

Copyright © 2002 O'Reilly & Associates,
Inc. All rights reserved.

Printed in the United
 States of America.

Published by O'Reilly & Associates, Inc.,
1005 Gravenstein Highway North,
 Sebastopol, CA 95472.

O'Reilly & Associates books may be
purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://). For more information contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook
logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The
association between the image of a thirteen-lined ground squirrel and the topic
of HTTP is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the
preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

Preface

The Hypertext
Transfer Protocol (HTTP) is the protocol programs use to communicate over the
World Wide Web. There are many applications of HTTP, but HTTP is most famous
for two-way conversation between web browsers and web servers.

HTTP began as a simple protocol, so you might
think there really isn't that much to say about it. And yet here you stand,
with a two-pound book in your hands. If you're wondering how we could have
written 650 pages on HTTP, take a look at the Table of Contents. This book
isn't just an HTTP header reference manual; it's a veritable bible of web
architecture.

In this book, we try to tease apart HTTP's
interrelated and often misunderstood rules, and we offer you a series of
topic-based chapters that explain all the aspects of HTTP. Throughout the book,
we are careful to explain the "why" of HTTP, not just the
"how." And to save you time chasing references, we explain many of
the critical non-HTTP technologies that are required to make HTTP applications
work. You can find the alphabetical header reference (which forms the basis of
most conventional HTTP texts) in a conveniently organized appendix. We hope
this conceptual design makes it easy for you to work with HTTP.

This book is written for anyone who wants to
understand HTTP and the underlying architecture of the Web. Software and
hardware engineers can use this book as a coherent reference for HTTP and
related web technologies. Systems architects and network administrators can use
this book to better understand how to design, deploy, and manage complicated
web architectures. Performance engineers and analysts can benefit from the
sections on caching and performance optimization. Marketing and consulting
professionals will be able to use the conceptual orientation to better
understand the landscape of web technologies.

This book illustrates common misconceptions,
advises on "tricks of the trade," provides convenient reference
material, and serves as a readable introduction to dry and confusing standards
specifications. In a single book, we detail the essential and interrelated
technologies that make the Web work.

This book is the result of a tremendous
amount of work by many people who share an enthusiasm for Internet
technologies. We hope you find it useful.

Running
Example: Joe's Hardware Store

Many of our chapters
include a running example of a hypothetical online hardware and
home-improvement store called "Joe's Hardware" to demonstrate
technology concepts. We have set up a real web site for the store (http://www.joes-hardware.com)
for you to test some of the examples in the book. We will maintain this web
site while this book remains in print.

Chapter-by-Chapter Guide

This book contains 21 chapters, divided into 5 logical parts
(each with a technology theme), and 8 useful appendixes containing reference
data and surveys of related technologies:

Part I

Part II

Part III

Part IV

Part V

Part VI

Part I, describes
the core technology of HTTP, the foundation of the Web, in four chapters:

·
Chapter 1 is a rapid-paced overview of HTTP.

·
Chapter 2 details the formats of uniform
resource locators (URLs) and the various types of resources that URLs name
across the Internet. It also outlines the evolution to uniform resource names
(URNs).

·
Chapter 3 details how HTTP messages transport
web content.

·
Chapter 4 explains the commonly misunderstood
and poorly documented rules and behavior for managing HTTP connections.

Part II highlights the HTTP server, proxy,
cache, gateway, and robot applications that are the architectural building
blocks of web systems. (Web browsers are another building block, of course, but
browsers already were covered thoroughly in Part I of the book.) Part II contains the following six chapters:

·
Chapter 5 gives an overview of web server
architectures.

·
Chapter 6 explores HTTP proxy servers, which
are intermediary servers that act as platforms for HTTP services and controls.

·
Chapter 7 delves into the science of web caches—devices
that improve performance and reduce traffic by making local copies of popular
documents.

·
Chapter 8 explains gateways and application
servers that allow HTTP to work with software that speaks different protocols,
including Secure Sockets Layer (SSL) encrypted protocols.

·
Chapter 9 describes the various types of
clients that pervade the Web, including the ubiquitous browsers, robots and
spiders, and search engines.

·
Chapter 10 talks about HTTP developments still
in the works: the HTTP-NG protocol.

Part III presents a suite of techniques and
technologies to track identity, enforce security, and control access to
content. It contains the following four chapters:

·
Chapter 11 talks
about techniques to identify users so that content can be personalized to the
user audience.

·
Chapter 12
highlights the basic mechanisms to verify user identity. The chapter also
examines how HTTP authentication interfaces with databases.

·
Chapter 13
explains digest authentication, a complex proposed enhancement to HTTP that
provides significantly enhanced security.

·
Chapter 14 is a
detailed overview of Internet cryptography, digital certificates, and SSL.

Part IV focuses on
the bodies of HTTP messages (which contain the actual web content) and on the
web standards that describe and manipulate content stored in the message
bodies. Part IV contains three chapters:

·
Chapter 15
describes the structure of HTTP content.

·
Chapter 16 surveys
the web standards that allow users around the globe to exchange content in
different languages and character sets.

·
Chapter 17
explains mechanisms for negotiating acceptable content.

Part V discusses
the technology for publishing and disseminating web content. It contains
four chapters:

·
Chapter 18
discusses the ways people deploy servers in modern web hosting environments and
HTTP support for virtual web hosting.

·
Chapter 19
discusses the technologies for creating web content and installing it onto web
servers.

·
Chapter 20 surveys
the tools and techniques for distributing incoming web traffic among a
collection of servers.

·
Chapter 21 covers
log formats and common questions.

Part VI contains
helpful reference appendixes and tutorials in related technologies:

·
Appendix A summarizes the protocols supported
through uniform resource identifier (URI) schemes.

·
Appendix B conveniently lists the HTTP
response codes.

·
Appendix C provides a reference list of HTTP
header fields.

·
Appendix D provides an extensive list of MIME
types and explains how MIME types are registered.

·
Appendix E explains base-64 encoding, used by
HTTP authentication.

·
Appendix F gives details on how to implement
various authentication schemes in HTTP.

·
Appendix G defines language tag values for
HTTP language headers.

·
Appendix H provides a detailed list of
character encodings, used for HTTP internationalization support.

Each chapter contains many examples and pointers to additional
reference material.

Typographic
Conventions

In this book, we use the following
typographic conventions:

Italic

Used for URLs, C
functions, command names, MIME types, new terms where they are defined, and
emphasis

Constant width

Used for computer
output, code, and any literal text

Constant width bold

Used for user input

Comments and
Questions

Please address comments and questions
concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or
Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which
lists errata, examples, or any additional information. You can access this page
at:

http://www.oreilly.com/catalog/httptdg/

To comment or ask technical questions about
this book, send email to:

bookquestions@oreilly.com

For more information about books,
conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web
site at:

http://www.oreilly.com

Acknowledgments

This book is the labor of many. The five
authors would like to hold up a few people in thanks for their significant
contributions to this project.

To start, we'd like to thank Linda Mui, our
editor at O'Reilly. Linda first met with David and Brian way back in 1996, and
she refined and steered several concepts into the book you hold today. Linda
also helped keep our wandering gang of first-time book authors moving in a
coherent direction and on a progressing (if not rapid) timeline. Most of all,
Linda gave us the chance to create this book. We're very grateful.

We'd also like to thank several tremendously
bright, knowledgeable, and kind souls who devoted noteworthy energy to
reviewing, commenting on, and correcting drafts of this book. These include
Tony Bourke, Sean Burke, Mike Chowla, Shernaz Daver, Fred Douglis, Paula
Ferguson, Vikas Jha, Yves Lafon, Peter Mattis, Chuck Neerdaels, Luis Tavera,
Duane Wessels, Dave Wu, and Marco Zagha. Their viewpoints and suggestions have
improved the book tremendously.

Rob Romano from O'Reilly created most of the
amazing artwork you'll find in this book. The book contains an unusually large
number of detailed illustrations that make subtle concepts very clear. Many of
these illustrations were painstakingly created and revised numerous times. If a
picture is worth a thousand words, Rob added hundreds of pages of value to this
book.

Brian would like to personally thank all of
the authors for their dedication to this project. A tremendous amount of time
was invested by the authors in a challenge to make the first detailed but
accessible treatment of HTTP. Weddings, childbirths, killer work projects,
startup companies, and graduate schools intervened, but the authors held
together to bring this project to a successful completion. We believe the
result is worthy of everyone's hard work and, most importantly, that it
provides a valuable service. Brian also would like to thank the employees of
Inktomi for their enthusiasm and support and for their deep insights about the
use of HTTP in real-world applications. Also, thanks to the fine folks at
Cajun-shop.com for allowing us to use their site for some of the examples in
this book.

David would like to thank his family,
particularly his mother and grandfather for their ongoing support. He'd like to
thank those that have put up with his erratic schedule over the years writing
the book. He'd also like to thank Slurp, Orctomi, and Norma for everything
they've done, and his fellow authors for all their hard work. Finally, he would
like to thank Brian for roping him into yet another adventure.

Marjorie would like to thank her husband,
Alan Liu, for technical insight, familial support and understanding. Marjorie
thanks her fellow authors for many insights and inspirations. She is grateful
for the experience of working together on this book.

Sailu would like to thank David and Brian for
the opportunity to work on this book, and Chuck Neerdaels for introducing him
to HTTP.

Anshu would like to thank his wife, Rashi,
and his parents for their patience, support, and encouragement during the long
years spent writing this book.

Finally, the authors collectively thank the
famous and nameless Internet pioneers, whose research, development, and evangelism
over the past four decades contributed so much to our scientific, social, and
economic community. Without these labors, there would be no subject for this
book.

Part I: HTTP:
The Web's Foundation

This section is an introduction to the HTTP
protocol. The next four chapters describe the core technology of HTTP, the
foundation of the Web:

·
Chapter 1 is a
rapid-paced overview of HTTP.

·
Chapter 2 details the
formats of URLs and the various types of resources that URLs name across the
Internet. We also outline the evolution to URNs.

·
Chapter 3 details
the HTTP messages that transport web content.

·
Chapter 4
discusses the commonly misunderstood and poorly documented rules and behavior
for managing TCP connections by HTTP.

Chapter 1.
Overview of HTTP

The world's web browsers, servers, and
related web applications all talk to each other through HTTP, the Hypertext Transfer Protocol. HTTP is the
common language of the modern global Internet.

This chapter is a concise overview of HTTP. You'll
see how web applications use HTTP to communicate, and you'll get a rough idea
of how HTTP does its job. In particular, we talk about:

·
How web clients and servers communicate

·
Where resources (web content) come from

·
How web transactions work

·
The format of the messages used for HTTP
communication

·
The underlying TCP network transport

·
The different variations of the HTTP protocol

·
Some of the many HTTP architectural components
installed around the Internet

We've got a lot of ground to cover, so let's
get started on our tour of HTTP.

1.1 HTTP: The
Internet's Multimedia Courier

Billions of JPEG images, HTML pages, text
files, MPEG movies, WAV audio files, Java applets, and more cruise through the
Internet each and every day. HTTP moves the bulk of this information quickly,
conveniently, and reliably from web servers all around the world to web
browsers on people's desktops.

Because HTTP uses
reliable data-transmission protocols, it guarantees that your data will not be
damaged or scrambled in transit, even when it comes from the other side of the
globe. This is good for you as a user, because you can access information
without worrying about its integrity. Reliable transmission is also good for
you as an Internet application developer, because you don't have to worry about
HTTP communications being destroyed, duplicated, or distorted in transit. You
can focus on programming the distinguishing details of your application,
without worrying about the flaws and foibles of the Internet.

Let's look more closely at how HTTP
transports the Web's traffic.

1.2 Web Clients
and Servers

Web content lives onweb servers. Web servers
speak the HTTP protocol, so they are often called HTTP servers. These HTTP servers store the Internet's data and
provide the data when it is requested by HTTP clients. The clients send HTTP
requests to servers, and servers return the requested data in HTTP responses,
as sketched in Figure 1-1. Together,
HTTP clients and HTTP servers make up the basic components of the World Wide
Web.

Figure 1-1. Web clients and servers

[image: figs/http_0101.gif]

You probably use HTTP clients every day. The
most common client is a web browser, such as Microsoft Internet Explorer or
Netscape Navigator. Web browsers request HTTP objects from servers and display
the objects on your screen.

When you browse to a page, such as
"http://www.oreilly.com/index.html," your browser sends an HTTP
request to the server www.oreilly.com (see Figure 1-1). The
server tries to find the desired object (in this case, "/index.html")
and, if successful, sends the object to the client in an HTTP response, along
with the type of the object, the length of the object, and other information.

1.3 Resources

Web servers host web resources. A web resource is the source of web content. The simplest
kind of web resource is a static file on the web server's filesystem. These files
can contain anything: they might be text files, HTML files, Microsoft Word
files, Adobe Acrobat files, JPEG image files, AVI movie files, or any other
format you can think of.

However, resources don't have to be static files. Resources
can also be software programs that generate content on demand. These dynamic
content resources can generate content based on your identity, on what
information you've requested, or on the time of day. They can show you a live
image from a camera, or let you trade stocks, search real estate databases, or
buy gifts from online stores (see Figure 1-2).

Figure 1-2. A web resource is
anything that provides web content

[image: figs/http_0102.gif]

In summary, a resource is any kind of content source. A file
containing your company's sales forecast spreadsheet is a resource. A web
gateway to scan your local public library's shelves is a resource. An Internet
search engine is a resource.

1.3.1 Media Types

Because the Internet hosts many thousands of different data
types, HTTP carefully tags each object being transported through the Web with a
data format label called a MIME type. MIME (Multipurpose Internet Mail
Extensions) was originally designed to solve problems encountered in moving
messages between different electronic mail systems. MIME worked so well for
email that HTTP adopted it to describe and label its own multimedia content.

Web servers attach a MIME type to all HTTP object data (see Figure 1-3). When a web browser gets an object
back from a server, it looks at the associated MIME type to see if it knows how
to handle the object. Most browsers can handle hundreds of popular object
types: displaying image files, parsing and formatting HTML files, playing audio
files through the computer's speakers, or launching external plug-in software
to handle special formats.

Figure 1-3. MIME types are sent back
with the data content

[image: figs/http_0103.gif]

A MIME type is a textual label, represented as a primary
object type and a specific subtype, separated by a slash. For example:

·
An HTML-formatted text document would be labeled with type text/html.

·
A plain ASCII text document would be labeled with type text/plain.

·
A JPEG version of an image would be image/jpeg.

·
A GIF-format image would be image/gif.

·
An Apple QuickTime movie would be video/quicktime.

·
A Microsoft PowerPoint presentation would be application/vnd.ms-powerpoint.

There are hundreds of popular MIME types, and many more
experimental or limited-use types. A very thorough MIME type list is provided
in Appendix D.

1.3.2 URIs

Each web server resource has a name, so clients can point out
what resources they are interested in. The server resource name is called a uniform resource identifier, or URI. URIsare like the postal addresses of the Internet,
uniquely identifying and locating information resources around the world.

Here's a URI for an image resource on Joe's Hardware store's
web server:

http://www.joes-hardware.com/specials/saw-blade.gif

Figure 1-4 shows how the URI specifies the
HTTP protocol to access the saw-blade GIF resource on Joe's store's server.
Given the URI, HTTP can retrieve the object. URIs come in two flavors, called
URLs and URNs. Let's take a peek at each of these types of resource identifiers
now.

Figure 1-4. URLs specify protocol,
server, and local resource

[image: figs/http_0104.gif]

1.3.3 URLs

The uniform resource locator (URL) is the most common
form of resource identifier. URLs describe the specific location of a resource
on a particular server. They tell you exactly how to fetch a resource from a
precise, fixed location. Figure 1-4 shows how a URL tells precisely
where a resource is located and how to access it. Table 1-1 shows a few examples of URLs.

	
Table 1-1. Example URLs

	
URL

	
Description

	
http://www.oreilly.com/index.html

	
The home URL for O'Reilly & Associates,
 Inc.

	
http://www.yahoo.com/images/logo.gif

	
The URL for the Yahoo! web site's logo

	
http://www.joes-hardware.com/inventory-check.cgi?item=12731

	
The URL for a program that checks if
 inventory item #12731 is in stock

	
ftp://joe:tools4u@ftp.joes-hardware.com/locking-pliers.gif

	
The URL for the locking-pliers.gif
 image file, using password-protected FTP as the access protocol

Most URLs follow a standardized format of
three main parts:

·
The first part of the URL is called the scheme,
and it describes the protocol used to access the resource. This is
usually the HTTP protocol (http://).

·
The second part gives the server Internet
address (e.g., www.joes-hardware.com).

·
The rest names a resource on the web server
(e.g., /specials/saw-blade.gif).

Today, almost every URI is a URL.

1.3.4 URNs

The second flavor of URI is the uniform resource name,
or URN. A URN serves as a unique name for a particular piece of content,
independent of where the resource currently resides. These location-independent
URNs allow resources to move from place to place. URNs also allow resources to
be accessed by multiple network access protocols while maintaining the same
name.

For example, the following URN might be used
to name the Internet standards document "RFC 2141" regardless of
where it resides (it may even be copied in several places):

urn:ietf:rfc:2141

URNs are still experimental and not yet
widely adopted. To work effectively, URNs need a supporting infrastructure to
resolve resource locations; the lack of such an infrastructure has also slowed
their adoption. But URNs do hold some exciting promise for the future. We'll
discuss URNs in a bit more detail in Chapter 2, but
most of the remainder of this book focuses almost exclusively on URLs.

Unless stated otherwise, we adopt the
conventional terminology and use URI and URL interchangeably for the remainder
of this book.

1.4
Transactions

Let's look in more detail how clients use
HTTP to transact with web servers and their resources. An HTTP transaction consists of a request command (sent from
client to server), and a response result (sent from the server back to the
client). This communication happens with formatted blocks of data called HTTP messages, as illustrated
in Figure 1-5.

Figure 1-5. HTTP
transactions consist of request and response messages

[image: figs/http_0105.gif]

1.4.1 Methods

HTTP supports several different request
commands, called HTTP methods. Every HTTP request message has a method. The method tells the
server what action to perform (fetch a web page, run a gateway program, delete
a file, etc.). Table 1-2 lists five common HTTP methods.

	
Table 1-2. Some common HTTP
 methods

	
HTTP method

	
Description

	
GET

	
Send named resource from the server to the client.

	
PUT

	
Store data from client into a named server resource.

	
DELETE

	
Delete the named resource from a server.

	
POST

	
Send client data into a server gateway application.

	
HEAD

	
Send just the HTTP headers from the response for the named
 resource.

We'll discuss HTTP methods in detail in Chapter 3.

1.4.2 Status Codes

Every HTTP
response message comes back with a status code. The status code is a
three-digit numeric code that tells the client if the request succeeded, or if
other actions are required. A few common status codes are shown in Table 1-3.

	
Table 1-3. Some common HTTP status
 codes

	
HTTP status code

	
Description

	
200

	
OK. Document returned correctly.

	
302

	
Redirect. Go someplace else to get the resource.

	
404

	
Not Found. Can't find this resource.

HTTP also sends an explanatory textual "reason
phrase" with each numeric status code (see the response message in Figure 1-5). The textual phrase is included
only for descriptive purposes; the numeric code is used for all processing.

The following status codes and reason phrases
are treated identically by HTTP software:

200 OK
200 Document attached
200 Success
200 All's cool, dude

HTTP status codes are explained in detail in Chapter 3.

1.4.3 Web Pages Can Consist of Multiple Objects

An application often issues multiple HTTP
transactions to accomplish a task. For example, a web browser issues a cascade
of HTTP transactions to fetch and display a graphics-rich web
page. The browser performs one transaction to fetch the HTML
"skeleton" that describes the page layout, then issues additional
HTTP transactions for each embedded image, graphics pane, Java applet, etc. These
embedded resources might even reside on different servers, as shown in Figure 1-6. Thus,
a "web page" often is a collection of resources, not a single
resource.

Figure 1-6. Composite web
pages require separate HTTP transactions for each embedded resource

[image: figs/http_0106.gif]

1.5 Messages

Now let's take a quick look at the structure
of HTTP request and response messages. We'll study HTTP messages in exquisite
detail in Chapter 3.

HTTP
messages are simple, line-oriented sequences of
characters. Because they are plain text, not binary, they are easy for humans
to read and write.[1] Figure 1-7 shows
the HTTP messages for a simple transaction.

[1] Some programmers complain about the difficulty of HTTP parsing,
which can be tricky and error-prone, especially when designing high-speed
software. A binary format or a more restricted text format might have been
simpler to process, but most HTTP programmers appreciate HTTP's extensibility
and debuggability.

Figure 1-7. HTTP messages
have a simple, line-oriented text structure

[image: figs/http_0107.gif]

HTTP messages sent from web clients to web
servers are called request messages. Messages from servers to clients are called response messages. There are no
other kinds of HTTP messages. The formats of HTTP request and response
messages are very similar.

HTTP messages consist of three parts:

Start
line

The first line of the message is
the start line, indicating what to do for a request or what happened for a
response.

Header
fields

Zero or more header fields follow
the start line. Each header field consists of a name and a value, separated by
a colon (:) for easy parsing. The headers end with a blank line. Adding a
header field is as easy as adding another line.

Body

After the blank line is an optional
message body containing any kind of data. Request bodies carry data to the web
server; response bodies carry data back to the client. Unlike the start lines
and headers, which are textual and structured, the body can contain arbitrary
binary data (e.g., images, videos, audio tracks, software applications). Of
course, the body can also contain text.

1.5.1 Simple Message Example

Figure 1-8 shows the HTTP messages that might
be sent as part of a simple transaction. The browser requests the resource http://www.joes-hardware.com/tools.html.

Figure 1-8. Example GET transaction
for http://www.joes-hardware.com/tools.html

[image: figs/http_0108.gif]

In Figure 1-8, the
browser sends an HTTP request message. The request has a GET method in the
start line, and the local resource is /tools.html. The request indicates
it is speaking Version 1.0 of the HTTP protocol. The request message has no
body, because no request data is needed to GET a simple document from a server.

The server sends back an HTTP response
message. The response contains the HTTP version number (HTTP/1.0), a success
status code (200), a descriptive reason phrase (OK), and a block of response
header fields, all followed by the response body containing the requested
document. The response body length is noted in the Content-Length header, and
the document's MIME type is noted in the Content-Type header.

1.6 Connections

Now that we've sketched what HTTP's messages look like, let's
talk for a moment about how messages move from place to place, across
Transmission Control Protocol (TCP) connections.

1.6.1 TCP/IP

HTTP is an application layer protocol. HTTP doesn't worry
about the nitty-gritty details of network communication; instead, it leaves the
details of networking to TCP/IP,
the popular reliable Internet transport protocol.

TCP provides:

·
Error-free data transportation

·
In-order delivery (data will always arrive in the order in which
it was sent)

·
Unsegmented data stream (can dribble out data in any size at any
time)

The Internet itself is based on TCP/IP, a popular layered set
of packet-switched network protocols spoken by computers and network devices
around the world. TCP/IP hides the peculiarities and foibles of individual
networks and hardware, letting computers and networks of any type talk together
reliably.

Once a TCP connection is established, messages exchanged
between the client and server computers will never be lost, damaged, or
received out of order.

In networking
terms, the HTTP protocol is layered over TCP.
HTTP uses TCP to transport its message data. Likewise, TCP is layered over IP
(see Figure 1-9).

Figure 1-9. HTTP network protocol
stack

[image: figs/http_0109.gif]

1.6.2 Connections, IP Addresses, and Port Numbers

Before
an HTTP client can send a message to a server, it needs to establish a TCP/IP
connection between the client and server using Internet protocol (IP) addresses
and port numbers.

Setting up a TCP connection is sort of
like calling someone at a corporate office. First, you dial the company's phone
number. This gets you to the right organization. Then, you dial the specific
extension of the person you're trying to reach.

In TCP, you need the IP address of the server computer and the
TCP port number associated with the specific software program running on the
server.

This is all well and good, but how do you get the IP address
and port number of the HTTP server in the first place? Why, the URL, of course!
We mentioned before that URLs are the addresses for resources, so naturally
enough they can provide us with the IP address for the machine that has the
resource. Let's take a look at a few URLs:

http://207.200.83.29:80/index.html
http://www.netscape.com:80/index.html
http://www.netscape.com/index.html

The first URL has the machine's IP address, "207.200.83.29",
and port number, "80".

The second URL doesn't have a numeric IP address; it has a
textual domain name, or hostname ("www.netscape.com"). The hostname is just a
human-friendly alias for an IP address. Hostnames can easily be converted into
IP addresses through a facility called the Domain Name
Service (DNS), so we're all set here, too. We will talk much more about DNS and
URLs in Chapter 2.

The final URL has no port number. When the port
number is missing from an HTTP URL, you can assume the default value of port
80.

With the IP address and port number, a client can easily
communicate via TCP/IP. Figure 1-10 shows how a browser
uses HTTP to display a simple HTML
resource that resides on a distant server.

Here are the steps:

(a)

The browser extracts the server's
hostname from the URL.

(b)

The browser converts the server's
hostname into the server's IP address.

(c)

The browser extracts the port
number (if any) from the URL.

(d)

The browser establishes a TCP
connection with the web server.

(e)

The browser sends an HTTP request
message to the server.

(f)

The server sends an HTTP response
back to the browser.

(g)

The connection is closed, and the
browser displays the document.

Figure 1-10. Basic browser
connection process

[image: figs/http_0110.gif]

1.6.3 A Real Example Using Telnet

Because
HTTP uses TCP/IP, and is text-based, as opposed to using some obscure binary
format, it is simple to talk directly to a web server.

The Telnet utility connects your keyboard to a destination TCP
port and connects the TCP port output back to your display screen. Telnet is
commonly used for remote terminal sessions, but it can generally connect to any
TCP server, including HTTP servers.

You can use the Telnet utility to talk directly to web
servers. Telnet lets you open a TCP connection to a port on a machine and type
characters directly into the port. The web server treats you as a web client,
and any data sent back on the TCP connection is displayed onscreen.

Let's use Telnet to interact with a real web server. We will
use Telnet to fetch the document pointed to by the URL http://www.joes-hardware.com:80/tools.html
(you can try this example yourself).

Let's review what should happen:

·
First, we need to look up the IP address of www.joes-hardware.com and open a TCP connection to
port 80 on that machine. Telnet does this legwork for us.

·
Once the TCP connection is open, we need to type in the HTTP
request.

·
When the request is complete (indicated by a blank line), the server
should send back the content in an HTTP response and close the connection.

Our example HTTP request for http://www.joes-hardware.com:80/tools.html is
shown in Example 1-1. What we typed is shown in
boldface.

Example 1-1. An HTTP transaction using telnet

% telnet www.joes-hardware.com 80
Trying 161.58.228.45...
Connected to joes-hardware.com.
Escape character is '^]'.
GET /tools.html HTTP/1.1
Host: www.joes-hardware.com

HTTP/1.1 200 OK
Date: Sun, 01 Oct 2000 23:25:17 GMT
Server: Apache/1.3.11 BSafe-SSL/1.38 (Unix) FrontPage/4.0.4.3
Last-Modified: Tue, 04 Jul 2000 09:46:21 GMT
ETag: "373979-193-3961b26d"
Accept-Ranges: bytes
Content-Length: 403
Connection: close
Content-Type: text/html

<HTML>
<HEAD><TITLE>Joe's Tools</TITLE></HEAD>
<BODY>
<H1>Tools Page</H1>
<H2>Hammers</H2>
<P>Joe's Hardware Online has the largest selection of hammers on the earth.</P>
<H2>Drills</H2>
<P>Joe's Hardware has a complete line of cordless and corded drills, as well as the latest
in plutonium-powered atomic drills, for those big around the house jobs.</P> ...
</BODY>
</HTML>
Connection closed by foreign host.

Telnet looks up the hostname and opens a
connection to the www.joes-hardware.com web
server, which is listening on port 80. The three lines after the command are
output from Telnet, telling us it has established a connection.

We then type in our basic request command, "GET
/tools.html HTTP/1.1", and send a Host header providing the original
hostname, followed by a blank line, asking the server to GET us the resource
"/tools.html" from the server www.joes-hardware.com.
After that, the server responds with a response line, several response headers,
a blank line, and finally the body of the HTML document.

Beware that Telnet mimics HTTP clients well but doesn't work
well as a server. And automated Telnet scripting is no fun at all. For a more
flexible tool, you might want to check out nc
(netcat). The nc tool lets you
easily manipulate and script UDP- and TCP-based traffic, including HTTP. See http://www.bgw.org/tutorials/utilities/nc.php
for details.

1.7 Protocol Versions

There are several versions of the HTTP
protocol in use today. HTTP applications need to work hard to robustly handle
different variations of the HTTP protocol. The versions in use are:

HTTP/0.9

The 1991 prototype
version of HTTP is known as HTTP/0.9. This protocol
contains many serious design flaws and should be used only to interoperate with
legacy clients. HTTP/0.9 supports only the GET method, and it does not support
MIME typing of multimedia content, HTTP headers, or version numbers. HTTP/0.9
was originally defined to fetch simple HTML objects. It was soon replaced with
HTTP/1.0.

HTTP/1.0

1.0 was the first
version of HTTP that was widely deployed. HTTP/1.0
added version numbers, HTTP headers, additional methods, and multimedia object
handling. HTTP/1.0 made it practical to support graphically appealing web pages
and interactive forms, which helped promote the wide-scale adoption of the
World Wide Web. This specification was never well specified. It represented a
collection of best practices in a time of rapid commercial and academic
evolution of the protocol.

HTTP/1.0+

Many popular web
clients and servers rapidly added features to HTTP in the mid-1990s to meet the
demands of a rapidly expanding, commercially successful World Wide Web. Many of
these features, including long-lasting "keep-alive" connections,
virtual hosting support, and proxy connection support, were added to HTTP and
became unofficial, de facto standards. This informal, extended version of HTTP
is often referred to as HTTP/1.0+.

HTTP/1.1

HTTP/1.1 focused
on correcting architectural flaws in the design of HTTP, specifying semantics,
introducing significant performance optimizations, and removing mis-features. HTTP/1.1
also included support for the more sophisticated web applications and
deployments that were under way in the late 1990s. HTTP/1.1 is the current
version of HTTP.

HTTP-NG
(a.k.a. HTTP/2.0)

HTTP-NG is a prototype proposal for
an architectural successor to HTTP/1.1 that focuses on significant performance
optimizations and a more powerful framework for remote execution of server
logic. The HTTP-NG research effort concluded in 1998, and at the time of this
writing, there are no plans to advance this proposal as a replacement for
HTTP/1.1. See Chapter 10 for more information.

1.8
Architectural Components of the Web

In this
overview chapter, we've focused on how two web applications (web browsers and
web servers) send messages back and forth to implement basic transactions. There
are many other web applications that you interact with on the Internet. In this
section, we'll outline several other important applications, including:

Proxies

HTTP
intermediaries that sit between clients and servers

Caches

HTTP storehouses that keep copies
of popular web pages close to clients

Gateways

Special web servers that connect to
other applications

Tunnels

Special proxies that blindly
forward HTTP communications

Agents

Semi-intelligent web clients that
make automated HTTP requests

1.8.1 Proxies

Let's start by looking at HTTP proxy
servers, important building
blocks for web security, application integration, and performance optimization.

As shown in Figure 1-11, a proxy sits between a client and
a server, receiving all of the client's HTTP requests and relaying the requests
to the server (perhaps after modifying the requests). These applications act as
a proxy for the user, accessing the server on the user's behalf.

Figure 1-11. Proxies relay traffic
between client and server

[image: figs/http_0111.gif]

Proxies are often used for security, acting as trusted
intermediaries through which all web traffic flows. Proxies can also filter
requests and responses; for example, to detect application viruses in corporate
downloads or to filter adult content away from elementary-school students.
We'll talk about proxies in detail in Chapter 6.

1.8.2 Caches

A web cache or caching
proxy is a special type of HTTP proxy server that keeps copies of
popular documents that pass through the proxy. The next client requesting the
same document can be served from the cache's personal copy (see Figure 1-12).

Figure 1-12. Caching proxies keep
local copies of popular documents to improve performance

[image: figs/http_0112.gif]

A client may be able to download a document much more quickly
from a nearby cache than from a distant web server. HTTP defines many
facilities to make caching more effective and to regulate the freshness and
privacy of cached content. We cover caching technology in Chapter 7.

1.8.3 Gateways

Gateways
are special servers that act as intermediaries for other servers. They are
often used to convert HTTP traffic to another protocol. A gateway always receives
requests as if it was the origin server for the resource. The client may not be
aware it is communicating with a gateway.

For example, an HTTP/FTP gateway receives requests for FTP
URIs via HTTP requests but fetches the documents using the FTP protocol (see Figure 1-13). The resulting document is packed
into an HTTP message and sent to the client. We discuss gateways in Chapter 8.

Figure 1-13. HTTP/FTP gateway

[image: figs/http_0113.gif]

1.8.4 Tunnels

Tunnels
are HTTP applications that, after setup, blindly relay raw data between two
connections. HTTP tunnels are often used to transport non-HTTP data over one or
more HTTP connections, without looking at the data.

One popular use of HTTP tunnels is to carry encrypted Secure
Sockets Layer (SSL) traffic through an HTTP connection, allowing SSL traffic
through corporate firewalls that permit only web traffic. As sketched in Figure 1-14, an HTTP/SSL tunnel receives an
HTTP request to establish an outgoing connection to a destination address and
port, then proceeds to tunnel the encrypted SSL traffic over the HTTP channel
so that it can be blindly relayed to the destination server.

Figure 1-14. Tunnels forward data
across non-HTTP networks (HTTP/SSL tunnel shown)

[image: figs/http_0114.gif]

1.8.5 Agents

User
agents (or just agents) are client programs
that make HTTP requests on the user's behalf. Any application that issues web
requests is an HTTP agent. So far, we've talked about only one kind of HTTP
agent: web browsers. But there are many other kinds of user agents.

For example, there are machine-automated user
agents that autonomously wander the Web, issuing HTTP transactions and fetching
content, without human supervision. These automated agents often have colorful
names, such as "spiders" or "web robots" (see Figure 1-15). Spiders
wander the Web to build useful archives of web content, such as a search
engine's database or a product catalog for a comparison-shopping robot. See Chapter 9 for more
information.

Figure 1-15. Automated
search engine "spiders" are agents, fetching web pages around the
world

[image: figs/http_0115.gif]

1.9 The End of
the Beginning

That's it for our quick introduction to HTTP.
In this chapter, we highlighted HTTP's role as a multimedia transport protocol.
We outlined how HTTP uses URIs to name multimedia resources on remote servers,
we sketched how HTTP request and response messages are used to manipulate
multimedia resources on remote servers, and we finished by surveying a few of
the web applications that use HTTP.

The remaining chapters explain the technical
machinery of the HTTP protocol, applications, and resources in much more detail.

1.10 For More
Information

Later chapters of this book will explore HTTP
in much more detail, but you might find that some of the following sources
contain useful background about particular topics we covered in this chapter.

1.10.1 HTTP Protocol Information

HTTP Pocket Reference

Clinton Wong,
O'Reilly & Associates, Inc. This little book provides a concise
introduction to HTTP and a quick reference to each of the headers and status
codes that compose HTTP transactions.

http://www.w3.org/Protocols/

This W3C web page contains many
great links about the HTTP protocol.

http://www.ietf.org/rfc/rfc2616.txt

RFC 2616, "Hypertext Transfer
Protocol—HTTP/1.1," is the official specification for HTTP/1.1, the
current version of the HTTP protocol. The specification is a well-written,
well-organized, detailed reference for HTTP, but it isn't ideal for readers who
want to learn the underlying concepts and motivations of HTTP or the
differences between theory and practice. We hope that this book fills in the
underlying concepts, so you can make better use of the specification.

http://www.ietf.org/rfc/rfc1945.txt

RFC 1945, "Hypertext Transfer
Protocol—HTTP/1.0," is an informational RFC that describes the modern
foundation for HTTP. It details the officially sanctioned and
"best-practice" behavior of web applications at the time the
specification was written. It also contains some useful descriptions about
behavior that is deprecated in HTTP/1.1 but still widely implemented by legacy
applications.

http://www.w3.org/Protocols/HTTP/AsImplemented.html

This web page contains a
description of the 1991 HTTP/0.9 protocol, which implements only GET requests
and has no content typing.

1.10.2 Historical Perspective

http://www.w3.org/Protocols/WhyHTTP.html

This brief web page from 1991, from
the author of HTTP, highlights some of the original, minimalist goals of HTTP.

http://www.w3.org/History.html

"A Little
History of the World Wide Web" gives a short but interesting perspective
on some of the early goals and foundations of the World Wide Web and HTTP.

http://www.w3.org/DesignIssues/Architecture.html

"Web
Architecture from 50,000 Feet" paints a broad, ambitious view of the World
Wide Web and the design principles that affect HTTP and related web
technologies.

1.10.3 Other World Wide Web Information

http://www.w3.org

The World Wide Web
Consortium (W3C) is the technology steering team for the Web. The W3C develops
interoperable technologies (specifications, guidelines, software, and tools)
for the evolving Web. The W3C site is a treasure trove of introductory and
detailed documentation about web technologies.

http://www.ietf.org/rfc/rfc2396.txt

RFC 2396,
"Uniform Resource Identifiers (URI): Generic Syntax," is the detailed
reference for URIs and URLs.

http://www.ietf.org/rfc/rfc2141.txt

RFC 2141,
"URN Syntax," is a 1997 specification describing URN syntax.

http://www.ietf.org/rfc/rfc2046.txt

RFC 2046,
"MIME Part 2: Media Types," is the second in a suite of five Internet
specifications defining the Multipurpose Internet Mail Extensions standard for
multimedia content management.

http://www.wrec.org/Drafts/draft-ietf-wrec-taxonomy-06.txt

This Internet
draft, "Internet Web Replication and Caching Taxonomy," specifies
standard terminology for web architectural components.

Chapter 2. URLs
and Resources

Think of the Internet as a giant, expanding
city, full of places to see and things to do. You and the other residents and
tourists of this booming community would use standard naming conventions for
the city's vast attractions and services. You'd use street addresses for
museums, restaurants, and people's homes. You'd use phone numbers for the fire
department, the boss's secretary, and your mother, who says you don't call
enough.

Everything has a standardized name, to help
sort out the city's resources. Books have ISBN numbers, buses have route
numbers, bank accounts have account numbers, and people have social security
numbers. Tomorrow you will meet your business partners at gate 31 of the
airport. Every morning you take a Red-line train and exit at Kendall Square station.

And because everyone agreed on standards for
these different names, we can easily share the city's treasures with each
other. You can tell the cab driver to take you to 246
 McAllister Street, and he'll know what you mean (even
if he takes the long way).

Uniform
resource locators (URLs) are the standardized names for the Internet's
resources. URLs point to pieces of electronic information, telling you where
they are located and how to interact with them.

In this chapter, we'll cover:

·
URL syntax and what the various URL components
mean and do

·
URL shortcuts that many web clients support,
including relative URLs and expandomatic URLs

·
URL encoding and character rules

·
Common URL schemes that support a variety of
Internet information systems

·
The future of URLs, including uniform resource
names (URNs)—a framework to support objects that move from place to place while
retaining stable names

2.1 Navigating the
Internet's Resources

URLs are the resource locations that your browser needs to
find information. They let people and applications find, use, and share the
billions of data resources on the Internet. URLs are the usual human access
point to HTTP and other protocols: a person points a browser at a URL and,
behind the scenes, the browser sends the appropriate protocol messages to get
the resource that the person wants.

URLs actually are a subset of a more
general class of resource identifier called a uniform
resource identifier, or URI. URIs are a general concept comprised of two main
subsets, URLs and URNs. URLs identify resources by describing where resources
are located, whereas URNs (which we'll cover later in this chapter) identify
resources by name, regardless of where they currently reside.

The HTTP specification uses the more general concept of URIs
as its resource identifiers; in practice, however, HTTP applications deal only
with the URL subset of URIs. Throughout this book, we'll sometimes refer to
URIs and URLs interchangeably, but we're almost always talking about URLs.

Say you want to fetch the URL http://www.joes-hardware.com/seasonal/index-fall.html:

·
The first part of the URL (http)
is the URL scheme. The
scheme tells a web client how to access the
resource. In this case, the URL says to use the HTTP protocol.

·
The second part of the URL (www.joes-hardware.com)
is the server location. This tells the web client where
the resource is hosted.

·
The third part of the URL (/seasonal/index-fall.html)
is the resource path. The path tells what particular local resource on the server is being
requested.

See Figure 2-1 for an illustration.

Figure 2-1. How URLs relate to
browser, machine, server, and location on the server's filesystem

[image: figs/http_0201.gif]

URLs can direct you to resources available through protocols
other than HTTP. They can point you to any resource on the Internet, from a
person's email account:

mailto:president@whitehouse.gov

to files that are available through other protocols, such as
the File Transfer Protocol (FTP):

ftp://ftp.lots-o-books.com/pub/complete-price-list.xls

to movies hosted off of streaming video
servers:

rtsp://www.joes-hardware.com:554/interview/cto_video

URLs provide a way to uniformly name
resources. Most URLs have the same "scheme://server location/path"
structure. So, for every resource out there and every way to get those
resources, you have a single way to name each resource so that anyone can use that
name to find it. However, this wasn't always the case.

2.1.1 The Dark Days Before URLs

Before the Web and
URLs, people relied on a rag-tag assortment of applications to access data
distributed throughout the Net. Most people were not lucky enough to have all
the right applications or were not savvy and patient enough to use them.

Before URLs came along, if you wanted to
share the complete-catalog.xls file with a
friend, you would have had to say something like this: "Use FTP to connect
to ftp.joes-hardware.com. Log in as anonymous. Then type your username as the password.
Change to the pub directory. Switch to binary
mode. Now download the file named complete-catalog.xls
to your local filesystem and view it there."

Today, browsers such as Netscape Navigator
and Microsoft Internet Explorer bundle much of this functionality into one
convenient package. Using URLs, these applications are able to access many
resources in a uniform way, through one interface. Instead of the complicated
instructions above, you could just say "Point your browser at ftp://ftp.lots-o-books.com/pub/complete-catalog.xls."

URLs have provided a means for applications
to be aware of how to access a resource. In fact, many users are probably
unaware of the protocols and access methods their browsers use to get the
resources they are requesting.

With web browsers, you no longer need a news
reader to read Internet news or an FTP client to access files on FTP servers. You
don't need an electronic mail program to send and receive email messages. URLs
have helped to simplify the online world, by allowing the browser to be smart
about how to access and handle resources.[1]
Applications can use URLs to simplify access to information.

[1] Browsers often use other applications to handle specific resources.
For example, Internet Explorer launches an email application to handle
URLs that identify email resources.

URLs give you and your browser all you need to find a piece of
information. They define the particular resource you want, where it is located,
and how to get it.

2.2 URL Syntax

URLs provide a
means of locating any resource on the Internet, but these resources can be
accessed by different schemes (e.g., HTTP, FTP, SMTP), and URL syntax varies
from scheme to scheme.

