model.fit(X=heights, y=weights)

 T I P   Observe that the heights and weights are both represented as 
two-dimensional lists. This is because the fit() function requires both the X and y 
arguments to be two-dimensional (of type list or ndarray).

Making Predictions
Once you have fitted (trained) the model, you can start to make predictions 
using the predict() function, like this:

# make prediction
weight = model.predict([[1.75]])[0][0]
print(round(weight,2))         # 76.04

In the preceding example, you want to predict the weight for a person that is 
1.75m tall. Based on the model, the weight is predicted to be 76.04kg.

 T I P   In Scikit-learn, you typically use the fit() function to train a model. Once the 
model is trained, you use the predict() function to make a prediction.

Plotting the Linear Regression Line
It would be useful to visualize the linear regression line that has been created 
by the LinearRegression class. Let’s do this by first plotting the original data 
points and then sending the heights list to the model to predict the weights. 
We then plot the series of forecasted weights to obtain the line. The following 
code snippet shows how this is done:

import matplotlib.pyplot as plt
 
heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]
weights = [[60], [65], [72.3], [75], [80]]
 
plt.title('Weights plotted against heights')
plt.xlabel('Heights in meters')
plt.ylabel('Weights in kilograms')
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plt.plot(heights, weights, 'k.')
 
plt.axis([1.5, 1.85, 50, 90])
plt.grid(True)
 
# plot the regression line
plt.plot(heights, model.predict(heights), color='r')

Figure 5.7 shows the linear regression line.

Getting the Gradient and Intercept of the Linear  
Regression Line
From Figure 5.7, it is not clear at what value the linear regression line intercepts 
the y-axis. This is because we have adjusted the x-axis to start plotting at 1.5. A 
better way to visualize this would be to set the x-axis to start from 0 and enlarge 
the range of the y-axis. You then plot the line by feeding in two extreme values 
of the height: 0 and 1.8. The following code snippet re-plots the points and the 
linear regression line:

plt.title('Weights plotted against heights')
plt.xlabel('Heights in meters')
plt.ylabel('Weights in kilograms')
 
plt.plot(heights, weights, 'k.')
 
plt.axis([0, 1.85, -200, 200])
plt.grid(True)
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Figure 5.7:  Plotting the linear regression line



104 Chapter 5 ■ Getting Started with Scikit-learn for Machine Learning

# plot the regression line
extreme_heights = [[0], [1.8]]
plt.plot(extreme_heights, model.predict(extreme_heights), color='b')

Figure 5.8 now shows the point where the line cuts the y-axis.

While you can get the y-intercept by predicting the weight if the height is 0:

round(model.predict([[0]])[0][0],2)   # -104.75

the model object provides the answer directly through the intercept_ property:

print(round(model.intercept_[0],2))   # -104.75

Using the model object, you can also get the gradient of the linear regression 
line through the coef_ property:

print(round(model.coef_[0][0],2))    # 103.31

Examining the Performance of the Model by Calculating the 
Residual Sum of Squares
To know if your linear regression line is well fitted to all of the data points, we 
use the Residual Sum of Squares (RSS) method. Figure 5.9 shows how the RSS is 
calculated.

The following code snippet shows how the RSS is calculated in Python:

import numpy as np
 
print('Residual sum of squares: %.2f' %
       np.sum((weights - model.predict(heights)) ** 2))
# Residual sum of squares: 5.34
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Figure 5.8:  The linear regression line
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The RSS should be as small as possible, with 0 indicating that the regression 
line fits the points exactly (rarely achievable in the real world).

Evaluating the Model Using a Test Dataset
Now that our model is trained with our training data, we can put it to the test. 
Assuming that we have the following test dataset:

# test data
heights_test = [[1.58], [1.62], [1.69], [1.76], [1.82]]
weights_test = [[58], [63], [72], [73], [85]]

we can measure how closely the test data fits the regression line using the 
R-Squared method. The R-Squared method is also known as the coefficient of 
determination, or the coefficient of multiple determinations for multiple regressions.

The formula for calculating R-Squared is shown in Figure 5.10.

Using the formula shown for R-Squared, note the following:

 ■ R2 is R-squared

 ■ TSS is Total Sum of Squares

 ■ RSS is Residual Sum of Squares

Errors of prediction (E)

Residual Sum of Squares
= Sum of E2

Figure 5.9:  Calculating the Residual Sum of Squares for linear regression

Σ

R2 = 1 
RSS

RSS =

TSS
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2

Figure 5.10:  The formula for calculating R-Squared
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You can now calculate it in Python using the following code snippet:

# Total Sum of Squares (TSS)
weights_test_mean = np.mean(np.ravel(weights_test))
TSS = np.sum((np.ravel(weights_test) -
              weights_test_mean) ** 2)
print("TSS: %.2f" % TSS)
 
# Residual Sum of Squares (RSS)
RSS = np.sum((np.ravel(weights_test) -
              np.ravel(model.predict(heights_test)))
                 ** 2)
print("RSS: %.2f" % RSS)
 
# R_squared
R_squared = 1 - (RSS / TSS)
print("R-squared: %.2f" % R_squared)

 T I P   The ravel() function converts the two-dimensional list into a contiguous 
flattened (one-dimensional) array.

The preceding code snippet yields the following result:

TSS: 430.80
RSS: 24.62
R-squared: 0.94

Fortunately, you don’t have to calculate the R-Squared manually yourself—
Scikit-learn has the score() function to calculate the R-Squared automatically 
for you:

# using scikit-learn to calculate r-squared
print('R-squared: %.4f' % model.score(heights_test,
                                      weights_test))
 
# R-squared: 0.9429

An R-Squared value of 0.9429 (94.29%) indicates a pretty good fit for your 
test data.

Persisting the Model
Once you have trained a model, it is often useful to be able to save it for later 
use. Rather than retraining the model every time you have new data to test, a 
saved model allows you to load the trained model and make predictions imme-
diately without the need to train the model again.
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There are two ways to save your trained model in Python:

 ■ Using the standard pickle  module in Python to serialize and  
deserialize objects

 ■ Using the joblib module in Scikit-learn that is optimized to save and load 
Python objects that deal with NumPy data

The first example you will see is saving the model using the pickle module:

import pickle
 
# save the model to disk
filename = 'HeightsAndWeights_model.sav'
# write to the file using write and binary mode
pickle.dump(model, open(filename, 'wb'))

In the preceding code snippet, you first opened a file in "wb" mode ("w" for 
write and "b" for binary). You then use the dump() function from the pickle 
module to save the model into the file.

To load the model from file, use the load() function:

# load the model from disk
loaded_model = pickle.load(open(filename, 'rb'))

You can now use the model as usual:

result = loaded_model.score(heights_test,
                            weights_test)

Using the joblib module is very similar to using the pickle module:

from sklearn.externals import joblib
 
# save the model to disk
filename = 'HeightsAndWeights_model2.sav'
joblib.dump(model, filename)
 
# load the model from disk
loaded_model = joblib.load(filename)
result = loaded_model.score(heights_test,
                            weights_test)
print(result)

Data Cleansing

In machine learning, one of the first tasks that you need to perform is data 
cleansing. Very seldom would you have a dataset that you can use straightaway 
to train your model. Instead, you have to examine the data carefully for any 
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missing values and either remove them or replace them with some valid values, 
or you have to normalize them if there are columns with wildly different values. 
The following sections show some of the common tasks you need to perform 
when cleaning your data.

Cleaning Rows with NaNs
Consider a CSV file named NaNDataset.csv with the following content:

A,B,C
1,2,3
4,,6
7,,9
10,11,12
13,14,15
16,17,18

Visually, you can spot that there are a few rows with empty fields. Specifically, 
the second and third rows have missing values for the second columns. For 
small sets of data, this is easy to spot. But if you have a large dataset, it becomes 
almost impossible to detect. An effective way to detect for empty rows is to load 
the dataset into a Pandas dataframe and then use the isnull() function to check 
for null values in the dataframe:

import pandas as pd
df = pd.read_csv('NaNDataset.csv')
df.isnull().sum()

This code snippet will produce the following output:

A    0
B    2
C    0
dtype: int64

You can see that column B has two null values. When Pandas loads a dataset 
containing empty values, it will use NaN to represent those empty fields. The 
following is the output of the dataframe when you print it out:

    A     B   C
0   1   2.0   3
1   4   NaN   6
2   7   NaN   9
3  10  11.0  12
4  13  14.0  15
5  16  17.0  18
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Replacing NaN with the Mean of the Column

One of the ways to deal with NaNs in your dataset is to replace them with the 
mean of the columns in which they are located. The following code snippet 
replaces all of the NaNs in column B with the average value of column B:

# replace all the NaNs in column B with the average of column B
df.B = df.B.fillna(df.B.mean())
print(df)

The dataframe now looks like this:

    A     B   C
0   1   2.0   3
1   4  11.0   6
2   7  11.0   9
3  10  11.0  12
4  13  14.0  15
5  16  17.0  18

Removing Rows

Another way to deal with NaNs in your dataset is simply to remove the rows 
containing them. You can do so using the dropna() function, like this:

df = pd.read_csv('NaNDataset.csv')
df = df.dropna()                             # drop all rows with NaN
print(df)

This code snippet will produce the following output:

    A     B   C
0   1   2.0   3
3  10  11.0  12
4  13  14.0  15
5  16  17.0  18

Observe that after removing the rows containing NaN, the index is no longer in 
sequential order. If you need to reset the index, use the reset_index() function:

df = df.reset_index(drop=True)               # reset the index
print(df)

The dataframe with the reset index will now look like this:

    A     B   C
0   1   2.0   3
1  10  11.0  12
2  13  14.0  15
3  16  17.0  18
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Removing Duplicate Rows
Consider a CSV file named DuplicateRows.csv with the following content:

A,B,C
1,2,3
4,5,6
4,5,6
7,8,9
7,18,9
10,11,12
10,11,12
13,14,15
16,17,18

To find all of the duplicated rows, first load the dataset into a dataframe and 
then use the duplicated() function, like this:

import pandas as pd
df = pd.read_csv('DuplicateRows.csv')
print(df.duplicated(keep=False))

This will produce the following output:

0    False
1     True
2     True
3    False
4    False
5     True
6     True
7    False
8    False
dtype: bool

It shows which rows are duplicated. In this example, rows with index 1, 2, 5, 
and 6 are duplicates. The keep argument allows you to specify how to indicate 
duplicates:

 ■ The default is 'first': All duplicates are marked as True except for the 
first occurrence

 ■ 'last': All duplicates are marked as True except for the last occurrence

 ■ False: All duplicates are marked as True

So, if you set keep to 'first', you will see the following output:

0    False
1    False
2     True
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3    False
4    False
5    False
6     True
7    False
8    False
dtype: bool

Hence, if you want to see all duplicate rows, you can set keep to False and 
use the result of the duplicated() function as the index into the dataframe:

print(df[df.duplicated(keep=False)])

The preceding statement will print all of the duplicate rows:

    A   B   C
1   4   5   6
2   4   5   6
5  10  11  12
6  10  11  12

To drop duplicate rows, you can use the drop_duplicates() function, like this:

df.drop_duplicates(keep='first', inplace=True)  # remove 
duplicates and keep the first
print(df)

 T I P   By default, the drop_duplicates() function will not modify the original 
dataframe and will return the dataframe containing the dropped rows. If you want to 
modify the original dataframe, set the inplace parameter to True, as shown in the 
preceding code snippet.

The preceding statements will print the following:

    A   B   C
0   1   2   3
1   4   5   6
3   7   8   9
4   7  18   9
5  10  11  12
7  13  14  15
8  16  17  18

 T I P   To remove all duplicates, set the keep parameter to False. To keep the last 
occurrence of duplicate rows, set the keep parameter to 'last'.

Sometimes, you only want to remove duplicates that are found in certain 
columns in the dataset. For example, if you look at the dataset that we have 
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been using, observe that for row 3 and row 4, the values of column A and C 
are identical:

    A   B   C
3   7   8   9
4   7  18   9

You can remove duplicates in certain columns by specifying the subset 
parameter:

df.drop_duplicates(subset=['A', 'C'], keep='last',
                           inplace=True)     # remove all duplicates in
                                             # columns A and C and keep
                                             # the last
print(df)

This statement will yield the following:

    A   B   C
0   1   2   3
1   4   5   6
4   7  18   9
5  10  11  12
7  13  14  15
8  16  17  18

Normalizing Columns
Normalization is a technique often applied during the data cleansing process. The 
aim of normalization is to change the values of numeric columns in the dataset to 
use a common scale, without modifying the differences in the ranges of values.

Normalization is crucial for some algorithms to model the data correctly. For 
example, one of the columns in your dataset may contain values from 0 to 1,  
while another column has values ranging from 400,000 to 500,000. The huge 
disparity in the scale of the numbers could introduce problems when you use 
the two columns to train your model. Using normalization, you could main-
tain the ratio of the values in the two columns while keeping them to a limited 
range. In Pandas, you can use the MinMaxScaler class to scale each column to 
a particular range of values.

Consider a CSV file named NormalizeColumns.csv with the following content:

A,B,C
1000,2,3
400,5,6
700,6,9
100,11,12
1300,14,15
1600,17,18
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The following code snippet will scale all the columns’ values to the (0,1) range:

import pandas as pd
from sklearn import preprocessing
 
df = pd.read_csv('NormalizeColumns.csv')
x = df.values.astype(float)
 
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled, columns=df.columns)
print(df)

You should see the following output:

     A         B    C
0  0.6  0.000000  0.0
1  0.2  0.200000  0.2
2  0.4  0.266667  0.4
3  0.0  0.600000  0.6
4  0.8  0.800000  0.8
5  1.0  1.000000  1.0

Removing Outliers
In statistics, an outlier is a point that is distant from other observed points. 
For example, given a set of values—234, 267, 1, 200, 245, 300, 199, 250, 8999, and 
245—it is quite obvious that 1 and 8999 are outliers. They distinctly stand out 
from the rest of the values, and they “lie outside” most of the other values in the 
dataset; hence the word outlier. Outliers occur mainly due to errors in recording 
or experimental error, and in machine learning it is important to remove them 
prior to training your model as it may potentially distort your model if you don’t.

There are a number of techniques to remove outliers, and in this chapter we 
discuss two of them:

 ■ Tukey Fences

 ■ Z-Score

Tukey Fences

Tukey Fences is based on Interquartile Range (IQR). IQR is the difference between 
the first and third quartiles of a set of values. The first quartile, denoted Q1,  
is the value in the dataset that holds 25% of the values below it. The third quartile, 
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denoted Q3, is the value in the dataset that holds 25% of the values above it. 
Hence, by definition, IQR = Q3 – Q1.

Figure 5.11 shows an example of how IQR is obtained for datasets with even 
and odd numbers of values.

In Tukey Fences, outliers are values that are as follows:

 ■ Less than Q1 – (1.5 × IQR), or

 ■ More than Q3 + (1.5 × IQR)

The following code snippet shows the implementation of Tukey Fences using 
Python:

import numpy as np
 
def outliers_iqr(data):
    q1, q3 = np.percentile(data, [25, 75])
    iqr = q3 - q1
    lower_bound = q1 - (iqr * 1.5)
    upper_bound = q3 + (iqr * 1.5)
    return np.where((data > upper_bound) | (data < lower_bound))

 T I P   The np.where() function returns the location of items satisfying the conditions.

The outliers_iqr() function returns a tuple of which the first element is an 
array of indices of those rows that have outlier values.

Number of Items: 10

Number of Items: 11

1 3 4 5 6

Median is 6.5

Median is 7

Interquartile Range (IQR) is 11 – 4 = 7

Interquartile Range (IQR) is 12 – 4 = 8

First Quartile is 4

First Quartile is 4

Third Quartile is 11

Third Quartile is 12

7 10 11 12 14

1 3 4 5 6 7 10 11 12 14

Figure 5.11:  Examples of finding the Interquartile Range (IQR)
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To test the Tukey Fences, let’s use the famous Galton dataset on the heights 
of parents and their children. The dataset contains data based on the famous 
1885 study of  Francis Galton exploring the relationship between the heights of 
adult children and the heights of their parents. Each case is an adult child, and 
the variables are as follows:

Family:  The family that the child belongs to, labeled by the numbers from 
1 to 204 and 136A

Father: The father’s height, in inches
Mother: The mother’s height, in inches
Gender: The gender of the child, male (M) or female (F)
Height: The height of the child, in inches
Kids: The number of kids in the family of the child

The dataset has 898 cases.
First, import the data:

import pandas as pd
df = pd.read_csv("http://www.mosaic-web.org/go/datasets/galton.csv")
print(df.head())

You should see the following:

  family  father  mother sex  height  nkids
0      1    78.5    67.0   M    73.2      4
1      1    78.5    67.0   F    69.2      4
2      1    78.5    67.0   F    69.0      4
3      1    78.5    67.0   F    69.0      4
4      2    75.5    66.5   M    73.5      4

If you want to find the outliers in the height column, you can call the out-
liers_iqr() function as follows:

print("Outliers using outliers_iqr()")
print("=============================")
for i in outliers_iqr(df.height)[0]:
    print(df[i:i+1])

You should see the following output:

Outliers using outliers_iqr()
=============================
    family  father  mother sex  height  nkids
288     72    70.0    65.0   M    79.0      7

Using the Tukey Fences method, you can see that the height column has a 
single outlier.
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Z-Score

The second method for determining outliers is to use the Z-score method. A 
Z-score indicates how many standard deviations a data point is from the mean. 
The Z-score has the following formula:

 Z xi /  

where xi is the data point, μ is the mean of the dataset, and σ is the standard 
deviation.

This is how you interpret the Z-score:

 ■ A negative Z-score indicates that the data point is less than the mean, and 
a positive Z-score indicates the data point in question is larger than  
the mean

 ■ A Z-score of 0 tells you that the data point is right in the middle (mean), 
and a Z-score of 1 tells you that your data point is 1 standard deviation 
above the mean, and so on

 ■ Any Z-score greater than 3 or less than –3 is considered to be an outlier

The following code snippet shows the implementation of the Z-score using 
Python:

def outliers_z_score(data):
    threshold = 3
    mean = np.mean(data)
    std = np.std(data)
    z_scores = [(y - mean) / std for y in data]
    return np.where(np.abs(z_scores) > threshold)

Using the same Galton dataset that you used earlier, you can now find the 
outliers for the height column using the outliers_z_score() function:

print("Outliers using outliers_z_score()")
print("=================================")
for i in outliers_z_score(df.height)[0]:
    print(df[i:i+1])
print()

You should see the following output:

Outliers using outliers_z_score()
=================================
    family  father  mother sex  height  nkids
125     35    71.0    69.0   M    78.0      5
    family  father  mother sex  height  nkids
288     72    70.0    65.0   M    79.0      7
    family  father  mother sex  height  nkids
672    155    68.0    60.0   F    56.0      7
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Using the Z-score method, you can see that the height column has three 
outliers.

Summary

In this chapter, you have seen how to get started with the Scikit-learn library 
to solve a linear regression problem. In addition, you have also learned how to 
get sample datasets, generate your own, perform data cleansing, as well as the 
two techniques that you can use to remove outliers from your datasets.

In subsequent chapters, you will learn more about the various machine learning 
algorithms and how to use them to solve real-life problems.
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6

Types of Linear Regression

In the previous chapter, you learned how to get started with machine learning 
using simple linear regression, first using Python, and then followed by using 
the Scikit-learn library. In this chapter, we will look into linear regression in 
more detail and discuss another variant of linear regression known as polyno-
mial regression.

To recap, Figure 6.1 shows the Iris dataset used in Chapter 5, “Getting Started 
with Scikit-learn for Machine Learning.” The first four columns are known as 
the features, or also commonly referred to as the independent variables. The last 
column is known as the label, or commonly called the dependent variable (or 
dependent variables if there is more than one label).

Supervised Learning—Linear 
Regression

Label
(Dependent variable)

Features
(Independent variables)

sepal length sepal width petal length petal width target

Figure 6.1:  Some terminologies for features and label

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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 T I P   Features are also sometimes called explanatory variables, while labels are also 
sometimes called targets.

In simple linear regression, we talked about the linear relationship between 
one independent variable and one dependent variable. In this chapter, besides 
simple linear regression, we will also discuss the following:

Multiple Regression Linear relationships between two or more independent 
variables and one dependent variable.

Polynomial Regression Modeling the relationship between one independent 
variable and one dependent variable using an nth degree polynomial 
function.

Polynomial Multiple Regression Modeling the relationship between two 
or more independent variables and one dependent variable using an nth 
degree polynomial function.

 T I P   There is another form of linear regression, called multivariate linear regres-
sion, where there is more than one correlated dependent variable in the relationship. 
Multivariate linear regression is beyond the scope of this book.

Linear Regression

In machine learning, linear regression is one of the simplest algorithms that you 
can apply to a dataset to model the relationships between features and labels. 
In Chapter 5, we started by exploring simple linear regression, where we could 
explain the relationship between a feature and a label by using a straight line. 
In the following section, you will learn about a variant of simple linear regres-
sion, called multiple linear regression, by predicting house prices based on mul-
tiple features.

Using the Boston Dataset
For this example, we will use the Boston dataset, which contains data  
about the housing and price data in the Boston area. This dataset was taken 
from the StatLib library, which is maintained at Carnegie Mellon University.  
It is commonly used in machine learning, and it is a good candidate to learn 
about regression problems. The Boston dataset is available from a number of 
sources, but it is now available directly from the sklearn.datasets package. 
This means you can load it directly in Scikit-learn without needing explicitly 
to download it.
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First, let’s import the necessary libraries and then load the dataset using the 
load_boston() function:

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
 
from sklearn.datasets import load_boston
dataset = load_boston()

It is always good to examine the data before you work with it. The data prop-
erty contains the data for the various columns of the dataset:

print(dataset.data)

You should see the following:

[[  6.32000000e-03   1.80000000e+01   2.31000000e+00 ...,   1.53000000e+01
    3.96900000e+02   4.98000000e+00]
 [  2.73100000e-02   0.00000000e+00   7.07000000e+00 ...,   1.78000000e+01
    3.96900000e+02   9.14000000e+00]
 [  2.72900000e-02   0.00000000e+00   7.07000000e+00 ...,   1.78000000e+01
    3.92830000e+02   4.03000000e+00]
 ...,
 [  6.07600000e-02   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01
    3.96900000e+02   5.64000000e+00]
 [  1.09590000e-01   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01
    3.93450000e+02   6.48000000e+00]
 [  4.74100000e-02   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01
    3.96900000e+02   7.88000000e+00]]

The data is a two-dimensional array. To know the name of each column (fea-
ture), use the feature_names property:

print(dataset.feature_names)

You should see the following:

['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
 'B' 'LSTAT']

For the description of each feature, you can use the DESCR property:

print(dataset.DESCR)

The preceding statement will print out the following:

Boston House Prices dataset
===========================
 
Notes
------
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Data Set Characteristics:
 
    :Number of Instances: 506
 
    :Number of Attributes: 13 numeric/categorical predictive
 
    :Median Value (attribute 14) is usually the target
 
    :Attribute Information (in order):
        - CRIM     per capita crime rate by town
        - ZN       proportion of residential land zoned for lots over 
25,000 sq.ft.
        - INDUS    proportion of non-retail business acres per town
        - CHAS     Charles River dummy variable (= 1 if tract bounds 
river; 0 otherwise)
        - NOX      nitric oxides concentration (parts per 10 million)
        - RM       average number of rooms per dwelling
        - AGE      proportion of owner-occupied units built prior to 1940
        - DIS      weighted distances to five Boston employment centres
        - RAD      index of accessibility to radial highways
        - TAX      full-value property-tax rate per $10,000
        - PTRATIO  pupil-teacher ratio by town
        - B        1000(Bk - 0.63)^2 where Bk is the proportion of 
blacks by town
        - LSTAT    % lower status of the population
        - MEDV     Median value of owner-occupied homes in $1000's
 
    :Missing Attribute Values: None
 
    :Creator: Harrison, D. and Rubinfeld, D.L.
 