Does this mean that each different URL scheme
has a radically different syntax? In practice, no. Most URLs adhere to a
general URL syntax, and there is significant overlap in the style and syntax
between different URL schemes.

Most URL schemes base their URL syntax on
this nine-part general format:

<scheme>://<user>:<password>@<host>:<port>/<path>;<params>?<query>#<frag>

Almost no URLs contain all these components. The
three most important parts of a URL are the scheme,
the host, and the path.
Table 2-1 summarizes the various components.

	
Table 2-1. General URL components

	
Component

	
Description

	
Default value

	
scheme

	
Which protocol to use when accessing a server to get a
 resource.

	
None

	
user

	
The username some schemes require to access a resource.

	
anonymous

	
password

	
The password that may be included after the username,
 separated by a colon (:).

	
<Email address>

	
host

	
The hostname or dotted IP address of the server hosting the resource.

	
None

	
port

	
The port number on which the server hosting the resource is
 listening. Many schemes have default port numbers (the default port number
 for HTTP is 80).

	
Scheme-specific

	
path

	
The local name for the resource on the server, separated
 from the previous URL components by a slash (/). The syntax of the path
 component is server- and scheme-specific. (We will see later in this chapter
 that a URL's path can be divided into segments, and each segment can have its
 own components specific to that segment.)

	
None

	
params

	
Used by some schemes to specify input parameters. Params are
 name/value pairs. A URL can contain multiple params fields, separated from
 themselves and the rest of the path by semicolons (;).

	
None

	
query

	
Used by some schemes to pass parameters to active
 applications (such as databases, bulletin boards, search engines, and other
 Internet gateways). There is no common format for the contents of the query
 component. It is separated from the rest of the URL by the "?"
 character.

	
None

	
frag

	
A name for a piece or part of the resource. The frag field
 is not passed to the server when referencing the object; it is used
 internally by the client. It is separated from the rest of the URL by the
 "#" character.

	
None

For example, consider the URL http://www.joes-hardware.com:80/index.html.
The scheme is "http", the host is "www.joes-hardware.com",
the port is "80", and the path is "/index.html".

2.2.1 Schemes: What Protocol to Use

The scheme
is really the main identifier of how to access a given resource; it tells the
application interpreting the URL what protocol it needs to speak. In our simple
HTTP URL, the scheme is simply "http".

The scheme component must start with an alphabetic character,
and it is separated from the rest of the URL by the first ":"
character. Scheme names are case-insensitive, so the URLs
"http://www.joes-hardware.com" and "HTTP://www.joes-hardware.com"
are equivalent.

2.2.2 Hosts and Ports

To find a resource on the Internet, an application needs to
know what machine is hosting the resource and where on that machine it can find
the server that has access to the desired resource. The host and port components of the URL
provide these two pieces of information.

The host component identifies the host machine on the Internet
that has access to the resource. The name can be provided as a hostname, as
above ("www.joes-hardware.com") or as an IP address. For example, the
following two URLs point to the same resource—the first refers to the server by
its hostname and the second by its IP address:

http://www.joes-hardware.com:80/index.html

http://161.58.228.45:80/index.html

The port component identifies the network port on which the
server is listening. For HTTP, which uses the underlying TCP protocol, the
default port is 80.

2.2.3 Usernames and Passwords

More interesting components are the user and password
components. Many servers require a username and password before you can access
data through them. FTP servers are a common example of this. Here are a few
examples:

ftp://ftp.prep.ai.mit.edu/pub/gnu
ftp://anonymous@ftp.prep.ai.mit.edu/pub/gnu
ftp://anonymous:my_passwd@ftp.prep.ai.mit.edu/pub/gnu
http://joe:joespasswd@www.joes-hardware.com/sales_info.txt

The first example has no user or password component, just our
standard scheme, host, and path. If an application is using a URL scheme that
requires a username and password, such as FTP, it generally will insert a
default username and password if they aren't supplied. For example, if you hand
your browser an FTP URL without specifying a username and password, it will
insert "anonymous" for your username and send a default password
(Internet Explorer sends "IEUser", while Netscape Navigator sends
"mozilla").

The second example shows a username being specified as
"anonymous". This username, combined with the host component, looks
just like an email address. The "@" character separates the user and
password components from the rest of the URL.

In the third example, both a username ("anonymous")
and password ("my_passwd") are specified, separated by the
":" character.

2.2.4 Paths

The path
component of the URL specifies where on the server machine the resource lives.
The path often resembles a hierarchical filesystem path. For example:

http://www.joes-hardware.com:80/seasonal/index-fall.html

The path in this URL is "/seasonal/index-fall.html",
which resembles a filesystem path on a Unix filesystem. The path is the
information that the server needs to locate the resource.[2] The path component for HTTP
URLs can be divided into path segments
separated by "/" characters (again, as in a file path on a Unix
filesystem). Each path segment can have its own params
component.

[2] This is a bit of a
simplification. In Section 18.2, we will see that the path is not
always enough information to locate a resource. Sometimes a server needs
additional information.

2.2.5 Parameters

For many schemes, a simple host and path
to the object just aren't enough. Aside from what port the server is listening
to and even whether or not you have access to the resource with a username and
password, many protocols require more information to work.

Applications interpreting URLs need these protocol parameters
to access the resource. Otherwise, the server on the other side might not
service the request or, worse yet, might service it wrong. For example, take a
protocol like FTP, which has two modes of transfer, binary and text. You
wouldn't want your binary image transferred in text mode, because the binary
image could be scrambled.

To give applications the input parameters they need in order
to talk to the server correctly, URLs have a params
component. This component is just a list of name/value pairs in the URL,
separated from the rest of the URL (and from each other) by ";"
characters. They provide applications with any additional information that they
need to access the resource. For example:

ftp://prep.ai.mit.edu/pub/gnu;type=d

In this example, there is one param, type=d, where the name of the param is
"type" and its value is "d".

As we mentioned earlier, the path component for HTTP URLs can be
broken into path segments. Each segment can have its own params. For example:

http://www.joes-hardware.com/hammers;sale=false/index.html;graphics=true

In this example there are two path segments, hammers and index.html. The hammers
path segment has the param sale,
and its value is false. The index.html segment has the param graphics, and its value is true.

2.2.6 Query Strings

Some resources, such as database services, can be asked
questions or queries to narrow down the type of resource being requested.

Let's say Joe's Hardware store maintains a list of unsold
inventory in a database and allows the inventory to be queried, to see whether
products are in stock. The following URL might be used to query a web database
gateway to see if item number 12731 is available:

http://www.joes-hardware.com/inventory-check.cgi?item=12731

For the most part, this resembles the other URLs we have
looked at. What is new is everything to the right of the question mark (?). This is called the query component. The query
component of the URL is passed along to a gateway resource, with the path
component of the URL identifying the gateway resource. Basically, gateways can
be thought of as access points to other applications (we discuss gateways in
detail in Chapter 8).

Figure 2-2 shows an example of a query
component being passed to a server that is acting as a gateway to Joe's
Hardware's inventory-checking application. The query is checking whether a
particular item, 12731, is in
inventory in size large and
color blue.

Figure 2-2. The URL query component
is sent along to the gateway application

[image: figs/http_0202.gif]

There is no requirement for the format of the query component,
except that some characters are illegal, as we'll see later in this chapter. By
convention, many gateways expect the query string to be formatted as a series
of "name=value" pairs, separated by "&" characters:

http://www.joes-hardware.com/inventory-check.cgi?item=12731&color=blue

In this example, there are two name/value pairs in the query
component: item=12731 and color=blue.

2.2.7 Fragments

Some resource types, such as HTML, can
be divided further than just the resource level. For example, for a single,
large text document with sections in it, the URL for the resource would point
to the entire text document, but ideally you could specify the sections within
the resource.

To allow referencing of parts or fragments of a resource, URLs
support a frag component
to identify pieces within a resource. For example, a URL could point to a
particular image or section within an HTML document.

A fragment dangles off the right-hand side of
a URL, preceded by a # character. For example:

http://www.joes-hardware.com/tools.html#drills

In this example, the fragment drills
references a portion of the /tools.html web
page located on the Joe's Hardware web server. The portion is named
"drills".

Because HTTP servers generally deal only with
entire objects,[3] not with fragments of objects, clients don't pass fragments along
to servers (see Figure 2-3). After
your browser gets the entire resource from the
server, it then uses the fragment to display the part of the resource in which
you are interested.

[3] In
Section 15.9, we
will see that HTTP agents may request byte ranges of objects. However, in the
context of URL fragments, the server sends the entire object and the agent
applies the fragment identifier to the resource.

Figure 2-3. The URL
fragment is used only by the client, because the server deals with entire
objects

[image: figs/http_0203.gif]

2.3 URL Shortcuts

Web clients understand and use a few URL
shortcuts. Relative URLs are a convenient shorthand for specifying a resource
within a resource. Many browsers also support "automatic
expansion" of URLs, where the user can type in a key (memorable) part of a
URL, and the browser fills in the rest. This is explained in Section 2.3.2.

2.3.1 Relative URLs

URLs come in two flavors: absolute and relative. So far, we have
looked only at absolute URLs. With an absolute URL, you have all the
information you need to access a resource.

On the other hand, relative URLs are incomplete. To get all
the information needed to access a resource from a relative URL, you must
interpret it relative to another URL, called its base.

Relative URLs are a convenient shorthand notation for URLs. If
you have ever written HTML by hand, you have probably
found them to be a great shortcut. Example 2-1 contains an example HTML document
with an embedded relative URL.

Example 2-1. HTML snippet with relative URLs

<HTML>
<HEAD><TITLE>Joe's Tools</TITLE></HEAD>
<BODY>
<H1> Tools Page </H1>
<H2> Hammers <H2>
<P> Joe's Hardware Online has the largest selection of hammers
</BODY>
</HTML>

In Example 2-1, we have an HTML document for the
resource:

http://www.joes-hardware.com/tools.html

In the HTML document, there is a hyperlink containing the URL ./hammers.html. This URL seems incomplete, but it is
a legal relative URL. It can be interpreted relative to the URL of the document
in which it is found; in this case, relative to the resource /tools.html on the Joe's Hardware web server.

The abbreviated relative URL syntax lets HTML authors omit
from URLs the scheme, host, and other components. These components can be
inferred by the base URL of the resource they
are in. URLs for other resources also can be specified in this shorthand.

In Example 2-1, our base URL is:

http://www.joes-hardware.com/tools.html

Using this URL as a base, we can infer the missing
information. We know the resource is ./hammers.html,
but we don't know the scheme or host. Using the base URL, we can infer that the
scheme is http and the host is www.joes-hardware.com. Figure 2-4 illustrates this.

Figure 2-4. Using a base URL

[image: figs/http_0204.gif]

Relative URLs are only fragments or pieces of URLs.
Applications that process URLs (such as your browser) need to be able to
convert between relative and absolute URLs.

It is also worth noting that relative URLs provide a
convenient way to keep a set of resources (such as HTML pages) portable. If you
use relative URLs, you can move a set of documents around and still have their
links work, because they will be interpreted relative to the new base. This
allows for things like mirroring content on other servers.

2.3.1.1 Base URLs

The first step in the conversion process is to find a base URL. The base URL serves as a point of reference for
the relative URL. It can come from a few places:

Explicitly
provided in the resource

Some resources explicitly specify
the base URL. An HTML document, for example, may include a <BASE> HTML tag defining the base
URL by which to convert all relative URLs in that HTML document.

Base
URL of the encapsulating resource

If a relative URL is found in a
resource that does not explicitly specify a base URL, as in Example 2-1, it can use the URL of the
resource in which it is embedded as a base (as we did in our example).

No
base URL

In some instances, there is no base
URL. This often means that you have an absolute URL; however, sometimes you may
just have an incomplete or broken URL.

2.3.1.2 Resolving relative references

Previously, we showed the basic components
and syntax of URLs. The next step in converting a relative URL into an absolute
one is to break up both the relative and base URLs into their component pieces.

In effect, you are just parsing the URL, but this is often
called decomposing the
URL, because you are breaking it up into its components. Once you have broken
the base and relative URLs into their components, you can then apply the
algorithm pictured in Figure 2-5 to finish the conversion.

Figure 2-5. Converting relative to
absolute URLs

[image: figs/http_0205.gif]

This algorithm converts a relative URL to its absolute form,
which can then be used to reference the resource. This algorithm was originally
specified in RFC 1808 and later incorporated into RFC 2396.

With our ./hammers.html
example from Example 2-1, we can apply the algorithm
depicted in Figure 2-5:

1. Path
is ./hammers.html; base URL is http://www.joes-hardware.com/tools.html.

2.
Scheme is empty; proceed down left half of chart
and inherit the base URL scheme (HTTP).

3.
At least one component is non-empty; proceed to
bottom, inheriting host and port components.

4.
Combining the components we have from the
relative URL (path: ./hammers.html) with what
we have inherited (scheme: http, host: www.joes-hardware.com, port: 80), we get our new absolute URL: http://www.joes-hardware.com/hammers.html.

2.3.2 Expandomatic URLs

Some browsers try to
expand URLs automatically, either after you submit the
URL or while you're typing. This provides users with a shortcut: they don't
have to type in the complete URL, because it automatically expands itself.

These "expandomatic" features come
in a two flavors:

Hostname
expansion

In hostname expansion, the browser can often expand the hostname you
type in into the full hostname without your help, just by using some simple
heuristics.

For example if you
type "yahoo" in the address box, your browser can automatically
insert "www." and ".com" onto the hostname, creating
"www.yahoo.com". Some browsers will try this if they are unable to
find a site that matches "yahoo", trying a few expansions before
giving up. Browsers apply these simple tricks to save you some time and
frustration.

However, these
expansion tricks on hostnames can cause problems for other HTTP applications,
such as proxies. In Chapter 6, we will
discuss these problems in more detail.

History expansion

Another technique
that browsers use to save you time typing URLs is to store a history of the
URLs that you have visited in the past. As you type in the URL, they can offer
you completed choices to select from by matching what you type to the prefixes
of the URLs in your history. So, if you were typing in the start of a URL that
you had visited previously, such as http://www.joes-,
your browser could suggest http://www.joes-hardware.com. You could then select that instead of typing out the
complete URL.

Be aware that URL auto-expansion may behave differently when
used with proxies. We discuss this further in Section 6.5.6.

2.4 Shady
Characters

URLs were designed to
be portable. They were also designed to
uniformly name all the resources on the Internet, which means that they will be
transmitted through various protocols. Because all of these protocols have
different mechanisms for transmitting their data, it was important for URLs to
be designed so that they could be transmitted safely through any Internet
protocol.

Safe transmission means that URLs can be
transmitted without the risk of losing information. Some protocols, such as the
Simple Mail Transfer Protocol (SMTP) for electronic mail, use transmission
methods that can strip off certain characters.[4]
To get around this, URLs are
permitted to contain only characters from a relatively small, universally safe
alphabet.

[4] This is caused by the use of a 7-bit encoding for messages; this
can strip off information if the source is encoded in 8 bits or more.

In addition to wanting URLs to be
transportable by all Internet protocols, designers wanted them to be readable by people. So invisible, nonprinting
characters also are prohibited in URLs, even though these characters may pass
through mailers and otherwise be portable.[5]

[5]
Nonprinting characters include whitespace (note that RFC 2396 recommends that
applications ignore whitespace).

To complicate matters further, URLs also need
to be complete. URL designers realized there
would be times when people would want URLs to contain binary data or characters
outside of the universally safe alphabet. So, an escape mechanism was added,
allowing unsafe characters to be encoded into safe characters for transport.

This section summarizes the universal
alphabet and encoding rules for URLs.

2.4.1 The URL Character Set

Default computer system character sets often have an
Anglocentric bias. Historically, many computer applications have used
the US-ASCII character set. US-ASCII uses 7 bits to represent most keys
available on an English typewriter and a few nonprinting control characters for
text formatting and hardware signalling.

US-ASCII is very portable, due to its long legacy. But while
it's convenient to citizens of the U.S., it doesn't support the inflected
characters common in European languages or the hundreds of non-Romanic
languages read by billions of people around the world.

Furthermore, some URLs may need to contain arbitrary binary
data. Recognizing the need for completeness, the URL designers have
incorporated escape sequences.
Escape sequences allow the encoding of arbitrary character values or data using
a restricted subset of the US-ASCII character set, yielding portability and
completeness.

2.4.2 Encoding Mechanisms

To get around the limitations of a safe
character set representation, an encoding scheme was devised to represent
characters in a URL that are not safe. The encoding simply represents the
unsafe character by an "escape" notation, consisting of a percent
sign (%) followed by two hexadecimal digits that represent the ASCII code of
the character.

Table 2-2 shows a few examples.

	
Table 2-2. Some encoded character
 examples

	
Character

	
ASCII code

	
Example URL

	
~

	
126 (0x7E)

	
http://www.joes-hardware.com/%7Ejoe

	
SPACE

	
32 (0x20)

	
http://www.joes-hardware.com/more%20tools.html

	
%

	
37 (0x25)

	
http://www.joes-hardware.com/100%25satisfaction.html

2.4.3 Character Restrictions

Several characters have been reserved to have special
meaning inside of a URL. Others are not in the defined US-ASCII printable set.
And still others are known to confuse some Internet gateways and protocols, so
their use is discouraged.

Table 2-3 lists characters that should be
encoded in a URL before you use them for anything other than their reserved
purposes.

	
Table 2-3. Reserved and restricted
 characters

	
Character

	
Reservation/Restriction

	
%

	
Reserved as escape token for encoded characters

	
/

	
Reserved for delimiting splitting up path segments in the
 path component

	
.

	
Reserved in the path component

	
..

	
Reserved in the path component

	
#

	
Reserved as the fragment delimiter

	
?

	
Reserved as the query-string delimiter

	
;

	
Reserved as the params delimiter

	
:

	
Reserved to delimit the scheme, user/password, and host/port
 components

	
$, +

	
Reserved

	
@ & =

	
Reserved because they have special meaning in the context of
 some schemes

	
{ } | \ ^ ~ [] `

	
Restricted because of unsafe handling by various transport
 agents, such as gateways

	
< > "

	
Unsafe; should be encoded because these characters often
 have meaning outside the scope of the URL, such as delimiting the URL itself
 in a document (e.g., "http://www.joes-hardware.com")

	
0x00-0x1F, 0x7F

	
Restricted; characters within these hex ranges fall within
 the nonprintable section of the US-ASCII character set

	
> 0x7F

	
Restricted; characters whose hex values fall within this
 range do not fall within the 7-bit range of the US-ASCII character set

2.4.4 A Bit More

You might be wondering why nothing bad has happened when you have
used characters that are unsafe. For instance, you can visit Joe's home page
at:

http://www.joes-hardware.com/~joe

and not encode the "~" character. For some transport
protocols this is not an issue, but it is still unwise for application
developers not to encode unsafe characters.

Applications need to walk a fine line. It is best for client
applications to convert any unsafe or restricted characters before sending any
URL to any other application.[6]
Once all the unsafe characters have been encoded, the URL is in a canonical form that can be shared between applications; there is no need to
worry about the other application getting confused by any of the characters'
special meanings.

[6] Here we are specifically talking about
client applications, not other HTTP intermediaries, like proxies. In Section 6.5.5, we discuss some of the problems
that can arise when proxies or other intermediary HTTP applications attempt to
change (e.g., encode) URLs on the behalf of a client.

The original application that gets the URL from the user is
best fit to determine which characters need to be encoded. Because each component
of the URL may have its own safe/unsafe characters, and which characters are
safe/unsafe is scheme-dependent, only the application receiving the URL from
the user really is in a position to determine what needs to be encoded.

Of course, the other extreme is for the application to encode
all characters. While this is not recommended, there is no hard and fast rule
against encoding characters that are considered safe already; however, in
practice this can lead to odd and broken behavior, because some applications
may assume that safe characters will not be encoded.

Sometimes, malicious folks encode extra characters in an
attempt to get around applications that are doing pattern matching on URLs—for
example, web filtering applications. Encoding safe URL components can cause
pattern-matching applications to fail to recognize the patterns for which they
are searching. In general, applications interpreting URLs must decode the URLs
before processing them.

Some URL components, such as the scheme, need to be recognized
readily and are required to start with an alphabetic character. Refer back to Section 2.2 for more guidelines on the use of
reserved and unsafe characters within different URL components.[7]

[7] Table 2-3 lists reserved characters for the
various URL components. In general, encoding should be limited to those
characters that are unsafe for transport.

2.5 A Sea of Schemes

In this section, we'll take a look at
the more common scheme formats on the Web. Appendix A gives a fairly exhaustive list of
schemes and references to their individual documentation.

Table 2-4 summarizes some of the most popular
schemes. Reviewing Section 2.2 will make the syntax portion of
the table a little more familiar.

	
Table 2-4. Common scheme formats

	
Scheme

	
Description

	
http

	
The Hypertext Transfer Protocol scheme conforms to the
 general URL format, except that there is no username or password. The port
 defaults to 80 if omitted.

Basic form:

http://<host>:<port>/<path>?<query>#<frag>

Examples:

http://www.joes-hardware.com/index.html

http://www.joes-hardware.com:80/index.html

	
https

	
The https scheme is a twin to the http scheme. The only difference
 is that the https scheme uses Netscape's Secure Sockets Layer (SSL), which
 provides end-to-end encryption of HTTP connections. Its syntax is identical
 to that of HTTP, with a default port of 443.

Basic form:

https://<host>:<port>/<path>?<query>#<frag>

Example:

https://www.joes-hardware.com/secure.html

	
mailto

	
Mailto URLs refer to email addresses. Because email behaves
 differently from other schemes (it does not refer to objects that can be
 accessed directly), the format of a mailto URL differs from that of the
 standard URL. The syntax for Internet email addresses is documented in
 Internet RFC 822.

Basic form:

mailto:<RFC-822-addr-spec>

Example:

mailto:joe@joes-hardware.com

	
ftp

	
File Transfer Protocol URLs can be used to download and upload
 files on an FTP server and to obtain listings of the contents of a directory
 structure on an FTP server.

FTP has been around since before the advent of the Web and
 URLs. Web applications have assimilated FTP as a data-access scheme. The URL
 syntax follows the general form.

Basic form:

ftp://<user>:<password>@<host>:<port>/<path>;<params>

Example:

ftp://anonymous:joe%40joes-hardware.com@prep.ai.mit.edu:21/pub/gnu/

	
rtsp, rtspu

	
RTSP URLs are identifiers for audio and video media
 resources that can be retrieved through the Real Time Streaming Protocol.

The "u" in the rtspu scheme denotes that the UDP
 protocol is used to retrieve the resource.

Basic forms:

rtsp://<user>:<password>@<host>:<port>/<path>

rtspu://<user>:<password>@<host>:<port>/<path>

Example:

rtsp://www.joes-hardware.com:554/interview/cto_video

	
file

	
The file scheme denotes files directly accessible on a given
 host machine (by local disk, a network filesystem, or some other file-sharing
 system). The fields follow the general form. If the host is omitted, it
 defaults to the local host from which the URL is being used.

Basic form:

file://<host>/<path>

Example:

file://OFFICE-FS/policies/casual-fridays.doc

	
news

	
The news scheme is used to access specific
 articles or newsgroups, as defined by RFC 1036. It has the unusual property
 that a news URL in itself does not contain sufficient information to locate
 the resource.

The news URL is missing information about
 where to acquire the resource—no hostname or machine name is supplied. It is
 the interpreting application's job to acquire this information from the user.
 For example, in your Netscape browser, under the Options menu, you can
 specify your NNTP (news) server. This tells your browser what server to use
 when it has a news URL.

News resources can be accessed from
 multiple servers. They are said to be location-independent, as they are not
 dependent on any one source for access.

The "@" character is reserved
 within a news URL and is used to distinguish between news URLs that refer to
 newsgroups and news URLs that refer to specific news articles.

Basic forms:

news:<newsgroup>

news:<news-article-id>

Example:

news:rec.arts.startrek

	
telnet

	
The telnet scheme is used to access interactive services. It
 does not represent an object per se, but an interactive application
 (resource) accessible via the telnet protocol.

Basic form:

telnet://<user>:<password>@<host>:<port>/

Example:

telnet://slurp:webhound@joes-hardware.com:23/

2.6 The Future

URLs are a powerful tool. Their design allows
them to name all existing objects and easily encompass new formats. They
provide a uniform naming mechanism that can be shared between Internet
protocols.

However, they are not perfect. URLs
are really addresses, not true names. This means that a URL tells you where
something is located, for the moment. It provides you with the name of a
specific server on a specific port, where you can find the resource. The
downfall of this scheme is that if the resource is moved, the URL is no longer
valid. And at that point, it provides no way to locate the object.

What would be ideal is if you had the real name of an object,
which you could use to look up that object regardless of its location. As with
a person, given the name of the resource and a few other facts, you could track
down that resource, regardless of where it moved.

The Internet Engineering Task Force (IETF) has been working on
a new standard, uniform resource names (URNs), for some
time now, to address just this issue. URNs provide a stable name for an object,
regardless of where that object moves (either inside a web server or across web
servers).

Persistent uniform resource locators (PURLs) are an
example of how URN functionality can be achieved using URLs. The concept is to
introduce another level of indirection in looking up a resource, using an
intermediary resource locator
server that catalogues and tracks the actual URL of a resource. A client can request
a persistent URL from the locator, which can then respond with a resource that
redirects the client to the actual and current URL for the resource (see Figure 2-6). For more information on PURLs,
visit http://purl.oclc.org.

Figure 2-6. PURLs use a
resource locator server to name the current location of a resource

[image: figs/http_0206.gif]

2.6.1 If Not Now, When?

The ideas behind URNs have been around for
some time. Indeed, if you look at the publication dates for some of their
specifications, you might ask yourself why they have yet to be adopted.

The change from URLs to URNs
is an enormous task. Standardization is a slow process, often for good reason. Support
for URNs will require many changes—consensus from the standards bodies,
modifications to various HTTP applications, etc. A tremendous amount of
critical mass is required to make such changes, and unfortunately (or perhaps
fortunately), there is so much momentum behind URLs that it will be some time
before all the stars align to make such a conversion possible.

Throughout the explosive growth of the Web,
Internet users—everyone from computer scientists to the average Internet
user—have been taught to use URLs. While they suffer from clumsy syntax (for
the novice) and persistence problems, people have learned how to use them and
how to deal with their drawbacks. URLs have some limitations, but they're not
the web development community's most pressing problem.

Currently, and for the foreseeable future,
URLs are the way to name resources on the Internet. They are everywhere, and
they have proven to be a very important part of the Web's success. It will be a
while before any other naming scheme unseats URLs. However, URLs do have their
limitations, and it is likely that new standards (possibly URNs) will emerge
and be deployed to address some of these limitations.

2.7 For More
Information

For more information on URLs,
refer to:

http://www.w3.org/Addressing/

The W3C web page
about naming and addressing URIs and URLs.

http://www.ietf.org/rfc/rfc1738

RFC 1738,
"Uniform Resource Locators (URL)," by T. Berners-Lee, L. Masinter,
and M. McCahill.

http://www.ietf.org/rfc/rfc2396.txt

RFC 2396,
"Uniform Resource Identifiers (URI): Generic Syntax," by T.
Berners-Lee, R. Fielding, and L. Masinter.

http://www.ietf.org/rfc/rfc2141.txt

RFC 2141,
"URN Syntax," by R. Moats.

http://purl.oclc.org

The persistent
uniform resource locator web site.

http://www.ietf.org/rfc/rfc1808.txt

RFC 1808,
"Relative Uniform Resource Locators," by R. Fielding.

Chapter 3. HTTP
Messages

If HTTP is the Internet's courier, HTTP messages are the packages it uses to move
things around. In Chapter 1, we
showed how HTTP programs send each other messages to get work done. This
chapter tells you all about HTTP messages—how to create them and how to
understand them. After reading this chapter, you'll know most of what you need
to know to write your own HTTP applications. In particular, you'll
understand:

·
How messages flow

·
The three parts of HTTP messages (start line,
headers, and entity body)

·
The differences between request and response
messages

·
The various functions (methods) that request
messages support

·
The various status codes that are returned with
response messages

·
What the various HTTP headers do

3.1 The Flow of
Messages

HTTP messages are the
blocks of data sent between HTTP applications. These blocks of data
begin with some text meta-information describing the message contents and meaning, followed by
optional data. These messages flow between clients, servers, and proxies. The
terms "inbound," "outbound," "upstream," and
"downstream" describe message direction.

3.1.1 Messages Commute Inbound to the Origin Server

HTTP uses the terms inbound and outbound to describe transactional
direction. Messages travel inbound to the origin server, and when their work is
done, they travel outbound back to the user agent (see Figure 3-1).

Figure 3-1. Messages travel inbound
to the origin server and outbound back to the client

[image: figs/http_0301.gif]

3.1.2 Messages Flow Downstream

HTTP messages flow like rivers. All messages
flow downstream, regardless of whether they are request messages or
response messages (see Figure 3-2). The
sender of any message is upstream of the
receiver. In Figure 3-2, proxy
1 is upstream of proxy 3 for the request but downstream of proxy 3 for the
response.[1]

[1] The terms "upstream" and "downstream" relate
only to the sender and receiver. We can't tell whether a message is heading to
the origin server or the client, because both are downstream.

Figure 3-2. All messages flow
downstream

[image: figs/http_0302.gif]

3.2 The Parts
of a Message

HTTP messages are
simple, formatted blocks of data. Take a peek at Figure 3-3 for an
example. Each message contains either a request from a client or a response
from a server. They consist of three parts: a start
line describing the message, a block of headers
containing attributes, and an optional body
containing data.

Figure 3-3. Three parts
of an HTTP message

[image: figs/http_0303.gif]

The start line and headers are just ASCII text, broken up by
lines. Each line ends with a two-character end-of-line sequence, consisting of
a carriage return (ASCII 13) and a line-feed character (ASCII 10). This
end-of-line sequence is written "CRLF."
It is worth pointing out that while the HTTP specification for terminating
lines is CRLF, robust applications also should accept just a line-feed
character. Some older or broken HTTP applications do not always send both the
carriage return and line feed.

The entity body or
message body (or just plain "body") is simply an optional chunk of
data. Unlike the start line and headers, the body can contain text or binary
data or can be empty.

In the example in Figure 3-3, the headers give you a bit of
information about the body. The Content-Type line tells you what the body is—in
this example, it is a plain-text document. The Content-Length line tells you
how big the body is; here it is a meager 19 bytes.

3.2.1 Message Syntax

All HTTP messages fall into two types: request messages and response messages.Request
messages request an action from a web server. Response messages carry results
of a request back to a client. Both request and response messages have the same
basic message structure. Figure 3-4 shows request and response messages
to get a GIF image.

Figure 3-4. An HTTP transaction has
request and response messages

[image: figs/http_0304.gif]

Here's the format for a request message:

<method> <request-URL> <version>
<headers>

<entity-body>

Here's the format for a response message (note that the syntax
differs only in the start line):

<version> <status> <reason-phrase>
<headers>

<entity-body>

Here's a quick description of the various parts:

method

The action that the client wants
the server to perform on the resource. It is a single word, like
"GET," "HEAD," or "POST". We cover the method in
detail later in this chapter.

request-URL

A complete URL naming the requested
resource, or the path component of the URL. If
you are talking directly to the server, the path component of the URL is
usually okay as long as it is the absolute path to the resource—the server can
assume itself as the host/port of the URL. Chapter 2 covers URL syntax in detail.

version

The version of HTTP that the
message is using. Its format looks like:

HTTP/<major>.<minor>

where major
and minor both are integers. We discuss HTTP
versioning a bit more later in this chapter.

status-code

A three-digit number describing
what happened during the request. The first digit of each code describes the
general class of status ("success," "error," etc.). An
exhaustive list of status codes defined in the HTTP specification and their
meanings is provided later in this chapter.

reason-phrase

A human-readable version of the
numeric status code, consisting of all the text until the end-of-line sequence.
Example reason phrases for all the status codes defined in the HTTP
specification are provided later in this chapter. The reason phrase is meant
solely for human consumption, so, for example, response lines containing
"HTTP/1.0 200 NOT OK" and "HTTP/1.0 200 OK" should be
treated as equivalent success indications, despite the reason phrases
suggesting otherwise.

headers

Zero or more headers, each of which
is a name, followed by a colon (:),
followed by optional whitespace, followed by a value, followed by a CRLF. The
headers are terminated by a blank line (CRLF), marking the end of the list of
headers and the beginning of the entity body. Some versions of HTTP, such as
HTTP/1.1, require certain headers to be present for the request or response
message to be valid. The various HTTP headers are covered later in this
chapter.

entity-body

The entity body contains a block of
arbitrary data. Not all messages contain entity bodies, so sometimes a message
terminates with a bare CRLF. We discuss entities in detail in Chapter 15.

Figure 3-5 demonstrates hypothetical request
and response messages.

Figure 3-5. Example request and
response messages

[image: figs/http_0305.gif]

Note that a set of HTTP headers should always end in a blank
line (bare CRLF), even if there are no headers and even if there is no entity body.
Historically, however, many clients and servers (mistakenly) omitted the final
CRLF if there was no entity body. To interoperate with these popular but
noncompliant implementations, clients and servers should accept messages that
end without the final CRLF.

3.2.2 Start Lines

All HTTP messages begin with a start line. The start
line for a request message says what to do. The
start line for a response message says what happened.

3.2.2.1 Request line

Request messages ask servers to do something to a resource.
The start line for a request message, or request line, contains a method describing what
operation the server should perform and a request URL describing the resource
on which to perform the method. The request line also includes an HTTP version tells the server what dialect of HTTP the
client is speaking.

All of these fields are separated by whitespace. In Figure 3-5a, the request method is GET, the
request URL is /test/hi-there.txt, and the
version is HTTP/1.1. Prior to HTTP/1.0, request lines were not required to
contain an HTTP version.

3.2.2.2 Response line

Response messages carry status information and any resulting
data from an operation back to a client. The start line for a response message,
or response line, contains the HTTP version that the response message is
using, a numeric status code, and a textual reason phrase describing the status
of the operation.

All these fields are separated by whitespace. In Figure 3-5b, the HTTP version is HTTP/1.0, the
status code is 200 (indicating success), and the reason phrase is OK, meaning
the document was returned successfully. Prior to HTTP/1.0, responses were not
required to contain a response line.

3.2.2.3 Methods

The method begins the start line of
requests, telling the server what to do. For example, in the line "GET
/specials/saw-blade.gif HTTP/1.0," the method is GET.

The HTTP specifications have defined a set of common request
methods. For example, the GET method gets a document from a server, the POST
method sends data to a server for processing, and the OPTIONS method determines
the general capabilities of a web server or the capabilities of a web server
for a specific resource.

Table 3-1 describes seven of these methods.
Note that some methods have a body in the request message, and other methods
have bodyless requests.

	
Table 3-1. Common HTTP methods

	
Method

	
Description

	
Message body?

	
GET

	
Get a document from the server.

	
No

	
HEAD

	
Get just the headers for a document from the server.

	
No

	
POST

	
Send data to the server for processing.

	
Yes

	
PUT

	
Store the body of the request on the server.

	
Yes

	
TRACE

	
Trace the message through proxy servers to the server.

	
No

	
OPTIONS

	
Determine what methods can operate on a server.

	
No

	
DELETE

	
Remove a document from the server.

	
No

Not all servers implement all seven of the methods in Table 3-1. Furthermore, because HTTP was
designed to be easily extensible, other servers may implement their own request
methods in addition to these. These additional methods are called extension methods, because they extend the HTTP
specification.

3.2.2.4 Status codes

As methods tell the server what to do,
status codes tell the client what happened. Status codes live in the start
lines of responses. For example, in the line "HTTP/1.0 200 OK," the
status code is 200.

When clients send request messages to an HTTP server, many
things can happen. If you are fortunate, the request will complete
successfully. You might not always be so lucky. The server may tell you that
the resource you requested could not be found, that you don't have permission to
access the resource, or perhaps that the resource has moved someplace else.

Status codes are returned in the start line of each response
message. Both a numeric and a human-readable status are returned. The numeric
code makes error processing easy for programs, while the reason phrase is
easily understood by humans.

The different status codes are grouped into classes by their
three-digit numeric codes. Status codes between 200 and 299 represent success.
Codes between 300 and 399 indicate that the resource has been moved. Codes
between 400 and 499 mean that the client did something wrong in the request.
Codes between 500 and 599 mean something went awry on the server.

The status code classes are shown in Table 3-2.

	
Table 3-2. Status code classes

	
Overall range

	
Defined range

	
Category

	
100-199

	
100-101

	
Informational

	
200-299

	
200-206

	
Successful

	
300-399

	
300-305

	
Redirection

	
400-499

	
400-415

	
Client error

	
500-599

	
500-505

	
Server error

Current versions of HTTP define only a few codes for each
status category. As the protocol evolves, more status codes will be defined
officially in the HTTP specification. If you receive a status code that you
don't recognize, chances are someone has defined it as an extension to the
current protocol. You should treat it as a general member of the class whose
range it falls into.

For example, if you receive status code 515 (which is outside
of the defined range for 5XX codes listed in Table 3-2), you should treat the response as
indicating a server error, which is the general class of 5XX messages.

Table 3-3 lists some of the most common status
codes that you will see. We will explain all the current HTTP status codes in
detail later in this chapter.

	
Table 3-3. Common status codes

	
Status code

	
Reason phrase

	
Meaning

	
200

	
OK

	
Success! Any requested data is in the response body.

	
401

	
Unauthorized

	
You need to enter a username and password.

	
404

	
Not Found

	
The server cannot find a resource for the requested URL.

3.2.2.5 Reason phrases

The reason phrase is
the last component of the start line of the response. It provides a textual
explanation of the status code. For example, in the line "HTTP/1.0 200
OK," the reason phrase is OK.

Reason phrases are paired one-to-one with status codes. The
reason phrase provides a human-readable version of the status code that
application developers can pass along to their users to indicate what happened
during the request.

The HTTP specification does not provide any hard and fast
rules for what reason phrases should look like. Later in this chapter, we list
the status codes and some suggested reason phrases.

3.2.2.6 Version numbers

Version numbers
appear in both request and response message start lines in the format HTTP/x.y.
They provide a means for HTTP applications to tell each other what version of
the protocol they conform to.

Version numbers are intended to provide applications speaking
HTTP with a clue about each other's capabilities and the format of the message.
An HTTP Version 1.2 application communicating with an HTTP Version 1.1
application should know that it should not use any new 1.2 features, as they
likely are not implemented by the application speaking the older version of the
protocol.

The version number indicates the highest version of HTTP that
an application supports. In some cases this leads to confusion between
applications,[2] because HTTP/1.0 applications
interpret a response with HTTP/1.1 in it to indicate that the response is a 1.1
response, when in fact that's just the level of protocol used by the responding
application.

[2] See http://httpd.apache.org/docs-2.0/misc/known_client_problems.html
for more on cases in which Apache has run into this problem with clients.

Note that version numbers are not treated as fractional
numbers. Each number in the version (for example, the "1" and
"0" in HTTP/1.0) is treated as a separate number. So, when comparing
HTTP versions, each number must be compared separately in order to determine
which is the higher version. For example, HTTP/2.22 is a higher version than
HTTP/2.3, because 22 is a larger number than 3.

3.2.3 Headers

The previous section focused on the
first line of request and response messages (methods, status codes, reason
phrases, and version numbers). Following the start line comes a list of zero,
one, or many HTTP header fields (see Figure 3-5).

HTTP header fields add additional information to request and
response messages. They are basically just lists of name/value pairs. For
example, the following header line assigns the value 19 to the Content-Length
header field:

Content-length: 19

3.2.3.1 Header classifications

The HTTP specification defines several
header fields. Applications also are free to invent their own home-brewed
headers. HTTP headers are classified into:

General headers

Can appear in both request and
response messages

Request
headers

Provide more information about the
request

Response
headers

Provide more information about the
response

Entity
headers

Describe body size and contents, or
the resource itself

Extension
headers

New headers that are not defined in
the specification

Each HTTP header
has a simple syntax: a name, followed by a colon (:), followed by optional whitespace, followed by the field
value, followed by a CRLF. Table 3-4 lists some common header examples.

	
Table 3-4. Common header examples

	
Header example

	
Description

	
Date: Tue, 3 Oct 1997 02:16:03 GMT

	
The date the server generated the response

	
Content-length: 15040

	
The entity body contains 15,040 bytes of data

	
Content-type: image/gif

	
The entity body is a GIF image

	
Accept: image/gif, image/jpeg, text/html

	
The client accepts GIF and JPEG images and HTML

3.2.3.2 Header continuation lines

Long header lines
can be made more readable by breaking them into multiple lines, preceding each
extra line with at least one space or tab character.

For example:

HTTP/1.0 200 OK
Content-Type: image/gif
Content-Length: 8572
Server: Test Server
 Version 1.0

In this example, the response message contains a Server header
whose value is broken into continuation lines. The complete value of the header
is "Test Server Version 1.0".

We'll briefly describe all the HTTP headers later in this
chapter. We also provide a more detailed reference summary of all the headers
in Appendix C.

3.2.4 Entity Bodies

The
third part of an HTTP message is the optional entity body. Entity bodies are
the payload of HTTP messages. They are the things that HTTP was designed to
transport.

HTTP messages can carry many kinds of digital
data: images, video, HTML documents, software applications, credit card
transactions, electronic mail, and so on.

3.2.5 Version 0.9 Messages

HTTP Version 0.9 was an
early version of the HTTP protocol. It was the starting point for the request
and response messages that HTTP has today, but with a far simpler protocol (see
Figure 3-6).

Figure 3-6. HTTP/0.9 transaction

[image: figs/http_0306.gif]

HTTP/0.9 messages also consisted of requests
and responses, but the request contained merely the method
and the request URL, and the response contained
only the entity. No version information (it was
the first and only version at the time), no status code or reason phrase, and
no headers were included.

However, this simplicity did not allow for
much flexibility or the implementation of most of the HTTP features and
applications described in this book. We briefly describe it here because there
are still clients, servers, and other applications that use it, and application
writers should be aware of its limitations.

3.3 Methods

Let's talk in more detail about the some of the basic HTTP methods,
listed earlier in Table 3-1. Note
that not all methods are implemented by every server. To be compliant
with HTTP Version 1.1, a server need implement only the GET and HEAD methods
for its resources.

Even when servers do implement all of these methods, the
methods most likely have restricted uses. For example, servers that support
DELETE or PUT (described later in this section) would not want just anyone to
be able to delete or store resources. These restrictions generally are set up
in the server's configuration, so they vary from site to site and from server
to server.

3.3.1 Safe Methods

HTTP defines a set of methods that are called safe methods. The GET and HEAD methods are said to be
safe, meaning that no action should occur as a result of an HTTP request that
uses either the GET or HEAD method.

By no action, we mean that nothing will happen on the server
as a result of the HTTP request. For example, consider when you are shopping
online at Joe's Hardware and you click on the "submit purchase"
button. Clicking on the button submits a POST request (discussed later) with
your credit card information, and an action is performed on the server on your
behalf. In this case, the action is your credit card being charged for your
purchase.