This is a copy of UCI ML housing dataset: http://archive.ics.uci.edu/
ml/datasets/Housing
 
 
This dataset was taken from the StatLib library which is maintained at 
Carnegie Mellon University.
 
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression 
diagnostics
...', Wiley, 1980.   N.B. Various transformations are used in the table on
pages 244-261 of the latter.
 
The Boston house-price data has been used in many machine learning 
papers that address regression
problems.
 
**References**
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   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying 
Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
   - Quinlan,R. (1993). Combining Instance-Based and Model-Based 
Learning. In Proceedings on the Tenth International Conference of 
Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan 
Kaufmann.
   - many more! (see http://archive.ics.uci.edu/ml/datasets/
Housing)

The prices of houses is the information we are seeking, and it can be accessed 
via the target property:

print(dataset.target)

You will see the following:

[ 24.   21.6  34.7  33.4  36.2  28.7  22.9  27.1  16.5  18.9  15.   18.9
  21.7  20.4  18.2  19.9  23.1  17.5  20.2  18.2  13.6  19.6  15.2  14.5
  15.6  13.9  16.6  14.8  18.4  21.   12.7  14.5  13.2  13.1  13.5  18.9
  20.   21.   24.7  30.8  34.9  26.6  25.3  24.7  21.2  19.3  20.   16.6
  14.4  19.4  19.7  20.5  25.   23.4  18.9  35.4  24.7  31.6  23.3  19.6
  18.7  16.   22.2  25.   33.   23.5  19.4  22.   17.4  20.9  24.2  21.7
  22.8  23.4  24.1  21.4  20.   20.8  21.2  20.3  28.   23.9  24.8  22.9
  23.9  26.6  22.5  22.2  23.6  28.7  22.6  22.   22.9  25.   20.6  28.4
  21.4  38.7  43.8  33.2  27.5  26.5  18.6  19.3  20.1  19.5  19.5  20.4
  19.8  19.4  21.7  22.8  18.8  18.7  18.5  18.3  21.2  19.2  20.4  19.3
  22.   20.3  20.5  17.3  18.8  21.4  15.7  16.2  18.   14.3  19.2  19.6
  23.   18.4  15.6  18.1  17.4  17.1  13.3  17.8  14.   14.4  13.4  15.6
  11.8  13.8  15.6  14.6  17.8  15.4  21.5  19.6  15.3  19.4  17.   15.6
  13.1  41.3  24.3  23.3  27.   50.   50.   50.   22.7  25.   50.   23.8
  23.8  22.3  17.4  19.1  23.1  23.6  22.6  29.4  23.2  24.6  29.9  37.2
  39.8  36.2  37.9  32.5  26.4  29.6  50.   32.   29.8  34.9  37.   30.5
  36.4  31.1  29.1  50.   33.3  30.3  34.6  34.9  32.9  24.1  42.3  48.5
  50.   22.6  24.4  22.5  24.4  20.   21.7  19.3  22.4  28.1  23.7  25.
  23.3  28.7  21.5  23.   26.7  21.7  27.5  30.1  44.8  50.   37.6  31.6
  46.7  31.5  24.3  31.7  41.7  48.3  29.   24.   25.1  31.5  23.7  23.3
  22.   20.1  22.2  23.7  17.6  18.5  24.3  20.5  24.5  26.2  24.4  24.8
  29.6  42.8  21.9  20.9  44.   50.   36.   30.1  33.8  43.1  48.8  31.
  36.5  22.8  30.7  50.   43.5  20.7  21.1  25.2  24.4  35.2  32.4  32.
  33.2  33.1  29.1  35.1  45.4  35.4  46.   50.   32.2  22.   20.1  23.2
  22.3  24.8  28.5  37.3  27.9  23.9  21.7  28.6  27.1  20.3  22.5  29.
  24.8  22.   26.4  33.1  36.1  28.4  33.4  28.2  22.8  20.3  16.1  22.1
  19.4  21.6  23.8  16.2  17.8  19.8  23.1  21.   23.8  23.1  20.4  18.5
  25.   24.6  23.   22.2  19.3  22.6  19.8  17.1  19.4  22.2  20.7  21.1
  19.5  18.5  20.6  19.   18.7  32.7  16.5  23.9  31.2  17.5  17.2  23.1
  24.5  26.6  22.9  24.1  18.6  30.1  18.2  20.6  17.8  21.7  22.7  22.6
  25.   19.9  20.8  16.8  21.9  27.5  21.9  23.1  50.   50.   50.   50.
  50.   13.8  13.8  15.   13.9  13.3  13.1  10.2  10.4  10.9  11.3  12.3
   8.8   7.2  10.5   7.4  10.2  11.5  15.1  23.2   9.7  13.8  12.7  13.1
  12.5   8.5   5.    6.3   5.6   7.2  12.1   8.3   8.5   5.   11.9  27.9
  17.2  27.5  15.   17.2  17.9  16.3   7.    7.2   7.5  10.4   8.8   8.4
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  16.7  14.2  20.8  13.4  11.7   8.3  10.2  10.9  11.    9.5  14.5  14.1
  16.1  14.3  11.7  13.4   9.6   8.7   8.4  12.8  10.5  17.1  18.4  15.4
  10.8  11.8  14.9  12.6  14.1  13.   13.4  15.2  16.1  17.8  14.9  14.1
  12.7  13.5  14.9  20.   16.4  17.7  19.5  20.2  21.4  19.9  19.   19.1
  19.1  20.1  19.9  19.6  23.2  29.8  13.8  13.3  16.7  12.   14.6  21.4
  23.   23.7  25.   21.8  20.6  21.2  19.1  20.6  15.2   7.    8.1  13.6
  20.1  21.8  24.5  23.1  19.7  18.3  21.2  17.5  16.8  22.4  20.6  23.9
  22.   11.9]

Now let’s load the data into a Pandas DataFrame:

df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
df.head()

The DataFrame would look like the one shown in Figure 6.2.

You would also want to add the prices of the houses to the DataFrame, so 
let’s add a new column to the DataFrame and call it MEDV:

df['MEDV'] = dataset.target
df.head()

Figure 6.3 shows the complete DataFrame with the features and label.
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Figure 6.2:  The DataFrame containing all of the features
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Figure 6.3:  The DataFrame containing all of the features and the label
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Data Cleansing
The next step would be to clean the data and perform any conversion if necessary. 
First, use the info() function to check the data type of each field:

df.info()

You should see the following:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
CRIM       506 non-null float64
ZN         506 non-null float64
INDUS      506 non-null float64
CHAS       506 non-null float64
NOX        506 non-null float64
RM         506 non-null float64
AGE        506 non-null float64
DIS        506 non-null float64
RAD        506 non-null float64
TAX        506 non-null float64
PTRATIO    506 non-null float64
B          506 non-null float64
LSTAT      506 non-null float64
MEDV       506 non-null float64
dtypes: float64(14)
memory usage: 55.4 KB

As Scikit-learn only works with fields that are numeric, you need to encode 
string values into numeric values. Fortunately, the dataset contains all numerical 
values, and so no encoding is necessary.

Next, we need to check to see if there are any missing values. To do so, use 
the isnull() function:

print(df.isnull().sum())

Again, the dataset is good, as it does not have any missing values:

CRIM       0
ZN         0
INDUS      0
CHAS       0
NOX        0
RM         0
AGE        0
DIS        0
RAD        0
TAX        0
PTRATIO    0
B          0
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LSTAT      0
MEDV       0
dtype: int64

Feature Selection
Now that the data is good to go, we are ready to move on to the next step of 
the process. As there are 13 features in the dataset, we do not want to use all 
of these features for training our model, because not all of them are relevant. 
Instead, we want to choose those features that directly influence the result (that 
is, prices of houses) to train the model. For this, we can use the corr() function. 
The corr() function computes the pairwise correlation of columns:

corr = df.corr()
print(corr)

You will see the following:

CRIM        ZN     INDUS      CHAS       NOX        RM       AGE  \
CRIM     1.000000 -0.199458  0.404471 -0.055295  0.417521 -0.219940  
0.350784
ZN      -0.199458  1.000000 -0.533828 -0.042697 -0.516604  0.311991 
-0.569537
INDUS    0.404471 -0.533828  1.000000  0.062938  0.763651 -0.391676  
0.644779
CHAS    -0.055295 -0.042697  0.062938  1.000000  0.091203  0.091251  
0.086518
NOX      0.417521 -0.516604  0.763651  0.091203  1.000000 -0.302188  
0.731470
RM      -0.219940  0.311991 -0.391676  0.091251 -0.302188  1.000000 
-0.240265
AGE      0.350784 -0.569537  0.644779  0.086518  0.731470 -0.240265  
1.000000
DIS     -0.377904  0.664408 -0.708027 -0.099176 -0.769230  0.205246 
-0.747881
RAD      0.622029 -0.311948  0.595129 -0.007368  0.611441 -0.209847  
0.456022
TAX      0.579564 -0.314563  0.720760 -0.035587  0.668023 -0.292048  
0.506456
PTRATIO  0.288250 -0.391679  0.383248 -0.121515  0.188933 -0.355501  
0.261515
B       -0.377365  0.175520 -0.356977  0.048788 -0.380051  0.128069 
-0.273534
LSTAT    0.452220 -0.412995  0.603800 -0.053929  0.590879 -0.613808  
0.602339
MEDV    -0.385832  0.360445 -0.483725  0.175260 -0.427321  0.695360 
-0.376955
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              DIS       RAD       TAX   PTRATIO         B     LSTAT      
MEDV
CRIM    -0.377904  0.622029  0.579564  0.288250 -0.377365  0.452220 
-0.385832
ZN       0.664408 -0.311948 -0.314563 -0.391679  0.175520 -0.412995  
0.360445
INDUS   -0.708027  0.595129  0.720760  0.383248 -0.356977  0.603800 
-0.483725
CHAS    -0.099176 -0.007368 -0.035587 -0.121515  0.048788 -0.053929  
0.175260
NOX     -0.769230  0.611441  0.668023  0.188933 -0.380051  0.590879 
-0.427321
RM       0.205246 -0.209847 -0.292048 -0.355501  0.128069 -0.613808  
0.695360
AGE     -0.747881  0.456022  0.506456  0.261515 -0.273534  0.602339 
-0.376955
DIS      1.000000 -0.494588 -0.534432 -0.232471  0.291512 -0.496996  
0.249929
RAD     -0.494588  1.000000  0.910228  0.464741 -0.444413  0.488676 
-0.381626
TAX     -0.534432  0.910228  1.000000  0.460853 -0.441808  0.543993 
-0.468536
PTRATIO -0.232471  0.464741  0.460853  1.000000 -0.177383  0.374044 
-0.507787
B        0.291512 -0.444413 -0.441808 -0.177383  1.000000 -0.366087  
0.333461
LSTAT   -0.496996  0.488676  0.543993  0.374044 -0.366087  1.000000 
-0.737663
MEDV     0.249929 -0.381626 -0.468536 -0.507787  0.333461 -0.737663  
1.000000

A positive correlation is a relationship between two variables in which both 
variables move in tandem. A positive correlation exists when one variable 
decreases as the other variable decreases, or one variable increases while the 
other variable increases. Similarly, a negative correlation is a relationship between 
two variables in which one variable increases as the other decreases. A perfect 
negative correlation is represented by the value –1.00: a 0.00 indicates no corre-
lation and a +1.00 indicates a perfect positive correlation.

From the MEDV column in the output, you can see that the RM and LSTAT features 
have high correlation factors (positive and negative correlations) with the MEDV:

MEDV
CRIM    -0.385832
ZN       0.360445
INDUS   -0.483725
CHAS     0.175260
NOX     -0.427321
RM       0.695360
AGE     -0.376955
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DIS      0.249929
RAD     -0.381626
TAX     -0.468536
PTRATIO -0.507787
B        0.333461
LSTAT   -0.737663
MEDV     1.000000

This means that as LSTAT (“% of lower status of the population”) increases, the 
prices of houses go down. When LSTAT decreases, the prices go up. Similarly, as 
RM (“average number of rooms per dwelling”) increases, so will the price. And 
when RM goes down, the prices go down as well.

Instead of visually finding the top two features with the highest correlation 
factors, we can do it programmatically as follows:

#---get the top 3 features that has the highest correlation---
print(df.corr().abs().nlargest(3, 'MEDV').index)
 
#---print the top 3 correlation values---
print(df.corr().abs().nlargest(3, 'MEDV').values[:,13])

The result confirms our findings:

Index(['MEDV', 'LSTAT', 'RM'], dtype='object')
[ 1.          0.73766273  0.69535995]

 T I P   We will ignore the first result, as MEDV definitely has a perfect correlation  
with itself!

Since RM and LSTAT have high correlation values, we will use these two fea-
tures to train our model.

Multiple Regression
In the previous chapter, you saw how to perform a simple linear regression 
using a single feature and a label. Often, you might want to train your model 
using more than one independent variable and a label. This is known as multiple 
regression. In multiple regression, two or more independent variables are used 
to predict the value of a dependent variable (label).

Now let’s plot a scatter plot showing the relationship between the LSTAT fea-
ture and the MEDV label:

plt.scatter(df['LSTAT'], df['MEDV'], marker='o')
plt.xlabel('LSTAT')
plt.ylabel('MEDV')
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Figure 6.4 shows the scatter plot. It appears that there is a linear correlation 
between the two.

Let’s also plot a scatter plot showing the relationship between the RM feature 
and the MEDV label:

plt.scatter(df['RM'], df['MEDV'], marker='o')
plt.xlabel('RM')
plt.ylabel('MEDV')

Figure 6.5 shows the scatter plot. Again, it appears that there is a linear cor-
relation between the two, albeit with some outliers.
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Figure 6.4:  Scatter plot showing the relationship between LSTAT and MEDV
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Figure 6.5:  Scatter plot showing the relationship between RM and MEDV
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Better still, let’s plot the two features and the label on a 3D chart:

from mpl_toolkits.mplot3d import Axes3D
 
fig = plt.figure(figsize=(18,15))
ax = fig.add_subplot(111, projection='3d')
 
ax.scatter(df['LSTAT'],
           df['RM'],
           df['MEDV'],
           c='b')
 
ax.set_xlabel("LSTAT")
ax.set_ylabel("RM")
ax.set_zlabel("MEDV")
plt.show()

Figure 6.6 shows the 3D chart of LSTAT and RM plotted against MEDV.
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Figure 6.6:  The 3D scatter plot showing the relationship between LSTAT, RM, and MEDV
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Training the Model
We can now train the model. First, create two DataFrames: x and Y. The x 
DataFrame will contain the combination of the LSTAT and RM features, while 
the Y DataFrame will contain the MEDV label:

x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
Y = df['MEDV']

We will split the dataset into 70 percent for training and 30 percent for testing:

from sklearn.model_selection import train_test_split
x_train, x_test, Y_train, Y_test = train_test_split(x, Y, test_size = 0.3,
                                                    random_state=5)

 T I P   Chapter 7, “Supervised Learning—Classification Using Logistic Regression,” 
will discuss more about the train_test_split() function.

After the split, let’s print out the shape of the training sets:

print(x_train.shape)
print(Y_train.shape)

You will see the following:

(354, 2)
(354,)

This means that the x training set now has 354 rows and 2 columns, while 
the Y training set (which contains the label) has 354 rows and 1 column.

Let’s also print out the testing set:

print(x_test.shape)
print(Y_test.shape)

This time, the testing set has 152 rows:

(152, 2)
(152,)

We are now ready to begin the training. As you learned from the previous 
chapter, you can use the LinearRegression class to perform linear regression. 
In this case, we will use it to train our model:

from sklearn.linear_model import LinearRegression
 
model = LinearRegression()
model.fit(x_train, Y_train)
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Once the model is trained, we will use the testing set to perform some  
predictions:

price_pred = model.predict(x_test)

To learn how well our model performed, we use the R-Squared method that 
you learned in the previous chapter. The R-Squared method lets you know how 
close the test data fits the regression line. A value of 1.0 means a perfect fit. So, 
you aim for a value of R-Squared that is close to 1:

print('R-Squared: %.4f' % model.score(x_test,
                                      Y_test))

For our model, it returns an R-Squared value as follows:

R-Squared: 0.6162

We will also plot a scatter plot showing the actual price vs. the predicted price:

from sklearn.metrics import mean_squared_error
 
mse = mean_squared_error(Y_test, price_pred)
print(mse)
 
plt.scatter(Y_test, price_pred)
plt.xlabel("Actual Prices")
plt.ylabel("Predicted prices")
plt.title("Actual prices vs Predicted prices")

Figure 6.7 shows the plot. Ideally, it should be a straight line, but for now it 
is good enough.
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Figure 6.7:  A scatter plot showing the predicted prices vs. the actual prices
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Getting the Intercept and Coefficients
The formula for multiple regression is as follows:

 Y x x0 1 1 2 2 

where Y is the dependent variable, β0 is the intercept, and β1 and β2 are the coef-
ficient of the two features x1 and x2, respectively.

With the model trained, we can obtain the intercept as well as the coefficients 
of the features:

print(model.intercept_)
print(model.coef_)

You should see the following:

0.3843793678034899
[-0.65957972  4.83197581]

We can use the model to make a prediction for the house price when LSTAT 
is 30 and RM is 5:

print(model.predict([[30,5]]))

You should see the following:

[4.75686695]

You can verify the predicted value by using the formula that was given earlier:

 Y x x0 1 1 2 2 

  Y = 0.3843793678034899 30 0 65957972 5 4 83197581  

  Y 4 7568 

Plotting the 3D Hyperplane
Let’s plot a 3D regression hyperplane showing the predictions:

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
 
from sklearn.datasets import load_boston
dataset = load_boston()
 
df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
df['MEDV'] = dataset.target
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x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
Y = df['MEDV']
 
fig = plt.figure(figsize=(18,15))
ax = fig.add_subplot(111, projection='3d')
 
ax.scatter(x['LSTAT'],
           x['RM'],
           Y,
           c='b')
 
ax.set_xlabel("LSTAT")
ax.set_ylabel("RM")
ax.set_zlabel("MEDV")
 
#---create a meshgrid of all the values for LSTAT and RM---
x_surf = np.arange(0, 40, 1)   #---for LSTAT---
y_surf = np.arange(0, 10, 1)   #---for RM---
x_surf, y_surf = np.meshgrid(x_surf, y_surf)
 
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x, Y)
 
#---calculate z(MEDC) based on the model---
z = lambda x,y: (model.intercept_ + model.coef_[0] * x + model.coef_[1] * y)
 
ax.plot_surface(x_surf, y_surf, z(x_surf,y_surf),
                rstride=1,
                cstride=1,
                color='None',
                alpha = 0.4)
 
plt.show()

Here, we are training the model using the entire dataset. We then make pre-
dictions by passing a combination of values for LSTAT (x _ surf) and RM (y_surf) 
and calculating the predicted values using the model’s intercept and coefficients. 
The hyperplane is then plotted using the plot_surface() function. The end 
result is shown in Figure 6.8.

As the chart shown in Jupyter Notebook is static, save the preceding code 
snippet in a file named boston.py and run it in Terminal, like this:

$ python boston.py
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You will now be able to rotate the chart and move it around to have a better 
perspective, as shown in Figure 6.9.

Polynomial Regression

In the previous section, you saw how to apply linear regression to predict the 
prices of houses in the Boston area. While the result is somewhat acceptable, it 
is not very accurate. This is because sometimes a linear regression line might 
not be the best solution to capture the relationships between the features and 
label accurately. In some cases, a curved line might do better.

Consider the series of points shown in Figure 6.10.
The series of points are stored in a file named polynomial.csv:
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Figure 6.8:  The hyperplane showing the predictions for the two features—LSTAT and RM
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Figure 6.10:  A scatter plot of points

Figure 6.9:  Rotating the chart to have a better view of the hyperplane
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And plotted using a scatter plot:

df = pd.read_csv('polynomial.csv')
plt.scatter(df.x,df.y)

Using linear regression, you can try to plot a straight line cutting through 
most of the points:

model = LinearRegression()
 
x = df.x[0:6, np.newaxis] #---convert to 2D array---
y = df.y[0:6, np.newaxis] #---convert to 2D array---
 
model.fit(x,y)
 
#---perform prediction---
y_pred = model.predict(x)
 
#---plot the training points---
plt.scatter(x, y, s=10, color='b')
 
#---plot the straight line---
plt.plot(x, y_pred, color='r')
plt.show()
 
#---calculate R-Squared---
print('R-Squared for training set: %.4f' % model.score(x,y))

You will see the straight regression line, as shown in Figure 6.11.

The R-Squared value for the training set is:

R-Squared for training set: 0.8658
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Figure 6.11:  The regression line fitting the points
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We want to see if there is a more accurate way to fit the points. For instance, 
instead of a straight line, we want to investigate the possibility of a curved line. 
This is where polynomial regression comes in.

Formula for Polynomial Regression
Polynomial regression is an attempt to create a polynomial function that fits a set 
of data points.

A polynomial function of degree 1 has the following form:

 Y x0 1  

This is the simple linear regression that we have seen in the previous chapter. 
Quadratic regression is a degree 2 polynomial:

 Y x x0 1 2
2
 

For a polynomial of degree 3, the formula is as follows:

 Y x x x0 1 2
2

3
3
 

In general, a polynomial of degree n has the formula of:

 Y x x x x0 1 2
2

3
3

n
n
 

The idea behind polynomial regression is simple—find the coefficients of the 
polynomial function that best fits the data.

Polynomial Regression in Scikit-learn
The Scikit-learn library contains a number of classes and functions for solving 
polynomial regression. The PolynomialFeatures class takes in a number spec-
ifying the degree of the polynomial features. In the following code snippet, we 
are creating a quadratic equation (polynomial function of degree 2):

from sklearn.preprocessing import PolynomialFeatures
degree = 2
polynomial_features = PolynomialFeatures(degree = degree)

Using this PolynomialFeatures object, you can generate a new feature matrix 
consisting of all polynomial combinations of the features with a degree of less 
than or equal to the specified degree:

x_poly = polynomial_features.fit_transform(x)
print(x_poly)
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You should see the following:

[[ 1.    1.5   2.25]
 [ 1.    2.    4.  ]
 [ 1.    3.    9.  ]
 [ 1.    4.   16.  ]
 [ 1.    5.   25.  ]
 [ 1.    6.   36.  ]]

The matrix that you see is generated as follows:

 ■ The first column is always 1.

 ■ The second column is the value of x.

 ■ The third column is the value of x2.

This can be verified using the get_feature_names() function:

print(polynomial_features.get_feature_names('x'))

It prints out the following:

['1', 'x', 'x^2']

 T I P   The math behind finding the coefficients of a polynomial function is beyond 
the scope of this book. For those who are interested, however, check out the following 
link on the math behind polynomial regression: http://polynomialregression.
drque.net/math.html.

You will now use this generated matrix with the LinearRegression class to 
train your model:

model = LinearRegression()
model.fit(x_poly, y)
y_poly_pred = model.predict(x_poly)
 
#---plot the points---
plt.scatter(x, y, s=10)
 
#---plot the regression line---
plt.plot(x, y_poly_pred)
plt.show()

Figure 6.12 now shows the regression line, a nice curve trying to fit the points.
You can print out the intercept and coefficients of the polynomial function:

print(model.intercept_)
print(model.coef_)
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You should see the following:

[-0.87153912]
[[ 0.          1.98293207 -0.17239897]]

By plugging these numbers Y 0 87153912 1 98293207 x 0 17239897 x2 
into the formula Y x x0 1 2

2 , you can make predictions using the pre-
ceding formula.

If you evaluate the regression by printing its R-Squared value,

print('R-Squared for training set: %.4f' % model.score(x_poly,y))

you should get a value of 0.9474:

R-Squared for training set: 0.9474

Can the R-Squared value be improved? Let’s try a degree 3 polynomial. Using 
the same code and changing degree to 3, you should get the curve shown in 
Figure 6.13 and a value of 0.9889 for R-Squared.
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Figure 6.12:  A curved line trying to fit the points
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Figure 6.13:  A curved line trying to fit most of the points



 Chapter 6 ■ Supervised Learning—Linear Regression 141

You now see a curve that more closely fits the points and a much-improved 
R-Squared value. Moreover, since raising the polynomial degree by 1 improves  
the R-Squared value, you might be tempted to increase it further. In fact, Figure 6.14 
shows the curve when the degree is set to 4. It fits all the points perfectly.