There is no guarantee that a safe method won't cause an action
to be performed (in practice, that is up to the web developers). Safe methods
are meant to allow HTTP application developers to let users know when an unsafe
method that may cause some action to be performed is being used. In our Joe's
Hardware example, your web browser may pop up a warning message letting you
know that you are making a request with an unsafe method and that, as a result,
something might happen on the server (e.g., your credit card being charged).

3.3.2 GET

GET is the most common
method. It usually is used to ask a server to send a resource. HTTP/1.1
requires servers to implement this method. Figure 3-7 shows an example of a client making
an HTTP request with the GET method.

Figure 3-7. GET example

[image: figs/http_0307.gif]

3.3.3 HEAD

The HEAD method
behaves exactly like the GET method, but the server returns only the headers in
the response. No entity body is ever returned. This allows a client to inspect
the headers for a resource without having to actually get the resource. Using
HEAD, you can:

·
Find out about a resource (e.g., determine its type) without
getting it.

·
See if an object exists, by looking at the status code of the
response.

·
Test if the resource has been modified, by looking at the
headers.

Server developers must ensure that the headers returned are
exactly those that a GET request would return. The HEAD method also is required
for HTTP/1.1 compliance. Figure 3-8 shows the HEAD method in action.

Figure 3-8. HEAD example

[image: figs/http_0308.gif]

3.3.4 PUT

The PUT method
writes documents to a server, in the inverse of the way that GET reads
documents from a server. Some publishing systems let you create web pages and
install them directly on a web server using PUT (see Figure 3-9).

Figure 3-9. PUT example

[image: figs/http_0309.gif]

The semantics of the PUT method are for the server to take the
body of the request and either use it to create a new document named by the
requested URL or, if that URL already exists, use the body to replace it.

Because PUT allows you to change content, many web servers
require you to log in with a password before you can perform a PUT. You can
read more about password authentication in Chapter 12.

3.3.5 POST

The POST method
was designed to send input data to the server.[3] In practice, it is often used
to support HTML forms. The data from a filled-in form typically is sent to the
server, which then marshals it off to where it needs to go (e.g., to a server
gateway program, which then processes it). Figure 3-10 shows a client making an HTTP
request—sending form data to a server—with the POST method.

[3] POST is used to send data to
a server. PUT is used to deposit data into a resource on the server (e.g., a
file).

Figure 3-10. POST example

[image: figs/http_0310.gif]

3.3.6 TRACE

When a client
makes a request, that request may have to travel through firewalls, proxies,
gateways, or other applications. Each of these has the opportunity to modify
the original HTTP request. The TRACE method allows clients to see how its
request looks when it finally makes it to the server.

A TRACE request initiates a "loopback" diagnostic at
the destination server. The server at the final leg of the trip bounces back a
TRACE response, with the virgin request message it received in the body of its
response. A client can then see how, or if, its original message was munged or
modified along the request/response chain of any intervening HTTP applications
(see Figure 3-11).

Figure 3-11. TRACE example

[image: figs/http_0311.gif]

The TRACE method is used primarily for diagnostics; i.e.,
verifying that requests are going through the request/response chain as
intended. It's also a good tool for seeing the effects of proxies and other
applications on your requests.

As good as TRACE is for diagnostics, it does have the drawback
of assuming that intervening applications will treat different types of
requests (different methods—GET, HEAD, POST, etc.) the same. Many HTTP
applications do different things depending on the method—for example, a proxy
might pass a POST request directly to the server but attempt to send a GET
request to another HTTP application (such as a web cache). TRACE does not
provide a mechanism to distinguish methods. Generally, intervening applications
make the call as to how they process a TRACE request.

No entity body can be sent with a TRACE request. The entity
body of the TRACE response contains, verbatim, the request that the responding
server received.

3.3.7 OPTIONS

The OPTIONS method
asks the server to tell us about the various supported capabilities of the web
server. You can ask a server about what methods it supports in general or for
particular resources. (Some servers may support particular operations only on
particular kinds of objects).

This provides a means for client applications to determine how
best to access various resources without actually having to access them. Figure 3-12 shows a request scenario using the
OPTIONS method.

Figure 3-12. OPTIONS example

[image: figs/http_0312.gif]

3.3.8 DELETE

The DELETE method
does just what you would think—it asks the server to delete the resources
specified by the request URL. However, the client application is not guaranteed
that the delete is carried out. This is because the HTTP specification allows
the server to override the request without telling the client. Figure 3-13 shows an example of the DELETE
method.

Figure 3-13. DELETE example

[image: figs/http_0313.gif]

3.3.9 Extension Methods

HTTP
was designed to be field-extensible, so new features wouldn't cause older
software to fail. Extension methods are methods that are not defined in the
HTTP/1.1 specification. They provide developers with a means of extending the
capabilities of the HTTP services their servers implement on the resources that
the servers manage.Some common examples of extension methods are listed in Table 3-5. These
methods are all part of the WebDAV HTTP extension (see Chapter 19) that
helps support publishing of web content to web servers over HTTP.

	
Table 3-5. Example web
 publishing extension methods

	
Method

	
Description

	
LOCK

	
Allows a user to "lock" a
 resource—for example, you could lock a resource while you are editing it to
 prevent others from editing it at the same time

	
MKCOL

	
Allows a user to create a resource

	
COPY

	
Facilitates copying resources on a server

	
MOVE

	
Moves a resource on a server

It's important to note that not all extension
methods are defined in a formal specification. If you define an extension
method, it's likely not to be understood by most HTTP applications. Likewise,
it's possible that your HTTP applications could run into extension methods
being used by other applications that it does not understand.

In these cases, it is best to be tolerant of
extension methods. Proxies should try to relay messages with unknown methods
through to downstream servers if they are capable of doing that without
breaking end-to-end behavior. Otherwise, they should respond with a 501 Not
Implemented status code. Dealing with extension methods (and HTTP extensions in
general) is best done with the old rule, "be conservative in what you
send, be liberal in what you accept."

3.4 Status Codes

HTTP status
codes are classified into five broad categories, as shown earlier in Table 3-2. This section summarizes the HTTP
status codes for each of the five classes.

The status codes provide an easy way for clients to understand
the results of their transactions. In this section, we also list example reason
phrases, though there is no real guidance on the exact text for reason phrases.
We include the recommended reason phrases from the HTTP/1.1 specification.

3.4.1 100-199: Informational Status Codes

HTTP/1.1 introduced the informational status codes
to the protocol. They are relatively new and subject to a bit of controversy
about their complexity and perceived value. Table 3-6 lists the defined informational
status codes.

	
Table 3-6. Informational status
 codes and reason phrases

	
Status code

	
Reason phrase

	
Meaning

	
100

	
Continue

	
Indicates that an initial part of the request was received
 and the client should continue. After sending this, the server must respond
 after receiving the request. See the Expect header in Appendix C for more information.

	
101

	
Switching Protocols

	
Indicates that the server is changing protocols, as
 specified by the client, to one listed in the Upgrade header.

The 100 Continue status code,
in particular, is a bit confusing. It's intended to optimize the case where an
HTTP client application has an entity body to send to a server but wants to check
that the server will accept the entity before it sends it. We discuss it here
in a bit more detail (how it interacts with clients, servers, and proxies)
because it tends to confuse HTTP programmers.

3.4.1.1 Clients and 100 Continue

If a client is sending
an entity to a server and is willing to wait for a 100 Continue response before
it sends the entity, the client needs to send an Expect request header (see Appendix C) with the value 100-continue. If
the client is not sending an entity, it shouldn't send a 100-continue Expect
header, because this will only confuse the server into thinking that the client
might be sending an entity.

100-continue, in many ways, is an optimization. A client
application should really use 100-continue only to avoid sending a server a
large entity that the server will not be able to handle or use.

Because of the initial confusion around the 100 Continue
status (and given some of the older implementations out there), clients that
send an Expect header for 100-continue should not wait forever for the server
to send a 100 Continue response. After some timeout, the client should just
send the entity.

In practice, client implementors also should be prepared to
deal with unexpected 100 Continue responses (annoying, but true). Some errant
HTTP applications send this code inappropriately.

3.4.1.2 Servers and 100 Continue

If a server
receives a request with the Expect header and 100-continue value, it should
respond with either the 100 Continue response or an error code (see Table 3-9). Servers should never send a 100
Continue status code to clients that do not send the 100-continue expectation.
However, as we noted above, some errant servers do this.

If for some reason the server receives some (or all) of the
entity before it has had a chance to send a 100 Continue response, it does not
need to send this status code, because the client already has decided to
continue. When the server is done reading the request, however, it still needs
to send a final status code for the request (it can just skip the 100 Continue
status).

Finally, if a server receives a request with a 100-continue
expectation and it decides to end the request before it has read the entity
body (e.g., because an error has occurred), it should not just send a response
and close the connection, as this can prevent the client from receiving the
response (see Section 4.7.4.2).

3.4.1.3 Proxies and 100 Continue

A proxy that receives from a client a
request that contains the 100-continue expectation needs to do a few things. If
the proxy either knows that the next-hop server (discussed in Chapter 6) is HTTP/1.1-compliant or does not
know what version the next-hop server is compliant with, it should forward the
request with the Expect header in it. If it knows that the next-hop server is
compliant with a version of HTTP earlier than 1.1, it should respond with the
417 Expectation Failed error.

If a proxy decides to include an Expect header and
100-continue value in its request on behalf of a client that is compliant with
HTTP/1.0 or earlier, it should not forward the 100 Continue response (if it
receives one from the server) to the client, because the client won't know what
to make of it.

It can pay for proxies to maintain some state about next-hop
servers and the versions of HTTP they support (at least for servers that have
received recent requests), so they can better handle requests received with a
100-continue expectation.

3.4.2 200-299: Success Status Codes

When
clients make requests, the requests usually are successful. Servers have an
array of status codes to indicate success, matched up with different types of
requests. Table 3-7 lists the defined success status
codes.

	
Table 3-7. Success status codes
 and reason phrases

	
Status code

	
Reason phrase

	
Meaning

	
200

	
OK

	
Request is okay, entity body contains requested resource.

	
201

	
Created

	
For requests that create server objects (e.g., PUT). The
 entity body of the response should contain the various URLs for referencing
 the created resource, with the Location header containing the most specific
 reference. See Table 3-21 for more on the Location header.

The server must have created the object prior to sending
 this status code.

	
202

	
Accepted

	
The request was accepted, but the server has not yet
 performed any action with it. There are no guarantees that the server will
 complete the request; this just means that the request looked valid when
 accepted.

The server should include an entity body with a description
 indicating the status of the request and possibly an estimate for when it
 will be completed (or a pointer to where this information can be obtained).

	
203

	
Non-Authoritative Information

	
The information contained in the entity headers (see Section 3.5.4 for more information on entity
 headers) came not from the origin server but from a copy of the resource.
 This could happen if an intermediary had a copy of a resource but could not
 or did not validate the meta-information (headers) it sent about the
 resource.

This response code is not required to be used; it is an
 option for applications that have a response that would be a 200 status if
 the entity headers had come from the origin server.

	
204

	
No Content

	
The response message contains headers and a status line, but
 no entity body. Primarily used to update browsers without having them move to
 a new document (e.g., refreshing a form page).

	
205

	
Reset Content

	
Another code primarily for browsers. Tells the browser to
 clear any HTML form elements on the current page.

	
206

	
Partial Content

	
A partial or range request
 was successful. Later, we will see that clients can request part or a range
 of a document by using special headers—this status code indicates that the
 range request was successful. See Section 15.9 for more on the Range header.

A 206 response must include a Content-Range, Date, and
 either ETag or Content-Location header.

3.4.3 300-399: Redirection Status Codes

The redirection status codes either tell clients
to use alternate locations for the resources they're interested in or provide
an alternate response instead of the content. If a resource has moved, a
redirection status code and an optional Location header can be sent to tell the
client that the resource has moved and where it can now be found (see Figure 3-14). This allows browsers to go to
the new location transparently, without bothering their human users.

Figure 3-14. Redirected request to
new location

[image: figs/http_0314.gif]

Some of the redirection status codes can be used to validate
an application's local copy of a resource with the origin server. For example,
an HTTP application can check if the local copy of its resource is still
up-to-date or if the resource has been modified on the origin server. Figure 3-15 shows an example of this. The
client sends a special If-Modified-Since header saying to get the document only
if it has been modified since October 1997. The document has not changed since
this date, so the server replies with a 304 status code instead of the
contents.

Figure 3-15. Request redirected to
use local copy

[image: figs/http_0315.gif]

In general, it's good practice for responses to non-HEAD
requests that include a redirection status code to include an entity with a
description and links to the redirected URL(s)—see the first response message
in Figure 3-14. Table 3-8 lists the defined redirection status
codes.

	
Table 3-8. Redirection status
 codes and reason phrases

	
Status code

	
Reason phrase

	
Meaning

	
300

	
Multiple Choices

	
Returned when a client has requested a URL that actually
 refers to multiple resources, such as a server hosting an English and French
 version of an HTML document. This code is returned along with a list of
 options; the user can then select which one he wants. See Chapter 17 for more on clients negotiating
 when there are multiple versions. The server can include the preferred URL in
 the Location header.

	
301

	
Moved Permanently

	
Used when the requested URL has been moved. The response
 should contain in the Location header the URL where the resource now resides.

	
302

	
Found

	
Like the 301 status code; however, the client should use the
 URL given in the Location header to locate the resource temporarily. Future
 requests should use the old URL.

	
303

	
See Other

	
Used to tell the client that the resource should be fetched
 using a different URL. This new URL is in the Location header of the response
 message. Its main purpose is to allow responses to POST requests to direct a
 client to a resource.

	
304

	
Not Modified

	
Clients can make their requests conditional by the request
 headers they include. See Chapter 3 for more on conditional headers.
 If a client makes a conditional request, such as a GET if the resource has
 not been changed recently, this code is used to indicate that the resource
 has not changed. Responses with this status code should not contain an entity
 body.

	
305

	
Use Proxy

	
Used to indicate that the resource must be accessed through
 a proxy; the location of the proxy is given in the Location header. It's
 important that clients interpret this response relative to a specific
 resource and do not assume that this proxy should be used for all requests or
 even all requests to the server holding the requested resource. This could
 lead to broken behavior if the proxy mistakenly interfered with a request,
 and it poses a security hole.

	
306

	
(Unused)

	
Not currently used.

	
307

	
Temporary Redirect

	
Like the 301 status code; however, the client should use the
 URL given in the Location header to locate the resource temporarily. Future
 requests should use the old URL.

From Table 3-8, you may have noticed a bit of
overlap between the 302, 303, and 307 status codes. There is some nuance to how
these status codes are used, most of which stems from differences in the ways
that HTTP/1.0 and HTTP/1.1 applications treat these status codes.

When an HTTP/1.0 client makes a POST
request and receives a 302 redirect status code in response, it will follow the
redirect URL in the Location header with a GET request to that URL (instead of
making a POST request, as it did in the original request).

HTTP/1.0 servers expect HTTP/1.0 clients to do this—when an
HTTP/1.0 server sends a 302 status code after receiving a POST request from an
HTTP/1.0 client, the server expects that client to follow the redirect with a
GET request to the redirected URL.

The confusion comes in with HTTP/1.1. The HTTP/1.1
specification uses the 303 status code to get this same behavior (servers send
the 303 status code to redirect a client's POST request to be followed with a
GET request).

To get around the confusion, the HTTP/1.1 specification says
to use the 307 status code in place of the 302 status code for temporary
redirects to HTTP/1.1 clients. Servers can then save the 302 status code for
use with HTTP/1.0 clients.

What this all boils down to is that servers need to check a
client's HTTP version to properly select which redirect status code to send in
a redirect response.

3.4.4 400-499: Client Error Status Codes

Sometimes a client sends something that a server
just can't handle, such as a badly formed request message or, most often, a
request for a URL that does not exist.

We've all seen the infamous 404 Not Found error code while
browsing—this is just the server telling us that we have requested a resource
about which it knows nothing.

Many of the client errors are dealt with by your browser,
without it ever bothering you. A few, like 404, might still pass through. Table 3-9 shows the various client error
status codes.

	
Table 3-9. Client error status
 codes and reason phrases

	
Status code

	
Reason phrase

	
Meaning

	
400

	
Bad Request

	
Used to tell the client that it has sent a malformed
 request.

	
401

	
Unauthorized

	
Returned along with appropriate headers that ask the client
 to authenticate itself before it can gain access to the resource. See Section 12.1 for more on authentication.

	
402

	
Payment Required

	
Currently this status code is not used, but it has been set
 aside for future use.

	
403

	
Forbidden

	
Used to indicate that the request was refused by the server.
 If the server wants to indicate why the request was denied, it can include an
 entity body describing the reason. However, this code usually is used when
 the server does not want to reveal the reason for the refusal.

	
404

	
Not Found

	
Used to indicate that the server cannot find the requested
 URL. Often, an entity is included for the client application to display to
 the user.

	
405

	
Method Not Allowed

	
Used when a request is made with a method that is not
 supported for the requested URL. The Allow header should be included in the
 response to tell the client what methods are allowed on the requested
 resource. See Section 3.5.4 for more on the Allow header.

	
406

	
Not Acceptable

	
Clients can specify parameters about what types of entities
 they are willing to accept. This code is used when the server has no resource
 matching the URL that is acceptable for the client. Often, servers include
 headers that allow the client to figure out why the request could not be
 satisfied. See Chapter 17 for more information.

	
407

	
Proxy Authentication Required

	
Like the 401 status code, but used for proxy servers that
 require authentication for a resource.

	
408

	
Request Timeout

	
If a client takes too long to complete its request, a server
 can send back this status code and close down the connection. The length of
 this timeout varies from server to server but generally is long enough to
 accommodate any legitimate request.

	
409

	
Conflict

	
Used to indicate some conflict that the request may be
 causing on a resource. Servers might send this code when they fear that a request
 could cause a conflict. The response should contain a body describing the
 conflict.

	
410

	
Gone

	
Similar to 404, except that the server once held the
 resource. Used mostly for web site maintenance, so a server's administrator
 can notify clients when a resource has been removed.

	
411

	
Length Required

	
Used when the server requires a Content-Length header in the
 request message. See Section 3.5.4.1 for more on the
 Content-Length header.

	
412

	
Precondition Failed

	
Used if a client makes a conditional request and one of the
 conditions fails. Conditional requests occur when a client includes an Expect
 header. See Expect for more on the Expect header.

	
413

	
Request Entity Too Large

	
Used when a client sends an entity body that is larger than
 the server can or wants to process.

	
414

	
Request URI Too Long

	
Used when a client sends a request with a request URL that
 is larger than the server can or wants to process.

	
415

	
Unsupported Media Type

	
Used when a client sends an entity of a
 content type that the server does not understand or support.

	
416

	
Requested Range Not Satisfiable

	
Used when the request message requested a
 range of a given resource and that range either was invalid or could not be
 met.

	
417

	
Expectation Failed

	
Used when the request contained an
 expectation in the Expect request header that the server could not satisfy. See
 Expect for more
 on the Expect header.

A proxy or other intermediary application
 can send this response code if it has unambiguous evidence that the origin
 server will generate a failed expectation for the request.

3.4.5 500-599: Server Error Status Codes

Sometimes a client sends a valid request,
but the server itself has an error. This could be a client running into a
limitation of the server or an error in one of the server's subcomponents, such
as a gateway resource.

Proxies often run into problems when trying
to talk to servers on a client's behalf. Proxies issue 5XX server error status
codes to describe the problem (Chapter 6 covers
this in detail). Table 3-10 lists the defined server error
status codes.

	
Table 3-10. Server
 error status codes and reason phrases

	
Status code

	
Reason phrase

	
Meaning

	
500

	
Internal Server Error

	
Used when the server encounters an error
 that prevents it from servicing the request.

	
501

	
Not Implemented

	
Used when a client makes a request that is beyond the
 server's capabilities (e.g., using a request method that the server does not
 support).

	
502

	
Bad Gateway

	
Used when a server acting as a proxy or gateway encounters a
 bogus response from the next link in the request response chain (e.g., if it
 is unable to connect to its parent gateway).

	
503

	
Service Unavailable

	
Used to indicate that the server currently cannot service
 the request but will be able to in the future. If the server knows when the
 resource will become available, it can include a Retry-After header in the
 response. See Section 3.5.3 for more on the Retry-After
 header.

	
504

	
Gateway Timeout

	
Similar to status code 408, except that the response is
 coming from a gateway or proxy that has timed out waiting for a response to
 its request from another server.

	
505

	
HTTP Version Not Supported

	
Used when a server receives a request in a version of the
 protocol that it can't or won't support. Some server applications elect not
 to support older versions of the protocol.

3.5 Headers

Headers and
methods work together to determine what clients and servers do. This section
quickly sketches the purposes of the standard HTTP headers and some headers
that are not explicitly defined in the HTTP/1.1 specification (RFC 2616). Appendix C summarizes all these headers in
more detail.

There are headers that are specific for each type of message
and headers that are more general in purpose, providing information in both
request and response messages. Headers fall into five main classes:

General headers

These are generic headers used by
both clients and servers. They serve general purposes that are useful for clients,
servers, and other applications to supply to one another. For example, the Date
header is a general-purpose header that allows both sides to indicate the time
and date at which the message was constructed:

Date: Tue, 3 Oct 1974 02:16:00 GMT

Request headers

As the name implies, request
headers are specific to request messages. They provide extra information to
servers, such as what type of data the client is willing to receive. For
example, the following Accept header tells the server that the client will
accept any media type that matches its request:

Accept: */*

Response headers

Response messages have their own
set of headers that provide information to the client (e.g., what type of
server the client is talking to). For example, the following Server header
tells the client that it is talking to a Version 1.0 Tiki-Hut server:

Server: Tiki-Hut/1.0

Entity headers

Entity headers refer to headers
that deal with the entity body. For instance, entity headers can tell the type
of the data in the entity body. For example, the following Content-Type header
lets the application know that the data is an HTML document in the iso-latin-1
character set:

Content-Type: text/html; charset=iso-latin-1

Extension headers

Extension headers are nonstandard
headers that have been created by application developers but not yet added to
the sanctioned HTTP specification. HTTP programs need to tolerate and forward
extension headers, even if they don't know what the headers mean.

3.5.1 General Headers

Some headers provide
very basic information about a message. These headers are called general
headers. They are the fence straddlers, supplying useful information about a
message regardless of its type.

For example, whether you are constructing a request message or
a response message, the date and time the message is created means the same
thing, so the header that provides this kind of information is general to both
types of messages. Table 3-11 lists the general informational
headers.

	
Table 3-11. General informational
 headers

	
Header

	
Description

	
Connection

	
Allows clients and servers to specify options about the
 request/response connection

	
Date[4]

	
Provides a date and time stamp telling when the message was
 created

	
MIME-Version

	
Gives the version of MIME that the sender is using

	
Trailer

	
Lists the set of headers that are in the trailer of a
 message encoded with the chunked transfer encoding[5]

	
Transfer-Encoding

	
Tells the receiver what encoding was performed on the
 message in order for it to be transported safely

	
Upgrade

	
Gives a new version or protocol that the sender would like
 to "upgrade" to using

	
Via

	
Shows what intermediaries (proxies, gateways) the message
 has gone through

[4] Date lists the acceptable date formats for the
Date header.

[5] Chunked transfer codings are discussed
further in Section 15.6.3.1.

3.5.1.1 General caching headers

HTTP/1.0
introduced the first headers that allowed HTTP applications to cache local
copies of objects instead of always fetching them directly from the origin
server. The latest version of HTTP has a very rich set of cache parameters. In Chapter 7, we cover caching in depth. Table 3-12 lists the basic caching headers.

	
Table 3-12. General caching
 headers

	
Header

	
Description

	
Cache-Control

	
Used to pass caching directions along with the message

	
Pragma[6]

	
Another way to pass directions along with the message,
 though not specific to caching

[6] Pragma technically is a request header. It
was never specified for use in responses. Because of its common misuse as a
response header, many clients and proxies will interpret Pragma as a response
header, but the precise semantics are not well defined. In any case, Pragma is
deprecated in favor of Cache-Control.

3.5.2 Request Headers

Request headers are headers that make sense only in a request message. They give
information about who or what is sending the request, where the request
originated, or what the preferences and capabilities of the client are. Servers
can use the information the request headers give them about the client to try
to give the client a better response. Table 3-13 lists the request informational
headers.

	
Table 3-13. Request informational
 headers

	
Header

	
Description

	
Client-IP[7]

	
Provides the IP address of the machine on which the client
 is running

	
From

	
Provides the email address of the client's user[8]

	
Host

	
Gives the hostname and port of the server to which the
 request is being sent

	
Referer

	
Provides the URL of the document that contains the current
 request URI

	
UA-Color

	
Provides information about the color capabilities of the
 client machine's display

	
UA-CPU[9]

	
Gives the type or manufacturer of the client's CPU

	
UA-Disp

	
Provides information about the client's display (screen)
 capabilities

	
UA-OS

	
Gives the name and version of operating system running on
 the client machine

	
UA-Pixels

	
Provides pixel information about the client machine's
 display

	
User-Agent

	
Tells the server the name of the application making the
 request

[7] Client-IP and the UA-* headers are not
defined in RFC 2616 but are implemented by many HTTP client applications.

[8] An RFC 822 email address format.

[9] While implemented by some clients, the UA-*
headers can be considered harmful. Content, specifically HTML, should not be
targeted at specific client configurations.

3.5.2.1 Accept headers

Accept
headers give the client a way to tell servers their preferences and
capabilities: what they want, what they can use, and, most importantly, what
they don't want. Servers can then use this extra information to make more
intelligent decisions about what to send. Accept headers benefit both sides of
the connection. Clients get what they want, and servers don't waste their time
and bandwidth sending something the client can't use. Table 3-14 lists the various accept headers.

	
Table 3-14. Accept headers

	
Header

	
Description

	
Accept

	
Tells the server what media types are okay to send

	
Accept-Charset

	
Tells the server what charsets are okay to send

	
Accept-Encoding

	
Tells the server what encodings are okay to send

	
Accept-Language

	
Tells the server what languages are okay to send

	
TE[10]

	
Tells the server what extension transfer codings are okay to
 use

[10] See Section 15.6.2 for more on the TE header.

3.5.2.2 Conditional request headers

Sometimes, clients
want to put some restrictions on a request. For instance, if the client already
has a copy of a document, it might want to ask a server to send the document
only if it is different from the copy the client already has. Using conditional
request headers, clients can put such restrictions on requests, requiring the
server to make sure that the conditions are true before satisfying the request.
Table 3-15 lists the various conditional
request headers.

	
Table 3-15. Conditional request
 headers

	
Header

	
Description

	
Expect

	
Allows a client to list server behaviors that it requires
 for a request

	
If-Match

	
Gets the document if the entity tag matches the current
 entity tag for the document[11]

	
If-Modified-Since

	
Restricts the request unless the resource has been modified
 since the specified date

	
If-None-Match

	
Gets the document if the entity tags supplied do not match
 those of the current document

	
If-Range

	
Allows a conditional request for a range of a document

	
If-Unmodified-Since

	
Restricts the request unless the resource has not been modified since the specified date

	
Range

	
Requests a specific range of a resource, if the server
 supports range requests[12]

[11] See Chapter 7 for more on entity tags. The tag is
basically an identifier for a version of the resource.

[12] See Section 15.9 for more on the Range header.

3.5.2.3 Request security headers

HTTP natively
supports a simple challenge/response authentication scheme for requests. It
attempts to make transactions slightly more secure by requiring clients to
authenticate themselves before getting access to certain resources. We discuss
this challenge/response scheme in Chapter 14, along with other security schemes
that have been implemented on top of HTTP. Table 3-16 lists the request security headers.

	
Table 3-16. Request security
 headers

	
Header

	
Description

	
Authorization

	
Contains the data the client is supplying to the server to
 authenticate itself

	
Cookie

	
Used by clients to pass a token to the server—not a true
 security header, but it does have security implications[13]

	
Cookie2

	
Used to note the version of cookies a requestor supports;
 see Section 11.6.7

[13] The Cookie header is not defined in RFC
2616; it is discussed in detail in Chapter 11.

3.5.2.4 Proxy request headers

As proxies become
increasingly common on the Internet, a few headers have been defined to help them
function better. In Chapter 6, we discuss these headers in detail.
Table 3-17 lists the proxy request headers.

	
Table 3-17. Proxy request headers

	
Header

	
Description

	
Max-Forwards

	
The maximum number of times a request should be forwarded to
 another proxy or gateway on its way to the origin server—used with the TRACE
 method[14]

	
Proxy-Authorization

	
Same as Authorization, but used when authenticating with a
 proxy

	
Proxy-Connection

	
Same as Connection, but used when establishing connections
 with a proxy

[14] See Section 6.6.2.1.

3.5.3 Response Headers

Response
messages have their own set of response headers. Response headers provide clients
with extra information, such as who is sending the response, the capabilities
of the responder, or even special instructions regarding the response. These
headers help the client deal with the response and make better requests in the
future. Table 3-18 lists the response informational
headers.

	
Table 3-18. Response informational
 headers

	
Header

	
Description

	
Age

	
How old the response is[15]

	
Public[16]

	
A list of request methods the server supports for its
 resources

	
Retry-After

	
A date or time to try back, if a resource is unavailable

	
Server

	
The name and version of the server's application software

	
Title[17]

	
For HTML documents, the title as given by the HTML document
 source

	
Warning

	
A more detailed warning message than what is in the reason
 phrase

[15] Implies that the response has traveled
through an intermediary, possibly from a proxy cache.

[16] The Public header is defined in RFC 2068
but does not appear in the latest HTTP definition (RFC 2616).

[17] The Title header is not defined in RFC
2616; see the original HTTP/1.0 draft definition (http://www.w3.org/Protocols/HTTP/HTTP2.html).

3.5.3.1 Negotiation headers

HTTP/1.1 provides
servers and clients with the ability to negotiate for a resource if multiple
representations are available—for instance, when there are both French and
German translations of an HTML document on a server. Chapter 17 walks through negotiation in detail.
Here are a few headers servers use to convey information about resources that
are negotiable. Table 3-19 lists the negotiation headers.

	
Table 3-19. Negotiation headers

	
Header

	
Description

	
Accept-Ranges

	
The type of ranges that a server will accept for this
 resource

	
Vary

	
A list of other headers that the server looks at and that
 may cause the response to vary; i.e., a list of headers the server looks at
 to pick which is the best version of a resource to send the client

3.5.3.2 Response security headers

You've already seen the request security
headers, which are basically the response side
of HTTP's challenge/response authentication scheme. We talk about security in
detail in Chapter 14. For now, here are the basic challenge headers. Table 3-20 lists the response security
headers.

	
Table 3-20. Response security
 headers

	
Header

	
Description

	
Proxy-Authenticate

	
A list of challenges for the client from the proxy

	
Set-Cookie

	
Not a true security header, but it has security
 implications; used to set a token on the client side that the server can used
 to identify the client[18]

	
Set-Cookie2

	
Similar to Set-Cookie, RFC 2965 Cookie definition; see Section 11.6.7

	
WWW-Authenticate

	
A list of challenges for the client from the server

[18] Set-Cookie and Set-Cookie2 are extension
headers that are also covered in Chapter 11.

3.5.4 Entity Headers

There are many headers to describe the
payload of HTTP messages. Because both request and response messages can
contain entities, these headers can appear in either type of message.

Entity headers provide a broad range of information about the
entity and its content, from information about the type of the object to valid
request methods that can be made on the resource. In general, entity headers
tell the receiver of the message what it's dealing with. Table 3-21 lists the entity informational
headers.

	
Table 3-21. Entity informational
 headers

	
Header

	
Description

	
Allow

	
Lists the request methods that can be performed on this
 entity

	
Location

	
Tells the client where the entity really is located; used in
 directing the receiver to a (possibly new) location (URL) for the resource

3.5.4.1 Content headers

The content headers provide specific
information about the content of the entity, revealing its type, size, and
other information useful for processing it. For instance, a web browser can
look at the content type returned and know how to display the object. Table 3-22 lists the various content headers.

	
Table 3-22. Content headers

	
Header

	
Description

	
Content-Base[19]

	
The base URL for resolving relative URLs
 within the body

	
Content-Encoding

	
Any encoding that was performed on the body

	
Content-Language

	
The natural language that is best used to
 understand the body

	
Content-Length

	
The length or size of the body

	
Content-Location

	
Where the resource actually is located

	
Content-MD5

	
An MD5 checksum of the body

	
Content-Range

	
The range of bytes that this entity
 represents from the entire resource

	
Content-Type

	
The type of object that this body is

[19] The
Content-Base header is not defined in RFC 2616.

3.5.4.2 Entity caching headers

The general caching
headers provide directives about how or when to cache. The entity caching
headers provide information about the entity being cached—for example, information
needed to validate whether a cached copy of the resource is still valid and
hints about how better to estimate when a cached resource may no longer be
valid.

In Chapter 7, we dive
deep into the heart of caching HTTP requests and responses. We will see these
headers again there. Table 3-23 lists
the entity caching headers.

	
Table 3-23. Entity caching headers

	
Header

	
Description

	
ETag

	
The entity tag associated with this entity[20]

	
Expires

	
The date and time at which this entity will no longer be
 valid and will need to be fetched from the original source

	
Last-Modified

	
The last date and time when this entity changed

[20] Entity tags are basically identifiers for
a particular version of a resource.

3.6 For More
Information

For more information, refer to:

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

RFC 2616,
"Hypertext Transfer Protocol," by R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Mastinter, P. Leach, and T. Berners-Lee.

HTTP Pocket Reference

Clintin Wong,
O'Reilly & Associates, Inc.

http://www.w3.org/Protocols/

The W3C
architecture page for HTTP.

Chapter 4.
Connection Management

The HTTP specifications explain HTTP messages
fairly well, but they don't talk much about HTTP connections, the critical plumbing that HTTP messages
flow through. If you're a programmer writing HTTP applications, you need to
understand the ins and outs of HTTP connections and how to use them.

HTTP connection management has been a bit of
a black art, learned as much from experimentation and apprenticeship as from
published literature. In this chapter, you'll learn about:

·
How HTTP uses TCP connections

·
Delays, bottlenecks and clogs in TCP connections

·
HTTP optimizations, including parallel,
keep-alive, and pipelined connections

·
Dos and don'ts for managing connections

4.1 TCP
Connections

Just about all of the
world's HTTP communication is carried over TCP/IP, a popular layered set of packet-switched
network protocols spoken by computers and network devices around the globe. A
client application can open a TCP/IP connection to a server application,
running just about anywhere in the world. Once the connection is established,
messages exchanged between the client's and server's computers will never be
lost, damaged, or received out of order.[1]

[1] Though messages won't be lost or corrupted, communication between
client and server can be severed if a computer or network breaks. In this case,
the client and server are notified of the communication breakdown.

Say you want the latest power tools price list
from Joe's Hardware store:

http://www.joes-hardware.com:80/power-tools.html

When given this URL, your browser performs
the steps shown in Figure 4-1. In
Steps 1-3, the IP address and port number of the server are pulled from the
URL. A TCP connection is made to the web server in Step 4, and a request
message is sent across the connection in Step 5. The response is read in Step
6, and the connection is closed in Step 7.

Figure 4-1. Web browsers
talk to web servers over TCP connections

[image: figs/http_0401.gif]

4.1.1 TCP Reliable Data Pipes

HTTP
connections really are nothing more than TCP connections, plus a few rules
about how to use them. TCP connections are the reliable connections of the
Internet. To send data accurately and quickly, you need to know the basics of
TCP.[2]

[2] If
you are trying to write sophisticated HTTP applications, and especially if you
want them to be fast, you'll want to learn a lot more about the internals and
performance of TCP than we discuss in this chapter. We recommend the
"TCP/IP Illustrated" books by W. Richard Stevens (Addison Wesley).

TCP gives HTTP a reliable
bit pipe. Bytes stuffed in one side of a TCP
connection come out the other side correctly, and in the right order (see Figure 4-2).

Figure 4-2. TCP carries
HTTP data in order, and without corruption

[image: figs/http_0402.gif]

4.1.2 TCP Streams Are Segmented and Shipped by IP Packets

TCP sends its data in little chunks called IP packets (or IP datagrams). In this way, HTTP is the top layer in
a "protocol stack" of "HTTP over TCP over
IP," as depicted in Figure 4-3a. A
secure variant, HTTPS, inserts a cryptographic encryption
layer (called TLS or SSL) between HTTP and TCP (Figure 4-3b).

Figure 4-3. HTTP and HTTPS
network protocol stacks

[image: figs/http_0403.gif]

When HTTP wants to transmit a message, it
streams the contents of the message data, in order, through an open TCP
connection. TCP takes the stream of data, chops up the data stream into chunks
called segments, and transports the segments across the
Internet inside envelopes called IP packets (see Figure 4-4). This
is all handled by the TCP/IP software; the HTTP programmer sees none of it.

Each TCP segment is carried by an IP packet from one IP address to another IP address. Each
of these IP packets contains:

·
An IP packet header (usually 20 bytes)

·
A TCP segment header (usually 20 bytes)

·
A chunk of TCP data (0 or more bytes)

The IP header contains the source and
destination IP addresses, the size, and other flags. The TCP segment header
contains TCP port numbers, TCP control flags, and numeric values used for data
ordering and integrity checking.

Figure 4-4. IP packets
carry TCP segments, which carry chunks of the TCP data stream

[image: figs/http_0404.gif]

4.1.3 Keeping TCP Connections Straight

A computer might have several TCP connections open at any one time. TCP keeps all these
connections straight through port numbers.

Port numbers are like employees' phone
extensions. Just as a company's main phone number gets you to the front desk
and the extension gets you to the right employee, the IP address gets you to
the right computer and the port number gets you to the right application. A TCP connection is distinguished by four values:

<source-IP-address, source-port, destination-IP-address, destination-port>

Together, these four values uniquely define a
connection. Two different TCP connections are not allowed to have the same
values for all four address components (but different connections can have the
same values for some of the components).

In Figure 4-5, there
are four connections: A, B, C and D. The relevant information for each port is
listed in Table 4-1.

	
Table 4-1. TCP connection values

	
Connection

	
Source IP address

	
Source port

	
Destination IP
 address

	
Destination port

	
A

	
209.1.32.34

	
2034

	
204.62.128.58

	
4133

	
B

	
209.1.32.35

	
3227

	
204.62.128.58

	
4140

	
C

	
209.1.32.35

	
3105

	
207.25.71.25

	
80

	
D

	
209.1.33.89

	
5100

	
207.25.71.25

	
80

Figure 4-5. Four distinct TCP
connections

[image: figs/http_0405.gif]

Note that some of the connections share the same destination
port number (C and D both have destination port 80). Some of the connections
have the same source IP address (B and C). Some have the same destination IP
address (A and B, and C and D). But no two different connections share all four
identical values.

4.1.4 Programming with TCP Sockets

Operating systems provide different facilities for manipulating
their TCP connections. Let's take a quick look at one TCP programming
interface, to make things concrete. Table 4-2 shows some of the primary interfaces
provided by the sockets API. This
sockets API hides all the details of TCP and IP from the HTTP programmer. The
sockets API was first developed for the Unix operating system, but variants are
now available for almost every operating system and language.

	
Table 4-2. Common socket interface
 functions for programming TCP connections

	
Sockets API call

	
Description

	
s = socket(<parameters>)

	
Creates a new, unnamed, unattached socket.

	
bind(s, <local IP:port>)

	
Assigns a local port number and interface to the socket.

	
connect(s, <remote IP:port>)

	
Establishes a TCP connection to a local socket and a remote
 host and port.

	
listen(s,...)

	
Marks a local socket as legal to accept connections.

	
s2 = accept(s)

	
Waits for someone to establish a connection to a local port.

	
n = read(s,buffer,n)

	
Tries to read n bytes from the socket into the buffer.

	
n = write(s,buffer,n)

	
Tries to write n bytes from the buffer into the socket.

	
close(s)

	
Completely closes the TCP connection.

	
shutdown(s,<side>)

	
Closes just the input or the output of the TCP connection.

	
getsockopt(s, . . .)

	
Reads the value of an internal socket configuration option.

	
setsockopt(s, . . .)

	
Changes the value of an internal socket configuration option.

The sockets API lets you create TCP endpoint data structures, connect these endpoints to
remote server TCP endpoints, and read and write data streams. The TCP API hides
all the details of the underlying network protocol handshaking and the
segmentation and reassembly of the TCP data stream to and from IP packets.

In Figure 4-1, we
showed how a web browser could download the power-tools.html web page
from Joe's Hardware store using HTTP. The pseudocode in Figure 4-6
sketches how we might use the sockets API to highlight the steps the client and
server could perform to implement this HTTP transaction.

Figure 4-6. How TCP
clients and servers communicate using the TCP sockets interface

[image: figs/http_0406.gif]

We begin with the web server waiting for a
connection (Figure 4-6, S4). The
client determines the IP address and port number from the URL and proceeds to
establish a TCP connection to the server (Figure 4-6, C3). Establishing
a connection can take a while, depending on how far away the server is, the
load on the server, and the congestion of the Internet.

Once the connection is set up, the client
sends the HTTP request (Figure 4-6, C5) and
the server reads it (Figure 4-6, S6). Once
the server gets the entire request message, it processes the request, performs
the requested action (Figure 4-6, S7),
and writes the data back to the client. The client reads it (Figure 4-6, C6)
and processes the response data (Figure 4-6, C7).

4.2 TCP Performance
Considerations

Because HTTP is
layered directly on TCP, the performance of
HTTP transactions depends critically on the performance of the underlying TCP plumbing.
This section highlights some significant performance considerations of these
TCP connections. By understanding some of the basic performance characteristics
of TCP, you'll better appreciate HTTP's connection optimization features, and
you'll be able to design and implement higher-performance HTTP applications.

This section requires some understanding of the internal
details of the TCP protocol. If you are not interested in (or are comfortable
with) the details of TCP performance considerations, feel free to skip ahead to
Section 4.3. Because TCP is a complex topic,
we can provide only a brief overview of TCP performance here. Refer to Section 4.8 at the end of this chapter for a
list of excellent TCP references.

4.2.1 HTTP Transaction Delays

Let's start our
TCP performance tour by reviewing what networking delays occur in the course of
an HTTP request. Figure 4-7 depicts the major connect,
transfer, and processing delays for an HTTP transaction.

Figure 4-7. Timeline of a serial
HTTP transaction

[image: figs/http_0407.gif]

Notice that the transaction processing time can be quite small
compared to the time required to set up TCP connections and transfer the
request and response messages. Unless the client or server is overloaded or
executing complex dynamic resources, most HTTP delays are caused by TCP network
delays.