And guess what? You get an R-Squared value of 1! However, before you cel-
ebrate your success in finding the perfect algorithm in your prediction, you 
need to realize that while your algorithm may fit the training data perfectly, it 
is unlikely to perform well with new data. This is a known as overfitting, and 
the next section will discuss this topic in more detail.

Understanding Bias and Variance
The inability for a machine learning algorithm to capture the true relationship 
between the variables and the outcome is known as the bias. Figure 6.15 shows 
a straight line trying to fit all the points. Because it doesn’t cut through all of 
the points, it has a high bias.

The curvy line in Figure 6.16, however, is able to fit all of the points and thus 
has a low bias.

While the straight line can’t fit through all of the points and has high 
bias, when it comes to applying unseen observations, it gives a pretty good 
estimate. Figure 6.17 shows the testing points (in pink). The RSS (Residual 
Sum of Squares), which is the sum of the errors of prediction, is pretty low 
compared to that of the curvy line when using the same test points (see 
Figure 6.18).
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Figure 6.14:  The line now fits the points perfectly
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Figure 6.16:  The curvy line fits all of the points, so the bias is low

2.0

2

2.5

3.0

3.5

4.0

5.0

4.5

1.5

3 4

Errors of prediction

Test points

5 6

Figure 6.17:  The straight line works well with unseen data, and its result does not vary much 
with different datasets. Hence, it has low variance.
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Figure 6.15:  The straight line can’t fit all of the points, so the bias is high
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In machine learning, the fit between the datasets is known as variance. In this 
example, the curvy line has high variance because it will result in vastly differ-
ent RSS for different datasets. That is, you can’t really predict how well it will 
perform with future datasets—sometimes it will do well with certain datasets 
and at other times it may fail badly. On the other hand, the straight line has a 
low variance, as the RSS is similar for different datasets.

 T I P   In machine learning, when we try to find a curve that tries to fit all of the 
points perfectly, it is known as overfitting. On the other hand, if we have a line that 
does not fit most points, it is known as underfitting.

Ideally, we should find a line that accurately expresses the relationships  
between the independent variables and that of the outcome. Expressed in terms 
of bias and variance, the ideal algorithm should have the following:

High bias, with the line hugging as many points as possible

Low variance, with the line resulting in consistent predictions using differ-
ent datasets

Figure 6.19 shows such an ideal curve—high bias and low variance.
To strike a balance between finding a simple model and a complex model, 

you can use techniques such as Regularization, Bagging, and Boosting:

 ■ Regularization is a technique that automatically penalizes the extra features 
you used in your modeling.

 ■ Bagging (or bootstrap aggregation) is a specific type of machine learning 
process that uses ensemble learning to evolve machine learning models. 
Bagging uses a subset of the data and each sample trains a weaker learner. 
The weak learners can then be combined (through averaging or max vote) 
to create a strong learner that can make accurate predictions.
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Figure 6.18:  The curvy line does not work well with unseen data, and its result varies with 
different datasets. Hence, it has high variance.
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 ■ Boosting is also similar to Bagging, except that it uses all of the data to 
train each learner, but data points that were misclassified by previous 
learners are given more weight so that subsequent learners will give more 
focus to them during training.

 T I P   Ensemble learning is a technique where you use several models working 
together on a single dataset and then combine its result.

Using Polynomial Multiple Regression on the Boston Dataset
Earlier in this chapter, you used multiple linear regression and trained a model 
based on the Boston dataset. After learning about the polynomial regression 
in the previous section, now let’s try to apply it to the Boston dataset and see if 
we can improve the model.

As usual, let’s load the data and split the dataset into training and testing sets:

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
 
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
 
dataset = load_boston()
 
df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
df['MEDV'] = dataset.target
 
x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
Y = df['MEDV']
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Figure 6.19:  You should aim for a line that has high bias and low variance
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from sklearn.model_selection import train_test_split
x_train, x_test, Y_train, Y_test = train_test_split(x, Y, test_size = 0.3,
                                                    random_state=5)

You then use the polynomial function with degree 2:

#---use a polynomial function of degree 2---
degree = 2
polynomial_features= PolynomialFeatures(degree = degree)
x_train_poly = polynomial_features.fit_transform(x_train)

When using a polynomial function of degree 2 on two independent variables 
x1 and x2, the formula becomes:

 Y x x x x x x0 1 1 2 2 3 1
2

4 1 2 5 2
2 

where Y is the dependent variable, β0 is the intercept, and β1, β2, β3, and β4 are the 
coefficients of the various combinations of the two features x1 and x2, respectively.

You can verify this by printing out the feature names:

#---print out the formula---
print(polynomial_features.get_feature_names(['x','y']))

You should see the following, which coincides with the formula:

# ['1', 'x', 'y', 'x^2', 'x y', 'y^2']

 T I P   Knowing the polynomial function formula is useful when plotting the 3D 
hyperplane, which you will do shortly.

You can then train your model using the LinearRegression class:

model = LinearRegression()
model.fit(x_train_poly, Y_train)

Now let’s evaluate the model using the testing set:

x_test_poly = polynomial_features.fit_transform(x_test)
print('R-Squared: %.4f' % model.score(x_test_poly,
                                      Y_test))

You will see the result as follows:

R-Squared: 0.7340

You can also print the intercept and coefficients:

print(model.intercept_)
print(model.coef_)
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You should see the following:

26.9334305238
[  0.00000000e+00   1.47424550e+00  -6.70204730e+00   7.93570743e-04
  -3.66578385e-01   1.17188007e+00]

With these values, the formula now becomes:

 Y x x x x x x0 1 1 2 2 3 1
2

4 1 2 5 2
2
 

 
Y 26 9334305238 1 47424550e 00 x 6 70204730e 00 x 7 9351 2 770743e

04 x 3 66578385e 01 x x 17188007e 00 x1
2

1 2 2
21  

Plotting the 3D Hyperplane
Since you know the intercept and coefficients of the polynomial multiple regres-
sion function, you can plot out the 3D hyperplane of function easily. Save the 
following code snippet as a file named boston2.py:

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
 
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
 
dataset = load_boston()
 
df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
df['MEDV'] = dataset.target
 
x = pd.DataFrame(np.c_[df['LSTAT'], df['RM']], columns = ['LSTAT','RM'])
Y = df['MEDV']
 
fig = plt.figure(figsize=(18,15))
ax = fig.add_subplot(111, projection='3d')
 
ax.scatter(x['LSTAT'],
           x['RM'],
           Y,
           c='b')
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ax.set_xlabel("LSTAT")
ax.set_ylabel("RM")
ax.set_zlabel("MEDV")
 
#---create a meshgrid of all the values for LSTAT and RM---
x_surf = np.arange(0, 40, 1)   #---for LSTAT---
y_surf = np.arange(0, 10, 1)   #---for RM---
x_surf, y_surf = np.meshgrid(x_surf, y_surf)
 
#---use a polynomial function of degree 2---
degree = 2
polynomial_features= PolynomialFeatures(degree = degree)
x_poly = polynomial_features.fit_transform(x)
print(polynomial_features.get_feature_names(['x','y']))
 
#---apply linear regression---
model = LinearRegression()
model.fit(x_poly, Y)
 
#---calculate z(MEDC) based on the model---
z = lambda x,y: (model.intercept_ +
                (model.coef_[1] * x) +
                (model.coef_[2] * y) +
                (model.coef_[3] * x**2) +
                (model.coef_[4] * x*y) +
                (model.coef_[5] * y**2))
 
ax.plot_surface(x_surf, y_surf, z(x_surf,y_surf),
                rstride=1,
                cstride=1,
                color='None',
                alpha = 0.4)
 
plt.show()

To run the code, type the following in Terminal:

$ python boston2.py

You will see the 3D chart, as shown in Figure 6.20.
You can drag to rotate the chart. Figure 6.21 shows the different perspectives 

of the hyperplane.
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Figure 6.20:  The hyperplane in the polynomial multiple regression

Figure 6.21:  Rotate the chart to see the different perspectives of the hyperplane
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Summary

In this chapter, you learned about the various types of linear regression. In 
particular, you learned about the following:

Multiple Regression Linear relationships between two or more independent 
variables and one dependent variable.

Polynomial Regression Modeling the relationship between one independent 
variable and one dependent variable using an nth degree polynomial 
function.

Polynomial Multiple Regression Modeling the relationship between two 
or more independent variables and one dependent variable using an nth 
degree polynomial function.

You also learned how to plot the hyperplane showing the relationships between 
two independent variables and the label.
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7

What Is Logistic Regression?

In the previous chapter, you learned about linear regression and how you can 
use it to predict future values. In this chapter, you will learn another super-
vised machine learning algorithm—logistic regression. Unlike linear regression, 
logistic regression does not try to predict the value of a numeric variable given 
a set of inputs. Instead, the output of logistic regression is the probability of a 
given input point belonging to a specific class. The output of logistic regression 
always lies in [0,1].

To understand the use of logistic regression, consider the example shown in 
Figure 7.1. Suppose that you have a dataset containing information about voter 
income and voting preferences. For this dataset, you can see that low-income 
voters tend to vote for candidate B, while high-income voters tend to favor 
candidate A.

With this dataset, you would be very interested in trying to predict which 
candidate future voters will vote for based on their income level. At first glance, 
you might be tempted to apply what you have just learned to this problem; that 
is, using linear regression. Figure 7.2 shows what it looks like when you apply 
linear regression to this problem.

Supervised Learning—
Classification Using Logistic 

Regression

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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The main problem with linear regression is that the predicted value does not 
always fall within the expected range. Consider the case of a very low-income 
voter (near to 0), and you can see from the chart that the predicted result is a 
negative value. What you really want is a way to return the prediction as a value 
from 0 to 1, where this value represents the probability of an event happening.

Figure 7.3 shows how logistic regression solves this problem. Instead of drawing 
a straight line cutting through the points, you now use a curved line to try to 
fit all of the points on the chart.

Using logistic regression, the output will be a value from 0 to 1, where anything 
less than (or equal to) 0.5 (known as the threshold) will be considered as voting 
for candidate B, and anything greater than 0.5 will be considered as voting for 
candidate A.

Income of voters

XX X X X  X

X XXX XX X

Candidate B

Candidate A

Figure 7.1:  Some problems have binary outcomes

Income of voters x

y

Candidate B

Candidate A X XXX XX X

XX X X X  X

Figure 7.2:  Using linear regression to solve the voting preferences problem leads  
to strange values
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Understanding Odds
Before we discuss the details of the logistic regression algorithm, we first need 
to discuss one important term—odds. Odds are defined as the ratio of the prob-
ability of success to the probability of failure (see Figure 7.4).

For example, the odds of landing a head when you flip a coin are 1. This is 
because you have a 0.5 probability of landing a head and a 0.5 probability of 
landing a tail. When you say that the odds of landing a head are 1, this means 
you have a 50 percent chance of landing a head.

But if the coin is rigged in such a way that the probability of landing a head is 
0.8 and the probability of landing a tail is 0.2, then the odds of landing a head 
is 0.8/0.2 = 4. That is, you are 4 times more likely to land a head than a tail. 
Likewise, the odds of getting a tail are 0.2/0.8 = 0.25.

Logit Function
When you apply the natural logarithm function to the odds, you get the logit 
function. The logit function is the logarithm of the odds (see Figure 7.5).

Income of voters x

y

XX X X X  X

X XXX X  X X

Candidate B

Candidate A

Figure 7.3:  Logistic regression predicts the probability of an outcome, rather than  
a specific value

Chances of something happening

Chances of something not happening

Probability of success

Probability of failure
P

(1 – P)

Figure 7.4:  How to calculate the odds of an event happening
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The logit function transfers a variable on (0, 1) into a new variable on (–∞, ∞). 
To see this relationship, you can use the following code snippet:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
 
def logit(x):
    return np.log( x / (1 - x) )
 
x = np.arange(0.001,0.999, 0.0001)
y = [logit(n) for n in x]
plt.plot(x,y)
plt.xlabel("Probability")
plt.ylabel("Logit - L")

Figure 7.6 shows the logit curve plotted using the preceding code snippet.

Sigmoid Curve
For the logit curve, observe that the x-axis is the probability and the y-axis is the 
real-number range. For logistic regression, what you really want is a function 
that maps numbers on the real-number system to the probabilities, which is 
exactly what you get when you flip the axes of the logit curve (see Figure 7.7).

PL = In 1 – P(   )
Figure 7.5:  The formula for the logit function

Probability

6

4

2

0

Lo
gi

t -
 L

–2

–4

–6

0.0 0.40.2 0.6 0.8 1.0

Figure 7.6:  The logit curve
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When you flip the axes, the curve that you get is called the sigmoid curve. The 
sigmoid curve is obtained using the Sigmoid function, which is the inverse of the 
logit function. The Sigmoid function is used to transform values on (–∞, ∞) into 
numbers on (0, 1). The Sigmoid function is shown in Figure 7.8.

The following code snippet shows how the sigmoid curve is obtained:

def sigmoid(x):
    return (1 / (1 + np.exp(-x)))
 
x = np.arange(-10, 10, 0.0001)
y = [sigmoid(n) for n in x]
plt.plot(x,y)
plt.xlabel("Logit - L")
plt.ylabel("Probability")

Figure 7.9 shows the sigmoid curve.
Just like you try to plot a straight line that fits through all of the points in 

linear regression (as explain in Chapter 5), in logistics regression, we would also 
like to plot a sigmoid curve that fits through all of the points. Mathematically, 
this can be expressed by the formula shown in Figure 7.10.
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Figure 7.7:  Flipping the logit curve into a Sigmoid curve

1P  = 
(1 + e–(L))

Figure 7.8:  The formula for the Sigmoid function



156 Chapter 7 ■ Supervised Learning—Classification Using Logistic Regression

Notice that the key difference between the formula shown in Figure 7.8 
and 7.10 is that now L has been replaced by β0 and xβ. The coefficients β0 and β 
are unknown, and they must be estimated based on the available training data 
using a technique known as Maximum Likelihood Estimation (MLE). In logistics 
regression, β0 is known as the intercept and xβ is known as the coefficient.

Using the Breast Cancer Wisconsin (Diagnostic) Data Set

Scikit-learn ships with the Breast Cancer Wisconsin (Diagnostic) Data Set. It 
is a classic dataset that is often used to illustrate binary classifications. This 
dataset contains 30 features, and they are computed from a digitized image of 
a fine needle aspirate (FNA) of a breast mass. The label of the dataset is a binary 
classification—M for malignant or B for benign. Interested readers can check 
out more information at https://archive.ics.uci.edu/ml/datasets/Breast+ 
Cancer+Wisconsin+(Diagnostic).

Examining the Relationship Between Features
You can load the Breast Cancer dataset by first importing the datasets module 
from sklearn. Then use the load _ breast _ cancer() function as follows:

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
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Figure 7.9:  The sigmoid curve plotted using matplotlib

1P = 
(1 + e–(β0 + xβ))

Figure 7.10:  Expressing the sigmoid function using the intercept and coefficient
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Now that the Breast Cancer dataset has been loaded, it is useful to examine 
the relationships between some of its features.

Plotting the Features in 2D

For a start, let’s plot the first two features of the dataset in 2D and examine their 
relationships. The following code snippet:

 ■ Loads the Breast Cancer dataset

 ■ Copies the first two features of the dataset into a two-dimensional list

 ■ Plots a scatter plot showing the distribution of points for the two 
features

 ■ Displays malignant growths in red and benign growths in blue

%matplotlib inline
 
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
 
cancer = load_breast_cancer()
 
#---copy from dataset into a 2-d list---
X = []
for target in range(2):
    X.append([[], []])
    for i in range(len(cancer.data)):              # target is 0 or 1
        if cancer.target[i] == target:
            X[target][0].append(cancer.data[i][0]) # first feature - 
mean radius
            X[target][1].append(cancer.data[i][1]) # second feature — 
mean texture
 
colours = ("r", "b")   # r: malignant, b: benign
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
for target in range(2):
    ax.scatter(X[target][0],
               X[target][1],
               c=colours[target])
 
ax.set_xlabel("mean radius")
ax.set_ylabel("mean texture")
plt.show()

Figure 7.11 shows the scatter plot of the points.
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From this scatter plot, you can gather that as the tumor grows in radius and 
increases in texture, the more likely that it would be diagnosed as malignant.

Plotting in 3D

In the previous section, you plotted the points based on two features using a 
scatter plot. It would be interesting to be able to visualize more than two fea-
tures. In this case, let’s try to visualize the relationships between three features. 
You can use matplotlib to plot a 3D plot. The following code snippet shows how 
this is done. It is very similar to the code snippet in the previous section, with 
the additional statements in bold:

%matplotlib inline
 
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import load_breast_cancer
 
cancer = load_breast_cancer()
 
#---copy from dataset into a 2-d array---
X = []
for target in range(2):
    X.append([[], [], []])
    for i in range(len(cancer.data)):    # target is 0,1
        if cancer.target[i] == target:
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Figure 7.11:  The scatter plot showing the relationships between the mean radius and mean 
texture of the tumor
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            X[target][0].append(cancer.data[i][0])
            X[target][1].append(cancer.data[i][1])
            X[target][2].append(cancer.data[i][2])
 
colours = ("r", "b")   # r: malignant, b: benign
fig = plt.figure(figsize=(18,15))
ax = fig.add_subplot(111, projection='3d')
for target in range(2):
    ax.scatter(X[target][0],
               X[target][1],
               X[target][2],
               c=colours[target])
 
ax.set_xlabel("mean radius")
ax.set_ylabel("mean texture")
ax.set_zlabel("mean perimeter")
plt.show()

Instead of plotting using two features, you now have a third feature: mean 
perimeter. Figure 7.12 shows the 3D plot.
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Figure 7.12:  Plotting three features using a 3D map
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Jupyter Notebook displays the 3D plot statically. As you can see from Figure 7.12, 
you can’t really have a good look at the relationships between the three features. 
A much better way to display the 3D plot would be to run the preceding code 
snippet outside of Jupyter Notebook. To do so, save the code snippet (minus the 
first line containing the statement “%matplotlib inline”) to a file named, say, 
3dplot.py. Then run the file in Terminal using the python command, as follows:

$ python 3dplot.py

Once you do that, matplotlib will open a separate window to display the 3D 
plot. Best of all, you will be able to interact with it. Use your mouse to drag the 
plot, and you are able to visualize the relationships better between the three 
features. Figure 7.13 gives you a better perspective: as the mean perimeter of the 
tumor growth increases, the chance of the growth being malignant also increases.

Figure 7.13:  You can interact with the 3D plot when you run the application outside of Jupyter 
Notebook
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Training Using One Feature
Let’s now use logistic regression to try to predict if a tumor is cancerous. To get 
started, let’s use only the first feature of the dataset: mean radius. The follow-
ing code snippet plots a scatter plot showing if a tumor is malignant or benign 
based on the mean radius:

%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
 
from sklearn.datasets import load_breast_cancer
 
cancer = load_breast_cancer()   # Load dataset
x = cancer.data[:,0]            # mean radius
y = cancer.target               # 0: malignant, 1: benign
colors = {0:'red', 1:'blue'}    # 0: malignant, 1: benign
 
plt.scatter(x,y,
            facecolors='none',
            edgecolors=pd.DataFrame(cancer.target)[0].apply(lambda x: 
colors[x]),
            cmap=colors)
 
plt.xlabel("mean radius")
plt.ylabel("Result")
 
red   = mpatches.Patch(color='red',   label='malignant')
blue  = mpatches.Patch(color='blue',  label='benign')
 
plt.legend(handles=[red, blue], loc=1)

Figure 7.14 shows the scatter plot.

Re
su

lt

0.0

10 15
mean radius

20 25

malignant
benign

0.2

0.4

0.6

0.8

1.0

Figure 7.14:  Plotting a scatter plot based on one feature
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As you can see, this is a good opportunity to use logistic regression to pre-
dict if a tumor is cancerous. You could try to plot an “s” curve (albeit flipped 
horizontally).

Finding the Intercept and Coefficient

Scikit-learn comes with the LogisticRegression class that allows you to apply 
logistic regression to train a model. Thus, in this example, you are going to train 
a model using the first feature of the dataset:

from sklearn import linear_model
import numpy as np
 
log_regress = linear_model.LogisticRegression()
 
#---train the model---
log_regress.fit(X = np.array(x).reshape(len(x),1),
                y = y)
 
#---print trained model intercept---
print(log_regress.intercept_)     # [ 8.19393897]
 
#---print trained model coefficients---
print(log_regress.coef_)          # [[-0.54291739]]

Once the model is trained, what we are most interested in at this point is 
the intercept and coefficient. If you recall from the formula in Figure 7.10, the 
intercept is β0 and the coefficient is xβ. Knowing these two values allows us to 
plot the sigmoid curve that tries to fit the points on the chart.

Plotting the Sigmoid Curve

With the values of β0 and xβ obtained, you can now plot the sigmoid curve using 
the following code snippet:

def sigmoid(x):
    return (1 / (1 +
        np.exp(-(log_regress.intercept_[0] +
        (log_regress.coef_[0][0] * x)))))
 
x1 = np.arange(0, 30, 0.01)
y1 = [sigmoid(n) for n in x1]
 
plt.scatter(x,y,
    facecolors='none',
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    edgecolors=pd.DataFrame(cancer.target)[0].apply(lambda x: 
colors[x]),
    cmap=colors)
 
plt.plot(x1,y1)
plt.xlabel("mean radius")
plt.ylabel("Probability")

Figure 7.15 shows the sigmoid curve.

Making Predictions

Using the trained model, let’s try to make some predictions. Let’s try to predict 
the result if the mean radius is 20:

print(log_regress.predict_proba(20)) # [[0.93489354 0.06510646]]
print(log_regress.predict(20)[0])    # 0

As you can see from the output, the predict _ proba() function in the first 
statement returns a two-dimensional array. The result of 0.93489354 indicates 
the probability that the prediction is 0 (malignant) while the result of 0.06510646 
indicates the probability that the prediction is 1. Based on the default threshold of 
0.5, the prediction is that the tumor is malignant (value of 0), since its predicted 
probability (0.93489354) of 0 is more than 0.5.

The predict() function in the second statement returns the class that the 
result lies in (which in this case can be a 0 or 1). The result of 0 indicates that 
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Figure 7.15:  The sigmoid curve fitting to the two sets of points
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the prediction is that the tumor is malignant. Try another example with the 
mean radius of 8 this time:

print(log_regress.predict_proba(8))  # [[0.02082411 0.97917589]]
print(log_regress.predict(8)[0])     # 1

As you can see from the result, the prediction is that the tumor is benign.

Training the Model Using All Features
In the previous section, you specifically trained the model using one feature. 
Let’s now try to train the model using all of the features and then see how well 
it can accurately perform the prediction.

First, load the dataset:

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()   # Load dataset

Instead of training the model using all of the rows in the dataset, you are 
going to split it into two sets, one for training and one for testing. To do so, you 
use the train _ test _ split() function. This function allows you to split your 
data into random train and test subsets. The following code snippet splits the 
dataset into a 75 percent training and 25 percent testing set:

from sklearn.model_selection import train_test_split
train_set, test_set, train_labels, test_labels = train_test_split(
                              cancer.data,               # features
                              cancer.target,             # labels
                              test_size = 0.25,          # split ratio
                              random_state = 1,          # set random 
seed
                              stratify = cancer.target)  # randomize 
based on labels

Figure 7.16 shows how the dataset is split. The random _ state parameter 
of the train _ test _ split() function specifies the seed used by the random 
number generator. If this is not specified, every time you run this function you 
will get a different training and testing set. The stratify parameter allows you to 
specify which column (feature/label) to use so that the split is proportionate. 
For example, if the column specified is a categorical variable with 80 percent 0s 
and 20 percent 1s, then the training and test sets would each have 80 percent 
of 0s and 20 percent of 1s.
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Once the dataset is split, it is now time to train the model. The following code 
snippet trains the model using logistic regression:

from sklearn import linear_model
x = train_set[:,0:30]         # mean radius
y = train_labels              # 0: malignant, 1: benign
log_regress = linear_model.LogisticRegression()
log_regress.fit(X = x,
                y = y)

In this example, we are training it with all of the 30 features in the dataset. 
When the training is done, let’s print out the intercept and model coefficients:

print(log_regress.intercept_)     #
print(log_regress.coef_)          #

The following output shows the intercept and coefficients:

[0.34525124]
[[ 1.80079054e+00  2.55566824e-01 -3.75898452e-02 -5.88407941e-03
  -9.57624689e-02 -3.16671611e-01 -5.06608094e-01 -2.53148889e-01
  -2.26083101e-01 -1.03685977e-02  4.10103139e-03  9.75976632e-01
   2.02769521e-01 -1.22268760e-01 -8.25384020e-03 -1.41322029e-02
  -5.49980366e-02 -3.32935262e-02 -3.05606774e-02  1.09660157e-04
   1.62895414e+00 -4.34854352e-01 -1.50305237e-01 -2.32871932e-02
  -1.94311394e-01 -9.91201314e-01 -1.42852648e+00 -5.40594994e-01
  -6.28475690e-01 -9.04653541e-02]]

Because we have trained the model using 30 features, there are 30 coefficients.
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Figure 7.16:  Splitting the dataset into training and test sets
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Testing the Model

It’s time to make a prediction. The following code snippet uses the test set and 
feeds it into the model to obtain the predictions:

import pandas as pd
 
#---get the predicted probablities and convert into a dataframe---
preds_prob = pd.DataFrame(log_regress.predict_proba(X=test_set))
 
#---assign column names to prediction---
preds_prob.columns = ["Malignant", "Benign"]
 
#---get the predicted class labels---
preds = log_regress.predict(X=test_set)
preds_class = pd.DataFrame(preds)
preds_class.columns = ["Prediction"]
 
#---actual diagnosis---
original_result = pd.DataFrame(test_labels)
original_result.columns = ["Original Result"]
 
#---merge the three dataframes into one---
result = pd.concat([preds_prob, preds_class, original_result], axis=1)
print(result.head())

The results of the predictions are then printed out. The predictions and original 
diagnosis are displayed side-by-side for easy comparison:

Malignant        Benign  Prediction  Original Result
0   0.999812  1.883317e-04           0                0
1   0.998356  1.643777e-03           0                0
2   0.057992  9.420079e-01           1                1
3   1.000000  9.695339e-08           0                0
4   0.207227  7.927725e-01           1                0

Getting the Confusion Matrix

While it is useful to print out the predictions together with the original diag-
nosis from the test set, it does not give you a clear picture of how good the 
model is in predicting if a tumor is cancerous. A more scientific way would be 
to use the confusion matrix. The confusion matrix shows the number of actual 
and predicted labels and how many of them are classified correctly. You can 
use Pandas’s crosstab() function to print out the confusion matrix:

#---generate table of predictions vs actual---
print("---Confusion Matrix---")
print(pd.crosstab(preds, test_labels))
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The crosstab() function computes a simple cross-tabulation of two factors. 
The preceding code snippet prints out the following:

---Confusion Matrix---
col_0   0   1
row_0
0      48   3
1       5  87

The output is interpreted as shown in Figure 7.17.

The columns represent the actual diagnosis (0 for malignant and 1 for benign). 
The rows represent the prediction. Each individual box represents one of the 
following:

 ■ True Positive (TP): The model correctly predicts the outcome as positive. 
In this example, the number of TP (87) indicates the number of correct 
predictions that a tumor is benign.

 ■ True Negative (TN): The model correctly predicts the outcome as negative. 
In this example, tumors were correctly predicted to be malignant.

 ■ False Positive (FP): The model incorrectly predicted the outcome as positive, 
but the actual result is negative. In this example, it means that the tumor 
is actually malignant, but the model predicted the tumor to be benign.

 ■ False Negative (FN): The model incorrectly predicted the outcome as neg-
ative, but the actual result is positive. In this example, it means that the 
tumor is actually benign, but the model predicted the tumor to be 
malignant.

This set of numbers is known as the confusion matrix.
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Figure 7.17:  The confusion matrix for the prediction
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Besides using the crosstab() function, you can also use the confusion _

matrix() function to print out the confusion matrix:

from sklearn import metrics
#---view the confusion matrix---
print(metrics.confusion_matrix(y_true = test_labels,  # True labels
                               y_pred = preds))       # Predicted labels

Note that the output is switched for the rows and columns.

[[48  5]
 [ 3 87]]

Computing Accuracy, Recall, Precision, and Other Metrics

Based on the confusion matrix, you can calculate the following metrics:

 ■ Accuracy: This is defined as the sum of all correct predictions divided 
by the total number of predictions, or mathematically:

 TP TN TP TN FP FN/ /

 ■ This metric is easy to understand. After all, if the model correctly predicts 
99 out of 100 samples, the accuracy is 0.99, which would be very impres-
sive in the real world. But consider the following situation: Imagine that 
you’re trying to predict the failure of equipment based on the sample data. 
Out of 1,000 samples, only three are defective. If you use a dumb algorithm 
that always returns negative (meaning no failure) for all results, then the 
accuracy is 997/1000, which is 0.997. This is very impressive, but does this 
mean it’s a good algorithm? No. If there are 500 defective items in  
the dataset of 1,000 items, then the accuracy metric immediately indicates the 
flaw of the algorithm. In short, accuracy works best with evenly distrib-
uted data points, but it works really badly for a skewed dataset. Figure 7.18 
summarizes the formula for accuracy.

 ■ Precision: This metric is defined to be TP / (TP + FP). This metric is 
concerned with number of correct positive predictions. You can think of 
precision as “of those predicted to be positive, how many were actually 
predicted correctly?” Figure 7.19 summarizes the formula for precision.

 ■ Recall (also known as True Positive Rate (TPR)): This metric is defined 
to be TP / (TP + FN). This metric is concerned with the number of cor-
rectly predicted positive events. You can think of recall as “of those positive 
events, how many were predicted correctly?” Figure 7.20 summarizes the 
formula for recall.
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Figure 7.18:  Formula for calculating accuracy
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 ■ F1 Score: This metric is defined to be 2 * (precision * recall) / (precision 
+ recall). This is known as the harmonic mean of precision and recall, and it 
is a good way to summarize the evaluation of the algorithm in a single 
number.

 ■ False Positive Rate (FPR): This metric is defined to be FP / (FP+TN). 
FPR corresponds to the proportion of negative data points that are mis-
takenly considered as positive, with respect to all negative data points. In 
other words, the higher FPR, the more negative data points you’ll 
misclassify.

The concept of precision and recall may not be apparent immediately, but if 
you consider the following scenario, it will be much clearer. Consider the case 
of breast cancer diagnosis. If a malignant tumor is represented as negative and 
a benign tumor is represented as positive, then:

 ■ If the precision or recall is high, it means that more patients with benign 
tumors are diagnosed correctly, which indicates that the algorithm is 
good.

 ■ If the precision is low, it means that more patients with malignant tumors 
are diagnosed as benign.

 ■ If the recall is low, it means that more patients with benign tumors are 
diagnosed as malignant.

For the last two points, having a low precision is more serious than a low 
recall (although wrongfully diagnosed as having breast cancer when you do not 
have it will likely result in unnecessary treatment and mental anguish) because 
it causes the patient to miss treatment and potentially causes death. Hence, for 
cases like diagnosing breast cancer, it’s important to consider both the preci-
sion and recall metrics when evaluating the effectiveness of an ML algorithm.

To get the accuracy of the model, you can use the score() function of the model:

#---get the accuracy of the prediction---
print("---Accuracy---")
print(log_regress.score(X = test_set ,
                        y = test_labels))

You should see the following result:

---Accuracy---
0.9440559440559441

To get the precision, recall, and F1-score of the model, use the classification _

report() function of the metrics module:

# View summary of common classification metrics
print("---Metrices---")
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print(metrics.classification_report(
      y_true = test_labels,
      y_pred = preds))

You will see the following results:

---Metrices---
             precision    recall  f1-score   support
 
          0       0.94      0.91      0.92        53
          1       0.95      0.97      0.96        90
 
avg / total       0.94      0.94      0.94       143

Receiver Operating Characteristic (ROC) Curve

With so many metrics available, what is an easy way to examine the effective-
ness of an algorithm? One way would be to plot a curve known as the Receiver 
Operating Characteristic (ROC) curve. The ROC curve is created by plotting the 
TPR against the FPR at various threshold settings.

So how does it work? Let’s run through a simple example. Using the existing 
project that you have been working on, you have derived the confusion matrix 
based on the default threshold of 0.5 (meaning that all of those predicted proba-
bilities less than or equal to 0.5 belong to one class, while those greater than 0.5 
belong to another class). Using this confusion matrix, you then find the recall, 
precision, and subsequently FPR and TPR. Once the FPR and TPR are found, 
you can plot the point on the chart, as shown in Figure 7.21.

Then you regenerate the confusion matrix for a threshold of 0, and recalcu-
late the recall, precision, FPR, and TPR. Using the new FPR and TPR, you plot 

0.0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.0

1.0 (0.97,0.09)

1.0

Figure 7.21:  The point at threshold 0.5
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another point on the chart. You then repeat this process for thresholds of 0.1, 
0.2, 0.3, and so on, all the way to 1.0.

At threshold 0, in order for a tumor to be classified as benign (1), the predicted 
probability must be greater than 0. Hence, all of the predictions would be clas-
sified as benign (1). Figure 7.22 shows how to calculate the TPR and FPR. For a 
threshold of 0, both the TPR and FPR are 1.

At threshold 1.0, in order for a tumor to be classified as benign (1), the predicted 
probability must be equal to exactly 1. Hence, all of the predictions would be 
classified as malignant (0). Figure 7.23 shows how to calculate the TPR and FPR 
when the threshold is 1.0. For a threshold of 1.0, both the TPR and FPR are 0.
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Figure 7.22:  The value of TPR and FPR for threshold 0
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Figure 7.23:  The value of TPR and FPR for threshold 1
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We can now plot two more points on our chart (see Figure 7.24).

You then calculate the metrics for the other threshold values. Calculating 
all of the metrics based on different threshold values is a very tedious process. 
Fortunately, Scikit-learn has the roc _ curve() function, which will calculate 
the FPR and TPR automatically for you based on the supplied test labels and 
predicted probabilities:

from sklearn.metrics import roc_curve, auc
 
#---find the predicted probabilities using the test set
probs = log_regress.predict_proba(test_set)
preds = probs[:,1]
 
#---find the FPR, TPR, and threshold---
fpr, tpr, threshold = roc_curve(test_labels, preds)

The roc _ curve() function returns a tuple containing the FPR, TPR, and 
threshold. You can print them out to see the values:

print(fpr)
print(tpr)
print(threshold)

You should see the following:

[ 0.          0.          0.01886792  0.01886792  0.03773585  0.03773585
  0.09433962  0.09433962  0.11320755  0.11320755  0.18867925  0.18867925
  1.        ]
 
[ 0.01111111  0.88888889  0.88888889  0.91111111  0.91111111  0.94444444
  0.94444444  0.96666667  0.96666667  0.98888889  0.98888889  1.
  1.        ]
 
[  9.99991063e-01   9.36998422e-01   9.17998921e-01   9.03158173e-01
   8.58481867e-01   8.48217940e-01   5.43424515e-01   5.26248925e-01
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Figure 7.24:  Plotting the points for threshold 0, 0.5, and 1.0.
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   3.72174142e-01   2.71134211e-01   1.21486104e-01   1.18614069e-01
   1.31142589e-21]

As you can see from the output, the threshold starts at 0.99999 (9.99e-01) and 
goes down to 1.311e-21.

Plotting the ROC and Finding the Area Under the Curve (AUC)

To plot the ROC, you can use matplotlib to plot a line chart using the values 
stored in the fpr and tpr variables. You can use the auc() function to find the 
area under the ROC:

#---find the area under the curve---
roc_auc = auc(fpr, tpr)
 
import matplotlib.pyplot as plt
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate (TPR)')
plt.xlabel('False Positive Rate (FPR)')
plt.title('Receiver Operating Characteristic (ROC)')
plt.legend(loc = 'lower right')
plt.show()

The area under an ROC curve is a measure of the usefulness of a test in 
general, where a greater area means a more useful test and the areas under 
ROC curves are used to compare the usefulness of tests. Generally, aim for the 
algorithm with the highest AUC.

Figure 7.25 shows the ROC curve as well as the AUC.
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Figure 7.25:  Plotting the ROC curve and calculating the AUC
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Summary

In this chapter, you learned about another supervised machine learning 
algorithm—logistics regression. You first learned about the logit function and 
how to transform it into a sigmoid function. You then applied the logistic regres-
sion to the breast cancer dataset and used it to predict if a tumor is malignant 
or benign. More importantly, this chapter discussed some of the metrics that 
are useful in determining the effectiveness of a machine learning algorithm. 
In addition, you learned about what an ROC curve is, how to plot it, and how 
to calculate the area under the curve.
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What Is a Support Vector Machine?

In the previous chapter, you saw how to perform classification using logistics 
regression. In this chapter, you will learn another supervised machine learning 
algorithm that is also very popular among data scientists—Support Vector Machines 
(SVM). Like logistics regression, SVM is also a classification algorithm.

The main idea behind SVM is to draw a line between two or more classes in 
the best possible manner (see Figure 8.1).

Supervised Learning—
Classification Using Support 

Vector Machines
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r G

eo
m

et
ry

Snout Length

Dividing line

Figure 8.1:  Using SVM to separate two classes of animals

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Once the line is drawn to separate the classes, you can then use it to predict 
future data. For example, given the snout length and ear geometry of a new 
unknown animal, you can now use the dividing line as a classifier to predict 
if the animal is a dog or a cat.

In this chapter, you will learn how SVM works and the various techniques 
you can use to adapt SVM for solving nonlinearly-separable datasets.

Maximum Separability
How does SVM separate two or more classes? Consider the set of points in 
Figure 8.2. Before you look at the next figure, visually think of a straight line 
dividing the points into two groups.

Now look at Figure 8.3, which shows two possible lines separating the two 
groups of points. Is this what you had in mind?

Though both lines separate the points into two distinct groups, which one 
is the right one? For SVM, the right line is the one that has the widest margins 
(with each margin touching at least a point in each class), as shown in Figure 8.4. 
In that figure, d1 and d2 are the width of the margins. The goal is to find the 
largest possible width for the margin that can separate the two groups. Hence, 
in this case d2 is the largest. Thus the line chosen is the one on the right.
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Figure 8.2:  A set of points that can be separated using SVM
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Each of the two margins touches the closest point(s) to each group of points, 
and the center of the two margins is known as the hyperplane. The hyperplane 
is the line separating the two groups of points. We use the term “hyperplane” 
instead of “line” because in SVM we typically deal with more than two dimen-
sions, and using the word “hyperplane” more accurately conveys the idea of a 
plane in a multidimensional space.

Support Vectors
A key term in SVM is support vectors. Support vectors are the points that lie  
on the two margins. Using the example from the previous section, Figure 8.5 
shows the two support vectors lying on the two margins.
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Figure 8.3:  Two possible ways to split the points into two classes
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In this case, we say that there are two support vectors—one for each class.

Formula for the Hyperplane
With the series of points, the next question would be to find the formula  
for the hyperplane, together with the two margins. Without delving too much into 
the math behind this, Figure 8.6 shows the formula for getting the hyperplane.
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Figure 8.5:  Support vectors are points that lie on the margins
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Figure 8.6:  The formula for the hyperplane and its accompanying two margins
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As you can see from Figure 8.6, the formula for hyperplane (g) is given as:

 g x x x b
 

W W0 1 1 2  

where x1 and x2 are the inputs, 


W0 and 


W1 are the weight vectors, and b is the bias.
If the value of g is 1, then the point specified is in Class 1, and if the value 

of g is 1, then the point specified is in Class 2. As mentioned, the goal of 
SVM is to find the widest margins that divide the classes, and the total margin 
(2d) is defined by:

 
2/ w

 

where w  is the normalized weight vectors (


W0  and 


W1). Using the training 
set, the goal is to minimize the value of w  so that you can get the maximum 
separability between the classes. Once this is done, you will be able to get the 
values of 



W0, 


W1, and b.
Finding the margin is a Constrained Optimization problem, which can be solved 

using the Larange Multipliers technique. It is beyond the scope of this book to 
discuss how to find the margin based on the dataset, but suffice it to say that 
we will make use of the Scikit-learn library to find them.

Using Scikit-learn for SVM
Now let’s work on an example to see how SVM works and how to implement it 
using Scikit-learn. For this example, we have a file named svm.csv containing 
the following data:

x1,x2,r
0,0,A
1,1,A
2,3,B
2,0,A
3,4,B

The first thing that we will do is to plot the points using Seaborn:

%matplotlib inline
import pandas as pd
import numpy as np
import seaborn as sns; sns.set(font_scale=1.2)
import matplotlib.pyplot as plt
 
data = pd.read_csv('svm.csv')
sns.lmplot('x1', 'x2',
           data=data,
           hue='r',
           palette='Set1',
           fit_reg=False,
           scatter_kws={"s": 50});
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Figure 8.7 shows the points plotted using Seaborn.

Using the data points that we have previously loaded, now let’s use Scikit-
learn’s svm module’s SVC class to help us derive the value for the various vari-
ables that we need to compute otherwise. The following code snippet uses the 
linear kernel to solve the problem. The linear kernel assumes that the dataset 
can be separated linearly.

from sklearn import svm
#---Converting the Columns as Matrices---
points = data[['x1','x2']].values
result = data['r']
 
clf = svm.SVC(kernel = 'linear')
clf.fit(points, result)
 
print('Vector of weights (w) = ',clf.coef_[0])
print('b = ',clf.intercept_[0])
print('Indices of support vectors = ', clf.support_)
print('Support vectors = ', clf.support_vectors_)
print('Number of support vectors for each class = ', clf.n_support_)
print('Coefficients of the support vector in the decision function = ',
       np.abs(clf.dual_coef_))
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Figure 8.7:  Plotting the points using Seaborn
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The SVC stands for Support Vector Classification. The svm module contains a 
series of classes that implement SVM for different purposes:

svm.LinearSVC: Linear Support Vector Classification

svm.LinearSVR: Linear Support Vector Regression

svm.NuSVC: Nu-Support Vector Classification

svm.NuSVR: Nu-Support Vector Regression

svm.OneClassSVM: Unsupervised Outlier Detection

svm.SVC: C-Support Vector Classification

svm.SVR: Epsilon-Support Vector Regression

 T I P   For this chapter, our focus is on using SVM for classification, even though SVM 
can also be used for regression.

The preceding code snippet yields the following output:

Vector of weights (w) =  [0.4 0.8]
b =  -2.2
Indices of support vectors =  [1 2]
Support vectors =  [[1. 1.]
 [2. 3.]]
Number of support vectors for each class =  [1 1]
Coefficients of the support vector in the decision function =  [[0.4 0.4]]

As you can see, the vector of weights has been found to be [0.4 0.8], meaning 
that 



W0 is now 0.4 and 


W1 is now 0.8. The value of b is –2.2, and there are two 
support vectors. The index of the support vectors is 1 and 2, meaning that the 
points are the ones in bold:

x1  x2  r
0   0   0  A
1   1   1  A
2   2   3  B
3   2   0  A
4   3   4  B

Figure 8.8 shows the relationship between the various variables in the for-
mula and the variables in the code snippet.

g(x) = w→0x1 + w→1x2 + b

clf.coef_[0][0]

clf.coef_[0][1]

clf.intercept_[0]

Figure 8.8:  Relationships between the variables in the formula and the variables in the code snippet
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Plotting the Hyperplane and the Margins
With the values of the variables all obtained, it is now time to plot the hyper-
plane and its two accompanying margins. Do you remember the formula for 
the hyperplane? It is as follows:

 g x W W b,X X

 

0 11 2  

To plot the hyperplane, set 
 

W W bX X0 11 2
 to 0, like this:

 
 

W W bX X0 11 2
0 

In order to plot the hyperplane (which is a straight line in this case), we need 
two points: one on the x-axis and one on the y-axis.

Using the preceding formula, when x1 0, we can solve for x2 as follows: 


W0(0) + 


W1X2 + b = 0


W1X2 = -b
x2= -b/



W1

When x2 = 0, we can solve for x1 as follows:


W0X1 + 


W1(0) + b = 0


W0X1 = -b
x1 = -b/



W0

The point (0,-b/


W1) is the y-intercept of the straight line. Figure 8.9 shows the 
two points on the two axes.

Once the points on each axis are found, you can now calculate the slope as 
follows:

Slope = (-b/


W1) / (b/


W0)

Slope = -(


W0/


W1)

x1

x2

(0, –b/w→1)

(–b/w→0,0)

Figure 8.9:  The two intercepts for the hyperplane
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With the slope and y-intercept of the line found, you can now go ahead and 
plot the hyperplane. The following code snippet does just that:

#---w is the vector of weights---
w = clf.coef_[0]
 
#---find the slope of the hyperplane---
slope = -w[0] / w[1]
 
b = clf.intercept_[0]
 
#---find the coordinates for the hyperplane---
xx = np.linspace(0, 4)
yy = slope * xx - (b / w[1])
 
#---plot the margins---
s = clf.support_vectors_[0]    #---first support vector---
yy_down = slope * xx + (s[1] - slope * s[0])
 
s = clf.support_vectors_[-1]   #---last support vector---
yy_up   = slope * xx + (s[1] - slope * s[0])
 
#---plot the points---
sns.lmplot('x1', 'x2', data=data, hue='r', palette='Set1',  
fit_reg=False, scatter_kws={"s": 70})
 
#---plot the hyperplane---
plt.plot(xx, yy, linewidth=2, color='green');
 
#---plot the 2 margins---
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')

Figure 8.10 shows the hyperplane and the two margins.

Making Predictions
Remember, the goal of SVM is to separate the points into two or more classes, 
so that you can use it to predict the classes of future points. Having trained your 
model using SVM, you can now perform some predictions using the model.

The following code snippet uses the model that you have trained to perform 
some predictions:

print(clf.predict([[3,3]])[0])  # 'B'
print(clf.predict([[4,0]])[0])  # 'A'
print(clf.predict([[2,2]])[0])  # 'B'
print(clf.predict([[1,2]])[0])  # 'A'

Check the points against the chart shown in Figure 8.10 and see if it makes 
sense to you.
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Kernel Trick

Sometimes, the points in a dataset are not always linearly separable. Consider 
the points shown in Figure 8.11.
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Figure 8.11:  A scatter plot of two groups of points distributed in circular fashion
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Figure 8.10:  The hyperplane and the two margins
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You can see that it is not possible to draw a straight line to separate the two 
sets of points. With some manipulation, however, you can make this set of points 
linearly separable. This technique is known as the kernel trick. The kernel trick is 
a technique in machine learning that transforms data into a higher dimension 
space so that, after the transformation, it has a clear dividing margin between 
classes of data.