There are several possible causes of delay in an HTTP
transaction:

1. A
client first needs to determine the IP address and port number of the web
server from the URI. If the hostname in the URI was not recently visited, it
may take tens of seconds to convert the hostname from a URI into an IP address
using the DNS resolution infrastructure.[3]

[3]
Luckily, most HTTP clients keep a small DNS cache of IP addresses for recently
accessed sites. When the IP address is already "cached" (recorded)
locally, the lookup is instantaneous. Because most web browsing is to a small
number of popular sites, hostnames usually are resolved very quickly.

2. Next,
the client sends a TCP connection request to the server and waits for the
server to send back a connection acceptance reply. Connection setup delay
occurs for every new TCP connection. This usually takes at most a second or
two, but it can add up quickly when hundreds of HTTP transactions are made.

3. Once
the connection is established, the client sends the HTTP request over the newly
established TCP pipe. The web server reads the request message from the TCP
connection as the data arrives and processes the request. It takes time for the
request message to travel over the Internet and get processed by the server.

4. The
web server then writes back the HTTP response, which also takes time.

The magnitude of these TCP network delays depends on hardware
speed, the load of the network and server, the size of the request and response
messages, and the distance between client and server. The delays also are
significantly affected by technical intricacies of the TCP protocol.

4.2.2 Performance Focus Areas

The remainder of this section outlines some of the most common
TCP-related delays affecting HTTP programmers,
including the causes and performance impacts of:

·
The TCP connection setup handshake

·
TCP slow-start congestion control

·
Nagle's algorithm for data aggregation

·
TCP's delayed acknowledgment algorithm for piggybacked
acknowledgments

·
TIME_WAIT delays and port exhaustion

If you are writing high-performance HTTP software, you should
understand each of these factors. If you don't need this level of performance
optimization, feel free to skip ahead.

4.2.3 TCP Connection Handshake Delays

When
you set up a new TCP connection, even before you send any data, the TCP
software exchanges a series of IP packets to negotiate the terms of the
connection (see Figure 4-8). These exchanges can significantly
degrade HTTP performance if the connections are used for small data transfers.

Figure 4-8. TCP requires two packet
transfers to set up the connection before it can send data

[image: figs/http_0408.gif]

Here are the steps in the TCP connection handshake:

1. To
request a new TCP connection, the client sends a small TCP packet (usually
40-60 bytes) to the server. The packet has a special "SYN" flag set,
which means it's a connection request. This is shown in Figure 4-8a.

2. If
the server accepts the connection, it computes some connection parameters and
sends a TCP packet back to the client, with both the "SYN" and
"ACK" flags set, indicating that the connection request is accepted
(see Figure 4-8b).

3. Finally,
the client sends an acknowledgment back to the server, letting it know that the
connection was established successfully (see Figure 4-8c). Modern TCP stacks let the client
send data in this acknowledgment packet.

The HTTP programmer never sees these packets—they are managed
invisibly by the TCP/IP software. All the HTTP programmer sees is a delay when
creating a new TCP connection.

The SYN/SYN+ACK handshake (Figure 4-8a and b) creates a measurable delay
when HTTP transactions do not exchange much data, as is commonly the case. The
TCP connect ACK packet (Figure 4-8c) often is large enough to carry
the entire HTTP request message,[4]
and many HTTP server response messages fit into a single IP packet (e.g., when
the response is a small HTML file of a decorative graphic, or a 304 Not
Modified response to a browser cache request).

[4] IP packets are usually a few hundred bytes
for Internet traffic and around 1,500 bytes for local traffic.

The end result is that small HTTP transactions may spend 50%
or more of their time doing TCP setup. Later sections will discuss how HTTP
allows reuse of existing connections to eliminate the impact of this TCP setup
delay.

4.2.4 Delayed Acknowledgments

Because the
Internet itself does not guarantee reliable packet delivery (Internet routers
are free to destroy packets at will if they are overloaded), TCP implements its
own acknowledgment scheme to guarantee successful data delivery.

Each TCP segment gets a sequence number and a data-integrity
checksum. The receiver of each segment returns small acknowledgment packets
back to the sender when segments have been received intact. If a sender does
not receive an acknowledgment within a specified window of time, the sender
concludes the packet was destroyed or corrupted and resends the data.

Because acknowledgments are small, TCP allows them to
"piggyback" on outgoing data packets heading in the same direction.
By combining returning acknowledgments with outgoing data packets, TCP can make
more efficient use of the network. To increase the chances that an
acknowledgment will find a data packet headed in the same direction, many TCP
stacks implement a "delayed acknowledgment" algorithm. Delayed
acknowledgments hold outgoing acknowledgments in a buffer for a certain window
of time (usually 100-200 milliseconds), looking for an outgoing data packet on
which to piggyback. If no outgoing data packet arrives in that time, the
acknowledgment is sent in its own packet.

Unfortunately, the bimodal request-reply behavior of HTTP
reduces the chances that piggybacking can occur. There just aren't many packets
heading in the reverse direction when you want them. Frequently, the disabled
acknowledgment algorithms introduce significant delays. Depending on your
operating system, you may be able to adjust or disable the delayed
acknowledgment algorithm.

Before you modify any parameters of your TCP stack, be sure
you know what you are doing. Algorithms inside TCP were introduced to protect
the Internet from poorly designed applications. If you modify any TCP
configurations, be absolutely sure your application will not create the
problems the algorithms were designed to avoid.

4.2.5 TCP Slow Start

The
performance of TCP data transfer also depends on the age
of the TCP connection. TCP connections "tune" themselves over time,
initially limiting the maximum speed of the connection and increasing the speed
over time as data is transmitted successfully. This tuning is called TCP slow start, and it is used to prevent sudden
overloading and congestion of the Internet.

TCP slow start throttles the number of packets a TCP endpoint
can have in flight at any one time. Put simply, each time a packet is received
successfully, the sender gets permission to send two more packets. If an HTTP
transaction has a large amount of data to send, it cannot send all the packets
at once. It must send one packet and wait for an acknowledgment; then it can
send two packets, each of which must be acknowledged, which allows four
packets, etc. This is called "opening the congestion window."

Because of this congestion-control feature, new connections
are slower than "tuned" connections that already have exchanged a
modest amount of data. Because tuned connections are faster, HTTP includes
facilities that let you reuse existing connections. We'll talk about these HTTP
"persistent connections" later in this chapter.

4.2.6 Nagle's Algorithm and TCP_NODELAY

TCP has a data stream interface that
permits applications to stream data of any size to the TCP stack—even a single
byte at a time! But because each TCP segment carries at least 40 bytes of flags
and headers, network performance can be degraded severely if TCP sends large
numbers of packets containing small amounts of data.[5]

[5] Sending a storm of single-byte packets is
called "sender silly window syndrome." This is
inefficient, anti-social, and can be disruptive to other Internet traffic.

Nagle's algorithm (named for its creator, John Nagle) attempts
to bundle up a large amount of TCP data before sending a packet, aiding network
efficiency. The algorithm is described in RFC 896, "Congestion Control in
IP/TCP Internetworks."

Nagle's algorithm discourages the sending of segments that are
not full-size (a maximum-size packet is around 1,500 bytes on a LAN, or a few
hundred bytes across the Internet). Nagle's algorithm lets you send a
non-full-size packet only if all other packets have been acknowledged. If other
packets are still in flight, the partial data is buffered. This buffered data
is sent only when pending packets are acknowledged or when the buffer has
accumulated enough data to send a full packet.[6]

[6] Several variations of this algorithm exist,
including timeouts and acknowledgment logic changes, but the basic algorithm
causes buffering of data smaller than a TCP segment.

Nagle's algorithm causes several HTTP performance problems.
First, small HTTP messages may not fill a packet, so they may be delayed
waiting for additional data that will never arrive. Second, Nagle's algorithm
interacts poorly with disabled acknowledgments—Nagle's algorithm will hold up
the sending of data until an acknowledgment arrives, but the acknowledgment
itself will be delayed 100-200 milliseconds by the delayed acknowledgment
algorithm.[7]

[7] These problems can become worse when using
pipelined connections (described later in this chapter), because clients may
have several messages to send to the same server and do not want delays.

HTTP applications often disable Nagle's algorithm to improve
performance, by setting the TCP_NODELAY parameter on their stacks. If you do
this, you must ensure that you write large chunks of data to TCP so you don't
create a flurry of small packets.

4.2.7 TIME_WAIT Accumulation and Port Exhaustion

TIME_WAIT port exhaustion is a serious performance problem
that affects performance benchmarking but is relatively uncommon is real
deployments. It warrants special attention because most people involved in
performance benchmarking eventually run into this problem and get unexpectedly
poor performance.

When a TCP endpoint closes a TCP connection,
it maintains in memory a small control block recording the IP addresses and
port numbers of the recently closed connection. This information is maintained
for a short time, typically around twice the estimated maximum segment lifetime
(called "2MSL"; often two minutes[8]), to make sure a new TCP connection with the same addresses and
port numbers is not created during this time. This prevents any stray duplicate
packets from the previous connection from accidentally being injected into a
new connection that has the same addresses and port numbers. In practice, this
algorithm prevents two connections with the exact same IP addresses and port
numbers from being created, closed, and recreated within two minutes.

[8]
The 2MSL value of two minutes is historical. Long ago, when routers were much
slower, it was estimated that a duplicate copy of a packet might be able to
remain queued in the Internet for up to a minute before being destroyed. Today,
the maximum segment lifetime is much smaller.

Today's higher-speed routers make it
extremely unlikely that a duplicate packet will show up on a server's doorstep
minutes after a connection closes. Some operating systems set 2MSL to a smaller
value, but be careful about overriding this value. Packets do get duplicated,
and TCP data will be corrupted if a duplicate packet from a past connection
gets inserted into a new stream with the same connection values.

The 2MSL connection close delay normally is
not a problem, but in benchmarking situations, it can be. It's common that only
one or a few test load-generation computers are connecting to a system under
benchmark test, which limits the number of client IP addresses that connect to
the server. Furthermore, the server typically is listening on HTTP's default TCP
port, 80. These circumstances limit the available combinations of connection
values, at a time when port numbers are blocked from reuse by TIME_WAIT.

In a pathological situation with one client
and one web server, of the four values that make up a TCP connection:

<source-IP-address, source-port, destination-IP-address, destination-port>

three of them are fixed—only the source port
is free to change:

<client-IP, source-port, server-IP, 80>

Each time the client connects to the server, it gets a new
source port in order to have a unique connection. But because a limited number
of source ports are available (say, 60,000) and no connection can be reused for
2MSL seconds (say, 120 seconds), this limits the connect rate to 60,000 / 120 =
500 transactions/sec. If you keep making optimizations, and your server doesn't
get faster than about 500 transactions/sec, make sure you are not experiencing
TIME_WAIT port exhaustion. You can fix this problem by using more client
load-generator machines or making sure the client and server rotate through
several virtual IP addresses to add more connection combinations.

Even if you do not suffer port exhaustion problems, be careful
about having large numbers of open connections or large numbers of control
blocks allocated for connection in wait states. Some operating systems slow
down dramatically when there are numerous open connections or control blocks.

4.3 HTTP Connection
Handling

The first
two sections of this chapter provided a fire-hose tour of TCP connections and
their performance implications. If you'd like to learn more about TCP networking,
check out the resources listed at the end of the chapter.

We're going to switch gears now and get squarely back to HTTP.
The rest of this chapter explains the HTTP technology for manipulating and
optimizing connections. We'll start with the HTTP Connection header, an often
misunderstood but important part of HTTP connection management. Then we'll talk
about HTTP's connection optimization techniques.

4.3.1 The Oft-Misunderstood Connection Header

HTTP
allows a chain of HTTP intermediaries between the client and the ultimate
origin server (proxies, caches, etc.). HTTP messages are forwarded hop by hop
from the client, through intermediary devices, to the origin server (or the
reverse).

In some cases, two adjacent HTTP applications may want to apply
a set of options to their shared connection. The HTTP Connection header field has a comma-separated list of connection tokens that specify options for the
connection that aren't propagated to other connections. For example, a
connection that must be closed after sending the next message can be indicated
by Connection: close.

The Connection header sometimes is confusing, because it can
carry three different types of tokens:

·
HTTP header field names, listing headers relevant for only this
connection

·
Arbitrary token values, describing nonstandard options for this
connection

·
The value close,
indicating the persistent connection will be closed when done

If a connection token contains the name of an HTTP header
field, that header field contains connection-specific information and must not
be forwarded. Any header fields listed in the Connection header must be deleted
before the message is forwarded. Placing a hop-by-hop header name in a
Connection header is known as "protecting the
header," because the Connection header protects against accidental
forwarding of the local header. An example is shown in Figure 4-9.

Figure 4-9. The Connection header
allows the sender to specify connection-specific options

[image: figs/http_0409.gif]

When an HTTP application receives a message with a Connection
header, the receiver parses and applies all options requested by the sender. It
then deletes the Connection header and all headers listed in the Connection
header before forwarding the message to the next hop. In addition, there are a
few hop-by-hop headers that might not be listed as values of a Connection
header, but must not be proxied. These include Proxy-Authenticate,
Proxy-Connection, Transfer-Encoding, and Upgrade. For more about the Connection
header, see Appendix C.

4.3.2 Serial Transaction Delays

TCP performance delays can add up if
the connections are managed naively. For example, suppose you have a web page
with three embedded images. Your browser needs to issue four HTTP transactions
to display this page: one for the top-level HTML and three for the embedded
images. If each transaction requires a new connection, the connection and
slow-start delays can add up (see Figure 4-10).[9]

[9] For the purpose of this example,
assume all objects are roughly the same size and are hosted from the same
server, and that the DNS entry is cached, eliminating the DNS lookup time.

Figure 4-10. Four transactions
(serial)

[image: figs/http_0410.gif]

In addition to the real delay imposed by
serial loading, there is also a psychological perception of slowness when a
single image is loading and nothing is happening on the rest of the page. Users
prefer multiple images to load at the same time.[10]

[10]
This is true even if loading multiple images at the same time is slower than loading images one at a time! Users often
perceive multiple-image loading as faster.

Another disadvantage of serial loading is
that some browsers are unable to display anything onscreen until enough objects
are loaded, because they don't know the sizes of the objects until they are
loaded, and they may need the size information to decide where to position the
objects on the screen. In this situation, the browser may be making good
progress loading objects serially, but the user may be faced with a blank white
screen, unaware that any progress is being made at all.[11]

[11]
HTML designers can help eliminate this "layout
delay" by explicitly adding width and height attributes to HTML tags for
embedded objects such as images. Explicitly providing the width and height of
the embedded image allows the browser to make graphical layout decisions before
it receives the objects from the server.

Several current and emerging techniques are
available to improve HTTP connection performance. The next several sections
discuss four such techniques:

Parallel connections

Concurrent HTTP
requests across multiple TCP connections

Persistent
connections

Reusing TCP connections to
eliminate connect/close delays

Pipelined
connections

Concurrent HTTP requests across a
shared TCP connection

Multiplexed
connections

Interleaving chunks of requests and
responses (experimental)

4.4 Parallel Connections

As we
mentioned previously, a browser could naively process each embedded object
serially by completely requesting the original HTML page, then the first embedded
object, then the second embedded object, etc. But this is too slow!

HTTP allows clients to open multiple connections and perform
multiple HTTP transactions in parallel, as sketched in Figure 4-11. In this example, four embedded
images are loaded in parallel, with each transaction getting its own TCP
connection.[12]

[12] The embedded components do not
all need to be hosted on the same web server, so the parallel connections can
be established to multiple servers.

Figure 4-11. Each component of a
page involves a separate HTTP transaction

[image: figs/http_0411.gif]

4.4.1 Parallel Connections May Make Pages Load Faster

Composite pages consisting of embedded
objects may load faster if they take advantage of the dead time and bandwidth
limits of a single connection. The delays can be overlapped, and if a single
connection does not saturate the client's Internet bandwidth, the unused
bandwidth can be allocated to loading additional objects.

Figure 4-12 shows a timeline for parallel
connections, which is significantly faster than Figure 4-10. The enclosing HTML page is loaded
first, and then the remaining three transactions are processed concurrently,
each with their own connection.[13]
Because the images are loaded in parallel, the connection delays are
overlapped.

[13] There will generally still be a small
delay between each connection request due to software overheads, but the
connection requests and transfer times are mostly overlapped.

Figure 4-12. Four transactions
(parallel)

[image: figs/http_0412.gif]

4.4.2 Parallel Connections Are Not Always Faster

Even though parallel connections may be
faster, however, they are not always faster. When
the client's network bandwidth is scarce (for example, a browser connected to
the Internet through a 28.8-Kbps modem), most of the time might be spent just
transferring data. In this situation, a single HTTP transaction to a fast
server could easily consume all of the available modem bandwidth. If multiple
objects are loaded in parallel, each object will just compete for this limited
bandwidth, so each object will load proportionally slower, yielding little or
no performance advantage.[14]

[14]
In fact, because of the extra overhead from multiple connections, it's quite
possible that parallel connections could take longer to load the entire page
than serial downloads.

Also, a large number of open connections can
consume a lot of memory and cause performance problems of their own. Complex
web pages may have tens or hundreds of embedded objects. Clients might be able to
open hundreds of connections, but few web servers will want to do that, because
they often are processing requests for many other users at the same time. A
hundred simultaneous users, each opening 100 connections, will put the burden
of 10,000 connections on the server. This can cause significant server
slowdown. The same situation is true for high-load proxies.

In practice, browsers do use parallel connections, but they limit
the total number of parallel connections to a small number (often four). Servers
are free to close excessive connections from a particular client.

4.4.3 Parallel Connections May "Feel" Faster

Okay, so parallel connections don't
always make pages load faster. But even if they don't actually speed up the
page transfer, as we said earlier, parallel connections often make users feel that the page loads faster, because they can see
progress being made as multiple component objects appear onscreen in parallel.[15]
Human beings perceive that web pages load faster if there's lots of action all
over the screen, even if a stopwatch actually shows the aggregate page download
time to be slower!

[15] This effect is amplified by the increasing
use of progressive images that produce low-resolution approximations of images
first and gradually increase the resolution.

4.5 Persistent
Connections

Web clients often open connections to the same site. For example,
most of the embedded images in a web page often come from the same web site,
and a significant number of hyperlinks to other objects often point to the same
site. Thus, an application that initiates an HTTP request to a server likely
will make more requests to that server in the near future (to fetch the inline
images, for example). This property is called site
locality.

For this reason, HTTP/1.1 (and enhanced
versions of HTTP/1.0) allows HTTP devices to keep TCP connections open after
transactions complete and to reuse the preexisting connections for future HTTP
requests. TCP connections that are kept open after transactions complete
are called persistent connections.
Nonpersistent connections are closed after each transaction. Persistent
connections stay open across transactions, until either the client or the
server decides to close them.

By reusing an idle, persistent connection that is already open
to the target server, you can avoid the slow connection setup. In addition, the
already open connection can avoid the slow-start congestion adaptation phase,
allowing faster data transfers.

4.5.1 Persistent Versus Parallel Connections

As we've seen,
parallel connections can speed up the transfer of composite pages. But parallel
connections have some disadvantages:

·
Each transaction opens/closes a new connection, costing time and
bandwidth.

·
Each new connection has reduced performance because of TCP slow
start.

·
There is a practical limit on the number of open parallel
connections.

Persistent connections offer some advantages over parallel
connections. They reduce the delay and overhead of connection establishment,
keep the connections in a tuned state, and reduce the potential number of open
connections. However, persistent connections need to be managed with care, or
you may end up accumulating a large number of idle connections, consuming local
resources and resources on remote clients and servers.

Persistent connections can be most effective when used in
conjunction with parallel connections. Today, many web applications open a
small number of parallel connections, each persistent. There are two types of
persistent connections: the older HTTP/1.0+ "keep-alive" connections
and the modern HTTP/1.1 "persistent" connections. We'll look at both
flavors in the next few sections.

4.5.2 HTTP/1.0+ Keep-Alive Connections

Many HTTP/1.0 browsers and servers
were extended (starting around 1996) to support an early, experimental type of
persistent connections called keep-alive connections.
These early persistent connections suffered from some interoperability design
problems that were rectified in later revisions of HTTP/1.1, but many clients
and servers still use these earlier keep-alive connections.

Some of the performance advantages of keep-alive connections
are visible in Figure 4-13, which compares the timeline for
four HTTP transactions over serial connections against the same transactions
over a single persistent connection. The timeline is compressed because the
connect and close overheads are removed.[16]

[16] Additionally, the request and
response time might also be reduced because of elimination of the slow-start
phase. This performance benefit is not depicted in the figure.

Figure 4-13. Four transactions
(serial versus persistent)

[image: figs/http_0413.gif]

4.5.3 Keep-Alive Operation

Keep-alive is deprecated and no longer documented in the
current HTTP/1.1 specification. However, keep-alive handshaking is still in
relatively common use by browsers and servers, so HTTP implementors should be
prepared to interoperate with it. We'll take a quick look at keep-alive
operation now. Refer to older versions of the HTTP/1.1 specification (such as
RFC 2068) for a more complete explanation of keep-alive handshaking.

Clients implementing HTTP/1.0 keep-alive connections can
request that a connection be kept open by including the Connection: Keep-Alive
request header.

If the server is willing to keep the connection open for the
next request, it will respond with the same header in the response (see Figure 4-14). If there is no Connection: keep-alive
header in the response, the client assumes that the server does not support
keep-alive and that the server will close the connection when the response
message is sent back.

Figure 4-14. HTTP/1.0 keep-alive
transaction header handshake

[image: figs/http_0414.gif]

4.5.4 Keep-Alive Options

Note that the keep-alive headers are just requests to keep the
connection alive. Clients and servers do not need to agree to a keep-alive
session if it is requested. They can close idle keep-alive connections at any
time and are free to limit the number of transactions processed on a keep-alive
connection.

The keep-alive behavior can be tuned by comma-separated
options specified in the Keep-Alive general header:

·
The timeout
parameter is sent in a Keep-Alive response header. It estimates how long the
server is likely to keep the connection alive for. This is not a guarantee.

·
The max parameter
is sent in a Keep-Alive response header. It estimates how many more HTTP
transactions the server is likely to keep the connection alive for. This is not
a guarantee.

·
The Keep-Alive header also supports arbitrary unprocessed
attributes, primarily for diagnostic and debugging purposes. The syntax is name [= value].

The Keep-Alive header is completely optional but is permitted
only when Connection: Keep-Alive also is present. Here's an example of a
Keep-Alive response header indicating that the server intends to keep the connection
open for at most five more transactions, or until it has sat idle for two
minutes:

Connection: Keep-Alive
Keep-Alive: max=5, timeout=120

4.5.5 Keep-Alive Connection Restrictions and Rules

Here are some restrictions and clarifications regarding the
use of keep-alive connections:

·
Keep-alive does not happen by default in HTTP/1.0. The client
must send a Connection: Keep-Alive request header to activate keep-alive
connections.

·
The Connection: Keep-Alive header must be sent with all messages
that want to continue the persistence. If the client does not send a
Connection: Keep-Alive header, the server will close the connection after that
request.

·
Clients can tell if the server will close the connection after
the response by detecting the absence of the Connection: Keep-Alive response
header.

·
The connection can be kept open only if the length of the
message's entity body can be determined without sensing a connection close—this
means that the entity body must have a correct Content-Length, have a multipart
media type, or be encoded with the chunkedtransfer encoding. Sending the wrong
Content-Length back on a keep-alive channel is bad, because the other end of
the transaction will not be able to accurately detect the end of one message
and the start of another.

·
Proxies and gateways must enforce the rules of the Connection
header; the proxy or gateway must remove any header fields named in the
Connection header, and the Connection header itself, before forwarding or
caching the message.

·
Formally, keep-alive connections should not be established with a
proxy server that isn't guaranteed to support the Connection header, to prevent
the problem with dumb proxies described below. This is not always possible in
practice.

·
Technically, any Connection header fields (including Connection:
Keep-Alive) received from an HTTP/1.0 device should be ignored, because they
may have been forwarded mistakenly by an older proxy server. In practice, some
clients and servers bend this rule, although they run the risk of hanging on
older proxies.

·
Clients must be prepared to retry requests if the connection
closes before they receive the entire response, unless the request could have
side effects if repeated.

4.5.6 Keep-Alive and Dumb Proxies

Let's take a closer look at the subtle problem with keep-alive
and dumb proxies. A web client's Connection: Keep-Alive header is intended to
affect just the single TCP link leaving the client. This is why it is named the
"connection" header. If the client is talking to a web server, the
client sends a Connection: Keep-Alive header to tell the server it wants
keep-alive. The server sends a Connection: Keep-Alive header back if it
supports keep-alive and doesn't send it if it doesn't.

4.5.6.1 The Connection header and blind relays

The problem comes with proxies—in particular, proxies that
don't understand the Connection header and don't know that they need to remove
the header before proxying it down the chain. Many older or simple proxies act
as blind relays,
tunneling bytes from one connection to another, without specially processing
the Connection header.

Imagine a web client talking to a web server through a dumb
proxy that is acting as a blind relay. This situation is depicted in Figure 4-15.

Figure 4-15. Keep-alive doesn't
interoperate with proxies that don't support Connection headers

[image: figs/http_0415.gif]

Here's what's going on in this figure:

1. In
Figure 4-15a, a web client sends a message to
the proxy, including the Connection: Keep-Alive header, requesting a keep-alive
connection if possible. The client waits for a response to learn if its request
for a keep-alive channel was granted.

2. The
dumb proxy gets the HTTP request, but it doesn't understand the Connection
header (it just treats it as an extension header). The proxy has no idea what
keep-alive is, so it passes the message verbatim down the chain to the server (Figure 4-15b). But the Connection header is a
hop-by-hop header; it applies to only a single transport link and shouldn't be
passed down the chain. Bad things are about to happen.

3. In
Figure 4-15b, the relayed HTTP request arrives
at the web server. When the web server receives the proxied Connection:
Keep-Alive header, it mistakenly concludes that the proxy (which looks like any
other client to the server) wants to speak keep-alive! That's fine with the web
server—it agrees to speak keep-alive and sends a Connection: Keep-Alive
response header back in Figure 4-15c. So, at this point, the web
server thinks it is speaking keep-alive with the proxy and will adhere to rules
of keep-alive. But the proxy doesn't know the first thing about keep-alive.
Uh-oh.

4. In
Figure 4-15d, the dumb proxy relays the web
server's response message back to the client, passing along the Connection:
Keep-Alive header from the web server. The client sees this header and assumes
the proxy has agreed to speak keep-alive. So at this point, both the client and
server believe they are speaking keep-alive, but the proxy they are talking to
doesn't know anything about keep-alive.

5. Because
the proxy doesn't know anything about keep-alive, it reflects all the data it
receives back to the client and then waits for the origin server to close the
connection. But the origin server will not close the connection, because it
believes the proxy explicitly asked the server to keep the connection open. So
the proxy will hang waiting for the connection to close.

6. When
the client gets the response message back in Figure 4-15d, it moves right along to the next
request, sending another request to the proxy on the keep-alive connection (see
Figure 4-15e). Because the proxy never expects
another request on the same connection, the request is ignored and the browser
just spins, making no progress.

7. This
miscommunication causes the browser to hang until the client or server times
out the connection and closes it.[17]

[17] There are many
similar scenarios where failures occur due to blind relays and forwarded
handshaking.

4.5.6.2 Proxies and hop-by-hop headers

To avoid this kind of proxy miscommunication, modern proxies
must never proxy the Connection header or any headers whose names appear inside
the Connection values. So if a proxy receives a Connection: Keep-Alive header,
it shouldn't proxy either the Connection header or any headers named
Keep-Alive.

In addition, there are a few hop-by-hop headers that might not
be listed as values of a Connection header, but must not be proxied or served
as a cache response either. These include Proxy-Authenticate, Proxy-Connection,
Transfer-Encoding, and Upgrade. For more information, refer back to Section 4.3.1.

4.5.7 The Proxy-Connection Hack

Browser and proxy
implementors at Netscape proposed a clever workaround to the blind relay
problem that didn't require all web applications to support advanced versions
of HTTP. The workaround introduced a new header called Proxy-Connection
and solved the problem of a single blind relay interposed directly after the
client—but not all other situations. Proxy-Connection is implemented by modern
browsers when proxies are explicitly configured and is understood by many
proxies.

The idea is that dumb proxies get into trouble because they
blindly forward hop-by-hop headers such as Connection: Keep-Alive. Hop-by-hop
headers are relevant only for that single, particular connection and must not
be forwarded. This causes trouble when the forwarded headers are misinterpreted
by downstream servers as requests from the proxy itself to control its
connection.

In the Netscape workaround, browsers send nonstandard
Proxy-Connection extension headers to proxies, instead of officially supported
and well-known Connection headers. If the proxy is a blind relay, it relays the
nonsense Proxy-Connection header to the web server, which harmlessly ignores
the header. But if the proxy is a smart proxy (capable of understanding
persistent connection handshaking), it replaces the nonsense Proxy-Connection
header with a Connection header, which is then sent to the server, having the desired
effect.

Figure 4-16a-d shows how a blind relay
harmlessly forwards Proxy-Connection headers to the web server, which ignores
the header, causing no keep-alive connection to be established between the
client and proxy or the proxy and server. The smart proxy in Figure 4-16e-h understands the
Proxy-Connection header as a request to speak keep-alive, and it sends out its
own Connection: Keep-Alive headers to establish keep-alive connections.

Figure 4-16. Proxy-Connection header
fixes single blind relay

[image: figs/http_0416.gif]

This scheme works around situations where there is only one
proxy between the client and server. But if there is a smart proxy on either
side of the dumb proxy, the problem will rear its ugly head again, as shown in Figure 4-17.

Figure 4-17. Proxy-Connection still
fails for deeper hierarchies of proxies

[image: figs/http_0417.gif]

Furthermore, it is becoming quite common for
"invisible" proxies to appear in networks, either as firewalls,
intercepting caches, or reverse proxy server accelerators. Because these
devices are invisible to the browser, the browser will not send them
Proxy-Connection headers. It is critical that transparent web applications
implement persistent connections correctly.

4.5.8 HTTP/1.1 Persistent Connections

HTTP/1.1 phased out support for keep-alive
connections, replacing them with an improved design called persistent connections. The goals of persistent
connections are the same as those of keep-alive connections, but the mechanisms
behave better.

Unlike HTTP/1.0+ keep-alive connections,
HTTP/1.1 persistent connections are active by default. HTTP/1.1 assumes all connections are persistent unless otherwise
indicated. HTTP/1.1 applications have to explicitly add a Connection: close
header to a message to indicate that a connection should close after the
transaction is complete. This is a significant difference from previous
versions of the HTTP protocol, where keep-alive connections were either
optional or completely unsupported.

An HTTP/1.1 client assumes an HTTP/1.1
connection will remain open after a response, unless the response contains a
Connection: close header. However, clients and servers still can close idle
connections at any time. Not sending Connection: close does not mean that the
server promises to keep the connection open forever.

4.5.9 Persistent Connection Restrictions and Rules

Here are the
restrictions and clarifications regarding the use of persistent connections:

·
After sending a Connection: close request
header, the client can't send more requests on that connection.

·
If a client does not want to send another
request on the connection, it should send a Connection: close request header in
the final request.

·
The connection can be kept persistent only if
all messages on the connection have a correct, self-defined message
length—i.e., the entity bodies must have correct Content-Lengths or be encoded
with the chunkedtransfer encoding.

·
HTTP/1.1 proxies must manage persistent
connections separately with clients and servers—each persistent connection
applies to a single transport hop.

·
HTTP/1.1 proxy servers should not establish
persistent connections with an HTTP/1.0 client (because of the problems of
older proxies forwarding Connection headers) unless they know something about
the capabilities of the client. This is, in practice, difficult, and many
vendors bend this rule.

·
Regardless of the values of Connection headers,
HTTP/1.1 devices may close the connection at any time, though servers should
try not to close in the middle of transmitting a message and should always
respond to at least one request before closing.

·
HTTP/1.1 applications must be able to recover
from asynchronous closes. Clients should retry the requests as long as they
don't have side effects that could accumulate.

·
Clients must be prepared to retry requests if
the connection closes before they receive the entire response, unless the
request could have side effects if repeated.

·
A single user client should maintain at most two
persistent connections to any server or proxy, to prevent the server from being
overloaded. Because proxies may need more connections to a server to support
concurrent users, a proxy should maintain at most 2N
connections to any server or parent proxy, if there are N users trying to access the servers.

4.6 Pipelined
Connections

HTTP/1.1 permits optional request pipelining over persistent
connections. This is a further performance optimization over keep-alive
connections. Multiple requests can be enqueued before the responses arrive.
While the first request is streaming across the network to a server on the
other side of the globe, the second and third requests can get underway. This
can improve performance in high-latency network conditions, by reducing network
round trips.

Figure 4-18a-c
shows how persistent connections can eliminate TCP connection delays and how
pipelined requests (Figure 4-18c) can
eliminate transfer latencies.

Figure 4-18. Four
transactions (pipelined connections)

[image: figs/http_0418.gif]

There are several restrictions for pipelining:

·
HTTP clients should not pipeline until they are
sure the connection is persistent.

·
HTTP responses must be returned in the same
order as the requests. HTTP messages are not tagged with sequence numbers, so
there is no way to match responses with requests if the responses are received
out of order.

·
HTTP clients must be prepared for the connection
to close at any time and be prepared to redo any pipelined requests that did
not finish. If the client opens a persistent connection and immediately issues
10 requests, the server is free to close the connection after processing only,
say, 5 requests. The remaining 5 requests will fail, and the client must be
willing to handle these premature closes and reissue the requests.

·
HTTP clients should not pipeline requests that
have side effects (such as POSTs). In general, on error, pipelining prevents
clients from knowing which of a series of pipelined requests were executed by
the server. Because nonidempotent requests such as POSTs cannot safely be
retried, you run the risk of some methods never being executed in error
conditions.

4.7 The Mysteries of
Connection Close

Connection
management—particularly knowing when and how to close connections—is one of the
practical black arts of HTTP. This issue is more subtle than many developers first
realize, and little has been written on the subject.

4.7.1 "At Will" Disconnection

Any HTTP client, server, or proxy can close a TCP transport
connection at any time. The connections normally are closed at the end of a
message,[18] but during error conditions,
the connection may be closed in the middle of a header line or in other strange
places.

[18] Servers shouldn't close a
connection in the middle of a response unless client or network failure is
suspected.

This situation is common with pipelined persistent
connections. HTTP applications are free to close persistent connections after
any period of time. For example, after a persistent connection has been idle
for a while, a server may decide to shut it down.

However, the server can never know for sure that the client on
the other end of the line wasn't about to send data at the same time that the
"idle" connection was being shut down by the server. If this happens,
the client sees a connection error in the middle of writing its request message.

4.7.2 Content-Length and Truncation

Each HTTP response should have an accurate Content-Length
header to describe the size of the response body. Some older HTTP servers omit
the Content-Length header or include an erroneous length, depending on a server
connection close to signify the actual end of data.

When a client or proxy receives an HTTP response terminating
in connection close, and the actual transferred entity length doesn't match the
Content-Length (or there is no Content-Length), the receiver should question
the correctness of the length.

If the receiver is a caching proxy, the receiver should not
cache the response (to minimize future compounding of a potential error). The
proxy should forward the questionable message intact, without attempting to
"correct" the Content-Length, to maintain semantic transparency.

4.7.3 Connection Close Tolerance, Retries, and Idempotency

Connections can close at any time, even in non-error
conditions. HTTP applications have to be ready to properly handle unexpected
closes. If a transport connection closes while the client is performing a
transaction, the client should reopen the connection and retry one time, unless
the transaction has side effects. The situation is worse for pipelined
connections. The client can enqueue a large number of requests, but the origin
server can close the connection, leaving numerous requests unprocessed and in
need of rescheduling.

Side effects are important. When a connection closes after
some request data was sent but before the response is returned, the client
cannot be 100% sure how much of the transaction actually was invoked by the
server. Some transactions, such as GETting a static HTML page, can be repeated
again and again without changing anything. Other transactions, such as POSTing an
order to an online book store, shouldn't be repeated, or you may risk multiple
orders.

A transaction is idempotent if
it yields the same result regardless of whether it is executed once or many
times. Implementors can assume the GET, HEAD, PUT, DELETE, TRACE, and OPTIONS
methods share this property.[19]
Clients shouldn't pipeline nonidempotent requests (such as POSTs). Otherwise, a
premature termination of the transport connection could lead to indeterminate
results. If you want to send a nonidempotent request, you should wait for the
response status for the previous request.

[19] Administrators who use GET-based dynamic
forms should make sure the forms are idempotent.

Nonidempotent methods or sequences must not be retried
automatically, although user agents may offer a human operator the choice of
retrying the request. For example, most browsers will offer a dialog box when
reloading a cached POST response, asking if you want to post the transaction
again.

4.7.4 Graceful Connection Close

TCP connections are bidirectional, as shown in Figure 4-19. Each side of a TCP connection has
an input queue and an output queue, for data being read or written. Data placed
in the output of one side will eventually show up on the input of the other
side.

Figure 4-19. TCP connections are bidirectional

[image: figs/http_0419.gif]

4.7.4.1 Full and half closes

An application can close either or both of the TCP input and
output channels. A close()
sockets call closes both the input and output channels of a TCP connection.
This is called a "full close" and is depicted in Figure 4-20a. You can use the shutdown() sockets call to close either
the input or output channel individually. This is called a "half
close" and is depicted in Figure 4-20b.

Figure 4-20. Full and half close

[image: figs/http_0420.gif]

4.7.4.2 TCP close and reset errors

Simple HTTP applications can use only full closes. But when
applications start talking to many other types of HTTP clients, servers, and
proxies, and when they start using pipelined persistent connections, it becomes
important for them to use half closes to prevent peers from getting unexpected write
errors.

In general, closing the output channel of your connection is
always safe. The peer on the other side of the connection will be notified that
you closed the connection by getting an end-of-stream notification once all the
data has been read from its buffer.

Closing the input channel of your connection
is riskier, unless you know the other side doesn't plan to send any more data. If
the other side sends data to your closed input channel, the operating system
will issue a TCP "connection reset by peer" message back to the other
side's machine, as shown in Figure 4-21. Most
operating systems treat this as a serious error and erase any buffered data the
other side has not read yet. This is very bad for pipelined connections.

Figure 4-21. Data
arriving at closed connection generates "connection reset by peer"
error

[image: figs/http_0421.gif]

Say you have sent 10 pipelined requests on a
persistent connection, and the responses already have arrived and are sitting
in your operating system's buffer (but the application hasn't read them yet). Now
say you send request #11, but the server decides you've used this connection
long enough, and closes it. Your request #11 will arrive at a closed connection
and will reflect a reset back to you. This reset will erase your input buffers.

When you finally get to reading data, you
will get a connection reset by peer error, and the buffered, unread response data
will be lost, even though much of it successfully arrived at your machine.

4.7.4.3 Graceful close

The HTTP specification counsels that when
clients or servers want to close a connection unexpectedly, they should
"issue a graceful close on the transport connection," but it doesn't
describe how to do that.

In general, applications implementing
graceful closes will first close their output channels and then wait for the
peer on the other side of the connection to close its
output channels. When both sides are done telling each other they won't be
sending any more data (i.e., closing output channels), the connection can be
closed fully, with no risk of reset.

Unfortunately, there is no guarantee that the peer implements
or checks for half closes. For this reason, applications wanting to close
gracefully should half close their output channels and periodically check the
status of their input channels (looking for data or for the end of the stream).
If the input channel isn't closed by the peer within some timeout period, the
application may force connection close to save resources.

4.8 For More Information

This completes our overview of the HTTP plumbing trade. Please
refer to the following reference sources for more information about TCP
performance and HTTP connection-management facilities.

4.8.1 HTTP Connections

http://www.ietf.org/rfc/rfc2616.txt

RFC 2616, "Hypertext Transfer
Protocol—HTTP/1.1," is the official specification for HTTP/1.1; it
explains the usage of and HTTP header fields for implementing parallel,
persistent, and pipelined HTTP connections. This document does not cover the
proper use of the underlying TCP connections.

http://www.ietf.org/rfc/rfc2068.txt

RFC 2068 is the 1997 version of the
HTTP/1.1 protocol. It contains explanation of the HTTP/1.0+ Keep-Alive
connections that is missing from RFC 2616.

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

This expired Internet draft,
"HTTP Connection Management," has some good discussion of issues
facing HTTP connection management.

4.8.2 HTTP Performance Issues

http://www.w3.org/Protocols/HTTP/Performance/

This W3C web page, entitled
"HTTP Performance Overview," contains a few papers and tools related
to HTTP performance and connection management.

http://www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html

This short memo by Simon Spero,
"Analysis of HTTP Performance Problems," is one of the earliest
(1994) assessments of HTTP connection performance. The memo gives some early
performance measurements of the effect of connection setup, slow start, and
lack of connection sharing.

ftp://gatekeeper.dec.com/pub/DEC/WRL/research-reports/WRL-TR-95.4.pdf

"The Case for
Persistent-Connection HTTP."

http://www.isi.edu/lsam/publications/phttp_tcp_interactions/paper.html

"Performance Interactions
Between P-HTTP and TCP Implementations."

http://www.sun.com/sun-on-net/performance/tcp.slowstart.html

"TCP Slow Start Tuning for
Solaris" is a web page from Sun Microsystems that talks about some of the
practical implications of TCP slow start. It's a useful read, even if you are
working with different operating systems.

4.8.3 TCP/IP

The following three books by W. Richard Stevens are excellent,
detailed engineering texts on TCP/IP. These are extremely useful for anyone
using TCP:

TCP
Illustrated, Volume I: The Protocols

W. Richard Stevens, Addison Wesley

UNIX
Network Programming, Volume 1: Networking APIs

W. Richard Stevens, Prentice-Hall

UNIX
Network Programming, Volume 2: The Implementation

W. Richard Stevens, Prentice-Hall

The following papers and specifications
describe TCP/IP and features that affect its performance. Some of these
specifications are over 20 years old and, given the worldwide success of
TCP/IP, probably can be classified as historical treasures:

http://www.acm.org/sigcomm/ccr/archive/2001/jan01/ccr-200101-mogul.pdf

In
"Rethinking the TCP Nagle Algorithm," Jeff Mogul and Greg Minshall
present a modern perspective on Nagle's algorithm, outline what applications
should and should not use the algorithm, and propose several modifications.

http://www.ietf.org/rfc/rfc2001.txt

RFC 2001,
"TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms," defines the TCP slow-start algorithm.

http://www.ietf.org/rfc/rfc1122.txt

RFC 1122,
"Requirements for Internet Hosts—Communication Layers," discusses TCP
acknowledgment and delayed acknowledgments.

http://www.ietf.org/rfc/rfc896.txt

RFC 896,
"Congestion Control in IP/TCP Internetworks," was released by John
Nagle in 1984. It describes the need for TCP congestion control and introduces
what is now called "Nagle's algorithm."

http://www.ietf.org/rfc/rfc0813.txt

RFC 813,
"Window and Acknowledgement Strategy in TCP," is a historical (1982)
specification that describes TCP window and acknowledgment implementation
strategies and provides an early description of the delayed acknowledgment
technique.

http://www.ietf.org/rfc/rfc0793.txt

RFC 793,
"Transmission Control Protocol," is Jon Postel's classic 1981
definition of the TCP protocol.

Part II: HTTP
Architecture

The six chapters of Part II highlight the
HTTP server, proxy, cache, gateway, and robot applications, which are the
building blocks of web systems architecture:

·
Chapter 5 gives an
overview of web server architectures.

·
Chapter 6
describes HTTP proxy servers, which are intermediary servers that connect HTTP
clients and act as platforms for HTTP services and controls.

·
Chapter 7 delves
into the science of web caches—devices that improve performance and reduce
traffic by making local copies of popular documents.

·
Chapter 8 explains
applications that allow HTTP to interoperate with software that speaks
different protocols, including SSL encrypted protocols.

·
Chapter 9 wraps up
our tour of HTTP architecture with web clients.

·
Chapter 10 covers
future topics for HTTP—in particular, HTTP-NG.

Chapter 5. Web
Servers

Web servers dish out billions of web pages a
day. They tell you the weather, load up your online shopping carts, and let you
find long-lost high-school buddies. Web servers are the workhorses of the World
Wide Web. In this chapter, we:

·
Survey the many different types of software and
hardware web servers.

·
Describe how to write a simple diagnostic web
server in Perl.

·
Explain how web servers process HTTP
transactions, step by step.

Where it helps to make things concrete, our
examples use the Apache web server and its configuration options.

5.1 Web Servers Come in
All Shapes and Sizes

A web server processes HTTP requests and
serves responses. The term "web server" can refer either to web
server software or to the particular device or computer dedicated to serving
the web pages.

Web servers comes in all flavors, shapes, and sizes. There are
trivial 10-line Perl script web servers, 50-MB secure commerce engines, and
tiny servers-on-a-card. But whatever the functional differences, all web
servers receive HTTP requests for resources and serve content back to the
clients (look back to Figure 1-5).

5.1.1 Web Server Implementations

Web servers implement HTTP and the
related TCP connection handling. They also manage the resources served by the
web server and provide administrative features to configure, control, and
enhance the web server.

The web server logic implements the HTTP protocol, manages web
resources, and provides web server administrative capabilities. The web server
logic shares responsibilities for managing TCP connections with the operating
system. The underlying operating system manages the hardware details of the
underlying computer system and provides TCP/IP network support, filesystems to
hold web resources, and process management to control current computing
activities.

Web servers are available in many forms:

·
You can install and run general-purpose software web servers on
standard computer systems.

·
If you don't want the hassle of installing software, you can
purchase a web server appliance, in which the software comes preinstalled and
preconfigured on a computer, often in a snazzy-looking chassis.

·
Given the miracles of microprocessors, some companies even offer
embedded web servers implemented in a small number of computer chips, making
them perfect administration consoles for consumer devices.

Let's look at each of those types of implementations.

5.1.2 General-Purpose Software Web Servers

General-purpose
software web servers run on standard, network-enabled computer systems. You can
choose open source software (such as Apache or W3C's Jigsaw) or commercial
software (such as Microsoft's and iPlanet's web servers). Web server software
is available for just about every computer and operating system.

While there are tens of thousands of different kinds of web
server programs (including custom-crafted, special-purpose web servers), most
web server software comes from a small number of organizations.

In February 2002, the Netcraft survey (http://www.netcraft.com/survey/)
showed three vendors dominating the public Internet web server market (see Figure 5-1):

·
The free Apache software powers nearly 60% of all Internet web
servers.

·
Microsoft web server makes up another 30%.

·
Sun iPlanet servers comprise another 3%.

Figure 5-1. Web server market share
as estimated by Netcraft's automated survey

[image: figs/http_0501.gif]

Take these numbers with a few grains of salt,
however, as the Netcraft survey is commonly believed to exaggerate the
dominance of Apache software. First, the survey counts servers independent of
server popularity. Proxy server access studies from large ISPs suggest that the
amount of pages served from Apache servers is much less than 60% but still
exceeds Microsoft and Sun iPlanet. Additionally, it is anecdotally believed
that Microsoft and iPlanet servers are more popular than Apache inside
corporate enterprises.

5.1.3 Web Server Appliances

Web server
appliances are prepackaged
software/hardware solutions. The vendor preinstalls a software server onto a
vendor-chosen computer platform and preconfigures the software. Some
examples of web server appliances include:

·
Sun/Cobalt RaQ web appliances (http://www.cobalt.com)

·
Toshiba Magnia SG10 (http://www.toshiba.com)

·
IBM Whistle web server appliance (http://www.whistle.com)

Appliance solutions remove the need to
install and configure software and often greatly simplify administration. However,
the web server often is less flexible and feature-rich, and the server hardware
is not easily repurposeable or upgradable.

5.1.4 Embedded Web Servers

Embedded servers are tiny web servers
intended to be embedded into consumer products (e.g., printers or home
appliances). Embedded web servers allow users to administer their consumer
devices using a convenient web browser interface.

Some embedded web servers can even be
implemented in less than one square inch, but they usually offer a minimal
feature set. Two examples of very small embedded web servers are:

·
IPic match-head sized web server (http://www-ccs.cs.umass.edu/~shri/iPic.html)

·
NetMedia SitePlayer SP1 Ethernet Web Server (http://www.siteplayer.com)

5.2 A Minimal
Perl Web Server

If
you want to build a full-featured HTTP server, you have some work to do. The
core of the Apache web server has over 50,000 lines of code, and optional
processing modules make that number much bigger.

All this software is needed to support
HTTP/1.1 features: rich resource support, virtual hosting, access control,
logging, configuration, monitoring, and performance features. That said, you
can create a minimally functional HTTP server in under 30 lines of Perl. Let's
take a look.

Example 5-1 shows a tiny Perl program called type-o-serve.
This program is a useful diagnostic tool for testing interactions with clients
and proxies. Like any web server, type-o-serve
waits for an HTTP connection. As soon as type-o-serve
gets the request message, it prints the message on the screen; then it waits
for you to type (or paste) in a response message, which is sent back to the
client. This way, type-o-serve pretends to be a
web server, records the exact HTTP request messages, and allows you to send
back any HTTP response message.

This simple type-o-serve
utility doesn't implement most HTTP functionality, but it is a useful tool to
generate server response messages the same way you can use Telnet to generate
client request messages (refer back to Example 5-1). You can download the type-o-serve program from http://www.http-guide.com/tools/type-o-serve.pl.

Example 5-1. type-o-serve—a minimal Perl web server used for HTTP
debugging

#!/usr/bin/perl

use Socket;
use Carp;
use FileHandle;

(1) use port 8080 by default, unless overridden on command line
$port = (@ARGV ? $ARGV[0] : 8080);

(2) create local TCP socket and set it to listen for connections
$proto = getprotobyname('tcp');
socket(S, PF_INET, SOCK_STREAM, $proto) || die;
setsockopt(S, SOL_SOCKET, SO_REUSEADDR, pack("l", 1)) || die;
bind(S, sockaddr_in($port, INADDR_ANY)) || die;
listen(S, SOMAXCONN) || die;

(3) print a startup message
printf(" <<<Type-O-Serve Accepting on Port %d>>>\n\n",$port);

while (1)
{
 # (4) wait for a connection C
 $cport_caddr = accept(C, S);
 ($cport,$caddr) = sockaddr_in($cport_caddr);
 C->autoflush(1);

 # (5) print who the connection is from
 $cname = gethostbyaddr($caddr,AF_INET);
 printf(" <<<Request From '%s'>>>\n",$cname);

 # (6) read request msg until blank line, and print on screen
 while ($line = <C>)
 {
 print $line;
 if ($line =~ /^\r/) { last; }
 }

 # (7) prompt for response message, and input response lines,
 # sending response lines to client, until solitary "."
 printf(" <<<Type Response Followed by '.'>>>\n");

 while ($line = <STDIN>)
 {
 $line =~ s/\r//;
 $line =~ s/\n//;
 if ($line =~ /^\./) { last; }
 print C $line . "\r\n";
 }
 close(C);
}

Figure 5-2 shows how the administrator of Joe's
Hardware store might use type-o-serve to test
HTTP communication:

·
First, the administrator starts the type-o-serve diagnostic server, listening on a
particular port. Because Joe's Hardware store already has a production web
server listing on port 80, the administrator starts the type-o-serve server on port 8080 (you can pick any
unused port) with this command line:

% type-o-serve.pl 8080

·
Once type-o-serve
is running, you can point a browser to this web server. In Figure 5-2, we
browse to http://www.joes-hardware.com:8080/foo/bar/blah.txt.

·
The type-o-serve
program receives the HTTP request message from the browser and prints the
contents of the HTTP request message on screen. The type-o-serve
diagnostic tool then waits for the user to type in a simple response message,
followed by a period on a blank line.

·
type-o-serve sends the HTTP response message back to the browser, and the
browser displays the body of the response message.

Figure 5-2. The
type-o-serve utility lets you type in server responses to send back to clients

[image: figs/http_0502.gif]

5.3 What Real Web Servers
Do

The Perl
server we showed in Example 5-1 is a
trivial example web server. State-of-the-art commercial web servers are much
more complicated, but they do perform several common tasks, as shown in Figure 5-3:

Figure 5-3. Steps of a
basic web server request

[image: figs/http_0503.gif]

1.
Set up connection—accept a client connection, or
close if the client is unwanted.

2.
Receive request—read an HTTP request message
from the network.

3.
Process request—interpret the request message
and take action.

4.
Access resource—access the resource specified in
the message.

5.
Construct response—create the HTTP response
message with the right headers.

6.
Send response—send the response back to the
client.

7.
Log transaction—place notes about the completed
transaction in a log file.

The next seven sections highlight how web
servers perform these basic tasks.

5.4 Step 1: Accepting
Client Connections

If a client already has a persistent connection open to the
server, it can use that connection to send its request. Otherwise, the client
needs to open a new connection to the server (refer back to Chapter 4 to review HTTP connection-management
technology).

5.4.1 Handling New Connections

When a client requests a TCP connection to the web server, the web server establishes
the connection and determines which client is on the other side of the
connection, extracting the IP address from the TCP connection.[1] Once a new connection is
established and accepted, the server adds the new connection to its list of
existing web server connections and prepares to watch for data on the
connection.

[1] Different operating systems have
different interfaces and data structures for manipulating TCP connections. In
Unix environments, the TCP connection is represented by a socket, and the IP address of the client can be found
from the socket using the getpeername call.

The web server is free to reject and immediately close any
connection. Some web servers close connections because the client IP address or
hostname is unauthorized or is a known malicious client. Other identification
techniques can also be used.

5.4.2 Client Hostname Identification

Most web servers
can be configured to convert client IP addresses into client hostnames, using "reverse
DNS." Web servers can use the client hostname for detailed access control
and logging. Be warned that hostname lookups can take a very long time, slowing
down web transactions. Many high-capacity web servers either disable hostname
resolution or enable it only for particular content.

You can enable hostname lookups in Apache
with the HostnameLookups configuration
directive. For example, the Apache configuration directives in Example 5-2 turn on hostname resolution for
only HTML and CGI resources.

Example 5-2. Configuring Apache to look up hostnames for HTML and CGI
resources

HostnameLookups off
<Files ~ "\.(html|htm|cgi)$">
 HostnameLookups on
</Files>

5.4.3 Determining the Client User Through ident

Some web servers also support the IETF ident protocol. The ident protocol lets servers find out what username
initiated an HTTP connection. This information is particularly useful for web
server logging—the second field of the popular Common Log Format contains the ident username of each HTTP request.[2]

[2]
This Common Log Format ident field is called
"rfc931," after an outdated version of the RFC defining the ident protocol (the updated ident
specification is documented by RFC 1413).

If a client supports the ident protocol, the client listens on TCP port 113
for ident requests. Figure 5-4 shows
how the ident protocol works. In Figure 5-4a, the
client opens an HTTP connection. The server then opens its own connection back
to the client's identd server port (113), sends
a simple request asking for the username corresponding to the new connection
(specified by client and server port numbers), and retrieves from the client
the response containing the username.

Figure 5-4. Using the
ident protocol to determine HTTP client username

[image: figs/http_0504.gif]

ident can work inside organizations, but it does not work well across the
public Internet for many reasons, including:

·
Many client PCs don't run the identd Identification Protocol daemon software.

·
The ident
protocol significantly delays HTTP transactions.

·
Many firewalls won't permit incoming ident traffic.

·
The ident
protocol is insecure and easy to fabricate.

·
The ident protocol doesn't
support virtual IP addresses well.

·
There are privacy concerns about exposing client usernames.

You can tell Apache web servers to use ident lookups with Apache's IdentityCheck on directive. If no ident information is available, Apache will fill ident log fields with hyphens (-). Common Log Format log files typically
contain hyphens in the second field because no ident
information is available.

5.5 Step 2:
Receiving Request Messages

As the data arrives on
connections, the web server reads out the data from the network connection and
parses out the pieces of the request message (Figure 5-5).

Figure 5-5. Reading a request
message from a connection

[image: figs/http_0505.gif]

When parsing the request message, the web server:

·
Parses the request line looking for the request method, the
specified resource identifier (URI), and the version number,[3] each separated by a single
space, and ending with a carriage-return line-feed (CRLF) sequence[4]

[3] The
initial version of HTTP, called HTTP/0.9, does not support version numbers.
Some web servers support missing version numbers, interpreting the message as
an HTTP/0.9 request.

[4] Many web servers
support LF or CRLF as end-of-line sequences, because some clients mistakenly
send LF as the end-of-line terminator.

·
Reads the message headers, each ending in CRLF

·
Detects the end-of-headers blank line, ending in CRLF (if
present)

·
Reads the request body, if any (length specified by the
Content-Length header)

When parsing request messages, web servers receive input data erratically
from the network. The network connection can stall at any point. The web server
needs to read data from the network and temporarily store the partial message
data in memory until it receives enough data to parse it and make sense of it.

5.5.1 Internal Representations of Messages

Some web servers also store the request
messages in internal data structures that make the message easy to manipulate.
For example, the data structure might contain pointers and lengths of each
piece of the request message, and the headers might be stored in a fast lookup
table so the specific values of particular headers can be accessed quickly (Figure 5-6).

Figure 5-6. Parsing a request
message into a convenient internal representation

[image: figs/http_0506.gif]

5.5.2 Connection Input/Output Processing Architectures

High-performance web servers support
thousands of simultaneous connections. These connections let the web server
communicate with clients around the world, each with one or more connections
open to the server. Some of these connections may be sending requests rapidly
to the web server, while other connections trickle requests slowly or
infrequently, and still others are idle, waiting quietly for some future
activity.

Web servers constantly watch for new web requests, because
requests can arrive at any time. Different web server architectures service
requests in different ways, as Figure 5-7 illustrates:

Single-threaded web servers (Figure 5-7a)

Single-threaded web servers process
one request at a time until completion. When the transaction is complete, the
next connection is processed. This architecture is simple to implement, but
during processing, all the other connections are ignored. This creates serious
performance problems and is appropriate only for low-load servers and
diagnostic tools like type-o-serve.

Multiprocess and multithreaded web servers (Figure 5-7b)

Multiprocess and multithreaded web
servers dedicate multiple processes or higher-efficiency threads to process
requests simultaneously.[5]
The threads/processes may be created on demand or in advance.[6]
Some servers dedicate a thread/process for every connection, but when a server
processes hundreds, thousands, or even tens or thousands of simultaneous
connections, the resulting number of processes or threads may consume too much
memory or system resources. Thus, many multithreaded web servers put a limit on
the maximum number of threads/processes.

[5] A process is an
individual program flow of control, with its own set of variables. A thread is
a faster, more efficient version of a process. Both threads and processes let a
single program do multiple things at the same time. For simplicity of explanation,
we treat processes and threads interchangeably. But, because of the performance
differences, many high-performance servers are both multiprocess and multithreaded.

[6] Systems where
threads are created in advance are called "worker pool" systems,
because a set of threads waits in a pool for work to do.

Multiplexed I/O servers (Figure 5-7c)

To support large
numbers of connections, many web servers adopt multiplexed
architectures. In a multiplexed architecture,
all the connections are simultaneously watched for activity. When a connection
changes state (e.g., when data becomes available or an error condition occurs),
a small amount of processing is performed on the connection; when that
processing is complete, the connection is returned to the open connection list
for the next change in state. Work is done on a connection only when there is
something to be done; threads and processes are not tied up waiting on idle
connections.

Multiplexed multithreaded web servers (Figure 5-7d)

Some systems
combine multithreading and multiplexing to take advantage of multiple CPUs in
the computer platform. Multiple threads (often one per physical processor) each
watch the open connections (or a subset of the open connections) and perform a
small amount of work on each connection.

Figure 5-7. Web server
input/output architectures

[image: figs/http_0507.gif]

5.6 Step 3:
Processing Requests

Once the web server has received a request,
it can process the request using the method, resource, headers, and optional
body.

Some methods (e.g., POST) require entity body
data in the request message. Other methods (e.g., OPTIONS) allow a request body
but don't require one. A few methods (e.g., GET) forbid entity body data in
request messages.

We won't talk about request processing here,
because it's the subject of most of the chapters in the rest of this book!

5.7 Step 4: Mapping and
Accessing Resources

Web servers are
resource servers. They deliver precreated content, such as HTML pages or JPEG
images, as well as dynamic content from resource-generating applications
running on the servers.

Before the web server can deliver content to the client, it
needs to identify the source of the content, by mapping the URI from the
request message to the proper content or content generator on the web server.

5.7.1 Docroots

Web servers support different kinds of resource mapping, but
the simplest form of resource mapping uses the request URI to name a file in
the web server's filesystem. Typically, a special folder in the web server
filesystem is reserved for web content. This folder is called the document root, or docroot. The web server
takes the URI from the request message and appends it to the document root.

In Figure 5-8, a request arrives for /specials/saw-blade.gif. The web server in this
example has document root /usr/local/httpd/files.
The web server returns the file /usr/local/httpd/files/specials/saw-blade.gif.

Figure 5-8. Mapping request URI to
local web server resource

[image: figs/http_0508.gif]

To set the document root for an Apache
web server, add a DocumentRoot line to the httpd.conf
configuration file:

DocumentRoot /usr/local/httpd/files

Servers are careful not to let relative URLs back up out of a
docroot and expose other parts of the filesystem. For example, most mature web
servers will not permit this URI to see files above the Joe's Hardware document
root:

http://www.joes-hardware.com/../

5.7.1.1 Virtually hosted docroots

Virtually hosted
web servers host multiple web sites on the same web server, giving each site
its own distinct document root on the server. A virtually hosted web server
identifies the correct document root to use from the IP address or hostname in
the URI or the Host header. This way, two web sites hosted on the same web
server can have completely distinct content, even if the request URIs are
identical.

In Figure 5-9, the server hosts two sites: www.joes-hardware.com and www.marys-antiques.com.
The server can distinguish the web sites using the HTTP Host header, or from
distinct IP addresses.

·
When request A arrives, the server fetches the file for /docs/joe/index.html.

·
When request B arrives, the server fetches the file for /docs/mary/index.html.

Figure 5-9. Different docroots for
virtually hosted requests

[image: figs/http_0509.gif]

Configuring virtually hosted docroots is simple for most web
servers. For the popular Apache web server, you need to configure a VirtualHost block for each virtual web site, and
include the DocumentRoot for each virtual
server (Example 5-3).

Example 5-3. Apache web server virtual host docroot configuration

<VirtualHost www.joes-hardware.com>
 ServerName www.joes-hardware.com
 DocumentRoot /docs/joe
 TransferLog /logs/joe.access_log
 ErrorLog /logs/joe.error_log
</VirtualHost>

<VirtualHost www.marys-antiques.com>
 ServerName www.marys-antiques.com
 DocumentRoot /docs/mary
 TransferLog /logs/mary.access_log
 ErrorLog /logs/mary.error_log
</VirtualHost>
 ...

Look forward to Section 18.2 for much more detail about
virtual hosting.

5.7.1.2 User home directory docroots

Another common use of docroots gives
people private web sites on a web server. A typical convention maps URIs whose
paths begin with a slash and tilde (/~)
followed by a username to a private document root for that user. The private
docroot is often the folder called public_html
inside that user's home directory, but it can be configured differently (Figure 5-10).

Figure 5-10. Different docroots for
different users

[image: figs/http_0510.gif]

5.7.2 Directory Listings

A web server can
receive requests for directory URLs, where the path resolves to a directory,
not a file. Most web servers can be configured to take a few different actions
when a client requests a directory URL:

·
Return an error.

·
Return a special, default, "index file" instead of the
directory.

·
Scan the directory, and return an HTML page containing the
contents.

Most web servers look for a file named index.html or index.htm
inside a directory to represent that directory. If a user requests a URL for a
directory and the directory contains a file named index.html
(or index.htm), the server will return the
contents of that file.

In the Apache web server, you can
configure the set of filenames that will be interpreted as default directory
files using the DirectoryIndex configuration
directive. The DirectoryIndex directive lists all filenames that serve
as directory index files, in preferred order. The following configuration line
causes Apache to search a directory for any of the listed files in response to
a directory URL request:

DirectoryIndex index.html index.htm home.html home.htm index.cgi

If no default index file is present when a user requests a
directory URI, and if directory indexes are not disabled, many web servers
automatically return an HTML file listing the files in that directory, and the
sizes and modification dates of each file, including URI links to each file.
This file listing can be convenient, but it also allows nosy people to find
files on a web server that they might not normally find.

You can disable the automatic generation of directory
index files with the Apache directive:

Options -Indexes

5.7.3 Dynamic Content Resource Mapping

Web servers also can map URIs to dynamic resources—that is, to
programs that generate content on demand (Figure 5-11). In fact, a whole class of web
servers called application servers connect web
servers to sophisticated backend applications. The web server needs to be able
to tell when a resource is a dynamic resource, where the dynamic content
generator program is located, and how to run the program. Most web servers
provide basic mechanisms to identify and map dynamic resources.

Figure 5-11. A web server can serve
static resources as well as dynamic resources

[image: figs/http_0511.gif]

Apache lets you map URI pathname components
into executable program directories. When a server receives a request for a URI
with an executable path component, it attempts to execute a program in a
corresponding server directory. For example, the following Apache configuration
directive specifies that all URIs whose paths begin with /cgi-bin/ should execute corresponding programs found
in the directory /usr/local/etc/httpd/cgi-programs/:

ScriptAlias /cgi-bin/ /usr/local/etc/httpd/cgi-programs/

Apache also lets you mark executable files
with a special file extension. This way, executable scripts can be placed in
any directory. The following Apache configuration directive specifies that all
web resources ending in .cgi should be executed:

AddHandler cgi-script .cgi

CGI is an early, simple, and popular
interface for executing server-side applications. Modern application servers
have more powerful and efficient server-side dynamic content support, including
Microsoft's Active Server Pages and Java servlets.

5.7.4 Server-Side Includes (SSI)

Many web servers also provide support for server-side includes. If a
resource is flagged as containing server-side includes, the server processes
the resource contents before sending them to the client.

The contents are scanned for certain special
patterns (often contained inside special HTML comments), which can be variable
names or embedded scripts. The special patterns are replaced with the values of
variables or the output of executable scripts. This is an easy way to
create dynamic content.

5.7.5 Access Controls

Web servers also can
assign access controls to particular resources. When a request arrives for an
access-controlled resource, the web server can control access based on the IP
address of the client, or it can issue a password challenge to get access to
the resource.

Refer to Chapter 12 for more information about HTTP
authentication.

5.8 Step 5: Building
Responses

Once the web
server has identified the resource, it performs the action described in the
request method and returns the response message. The response message contains
a response status code, response headers, and a response body if one was
generated. HTTP response codes were detailed in Section 3.4 in Chapter 3.

5.8.1 Response Entities

If the transaction
generated a response body, the content is sent back with the response message.
If there was a body, the response message usually contains:

·
A Content-Type header, describing the MIME type of the response
body

·
A Content-Length header, describing the size of the response body

·
The actual message body content

5.8.2 MIME Typing

The web server is
responsible for determining the MIME type of the response body. There are many
ways to configure servers to associate MIME types with resources:

mime.types

The web server can use the
extension of the filename to indicate MIME type. The web server scans a file
containing MIME types for each extension to compute the MIME type for each
resource. This extension-based type association is the most common; it is
illustrated in Figure 5-12.

Figure
5-12. A web server uses MIME types file to set outgoing Content-Type of
resources

[image: figs/http_0512.gif]

Magic
typing

The Apache web server can scan the
contents of each resource and pattern-match the content against a table of
known patterns (called the magic file) to
determine the MIME type for each file. This can be slow, but it is convenient,
especially if the files are named without standard extensions.

Explicit
typing

Web servers can be configured to
force particular files or directory contents to have a MIME type, regardless of
the file extension or contents.

Type
negotiation

Some web servers can be configured
to store a resource in multiple document formats. In this case, the web server
can be configured to determine the "best" format to use (and the
associated MIME type) by a negotiation process with the user. We'll discuss
this in Chapter 17.

Web servers also can be configured to associate particular
files with MIME types.

5.8.3 Redirection

Web servers
sometimes return redirection responses instead of success messages. A web server
can redirect the browser to go elsewhere to perform the request. A redirection
response is indicated by a 3XX return code. The Location response header
contains a URI for the new or preferred location of the content. Redirects are
useful for:

Permanently moved resources

A resource might
have been moved to a new location, or otherwise renamed, giving it a new URL. The
web server can tell the client that the resource has been renamed, and the
client can update any bookmarks, etc. before fetching the resource from its new
location. The status code 301 Moved Permanently is used for this kind of
redirect.

Temporarily moved resources

If a resource is
temporarily moved or renamed, the server may want to redirect the client to the
new location. But, because the renaming is temporary, the server wants the
client to come back with the old URL in the future and not to update any
bookmarks. The status codes 303 See Other and 307 Temporary Redirect are used
for this kind of redirect.

URL augmentation

Servers often use
redirects to rewrite URLs, often to embed context. When the request arrives,
the server generates a new URL containing embedded state information and
redirects the user to this new URL.[7] The client follows the redirect, reissuing the request, but now
including the full, state-augmented URL. This is a useful way of maintaining
state across transactions. The status codes 303 See Other and 307 Temporary
Redirect are used for this kind of redirect.

[7] These extended,
state-augmented URLs are sometimes called "fat URLs."

Load balancing

If an overloaded
server gets a request, the server can redirect the client to a less heavily
loaded server. The status codes 303 See Other and 307 Temporary Redirect are
used for this kind of redirect.

Server
affinity

Web servers may have local
information for certain users; a server can redirect the client to a server
that contains information about the client. The status codes 303 See Other and
307 Temporary Redirect are used for this kind of redirect.

Canonicalizing
directory names

When a client requests a URI for a
directory name without a trailing slash, most web servers redirect the client
to a URI with the slash added, so that relative links work correctly.

5.9 Step 6:
Sending Responses

Web servers face
similar issues sending data across connections as they do receiving. The server
may have many connections to many clients, some idle, some sending data to the
server, and some carrying response data back to the clients.

The server needs to keep track of the
connection state and handle persistent connections with special care. For
nonpersistent connections, the server is expected to close its side of the
connection when the entire message is sent.

For persistent connections, the connection
may stay open, in which case the server needs to be extra cautious to compute
the Content-Length header correctly, or the client will have no way of knowing
when a response ends (see Chapter 4).

5.10 Step 7:
Logging

Finally, when a
transaction is complete, the web server notes an entry into a log file,
describing the transaction performed. Most web servers provide several
configurable forms of logging. Refer to Chapter 21 for
more details.

5.11 For More
Information

For more information on Apache, Jigsaw, and ident, check out:

Apache: The Definitive Guide

Ben Laurie and
Peter Laurie, O'Reilly & Associates, Inc.

Professional Apache

Peter Wainwright,
Wrox Press.

http://www.w3c.org/Jigsaw/

Jigsaw—W3C's
Server W3C Consortium Web Site.

http://www.ietf.org/rfc/rfc1413.txt

RFC 1413,
"Identification Protocol," by M. St. Johns.

Chapter 6.
Proxies

Web proxy servers are intermediaries. Proxies
sit between clients and servers and act as "middlemen," shuffling
HTTP messages back and forth between the parties.This chapter talks all about HTTP proxy servers, the special support for proxy
features, and some of the tricky behaviors you'll see when you use proxy
servers.

In this chapter, we:

·
Explain HTTP proxies, contrasting them to web
gateways and illustrating how proxies are deployed.

·
Show some of the ways proxies are helpful.

·
Describe how proxies are deployed in real
networks and how traffic is directed to proxy servers.

·
Show how to configure your browser to use a
proxy.

·
Demonstrate HTTP proxy requests, how they differ
from server requests, and how proxies can subtly change the behavior of
browsers.

·
Explain how you can record the path of your
messages through chains of proxy servers, using Via headers and the TRACE
method.

·
Describe proxy-based HTTP access control.

·
Explain how proxies can interoperate between
clients and servers, each of which may support different features and versions.

6.1 Web Intermediaries

Web proxy servers are middlemen that
fulfill transactions on the client's behalf.Without a web proxy, HTTP clients
talk directly to HTTP servers. With a web proxy, the client instead talks to
the proxy, which itself communicates with the server on the client's behalf.
The client still completes the transaction, but through the good services of
the proxy server.

HTTP proxy servers are both web servers and web clients.
Because HTTP clients send request messages to proxies, the proxy server must
properly handle the requests and the connections and return responses, just
like a web server. At the same time, the proxy itself sends requests to
servers, so it must also behave like a correct HTTP client, sending requests
and receiving responses (see Figure 6-1). If you are creating your own HTTP
proxy, you'll need to carefully follow the rules for both HTTP clients and HTTP
servers.

Figure 6-1. A proxy must be both a
server and a client

[image: figs/http_0601.gif]

6.1.1 Private and Shared Proxies

A proxy server can
be dedicated to a single client or shared among many clients. Proxies dedicated
to a single client are called private proxies. Proxies shared among numerous clients are called public proxies.

Public proxies

Most proxies are public, shared
proxies. It's more cost effective and easier to administer a centralized proxy.
And some proxy applications, such as caching proxy servers, become more useful
as more users are funneled into the same proxy server, because they can take
advantage of common requests between users.

Private
proxies

Dedicated private proxies are not
as common, but they do have a place, especially when run directly on the client
computer. Some browser assistant products, as well as some ISP services, run
small proxies directly on the user's PC in order to extend browser features,
improve performance, or host advertising for free ISP services.

6.1.2 Proxies Versus Gateways

Strictly
speaking, proxies connect two or more applications that speak the same
protocol, while gateways hook up two or more parties that speak different
protocols. A gateway acts as a "protocol converter," allowing a client
to complete a transaction with a server, even when the client and server speak
different protocols.

Figure 6-2
illustrates the difference between proxies and gateways:

·
The intermediary device in Figure 6-2a is an
HTTP proxy, because the proxy speaks HTTP to both the client and server.

·
The intermediary device in Figure 6-2b is an
HTTP/POP gateway, because it ties an HTTP frontend to a POP email backend. The
gateway converts web transactions into the appropriate POP transactions, to
allow the user to read email through HTTP. Web-based email programs such as
Yahoo! Mail and MSN Hotmail are HTTP email gateways.

Figure 6-2. Proxies speak
the same protocol; gateways tie together different protocols

[image: figs/http_0602.gif]

In practice, the difference between proxies
and gateways is blurry. Because browsers and servers implement different
versions of HTTP, proxies often do some amount of protocol conversion. And
commercial proxy servers implement gateway functionality to support SSL
security protocols, SOCKS firewalls, FTP access, and web-based applications.
We'll talk more about gateways in Chapter 8.

6.2 Why Use Proxies?

Proxy
servers can do all kinds of nifty and useful things. They can improve security,
enhance performance, and save money. And because proxy servers can see and
touch all the passing HTTP traffic, proxies can monitor and modify the traffic
to implement many useful value-added web services. Here are examples of just a
few of the ways proxies can be used:

Child filter (Figure 6-3)

Elementary schools use filtering
proxies to block access to adult content, while providing unhindered access to
educational sites. As shown in Figure 6-3, the proxy might permit
unrestricted access to educational content but forcibly deny access to sites
that are inappropriate for children.[1]

[1]
Several companies and nonprofit organizations provide filtering software and
maintain "blacklists" in order to identify and restrict access to
objectionable content.

Figure 6-3. Proxy application
example: child-safe Internet filter

[image: figs/http_0603.gif]

Document access controller (Figure 6-4)

Proxy servers can be used to
implement a uniform access-control strategy across a large set of web servers
and web resources and to create an audit trail. This is useful in large
corporate settings or other distributed bureaucracies.

All the access controls can be
configured on the centralized proxy server, without requiring the access
controls to be updated frequently on numerous web servers, of different makes
and models, administered by different organizations.[2]

[2] To prevent
sophisticated users from willfully bypassing the control proxy, the web servers
can be statically configured to accept requests only from the proxy servers.

In Figure 6-4, the centralized access-control
proxy:

·
Permits client 1 to access news pages from server A without
restriction

·
Gives client 2 unrestricted access to Internet content

·
Requires a password from client 3 before allowing access to
server B

Figure 6-4. Proxy application
example: centralized document access control

[image: figs/http_0604.gif]

Security firewall (Figure 6-5)

Network security engineers often
use proxy servers to enhance security. Proxy servers restrict which
application-level protocols flow in and out of an organization, at a single
secure point in the network. They also can provide hooks to scrutinize that
traffic (Figure 6-5), as used by virus-eliminating web
and email proxies.

Figure 6-5. Proxy application
example: security firewall

[image: figs/http_0605.gif]

Web cache (Figure 6-6)

Proxy caches maintain local copies
of popular documents and serve them on demand, reducing slow and costly
Internet communication.

In Figure 6-6, clients 1 and 2 access object A
from a nearby web cache, while clients 3 and 4 access the document from the
origin server.

Figure
6-6. Proxy application example: web cache

[image: figs/http_0606.gif]

Surrogate
(Figure 6-7)

Proxies can masquerade as web
servers. These so-called surrogates or reverse proxies receive real web server requests,
but, unlike web servers, they may initiate communication with other servers to
locate the requested content on demand.

Surrogates may be used to improve
the performance of slow web servers for common content. In this configuration,
the surrogates often are called server accelerators
(Figure 6-7). Surrogates also can be used in
conjunction with content-routing functionality to create distributed networks
of on-demand replicated content.

Figure
6-7. Proxy application example: surrogate (in a server accelerator deployment)

[image: figs/http_0607.gif]

Content
router (Figure 6-8)

Proxy servers can act as "content
routers," vectoring requests to particular web servers based on Internet
traffic conditions and type of content.

Content routers also can be used to
implement various service-level offerings. For example, content routers can
forward requests to nearby replica caches if the user or content provider has
paid for higher performance (Figure 6-8), or route HTTP requests through
filtering proxies if the user has signed up for a filtering service. Many
interesting services can be constructed using adaptive content-routing proxies.

Figure
6-8. Proxy application example: content routing

[image: figs/http_0608.gif]

Transcoder
(Figure 6-9)

Proxy servers can modify the body
format of content before delivering it to clients. This transparent translation
between data representations is called transcoding.[3]

[3] Some people
distinguish "transcoding" and "translation," defining
transcoding as relatively simple conversions of the encoding of the data (e.g.,
lossless compression) and translation as more significant reformatting or
semantic changes of the data. We use the term transcoding to mean any
intermediary-based modification of the content.

Transcoding proxies can convert GIF
images into JPEG images as they fly by, to reduce size. Images also can be
shrunk and reduced in color intensity to be viewable on television sets.
Likewise, text files can be compressed, and small text summaries of web pages
can be generated for Internet-enabled pagers and smart phones. It's even
possible for proxies to convert documents into foreign languages on the fly!

Figure 6-9 shows a transcoding proxy that
converts English text into Spanish text and also reformats HTML pages into
simpler text that can displayed on the small screen of a mobile phone.

Figure
6-9. Proxy application example: content transcoder

[image: figs/http_0609.gif]

Anonymizer (Figure 6-10)

Anonymizer proxies
provide heightened privacy and anonymity, by actively removing identifying
characteristics from HTTP messages (e.g., client IP address, From header,
Referer header, cookies, URI session IDs).[4]

[4] However, because identifying information is removed, the quality of
the user's browsing experience may be diminished, and some web sites may not
function properly.

In Figure 6-10, the
anonymizing proxy makes the following changes to the user's messages to
increase privacy:

·
The user's computer and OS type is removed from
the User-Agent header.

·
The From header is removed to protect the user's
email address.

·
The Referer header is removed to obscure other
sites the user has visited.

·
The Cookie headers are removed to eliminate
profiling and identity data.

Figure
6-10. Proxy application example: anonymizer

[image: figs/http_0610.gif]

6.3 Where Do
Proxies Go?

The previous section explained what proxies
do. Now let's talk about where proxies sit when they are deployed into a
network architecture. We'll cover:

·
How proxies can be deployed into networks

·
How proxies can chain together into hierarchies

·
How traffic gets directed to a proxy server in the first place

6.3.1 Proxy Server Deployment

You can place
proxies in all kinds of places, depending on their intended uses. Figure 6-11 sketches a few ways proxy servers
can be deployed.

Egress proxy (Figure 6-11a)

You can stick proxies at the exit
points of local networks to control the traffic flow between the local network
and the greater Internet. You might use egress proxies in a corporation to
offer firewall protection against malicious hackers outside the enterprise or
to reduce bandwidth charges and improve performance of Internet traffic. An
elementary school might use a filtering egress proxy to prevent precocious
students from browsing inappropriate content.

Access
(ingress) proxy (Figure 6-11b)

Proxies are often placed at ISP
access points, processing the aggregate requests from the customers. ISPs use
caching proxies to store copies of popular documents, to improve the download
speed for their users (especially those with high-speed connections) and reduce
Internet bandwidth costs.

Surrogates
(Figure 6-11c)

Proxies frequently are deployed as
surrogates (also commonly called reverse proxies) at the edge of the network,
in front of web servers, where they can field all of the requests directed at
the web server and ask the web server for resources only when necessary.
Surrogates can add security features to web servers or improve performance by
placing fast web server caches in front of slower web servers. Surrogates
typically assume the name and IP address of the web server directly, so all
requests go to the proxy instead of the server.

Network
exchange proxy (Figure 6-11d)

With sufficient horsepower, proxies
can be placed in the Internet peering exchange points between networks, to
alleviate congestion at Internet junctions through caching and to monitor
traffic flows.[5]

[5] Core
proxies often are deployed where Internet bandwidth is very expensive
(especially in Europe). Some countries (such as the UK) also are evaluating
controversial proxy deployments to monitor Internet traffic for national
security concerns.

Figure 6-11. Proxies can be deployed
many ways, depending on their intended use

[image: figs/http_0611.gif]

6.3.2 Proxy Hierarchies

Proxies can be
cascaded in chains called proxy hierarchies. In
a proxy hierarchy, messages are passed from proxy to proxy until they
eventually reach the origin server (and then are passed back through the
proxies to the client), as shown in Figure 6-12.

Figure 6-12. Three-level proxy
hierarchy

[image: figs/http_0612.gif]

Proxy servers in a proxy hierarchy are assigned parent and child relationships. The next inbound proxy (closer to the
server) is called the parent, and the next outbound proxy (closer to the client) is called the child. In Figure 6-12, proxy 1 is the child proxy of
proxy 2. Likewise, proxy 2 is the child proxy of proxy 3, and proxy 3 is the
parent proxy of proxy 2.

6.3.2.1 Proxy hierarchy content routing

The proxy hierarchy in Figure 6-12 is static—proxy 1 always forwards
messages to proxy 2, and proxy 2 always forwards messages to proxy 3. However,
hierarchies do not have to be static. A proxy server can forward messages to a
varied and changing set of proxy servers and origin servers, based on many
factors.

For example, in Figure 6-13, the access proxy routes to parent
proxies or origin servers in different circumstances:

·
If the requested object belongs to a web server that has paid for
content distribution, the proxy could route the request to a nearby cache
server that would either return the cached object or fetch it if it wasn't
available.

·
If the request was for a particular type of image, the access
proxy might route the request to a dedicated compression proxy that would fetch
the image and then compress it, so it would download faster across a slow modem
to the client.

Figure 6-13. Proxy hierarchies can
be dynamic, changing for each request

[image: figs/http_0613.gif]

Here are a few other examples of dynamic
parent selection:

Load
balancing

A child proxy might pick a parent
proxy based on the current level of workload on the parents, to spread the load
around.

Geographic
proximity routing

A child proxy might select a parent
responsible for the origin server's geographic region.

Protocol/type
routing

A child proxy might route to
different parents and origin servers based on the URI. Certain types of URIs
might cause the requests to be transported through special proxy servers, for
special protocol handling.

Subscription-based
routing

If publishers have paid extra money
for high-performance service, their URIs might be routed to large caches or
compression engines to improve performance.

Dynamic parenting routing logic is implemented differently in
different products, including configuration files, scripting languages, and
dynamic executable plug-ins.

6.3.3 How Proxies Get Traffic

Because clients normally talk directly
to web servers, we need to explain how HTTP traffic finds its way to a proxy in
the first place. There are four common ways to cause client traffic to get to a
proxy:

Modify the client

Many web clients, including
Netscape and Microsoft browsers, support both manual and automated proxy
configuration. If a client is configured to use a proxy server, the client
sends HTTP requests directly and intentionally to the proxy, instead of to the
origin server (Figure 6-14a).

Modify
the network

There are several techniques where
the network infrastructure intercepts and steers web traffic into a proxy,
without the client's knowledge or participation. This interception typically
relies on switching and routing devices that watch for HTTP traffic, intercept
it, and shunt the traffic into a proxy, without the client's knowledge (Figure 6-14b). This is called an intercepting proxy.[6]

[6] Intercepting
proxies commonly are called "transparent proxies," because you
connect to them without being aware of their presence. Because the term
"transparency" already is used in the HTTP specifications to indicate
functions that don't change semantic behavior, the standards community suggests
using the term "interception" for traffic capture. We adopt this
nomenclature here.

Modify
the DNS namespace

Surrogates, which
are proxy servers placed in front of web servers, assume the name and IP
address of the web server directly, so all requests go to them instead of to the
server (Figure 6-14c). This
can be arranged by manually editing the DNS naming tables or by using special
dynamic DNS servers that compute the appropriate proxy or server to use
on-demand. In some installations, the IP address and name of the real server is
changed and the surrogate is given the former address and name.

Modify the web server

Some web servers
also can be configured to redirect client requests to a proxy by sending an
HTTP redirection command (response code 305) back to the client. Upon receiving
the redirect, the client transacts with the proxy (Figure 6-14d).

The next section explains how to configure
clients to send traffic to proxies. Chapter 20 will
explain how to configure the network, DNS, and servers to redirect traffic to
proxy servers.

Figure 6-14. There are
many techniques to direct web requests to proxies

[image: figs/http_0614.gif]

6.4 Client Proxy Settings

All
modern web browsers let you configure the use of proxies. In fact, many
browsers provide multiple ways of configuring proxies, including:

Manual configuration

You explicitly set a proxy to use.