Adding a Third Dimension
To do so, we can add a third dimension, say the z-axis, and define z to be:

 z x y2 2
 

Once we plot the points using a 3D chart, the points are now linearly sepa-
rable. It is difficult to visualize this unless you plot the points out. The following 
code snippet does just that:

%matplotlib inline
 
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_circles
 
#---X is features and c is the class labels---
X, c = make_circles(n_samples=500, noise=0.09)
 
rgb = np.array(['r', 'g'])
plt.scatter(X[:, 0], X[:, 1], color=rgb[c])
plt.show()
 
fig = plt.figure(figsize=(18,15))
ax = fig.add_subplot(111, projection='3d')
z = X[:,0]**2 + X[:,1]**2
ax.scatter(X[:, 0], X[:, 1], z, color=rgb[c])
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.show()

We first create two sets of random points (a total of 500 points) distributed 
in circular fashion using the make_circles() function. We then plot them out 
on a 2D chart (as what was shown in Figure 8.11). We then add the third axis, 
the z-axis, and plot the chart in 3D (see Figure 8.12).
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 T I P   If you run the preceding code in Terminal (just remove the %matplotlib 
inline statement at the top of the code snippet) using the python command, you 
will be able to rotate and interact with the chart. Figure 8.13 shows the different per-
spectives of the 3D chart.
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Figure 8.12:  Plotting the points in the three dimensions
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Plotting the 3D Hyperplane
With the points plotted in a 3D chart, let’s now train the model using the third 
dimension:

#---combine X (x-axis,y-axis) and z into single ndarray---
features = np.concatenate((X,z.reshape(-1,1)), axis=1)
 
#---use SVM for training---
from sklearn import svm
 
clf = svm.SVC(kernel = 'linear')
clf.fit(features, c)

First, we combined the three axes into a single ndarray using the np.concat-
enate() function. We then trained the model as usual. For a linearly-separable 
set of points in two dimensions, the formula for the hyperplane is as follows:

g(x) = 


W0X1 + 


W1X2 + b

For the set of points now in three dimensions, the formula now becomes the 
following:

g(x) = 


W0X1 + 


W1X2 + 


W2X3 + b

In particular, 


W2 is now represented by clf.coef_[0][2], as shown in Figure 8.14.

The next step is to draw the hyperplane in 3D. In order to do that, you need 
to find the value of x3, which can be derived, as shown in Figure 8.15.

g(x) = w→0x1 + w→1x2 + w→2x3 + b

clf.coef_[0][0]

clf.coef_[0][1]

clf.coef_[0][2]

clf.intercept_[0]

Figure 8.14:  The formula for the hyperplane in 3D and its corresponding variables in the  
code snippet

w→0x1 + w→1x2 + w→2x3 + b = 0

w→2x3 = –w→0x1 – w→1x2 – b

x3 = –w→0x1 – w→1x2 – b

w→2

Figure 8.15:  Formula for finding the hyperplane in 3D
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This can be expressed in code as follows:

x3 = lambda x,y: (-clf.intercept_[0] - clf.coef_[0][0] * x-clf.coef_[0][1] * y) /  
                             clf.coef_[0][2]

To plot the hyperplane in 3D, use the plot_surface() function:

tmp = np.linspace(-1.5,1.5,100)
x,y = np.meshgrid(tmp,tmp)
 
ax.plot_surface(x, y, x3(x,y))
plt.show()

The entire code snippet is as follows:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_circles
 
#---X is features and c is the class labels---
X, c = make_circles(n_samples=500, noise=0.09)
z = X[:,0]**2 + X[:,1]**2
 
rgb = np.array(['r', 'g'])
 
fig = plt.figure(figsize=(18,15))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], z, color=rgb[c])
plt.xlabel("x-axis")
plt.ylabel("y-axis")
# plt.show()
 
#---combine X (x-axis,y-axis) and z into single ndarray---
features = np.concatenate((X,z.reshape(-1,1)), axis=1)
 
#---use SVM for training---
from sklearn import svm
 
clf = svm.SVC(kernel = 'linear')
clf.fit(features, c)
x3 = lambda x,y: (-clf.intercept_[0] - clf.coef_[0][0] * x-clf.coef_[0][1]  
                   * y) / clf.coef_[0][2]
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tmp = np.linspace(-1.5,1.5,100)
x,y = np.meshgrid(tmp,tmp)
 
ax.plot_surface(x, y, x3(x,y))
plt.show()

Figure 8.16 shows the hyperplane, as well as the points, plotted in 3D.

Types of Kernels

Up to this point, we only discussed one type of SVM—linear SVM. As the name 
implies, linear SVM uses a straight line to separate the points. In the previous sec-
tion, you also learned about the use of kernel tricks to separate two sets of data that 
are distributed in a circular fashion and then used linear SVM to separate them.

Sometimes, not all points can be separated linearly, nor can they be separated 
using the kernel tricks that you observed in the previous section. For this type 
of data, you need to “bend” the lines to separate them. In machine learning, 
kernels are functions that transform your data from nonlinear spaces to linear 
ones (see Figure 8.17).

To understand how kernels work, let’s use the Iris dataset as an example. 
The following code snippet loads the Iris dataset and prints out the features, 
target, and target names:

%matplotlib inline
import pandas as pd
import numpy as np
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Figure 8.16:  The hyperplane in 3D cutting through the two sets of points
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from sklearn import svm, datasets
import matplotlib.pyplot as plt
 
iris = datasets.load_iris()
print(iris.data[0:5])      # print first 5 rows
print(iris.feature_names)  # ['sepal length (cm)', 'sepal width (cm)',
                           #  'petal length (cm)', 'petal width (cm)']
print(iris.target[0:5])    # print first 5 rows
print(iris.target_names)   # ['setosa' 'versicolor' 'virginica']

To illustrate, we will only use the first two features of the Iris dataset:

X = iris.data[:, :2]       #  take the first two features
y = iris.target

We will plot the points using a scatter plot (see Figure 8.18):

#---plot the points---
colors = ['red', 'green', 'blue']
for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
    plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)
 
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.legend(loc='best', shadow=False, scatterpoints=1)
 
plt.title('Scatter plot of Sepal width against Sepal length')
plt.show()

Next, we will use the SVC class with the linear kernel:

C = 1  # SVM regularization parameter
clf = svm.SVC(kernel='linear', C=C).fit(X, y)
title = 'SVC with linear kernel'
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Figure 8.17:  A kernel function transforms your data from nonlinear spaces to linear ones
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 T I P   Notice that this time around, we have a new parameter C. We will discuss this 
in a moment.

Instead of drawing lines to separate the three groups of Iris flowers, this time 
we will paint the groups in colors using the contourf() function:

#---min and max for the first feature---
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 
#---min and max for the second feature---
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 
#---step size in the mesh---
h = (x_max / x_min)/100
 
#---make predictions for each of the points in xx,yy---
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))
 
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
 
#---draw the result using a color plot---
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=0.8)
 
#---plot the training points---
colors = ['red', 'green', 'blue']
for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
    plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)
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plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.title(title)
plt.legend(loc='best', shadow=False, scatterpoints=1)

Figure 8.19 shows the scatter plots as well as the groups determined by the 
SVM linear kernel.

Once the training is done, we will perform some predictions:

predictions = clf.predict(X)
print(np.unique(predictions, return_counts=True))

The preceding code snippet returns the following:
(array([0, 1, 2]), array([50, 53, 47]))

This means that after the feeding the model with the Iris dataset, 50 are 
classified as “setosa,” 53 are classified as “versicolor,” and 47 are classified as 
“virginica.”

C
In the previous section, you saw the use of the C parameter:

C = 1
clf = svm.SVC(kernel='linear', C=C).fit(X, y)
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Figure 8.19:  Using the SVM linear kernel
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C is known as the penalty parameter of the error term. It controls the tradeoff 
between the smooth decision boundary and classifying the training points cor-
rectly. For example, if the value of C is high, then the SVM algorithm will seek 
to ensure that all points are classified correctly. The downside to this is that it 
may result in a narrower margin, as shown in Figure 8.20.

In contrast, a lower C will aim for the widest margin possible, but it will result 
in some points being classified incorrectly (see Figure 8.21).

Figure 8.22 shows the effects of varying the value of C when applying the 
SVM linear kernel algorithm. The result of the classification appears at  
the  bottom of each chart.

More concerned about getting the points correctly classified
(prioritizes making lesser mistakes)

High C

Figure 8.20:  A high C focuses more on getting the points correctly classified

More concerned about maximizing the margin
(prioritizes simplicity)

Low C

Figure 8.21:  A low C aims for the widest margin, but may classify some points incorrectly
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Note that when C is 1 or 1010, there isn’t too much difference among the 
classification results. However, when C is small (10–10), you can see that a number 
of points (belonging to “versicolor” and “virginica”) are now misclassified as 
“setosa.”

 T I P   In short, a low C makes the decision surface smooth while trying to classify 
most points, while a high C tries to classify all of the points correctly.

Radial Basis Function (RBF) Kernel
Besides the linear kernel that we have seen so far, there are some commonly 
used nonlinear kernels:

 ■ Radial Basis function (RBF), also known as Gaussian Kernel

 ■ Polynomial
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The first, RBF, gives value to each point based on its distance from the origin 
or a fixed center, commonly on a Euclidean space. Let’s use the same example 
that we used in the previous section, but this time modify the kernel to use rbf:

C = 1
clf = svm.SVC(kernel='rbf', gamma='auto', C=C).fit(X, y)
title = 'SVC with RBF kernel'

Figure 8.23 shows the same sample trained using the RBF kernel.

Gamma
If you look at the code snippet carefully, you will discover a new parame-
ter—gamma. Gamma defines how far the influence of a single training example 
reaches. Consider the set of points shown in Figure 8.24. There are two classes 
of points—x’s and o’s.

A low Gamma value indicates that every point has a far reach (see Figure 8.25).
On the other hand, a high Gamma means that the points closest to the decision 

boundary have a close reach. The higher the value of Gamma, the more it will 
try to fit the training dataset exactly, resulting in overfitting (see Figure 8.26).

Figure 8.27 shows the classification of the points using RBF, with varying 
values of C and Gamma.

Note that if Gamma is high (10), overfitting occurs. You can also see from this 
figure that the value of C controls the smoothness of the curve.
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Figure 8.25:  A low Gamma value allows every point to have equal reach
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 T I P   To summarize, C controls the smoothness of the boundary and Gamma deter-
mines if the points are overfitted.

Polynomial Kernel
Another type of kernel is called the polynomial kernel. A polynomial kernel of 
degree 1 is similar to that of the linear kernel. Higher-degree polynomial kernels 
afford a more flexible decision boundary. The following code snippet shows the 
Iris dataset trained using the polynomial kernel with degree 4:

C = 1  # SVM regularization parameter
clf = svm.SVC(kernel='poly', degree=4, C=C, gamma='auto').fit(X, y)
title = 'SVC with polynomial (degree 4) kernel'

Figure 8.28 shows the dataset separated with polynomial kernels of degree 
1 to 4.
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Using SVM for Real-Life Problems

We will end this chapter by applying SVM to a common problem in our daily lives. 
Consider the following dataset (saved in a file named house_sizes_prices_svm 
.csv) containing the size of houses and their asking prices (in thousands) for 
a particular area:

size,price,sold
550,50,y
1000,100,y
1200,123,y
1500,350,n
3000,200,y
2500,300,y
750, 45,y
1500,280,n
780,400,n
1200, 450,n
2750, 500,n

The third column indicates if the house was sold. Using this dataset, you want 
to know if a house with a specific asking price would be able to sell.
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Figure 8.28:  The classification of the Iris dataset using polynomial kernel of varying degrees
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First, let’s plot out the points:

%matplotlib inline
 
import pandas as pd
import numpy as np
from sklearn import svm
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(font_scale=1.2)
 
data = pd.read_csv('house_sizes_prices_svm.csv')
 
sns.lmplot('size', 'price',
           data=data,
           hue='sold',
           palette='Set2',
           fit_reg=False,
           scatter_kws={"s": 50});

Figure 8.29 shows the points plotted as a scatter plot.

Visually, you can see that this is a problem that can be solved with SVM’s 
linear kernel:

X = data[['size','price']].values
y = np.where(data['sold']=='y', 1, 0) #--1 for Y and 0 for N---
model = svm.SVC(kernel='linear').fit(X, y)

500

100

200

300 sold
y
n

pr
ic

e

400

500

1000 1500 2000 30002500
size

Figure 8.29:  Plotting the points on a scatter plot
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With the trained model, you can now perform predictions and paint the two 
classes:

#---min and max for the first feature---
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 
#---min and max for the second feature---
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 
#---step size in the mesh---
h = (x_max / x_min) / 20
 
#---make predictions for each of the points in xx,yy---
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))
 
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
 
#---draw the result using a color plot---
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues, alpha=0.3)
 
plt.xlabel('Size of house')
plt.ylabel('Asking price (1000s)')
plt.title("Size of Houses and Their Asking Prices")

Figure 8.30 shows the points and the classes to which they belong.
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Figure 8.30:  Separating the points into two classes
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You can now try to predict if a house of a certain size with a specific selling 
price will be able to sell:

def will_it_sell(size, price):
    if(model.predict([[size, price]]))==0:
        print('Will not sell!')
    else:
        print('Will sell!')
 
#---do some prediction---
will_it_sell(2500, 400)  # Will not sell!
will_it_sell(2500, 200)  # Will sell!

Summary

In this chapter, you learned about how Support Vector Machines help in 
classification problems. You learned about the formula for finding the hyperplane, 
as well as the two accompanying margins. Fortunately, Scikit-learn provides 
the classes needed for training models using SVM, and with the parameters 
returned, you can plot the hyperplane and margins visually so that you can 
understand how SVM works. You also learned about the various kernels that you 
can apply to your SVM algorithms so that the dataset can be separated linearly.
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9

What Is K-Nearest Neighbors?

Up until this point, we have discussed three supervised learning algorithms: 
linear regression, logistics regression, and support vector machines. In this 
chapter, we will dive into another supervised machine learning algorithm 
known as K-Nearest Neighbors (KNN).

KNN is a relatively simple algorithm compared to the other algorithms that we 
have discussed in previous chapters. It works by comparing the query instance’s 
distance to the other training samples and selecting the K-nearest neighbors 
(hence its name). It then takes the majority of these K-neighbor classes to be the 
prediction of the query instance.

Figure 9.1 sums this up nicely. When k = 3, the closest three neighbors of 
the circle are the two squares and the one triangle. Based on the simple rule of 
majority, the circle is classified as a square. If k = 5, then the closest five neigh-
bors are the two squares and the three triangles. Hence, the circle is classified 
as a triangle.

Supervised Learning—
Classification Using K-Nearest 

Neighbors (KNN)

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.



206 Chapter 9 ■ Supervised Learning—Classification Using K-Nearest Neighbors

 T I P   KNN is also sometimes used for regression in addition to classification. 
For example, it can be used to calculate the average of the numerical target of the 
K-nearest neighbors. For this chapter, however, we are focusing solely on its more 
common use as a classification algorithm.

Implementing KNN in Python
Now that you have seen how KNN works, let’s try to implement KNN from 
scratch using Python. As usual, first let’s import the modules that we’ll need:

import pandas as pd
import numpy as np
import operator
import seaborn as sns
import matplotlib.pyplot as plt

Plotting the Points

For this example, you will use a file named knn.csv containing the following data:

x,y,c
1,1,A
2,2,A
4,3,B
3,3,A
3,5,B
5,6,B
5,4,B

Deemed to be square Deemed to be triangle

k=3

gleeeeeeeee

k=5

Figure 9.1:  The classification of a point depends on the majority of its neighbors
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As we have done in the previous chapters, a good way is to plot the points 
using Seaborn:

data = pd.read_csv("knn.csv")
sns.lmplot('x', 'y', data=data,
           hue='c', palette='Set1',
           fit_reg=False, scatter_kws={"s": 70})
plt.show()

Figure 9.2 shows the distribution of the various points. Points that belong to 
class A are displayed in red while those belonging to class B are displayed in blue.

Calculating the Distance Between the Points

In order to find the nearest neighbor of a given point, you need to calculate the 
Euclidean distance between two points.

 T I P   In geometry, Euclidean space encompasses the two-dimensional Euclidean 
plane, the three-dimensional space of Euclidean geometry, and similar spaces of 
higher dimension.

Given two points, p p p , ,pn1 2,   and q q q , ,qn1 2 , the distance between 
p and q is given by the following formula:
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Figure 9.2:  Plotting the points visually
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Based on this formula, you can now define a function named euclidean _ 

distance() as follows:

#---to calculate the distance between two points---
def euclidean_distance(pt1, pt2, dimension):
    distance = 0
    for x in range(dimension):
        distance += np.square(pt1[x] - pt2[x])
    return np.sqrt(distance)

The Euclidean _ distance() function can find the distance between two 
points in any dimension. For this example, the points that we are dealing with 
are in 2D.

Implementing KNN

Next, define a function named knn(), which takes in the training points, the 
test point, and the value of k:

#---our own KNN model---
def knn(training_points, test_point, k):
    distances = {}
 
    #---the number of axes we are dealing with---
    dimension = test_point.shape[1]
 
    #--calculating euclidean distance between each
    # point in the training data and test data
    for x in range(len(training_points)):
        dist = euclidean_distance(test_point, training_points.iloc[x],  
                                  dimension)
        #---record the distance for each training points---
        distances[x] = dist[0]
 
    #---sort the distances---
    sorted_d = sorted(distances.items(), key=operator.itemgetter(1))
 
    #---to store the neighbors---
    neighbors = []
 
    #---extract the top k neighbors---
    for x in range(k):
        neighbors.append(sorted_d[x][0])
 
    #---for each neighbor found, find out its class---
    class_counter = {}
    for x in range(len(neighbors)):
        #---find out the class for that particular point---
        cls = training_points.iloc[neighbors[x]][-1]
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        if cls in class_counter:
            class_counter[cls] += 1
        else:
            class_counter[cls] = 1
 
    #---sort the class_counter in descending order---
    sorted_counter = sorted(class_counter.items(),  
                            key=operator.itemgetter(1),
                            reverse=True)
 
    #---return the class with the most count, as well as the  
    #neighbors found---
    return(sorted_counter[0][0], neighbors)

The function returns the class to which the test point belongs, as well as the 
indices of all the nearest k neighbors.

Making Predictions

With the knn() function defined, you can now make some predictions:

#---test point---
test_set = [[3,3.9]]
test = pd.DataFrame(test_set)
cls,neighbors = knn(data, test, 5)
print("Predicted Class: " + cls)

The preceding code snippet will print out the following output:

Predicted Class: B

Visualizing Different Values of K

It is useful to be able to visualize the effect of applying various values of k. The 
following code snippet draws a series of concentric circles around the test point 
based on the values of k, which range from 7 to 1, with intervals of –2:

#---generate the color map for the scatter plot---
#---if column 'c' is A, then use Red, else use Blue---
colors = ['r' if i == 'A' else 'b'  for i in data['c']]
ax = data.plot(kind='scatter', x='x', y='y', c = colors)
plt.xlim(0,7)
plt.ylim(0,7)
 
#---plot the test point---
plt.plot(test_set[0][0],test_set[0][1], "yo", markersize='9')
 
for k in range(7,0,-2):
    cls,neighbors = knn(data, test, k)
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    print("============")
    print("k = ", k)
    print("Class", cls)
    print("Neighbors")
    print(data.iloc[neighbors])
 
    furthest_point = data.iloc[neighbors].tail(1)
 
    #---draw a circle connecting the test point  
    # and the furthest point---
    radius = euclidean_distance(test, furthest_point.iloc[0], 2)
 
    #---display the circle in red if classification is A,
    # else display circle in blue---
    c = 'r' if cls=='A' else 'b'
    circle = plt.Circle((test_set[0][0], test_set[0][1]),
                        radius, color=c, alpha=0.3)
    ax.add_patch(circle)
 
plt.gca().set_aspect('equal', adjustable='box')
plt.show()

The preceding code snippet prints out the following output:

============
k =  7
Class B
Neighbors
   x  y  c
3  3  3  A
4  3  5  B
2  4  3  B
6  5  4  B
1  2  2  A
5  5  6  B
0  1  1  A
============
k =  5
Class B
Neighbors
   x  y  c
3  3  3  A
4  3  5  B
2  4  3  B
6  5  4  B
1  2  2  A
============
k =  3
Class B
Neighbors
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   x  y  c
3  3  3  A
4  3  5  B
2  4  3  B
============
k =  1
Class A
Neighbors
   x  y  c
3  3  3  A

Figure 9.3 shows the series of circles centered around the test point, with 
varying values of k. The innermost circle is for k = 1, with the next outer ring 
for k = 3, and so on. As you can see, if k = 1, the circle is red, meaning that the 
yellow point has been classified as class A. If the circle is blue, this means that 
the yellow point has been classified as class B. This is evident in the outer three 
circles.

Using Scikit-Learn’s KNeighborsClassifier Class for KNN
Now that you have seen how KNN works and how it can be implemented man-
ually in Python, let’s use the implementation provided by Scikit-learn.
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Figure 9.3:  The classification of the yellow point based on the different values of k
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The following code snippet loads the Iris dataset and plots it out using a 
scatter plot:

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.patches as mpatches
from sklearn import svm, datasets
import matplotlib.pyplot as plt
 
iris = datasets.load_iris()
 
X = iris.data[:, :2]       #  take the first two features
y = iris.target
 
#---plot the points---
colors = ['red', 'green', 'blue']
for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
    plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)
 
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.legend(loc='best', shadow=False, scatterpoints=1)
 
plt.title('Scatter plot of Sepal width against Sepal length')
plt.show()

Figure 9.4 shows the scatter plot of the Sepal width against the Sepal length.
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Figure 9.4:  Plotting out the Sepal width against the Sepal length in a scatter plot
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Exploring Different Values of K

We can now use Scikit-learn’s KNeighborsClassifier class to help us train a 
model on the Iris dataset using KNN. For a start, let’s use a k of 1:

from sklearn.neighbors import KNeighborsClassifier
 
k = 1
#---instantiate learning model---
knn = KNeighborsClassifier(n_neighbors=k)
 
#---fitting the model---
knn.fit(X, y)
 
#---min and max for the first feature---
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 
#---min and max for the second feature---
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 
#---step size in the mesh---
h = (x_max / x_min)/100
 
#---make predictions for each of the points in xx,yy---
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))
 
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])
 
#---draw the result using a color plot---
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=0.8)
 
#---plot the training points---
colors = ['red', 'green', 'blue']
for color, i, target in zip(colors, [0, 1, 2], iris.target_names):
    plt.scatter(X[y==i, 0], X[y==i, 1], color=color, label=target)
 
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.title(f'KNN (k={k})')
plt.legend(loc='best', shadow=False, scatterpoints=1)
 
predictions = knn.predict(X)
 
#--classifications based on predictions---
print(np.unique(predictions, return_counts=True))
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The preceding code snippet creates a meshgrid (a rectangular grid of values) 
of points scattered across the x- and y-axes. Each point is then used for predic-
tion, and the result is drawn using a color plot.

Figure 9.5 shows the classification boundary using a k of 1. Notice that for  
k = 1, you perform your prediction based solely on a single sample—your nearest 
neighbor. This makes your prediction very sensitive to all sorts of distortions, 
such as outliers, mislabeling, and so on. In general, setting k = 1 usually leads 
to overfitting, and as a result your prediction is usually not very accurate.

 T I P   Overfitting in machine learning means that the model you have trained fits  
the training data too well. This happens when all of the noises and fluctuations in your 
training data are picked up during the training process. In simple terms, this means 
that your model is trying very hard to fit all of your data perfectly. The key problem 
with an overfitted model is that it will not work well with new, unseen data.

Underfitting, on the other hand, occurs when a machine learning model cannot accu-
rately capture the underlying trend of the data. Specifically, the model does not fit the 
data well enough.

Figure 9.6 shows an easy way to understand overfitting, underfitting, and a generally 
good fit.
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Figure 9.5:  The classification boundary based on k = 1
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For KNN, setting k to a higher value tends to make your prediction more 
robust against noise in your data.

Using the same code snippet, let’s vary the values of k. Figure 9.7 shows the 
classifications based on four different values of k.

Note that as k increases, the boundary becomes smoother. But it also means 
that more points will be classified incorrectly. When k increases to a large value, 
underfitting occurs.

The key issue with KNN is then how do you find out the ideal value of k to use?
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Figure 9.6:  Understanding the concept of overfitting, underfitting, and a good fit
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Figure 9.7:  The effects of varying the values of k
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Cross-Validation

In the previous few chapters, you have witnessed that we split our dataset into 
two individual sets—one for training and one for testing. However, the data 
in your dataset may not be distributed evenly, and as a result your test set may 
be too simple or too hard to predict, thereby making it very difficult to know 
if your model works well.