Browser
preconfiguration

The browser vendor or distributor
manually preconfigures the proxy setting of the browser (or any other web
client) before delivering it to customers.

Proxy
auto-configuration (PAC)

You provide a URI to a JavaScript proxy auto-configuration (PAC) file; the client
fetches the JavaScript file and runs it to decide if it should use a proxy and,
if so, which proxy server to use.

WPAD
proxy discovery

Some browsers support the Web Proxy
Autodiscovery Protocol (WPAD), which automatically detects a
"configuration server" from which the browser can download an
auto-configuration file.[7]

[7]
Currently supported only by Internet Explorer.

6.4.1 Client Proxy Configuration: Manual

Many web clients allow
you to configure proxies manually. Both Netscape Navigator and Microsoft
Internet Explorer have convenient support for proxy configuration.

In Netscape Navigator 6, you specify proxies through the menu
selection Edit [image: figs/U2192.gif]Preferences [image: figs/U2192.gif]Advanced
[image: figs/U2192.gif]Proxies and then selecting the
"Manual proxy configuration" radio button.

In Microsoft Internet Explorer 5, you can manually specify
proxies from the Tools [image: figs/U2192.gif]Internet
Options menu, by selecting a connection, pressing "Settings,"
checking the "Use a proxy server" box, and clicking
"Advanced."

Other browsers have different ways of making manual
configuration changes, but the idea is the same: specifying the host and port
for the proxy. Several ISPs ship customers preconfigured browsers, or
customized operating systems, that redirect web traffic to proxy servers.

6.4.2 Client Proxy Configuration: PAC Files

Manual
proxy configuration is simple but inflexible. You can
specify only one proxy server for all content, and there is no support for
failover. Manual proxy configuration also leads to administrative problems for
large organizations. With a large base of configured browsers, it's difficult
or impossible to reconfigure every browser if you need to make changes.

Proxy auto-configuration (PAC) files are a more dynamic
solution for proxy configuration, because they are small JavaScript programs that
compute proxy settings on the fly. Each time a document is accessed, a
JavaScript function selects the proper proxy server.

To use PAC files, configure your browser with the URI of the
JavaScript PAC file (configuration is similar to manual configuration, but you
provide a URI in an "automatic configuration" box). The browser will
fetch the PAC file from this URI and use the JavaScript logic to compute the
proper proxy server for each access. PAC files typically have a .pac
suffix and the MIME type "application/x-ns-proxy-autoconfig."

Each PAC file must define a function called FindProxyForURL(url,host) that computes the proper proxy server to use for accessing
the URI. The return value of the function can be any of the values in Table 6-1.

	
Table 6-1. Proxy
 auto-configuration script return values

	
FindProxyForURL
 return value

	
Description

	
DIRECT

	
Connections should be made directly, without any proxies.

	
PROXY host:port

	
The specified proxy should be used.

	
SOCKS host:port

	
The specified SOCKS server should be used.

The PAC file in Example 6-1 mandates one proxy for HTTP
transactions, another proxy for FTP transactions, and direct connections for
all other kinds of transactions.

Example 6-1. Example proxy auto-configuration file

function FindProxyForURL(url, host) {
 if (url.substring(0,5) == "http:") {
 return "PROXY http-proxy.mydomain.com:8080";
 } else if (url.substring(0,4) =="ftp:") {
 return "PROXY ftp-proxy.mydomain.com:8080";
 } else {
 return "DIRECT";
 }
}

For more details about PAC files, refer to Chapter 20.

6.4.3 Client Proxy Configuration: WPAD

Another mechanism for browser configuration is the Web Proxy Autodiscovery
Protocol (WPAD). WPAD is an
algorithm that uses an escalating strategy of discovery mechanisms to find the
appropriate PAC file for the browser automatically. A client that
implements the WPAD protocol will:

·
Use WPAD to find the PAC URI.

·
Fetch the PAC file given the URI.

·
Execute the PAC file to determine the proxy
server.

·
Use the proxy server for requests.

WPAD uses a series of resource-discovery
techniques to determine the proper PAC file. Multiple discovery techniques are
used, because not all organizations can use all techniques. WPAD attempts each
technique, one by one, until it succeeds.

The current WPAD specification defines the following
techniques, in order:

·
Dynamic Host Discovery Protocol (DHCP)

·
Service Location Protocol (SLP)

·
DNS well-known hostnames

·
DNS SRV records

·
DNS service URIs in TXT records

For more information, consult Chapter 20.

6.5 Tricky Things About
Proxy Requests

This section explains some of
the tricky and much misunderstood aspects of proxy server requests, including:

·
How the URIs in proxy requests differ from server requests

·
How intercepting and reverse proxies can obscure server host
information

·
The rules for URI modification

·
How proxies impact a browser's clever URI auto-completion or
hostname-expansion features

6.5.1 Proxy URIs Differ from Server URIs

Web
server and web proxy messages have the same syntax, with one exception. The URI
in an HTTP request message differs when a client sends the request to a server
instead of a proxy.

When a client sends a request to a web server, the request
line contains only a partial URI (without a scheme, host, or port), as shown in
the following example:

GET /index.html HTTP/1.0
User-Agent: SuperBrowserv1.3

When a client sends a request to a proxy, however, the request
line contains the full URI. For example:

GET http://www.marys-antiques.com/index.html HTTP/1.0
User-Agent: SuperBrowser v1.3

Why have two different request formats, one for proxies and
one for servers? In the original HTTP design, clients talked directly to a
single server. Virtual hosting did not exist, and no provision was made for
proxies. Because a single server knows its own hostname and port, to avoid
sending redundant information, clients sent just the partial URI, without the
scheme and host (and port).

When proxies emerged, the partial URIs became a problem.
Proxies needed to know the name of the destination server, so they could
establish their own connections to the server. And proxy-based gateways needed
the scheme of the URI to connect to FTP resources and other schemes. HTTP/1.0 solved
the problem by requiring the full URI for proxy requests, but it retained
partial URIs for server requests (there were too many servers already deployed
to change all of them to support full URIs).[8]

[8] HTTP/1.1 now requires servers to
handle full URIs for both proxy and server requests, but in practice, many
deployed servers still accept only partial URIs.

So we need to send partial URIs to servers, and full URIs to
proxies. In the case of explicitly configured client proxy settings, the client
knows what type of request to issue:

·
When the client is not set to use
a proxy, it sends the partial URI (Figure 6-15a).

·
When the client is set to use a
proxy, it sends the full URI (Figure 6-15b).

Figure 6-15. Intercepting proxies
will get server requests

[image: figs/http_0615.gif]

6.5.2 The Same Problem with Virtual Hosting

The proxy "missing
scheme/host/port" problem is the same problem faced by virtually hosted
web servers. Virtually hosted web servers share the same physical web server
among many web sites. When a request comes in for the partial URI /index.html,
the virtually hosted web server needs to know the hostname of the intended web
site (see Section 5.7.1.1 and Section 18.2 for more information).

In spite of the problems being similar, they were solved in
different ways:

·
Explicit proxies solve the problem by requiring a full URI in the
request message.

·
Virtually hosted web servers require a Host header to carry the
host and port information.

6.5.3 Intercepting Proxies Get Partial URIs

As long as the clients properly implement HTTP, they will send
full URIs in requests to explicitly configured proxies. That solves part of the
problem, but there's a catch: a client will not always
know it's talking to a proxy, because some proxies may be invisible to
the client. Even if the client is not configured to use a proxy, the client's
traffic still may go through a surrogate or intercepting proxy. In both of
these cases, the client will think it's talking to a web server and won't send
the full URI:

·
A surrogate, as described earlier, is a proxy server taking the place
of the origin server, usually by assuming its hostname or IP address. It
receives the web server request and may serve cached responses or proxy
requests to the real server. A client cannot distinguish a surrogate from a web
server, so it sends partial URIs (Figure 6-15c).

·
An intercepting proxy is a proxy server in the network flow
that hijacks traffic from the client to the server and either serves a cached
response or proxies it. Because the intercepting proxy hijacks client-to-server
traffic, it will receive partial URIs that are sent to web servers (Figure 6-15d).[9]

[9] Intercepting
proxies also might intercept client-to-proxy traffic in some circumstances, in
which case the intercepting proxy might get full URIs and need to handle them.
This doesn't happen often, because explicit proxies normally communicate on a
port different from that used by HTTP (usually 8080 instead of 80), and
intercepting proxies usually intercept only port 80.

6.5.4 Proxies Can Handle Both Proxy and Server Requests

Because of the
different ways that traffic can be redirected into proxy servers,
general-purpose proxy servers should support both full URIs and partial URIs in
request messages. The proxy should use the full URI if it is an explicit proxy
request or use the partial URI and the virtual Host header if it is a web
server request.

The rules for using full and partial URIs are:

·
If a full URI is provided, the proxy should use it.

·
If a partial URI is provided, and a Host header is present, the
Host header should be used to determine the origin server name and port number.

·
If a partial URI is provided, and there is no Host header, the
origin server needs to be determined in some other way:

o
If the proxy is a surrogate, standing in for an origin server,
the proxy can be configured with the real server's address and port number.

o
If the traffic was intercepted, and the interceptor makes the
original IP address and port available, the proxy can use the IP address and
port number from the interception technology (see Chapter 20).

o
If all else fails, the proxy doesn't have enough information to
determine the origin server and must return an error message (often suggesting
that the user upgrade to a modern browser that supports Host headers).[10]

[10] This shouldn't
be done casually. Users will receive cryptic error pages they never got before.

6.5.5 In-Flight URI Modification

Proxy servers need
to be very careful about changing the request URI as they forward messages.
Slight changes in the URI, even if they seem benign, may create
interoperability problems with downstream servers.

In particular, some proxies have been known to
"canonicalize" URIs into a standard form before forwarding them to
the next hop. Seemingly benign transformations, such as replacing default HTTP
ports with an explicit ":80", or correcting URIs by replacing illegal
reserved characters with their properly escaped substitutions, can cause
interoperation problems.

In general, proxy servers should strive to be as tolerant as
possible. They should not aim to be "protocol policemen" looking to
enforce strict protocol compliance, because this could involve significant
disruption of previously functional services.

In particular, the HTTP specifications forbid general
intercepting proxies from rewriting the absolute path parts of URIs when forwarding
them. The only exception is that they can replace an empty path with
"/".

6.5.6 URI Client Auto-Expansion and Hostname Resolution

Browsers resolve request URIs
differently, depending on whether or not a proxy is present. Without a proxy,
the browser takes the URI you type in and tries to find a corresponding IP
address. If the hostname is found, the browser tries the corresponding IP
addresses until it gets a successful connection.

But if the host isn't found, many browsers attempt to provide
some automatic "expansion" of hostnames, in case you typed in a
"shorthand" abbreviation of the host (refer back to Section 2.3.2):[11]

[11] Most browsers let you type in
"yahoo" and auto-expand that into "www.yahoo.com."
Similarly, browsers let you omit the "http://" prefix and insert it
if it's missing.

·
Many browsers attempt adding a "www." prefix and a
".com" suffix, in case you just entered the middle piece of a common
web site name (e.g., to let people enter "yahoo" instead of
"www.yahoo.com").

·
Some browsers even pass your unresolvable URI to a third-party
site, which attempts to correct spelling mistakes and suggest URIs you may have
intended.

·
In addition, the DNS configuration on most systems allows you to
enter just the prefix of the hostname, and the DNS automatically searches the
domain. If you are in the domain "oreilly.com" and type in the
hostname "host7," the DNS automatically attempts to match
"host7.oreilly.com". It's not a complete, valid hostname.

6.5.7 URI Resolution Without a Proxy

Figure 6-16 shows an
example of browser hostname auto-expansion without a proxy. In steps 2a-3c, the
browser looks up variations of the hostname until a valid hostname is found.

Figure 6-16. Browser auto-expands
partial hostnames when no explicit proxy is present

[image: figs/http_0616.gif]

Here's what's going on in this figure:

·
In Step 1, the user types "oreilly" into the browser's
URI window. The browser uses "oreilly" as the hostname and assumes a
default scheme of "http://", a default port of "80", and a
default path of "/".

·
In Step 2a, the browser looks up host "oreilly." This
fails.

·
In Step 3a, the browser auto-expands the hostname and asks the
DNS to resolve "www.oreilly.com." This is successful.

·
The browser then successfully connects to www.oreilly.com.

6.5.8 URI Resolution with an Explicit Proxy

When you use an explicit proxy the
browser no longer performs any of these convenience expansions, because the
user's URI is passed directly to the proxy.

As shown in Figure 6-17, the browser does not auto-expand
the partial hostname when there is an explicit proxy. As a result, when the
user types "oreilly" into the browser's location window, the proxy is
sent "http://oreilly/" (the browser adds the default scheme and path
but leaves the hostname as entered).

Figure 6-17. Browser does not
auto-expand partial hostnames when there is an explicit proxy

[image: figs/http_0617.gif]

For this reason, some proxies attempt to mimic as much as
possible of the browser's convenience services as they can, including
"www...com" auto-expansion and addition of local domain suffixes.[12]

[12] But, for widely shared proxies, it may be
impossible to know the proper domain suffix for individual users.

6.5.9 URI Resolution with an Intercepting Proxy

Hostname resolution is a little different with an invisible
intercepting proxy, because as far as the client is concerned, there is no
proxy! The behavior proceeds much like the server case, with the browser
auto-expanding hostnames until DNS success. But a significant difference occurs
when the connection to the server is made, as Figure 6-18
illustrates.

Figure 6-18. Browser
doesn't detect dead server IP addresses when using intercepting proxies

[image: figs/http_0618.gif]

Figure 6-18
demonstrates the following transaction:

·
In Step 1, the user types "oreilly"
into the browser's URI location window.

·
In Step 2a, the browser looks up the host
"oreilly" via DNS, but the DNS server fails and responds that the
host is unknown, as shown in Step 2b.

·
In Step 3a, the browser does auto-expansion,
converting "oreilly" into "www.oreilly.com." In Step 3b,
the browser looks up the host "www.oreilly.com" via DNS. This time,
as shown in Step 3c, the DNS server is successful and returns IP addresses back
to the browser.

·
In Step 4a, the client already has successfully
resolved the hostname and has a list of IP addresses. Normally, the client
tries to connect to each IP address until it succeeds, because some of the IP
addresses may be dead. But with an intercepting proxy, the first connection
attempt is terminated by the proxy server, not the origin server. The client
believes it is successfully talking to the web server, but the web server might
not even be alive.

·
When the proxy finally is ready to interact with
the real origin server (Step 5b), the proxy may find that the IP address
actually points to a down server. To provide the same level of fault
tolerance provided by the browser, the proxy needs to try other IP addresses,
either by reresolving the hostname in the Host header or by doing a reverse DNS
lookup on the IP address. It is important that both intercepting and explicit
proxy implementations support fault tolerance on DNS resolution to dead
servers, because when browsers are configured to use an explicit proxy, they
rely on the proxy for fault tolerance.

6.6 Tracing
Messages

Today, it's not uncommon for web
requests to go through a chain of two or more proxies on their way from the
client to the server (Figure 6-19). For
example, many corporations use caching proxy servers to access the Internet,
for security and cost savings, and many large ISPs use proxy caches to improve
performance and implement features. A significant percentage of web requests
today go through proxies. At the same time, it's becoming increasingly popular
to replicate content on banks of surrogate caches scattered around the globe,
for performance reasons.

Figure 6-19. Access proxies and CDN
proxies create two-level proxy hierarchies

[image: figs/http_0619.gif]

Proxies are developed by different vendors. They have
different features and bugs and are administrated by various organizations.

As proxies become more prevalent, you need to be able to trace
the flow of messages across proxies and to detect any problems, just as it is
important to trace the flow of IP packets across different switches and
routers.

6.6.1 The Via Header

The Via header field
lists information about each intermediate node (proxy or gateway) through which
a message passes. Each time a message goes through another node, the
intermediate node must be added to the end of the Via list.

The following Via string tells us that the message traveled
through two proxies. It indicates that the first proxy implemented the HTTP/1.1
protocol and was called proxy-62.irenes-isp.net,
and that he second proxy implemented HTTP/1.0 and was called cache.joes-hardware.com:

Via: 1.1 proxy-62.irenes-isp.net, 1.0 cache.joes-hardware.com

The Via header field is used to track the forwarding of
messages, diagnose message loops, and identify the protocol capabilities of all
senders along the request/response chain (Figure 6-20).

Figure 6-20. Via header example

[image: figs/http_0620.gif]

Proxies also can use Via headers to detect routing loops in
the network. A proxy should insert a unique string associated with itself in
the Via header before sending out a request and should check for the presence
of this string in incoming requests to detect routing loops in the network.

6.6.1.1 Via syntax

The Via header field contains a
comma-separated list of waypoints. Each waypoint
represents an individual proxy server or gateway hop and contains information
about the protocol and address of that intermediate node. Here is an example of
a Via header with two waypoints:

Via = 1.1 cache.joes-hardware.com, 1.1 proxy.irenes-isp.net

The formal syntax for a Via header is shown here:

Via = "Via" ":" 1#(waypoint)
waypoint = (received-protocol received-by [comment])
received-protocol = [protocol-name "/"] protocol-version
received-by = (host [":" port]) | pseudonym

Note that each Via waypoint contains up to four components: an
optional protocol name (defaults to HTTP), a required protocol version, a
required node name, and an optional descriptive comment:

Protocol
name

The protocol received by an
intermediary. The protocol name is optional if the protocol is HTTP. Otherwise,
the protocol name is prepended to the version, separated by a "/".
Non-HTTP protocols can occur when gateways connect HTTP requests for other
protocols (HTTPS, FTP, etc.).

Protocol
version

The version of the message
received. The format of the version depends on the protocol. For HTTP, the
standard version numbers are used ("1.0", "1.1", etc.). The
version is included in the Via field, so later applications will know the
protocol capabilities of all previous intermediaries.

Node
name

The host and optional port number
of the intermediary (if the port isn't included, you can assume the default
port for the protocol). In some cases an organization might not want to give
out the real hostname, for privacy reasons, in which case it may be replaced by
a pseudonym.

Node
comment

An optional comment that further
describes the intermediary node. It's common to include vendor and version
information here, and some proxy servers also use the comment field to include
diagnostic information about the events that occurred on that device.[13]

[13] For
example, caching proxy servers may include hit/miss information.

6.6.1.2 Via request and response paths

Both request and response messages pass through
proxies, so both request and response messages have Via headers.

Because requests and responses usually travel over the same
TCP connection, response messages travel backward across the same path as the
requests. If a request message goes through proxies A, B, and C, the
corresponding response message travels through proxies C, B, then A. So, the
Via header for responses is almost always the reverse of the Via header for
responses (Figure 6-21).

Figure 6-21. The response Via is
usually the reverse of the request Via

[image: figs/http_0621.gif]

6.6.1.3 Via and gateways

Some proxies
provide gateway functionality to servers that speak non-HTTP protocols. The Via
header records these protocol conversions, so HTTP applications can be aware of
protocol capabilities and conversions along the proxy chain. Figure 6-22 shows an HTTP client requesting an
FTP URI through an HTTP/FTP gateway.

Figure 6-22. HTTP/FTP gateway
generates Via headers, logging the received protocol (FTP)

[image: figs/http_0622.gif]

The client sends an HTTP request for ftp://http-guide.com/pub/welcome.txt
to the gateway proxy.irenes-isp.net. The proxy,
acting as a protocol gateway, retrieves the desired object from the FTP server,
using the FTP protocol. The proxy then sends the object back to the client in
an HTTP response, with this Via header field:

Via: FTP/1.0 proxy.irenes-isp.net (Traffic-Server/5.0.1-17882 [cMs f])

Notice the received protocol is FTP. The optional comment
contains the brand and version number of the proxy server and some vendor
diagnostic information. You can read all about gateways in Chapter 8.

6.6.1.4 The Server and Via headers

The Server
response header field describes the software used by the origin server. Here
are a few examples:

Server: Apache/1.3.14 (Unix) PHP/4.0.4
Server: Netscape-Enterprise/4.1
Server: Microsoft-IIS/5.0

If a response message is being forwarded through a proxy, make
sure the proxy does not modify the Server header. The Server header is meant
for the origin server. Instead, the proxy should add a Via entry.

6.6.1.5 Privacy and security implications of Via

There are some cases when we want don't
want exact hostnames in the Via string. In general, unless this behavior is
explicitly enabled, when a proxy server is part of a network firewall it should
not forward the names and ports of hosts behind the firewall, because knowledge
of network architecture behind a firewall might be of use to a malicious party.[14]

[14] Malicious people can use the names of
computers and version numbers to learn about the network architecture behind a
security perimeter. This information might be helpful in security attacks. In
addition, the names of computers might be clues to private projects within an
organization.

If Via node-name forwarding is not enabled, proxies that are
part of a security perimeter should replace the hostname with an appropriate
pseudonym for that host. Generally, though, proxies should try to retain a Via
waypoint entry for each proxy server, even if the real name is obscured.

For organizations that have very strong privacy requirements
for obscuring the design and topology of internal network architectures, a
proxy may combine an ordered sequence of Via waypoint entries (with identical
received-protocol values) into a single, joined entry. For example:

Via: 1.0 foo, 1.1 devirus.company.com, 1.1 access-logger.company.com

could be collapsed to:

Via: 1.0 foo, 1.1 concealed-stuff

Don't combine multiple entries unless they all are under the
same organizational control and the hosts already have been replaced by
pseudonyms. Also, don't combine entries that have different received-protocol
values.

6.6.2 The TRACE Method

Proxy servers
can change messages as the messages are forwarded. Headers are added, modified,
and removed, and bodies can be converted to different formats. As proxies
become more sophisticated, and more vendors deploy proxy products,
interoperability problems increase. To easily diagnose proxy networks, we need
a way to conveniently watch how messages change as they are forwarded, hop by
hop, through the HTTP proxy network.

HTTP/1.1's TRACE method lets you trace a
request message through a chain of proxies, observing what proxies the message
passes through and how each proxy modifies the request message. TRACE is very
useful for debugging proxy flows.[15]

[15] Unfortunately, it isn't widely implemented
yet.

When the TRACE request reaches the destination server,[16]
the entire request message is reflected back to the sender, bundled up in the
body of an HTTP response (see Figure 6-23). When the TRACE response arrives,
the client can examine the exact message the server received and the list of
proxies through which it passed (in the Via header). The TRACE response has
Content-Type message/http and a 200 OK status.

[16] The final recipient is either the origin
server or the first proxy or gateway to receive a Max-Forwards value of zero
(0) in the request.

Figure 6-23. TRACE response reflects
back the received request message

[image: figs/http_0623.gif]

6.6.2.1 Max-Forwards

Normally, TRACE messages travel all the way to the destination
server, regardless of the number of intervening proxies. You can use the
Max-Forwards header to limit the number of proxy hops for TRACE and OPTIONS
requests, which is useful for testing a chain of proxies forwarding messages in
an infinite loop or for checking the effects of particular proxy servers in the
middle of a chain. Max-Forwards also limits the forwarding of OPTIONS messages
(see Section 6.8).

The Max-Forwards request header field
contains a single integer indicating the remaining number of times this request
message may be forwarded (Figure 6-24). If
the Max-Forwards value is zero (Max-Forwards: 0), the receiver must reflect the
TRACE message back toward the client without forwarding it further, even if the
receiver is not the origin server.

Figure 6-24. You can
limit the forwarding hop count with the Max-Forwards header field

[image: figs/http_0624.gif]

If the received Max-Forwards value is greater
than zero, the forwarded message must contain an updated Max-Forwards field
with a value decremented by one. All proxies and gateways should support
Max-Forwards. You can use Max-Forwards to view the request at any hop in a
proxy chain.

6.7 Proxy
Authentication

Proxies can serve as access-control
devices. HTTP defines a mechanism called proxy
authentication that blocks requests for content until the user provides
valid access-permission credentials to the proxy:

·
When a request for restricted content arrives at
a proxy server, the proxy server can return a 407 Proxy Authorization Required
status code demanding access credentials, accompanied by a Proxy-Authenticate
header field that describes how to provide those credentials (Figure 6-25b).

·
When the client receives the 407 response, it
attempts to gather the required credentials, either from a local database or by
prompting the user.

·
Once the credentials are obtained, the client
resends the request, providing the required credentials in a
Proxy-Authorization header field.

·
If the credentials are valid, the proxy passes
the original request along the chain (Figure 6-25c);
otherwise, another 407 reply is sent.

Figure 6-25. Proxies can
implement authentication to control access to content

[image: figs/http_0625.gif]

Proxy authentication generally does not work
well when there are multiple proxies in a chain, each participating in
authentication. People have proposed enhancements to HTTP to associate
authentication credentials with particular waypoints in a proxy chain, but
those enhancements have not been widely implemented.

Be sure to read Chapter 12 for a
detailed explanation of HTTP's authentication mechanisms.

6.8 Proxy
Interoperation

Clients, servers, and proxies are built by multiple vendors, to
different versions of the HTTP specification. They support various features and
have different bugs. Proxy servers need to intermediate between client-side and
server-side devices, which may implement different protocols and have
troublesome quirks.

6.8.1 Handling Unsupported Headers and Methods

The
proxy server may not understand all the header fields that pass through it.
Some headers may be newer than the proxy itself; others may be customized
header fields unique to a particular application. Proxies must forward
unrecognized header fields and must maintain the relative order of header
fields with the same name.[17] Similarly, if a proxy is
unfamiliar with a method, it should try to forward the message to the next hop,
if possible.

[17] Multiple message header fields
with the same field name may be present in a message, but if they are, they
must be able to be equivalently combined into a comma-separated list. The order
in which header fields with the same field name are received is therefore
significant to the interpretation of the combined field value, so a proxy can't
change the relative order of these same-named field values when it forwards a
message.

Proxies that cannot tunnel unsupported methods may not be
viable in most networks today, because Hotmail access through Microsoft Outlook
makes extensive use of HTTP extension methods.

6.8.2 OPTIONS: Discovering Optional Feature Support

The HTTP OPTIONS
method lets a client (or proxy) discover the supported functionality (for
example, supported methods) of a web server or of a particular resource on a
web server (Figure 6-26). Clients can use OPTIONS to determine a server's capabilities before
interacting with the server, making it easier to interoperate with proxies and
servers of different feature levels.

Figure 6-26. Using OPTIONS to find a
server's supported methods

[image: figs/http_0626.gif]

If the URI of the OPTIONS request is an
asterisk (*), the request pertains to the entire server's supported
functionality. For example:

OPTIONS * HTTP/1.1

If the URI is a real resource, the OPTIONS
request inquires about the features available to that particular resource:

OPTIONS http://www.joes-hardware.com/index.html HTTP/1.1

On success, the OPTIONS method returns a 200
OK response that includes various header fields that describe optional features
that are supported on the server or available to the resource. The only header
field that HTTP/1.1 specifies in the response is the Allow header, which
describes what methods are supported by the server (or particular resource on
the server).[18] OPTIONS allows an optional response body with more information, but
this is undefined.

[18]
Not all resources support every method. For example, a CGI script query may not
support a file PUT, and a static HTML file wouldn't accept a POST method.

6.8.3 The Allow Header

The Allow entity header field lists the set of methods supported
by the resource identified by the request URI, or the entire server if the
request URI is *. For example:

Allow: GET, HEAD, PUT

The Allow header can be used as a request
header to recommend the methods to be supported by the new resource. The server
is not required to support these methods and should include an Allow header in
the matching response, listing the actual supported methods.

A proxy can't modify the Allow header field
even if it does not understand all the methods specified, because the client
might have other paths to talk to the origin server.

6.9 For More
Information

For more information, refer to:

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

RFC 2616,
"Hypertext Transfer Protocol," by R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Mastinter, P. Leach, and T. Berners-Lee.

http://www.ietf.org/rfc/rfc3040.txt

RFC 3040,
"Internet Web Replication and Caching Taxonomy."

Web Proxy Servers

Ari Luotonen,
Prentice Hall Computer Books.

http://www.ietf.org/rfc/rfc3143.txt

RFC 3143,
"Known HTTP Proxy/Caching Problems."

Web Caching

Duane Wessels,
O'Reilly & Associates, Inc.

Chapter 7.
Caching

Web
caches are HTTP devices
that automatically keep copies of popular documents. When a web request arrives
at a cache, if a local "cached" copy is available, the document is
served from the local storage instead of from the origin server. Caches have the following benefits:

·
Caches reduce redundant
data transfers, saving you money in network charges.

·
Caches reduce network
bottlenecks. Pages load faster without more bandwidth.

·
Caches reduce demand on
origin servers. Servers reply faster and avoid overload.

·
Caches reduce distance
delays, because pages load slower from farther away.

In this chapter, we explain how caches
improve performance and reduce cost, how to measure their effectiveness, and
where to place caches to maximize impact. We also explain how HTTP keeps cached
copies fresh and how caches interact with other caches and servers.

7.1 Redundant
Data Transfers

When multiple clients access a popular origin
server page, the server transmits the same document multiple times, once to
each client. The same bytes travel across the network over and over again. These
redundant data transfers eat up expensive network bandwidth, slow down
transfers, and overload web servers. With caches, the cache keeps a copy of the
first server response. Subsequent requests can be fulfilled from the cached
copy, reducing wasteful, duplicate traffic to and from origin servers.

7.2 Bandwidth Bottlenecks

Caches also can reduce network bottlenecks. Many networks provide
more bandwidth to local network clients than to remote servers (Figure 7-1). Clients access servers at the
speed of the slowest network on the way. If a client gets a copy from a cache
on a fast LAN, caching can boost performance—especially for larger documents.

Figure 7-1. Limited wide area
bandwidth creates a bottleneck that caches can improve

[image: figs/http_0701.gif]

In Figure 7-1, it
might take 30 seconds for a user in the San Francisco branch of Joe's Hardware,
Inc. to download a 5-MB inventory file from the Atlanta headquarters, across
the 1.4-Mbps T1 Internet connection. If the document was cached in the San
Francisco office, a local user might be able to get the same document in less
than a second across the Ethernet connection.

Table 7-1 shows
how bandwidth affects transfer time for a few different
network speeds and a few different sizes of documents. Bandwidth causes
noticeable delays for larger documents, and the speed difference between
different network types is dramatic.[1] A
56-Kbps modem would take 749 seconds (over 12 minutes) to transfer a 5-MB file
that could be transported in under a second across a fast Ethernet LAN.

[1] This table shows just the effect of network bandwidth on transfer
time. It assumes 100% network efficiency and no network or application
processing latencies. In this way, the delay is a lower bound. Real delays will
be larger, and the delays for small objects will be dominated by non-bandwidth
overheads.

	
Table 7-1.
 Bandwidth-imposed transfer time delays, idealized (time in seconds)

	

	
Large HTML (15 KB)

	
JPEG (40 KB)

	
Large JPEG (150
 KB)

	
Large file (5 MB)

	
Dialup modem (56 Kbit/sec)

	
2.19

	
5.85

	
21.94

	
748.98

	
DSL (256 Kbit/sec)

	
.48

	
1.28

	
4.80

	
163.84

	
T1 (1.4 Mbit/sec)

	
.09

	
.23

	
.85

	
29.13

	
Slow Ethernet (10 Mbit/sec)

	
.01

	
.03

	
.12

	
4.19

	
DS3 (45 Mbit/sec)

	
.00

	
.01

	
.03

	
.93

	
Fast Ethernet (100 Mbit/sec)

	
.00

	
.00

	
.01

	
.42

7.3 Flash
Crowds

Caching is especially
important to break up flash crowds. Flash crowds occur
when a sudden event (such as breaking news, a bulk email announcement, or a
celebrity event) causes many people to access a web document at nearly the same
time (Figure 7-2). The
resulting redundant traffic spike can cause a catastrophic collapse of networks
and web servers.

Figure 7-2. Flash crowds
can overload web servers

[image: figs/http_0702.gif]

When the "Starr Report" detailing
Kenneth Starr's investigation of U.S. President Clinton was released to the
Internet on September 11, 1998, the U.S. House of Representatives web servers
received over 3 million requests per hour, 50 times the average server load. One
news web site, CNN.com, reported an average of over 50,000 requests every
second to its servers.

7.4 Distance Delays

Even if bandwidth
isn't a problem, distance might be. Every network router adds delays to
Internet traffic. And even if there are not many routers between client and
server, the speed of light alone can cause a significant delay.

The direct distance from Boston to San Francisco is about
2,700 miles. In the very best case, at the speed of light (186,000 miles/sec),
a signal could travel from Boston to San Francisco in about 15 milliseconds and
complete a round trip in 30 milliseconds.[2]

[2] In reality, signals travel at somewhat less than the speed of
light, so distance delays are even worse.

Say a web page contains 20 small images, all
located on a server in San Francisco. If a client in Boston opens four parallel connections to the
server, and keeps the connections alive, the speed of light alone contributes
almost 1/4 second (240 msec) to the download time (Figure 7-3). If
the server is in Tokyo (6,700 miles from Boston), the delay grows to 600 msec. Moderately
complicated web pages can incur several seconds of speed-of-light delays.

Figure 7-3. Speed of
light can cause significant delays, even with parallel, keep-alive connections

[image: figs/http_0703.gif]

Placing caches in nearby machine rooms can
shrink document travel distance from thousands of miles to tens of yards.

7.5 Hits and Misses

So caches can help. But a cache doesn't store a copy of every document in the world.[3]

[3] Few folks can afford to buy a
cache big enough to hold all the Web's documents. And even if you could afford
gigantic "whole-Web caches," some documents change so frequently that
they won't be fresh in many caches.

Some requests that arrive at a cache can be served from an available
copy. This is called a cache hit (Figure 7-4a). Other requests arrive at a cache
only to be forwarded to the origin server, because no copy is available. This
is called a cache miss (Figure 7-4b).

Figure 7-4. Cache hits, misses, and
revalidations

[image: figs/http_0704.gif]

7.5.1 Revalidations

Because the origin server content can change, caches have to
check every now and then that their copies are still up-to-date with the
server. These "freshness checks" are called HTTP revalidations (Figure 7-4c). To make revalidations efficient,
HTTP defines special requests that can quickly check if content is still fresh,
without fetching the entire object from the server.

A cache can revalidate a copy any time it wants, and as often
as it wants. But because caches often contain millions of documents, and
because network bandwidth is scarce, most caches revalidate a copy only when it
is requested by a client and when the copy is old enough to warrant a check.
We'll explain the HTTP rules for freshness checking later in the chapter.

When a cache needs to revalidate a cached copy, it sends a
small revalidation request to the origin server. If the content hasn't changed,
the server responds with a tiny 304 Not Modified response. As soon as the cache
learns the copy is still valid, it marks the copy temporarily fresh again and
serves the copy to the client (Figure 7-5a). This is called a revalidate hit or a slow hit. It's slower than a pure cache hit, because it does need to check with the origin server, but it's
faster than a cache miss, because no object data is retrieved from the server.

Figure 7-5. Successful revalidations
are faster than cache misses; failed revalidations are nearly identical to
misses

[image: figs/http_0705.gif]

HTTP gives us a few tools to revalidate cached objects, but
the most popular is the If-Modified-Since
header. When added to a GET request, this header tells the server to send the
object only if it has been modified since the time the copy was cached.

Here is what happens when a GET If-Modified-Since request
arrives at the server in three circumstances—when the server content is not
modified, when the server content has been changed, and when the server is
deleted:

Revalidate hit

If the server object isn't
modified, the server sends the client a small HTTP 304 Not Modified response.
This is depicted in Figure 7-6.

Figure
7-6. HTTP uses If-Modified-Since header for revalidation

[image: figs/http_0706.gif]

Revalidate
miss

If the server object is different
from the cached copy, the server sends the client a normal HTTP 200 OK
response, with the full content.

Object
deleted

If the server object has been
deleted, the server sends back a 404 Not Found response, and the cache deletes
its copy.

7.5.2 Hit Rate

The fraction of requests that are served
from cache is called the cache hit rate (or cache hit ratio),[4] or
sometimes the document hit rate (or document
hit ratio). The hit rate ranges from to 1 but is often described as a
percentage, where 0% means that every request was a miss (had to get the
document across the network), and 100% means every request was a hit (had a
copy in the cache).[5]

[4]
The term "hit ratio" probably is better than "hit rate,"
because "hit rate" mistakenly suggests a time factor. However,
"hit rate" is in common use, so we use it here.

[5]
Sometimes people include revalidate hits in the hit rate, but other times hit
rate and revalidate hit rate are measured separately. When you are examining
hit rates, be sure you know what counts as a "hit."

Cache administrators would like the cache hit
rate to approach 100%. The actual hit rate you get depends on how big your
cache is, how similar the interests of the cache users are, how frequently the
cached data is changing or personalized, and how the caches are configured. Hit
rate is notoriously difficult to predict, but a hit rate of 40% is decent for a
modest web cache today. The nice thing about caches is that even a modest-sized
cache may contain enough popular documents to significantly improve performance
and reduce traffic. Caches work hard to ensure that useful content stays in the
cache.

7.5.3 Byte Hit Rate

Document hit rate doesn't tell the whole
story, though, because documents are not all the same size. Some large objects
might be accessed less often but contribute more to overall data traffic,
because of their size. For this reason, some people prefer the byte hit rate
metric (especially those folks who are billed for each byte of traffic!).

The byte hit rate represents the fraction of
all bytes transferred that were served from cache. This metric captures the
degree of traffic savings. A byte hit rate of 100% means every byte came from
the cache, and no traffic went out across the Internet.

Document hit rate and byte hit rate are both
useful gauges of cache performance. Document hit rate describes how many web
transactions are kept off the outgoing network. Because transactions have a
fixed time component that can often be large (setting up a TCP connection to a
server, for example), improving the document hit rate will optimize for overall
latency (delay) reduction. Byte hit rate describes how many bytes are kept off
the Internet. Improving the byte hit rate will optimize for bandwidth savings.

7.5.4 Distinguishing Hits and Misses

Unfortunately, HTTP provides no way for
a client to tell if a response was a cache hit or an origin server access. In
both cases, the response code will be 200 OK, indicating that the response has
a body. Some commercial proxy caches attach additional information to Via
headers to describe what happened in the cache.

One way that a client can usually detect if the response came
from a cache is to use the Date header. By comparing the value of the Date
header in the response to the current time, a client can often detect a cached
response by its older date value. Another way a client can detect a cached
response is the Age header, which tells how old the response is (see Age).

7.6 Cache Topologies

Caches can be dedicated to a single user
or shared between thousands of users. Dedicated caches are called private caches. Private caches are personal caches,
containing popular pages for a single user (Figure 7-7a). Shared caches are called public caches. Public caches contain the pages
popular in the user community (Figure 7-7b).

Figure 7-7. Public and private
caches

[image: figs/http_0707.gif]

7.6.1 Private Caches

Private caches don't need much
horsepower or storage space, so they can be made small and cheap. Web browsers
have private caches built right in—most browsers cache popular documents in the
disk and memory of your personal computer and allow you to configure the cache
size and settings. You also can peek inside the browser caches to see what they
contain. For example, with Microsoft Internet Explorer, you can get the cache
contents from the Tools [image: figs/U2192.gif]Internet
Options . . . dialog box. MSIE calls the cached documents "Temporary
Files" and lists them in a file display, along with the associated URLs
and document expiration times. You can view Netscape Navigator's cache contents
through the special URL about:cache,
which gives you a "Disk Cache statistics" page showing the cache
contents.

7.6.2 Public Proxy Caches

Public caches are special, shared proxy
servers called caching proxy servers or, more commonly, proxy caches (proxies were discussed in Chapter 6). Proxy caches serve documents from
the local cache or contact the server on the user's behalf. Because a public
cache receives accesses from multiple users, it has more opportunity to
eliminate redundant traffic.[6]

[6] Because a public cache caches
the diverse interests of the user community, it needs to be large enough to
hold a set of popular documents, without being swept clean by individual user
interests.

In Figure 7-8a, each client redundantly accesses
a new, "hot" document (not yet in the private cache). Each private
cache fetches the same document, crossing the network multiple times. With a
shared, public cache, as in Figure 7-8b, the cache needs to fetch the
popular object only once, and it uses the shared copy to service all requests,
reducing network traffic.

Figure 7-8. Shared, public caches
can decrease network traffic

[image: figs/http_0708.gif]

Proxy caches follow the rules for proxies described in Chapter 6. You can configure your browser to
use a proxy cache by specifying a manual proxy or by configuring a proxy
auto-configuration file (see Section 6.4.1). You also can force HTTP
requests through caches without configuring your browser by using intercepting
proxies (see Chapter 20).

7.6.3 Proxy Cache Hierarchies

In practice, it often makes sense to
deploy hierarchies of caches, where cache
misses in smaller caches are funneled to larger parent
caches that service the
leftover "distilled" traffic. Figure 7-9 shows a two-level cache hierarchy.[7]
The idea is to use small, inexpensive caches near the clients and progressively
larger, more powerful caches up the hierarchy to hold documents shared by many
users.[8]

[7] If the clients are browsers with browser
caches, Figure 7-9 technically shows a three-level cache hierarchy.

[8] Parent caches may need to be larger, to
hold the documents popular across more users, and higher-performance, because
they receive the aggregate traffic of many children, whose interests may be
diverse.

Figure 7-9. Accessing documents in a
two-level cache hierarchy

[image: figs/http_0709.gif]

Hopefully, most users will get cache hits on the nearby,
level-1 caches (as shown in Figure 7-9a). If not, larger parent caches may
be able to handle their requests (Figure 7-9b). For deep cache hierarchies it's
possible to go through long chains of caches, but each intervening proxy does
impose some performance penalty that can become noticeable as the proxy chain
becomes long.[9]

[9] In practice, network architects try to
limit themselves to two or three proxies in a row. However, a new generation of
high-performance proxy servers may make proxy-chain length less of an issue.

7.6.4 Cache Meshes, Content Routing, and Peering

Some network architects build complex cache meshes instead of simple
cache hierarchies. Proxy caches in cache meshes talk to each other in more
sophisticated ways, and make dynamic cache communication decisions, deciding
which parent caches to talk to, or deciding to bypass caches entirely and
direct themselves to the origin server. Such proxy caches can be described as content routers, because they
make routing decisions about how to access, manage, and deliver content.

Caches designed for content routing within
cache meshes may do all of the following (among other things):

·
Select between a parent cache or origin server
dynamically, based on the URL.

·
Select a particular parent cache dynamically,
based on the URL.

·
Search caches in the local area for a cached
copy before going to a parent cache.

·
Allow other caches to access portions of their
cached content, but do not permit Internet transit through their cache.

These more complex relationships between
caches allow different organizations to peer
with each other, connecting their caches for mutual benefit. Caches that
provide selective peering support are called sibling
caches (Figure 7-10). Because
HTTP doesn't provide sibling cache support, people have extended HTTP with
protocols, such as the Internet Cache Protocol (ICP) and the HyperText Caching
Protocol (HTCP). We'll talk about these protocols in Chapter 20.