Instead of using part of the data for training and part for testing, you can split 
the data into k-folds and train the models k times, rotating the training and test-
ing sets. By doing so, each data point is now being used for training and testing.

 T I P   Do not confuse the k in k-folds with the k in KNN—they are not related.

Figure 9.8 shows a dataset split into five folds (blocks). For the first run, blocks 
1, 2, 3, and 4 will be used to train the model. Block 0 will be used to test the 
model. In the next run, blocks 0, 2, 3, and 4 will be used for training, and block 
1 will be used for testing, and so on.

At the end of each run, the model is scored. At the end of the k-runs, the score 
is averaged. This averaged score will give you a good indication of how well 
your algorithm performs.

 T I P   The purpose of cross-validation is not for training your model, but rather it is 
for model checking. Cross-validation is useful when you need to compare different 
machine learning algorithms to see how they perform with the given dataset. Once 
the algorithm is selected, you will use all of the data for training the model.

Training Set
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Run 2

Run 3

Run 4

Run 5

Folds = 5

Testing Set

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Figure 9.8:  How cross-validation works
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Parameter-Tuning K

Now that you understand cross-validation, let’s use it on our Iris dataset. We will 
train the model using all of the four features, and at the same time we shall use 
cross-validation on the dataset using 10 folds. We will do this for each value of k:

from sklearn.model_selection import cross_val_score
 
#---holds the cv (cross-validates) scores---
cv_scores = []
 
#---use all features---
X = iris.data[:, :4]
y = iris.target
 
#---number of folds---
folds = 10
 
#---creating odd list of K for KNN---
ks = list(range(1,int(len(X) * ((folds - 1)/folds))))
 
#---remove all multiples of 3---
ks = [k for k in ks if k % 3 != 0]
 
#---perform k-fold cross validation---
for k in ks:
    knn = KNeighborsClassifier(n_neighbors=k)
 
    #---performs cross-validation and returns the average accuracy---
    scores = cross_val_score(knn, X, y, cv=folds, scoring='accuracy')
    mean = scores.mean()
    cv_scores.append(mean)
    print(k, mean)

The Scikit-learn library provides the cross _ val _ score() function that 
performs cross-validation for you automatically, and it returns the metrics that 
you want (for example, accuracy).

When using cross-validation, be aware that at any one time, there will be ((folds-
1)/folds) * total_rows available for training. This is because (1/folds) * total_rows 
will be used for testing.

For KNN, there are three rules to which you must adhere:

 ■ The value of k cannot exceed the number of rows for training.

 ■ The value of k should be an odd number (so that you can avoid situations 
where there is a tie between the classes) for a two-class problem.

 ■ The value of k must not be a multiple of the number of classes (to avoid 
ties, similar to the previous point).
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Hence, the ks list in the preceding code snippet will contain the following 
values:

[1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 
29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 
56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 
83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 106, 
107, 109, 110, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125, 127, 
128, 130, 131, 133, 134]

After the training, the cv _ scores will contain a list of accuracies based on 
the different values of k:

1 0.96
2 0.9533333333333334
4 0.9666666666666666
5 0.9666666666666668
7 0.9666666666666668
8 0.9666666666666668
10 0.9666666666666668
11 0.9666666666666668
13 0.9800000000000001
14 0.9733333333333334
...
128 0.6199999999999999
130 0.6066666666666667
131 0.5933333333333332
133 0.5666666666666667
134 0.5533333333333333

Finding the Optimal K

To find the optimal k, you simply find the value of k that gives the highest accu-
racy. Or, in this case, you will want to find the lowest misclassification error (MSE).

The following code snippet finds the MSE for each k, and then finds the k 
with the lowest MSE. It then plots a line chart of MSE against k (see Figure 9.9):

#---calculate misclassification error for each k---
MSE = [1 - x for x in cv_scores]
 
#---determining best k (min. MSE)---
optimal_k = ks[MSE.index(min(MSE))]
print(f"The optimal number of neighbors is {optimal_k}")
 
#---plot misclassification error vs k---
plt.plot(ks, MSE)
plt.xlabel('Number of Neighbors K')
plt.ylabel('Misclassification Error')
plt.show()
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The preceding code snippet prints out the following:

The optimal number of neighbors is 13

Figure 9.10 shows the classification when k = 13.
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Figure 9.9:  The chart of miscalculations for each k
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Summary

Of the four algorithms that we have discussed in this book, KNN is considered 
one of the most straightforward. In this chapter, you learned how KNN works 
and how to derive the optimal k that minimizes the miscalculation of errors.

In the next chapter, you will learn a new type of algorithm—unsupervised 
learning. You will learn how to discover structures in your data by performing 
clustering using K-Means.
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What Is Unsupervised Learning?

So far, all of the machine learning algorithms that you have seen are supervised 
learning. That is, the datasets have all been labeled, classified, or categorized. 
Datasets that have been labeled are known as labeled data, while datasets that 
have not been labeled are known as unlabeled data. Figure 10.1 shows an example 
of labeled data.

Based on the size of the house and the year in which it was built, you have 
the price at which the house was sold. The selling price of the house is the label, 
and your machine learning model can be trained to give the estimated worth 
of the house based on its size and the year in which it was built.

Unsupervised Learning—
Clustering Using K-Means

Features

Size of
House

Year
Built

Price
Sold

Label

Figure 10.1:  Labeled data

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Unlabeled data, on the other hand, is data without label(s). For example, 
Figure 10.2 shows a dataset containing a group of people’s waist circumference 
and corresponding leg length. Given this set of data, you can try to cluster them 
into groups based on the waist circumference and leg length, and from there 
you can figure out the average dimension in each group. This would be useful 
for clothing manufacturers to tailor different sizes of clothing to fit its customers.

Unsupervised Learning Using K-Means
Since there is no label in unlabeled data, it is thus of interest to us that we are 
able to find patterns in that unlabeled data. This technique of finding patterns 
in unlabeled data is known as clustering. The main aim of clustering is to segre-
gate groups with similar traits and assign them into groups (commonly known 
as clusters).

One of the common algorithms used for clustering is the K-Means algorithm. 
K-Means clustering is a type of unsupervised learning:

 ■ Used when you have unlabeled data

 ■ The goal is to find groups in data, with the number of groups represented 
by K

The goal of K-Means clustering is to achieve the following:

 ■ K centroids representing the center of the clusters

 ■ Labels for the training data

In the next section, you will learn how clustering using K-Means works.

How Clustering in K-Means Works
Let’s walk through a simple example so that you can see how clustering using 
K-Means works. Suppose you have a series of unlabeled points, as shown in 
Figure 10.3.

Features

Waist
Circumference

Leg length

Figure 10.2:  Unlabeled data
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Your job is to cluster all of these points into distinct groups so that you can 
discover a pattern among them. Suppose you want to separate them into two 
groups (that is, K=2). The end result would look like Figure 10.4.

First, you will randomly put K number of centroids on the graph. In Figure 10.5, 
since K equals 2, we will randomly put two centroids on the graph: C0 and C1. 
For each point on the graph, measure the distance between itself and each of the 
centroids. As shown in the figure, the distance (represented by d0) between a and 
C0 is shorter than the distance (represented by d1) between a and C1. Hence, a is 
now classified as cluster 0. Likewise, for point b, the distance between itself and 
C1 is shorter than the distance between itself and C0. Hence, point b is classified 
as cluster 1. You repeat this process for all the points in the graph.

After the first round, the points would be clustered, as shown in Figure 10.6.

Figure 10.3:  A set of unlabeled data points

2 Clusters

Figure 10.4:  Clustering the points into two distinct clusters
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Now take the average of all of the points in each cluster and reposition 
the centroids using the newly calculated average. Figure 10.7 shows the new  
positions of the two centroids.

You now measure the distance between each of the old centroids and the 
new centroids (see Figure 10.8). If the distance is 0, that means that the centroid 
did not change position and hence the centroid is found. You repeat the entire 
process until all the centroids do not change position anymore.

Planted centroid

Cluster 0

Cluster 1

Planted centroid

Classified as
cluster 0 as

d0<d1

Classified as
cluster 1 as

d1<d0

d0

d0

d1

c0

d1

b

a c1

Figure 10.5:  Measuring the distance of each point with respect to each centroid and finding 
the shortest distance

c0

c1

Figure 10.6:  Groupings of the points after the first round of clustering
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Implementing K-Means in Python
Now that you have a clear picture of how K-Means works, it is useful to imple-
ment this using Python. You will first implement K-Means using Python, and 
then see how you can use Scikit-learn’s implementation of K-Means in the next 
section.

Suppose you have a file named kmeans.csv with the following content:

x,y
1,1
2,2

New centroids

Old centroids

c0

c0

c1

c1

Figure 10.7:  Repositioning the centroids by taking the average of all the points in each cluster

c0

c0

c1

c1

Figure 10.8:  Measuring the distance between each centroid; if the distance is 0, the centroid  
is found
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2,3
1,4
3,3
6,7
7,8
6,8
7,6
6,9
2,5
7,8
8,9
6,7
7,8
3,1
8,4
8,6
8,9

Let’s first import all of the necessary libraries:

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Then load the CSV file into a Pandas dataframe, and plot a scatter plot  
showing the points:

df = pd.read_csv("kmeans.csv")
plt.scatter(df['x'],df['y'], c='r', s=18)

Figure 10.9 shows the scatter plot with the points.
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Figure 10.9:  The scatter plot showing all the points
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You can now generate some random centroids. You also need to decide  
on the value of K. Let’s assume K to be 3 for now. You will learn how to  determine 
the optimal K later in this chapter. The following code snippet generates three 
random centroids and marks them on the scatter plot:

#---let k assume a value---
k = 3
 
#---create a matrix containing all points---
X = np.array(list(zip(df['x'],df['y'])))
 
#---generate k random points (centroids)---
Cx = np.random.randint(np.min(X[:,0]), np.max(X[:,0]), size = k)
Cy = np.random.randint(np.min(X[:,1]), np.max(X[:,1]), size = k)
 
#---represent the k centroids as a matrix---
C = np.array(list(zip(Cx, Cy)), dtype=np.float64)
print(C)
 
#---plot the orginal points as well as the k centroids---
plt.scatter(df['x'], df['y'], c='r', s=8)
plt.scatter(Cx, Cy, marker='*', c='g', s=160)
plt.xlabel("x")
plt.ylabel("y")

Figure 10.10 shows the points, as well as the centroids on the scatter plot.
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Figure 10.10:  The scatter plot with the points and the three random centroids
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Now comes the real meat of the program. The following code snippet imple-
ments the K-Means algorithm that we discussed earlier in the “How Clustering 
in K-Means Works” section:

from copy import deepcopy
 
#---to calculate the distance between two points---
def euclidean_distance(a, b, ax=1):
    return np.linalg.norm(a - b, axis=ax)
 
#---create a matrix of 0 with same dimension as C (centroids)---
C_prev = np.zeros(C.shape)
 
#---to store the cluster each point belongs to---
clusters = np.zeros(len(X))
 
#---C is the random centroids and C_prev is all 0s---
#---measure the distance between the centroids and C_prev---
distance_differences = euclidean_distance(C, C_prev)
 
#---loop as long as there is still a difference in
# distance between the previous and current centroids---
while distance_differences.any() != 0:
    #---assign each value to its closest cluster---
    for i in range(len(X)):
        distances = euclidean_distance(X[i], C)
 
        #---returns the indices of the minimum values along an axis---
        cluster = np.argmin(distances)
        clusters[i] = cluster
 
    #---store the prev centroids---
    C_prev = deepcopy(C)
 
    #---find the new centroids by taking the average value---
    for i in range(k):  #---k is the number of clusters---
        #---take all the points in cluster i---
        points = [X[j] for j in range(len(X)) if clusters[j] == i]
        if len(points) != 0:
            C[i] = np.mean(points, axis=0)
 
    #---find the distances between the old centroids and the new 
centroids---
    distance_differences = euclidean_distance(C, C_prev)
 
#---plot the scatter plot---
colors = ['b','r','y','g','c','m']
for i in range(k):
    points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])
    if len(points) > 0:
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        plt.scatter(points[:, 0], points[:, 1], s=10, c=colors[i])
    else:
        # this means that one of the clusters has no points
        print("Plesae regenerate your centroids again.")
 
    plt.scatter(points[:, 0], points[:, 1], s=10, c=colors[i])
    plt.scatter(C[:, 0], C[:, 1], marker='*', s=100, c='black')

With the preceding code snippet, the centroids would now be computed and 
displayed on the scatter plot, as shown in Figure 10.11.

 T I P   Due to the locations of the points, it is possible that the centroids you 
obtained may not be identical to the one shown in Figure 10.11.

Also, there may be cases where after the clustering, there are no points belonging to a 
particular centroid. In this case, you have to regenerate the centroid and perform the 
clustering again.

You can now also print out the clusters to which each point belongs:

for i, cluster in enumerate(clusters):
    print("Point " + str(X[i]),
          "Cluster " + str(int(cluster)))

You should be able to see the following output:

Point [1 1] Cluster 2
Point [2 2] Cluster 2
Point [2 3] Cluster 2
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Figure 10.11:  The scatter plot showing the clustering of the points as well as the new- 
found centroids
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Point [1 4] Cluster 2
Point [3 3] Cluster 2
Point [6 7] Cluster 1
Point [7 8] Cluster 1
Point [6 8] Cluster 1
Point [7 6] Cluster 0
Point [6 9] Cluster 1
Point [2 5] Cluster 2
Point [7 8] Cluster 1
Point [8 9] Cluster 1
Point [6 7] Cluster 1
Point [7 8] Cluster 1
Point [3 1] Cluster 2
Point [8 4] Cluster 0
Point [8 6] Cluster 0
Point [8 9] Cluster 1

 T I P   The cluster numbers that you will see may not be the same as the ones shown 
in the preceding code.

More importantly, you want to know the location of each centroid. You can 
do so via printing out the value of C:

print(C)
'''
[[ 7.66666667  5.33333333]
 [ 6.77777778  8.11111111]
 [ 2.          2.71428571]]
'''

Using K-Means in Scikit-learn
Rather than implementing your own K-Means algorithm, you can use the KMeans 
class in Scikit-learn to do clustering. Using the same dataset that you used in the 
previous section, the following code snippet creates an instance of the KMeans 
class with a cluster size of 3:

#---using sci-kit-learn---
from sklearn.cluster import KMeans
k=3
kmeans = KMeans(n_clusters=k)

You can now train the model using the fit() function:

kmeans = kmeans.fit(X)
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To assign a label to all of the points, use the predict() function:

labels = kmeans.predict(X)

To get the centroids, use the cluster_centers property:

centroids = kmeans.cluster_centers_

Let’s print the clusters label and centroids and see what you got:

print(labels)
print(centroids)

You should see the following:

[1 1 1 1 1 0 0 0 2 0 1 0 0 0 0 1 2 2 0]
[[ 6.77777778  8.11111111]
 [ 2.          2.71428571]
 [ 7.66666667  5.33333333]]

 T I P   Due to the locations of the points, it is possible that the centroids you 
obtained may not be identical to the one shown here in the text.

Let’s now plot the points and centroids on a scatter plot:

#---map the labels to colors---
c = ['b','r','y','g','c','m']
colors = [c[i] for i in labels]
 
plt.scatter(df['x'],df['y'], c=colors, s=18)
plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=100, c='black')

Figure 10.12 shows the result.
Using the model that you have just trained, you can use it to predict the cluster 

to which a point will belong using the predict() function:

#---making predictions---
cluster = kmeans.predict([[3,4]])[0]
print(c[cluster])  # r
 
cluster = kmeans.predict([[7,5]])[0]
print(c[cluster])  # y

The preceding statements print the cluster in which a point is located using 
its color: r for red and y  for yellow.



232 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means

 T I P   You may get different colors for the predicted points, which is perfectly fine.

Evaluating Cluster Size Using the Silhouette Coefficient
So far, we have been setting K to a fixed value of 3. How do you ensure that the 
value of K that you have set is the optimal number for the number of clusters? 
With a small dataset, it is easy to deduce the value of K by visual inspection; 
however, with a large dataset, it will be a more challenging task. Also, regardless 
of the dataset size, you will need a scientific way to prove that the value of K 
you have selected is the optimal one. To do that, you will use the Silhouette 
Coefficient.

The Silhouette Coefficient is a measure of the quality of clustering that you have 
achieved. It measures cluster cohesion, which is the space between clusters. The 
range of values for the Silhouette Coefficient is between –1 and 1.

The Silhouette Coefficient formula is given as:

 1 – /a b  

where:

 ■ a is the average distance of a point to all other points in the same cluster; 
if a is small, cluster cohesion is good, as all of the points are close together

 ■ b is the lowest average distance of a point to all other points in the closest 
cluster; if b is large, cluster separation is good, as the nearest cluster is far 
apart

If a is small and b is large, the Silhouette Coefficient is high. The value of k 
that yields the highest Silhouette Coefficient is known as the optimal K.
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Figure 10.12:  Using the KMeans class in Scikit-learn to do the clustering
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Calculating the Silhouette Coefficient

Let’s walk through an example of how to calculate the Silhouette Coefficient of 
a point. Consider the seven points and the clusters (K=3) to which they belong, 
as shown in Figure 10.13.

Let’s calculate the Silhouette Coefficient of a particular point and walk through 
the math. Consider the point (10,10) in cluster 0:

 ■ Calculate its average distance to all other points in the same cluster:

 ■ (10,10) – (12,12) = √8 = 2.828

 ■ (10,10) – (10,13) = √9 = 3

 ■ Average: (2.828 + 3.0) / 2 = 2.914

 ■ Calculate its average distance to all other points in cluster 1:

 ■ (10,10) – (25,20) = √325 = 18.028

 ■ (10,10) – (26,21) = √377 = 19.416

 ■ Average: (18.028 + 19.416) / 2 = 18.722

 ■ Calculate its average distance to all other points in cluster 2:

 ■ (10,10) – (25,5) = √250 = 15.811

 ■ (10,10) – (25,4) = √261= 16.155

 ■ Average: (15.811 + 16.156) / 2 = 15.983

 ■ Minimum average distance from (10,10) to all the points in cluster 1 and 
2 is min(18.722,15.983) = 15.983

Cluster 1

Cluster 0

Cluster 2(12,12)

(10,13)

(10,10)

(25,20)

(25,5)

(25,4)

(26,21)

Figure 10.13:  The set of points and their positions
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Therefore, the Silhouette Coefficient of point (10,10) is 1 – (a/b) = 1 – (2.914/15.983) 
= 0.817681—and this is just for one point in the dataset. You need to calculate 
the Silhouette Coefficients of the other six points in the dataset. Fortunately, 
Scikit-learn contains the metrics module that automates this process.

Using the kmean.csv example that you used earlier in this chapter, the fol-
lowing code snippet calculates the Silhouette Coefficient of all of the 19 points 
in the dataset and prints out the average of the Silhouette Coefficient:

from sklearn import metrics
 
silhouette_samples = metrics.silhouette_samples(X, kmeans.labels_)
print(silhouette_samples)
 
print("Average of Silhouette Coefficients for k =", k)
print("============================================")
print("Silhouette mean:", silhouette_samples.mean())

You should see the following results:

[ 0.67534567  0.73722797  0.73455072  0.66254937  0.6323039   0.33332111
  0.63792468  0.58821402  0.29141777  0.59137721  0.50802377  0.63792468
  0.52511161  0.33332111  0.63792468  0.60168807  0.51664787  0.42831295
  0.52511161]
 
Average of Silhouette Coefficients for k = 3
============================================
Silhouette mean: 0.55780519852

In the preceding statements, you used the metrics.silhouette_samples() 
function to get an array of Silhouette Coefficients for the 19 points. You then 
called the mean() function on the array to get the average Silhouette Coeffi-
cient. If you are just interested in the average Silhouette coefficient and not the  
Silhouette Coefficient for the individual points, you can simply call the metrics 
.silhouette_score() function, like this:

print("Silhouette mean:", metrics.silhouette_score(X, kmeans.labels_))
# Silhouette mean: 0.55780519852

Finding the Optimal K

Now that you have seen how to calculate the mean Silhouette Coefficient for 
a dataset with K clusters, what you want to do next is to find the optimal K 
that gives you the highest average Silhouette Coefficient. You can start with a 
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cluster size of 2, up to the cluster size of one less than the size of the dataset. 
The following code snippet does just that:

silhouette_avgs = []
min_k = 2
 
#---try k from 2 to maximum number of labels---
for k in range(min_k, len(X)):
    kmean = KMeans(n_clusters=k).fit(X)
    score = metrics.silhouette_score(X, kmean.labels_)
    print("Silhouette Coefficients for k =", k, "is", score)
    silhouette_avgs.append(score)
 
f, ax = plt.subplots(figsize=(7, 5))
ax.plot(range(min_k, len(X)), silhouette_avgs)
 
plt.xlabel("Number of clusters")
plt.ylabel("Silhouette Coefficients")
 
#---the optimal k is the one with the highest average silhouette---
Optimal_K = silhouette_avgs.index(max(silhouette_avgs)) + min_k
print("Optimal K is ", Optimal_K)

The code snippet will print out something similar to the following:

Silhouette Coefficients for k = 2 is 0.689711206994
Silhouette Coefficients for k = 3 is 0.55780519852
Silhouette Coefficients for k = 4 is 0.443038181464
Silhouette Coefficients for k = 5 is 0.442424857695
Silhouette Coefficients for k = 6 is 0.408647742839
Silhouette Coefficients for k = 7 is 0.393618055172
Silhouette Coefficients for k = 8 is 0.459039364508
Silhouette Coefficients for k = 9 is 0.447750636074
Silhouette Coefficients for k = 10 is 0.512411340842
Silhouette Coefficients for k = 11 is 0.469556467119
Silhouette Coefficients for k = 12 is 0.440983139813
Silhouette Coefficients for k = 13 is 0.425567707244
Silhouette Coefficients for k = 14 is 0.383836485201
Silhouette Coefficients for k = 15 is 0.368421052632
Silhouette Coefficients for k = 16 is 0.368421052632
Silhouette Coefficients for k = 17 is 0.368421052632
Silhouette Coefficients for k = 18 is 0.368421052632
Optimal K is  2

As you can see from the output, the optimal K is 2. Figure 10.14 shows the 
chart of the Silhouette Coefficients plotted against the number of clusters (k).
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Using K-Means to Solve Real-Life Problems

Suppose you are a clothing designer, and you have been tasked with designing 
a new series of Bermuda shorts. One of the design problems is that you need 
to come up with a series of sizes so that it can fit most people. Essentially, you 
need to have a series of sizes of people with different:

 ■ Waist Circumference

 ■ Upper Leg Length

So, how do you find the right combination of sizes? This is where the K-Means 
algorithm comes in handy. The first thing you need to do is to get ahold of a 
dataset containing the measurements of a group of people (of a certain age 
range). Using this dataset, you can apply the K-Means algorithm to group these 
people into clusters based on the specific measurement of their body parts. Once 
the clusters are found, you would now have a very clear picture of the sizes for 
which you need to design.