Figure 7-10. Sibling caches

[image: figs/http_0710.gif]

7.7 Cache
Processing Steps

Modern
commercial proxy caches are quite complicated. They are built to be very
high-performance and to support advanced features of HTTP and other
technologies. But, despite some subtle details, the basic workings of a web
cache are mostly simple. A basic cache-processing sequence for an HTTP GET message
consists of seven steps (illustrated in Figure 7-11):

1. Receiving—Cache
reads the arriving request message from the network.

2. Parsing—Cache
parses the message, extracting the URL and headers.

3. Lookup—Cache
checks if a local copy is available and, if not, fetches a copy (and stores it
locally).

4. Freshness
check—Cache checks if cached copy is fresh enough and, if not, asks server for
any updates.

5. Response
creation—Cache makes a response message with the new headers and cached body.

6. Sending—Cache
sends the response back to the client over the network.

7. Logging—Optionally,
cache creates a log file entry describing the transaction.

Figure 7-11. Processing a fresh
cache hit

[image: figs/http_0711.gif]

7.7.1 Step 1: Receiving

In Step 1, the cache detects activity on
a network connection and reads the incoming data. High-performance caches read
data simultaneously from multiple incoming connections and begin processing the
transaction before the entire message has arrived.

7.7.2 Step 2: Parsing

Next, the cache parses the request
message into pieces and places the header parts in easy-to-manipulate data
structures. This makes it easier for the caching software to process the header
fields and fiddle with them.[10]

[10] The parser also is responsible
for normalizing the parts of the header so that unimportant differences, like
capitalization or alternate date formats, all are viewed equivalently. Also,
because some request messages contain a full absolute URL and other request
messages contain a relative URL and Host header, the parser typically hides
these details (see Section 2.3.1).

7.7.3 Step 3: Lookup

In Step 3, the cache takes the URL and
checks for a local copy. The local copy might be stored in memory, on a local
disk, or even in another nearby computer. Professional-grade caches use fast
algorithms to determine whether an object is available in the local cache. If
the document is not available locally, it can be fetched from the origin server
or a parent proxy, or return a failure, based on the situation and
configuration.

The cached object contains the server response body and the
original server response headers, so the correct server headers can be returned
during a cache hit. The cached object also includes some metadata, used for bookkeeping how long the object
has been sitting in the cache, how many times it was used, etc.[11]

[11] Sophisticated caches also keep a copy of
the original client response headers that yielded the server response, for use
in HTTP/1.1 content negotiation (see Chapter 17).

7.7.4 Step 4: Freshness Check

HTTP lets caches keep copies of server
documents for a period of time. During this time, the document is considered
"fresh" and the cache can serve the document without contacting the
server. But once the cached copy has sat around for too long, past the
document's freshness limit, the object is
considered "stale," and the cache needs to revalidate with the server
to check for any document changes before serving it. Complicating things
further are any request headers that a client sends to a cache, which
themselves can force the cache to either revalidate or avoid validation
altogether.

HTTP has a set of very complicated rules for freshness
checking, made worse by the large number of configuration options cache
products support and by the need to interoperate with non-HTTP freshness
standards. We'll devote most of the rest of this chapter to explaining
freshness calculations.

7.7.5 Step 5: Response Creation

Because we want the cached response to
look like it came from the origin server, the cache uses the cached server
response headers as the starting point for the response headers. These base headers
are then modified and augmented by the cache.

The cache is responsible for adapting the headers to match the
client. For example, the server may return an HTTP/1.0 response (or even an
HTTP/0.9 response), while the client expects an HTTP/1.1 response, in which
case the cache must translate the headers accordingly. Caches also insert cache
freshness information (Cache-Control, Age, and Expires headers) and often
include a Via header to note that a proxy cache served the request.

Note that the cache should not
adjust the Date header. The Date header represents the date of the object when
it was originally generated at the origin server.

7.7.6 Step 6: Sending

Once the response headers are ready, the
cache sends the response back to the client. Like all proxy servers, a proxy
cache needs to manage the connection with the client. High-performance caches
work hard to send the data efficiently, often avoiding copying the document
content between the local storage and the network I/O buffers.

7.7.7 Step 7: Logging

Most caches keep log
files and statistics about cache usage. After each cache transaction is
complete, the cache updates statistics counting the number of cache hits and
misses (and other relevant metrics) and inserts an entry into a log file
showing the request type, URL, and what happened.

The most popular cache log formats are the
Squid log format and the Netscape extended common log format, but many cache
products allow you to create custom log files. We discuss log file formats in
detail in Chapter 21.

7.7.8 Cache Processing Flowchart

Figure 7-12 shows, in simplified form, how a cache processes a request
to GET a URL.[12]

[12]
The revalidation and fetching of a resource as outlined in Figure 7-12 can be
done in one step with a conditional request (see Section 7.8.4).

Figure 7-12. Cache GET request
flowchart

[image: figs/http_0712.gif]

7.8 Keeping Copies Fresh

Cached copies might not all be
consistent with the documents on the server. After all, documents do change
over time. Reports might change monthly. Online newspapers change daily.
Financial data may change every few seconds. Caches would be useless if they
always served old data. Cached data needs to maintain some consistency with the
server data.

HTTP includes simple mechanisms to keep cached data
sufficiently consistent with servers, without requiring servers to remember
which caches have copies of their documents. HTTP calls these simple mechanisms
document expiration and server revalidation.

7.8.1 Document Expiration

HTTP lets an origin server attach an "expiration
date" to each document, using special HTTP Cache-Control and Expires headers
(Figure 7-13). Like an expiration date on a
quart of milk, these headers dictate how long content should be viewed as
fresh.

Figure 7-13. Expires and Cache
Control headers

[image: figs/http_0713.gif]

Until a cache document expires, the cache can serve the copy
as often as it wants, without ever contacting the server—unless, of course, a
client request includes headers that prevent serving a cached or unvalidated
resource. But, once the cached document expires, the cache must check with the
server to ask if the document has changed and, if so, get a fresh copy (with a
new expiration date).

7.8.2 Expiration Dates and Ages

Servers specify expiration dates using the HTTP/1.0+ Expires
or the HTTP/1.1 Cache-Control: max-age response headers, which accompany a
response body. The Expires and Cache-Control: max-age headers do basically the
same thing, but the newer Cache-Control header is preferred, because it uses a
relative time instead of an absolute date. Absolute dates depend on computer
clocks being set correctly. Table 7-2 lists the expiration response
headers.

	
Table 7-2. Expiration response
 headers

	
Header

	
Description

	
Cache-Control: max-age

	
The max-age value defines the maximum age of the
 document—the maximum legal elapsed time (in seconds) from when a document is
 first generated to when it can no longer be considered fresh enough to serve.

Cache-Control: max-age=484200

	
Expires

	
Specifies an absolute expiration date. If the expiration
 date is in the past, the document is no longer fresh.

Expires: Fri, 05 Jul 2002, 05:00:00 GMT

Let's say today is June 29, 2002 at 9:30 am Eastern Standard Time
(EST), and Joe's Hardware store is getting ready for a Fourth of July sale
(only five days away). Joe wants to put a special web page on his web server
and set it to expire at midnight EST on the night of July 5, 2002. If Joe's
server uses the older-style Expires headers, the server response message (Figure 7-13a) might include this header:[13]

[13] Note that all HTTP dates and
times are expressed in Greenwich Mean Time (GMT). GMT is the time at the prime meridian
(0° longitude) that passes through Greenwich, UK. GMT is five hours ahead of
U.S. Eastern Standard Time, so midnight EST is 05:00 GMT.

Expires: Fri, 05 Jul 2002, 05:00:00 GMT

If Joe's server uses the newer Cache-Control: max-age headers,
the server response message (Figure 7-13b) might contain this header:

Cache-Control: max-age=484200

In case that wasn't immediately obvious, 484,200 is the number
of seconds between the current date, June 29, 2002 at 9:30 am EST, and the sale
end date, July 5, 2002 at midnight. There are 134.5 hours (about 5 days) until
the sale ends. With 3,600 seconds in each hour, that leaves 484,200 seconds
until the sale ends.

7.8.3 Server Revalidation

Just because a
cached document has expired doesn't mean it is actually different from what's
living on the origin server; it just means that it's time to check. This is
called "server revalidation," meaning the cache needs to ask the
origin server whether the document has changed:

·
If revalidation shows the content has
changed, the cache gets a new copy of the document, stores it in place
of the old data, and sends the document to the client.

·
If revalidation shows the content has
not changed, the cache only gets new headers, including a new expiration
date, and updates the headers in the cache.

This is a nice system. The cache doesn't have to verify a
document's freshness for every request—it has to revalidate with the server
only once the document has expired. This saves server traffic and provides
better user response time, without serving stale content.

The HTTP protocol requires a correctly behaving cache to
return one of the following:

·
A cached copy that is "fresh enough"

·
A cached copy that has been revalidated with the server to ensure
it's still fresh

·
An error message, if the origin server to revalidate with is down[14]

[14] If the origin
server is not accessible, but the cache needs to revalidate, the cache must
return an error or a warning describing the communication failure. Otherwise,
pages from a removed server may live in network caches for an arbitrary time
into the future.

·
A cached copy, with an attached warning that it might be
incorrect

7.8.4 Revalidation with Conditional Methods

HTTP's conditional methods make revalidation efficient. HTTP
allows a cache to send a "conditional GET" to the origin server,
asking the server to send back an object body only if the document is different
from the copy currently in the cache. In this manner, the freshness check and
the object fetch are combined into a single conditional GET. Conditional GETs
are initiated by adding special conditional headers to GET request messages.
The web server returns the object only if the condition is true.

HTTP defines five conditional
request headers. The two that are most useful for cache revalidation are
If-Modified-Since and If-None-Match.[15]
All conditional headers begin with the prefix "If-". Table 7-3 lists the conditional response
headers used in cache revalidation.

[15] Other conditional headers include
If-Unmodified-Since (useful for partial document transfers, when you need to
ensure the document is unchanged before you fetch another piece of it),
If-Range (to support caching of incomplete documents), and If-Match (useful for
concurrency control when dealing with web servers).

	
Table 7-3. Two conditional headers
 used in cache revalidation

	
Header

	
Description

	
If-Modified-Since: <date>

	
Perform the requested method if the document has been
 modified since the specified date. This is used in conjunction with the
 Last-Modified server response header, to fetch content only if the content
 has been modified from the cached version.

	
If-None-Match: <tags>

	
Instead of matching on last-modified date, the server may
 provide special tags (see ETag) on the document that act like serial
 numbers. The If-None-Match header performs the requested method if the cached
 tags differ from the tags in the server's document.

7.8.5 If-Modified-Since: Date Revalidation

The most common
cache revalidation header is If-Modified-Since. If-Modified-Since revalidation
requests often are called "IMS" requests. IMS requests instruct a
server to perform the request only if the resource has changed since a certain
date:

·
If the document was modified since the specified date, the
If-Modified-Since condition is true, and the GET succeeds normally. The new
document is returned to the cache, along with new headers containing, among
other information, a new expiration date.

·
If the document was not modified since the specified date, the
condition is false, and a small 304 Not Modified response message is returned
to the client, without a document body, for efficiency.[16]
Headers are returned in the response; however, only the headers that need
updating from the original need to be returned. For example, the Content-Type
header does not usually need to be sent, since it usually has not changed. A
new expiration date typically is sent.

[16] If an old
server that doesn't recognize the If-Modified-Since header gets the conditional
request, it interprets it as a normal GET. In this case, the system will still
work, but it will be less efficient due to unnecessary transmittal of unchanged
document data.

The If-Modified-Since header works in conjunction with the
Last-Modified server response header. The origin server attaches the last
modification date to served documents. When a cache wants to revalidate a
cached document, it includes an If-Modified-Since header with the date the
cached copy was last modified:

If-Modified-Since: <cached last-modified date>

If the content has changed in the meantime, the last
modification date will be different, and the origin server will send back the
new document. Otherwise, the server will note that the cache's last-modified
date matches the server document's current last-modified date, and it will
return a 304 Not Modified response.

For example, as shown in Figure 7-14, if your cache revalidates Joe's
Hardware's Fourth of July sale announcement on July 3, you will receive back a
Not Modified response (Figure 7-14a). But if your cache revalidates
the document after the sale ends at midnight on July 5, the cache will receive
a new document, because the server content has changed (Figure 7-14b).

Figure 7-14. If-Modified-Since
revalidations return 304 if unchanged or 200 with new body if changed

[image: figs/http_0714.gif]

Note that some web servers don't implement If-Modified-Since
as a true date comparison. Instead, they do a string match between the IMS date
and the last-modified date. As such, the semantics behave as "if not last
modified on this exact date" instead of "if modified since this
date." This alternative semantic works fine for cache expiration, when you
are using the last-modified date as a kind of serial number, but it prevents
clients from using the If-Modified-Since header for true time-based purposes.

7.8.6 If-None-Match: Entity Tag Revalidation

There are some
situations when the last-modified date revalidation isn't adequate:

·
Some documents may be rewritten periodically (e.g., from a background
process) but actually often contain the same data. The modification dates will
change, even though the content hasn't.

·
Some documents may have changed, but only in ways that aren't
important enough to warrant caches worldwide to reload the data (e.g., spelling
or comment changes).

·
Some servers cannot accurately determine the last modification
dates of their pages.

·
For servers that serve documents that change in sub-second
intervals (e.g. real-time monitors), the one-second granularity of modification
dates might not be adequate.

To get around these problems, HTTP allows you to compare
document "version identifiers" called entity
tags (ETags). Entity tags
are arbitrary labels (quoted strings) attached to the document. They might
contain a serial number or version name for the document, or a checksum or
other fingerprint of the document content.

When the publisher makes a document change, he can change the
document's entity tag to represent this new version. Caches can then use the
If-None-Match conditional header to GET a new copy of the document if the
entity tags have changed.

In Figure 7-15, the cache has a document with
entity tag "v2.6". It revalidates with the origin server asking for a
new object only if the tag "v2.6" no longer matches. In Figure 7-15, the tag still matches, so a 304
Not Modified response is returned.

Figure 7-15. If-None-Match
revalidates because entity tag still matches

[image: figs/http_0715.gif]

If the entity tag on the server had changed (perhaps to
"v3.0"), the server would return the new content in a 200 OK
response, along with the content and new ETag.

Several entity tags can be included in an If-None-Match
header, to tell the server that the cache already has copies of objects with
those entity tags:

If-None-Match: "v2.6"
If-None-Match: "v2.4","v2.5","v2.6"
If-None-March: "foobar","A34FAC0095","Profiles in Courage"

7.8.7 Weak and Strong Validators

Caches use entity tags to determine whether the cached version is
up-to-date with respect to the server (much like they use last-modified dates).
In this way, entity tags and last-modified dates both are cache validators.

Servers may sometimes want to allow cosmetic
or insignificant changes to documents without invalidating all cached copies. HTTP/1.1
supports "weak validators," which allow the server to claim
"good enough" equivalence even if the contents have changed slightly.

Strong validators change any time the content
changes. Weak validators allow some content change but generally change when
the significant meaning of the content changes. Some operations cannot be
performed using weak validators (such as conditional partial-range fetches), so
servers identify validators that are weak with a "W/" prefix:

ETag: W/"v2.6"
If-None-Match: W/"v2.6"

A strong entity tag must change whenever the
associated entity value changes in any way. A weak entity tag should change
whenever the associated entity changes in a semantically significant way.

Note that an origin server must avoid reusing
a specific strong entity tag value for two different entities, or reusing a
specific weak entity tag value for two semantically different entities. Cache
entries might persist for arbitrarily long periods, regardless of expiration
times, so it might be inappropriate to expect that a cache will never again
attempt to validate an entry using a validator that it obtained at some point
in the past.

7.8.8 When to Use Entity Tags and Last-Modified Dates

HTTP/1.1 clients must use an entity tag
validator if a server sends back an entity tag. If the server sends back only a
Last-Modified value, the client can use If-Modified-Since validation. If both
an entity tag and a last-modified date are available, the client should use
both revalidation schemes, allowing both HTTP/1.0 and HTTP/1.1 caches to
respond appropriately.

HTTP/1.1 origin servers should send an entity
tag validator unless it is not feasible to generate one, and it may be a weak
entity tag instead of a strong entity tag, if there are benefits to weak
validators. Also, it's preferred to also send a last-modified value.

If an HTTP/1.1 cache or server receives a
request with both If-Modified-Since and entity tag conditional headers, it must
not return a 304 Not Modified response unless doing so is consistent with all
of the conditional header fields in the request.

7.9 Controlling
Cachability

HTTP defines several ways for a server to specify how
long a document can be cached before it expires. In decreasing order of
priority, the server can:

·
Attach a Cache-Control: no-store header to the response.

·
Attach a Cache-Control: must-revalidate header to the response.

·
Attach a Cache-Control: no-cache header to the response.

·
Attach a Cache-Control: max-age header to the response.

·
Attach an Expires date header to the response.

·
Attach no expiration information, letting the cache determine its
own heuristic expiration date.

This section describes the cache controlling headers. The next
section, Section 7.10, describes how to assign
different cache information to different content.

7.9.1 No-Cache and No-Store Headers

HTTP/1.1
offers several ways to mark an object uncachable. Technically, these uncachable
pages should never be stored in a cache and, hence, never will get to the
freshness calculation stage.

Here are a few HTTP headers that
mark a document uncachable:

Pragma: no-cache
Cache-Control: no-cache
Cache-Control: no-store

RFC 2616 allows a cache to store a response that is marked
"no-cache"; however, the cache needs to revalidate the response with
the origin server before serving it. A response that is marked
"no-store" forbids a cache from making a copy of the response. A
cache should not store this response.

The Pragma: no-cache header is included in HTTP 1.1 for backward
compatibility with HTTP 1.0+. It is technically valid and defined only for HTTP
requests; however, it is widely used as an extension header for both HTTP 1.0
and 1.1 requests and responses. HTTP 1.1 applications should use Cache-Control:
no-cache, except when dealing with HTTP 1.0 applications, which understand only
Pragma: no-cache.

7.9.2 Max-Age Response Headers

The Cache-Control: max-age
header indicates the number of seconds since it came from the server for which
a document can be considered fresh. There is also an s-maxage
header (note the absence of a hyphen in "maxage") that acts like
max-age but applies only to shared (public) caches:

Cache-Control: max-age=3600
Cache-Control: s-maxage=3600

Servers can request that caches either not cache a document or
refresh on every access by setting the maximum aging to zero:

Cache-Control: max-age=0
Cache-Control: s-maxage=0

7.9.3 Expires Response Headers

The
deprecated Expires header specifies an actual expiration date instead of a time
in seconds. The HTTP designers later decided that, because many servers have
unsynchronized or incorrect clocks, it would be better to represent expiration
in elapsed seconds, rather than absolute time. An analogous freshness lifetime
can be calculated by computing the number of seconds difference between the
expires value and the date value:

Expires: Fri, 05 Jul 2002, 05:00:00 GMT

Some servers also send back an Expires: 0 response header to
try to make documents always expire, but this syntax is illegal and can cause
problems with some software. You should try to support this construct as input,
but shouldn't generate it.

7.9.4 Must-Revalidate Response Headers

The Cache-Control: must-revalidate
response header tells the cache to bypass the freshness calculation mechanisms
and revalidate on every access:

Cache-Control: must-revalidate

Attaching this header to a response is actually a stronger
caching limitation than using Cache-Control: no-cache, because this header
instructs a cache to always revalidate the
response before serving the cached copy. This is true even if the server is
unavailable, in which case the cache should not serve the cached copy, as it
can't revalidate the response. Only the "no-store" directive is more
limiting on a cache's behavior, because the no-store directive instructs the
cache to not even make a copy of the resource (thereby always forcing the cache
to retrieve the resource).

7.9.5 Heuristic Expiration

If
the response doesn't contain either a Cache-Control: max-age header or an
Expires header, the cache may compute a heuristic maximum age. Any algorithm
may be used, but if the resulting maximum age is greater than 24 hours, a Heuristic Expiration Warning (Warning 13) header should be
added to the response headers. As far as we know, few browsers make this
warning information available to users.

One popular heuristic expiration algorithm, the LM-Factor
algorithm, can be used if the document contains a last-modified date. The
LM-Factor algorithm uses the last-modified date as an estimate of how volatile
a document is. Here's the logic:

·
If a cached document was last changed in the distant past, it may
be a stable document and less likely to change suddenly, so it is safer to keep
it in the cache longer.

·
If the cached document was modified just recently, it probably
changes frequently, so we should cache it only a short while before
revalidating with the server.

The actual LM-Factor algorithm computes the time between when
the cache talked to the server and when the server said the document was last
modified, takes some fraction of this intervening time, and uses this fraction
as the freshness duration in the cache. Here is some Perl pseudocode for the
LM-factor algorithm:

$time_since_modify = max(0, $server_Date - $server_Last_Modified);
$server_freshness_limit = int($time_since_modify * $lm_factor);

Figure 7-16 depicts the LM-factor freshness
period graphically. The cross-hatched line indicates the freshness period,
using an LM-factor of 0.2.

Figure 7-16. Computing a freshness
period using the LM-Factor algorithm

[image: figs/http_0716.gif]

Typically, people place upper bounds on heuristic freshness
periods so they can't grow excessively large. A week is typical, though more
conservative sites use a day.

Finally, if you don't have a last-modified date either, the
cache doesn't have much information to go on. Caches typically assign a default
freshness period (an hour or a day is typical) for documents without any
freshness clues. More conservative caches sometimes choose freshness lifetimes
of 0 for these heuristic documents, forcing the cache to validate that the data
is still fresh before each time it is served to a client.

One last note about heuristic freshness calculations—they are
more common than you might think. Many origin servers still don't generate
Expires and max-age headers. Pick your cache's expiration defaults carefully!

7.9.6 Client Freshness Constraints

Web browsers have a
Refresh or Reload button to forcibly refresh content, which might be stale in
the browser or proxy caches. The Refresh button issues a GET request with
additional Cache-control request headers that force a revalidation or
unconditional fetch from the server. The precise Refresh behavior depends on
the particular browser, document, and intervening cache configurations.

Clients use Cache-Control request headers to
tighten or loosen expiration constraints. Clients can use Cache-control headers
to make the expiration more strict, for applications that need the very
freshest documents (such as the manual Refresh button). On the other hand,
clients might also want to relax the freshness requirements as a compromise to
improve performance, reliability, or expenses. Table 7-4 summarizes the Cache-Control request
directives.

	
Table 7-4.
 Cache-Control request directives

	
Directive

	
Purpose

	
Cache-Control: max-stale

Cache-Control: max-stale = <s>

	
The cache is free to serve a stale
 document. If the <s> parameter is
 specified, the document must not be stale by more than this amount of time. This
 relaxes the caching rules.

	
Cache-Control: min-fresh = <s>

	
The document must still be fresh for at
 least <s> seconds in the future. This
 makes the caching rules more strict.

	
Cache-Control: max-age = <s>

	
The cache cannot return a document that has
 been cached for longer than <s>
 seconds. This directive makes the caching rules more strict, unless the
 max-stale directive also is set, in which case the age can exceed its
 expiration time.

	
Cache-Control: no-cache Pragma: no-cache

	
This client won't accept a cached resource
 unless it has been revalidated.

	
Cache-Control: no-store

	
The cache should delete every trace of the document from
 storage as soon as possible, because it might contain sensitive information.

	
Cache-Control: only-if-cached

	
The client wants a copy only if it is in the cache..

7.9.7 Cautions

Document expiration isn't a perfect system. If a publisher
accidentally assigns an expiration date too far in the future, any document
changes she needs to make won't necessarily show up in all caches until the
document has expired.[17] For this reason, many
publishers don't use distant expiration dates. Also, many publishers don't even
use expiration dates, making it tough for caches to know how long the document
will be fresh.

[17] Document expiration is a
form of "time to live" technique used in many Internet protocols,
such as DNS. DNS, like HTTP, has trouble if you publish an expiration date far
in the future and then find that you need to make a change. However, HTTP
provides mechanisms for a client to override and force a reloading, unlike DNS.

7.10 Setting
Cache Controls

Different web servers
provide different mechanisms for setting HTTP cache-control and expiration
headers. In this section, we'll talk briefly about how the popular Apache web
server supports cache controls. Refer to your web server documentation for
specific details.

7.10.1 Controlling HTTP Headers with Apache

The Apache web server
provides several mechanisms for setting HTTP cache-controlling headers. Many of
these mechanisms are not enabled by default—you have to enable them (in some
cases first obtaining Apache extension modules). Here is a brief description of
some of the Apache features:

mod_headers

The mod_headers module lets you set individual headers. Once this module
is loaded, you can augment the Apache configuration files with directives to
set individual HTTP headers. You also can use these settings in combination
with Apache's regular expressions and filters to associate headers with
individual content. Here is an example of a configuration that could mark all
HTML files in a directory as uncachable:

<Files *.html>
 Header set Cache-control no-cache
</Files>

mod_expires

The mod_expires module provides
program logic to automatically generate Expires headers with the correct
expiration dates. This module allows you to set expiration dates for some time
period after a document was last accessed or after its last-modified date. The
module also lets you assign different expiration dates to different file types
and use convenient verbose descriptions, like "access plus 1 month,"
to describe cachability. Here are a few examples:

ExpiresDefault A3600
ExpiresDefault M86400
ExpiresDefault "access plus 1 week"
ExpiresByType text/html "modification plus 2 days 6 hours 12 minutes"

mod_cern_meta

The mod_cern_meta module allows you
to associate a file of HTTP headers with particular objects. When you enable
this module, you create a set of "metafiles," one for each document you
want to control, and add the desired headers to each metafile.

7.10.2 Controlling HTML Caching Through HTTP-EQUIV

HTTP server response headers are used to carry back document
expiration and cache-control information. Web servers interact with configuration
files to assign the correct cache-control headers to served documents.

To make it easier for authors to assign HTTP header
information to served HTML documents without interacting with web server
configuration files, HTML 2.0 defined the <META HTTP-EQUIV> tag. This
optional tag sits at the top of an HTML document and defines HTTP headers that
should be associated with the document. Here is an example of a <META
HTTP-EQUIV> tag set to mark the HTML document uncachable:

<HTML>
 <HEAD>
 <TITLE>My Document</TITLE>
 <META HTTP-EQUIV="Cache-control" CONTENT="no-cache">
 </HEAD>
 ...

This HTTP-EQUIV tag was originally intended to be used by web
servers. Web servers were supposed to parse HTML for <META HTTP-EQUIV>
tags and insert the prescribed headers into the HTTP response, as documented in
HTML RFC 1866:

An HTTP server may use this information to process the
document. In particular, it may include a header field in the responses to
requests for this document: the header name is taken from the HTTP-EQUIV
attribute value, and the header value is taken from the value of the CONTENT
attribute.

Unfortunately, few web servers and proxies support this
optional feature because of the extra server load, the values being static, and
the fact that it supports only HTML and not the many other file types.

However, some browsers do parse and adhere to HTTP-EQUIV tags
in the HTML content, treating the embedded headers like real HTTP headers (Figure 7-17). This is unfortunate, because
HTML browsers that do support HTTP-EQUIV may apply different cache-control
rules than intervening proxy caches. This causes confusing cache expiration
behavior.

Figure 7-17. HTTP-EQUIV tags cause
problems, because most software ignores them

[image: figs/http_0717.gif]

In general, <META HTTP-EQUIV> tags are
a poor way of controlling document cachability. The only sure-fire way to
communicate cache-control requests for documents is through HTTP headers sent
by a properly configured server.

7.11 Detailed Algorithms

The HTTP
specification provides a detailed, but slightly obscure and often confusing,
algorithm for computing document aging and cache freshness. In this section,
we'll discuss the HTTP freshness computation algorithms in detail (the
"Fresh enough?" diamond in Figure 7-12) and explain the motivation behind
them.

This section will be most useful to readers working with cache
internals. To help illustrate the wording in the HTTP specification, we will
make use of Perl pseudocode. If you aren't interested in the gory details of
cache expiration formulas, feel free to skip this section.

7.11.1 Age and Freshness Lifetime

To tell whether a cached document is fresh enough to serve, a
cache needs to compute only two values: the cached copy's age and the cached copy's freshness
lifetime.
If the age of a cached copy is less than the freshness lifetime, the copy is
fresh enough to serve. In Perl:

$is_fresh_enough = ($age < $freshness_lifetime);

The age of the document is the total time the document has
"aged" since it was sent from the server (or was last revalidated by
the server).[18] Because a cache might not
know if a document response is coming from an upstream cache or a server, it
can't assume that the document is brand new. It must determine the document's
age, either from an explicit Age header (preferred) or by processing the
server-generated Date header.

[18] Remember that the server always
has the most up-to-date version of any document.

The freshness lifetime of a document tells how old a cached
copy can get before it is no longer fresh enough to serve to clients. The
freshness lifetime takes into account the expiration date of the document and
any freshness overrides the client might request.

Some
clients may be willing to accept slightly stale documents (using the
Cache-Control: max-stale header). Other clients may not accept documents that
will become stale in the near future (using the Cache-Control: min-fresh
header). The cache combines the server expiration information with the client
freshness requirements to determine the maximum freshness lifetime.

7.11.2 Age Computation

The
age of the response is the total time since the response was issued from the
server (or revalidated from the server). The age includes the time the response
has floated around in the routers and gateways of the Internet, the time stored
in intermediate caches, and the time the response has been resident in your
cache. Example 7-1 provides pseudocode for the age
calculation.

Example 7-1. HTTP/1.1 age-calculation algorithm calculates the overall
age of a cached document

$apparent_age = max(0, $time_got_response - $Date_header_value);
$corrected_apparent_age = max($apparent_age, $Age_header_value);
$response_delay_estimate = ($time_got_response - $time_issued_request);
$age_when_document_arrived_at_our_cache =
 $corrected_apparent_age + $response_delay_estimate;
$how_long_copy_has_been_in_our_cache = $current_time - $time_got_response;

$age = $age_when_document_arrived_at_our_cache +
 $how_long_copy_has_been_in_our_cache;

The particulars of HTTP age calculation are a bit tricky, but
the basic concept is simple. Caches can tell how old the response was when it
arrived at the cache by examining the Date or Age headers. Caches also can note
how long the document has been sitting in the local cache. Summed together,
these values are the entire age of the response. HTTP throws in some magic to
attempt to compensate for clock skew and network delays, but the basic
computation is simple enough:

$age = $age_when_document_arrived_at_our_cache +
 $how_long_copy_has_been_in_our_cache;

A cache can pretty easily determine how long a cached copy has
been cached locally (a matter of simple bookkeeping), but it is harder to
determine the age of a response when it arrives at the cache, because not all
servers have synchronized clocks and because we don't know where the response
has been. The complete age-calculation algorithm tries to remedy this.

7.11.2.1 Apparent age is based on the Date header

If all computers shared the same, exactly correct clock, the
age of a cached document would simply be the "apparent age" of the
document—the current time minus the time when the server sent the document. The
server send time is simply the value of the Date header. The simplest initial
age calculation would just use the apparent age:

$apparent_age = $time_got_response - $Date_header_value;
$age_when_document_arrived_at_our_cache = $apparent_age;

Unfortunately, not all clocks are well synchronized. The
client and server clocks may differ by many minutes, or even by hours or days
when clocks are set improperly.[19]

[19] The HTTP specification recommends that
clients, servers, and proxies use a time synchronization protocol such as NTP
to enforce a consistent time base.

Web applications, especially caching proxies, have to be
prepared to interact with servers with wildly differing clock values. The
problem is called clock skew—the difference
between two computers' clock settings. Because of clock skew, the apparent age
sometimes is inaccurate and occasionally is negative.

If the age is ever negative, we just set it to zero. We also
could sanity check that the apparent age isn't ridiculously large, but large
apparent ages might actually be correct. We might be talking to a parent cache
that has cached the document for a long time (the cache also stores the
original Date header):

$apparent_age = max(0, $time_got_response - $Date_header_value);
$age_when_document_arrived_at_our_cache = $apparent_age;

Be aware that the Date header describes the original origin
server date. Proxies and caches must not change
this date!

7.11.2.2 Hop-by-hop age calculations

So, we can eliminate negative ages caused by clock skew, but
we can't do much about overall loss of accuracy due to clock skew. HTTP/1.1
attempts to work around the lack of universal synchronized clocks by asking
each device to accumulate relative aging into an Age header, as a document
passes through proxies and caches. This way, no cross-server, end-to-end clock
comparisons are needed.

The Age header value increases as the document passes through
proxies. HTTP/1.1-aware applications should augment the Age header value by the
time the document sat in each application and in network transit. Each
intermediate application can easily compute the document's resident time by
using its local clock.

However, any non-HTTP/1.1 device in the response chain will
not recognize the Age header and will either proxy the header unchanged or
remove it. So, until HTTP/1.1 is universally adopted, the Age header will be an
underestimate of the relative age.

The relative age values are used in addition to the Date-based
age calculation, and the most conservative of the two age estimates is chosen,
because either the cross-server Date value or the Age-computed value may be an
underestimate (the most conservative is the oldest age). This way, HTTP
tolerates errors in Age headers as well, while erring on the side of fresher
content:

$apparent_age = max(0, $time_got_response - $Date_header_value);
$corrected_apparent_age = max($apparent_age, $Age_header_value);
$age_when_document_arrived_at_our_cache = $corrected_apparent_age;

7.11.2.3 Compensating for network delays

Transactions can be slow. This is the major motivation for
caching. But for very slow networks, or overloaded servers, the relative age
calculation may significantly underestimate the age of documents if the
documents spend a long time stuck in network or server traffic jams.

The Date header indicates when the document left the origin
server,[20]
but it doesn't say how long the document spent in transit on the way to the
cache. If the document came through a long chain of proxies and parent caches,
the network delay might be significant.[21]

[20] Note that if the document came from a
parent cache and not from an origin server, the Date header will reflect the
date of the origin server, not of the parent cache.

[21] In practice, this shouldn't be more than a
few tens of seconds (or users will abort), but the HTTP designers wanted to try
to support accurate expiration of even of short-lifetime objects.

There is no easy way to measure one-way network delay from
server to cache, but it is easier to measure the round-trip delay. A cache
knows when it requested the document and when it arrived. HTTP/1.1
conservatively corrects for these network delays by adding the entire
round-trip delay. This cache-to-server-to-cache delay is an overestimate of the
server-to-cache delay, but it is conservative. If it is in error, it will only
make the documents appear older than they really are and cause unnecessary
revalidations. Here's how the calculation is made:

$apparent_age = max(0, $time_got_response - $Date_header_value);
$corrected_apparent_age = max($apparent_age, $Age_header_value);
$response_delay_estimate = ($time_got_response - $time_issued_request);
$age_when_document_arrived_at_our_cache =
 $corrected_apparent_age + $response_delay_estimate;

7.11.3 Complete Age-Calculation Algorithm

The last section showed how to compute the age of an
HTTP-carried document when it arrives at a cache. Once this response is stored
in the cache, it ages further. When a request arrives for the document in the
cache, we need to know how long the document has been resident in the cache, so
we can compute the current document age:

$age = $age_when_document_arrived_at_our_cache +
 $how_long_copy_has_been_in_our_cache;

Ta-da! This gives us the complete HTTP/1.1 age-calculation
algorithm we presented in Example 7-1. This is a matter of simple
bookkeeping—we know when the document arrived at the cache ($time_got_response) and we know when the
current request arrived (right now), so the resident time is just the
difference. This is all shown graphically in Figure 7-18.

Figure 7-18. The age of a cached
document includes resident time in the network and cache

[image: figs/http_0718.gif]

7.11.4 Freshness Lifetime Computation

Recall that we're trying to figure out whether a cached
document is fresh enough to serve to a client. To answer this question, we must
determine the age of the cached document and compute the freshness lifetime
based on server and client constraints. We just explained how to compute the
age; now let's move on to freshness lifetimes.

The freshness lifetime of a document tells how old a document
is allowed to get before it is no longer fresh enough to serve to a particular
client. The freshness lifetime depends on server and client constraints. The
server may have information about the publication change rate of the document.
Very stable, filed reports may stay fresh for years. Periodicals may be
up-to-date only for the time remaining until the next scheduled
publication—next week, or 6:00 am tomorrow.

Clients may have certain other guidelines. They may be willing
to accept slightly stale content, if it is faster, or they might need the most
up-to-date content possible. Caches serve the users. We must adhere to their
requests.

7.11.5 Complete Server-Freshness Algorithm

Example 7-2 shows a Perl algorithm to compute
server freshness limits. It returns the maximum age that a document can reach
and still be served by the server.

Example 7-2. Server freshness constraint calculation

sub server_freshness_limit
{
 local($heuristic,$server_freshness_limit,$time_since_last_modify);

 $heuristic = 0;

 if ($Max_Age_value_set)
 {
 $server_freshness_limit = $Max_Age_value;
 }
 elsif ($Expires_value_set)
 {
 $server_freshness_limit = $Expires_value - $Date_value;
 }
 elsif ($Last_Modified_value_set)
 {
 $time_since_last_modify = max(0, $Date_value - $Last_Modified_value);
 $server_freshness_limit = int($time_since_last_modify * $lm_factor);
 $heuristic = 1;
 }
 else
 {
 $server_freshness_limit = $default_cache_min_lifetime;
 $heuristic = 1;
 }

 if ($heuristic)
 {
 if ($server_freshness_limit > $default_cache_max_lifetime)
 { $server_freshness_limit = $default_cache_max_lifetime; }
 if ($server_freshness_limit < $default_cache_min_lifetime)
 { $server_freshness_limit = $default_cache_min_lifetime; }
 }

 return($server_freshness_limit);
}

Now let's look at how the client can override
the document's server-specified age limit. Example 7-3 shows
a Perl algorithm to take a server freshness limit and modify it by the client
constraints. It returns the maximum age that a document can reach and still be
served by the cache without revalidation.

Example 7-3. Client freshness constraint calculation

sub client_modified_freshness_limit
{
 $age_limit = server_freshness_limit(); ## From Example 7-2

 if ($Max_Stale_value_set)
 {
 if ($Max_Stale_value == $INT_MAX)
 { $age_limit = $INT_MAX; }
 else
 { $age_limit = server_freshness_limit() + $Max_Stale_value; }
 }

 if ($Min_Fresh_value_set)
 {
 $age_limit = min($age_limit, server_freshness_limit() - $Min_Fresh_value_set);
 }

 if ($Max_Age_value_set)
 {
 $age_limit = min($age_limit, $Max_Age_value);
 }
}

The whole process involves two variables: the document's age
and its freshness limit. The document is "fresh enough" if the age is
less than the freshness limit. The algorithm in Example 7-3 just takes the server freshness
limit and slides it around based on additional client constraints. We hope this
section made the subtle expiration algorithms described in the HTTP
specifications a bit clearer.

7.12 Caches and
Advertising

If you've made it this far, you've realized that caches
improve performance and reduce traffic. You know caches can help users and give
them a better experience, and you know caches can help network operators reduce
their traffic.

7.12.1 The Advertiser's Dilemma

You
might also expect content providers to like caches. After all, if caches were
everywhere, content providers wouldn't have to buy big multiprocessor web
servers to keep up with demand—and they wouldn't have to pay steep network
service charges to feed the same data to their viewers over and over again. And
better yet, caches make the flashy articles and advertisements show up even faster
and look even better on the viewer's screens, encouraging them to consume more
content and see more advertisements. And that's just what content providers
want! More eyeballs and more advertisements!

But that's the rub. Many content providers are paid through
advertising—in particular, they get paid every time an advertisement is shown
to a user (maybe just a fraction of a penny or two, but they add up if you show
a million ads a day!). And that's the problem with caches—they can hide the
real access counts from the origin server. If caching was perfect, an origin
server might not receive any HTTP accesses at all, because they would be
absorbed by Internet caches. But, if you are paid on access counts, you won't
be celebrating.

7.12.2 The Publisher's Response

Today, advertisers use all sorts of "cache-busting"
techniques to ensure that caches don't steal their hit stream. They slap
no-cache headers on their content. They serve advertisements through CGI
gateways. They rewrite advertisement URLs on each access.

And these cache-busting techniques aren't just for proxy
caches. In fact, today they are targeted primarily at the cache that's enabled
in every web browser. Unfortunately, while over-aggressively trying to maintain
their hit stream, some content providers are reducing the positive effects of
caching to their site.

In the ideal world, content providers would
let caches absorb their traffic, and the caches would tell them how many hits
they got. Today, there are a few ways caches can do this.

One solution is to configure caches to
revalidate with the origin server on every access. This pushes a hit to the
origin server for each access but usually does not transfer any body data. Of
course, this slows down the transaction.[22]

[22] Some caches support a variant of this revalidation, where they do a
conditional GET or a HEAD request in the background. The user does not perceive
the delay, but the request triggers an offline access to the origin server. This
is an improvement, but it places more load on the caches and significantly
increases traffic across the network.

7.12.3 Log Migration

One
ideal solution wouldn't require sending hits through to the server. After all,
the cache can keep a log of all the hits. Caches could just distribute the hit
logs to servers. In fact, some large cache providers have been know to manually
process and hand-deliver cache logs to influential content providers to keep
the content providers happy.

Unfortunately, hit logs are large, which
makes them tough to move. And cache logs are not standardized or organized to
separate logs out to individual content providers. Also, there are
authentication and privacy issues.

Proposals have been made for efficient (and
less efficient) log-redistribution schemes. None are far enough developed
to be adopted by web software vendors. Many are extremely complex and require
joint business partnerships to succeed.[23]
Several corporate ventures have been launched to develop supporting
infrastructure for advertising revenue reclamation.

[23] Several businesses have launched trying to
develop global solutions for integrated caching and logging.

7.12.4 Hit Metering and Usage Limiting

RFC 2227, "Simple Hit-Metering and Usage-Limiting for
HTTP," defines a much simpler scheme. This protocol adds one new header to
HTTP, called Meter, that
periodically carries hit counts for particular URLs back to the servers. This
way, servers get periodic updates from caches about the number of times cached
documents were hit.

In addition, the server can control how many times documents
can be served from cache, or a wall clock timeout, before the cache must report
back to the server. This is called usage limiting; it allows servers to control
the how much a cached resource can be used before it needs to report back to
the origin server.

We'll describe RFC 2227 in detail in Chapter 21.

7.13 For More
Information

For more information on caching, refer to:

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

RFC 2616,
"Hypertext Transfer Protocol," by R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Mastinter, P. Leach, and T. Berners-Lee.

Web Caching

Duane Wessels,
O'Reilly & Associates, Inc.

http://www.ietf.org/rfc/rfc3040.txt

RFC 3040,
"Internet Web Replication and Caching Taxonomy."

Web Proxy Servers

Ari Luotonen,
Prentice Hall Computer Books.

http://www.ietf.org/rfc/rfc3143.txt

RFC 3143,
"Known HTTP Proxy/Caching Problems."

http://www.squid-cache.org

Squid Web Proxy
Cache.