For the dataset, you can use the Body Measurement dataset from https://
data.world/rhoyt/body-measurements. This dataset has 27 columns and 9338 
rows. Among the 27 columns, two columns are what you need:

BMXWAIST: Waist Circumference (cm)

BMXLEG: Upper Leg Length (cm)

For this example, assume that the dataset has been saved locally with the 
filename BMX_G.csv.
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Figure 10.14:  The chart showing the various values of K and their corresponding Silhouette 
Coefficients
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Importing the Data
First, import the data into a Pandas dataframe:

%matplotlib inline
import numpy as np
import pandas as pd
 
df = pd.read_csv("BMX_G.csv")

Examine its shape, and you should see 9338 rows and 27 columns:

print(df.shape)
# (9338, 27)

Cleaning the Data
The dataset contains a number of missing values, so it is important to clean the 
data. To see how many empty fields each column contains, use the following 
statement:

df.isnull().sum()

You should see the following:

Unnamed: 0       0
seqn             0
bmdstats         0
bmxwt           95
bmiwt         8959
bmxrecum      8259
bmirecum      9307
bmxhead       9102
bmihead       9338
bmxht          723
bmiht         9070
bmxbmi         736
bmdbmic       5983
bmxleg        2383
bmileg        8984
bmxarml        512
bmiarml       8969
bmxarmc        512
bmiarmc       8965
bmxwaist      1134
bmiwaist      8882
bmxsad1       2543
bmxsad2       2543
bmxsad3       8940
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bmxsad4       8940
bmdavsad      2543
bmdsadcm      8853
dtype: int64

Observe that the column bmxleg has 2383 missing values and bmxwaist has 
1134 missing values, so you would need to remove them as follows:

df = df.dropna(subset=['bmxleg','bmxwaist'])  # remove rows with NaNs
print(df.shape)
# (6899, 27)

After removing the bmxleg and bmxwaist columns with missing values, there 
are now 6899 rows remaining.

Plotting the Scatter Plot
With the data cleaned, let’s plot a scatter plot showing the distribution in upper 
leg length and waist circumference:

import matplotlib.pyplot as plt
 
plt.scatter(df['bmxleg'],df['bmxwaist'], c='r', s=2)
plt.xlabel("Upper leg Length (cm)")
plt.ylabel("Waist Circumference (cm)")

Figure 10.15 shows the scatter plot.
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Figure 10.15:  The scatter plot showing the distribution of waist circumference and upper  
leg length
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Clustering Using K-Means
Assume that you want to create two sizes of Bermuda shorts. In this case, you 
would like to cluster the points into two clusters; that is, K=2. Again, we can use 
Scikit-learn’s KMeans class for this purpose:

#---using sci-kit-learn---
from sklearn.cluster import KMeans
 
k = 2
X = np.array(list(zip(df['bmxleg'],df['bmxwaist'])))
 
kmeans = KMeans(n_clusters=k)
kmeans = kmeans.fit(X)
labels = kmeans.predict(X)
centroids = kmeans.cluster_centers_
 
#---map the labels to colors---
c = ['b','r','y','g','c','m']
colors = [c[i] for i in labels]
 
plt.scatter(df['bmxleg'],df['bmxwaist'], c=colors, s=2)
plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=100, c='black')

Figure 10.16 shows the points separated into two clusters, red and blue, together 
with the two centroids.
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Figure 10.16:  Clustering the points into two clusters



240 Chapter 10 ■ Unsupervised Learning—Clustering Using K-Means

For you, the most important information is the value of the two centroids:

print(centroids)

You should get the following:

[[  37.65663043   77.84326087]
 [  38.81870146  107.9195713 ]]

This means that you can now design your Bermuda shorts with the follow-
ing dimensions:

 ■ Waist 77.8 cm, upper leg length 37.7 cm

 ■ Waist 107.9 cm, upper leg length 38.8 cm

Finding the Optimal Size Classes
Before deciding on the actual different sizes to make, you wanted to see if the 
K=2 is the optimal one, hence you try out different values of K from 2 to 10 and 
look for the optimal K:

from sklearn import metrics
 
silhouette_avgs = []
min_k = 2
 
#---try k from 2 to maximum number of labels---
for k in range(min_k, 10):
    kmean = KMeans(n_clusters=k).fit(X)
    score = metrics.silhouette_score(X, kmean.labels_)
    print("Silhouette Coefficients for k =", k, "is", score)
    silhouette_avgs.append(score)
 
#---the optimal k is the one with the highest average silhouette---
Optimal_K = silhouette_avgs.index(max(silhouette_avgs)) + min_k
print("Optimal K is", Optimal_K)

The results are as shown here:

Silhouette Coefficients for k = 2 is 0.516551581494
Silhouette Coefficients for k = 3 is 0.472269050688
Silhouette Coefficients for k = 4 is 0.436102446644
Silhouette Coefficients for k = 5 is 0.418064636123
Silhouette Coefficients for k = 6 is 0.392927895139
Silhouette Coefficients for k = 7 is 0.378340717032
Silhouette Coefficients for k = 8 is 0.360716292593
Silhouette Coefficients for k = 9 is 0.341592231958
Optimal K is 2
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The result confirms that the optimal K is 2. That is, you should have two dif-
ferent sizes for the Bermuda shorts that you are designing.

However, the company wanted you to have more sizes so that it can accom-
modate a wider range of customers. In particular, the company feels that four 
sizes would be a better decision. To do so, you just need to run the KMeans code 
snippet that you saw in the “Clustering Using K-Means” section and set k =4.

You should now see the clusters as shown in Figure 10.17.

The centroids locations are as follows:

[[  38.73004292   85.05450644]
 [  38.8849217   102.17011186]
 [  36.04064872   67.30131125]
 [  38.60124294  124.07853107]]

This means that you can now design your Bermuda shorts with the follow-
ing dimensions:

 ■ Waist 67.3 cm, upper leg length 36.0 cm

 ■ Waist 85.1 cm, upper leg length 38.7 cm

 ■ Waist 102.2 cm, upper leg length 38.9 cm

 ■ Waist 124.1 cm, upper leg length 38.6 cm
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Figure 10.17:  Clustering the points into four clusters
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Summary

In this chapter, you learned about unsupervised learning. Unsupervised learning 
is a type of machine learning technique that allows you to find patterns in data. 
In unsupervised learning, the data that is used by the algorithm (for example, 
K-Means, as discussed in this chapter) is not labeled, and your role is to discover 
its hidden structures and assign labels to them.
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What Is Microsoft Azure Machine Learning Studio?

Microsoft Azure Machine Learning Studio (henceforth referred to as MAML) is 
an online collaborative, drag-and-drop tool for building machine learning 
models. Instead of implementing machine learning algorithms in languages like 
Python or R, MAML encapsulates the most-commonly used machine learning 
algorithms as modules, and it lets you build learning models visually using 
your dataset. This shields the beginning data science practitioners from the 
details of the algorithms, while at the same time offering the ability to fine-tune 
the hyperparameters of the algorithm for advanced users. Once the learning 
model is tested and evaluated, you can publish your learning models as web 
services so that your custom apps or BI tools, such as Excel, can consume it. 
What’s more, MAML supports embedding your Python or R scripts within 
your learning models, giving advanced users the opportunity to write custom 
machine learning algorithms.

In this chapter, you will take a break from all of the coding that you have been 
doing in the previous few chapters. Instead of implementing machine learning 
using Python and Scikit-learn, you will take a look at how to use the MAML to 
perform machine learning visually using drag-and-drop.

Using Azure Machine Learning 
Studio

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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An Example Using the Titanic Experiment
Now that you have a good sense of what machine learning is and what it can 
do, let’s get started with an experiment using MAML. For this experiment, you 
will be using a classic example in machine learning—predicting the survival 
of a passenger on the Titanic.

In case you are not familiar with the Titanic, on April 15, 1912, during her 
maiden voyage, the Titanic sank after colliding with an iceberg, killing 1,502 out 
of 2,224 passengers and crew. While the main reason for the deaths was due to 
insufficient lifeboats, of those who survived, most of them were women, chil-
dren, and the upper-class. As such, this presents a very interesting experiment 
in machine learning. If we are given a set of data points, containing the various 
profiles of passengers (such as gender, cabin class, age, and so forth) and whether 
they survived the sinking, it would be interesting for us to use machine learning 
to predict the survivability of a passenger based on his/her profile.

Interestingly, you can get the Titanic data from Kaggle (https://www.kaggle 
.com/c/titanic/data). Two sets of data are provided (see Figure 11.1):

 ■ Training set

 ■ Testing set

Figure 11.1:  You can download the training and testing datasets from Kaggle
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You use the training set to train your learning model so that you can use it 
to make predictions. Once your learning model is trained, you will make use 
of the testing set to predict the survivability of passengers.

Because the testing test does not contain a label specifying if a passenger 
survived, we will not use it for this experiment. Instead, we will only use the 
training set for training and testing our model.

Once the training set is downloaded, examine its contents (see Figure 11.2).

The training set should have the following fields:

PassengerId: A running number indicating the row of records.

Survived: If the particular passenger survived the sinking. This is the label 
of the dataset for our experiment.

Pclass: Ticket class that the passenger is holding.

Name: Name of the passenger.

Sex: Gender of the passenger.

Age: Age of the passenger.

SibSp: Number of siblings/spouses aboard the Titanic.

Parch: Number of parents/children aboard the Titanic.

Ticket: Ticket number.

Figure 11.2:  Examining the data in Excel
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Fare: Fare paid by the passenger.

Cabin: Cabin number of the passenger.

Embarked: Place of embarkation. Note that C = Cherbourg, Q = Queenstown, 
and S = Southampton.

Using Microsoft Azure Machine Learning Studio
We are now ready to load the data into MAML. Using your web browser, navigate 
to http://studio.azureml.net, and click the “Sign up here” link (see Figure 11.3).

If you just want to experience MAML without any financial commitment, 
choose the Free Workspace option and click Sign In (see Figure 11.4).

Figure 11.3:  Click the “Sign up here” link for first-time Azure Machine Learning users

Figure 11.4:  You can choose from the various options available to use MAML
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Once you are signed in, you should see a list of items on the left side of the 
page (see Figure 11.5). I will highlight some of the items on this panel as we 
move along.

Uploading Your Dataset

To create learning models, you need datasets. For this example, we will use the 
dataset that you have just downloaded.

Click the + NEW item located at the bottom-left of the page. Select DATASET 
on the left (see Figure 11.6), and then click the item on the right labeled FROM 
LOCAL FILE.

Figure 11.5:  The left panel of MAML

Figure 11.6:  Uploading a dataset to the MAML
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Click the Choose File button (see Figure 11.7) and locate the training set 
downloaded earlier. When finished, click the tick button to upload the dataset 
to the MAML.

Creating an Experiment

You are now ready to create an experiment in MAML. Click the + NEW button 
at the bottom-left of the page and select Blank Experiment (see Figure 11.8).

Figure 11.7:  Choose a file to upload as a dataset

Figure 11.8:  Creating a new blank experiment in MAML
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You should now see the canvas, as shown in Figure 11.9.

You can give a name to your experiment by typing it over the default experiment 
name at the top (see Figure 11.10).

Once that is done, let’s add our training dataset to the canvas. You can do 
so by typing the name of the training set in the search box on the left, and the 
matching dataset will now appear (see Figure 11.11).

Drag and drop the train.csv dataset onto the canvas (see Figure 11.12).
The train.csv dataset has an output port (represented by a circle with a 1 

inside). Clicking it will reveal a context menu (see Figure 11.13).
Click Visualize to view the content of the dataset. The dataset is now displayed, 

as shown in Figure 11.14.

Figure 11.9:  The canvas representing your experiment

Figure 11.10:  Naming your experiment
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Figure 11.11:  Using the dataset that you have uploaded

Figure 11.12:  Dragging and dropping the dataset onto the canvas

Figure 11.13:  Visualizing the content of the dataset
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Take a minute to scroll through the data. Observe the following:

 ■ The PassengerID field is simply a running number, and it does not pro-
vide any information with regard to the passenger. This field should be 
discarded when training your model.

 ■ The Ticket field contains the ticket number of the passengers. In this case, 
however, a lot of these numbers seem to be randomly generated. Thus, it 
is not very useful in helping us to predict the survivability of a passenger 
and hence should be discarded.

 ■ The Cabin field contains a lot of missing data. Fields that have a lot of 
missing data do not provide insights to our learning model and hence 
should be discarded.

 ■ If you select the Survived field, you will see the chart displayed on the 
bottom right of the window (see Figure 11.15). Because a passenger can 
either survive (represented by a 1) or die (represented by a 0), it does not 
make sense to have any values in between. However, since this value is 
represented as a numeric value, MAML would not be able to figure this 

Figure 11.14:  Viewing the dataset
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out unless you tell it. To fix this, you need to make this value a categorical 
value. A categorical value is a value that can take on one of a limited, and 
usually fixed, number of possible values.

 ■ The Pclass, SibSp, and Parch fields should all be made categorical as well.

All of the fields that are not discarded are useful in helping us to create a 
learning model. These fields are known as features.

Filtering the Data and Making Fields Categorical

Now that we have identified the features we want, let’s add the Select Columns 
in Dataset module to the canvas (see Figure 11.16).

In the Properties pane, click the Launch column selector and select the col-
umns, as shown in Figure 11.17.

The Select Columns in Dataset module will reduce the dataset to the columns 
that you have specified. Next, we want to make some of the columns categorical. 
To do that, add the Edit Metadata module, as shown in Figure 11.18, and connect 
it as shown. Click the Launch column selector button, and select the Survived, 
Pclass, SibSp, and Parch fields. In the Categorical section of the properties pane, 
select “Make categorical.”

Figure 11.15:  Viewing the Survived column
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Figure 11.16:  Use the Select Columns in Dataset module to filter columns

Figure 11.17:  Selecting the fields that you want to use as features

Figure 11.18:  Making specific fields categorical
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You can now run the experiment by clicking the RUN button located at the 
bottom of the MAML. Once the experiment is run, click the output port of  
the Edit Metadata module and select Visualize. Examine the dataset displayed.

Removing the Missing Data

If you examine the dataset returned by the Edit Metadata module carefully, 
you will see that the Age column has some missing values. It is always good to 
remove all those rows that have missing values so that those missing values will 
not affect the efficiency of the learning model. To do that, add a Clean Missing 
Data module to the canvas and connect it as shown in Figure 11.19. In the prop-
erties pane, set the “Cleaning mode” to “Remove entire row.”

 T I P   You can also replace the missing values with the mean of the column, if you 
prefer.

Click RUN. The dataset should now have no more missing values. Also notice 
that the number of rows has been reduced to 712 (see Figure 11.20).

Splitting the Data for Training and Testing

When building your learning model, it is essential that you test it with sample 
data after the training is done. If you only have one single set of data, you can 
split it into two parts—one for training and one for testing. This is accomplished 

Figure 11.19:  Removing rows that have missing values in the Age column
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by the Split Data module (see Figure 11.21). For this example, I am splitting 80 
percent of the dataset for training and the remaining 20 percent for testing.

Figure 11.20:  Viewing the cleaned and filtered dataset

Figure 11.21:  Splitting the data into training and testing datasets
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The left output port of the Split Data module will return 80 percent of the 
dataset while the right output port will return the remaining 20 percent.

Training a Model
You are now ready to create the training model. Add the Two-Class Logistic 
Regression and Train Model modules to the canvas and connect them as shown 
in Figure 11.22. The Train Model module takes in a learning algorithm and a 
training dataset. You will also need to tell the Train Model module the label for 
which you are training it. In this case, it is the Survived column.

Once you have trained the model, it is essential that you verify its effective-
ness. To do so, use the Score Model module, as shown in Figure 11.23. The Score 
Model takes in a trained model (which is the output of the Train Model module) 
and a testing dataset.

You are now ready to run the experiment again. Click RUN. Once it is com-
pleted, select the Scored Labels column (see Figure 11.24). This column represents 
the results of applying the test dataset against the learning model. The column 
next to it, Scored Probabilities, indicates the confidence of the prediction. With  
the Scored Labels column selected, look at the right side of the screen and above the  
chart, select Survived for the item named “compare to.” This will plot the con-
fusion matrix.

Figure 11.22:  Training your model using the Two-Class Logistic Regression algorithm
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Figure 11.23:  Scoring your model using the testing dataset and the trained model

Figure 11.24:  Viewing the confusion matrix for the learning model
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The y-axis of the confusion matrix shows the actual survival information of 
passengers: 1 for survived and 0 for did not survive. The x-axis shows the pre-
diction. As you can see, 75 were correctly predicted not to survive the disaster, 
and 35 were correctly predicted to survive the disaster. The two other boxes 
show the predictions that were incorrect.

Comparing Against Other Algorithms

While the numbers for the predictions look pretty decent, it is not sufficient 
to conclude at this moment that we have chosen the right algorithm for this 
problem. MAML comes with 25 machine learning algorithms for different 
types of problems. Now let’s use another algorithm provided by MAML, Two-
Class Decision Jungle, to train another model. Add the modules as shown in 
Figure 11.25.

 T I P   The Two-Class Decision Jungle algorithm is another machine learning 
algorithm that is based on decision trees. For this experiment, you can also use other 
algorithms provided by MAML, such as the Two-Class Logistic Regression and Two-
Class Support Vector Machine.

Figure 11.25:  Using another algorithm for training the alternative model
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Click Run. You can click the output port of the second Score Model module to 
view the result of the model, just like the previous learning model. However, it 
would be more useful to be able to compare them directly. You can accomplish 
this using the Evaluate Model module (see Figure 11.26).

Click RUN to run the experiment. When done, click the output port of the 
Evaluate Model module and you should see something like Figure 11.27.

The blue line represents the algorithm on the left input port of the Evaluate 
Model module (Two-Class Logistic Regression), while the red line represents the  
algorithm on the right (Two-Class Decision Jungle). When you click either  
the blue or red box, you will see the various metrics for each algorithm displayed 
below the chart.

Figure 11.26:  Evaluating the performance of the two models
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Evaluating Machine Learning Algorithms

Now that you have seen an experiment performed using two specific machine 
learning algorithms—Two-Class Logistic Regression and Two-Class Decision 
Jungle—let’s step back a little and examine the various metrics that were gen-
erated by the Evaluate Model module. Specifically, let’s define the meaning of 
the following terms:

True Positive (TP) The model correctly predicts the outcome as positive. 
In this case, the number of TP indicates the number of correct predictions 
that a passenger survived (positive) the disaster.

Figure 11.27:  Viewing the metrics for the two learning algorithms
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True Negative (TN) The model correctly predicts the outcome as negative 
(did not survive); that is, passengers were correctly predicted not to survive 
the disaster.

False Positive (FP) The model incorrectly predicted the outcome as positive, 
but the actual result is negative. In the Titanic example, it means that the 
passenger did not survive the disaster, but the model predicted the passenger 
to have survived.

False Negative (FN) The model incorrectly predicted the outcome as neg-
ative, but the actual result is positive. In this case, this means the model 
predicted that the passenger did not survive the disaster, but actually the 
passenger did.

This set of numbers is known as the confusion matrix. The confusion matrix 
is discussed in detail in Chapter 7, “Supervised Learning—Classification Using 
Logistic Regression.” So if you are not familiar with it, be sure to read up on 
Chapter 7.

Publishing the Learning Model as a Web Service
Once the most effective machine learning algorithm has been determined, you 
can publish the learning model as a web service. Doing so will allow you to 
build custom apps to consume the service. Imagine that you are building a 
learning model to help doctors diagnose breast cancer. Publishing as a web ser-
vice would allow you to build apps to pass the various features to the learning 
model to make the prediction. Best of all, by using MAML, there is no need to 
handle the details of publishing the web service—MAML will host it for you 
on the Azure cloud.

Publishing the Experiment

To publish our experiment as a web service:

 ■ Select the left Train Model module (since it has a better performance com-
pared to the other).

 ■ At the bottom of the page, hover your mouse over the item named SET 
UP WEB SERVICE, and click Predictive Web Service (Recommended).

 T I P   For this experiment, the best algorithm is the one that gives the highest AUC 
(Area Under the Curve) score.
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This will create a new Predictive experiment, as shown in Figure 11.28.

Figure 11.28:  Publishing the learning model as a web service
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Click RUN, and then DEPLOY WEB SERVICE. The page seen in Figure 11.29 
will now be shown.

Testing the Web Service

Click the Test hyperlink. The test page shown in Figure 11.30 is displayed. You 
can click the Enable button to fill the various fields from your training set. This 
will save you the chore of filling in the various fields.

The fields should now be filled with values from the training data. At the 
bottom of the page, click Test Request/Response and the prediction will be 
shown on the right.

Programmatically Accessing the Web Service

At the top of the Test page, you should see a Consume link as shown in Figure 11.31. 
Click it.

You will see the credentials that you need to use in order to access your web 
service, as well as the URLs for the web service. At the bottom of the page, you 
will see the sample code generated for you that you could use to access the web 
service programmatically (see Figure 11.32). The sample code is available in C#, 
Python 2, Python 3, and R.

Figure 11.29:  The test page for the web service



264 Chapter 11 ■ Using Azure Machine Learning Studio

Click the Python 3+ tab, and copy the code generated. Click the View in Studio 
link at the top-right of the page to return to MAML. Back in MAML, click the 
+ NEW button at the bottom of the screen. Click NOTEBOOK on the left, and 
you should be able to see the various notebooks, as shown in Figure 11.33.

 T I P   The notebooks hosted by the MAML are the same as the Jupyter Notebook 
that you have installed on your local computer.

Click Python 3, give a name to your notebook, and paste in the Python code 
that you copied earlier (see Figure 11.34).

Figure 11.30:  Testing the web service with some data

Figure 11.31:  The Consume link at the top of the web service page
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Figure 11.32:  The sample code for accessing the web service written in the three programming 
languages

Figure 11.33:  Creating a new notebook in MAML
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Be sure to replace the value of the api _ key variable with that of your primary 
key. Press Ctrl+Enter to run the Python code. If the web service is deployed cor-
rectly, you should see the result at the bottom of the screen (see Figure 11.35).

Summary

In this chapter, you have seen how you can use the MAML to create machine 
learning experiments. Instead of writing your code in Python, you can use the 
various algorithms provided by Microsoft and build your machine learning 
models visually using drag and drop. This is very useful for beginners who 
want to get started with machine learning without diving into the details. Best 

Figure 11.34:  Testing the code in the Python notebook

Figure 11.35:  The result returned by the web service
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of all, MAML helps you to deploy your machine learning as a web service auto-
matically—and it even provides the code for you to consume it.

In the next chapter, you will learn how to deploy your machine learning 
models created in Python and Scikit-learn manually using Python and the 
Flask micro-framework.
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12

Deploying ML

The main goal of machine learning is to create a model that you can use for 
making predictions. Over the past few chapters in this book, you learned about 
the various algorithms used to build an ideal machine learning model. At the 
end of the entire process, what you really want is to make your model accessible 
to users so that they can utilize it to do useful tasks, like making predictions 
(such as helping doctors with their diagnosis, and so forth).

A good way to deploy your machine learning model is to build a REST  
(REpresentational State Transfer) API, so that the model is accessible by others who 
may not be familiar with how machine learning works. Using REST, you can 
build multi-platform front-end applications (such as iOS, Android, Windows, 
and so forth) and pass the data to the model for processing. The result can then 
be returned back to the application. Figure 12.1 summarizes the architecture 
that we will use for deploying our machine learning model.

In this chapter, we will go through a case study, build a machine learning 
model, and then deploy it as a REST service. Finally, we will build a console 
front-end application using Python to allow users to make some predictions.

Deploying Machine Learning 
Models

Python® Machine Learning, First Edition. Wei-Meng Lee.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Case Study

For this case study, we are going to help predict the likelihood of a person 
being diagnosed with diabetes based on several diagnostic measurements of 
that person.

The dataset that you will be using in this chapter is from this database: 
https://www.kaggle.com/uciml/pima-indians-diabetes-database. This dataset 
contains several medical independent predictors and one target. Its features 
consist of the following:

 ■ Pregnancies: Number of times pregnant

 ■ Glucose: Plasma glucose concentration after 2 hours in an oral glucose 
tolerance test

 ■ BloodPressure: Diastolic blood pressure (mm Hg)

 ■ SkinThickness: Triceps skin fold thickness (mm)

 ■ Insulin: 2-Hour serum insulin (mu U/ml)

 ■ BMI: Body mass index (weight in kg/(height in m)^2)

 ■ DiabetesPedigreeFunction: Diabetes pedigree function

 ■ Age: Age (years)

 ■ Outcome: 0 (non-diabetic) or 1 (diabetic)

Internet

Frontend Clients

REST
API

Machine Learning Model

Figure 12.1:  Deploying your machine learning model as a REST API allows front-end applica-
tions to use it for predictions
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The dataset has 768 records, and all patients are females at least 21 years of 
age and of Pima Indian descent.

Loading the Data
For this example, the dataset has been downloaded locally and named diabetes.csv.

The following code snippet loads the dataset and prints out information about 
the DataFrame using the info() function:

import numpy as np
import pandas as pd

df = pd.read_csv('diabetes.csv')
df.info()

You should see the following output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
Pregnancies                 768 non-null int64
Glucose                     768 non-null int64
BloodPressure               768 non-null int64
SkinThickness               768 non-null int64
Insulin                     768 non-null int64
BMI                         768 non-null float64
DiabetesPedigreeFunction    768 non-null float64
Age                         768 non-null int64
Outcome                     768 non-null int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB

Cleaning the Data
As with all datasets, your first job is to clean the data so that there are no missing 
or erroneous values. Let’s first check for nulls in the dataset:

#---check for null values---
print("Nulls")
print("=====")
print(df.isnull().sum())

The result is as follows:

Nulls
=====
Pregnancies                 0
Glucose                     0
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BloodPressure               0
SkinThickness               0
Insulin                     0
BMI                         0
DiabetesPedigreeFunction    0
Age                         0
Outcome                     0
dtype: int64

There are no nulls. Next, let’s check for 0s:

#---check for 0s---
print("0s")
print("==")
print(df.eq(0).sum())

For features like Pregnancies and Outcome, having values of 0 is normal. 
For the other features, however, a value of 0 indicates that the values are not 
captured in the dataset.

0s
==
Pregnancies                 111
Glucose                       5
BloodPressure                35
SkinThickness               227
Insulin                     374
BMI                          11
DiabetesPedigreeFunction      0
Age                           0
Outcome                     500
dtype: int64

There are many ways to deal with this case of 0 for features, but for simplicity, 
let’s just replace the 0 values with NaN:

df[['Glucose','BloodPressure','SkinThickness',
    'Insulin','BMI','DiabetesPedigreeFunction','Age']] = \
    df[['Glucose','BloodPressure','SkinThickness',
        'Insulin','BMI','DiabetesPedigreeFunction','Age']].replace 
(0,np.NaN)

Once the NaN values have replaced the 0s in the DataFrame, you can now 
replace them with the mean of each column as follows:

df.fillna(df.mean(), inplace = True)   # replace NaN with the mean

You can now check the DataFrame to verify that there are now no more 0s 
in the DataFrame:

print(df.eq(0).sum())
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You should see this output:

Pregnancies                 111
Glucose                       0
BloodPressure                 0
SkinThickness                 0
Insulin                       0
BMI                           0
DiabetesPedigreeFunction      0
Age                           0
Outcome                     500
dtype: int64

Examining the Correlation Between the Features
The next step is to examine how the various independent features affect the 
outcome (whether a patient is diabetic or not). To do that, you can call the corr() 
function on the DataFrame:

corr = df.corr()
print(corr)

The corr() function computes the pairwise correlation of columns. For example, 
the following output shows that the glucose level of a patient after a 2-hour oral 
glucose tolerance test has little relationship to the number of pregnancies of a 
patient (0.127911), but it has a significant relationship to the outcome (0.492928):

Pregnancies   Glucose  BloodPressure  SkinThickness  \
Pregnancies             1.000000  0.127911       0.208522       0.082989
Glucose                 0.127911  1.000000       0.218367       0.192991
BloodPressure           0.208522  0.218367       1.000000       0.192816
SkinThickness           0.082989  0.192991       0.192816       1.000000
Insulin                 0.056027  0.420157       0.072517       0.158139
BMI                     0.021565  0.230941       0.281268       0.542398
DiabetesPedigree 
Function               -0.033523  0.137060      -0.002763       0.100966
Age                     0.544341  0.266534       0.324595       0.127872
Outcome                 0.221898  0.492928       0.166074       0.215299

                         Insulin      BMI  DiabetesPedigreeFunction  \
Pregnancies             0.056027  0.021565               -0.033523
Glucose                 0.420157  0.230941                0.137060
BloodPressure           0.072517  0.281268               -0.002763
SkinThickness           0.158139  0.542398                0.100966
Insulin                 1.000000  0.166586                0.098634
BMI                     0.166586  1.000000                0.153400
DiabetesPedigree 
Function                0.098634  0.153400                1.000000
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Age                     0.136734  0.025519                0.033561
Outcome                 0.214411  0.311924                0.173844

                             Age   Outcome
Pregnancies             0.544341  0.221898
Glucose                 0.266534  0.492928
BloodPressure           0.324595  0.166074
SkinThickness           0.127872  0.215299
Insulin                 0.136734  0.214411
BMI                     0.025519  0.311924
DiabetesPedigree 
Function                0.033561  0.173844
Age                     1.000000  0.238356
Outcome                 0.238356  1.000000

Our goal here is to find out which features significantly affect the outcome.

Plotting the Correlation Between Features
Rather than look at the various numbers representing the various correlations 
between the columns, it is useful to be able to picture it visually. The following 
code snippet uses the matshow() function to plot the results returned by the 
corr() function as a matrix. At the same time, the various correlation factors 
are also shown in the matrix:

%matplotlib inline
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(10, 10))
cax     = ax.matshow(corr,cmap='coolwarm', vmin=-1, vmax=1)

fig.colorbar(cax)
ticks = np.arange(0,len(df.columns),1)
ax.set_xticks(ticks)

ax.set_xticklabels(df.columns)
plt.xticks(rotation = 90)

ax.set_yticklabels(df.columns)
ax.set_yticks(ticks)

#---print the correlation factor---
for i in range(df.shape[1]):
    for j in range(9):
        text = ax.text(j, i, round(corr.iloc[i][j],2),
                       ha="center", va="center", color="w")
plt.show()

Figure 12.2 shows the matrix. The cubes that have colors closest to red rep-
resent the highest correlation factors, while those closest to blue represent the 
lowest correlation factors.
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Another way to plot the correlation matrix is to use Seaborn’s heatmap() 
function as follows:

import seaborn as sns

sns.heatmap(df.corr(),annot=True)

#---get a reference to the current figure and set its size---
fig = plt.gcf()
fig.set_size_inches(8,8)

Figure 12.3 shows the heatmap produced by Seaborn.
Now let’s print out the top four features that have the highest correlation 

with the Outcome:

#---get the top four features that has the highest correlation---
print(df.corr().nlargest(4, 'Outcome').index)
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Figure 12.2: Matrix showing the various correlation factors
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#---print the top 4 correlation values---
print(df.corr().nlargest(4, 'Outcome').values[:,8])

You should see the following output:

Index(['Outcome', 'Glucose', 'BMI', 'Age'], dtype='object')
[1.         0.49292767 0.31192439 0.23835598]

You can now see that apart from the Outcome feature, the three most influen-
tial features are Glucose, BMI, and Age. We can use these three features to train 
our model.
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Figure 12.3: Heatmap produced by Seaborn showing the correlation factors
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Evaluating the Algorithms
Before we train our model, it is always good to evaluate a few algorithms to 
find the one that gives the best performance. Accordingly, we will try the fol-
lowing algorithms:

 ■ Logistic Regression

 ■ K-Nearest Neighbors (KNN)

 ■ Support Vector Machines (SVM)—Linear and RBF Kernels

Logistic Regression

For the first algorithm, we will use logistic regression. Instead of splitting the 
dataset into training and testing sets, we will use 10-fold cross-validation to 
obtain the average score of the algorithm used:

from sklearn import linear_model
from sklearn.model_selection import cross_val_score

#---features---
X = df[['Glucose','BMI','Age']]

#---label---
y = df.iloc[:,8]

log_regress = linear_model.LogisticRegression()
log_regress_score = cross_val_score(log_regress, X, y, cv=10, 
scoring='accuracy').mean()

print(log_regress_score)

The result of training the model should use an average of 0.7617737525632263.
We will also save this result to a list so that we can use it to compare with 

the scores of other algorithms:

result = []
result.append(log_regress_score)

K-Nearest Neighbors

The next algorithm that we will use is the K-Nearest Neighbors (KNN). In 
addition to using the 10-fold cross-validation to obtain the average score of the 
algorithm, we also need to try out the various values of k to obtain the optimal 
k so that we can get the best accuracy:

from sklearn.neighbors import KNeighborsClassifier

#---empty list that will hold cv (cross-validates) scores---
cv_scores = []
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#---number of folds---
folds = 10

#---creating odd list of K for KNN---
ks = list(range(1,int(len(X) * ((folds - 1)/folds)), 2))

#---perform k-fold cross validation---
for k in ks:
    knn = KNeighborsClassifier(n_neighbors=k)
    score = cross_val_score(knn, X, y, cv=folds, scoring='accuracy').mean()
    cv_scores.append(score)

#---get the maximum score---
knn_score = max(cv_scores)

#---find the optimal k that gives the highest score---
optimal_k = ks[cv_scores.index(knn_score)]

print(f"The optimal number of neighbors is {optimal_k}")
print(knn_score)
result.append(knn_score)

You should get the following output:

The optimal number of neighbors is 19
0.7721462747778537

Support Vector Machines

The next algorithm we will use is Support Vector Machine (SVM). We will use 
two types of kernels for SVM: linear and RBF. The following code snippet uses 
the linear kernel:

from sklearn import svm

linear_svm = svm.SVC(kernel='linear')
linear_svm_score = cross_val_score(linear_svm, X, y,
                                   cv=10, scoring='accuracy').mean()
print(linear_svm_score)
result.append(linear_svm_score)

You should get an accuracy of:

0.7656527682843473

The next code snippet uses the RBF kernel:

rbf = svm.SVC(kernel='rbf')
rbf_score = cross_val_score(rbf, X, y, cv=10, scoring='accuracy').mean()
print(rbf_score)
result.append(rbf_score)
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You should get an accuracy of:

0.6353725222146275

Selecting the Best Performing Algorithm

Now that we have evaluated the four different algorithms, we can choose the 
best performing one:

algorithms = ["Logistic Regression", "K Nearest Neighbors", "SVM Linear 
Kernel", "SVM RBF Kernel"]
cv_mean = pd.DataFrame(result,index = algorithms)
cv_mean.columns=["Accuracy"]
cv_mean.sort_values(by="Accuracy",ascending=False)

Figure 12.4 shows the output of the preceding code snippet.

Training and Saving the Model
Since the best performing algorithm for our dataset is KNN with k = 19, we can 
now go ahead and train our model using the entire dataset:

knn = KNeighborsClassifier(n_neighbors=19)
knn.fit(X, y)

Once the model is trained, you need to save it to disk so that the model can 
be retrieved later for prediction purposes:

import pickle

#---save the model to disk---
filename = 'diabetes.sav'

#---write to the file using write and binary mode---
pickle.dump(knn, open(filename, 'wb'))

The trained model is now saved to a file named diabetes.sav. Let’s load it to 
ensure that it was saved properly:

#---load the model from disk---
loaded_model = pickle.load(open(filename, 'rb'))

Accuracy

K Nearest Neighbors

Logistic Regression

SVM Linear Kernel

SVM RBF Kernel

0.772146

0.761774

0.765653

0.635373

Figure 12.4: Ranking the performance of the various algorithms
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Once the model is loaded, let’s do some predictions:

Glucose = 65
BMI = 70
Age = 50

prediction = loaded_model.predict([[Glucose, BMI, Age]])
print(prediction)
if (prediction[0]==0):
    print("Non-diabetic")
else:
    print("Diabetic")

The output prints the word “Non-Diabetic” if the return value of the prediction 
is a 0; else it prints the word “Diabetic”. You should see the following output:

[0]
Non-diabetic

We are also interested to know the probabilities of the prediction, and so you 
get the probabilities and convert them into percentages:

proba = loaded_model.predict_proba([[Glucose, BMI, Age]])
print(proba)
print("Confidence: " + str(round(np.amax(proba[0]) * 100 ,2)) + "%")

You should see the following:

[[0.94736842 0.05263158]]
Confidence: 94.74%

The probabilities printed show the probability of the result being 0, and the 
probability of the result being 1. The prediction is based on the one with the highest 
probability, and we use that probability and convert it into the confidence percentage.

Deploying the Model

It is now time to deploy our machine learning model as a REST API. First, how-
ever, you need to install the Flask micro-framework.

 T I P   Flask is a micro-framework for Python that allows you to build web-based 
applications. Micro-frameworks in Python have little to no dependencies to external 
libraries and are thus very lightweight. Flask is particularly useful for developing REST 
APIs. For more information on Flask, check out its documentation at http://flask 
.pocoo.org/docs/1.0/.
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Type the following in Terminal or Command Prompt to install Flask:

$ pip install flask

Once Flask is installed, create a text file named REST _ API.py, and enter the 
following code snippet:

import pickle
from flask import Flask, request, json, jsonify
import numpy as np

app = Flask(__name__)

#---the filename of the saved model---
filename = 'diabetes.sav'

#---load the saved model---
loaded_model = pickle.load(open(filename, 'rb'))

@app.route('/diabetes/v1/predict', methods=['POST'])
def predict():
    #---get the features to predict---
    features = request.json

    #---create the features list for prediction---
    features_list = [features["Glucose"],
                     features["BMI"],
                     features["Age"]]

    #---get the prediction class---
    prediction = loaded_model.predict([features_list])

    #---get the prediction probabilities---
    confidence = loaded_model.predict_proba([features_list])

    #---formulate the response to return to client---
    response = {}
    response['prediction'] = int(prediction[0])
    response['confidence'] = str(round(np.amax(confidence[0]) * 100 ,2))

    return  jsonify(response)

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)

The preceding code snippet accomplishes the following:

 ■ Creates a route /diabetes/v1/predict using the route decorator.

 ■ The route is accessible through the POST verb.
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 ■ To make a prediction, users make a call to this route and pass in the var-
ious features using a JSON string.

 ■ The result of the prediction is returned as a JSON string.

 N OT E   A decorator in Python is a function that wraps and replaces another function.

Testing the Model
To test the REST API, run it in Terminal by entering the following command:

$ python REST_API.py

You should see the following output:

* Serving Flask app "REST_API" (lazy loading)
 * Environment: production
   WARNING: Do not use the development server in a production environment.
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

This indicates that the service is up and listening at port 5000.
The easiest way to test the API is to use the cURL command (installed by 

default on macOS) from a separate Terminal or Command Prompt window:

$ curl -H "Content-type: application/json" -X POST
http://127.0.0.1:5000/diabetes/v1/predict  
-d '{"BMI":30, "Age":29,"Glucose":100 }'

The preceding command sets the JSON header, and it uses the POST verb to 
connect to the REST API listening at port 5000. The features and their values 
to use for the prediction are sent as a JSON string.

 T I P   For Windows users, single quotes are not recognized by the cURL command. 
You have to use double quotes and turn off the special meaning of double quotes in 
the JSON string: "{\"BMI\":30, \"Age\":29,\"Glucose\":100 }".

When the REST API has received the data sent to it, it will use it to perform 
the prediction. You will see the prediction result returned as follows:

{"confidence":"78.95","prediction":0}

The result indicates that based on the data sent to it, it is not likely that the 
person has diabetes (78.95% confidence).

Go ahead and try some other values, like this:

$ curl -H "Content-type: application/json" -X POST
http://127.0.0.1:5000/diabetes/v1/predict
-d '{"BMI":65, "Age":29,"Glucose":150 }'



 Chapter 12 ■ Deploying Machine Learning Models 283

This time around, the prediction indicates that the person is likely to be dia-
betic with 68.42% confidence:

{"confidence":"68.42","prediction":1} 

Creating the Client Application to Use the Model

Once the REST API is up and running, and it has been tested to be working 
correctly, you can build the client side of things. Since this book revolves around 
Python, it is fitting to build the client using Python. Obviously, in real life, you 
would most likely build your clients for the iOS, Android, macOS, and Windows 
platforms.

Our Python client is pretty straightforward—formulate the JSON string to 
send to the service, get the result back in JSON, and then retrieve the details 
of the result:

import json
import requests

def predict_diabetes(BMI, Age, Glucose):
    url = 'http://127.0.0.1:5000/diabetes/v1/predict'
    data = {"BMI":BMI, "Age":Age, "Glucose":Glucose}
    data_json = json.dumps(data)
    headers = {'Content-type':'application/json'}
    response = requests.post(url, data=data_json, headers=headers)
    result = json.loads(response.text)
    return result

if __name__ == "__main__":
    predictions = predict_diabetes(30,40,100)
    print("Diabetic" if predictions["prediction"] == 1 else "Not 
Diabetic")
    print("Confidence: " + predictions["confidence"] + "%")

Running this in Jupyter Notebook yields the following result:

Not Diabetic
Confidence: 68.42%

Let’s save the preceding code snippet into a file and add the code to allow 
users to enter the various values for BMI, Age, and Glucose. Save the following 
code snippet in a file named Predict _ Diabetes.py:

import json
import requests

def predict_diabetes(BMI, Age, Glucose):
    url = 'http://127.0.0.1:5000/diabetes/v1/predict'
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    data = {"BMI":BMI, "Age":Age, "Glucose":Glucose}
    data_json = json.dumps(data)
    headers = {'Content-type':'application/json'}
    response = requests.post(url, data=data_json, headers=headers)
    result = json.loads(response.text)
    return result

if __name__ == "__main__":
    BMI = input('BMI?')
    Age = input('Age?')
    Glucose = input('Glucose?')
    predictions = predict_diabetes(BMI,Age,Glucose)
    print("Diabetic" if predictions["prediction"] == 1 else "Not 
Diabetic")
    print("Confidence: " + predictions["confidence"] + "%")

You can now run the application in Terminal:

$ python Predict_Diabetes.py

You can now enter the values:

BMI?55
Age?29
Glucose?120

The result will now be shown:

Not Diabetic
Confidence: 52.63%

Summary

In this final chapter, you saw how to deploy your machine learning model using 
the Flask micro-framework. You also saw how you can view the correlations 
between the various features and then only use those most useful features for 
training your model. It is always useful to evaluate several machine learning 
algorithms and choose the best performing one so that you can choose the 
correct algorithm for your specific dataset.

I hope that this book has given you a good overview of machine learning, 
and that it has jumpstarted and inspired you to continue learning. As I have 
mentioned, this book is a gentle introduction to machine learning, and there 
are some details that were purposely omitted to make it easy to follow along. 
Nevertheless, if you have tried all of the exercises in each chapter, you should 
now have a pretty good understanding of the fundamentals of machine learning!
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Squares (RSS), 104–105

getting gradient and intercept of 
linear regression line, 103–104

introduction, 100–101
making predictions, 102
persisting the model, 106–107
plotting linear regression line, 

102–103
using LinearRegression class for 

fitting model, 101–102
introduction to, 93–100
polynomial regression in, 138–141
use of for SVM, 181–183
use of KNeighborsClassified class 

for KNN, 211–219
using K-Means in, 230–232

score() function, 106, 170
Score Model, 256
Seaborn

defined, 85
plotting points using, 182
plotting using, 85–91

Series, Pandas. See Pandas Series
Series class, 41
shallow copy, 36
sigmoid curve, 154–156, 162–163
Sigmoid function, 155, 156
Silhouette Coefficient, 232–236
slope, 184
sns.get _ dataset _ names() 

function, 88
sort() function, 33
sort _ index() function, 55, 56, 61
sort _ values() function, 55, 56
sq() function, 57, 58
sq _ root() function, 57, 58, 59

statistics, as discipline of machine 
learning, 3

StatLib library, 120
Student Performance Data Set, 98
subplot() function, 85
sum() function, 59
supervised learning

classification using K-Nearest 
Neighbors (KNN)

calculating distance between 
points, 207–208

cross-validation, 216
described, 205–219
exploring different values of k, 

212–215
finding optimal k, 218–219
implementation of, 208–209
implementing KNN in Python, 

206–211
making predictions, 209
parameter-tuning k, 217–218
using Scikit-learn’s 

KNeighborsClassifier class 
for, 211–219

visualizing different values of k, 
209–211

classification using Support Vector 
Machines (SVM)

adding third dimension, 187–188
C parameter, 194–196
formula for hyperplane, 180–181
Gamma, 197–199
introduction, 177–186
kernel trick, 186–191
making predictions, 185–186
maximum separability, 178–179
plotting 3D hyperplane, 189–191
plotting hyperplane and margins, 

184–185
polynomial kernel, 199–200
Radial Basis function (RBF), 

196–197
support vectors, 179–180
types of kernels, 191–200
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using Scikit-learn for, 181–183
using SVM for real-life problems, 

200–203
linear regression

data cleansing, 125–126
defined, 120
feature selection, 126–128
formula for polynomial regression, 

138
getting intercept and coefficients, 

133
multiple regression, 128–130
plotting 3D hyperplane, 133–135, 

146–147
polynomial regression, 135–147
polynomial regression in Scikit-

learn, 138–141
training the model, 131–132
types of, 119–120
understanding bias and variance, 

141–144
using Boston dataset, 120–124
using polynomial multiple 

regression on Boston dataset, 
144–146

logistic regression
defined, 151–153
examining relationship between 

features, 156–161
finding intercept and coefficient, 

162
getting the confusion matrix, 

166–168
logit function, 153–154
making predictions, 163–164
plotting features in 2D, 157–158
plotting in 3D, 158–160
plotting ROC and finding area 

under the curve (AUC), 174
plotting sigmoid curve, 162–163
Receiver Operating Characteristic 

(ROC) curve, 171–174
sigmoid curve, 154–156
testing the model, 166

training the model using all 
features, 164–174

training using one feature, 161–164
understanding odds, 153
using Breast Cancer Wisconsin 

(Diagnostic) Data Set, 156–174
supervised learning algorithms, 5–6

Support Vector Classification (SVC), 
183

Support Vector Machines (SVM)
adding third dimension, 187–188
C parameter, 194–196
formula for hyperplane, 180–181
Gamma, 197–199
introduction, 177–186
kernel trick, 186–191
making predictions, 185–186
maximum separability, 178–179
plotting 3D hyperplane, 189–191
plotting hyperplane and margins, 

184–185
polynomial kernel, 199–200
Radial Basis function (RBF), 196–197, 

277, 278–279
support vectors, 179–180
types of kernels, 191–200
use of for real-life problems, 200–203
using Scikit-learn for, 181–183

support vectors, 179–180
SVC class, 182, 192
swarmplots, 90–91

T
tabular data, manipulation of using 

Pandas, 39–65
tail() function, 49
targets, 120
3D hyperplane, 133–135, 136, 146–147, 

189–191
threshold, 152, 163
Titanic, use of as experiment,  

244–246
title() function, 69
traditional programming, described, 2
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train _ test _ split() function, 131, 
164

transpose() function, 54
True Negative (TN), 167, 261
True Positive Rate (TPR), 168, 171–172, 

173
True Positive (TP), 167, 260
Tukey Fences, 113–115
two-class classification problem, 4
Two-Class Decision Jungle algorithm, 

258, 259, 260
Two-Class Logistic Regression 

algorithm, 258, 259, 260
Two-Class Support Vector Machine 

algorithm, 258

U
UCI Machine Learning Repository, 

97–98
underfitting, 143, 214–215
unlabeled data, 221, 222
unsupervised learning

clustering using K-Means
calculating Silhouette Coefficient, 

233–234
cleaning data, 237–238
clustering using K-Means, 239–240
evaluating cluster size using 

Silhouette Coefficient, 232–236
finding optimal k, 234–236
finding optimal size classes, 

240–241
how it works, 222–225
implementing K-Means in Python, 

225–230
importing data, 237

plotting scatter plot, 238
unsupervised learning using 

K-Means, 222
using K-Means in Scikit-learn, 

230–232
using K-Means to solve real-life 

problems, 236–241
what is unsupervised learning? 

221–226
unsupervised learning algorithms,  

5, 7

V
variables

dependent variable, 119
explanatory variable, 120
independent variable, 119

variance, 141–144
view() function, 36

W
Wilkinson, Leland (author)

The Grammar of Graphics: Statistics and 
Computing, 70

X
xlabel() function, 69
xticks() function, 76–77

Y
y-intercept, 184
ylabel() function, 69

Z
zeros() function, 20
Z-score, 116–117
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