Chapter 8.
Integration Points: Gateways, Tunnels, and Relays

The Web has proven to be an incredible tool
for disseminating content. Over time, people have moved from just wanting to
put static documents online to wanting to share ever more complex resources,
such as database content or dynamically generated HTML pages. HTTP
applications, like web browsers, have provided users with a unified means of
accessing content over the Internet.

HTTP also has come to be a fundamental
building block for application developers, who piggyback other protocols on top
of HTTP (for example, using HTTP to tunnel or relay other protocol traffic
through corporate firewalls, by wrapping that traffic in HTTP). HTTP is used as
a protocol for all of the Web's resources, and it's also a protocol that other
applications and application protocols make use of to get their jobs done.

This chapter takes a general look at some of
the methods that developers have come up with for using HTTP to access
different resources and examines how developers use HTTP as a framework for
enabling other protocols and application communication.

In this chapter, we discuss:

·
Gateways, which interface HTTP with other
protocols and applications

·
Application interfaces, which allow different
types of web applications to communicate with one another

·
Tunnels, which let you send non-HTTP traffic
over HTTP connections

·
Relays, which are a type of simplified HTTP
proxy used to forward data one hop at a time

8.1 Gateways

The history behind HTTP
extensions and interfaces was driven by people's needs. When the desire to put
more complicated resources on the Web emerged, it rapidly became clear that no single
application could handle all imaginable resources.

To get around this problem, developers came up with the notion
of a gateway that could serve as a sort of
interpreter, abstracting a way to get at the resource. A gateway is the glue
between resources and applications. An application can ask (through HTTP or
some other defined interface) a gateway to handle the request, and the gateway
can provide a response. The gateway can speak the query language to the
database or generate the dynamic content, acting like a portal: a request goes
in, and a response comes out.

Figure 8-1 depicts a kind of resource gateway.
Here, the Joe's Hardware server is acting as a gateway to database content—note
that the client is simply asking for a resource through HTTP, and the Joe's
Hardware server is interfacing with a gateway to get at the resource.

Figure 8-1. Gateway magic

[image: figs/http_0801.gif]

Some gateways automatically translate HTTP traffic to other
protocols, so HTTP clients can interface with other applications without the
clients needing to know other protocols (Figure 8-2).

Figure 8-2. Three web gateway
examples

[image: figs/http_0802.gif]

Figure 8-2 shows
three examples of gateways:

·
In Figure 8-2a, the
gateway receives HTTP requests for FTP URLs. The gateway then opens FTP
connections and issues the appropriate commands to the FTP server. The document
is sent back through HTTP, along with the correct HTTP headers.

·
In Figure 8-2b, the
gateway receives an encrypted web request through SSL, decrypts the request,[1]
and forwards a normal HTTP request to the destination server. These security
accelerators can be placed directly in front of web servers (usually in the
same premises) to provide high-performance encryption for origin servers.

[1] The gateway would need to have
the proper server certificates installed.

·
In Figure 8-2c, the
gateway connects HTTP clients to server-side application programs, through an
application server gateway API. When you purchase from e-commerce stores on the
Web, check the weather forecast, or get stock quotes, you are visiting
application server gateways.

8.1.1 Client-Side and Server-Side Gateways

Web gateways speak HTTP on one side and a different protocol on the
other side.[2]

[2] Web proxies that convert between different
versions of HTTP are like gateways, because they perform sophisticated logic to
negotiate between the parties. But because they speak HTTP on both sides, they
are technically proxies.

Gateways are described by their client- and server-side
protocols, separated by a slash:

<client-protocol>/<server-protocol>

So a gateway joining HTTP clients to NNTP news servers is an HTTP/NNTP gateway. We use the terms "server-side
gateway" and "client-side gateway" to describe what side of the
gateway the conversion is done for:

·
Server-side gateways speak HTTP
with clients and a foreign protocol with servers (HTTP/*).

·
Client-side gateways speak foreign
protocols with clients and HTTP with servers (*/HTTP).

8.2 Protocol
Gateways

You
can direct HTTP traffic to gateways the same way you direct traffic to proxies.
Most commonly, you explicitly configure browsers to use gateways, intercept
traffic transparently, or configure gateways as surrogates (reverse proxies).

Figure 8-3 shows
the dialog boxes used to configure a browser to use server-side FTP gateways. In
the configuration shown, the browser is configured to use gw1.joes-hardware.comas an HTTP/FTP gateway for all
FTP URLs. Instead of sending FTP commands to an FTP server, the browser
will send HTTP commands to the HTTP/FTP gateway gw1.joes-hardware.com
on port 8080.

Figure 8-3. Configuring an HTTP/FTP
gateway

[image: figs/http_0803.gif]

The result of this gateway configuration is shown in Figure 8-4. Normal HTTP traffic is unaffected;
it continues to flow directly to origin servers. But requests for FTP URLs are
sent to the gateway gw1.joes-hardware.com
within HTTP requests. The gateway performs the FTP transactions on the client's
behalf and carries results back to the client by HTTP.

Figure 8-4. Browsers can configure
particular protocols to use particular gateways

[image: figs/http_0804.gif]

The following sections describe common kinds of gateways:
server protocol converters, server-side security gateways, client-side security
gateways, and application servers.

8.2.1 HTTP/*: Server-Side Web Gateways

Server-side web
gateways convert client-side HTTP requests into a foreign protocol, as the
requests travel inbound to the origin server (see Figure 8-5).

Figure 8-5. The HTTP/FTP gateway
translates HTTP request into FTP requests

[image: figs/http_0805.gif]

In Figure 8-5, the gateway receives an HTTP request
for an FTP resource:

ftp://ftp.irs.gov/pub/00-index.txt

The gateway proceeds to open an FTP connection to the FTP port
on the origin server (port 21) and speak the FTP protocol to fetch the object.
The gateway does the following:

·
Sends the USER and PASS commands to log in to the server

·
Issues the CWD command to change to the proper directory on the
server

·
Sets the download type to ASCII

·
Fetches the document's last modification time with MDTM

·
Tells the server to expect a passive data retrieval request using
PASV

·
Requests the object retrieval using RETR

·
Opens a data connection to the FTP server on a port returned on
the control channel; as soon as the data channel is opened, the object content
flows back to the gateway

When the retrieval is complete, the object will be sent to the
client in an HTTP response.

8.2.2 HTTP/HTTPS: Server-Side Security Gateways

Gateways can be
used to provide extra privacy and security for an organization, by encrypting
all inbound web requests. Clients can browse the Web using normal HTTP, but the
gateway will automatically encrypt the user's sessions (Figure 8-6).

Figure 8-6. Inbound
HTTP/HTTPS security gateway

[image: figs/http_0806.gif]

8.2.3 HTTPS/HTTP: Client-Side Security Accelerator Gateways

Recently,
HTTPS/HTTP gateways have become popular as security accelerators. These
HTTPS/HTTP gateways sit in front of the web server, usually as an invisible
intercepting gateway or a reverse proxy. They receive secure HTTPS traffic,
decrypt the secure traffic, and make normal HTTP requests to the web server (Figure 8-7).

Figure 8-7. HTTPS/HTTP
security accelerator gateway

[image: figs/http_0807.gif]

These gateways often include special
decryption hardware to decrypt secure traffic much more efficiently than the
origin server, removing load from the origin server. Because these gateways
send unencrypted traffic between the gateway and origin server, you need to use
caution to make sure the network between the gateway and origin server is
secure.

8.3 Resource Gateways

So far, we've been
talking about gateways that connect clients and servers across a network.
However, the most common form of gateway, the application
server, combines the destination server and gateway into a single server. Application
servers are server-side gateways that speak HTTP with the client and connect to
an application program on the server side (see Figure 8-8).

Figure 8-8. An application server
connects HTTP clients to arbitrary backend applications

[image: figs/http_0808.gif]

In Figure 8-8, two clients are connecting to an
application server using HTTP. But, instead of sending back files from the
server, the application server passes the requests through a gateway application programming interface (API) to applications running on the server:

·
Client A's request is received and, based on the URI, is sent
through an API to a digital camera application. The resulting camera image is
bundled up into an HTTP response message and sent back to the client, for
display in the client's browser.

·
Client B's URI is for an e-commerce application. Client B's
requests are sent through the server gateway API to the e-commerce software,
and the results are sent back to the browser. The e-commerce software interacts
with the client, walking the user through a sequence of HTML pages to complete
a purchase.

The first popular API for application gateways was the Common Gateway Interface (CGI). CGI is a standardized set of interfaces that web
servers use to launch programs in response to HTTP requests for special URLs,
collect the program output, and send it back in HTTP responses. Over the past
several years, commercial web servers have provided more sophisticated
interfaces for connecting web servers to applications.

Early web servers were fairly simple creations, and the simple
approach that was taken for implementing an interface for gateways has stuck to
this day.

When a request comes in for a resource that needs a gateway,
the server spawns the helper application to handle the request. The helper
application is passed the data it needs. Often this is just the entire request
or something like the query the user wants to run on the database (from the
query string of the URL; see Chapter 2).

It then returns a response or response data to the server,
which vectors it off to the client. The server and gateway are separate
applications, so the lines of responsibility are kept clear. Figure 8-9 shows the basic mechanics behind
server and gateway application interactions.

Figure 8-9. Server gateway
application mechanics

[image: figs/http_0809.gif]

This simple protocol (request in, hand off, and respond) is
the essence behind the oldest and one of the most common server extension
interfaces, CGI.

8.3.1 Common Gateway Interface (CGI)

The
Common Gateway Interface was the first and probably still is the most widely
used server extension. It is used throughout the Web for things like dynamic
HTML, credit card processing, and querying databases.

Since CGI applications are separate from the
server, they can be implemented in almost any language, including Perl, Tcl, C,
and various shell languages. And because CGI is simple, almost all HTTP servers
support it. The basic mechanics of the CGI model are shown in Figure 8-9.

CGI processing is invisible to users. From
the perspective of the client, it's just making a normal request. It is
completely unaware of the hand-off procedure going on between the server and
the CGI application. The client's only hint that a CGI application might be
involved would be the presence of the letters "cgi" and maybe
"?" in the URL.

So CGI is wonderful, right? Well, yes and no.
It provides a simple, functional form of glue between servers and pretty much
any type of resource, handling any translation that needs to occur. The
interface also is elegant in protecting the server from buggy extensions (if
the extension were glommed onto the server itself, it could cause an error that
might end up crashing the server).

However, this separation incurs a cost in
performance. The overhead to spawn a new process for every CGI request is quite
high, limiting the performance of servers that use CGI and taxing the server
machine's resources. To try to get around this problem, a new form of CGI—aptly
dubbed Fast CGI—has been
developed. This interface mimics CGI, but it runs as a persistent daemon,
eliminating the performance penalty of setting up and tearing down a new
process for each request.

8.3.2 Server Extension APIs

The CGI protocol provides a clean way to interface external
interpreters with stock HTTP servers, but what if you want to alter the
behavior of the server itself, or you just want to eke every last drop of
performance you can get out of your server? For these two needs, server
developers have provided server extension APIs, which provide a powerful
interface for web developers to interface their own modules with an HTTP server
directly. Extension APIs allow programmers to graft their own code onto the
server or completely swap out a component of the server and replace it with
their own.

Most popular servers provide one or more extension APIs for
developers. Since these extensions often are tied to the architecture of the
server itself, most of them are specific to one server type. Microsoft,
Netscape, Apache, and other server flavors all have API interfaces that allow
developers to alter the behavior of the server or provide custom interfaces to
different resources. These custom interfaces provide a powerful interface for
developers.

One example of a server extension is Microsoft's FrontPage
Server Extension (FPSE), which supports web publishing services for FrontPage
authors. FPSE is able to interpret remote procedure call (RPC) commands sent by
FrontPage clients. These commands are piggybacked on HTTP (specifically,
overlaid on the HTTP POST method). For details, see Section 19.1.

8.4 Application
Interfaces and Web Services

We've discussed
resource gateways as ways for web servers to communicate with applications. More
generally, with web applications providing ever more types of services, it
becomes clear that HTTP can be part of a foundation for linking together
applications. One of the trickier issues in wiring up applications is
negotiating the protocol interface between the two applications so that they
can exchange data—often this is done on an application-by-application basis.

To work together, applications usually need
to exchange more complex information with one another than is expressible in
HTTP headers. A couple of examples of extending HTTP or layering protocols on
top of HTTP in order to exchange customized information are described in Chapter 19. Section 19.1 talks
about layering RPCs over HTTP POST messages, and Section 19.2 talks
about adding XML to HTTP headers.

The Internet community has developed a set of
standards and protocols that allow web applications to talk to each other. These
standards are loosely referred to as web services,
although the term can mean standalone web applications (building blocks)
themselves. The premise of web services is not new, but they are a new
mechanism for applications to share information. Web services are built on
standard web technologies, such as HTTP.

Web services exchange information using XML
over SOAP. The Extensible Markup
Language (XML) provides a way to create and interpret customized information
about a data object. The Simple
Object Access Protocol (SOAP) is a standard for adding XML information to HTTP
messages.[3]

[3] For more information, see http://www.w3.org/TR/2001/WD-soap12-part0-20011217/. Programming Web Services with SOAP,
by Doug Tidwell, James Snell, and Pavel Kulchenko (O'Reilly) is also an
excellent source of information on the SOAP protocol.

8.5 Tunnels

We've
discussed different ways that HTTP can be used to enable access to various
kinds of resources (through gateways) and to enable application-to-application
communication. In this section, we'll take a look at another use of HTTP, web tunnels, which enable
access to applications that speak non-HTTP protocols through HTTP applications.

Web tunnels let you send non-HTTP traffic
through HTTP connections, allowing other protocols to piggyback on top of HTTP.
The most common reason to use web tunnels is to embed non-HTTP traffic inside
an HTTP connection, so it can be sent through firewalls that allow only web
traffic.

8.5.1 Establishing HTTP Tunnels with CONNECT

Web tunnels
are established using HTTP's CONNECT method. The
CONNECT protocol is not part of the core HTTP/1.1 specification,[4]
but it is a widely implemented extension. Technical specifications can be found
in Ari Luotonen's expired Internet draft specification, "Tunneling TCP
based protocols through Web proxy servers," or in his book Web Proxy Servers, both of which are cited at the end
of this chapter.

[4] The HTTP/1.1 specification reserves the CONNECT method but does not
describe its function.

The CONNECT method asks a tunnel gateway to
create a TCP connection to an arbitrary destination server and port and to
blindly relay subsequent data between client and server.

Figure 8-10 shows
how the CONNECT method works to establish a tunnel to a gateway:

·
In Figure 8-10a, the
client sends a CONNECT request to the tunnel gateway. The client's CONNECT
method asks the tunnel gateway to open a TCP connection (here, to the host
named orders.joes-hardware.com on port 443, the
normal SSL port).

·
The TCP connection is created in Figure 8-10b and Figure 8-10c.

·
Once the TCP connection is established, the gateway notifies the
client (Figure 8-10d) by sending an HTTP 200
Connection Established response.

·
At this point, the tunnel is set up. Any data sent by the client
over the HTTP tunnel will be relayed directly to the outgoing TCP connection,
and any data sent by the server will be relayed to the client over the HTTP
tunnel.

Figure 8-10. Using CONNECT to
establish an SSL tunnel

[image: figs/http_0810.gif]

The example in Figure 8-10 describes an SSL tunnel, where SSL
traffic is sent over an HTTP connection, but the CONNECT method can be used to
establish a TCP connection to any server using any protocol.

8.5.1.1 CONNECT requests

The CONNECT syntax is identical in form to other HTTP methods,
with the exception of the start line. The request URI is replaced by a
hostname, followed by a colon, followed by a port number. Both the host and the
port must be specified:

CONNECT home.netscape.com:443 HTTP/1.0
User-agent: Mozilla/4.0

After the start line, there are zero or more HTTP request
header fields, as in other HTTP messages. As usual, the lines end in CRLFs, and
the list of headers ends with a bare CRLF.

8.5.1.2 CONNECT responses

After the request is sent, the client waits for a response
from the gateway. As with normal HTTP messages, a 200 response code indicates
success. By convention, the reason phrase in the response is normally set to
"Connection Established":

HTTP/1.0 200 Connection Established
Proxy-agent: Netscape-Proxy/1.1

Unlike normal HTTP responses, the response does not need to
include a Content-Type header. No content type is required[5]
because the connection becomes a raw byte relay, instead of a message carrier.

[5] Future specifications may define a media
type for tunnels (e.g., application/tunnel), for uniformity.

8.5.2 Data Tunneling, Timing, and Connection Management

Because the tunneled data is opaque to the gateway, the
gateway cannot make any assumptions about the order and flow of packets. Once
the tunnel is established, data is free to flow in any direction at any time.[6]

[6] The two endpoints of the tunnel (the client
and the gateway) must be prepared to accept packets from either of the
connections at any time and must forward that data immediately. Because the
tunneled protocol may include data dependencies, neither end of the tunnel can
ignore input data. Lack of data consumption on one end of the tunnel may hang
the producer on the other end of the tunnel, leading to deadlock.

As a performance optimization, clients are allowed to send
tunnel data after sending the CONNECT request but before receiving the
response. This gets data to the server faster, but it means that the gateway
must be able to handle data following the request properly. In particular, the
gateway cannot assume that a network I/O request will return only header data,
and the gateway must be sure to forward any data read with the header to the
server, when the connection is ready. Clients that pipeline data after the
request must be prepared to resend the request data if the response comes back
as an authentication challenge or other non-200, nonfatal status. [7]

[7] Try not to pipeline more data than can fit
into the remainder of the request's TCP packet. Pipelining more data can cause
a client TCP reset if the gateway subsequently closes the connection before all
pipelined TCP packets are received. A TCP reset can cause the client to lose
the received gateway response, so the client won't be able to tell whether the
failure was due to a network error, access control, or authentication
challenge.

If at any point either one of the tunnel endpoints gets
disconnected, any outstanding data that came from that endpoint will be passed to
the other one, and after that also the other connection will be terminated by
the proxy. If there is undelivered data for the closing endpoint, that data
will be discarded.

8.5.3 SSL Tunneling

Web tunnels were first developed to
carry encrypted SSL traffic through firewalls. Many organizations funnel all
traffic through packet-filtering routers and proxy servers to enhance security.
But some protocols, such as encrypted SSL, cannot be proxied by traditional
proxy servers, because the information is encrypted. Tunnels let the SSL
traffic be carried through the port 80 HTTP firewall by transporting it through
an HTTP connection (Figure 8-11).

Figure 8-11. Tunnels let non-HTTP
traffic flow through HTTP connections

[image: figs/http_0811.gif]

To allow SSL traffic to flow through existing proxy firewalls,
a tunneling feature was added to HTTP, in which raw, encrypted data is placed
inside HTTP messages and sent through normal HTTP channels (Figure 8-12).

Figure 8-12. Direct SSL connection
vs. tunnelled SSL connection

[image: figs/http_0812.gif]

In Figure 8-12a, SSL traffic is sent directly to
a secure web server (on SSL port 443). In Figure 8-12b, SSL traffic is encapsulated into
HTTP messages and sent over HTTP port 80 connections, until it is decapsulated
back into normal SSL connections.

Tunnels often are used to let non-HTTP traffic pass through
port-filtering firewalls. This can be put to good use, for example, to allow
secure SSL traffic to flow through firewalls. However, this feature can be
abused, allowing malicious protocols to flow into an organization through the
HTTP tunnel.

8.5.4 SSL Tunneling Versus HTTP/HTTPS Gateways

The HTTPS protocol
(HTTP over SSL) can alternatively be gatewayed in the same way as other
protocols: having the gateway (instead of the client) initiate the SSL session
with the remote HTTPS server and then perform the HTTPS transaction on the
client's part. The response will be received and decrypted by the proxy and
sent to the client over (insecure) HTTP. This is the way gateways handle FTP.
However, this approach has several disadvantages:

·
The client-to-gateway connection is normal, insecure HTTP.

·
The client is not able to perform SSL client authentication
(authentication based on X509 certificates) to the remote server, as the proxy
is the authenticated party.

·
The gateway needs to support a full SSL implementation.

Note that this mechanism, if used for SSL tunneling, does not
require an implementation of SSL in the proxy. The SSL session is established
between the client generating the request and the destination (secure) web
server; the proxy server in between merely tunnels the encrypted data and does
not take any other part in the secure transaction.

8.5.5 Tunnel Authentication

Other features of HTTP can be used with
tunnels where appropriate. In particular, the proxy authentication support can
be used with tunnels to authenticate a client's right to use a tunnel (Figure 8-13).

Figure 8-13. Gateways can
proxy-authenticate a client before it's allowed to use a tunnel

[image: figs/http_0813.gif]

8.5.6 Tunnel Security Considerations

In general, the tunnel
gateway cannot verify that the protocol being spoken is really what it is
supposed to tunnel. Thus, for example, mischievous users might use tunnels
intended for SSL to tunnel Internet gaming traffic through a corporate
firewall, or malicious users might use tunnels to open Telnet sessions or to
send email that bypasses corporate email scanners.

To minimize abuse of tunnels, the gateway
should open tunnels only for particular well-known ports, such as 443 for HTTPS.

8.6 Relays

HTTP relays are simple HTTP proxies that do not fully adhere to the
HTTP specifications. Relays process enough HTTP to establish connections, then
blindly forward bytes.

Because HTTP is complicated, it's sometimes useful to
implement bare-bones proxies that just blindly forward traffic, without
performing all of the header and method logic. Because blind relays are easy to
implement, they sometimes are used to provide simple filtering, diagnostics, or
content transformation. But they should be deployed with great caution, because
of the serious potential for interoperability problems.

One of the more common (and infamous) problems with some
implementations of simple blind relays relates to their
potential to cause keep-alive connections to hang, because they don't properly
process the Connection header. This situation is depicted in Figure 8-14.

Figure 8-14. Simple blind relays can
hang if they are single-tasking and don't support the Connection header

[image: figs/http_0814.gif]

Here's what's going on in this figure:

·
In Figure 8-14a, a
web client sends a message to the relay, including the Connection: Keep-Alive
header, requesting a keep-alive connection if possible. The client waits for a
response to learn if its request for a keep-alive channel was granted.

·
The relay gets the HTTP request, but it doesn't
understand the Connection header, so it passes the message verbatim down the
chain to the server (Figure 8-14b). However,
the Connection header is a hop-by-hop header; it applies only to a single
transport link and shouldn't be passed down the chain. Bad things are
about to start happening!

·
In Figure 8-14b, the
relayed HTTP request arrives at the web server. When the web server receives
the proxied Connection: Keep-Alive header, it mistakenly concludes that the
relay (which looks like any other client to the server) wants to speak
keep-alive! That's fine with the web server—it agrees to speak keep-alive and
sends a Connection: Keep-Alive response header back in Figure 8-14c. So,
at this point, the web server thinks it is speaking keep-alive with the relay,
and it will adhere to rules of keep-alive. But the relay doesn't know
anything about keep-alive.

·
In Figure 8-14d, the
relay forwards the web server's response message back to the client, passing
along the Connection: Keep-Alive header from the web server. The client sees
this header and assumes the relay has agreed to speak keep-alive. At
this point, both the client and server believe they are speaking keep-alive,
but the relay to which they are talking doesn't know the first thing about
keep-alive.

·
Because the relay doesn't know anything about keepalive, it
forwards all the data it receives back to the client, waiting for the origin
server to close the connection. But the origin server will not close the
connection, because it believes the relay asked the server to keep the
connection open! So, the relay will hang waiting for the connection to close.

·
When the client gets the response message back in Figure 8-14d, it moves right along to the next
request, sending another request to the relay on the keep-alive connection (Figure 8-14e). Simple relays usually never
expect another request on the same connection. The browser just spins, making
no progress.

There are ways to make relays slightly smarter, to remove
these risks, but any simplification of proxies runs the risk of interoperation
problems. If you are building simple HTTP relays for a particular purpose, be
cautious how you use them. For any wide-scale deployment, you should strongly
consider using a real, HTTP-compliant proxy server instead.

For more information about relays and connection management,
see Section 4.5.6.

8.7 For More Information

For more information, refer to:

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

RFC 2616,
"Hypertext Transfer Protocol," by R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Mastinter, P. Leach, and T. Berners-Lee.

Web Proxy Servers

Ari Luotonen,
Prentice Hall Computer Books.

http://www.alternic.org/drafts/drafts-l-m/draft-luotonen-web-proxy-tunneling-01.txt

"Tunneling
TCP based protocols through Web proxy servers," by Ari Luotonen.

http://cgi-spec.golux.com

The Common Gateway
Interface—RFC Project Page.

http://www.w3.org/TR/2001/WD-soap12-part0-20011217/

W3C—SOAP Version
1.2 Working Draft.

Programming Web Services with SOAP

James Snell, Doug
Tidwell, and Pavel Kulchenko, O'Reilly & Associates, Inc.

http://www.w3.org/TR/2002/WD-wsa-reqs-20020429

W3C—Web Services
Architecture Requirements.

Web Services Essentials

Ethan Cerami, O'Reilly &
Associates, Inc.

Chapter 9. Web
Robots

We continue our tour of HTTP architecture
with a close look at the self-animating user agents called web robots.

Web robots
are software programs that automate a series of web transactions without human
interaction. Many robots wander from web site to web site, fetching content,
following hyperlinks, and processing the data they find. These kinds of robots
are given colorful names such as "crawlers," "spiders,"
"worms," and "bots" because of the way they automatically
explore web sites, seemingly with minds of their own.

Here are a few examples of web
robots:

·
Stock-graphing robots issue HTTP GETs to stock
market servers every few minutes and use the data to build stock price trend
graphs.

·
Web-census robots gather "census"
information about the scale and evolution of the World Wide Web. They wander
the Web counting the number of pages and recording the size, language, and
media type of each page.[1]

[1] http://www.netcraft.com
collects great census metrics on what flavors of servers are being used by
sites around the Web.

·
Search-engine robots collect all the documents
they find to create search databases.

·
Comparison-shopping robots gather web pages from
online store catalogs to build databases of products and their prices.

9.1 Crawlers and Crawling

Web
crawlers are robots that recursively traverse information webs, fetching first
one web page, then all the web pages to which that page points, then all the
web pages to which those pages point, and so on. When a robot recursively
follows web links, it is called a crawler or a spider
because it "crawls" along the web created by HTML hyperlinks.

Internet search engines use crawlers to wander about the Web
and pull back all the documents they encounter. These documents are then
processed to create a searchable database, allowing users to find documents
that contain particular words. With billions of web pages out there to find and
bring back, these search-engine spiders necessarily are some of the most
sophisticated robots. Let's look in more detail at how crawlers work.

9.1.1 Where to Start: The "Root Set"

Before you can unleash your hungry crawler, you need to give
it a starting point. The initial set of URLs that a crawler starts visiting is
referred to as the root set. When picking a root set, you should choose URLs from
enough different places that crawling all the links will eventually get you to
most of the web pages that interest you.

What's a good root set to use for crawling the web in Figure 9-1? As in the real Web, there is no
single document that eventually links to every document. If you start with
document A in Figure 9-1, you can get to B, C, and D, then
to E and F, then to J, and then to K. But there's no chain of links from A to G
or from A to N.

Figure 9-1. A root set is needed to
reach all pages

[image: figs/http_0901.gif]

Some web pages in this web, such as S, T, and U, are nearly
stranded—isolated, without any links pointing at them. Perhaps these lonely
pages are new, and no one has found them yet. Or perhaps they are really old or
obscure.

In general, you don't need too many pages in the root set to
cover a large portion of the web. In Figure 9-1, you need only A, G, and S in the
root set to reach all pages.

Typically, a good root set consists of the big, popular web
sites (for example, http://www.yahoo.com), a list of newly created
pages, and a list of obscure pages that aren't often linked to. Many
large-scale production crawlers, such as those used by Internet search engines,
have a way for users to submit new or obscure pages into the root set. This
root set grows over time and is the seed list for any fresh crawls.

9.1.2 Extracting Links and Normalizing Relative Links

As a crawler moves through the Web, it is constantly
retrieving HTML pages. It needs to parse out the URL links in each page it
retrieves and add them to the list of pages that need to be crawled. While a
crawl is progressing, this list often expands rapidly, as the crawler discovers
new links that need to be explored.[2] Crawlers need to do some simple
HTML parsing to extract these links and to convert relative URLs into their
absolute form. Section 2.3.1 discusses how to do this conversion.

[2] In Section 9.1.3, we begin to discuss the need
for crawlers to remember where they have been. During a crawl, this list of discovered URLs grows until the web space has been
explored thoroughly and the crawler reaches a point at which it is no longer
discovering new links.

9.1.3 Cycle Avoidance

When a robot crawls a web, it must be very careful not to get
stuck in a loop, or cycle. Look at the
crawler in Figure 9-2:

·
In Figure 9-2a, the robot fetches page A, sees
that A links to B, and fetches page B.

·
In Figure 9-2b, the robot fetches page B, sees
that B links to C, and fetches page C.

·
In Figure 9-2c, the robot fetches page C and sees
that C links to A. If the robot fetches page A again, it will end up in a
cycle, fetching A, B, C, A, B, C, A . . .

Figure 9-2. Crawling over a web of
hyperlinks

[image: figs/http_0902.gif]

Robots must know where they've been to avoid cycles. Cycles
can lead to robot traps that can either halt or slow down a robot's progress.

9.1.4 Loops and Dups

Cycles are bad for crawlers for at least three reasons:

·
They get the crawler into a loop where it can get stuck. A loop can cause a poorly designed
crawler to spin round and round, spending all its time fetching the same pages
over and over again. The crawler can burn up lots of network bandwidth and may
be completely unable to fetch any other pages.

·
While the crawler is fetching the same pages repeatedly, the web
server on the other side is getting pounded. If the crawler is well connected,
it can overwhelm the web site and prevent any real users from accessing the
site. Such denial of service can be grounds for legal claims.

·
Even if the looping isn't a problem itself, the crawler is
fetching a large number of duplicate pages (often called "dups," which rhymes with
"loops"). The crawler's application will be flooded with duplicate
content, which may make the application useless. An example of this is an
Internet search engine that returns hundreds of matches of the exact same page.

9.1.5 Trails of Breadcrumbs

Unfortunately, keeping track of where
you've been isn't always so easy. At the time of this writing, there are
billions of distinct web pages on the Internet, not counting content generated
from dynamic gateways.

If you are going to crawl a big chunk of the world's web
content, you need to be prepared to visit billions of URLs. Keeping track of
which URLs have been visited can be quite challenging. Because of the huge
number of URLs, you need to use sophisticated data structures to quickly
determine which URLs you've visited. The data structures need to be efficient
in speed and memory use.

Speed is important because hundreds of millions of URLs
require fast search structures. Exhaustive searching of URL lists is out of the
question. At the very least, a robot will need to use a search tree or hash
table to be able to quickly determine whether a URL has been visited.

Hundreds of millions of URLs take up a lot of space, too. If
the average URL is 40 characters long, and a web robot crawls 500 million URLs
(just a small portion of the Web), a search data structure could require 20 GB
or more of memory just to hold the URLs (40 bytes per URL X 500 million URLs =
20 GB)!

Here are some useful techniques that large-scale web crawlers
use to manage where they visit:

Trees
and hash tables

Sophisticated robots might use a search
tree or a hash table to keep track of visited URLs. These are software data
structures that make URL lookup much faster.

Lossy
presence bit maps

To minimize space, some large-scale
crawlers use lossy data structures such as presence bit arrays. Each URL is
converted into a fixed size number by a hash function, and this number has an
associated "presence bit" in an array. When a URL is crawled, the
corresponding presence bit is set. If the presence bit is already set, the
crawler assumes the URL has already been crawled.[3]

[3] Because there
are a potentially infinite number of URLs and only a finite number of bits in
the presence bit array, there is potential for collision—two URLs can map to
the same presence bit. When this happens, the crawler mistakenly concludes that
a page has been crawled when it hasn't. In practice, this situation can be made
very unlikely by using a large number of presence bits. The penalty for
collision is that a page will be omitted from a crawl.

Checkpoints

Be sure to save the list of visited
URLs to disk, in case the robot program crashes.

Partitioning

As the Web grows, it may become
impractical to complete a crawl with a single robot on a single computer. That
computer may not have enough memory, disk space, computing power, or network
bandwidth to complete a crawl.

Some large-scale web robots use
"farms" of robots, each a separate computer, working in tandem. Each
robot is assigned a particular "slice" of URLs, for which it is
responsible. Together, the robots work to crawl the Web. The individual robots
may need to communicate to pass URLs back and forth, to cover for
malfunctioning peers, or to otherwise coordinate their efforts.

A good reference book for implementing huge data structures is
Managing Gigabytes: Compressing and Indexing Documents
and Images, by Witten, et. al (Morgan Kaufmann). This book is full of
tricks and techniques for managing large amounts of data.

9.1.6 Aliases and Robot Cycles

Even
with the right data structures, it is sometimes difficult to tell if you have
visited a page before, because of URL "aliasing." Two URLs are aliases if the URLs look different but really refer
to the same resource.

Table 9-1 illustrates a few simple ways that
different URLs can point to the same resource.

	
Table 9-1. Different URLs that
 alias to the same documents

	

	
First URL

	
Second URL

	
When aliased

	
a

	
http://www.foo.com/bar.html

	
http://www.foo.com:80/bar.html

	
Port is 80 by default

	
b

	
http://www.foo.com/~fred

	
http://www.foo.com/%7Ffred

	
%7F is same as ~

	
c

	
http://www.foo.com/x.html#early

	
http://www.foo.com/x.html#middle

	
Tags don't change the page

	
d

	
http://www.foo.com/readme.htm

	
http://www.foo.com/README.HTM

	
Case-insensitive server

	
e

	
http://www.foo.com/

	
http://www.foo.com/index.html

	
Default page is index.html

	
f

	
http://www.foo.com/index.html

	
http://209.231.87.45/index.html

	
www.foo.com has this IP
 address

9.1.7 Canonicalizing URLs

Most
web robots try to eliminate the obvious aliases up front by
"canonicalizing" URLs into a standard form. A robot might first
convert every URL into a canonical form, by:

1. Adding
":80" to the hostname, if the port isn't specified

2. Converting
all %xx escaped characters into
their character equivalents

3. Removing
tags

These steps can eliminate the aliasing problems shown in Table 9-1a-c. But, without knowing information
about the particular web server, the robot doesn't have any good way of
avoiding the duplicates from Table 9-1d-f:

·
The robot would need to know whether the web server was
case-insensitive to avoid the alias in Table 9-1d.

·
The robot would need to know the web server's index-page
configuration for this directory to know whether the URLs in Table 9-1e were aliases.

·
The robot would need to know if the web server was configured to
do virtual hosting (covered in Chapter 5) to know if the URLs in Table 9-1f were aliases, even if it knew the
hostname and IP address referred to the same physical computer.

URL canonicalization can eliminate the basic syntactic
aliases, but robots will encounter other URL aliases that can't be eliminated
through converting URLs to standard forms.

9.1.8 Filesystem Link Cycles

Symbolic links on a filesystem can cause a particularly insidious kind of cycle,
because they can create an illusion of an infinitely deep directory hierarchy
where none exists. Symbolic link cycles usually are the result of an accidental
mistake by the server administrator, but they also can be created by "evil
webmasters" as a malicious trap for robots.

Figure 9-3 shows two filesystems. In Figure 9-3a, subdir is a normal
directory. In Figure 9-3b, subdir is a symbolic link
pointing back to /. In both figures, assume the file /index.html
contains a hyperlink to the file subdir/index.html.

Figure 9-3. Symbolic link cycles

[image: figs/http_0903.gif]

Using Figure 9-3a's filesystem, a web crawler may
take the following actions:

1. GET http://www.foo.com/index.html

Get /index.html, find link
to subdir/index.html.

2. GET http://www.foo.com/subdir/index.html

Get subdir/index.html, find
link to subdir/logo.gif.

3. GET http://www.foo.com/subdir/logo.gif

Get subdir/logo.gif, no more
links, all done.

But in Figure 9-3b's filesystem, the following might
happen:

1. GET http://www.foo.com/index.html

Get /index.html, find link
to subdir/index.html.

2. GET http://www.foo.com/subdir/index.html

Get subdir/index.html, but
get back same index.html.

3. GET http://www.foo.com/subdir/subdir/index.html

Get subdir/subdir/index.html.

4. GET http://www.foo.com/subdir/subdir/subdir/index.html

Get subdir/subdir/subdir/index.html.

The problem with Figure 9-3b is that subdir/ is a cycle
back to /, but because the URLs look different, the robot doesn't know
from the URL alone that the documents are identical. The unsuspecting robot
runs the risk of getting into a loop. Without some kind of loop detection, this
cycle will continue, often until the length of the URL exceeds the robot's or
the server's limits.

9.1.9 Dynamic Virtual Web Spaces

It's possible for malicious webmasters to intentionally create
sophisticated crawler loops to trap innocent, unsuspecting robots. In
particular, it's easy to publish a URL that looks like a normal file but really
is a gateway application. This application can whip up HTML on the fly that
contains links to imaginary URLs on the same server. When these imaginary URLs
are requested, the nasty server fabricates a new HTML page with new imaginary
URLs.

The malicious web server can take the poor robot on an
Alice-in-Wonderland journey through an infinite virtual web space, even if the
web server doesn't really contain any files. Even worse, it can make it very
difficult for the robot to detect the cycle, because the URLs and HTML can look
very different each time. Figure 9-4 shows an example of a malicious web
server generating bogus content.

Figure 9-4. Malicious dynamic web
space example

[image: figs/http_0904.gif]

More commonly, well-intentioned webmasters may unwittingly
create a crawler trap through symbolic links or dynamic content. For example,
consider a CGI-based calendaring program that generates a monthly calendar and
a link to the next month. A real user would not keep requesting the next-month
link forever, but a robot that is unaware of the dynamic nature of the content
might keep requesting these resources indefinitely.[4]

[4] This is a real example mentioned on http://www.searchtools.com/robots/robot-checklist.html
for the calendaring site at http://cgi.umbc.edu/cgi-bin/WebEvent/webevent.cgi.
As a result of dynamic content like this, many robots refuse to crawl pages
that have the substring "cgi" anywhere in the URL.

9.1.10 Avoiding Loops and Dups

There
is no foolproof way to avoid all cycles. In practice, well-designed robots need
to include a set of heuristics to try to avoid cycles.

Generally, the more autonomous a crawler is (less human
oversight), the more likely it is to get into trouble. There is a bit of a
trade-off that robot implementors need to make—these heuristics can help avoid
problems, but they also are somewhat "lossy," because you can end up
skipping valid content that looks suspect.

Some techniques that robots use to behave better in a web full
of robot dangers are:

Canonicalizing
URLs

Avoid syntactic aliases by
converting URLs into standard form.

Breadth-first
crawling

Crawlers have a large set of
potential URLs to crawl at any one time. By scheduling the URLs to visit in a
breadth-first manner, across web sites, you can minimize the impact of cycles.
Even if you hit a robot trap, you still can fetch hundreds of thousands of
pages from other web sites before returning to fetch a page from the cycle. If
you operate depth-first, diving head-first into a single site, you may hit a
cycle and never escape to other sites.[5]

[5] Breadth-first
crawling is a good idea in general, so as to more evenly disperse requests and
not overwhelm any one server. This can help keep the resources that a robot
uses on a server to a minimum.

Throttling[6]

Limit the number of pages the robot
can fetch from a web site in a period of time. If the robot hits a cycle and
continually tries to access aliases from a site, you can cap the total number
of duplicates generated and the total number of accesses to the server by
throttling.

Limit
URL size

The robot may refuse to crawl URLs
beyond a certain length (1KB is common). If a cycle causes the URL to grow in
size, a length limit will eventually stop the cycle. Some web servers fail when
given long URLs, and robots caught in a URL-increasing cycle can cause some web
servers to crash. This may make webmasters misinterpret the robot as a
denial-of-service attacker.

As a caution, this technique can
certainly lead to missed content. Many sites today use URLs to help manage user
state (for example, storing user IDs in the URLs referenced in a page). URL
size can be a tricky way to limit a crawl; however, it can provide a great flag
for a user to inspect what is happening on a particular site, by logging an
error whenever requested URLs reach a certain size.

URL/site
blacklist

Maintain a list of known sites and
URLs that correspond to robot cycles and traps, and avoid them like the plague.
As new problems are found, add them to the blacklist.

This requires human action.
However, most large-scale crawlers in production today have some form of a
blacklist, used to avoid certain sites because of inherent problems or
something malicious in the sites. The blacklist also can be used to avoid
certain sites that have made a fuss about being crawled.[7]

[7] Section 9.4 discusses how sites can avoid
being crawled, but some users refuse to use this simple control mechanism and
become quite irate when their sites are crawled.

Pattern
detection

Cycles caused by
filesystem symlinks and similar misconfigurations tend to follow patterns; for
example, the URL may grow with components duplicated. Some robots view URLs
with repeating components as potential cycles and refuse to crawl URLs with
more than two or three repeated components.

Not all repetition
is immediate (e.g., "/subdir/subdir/subdir..."). It's possible to
have cycles of period 2 or other intervals, such as
"/subdir/images/subdir/images/subdir/images/...". Some robots look
for repeating patterns of a few different periods.

Content fingerprinting

Fingerprinting is
a more direct way of detecting duplicates that is used by some of the more
sophisticated web crawlers. Robots using content fingerprinting take the bytes
in the content of the page and compute a checksum.
This checksum is a compact representation of the content of the page. If a
robot ever fetches a page whose checksum it has seen before, the page's links
are not crawled—if the robot has seen the page's content before, it has already
initiated the crawling of the page's links.

The checksum
function must be chosen so that the odds of two different pages having the same
checksum are small. Message digest functions such as MD5 are popular for
fingerprinting.

Because some web
servers dynamically modify pages on the fly, robots sometimes omit certain
parts of the web page content, such as embedded links, from the checksum
calculation. Still, dynamic server-side includes that customize arbitrary page
content (adding dates, access counters, etc.) may prevent duplicate detection.

Human monitoring

The Web is a wild
place. Your brave robot eventually will stumble into a problem that none of
your techniques will catch. All production-quality robots must be designed with
diagnostics and logging, so human beings can easily monitor the robot's
progress and be warned quickly if something unusual is happening. In some cases,
angry net citizens will highlight the problem for you by sending you nasty
email.

Good spider heuristics for crawling datasets
as vast as the Web are always works in progress. Rules are built over time and
adapted as new types of resources are added to the Web. Good rules are always
evolving.

Many smaller, more customized crawlers skirt
some of these issues, as the resources (servers, network bandwidth, etc.) that
are impacted by an errant crawler are manageable, or possibly even are under
the control of the person performing the crawl (such as on an intranet site). These
crawlers rely on more human monitoring to prevent problems.

9.2 Robotic
HTTP

Robots
are no different from any other HTTP client program. They too need to abide by
the rules of the HTTP specification. A robot is making HTTP requests and
advertising itself as an HTTP/1.1 client needs to use the appropriate HTTP
request headers.

Many robots try to implement the minimum
amount of HTTP needed to request the content they seek. This can lead to
problems; however, it's unlikely that this behavior will change anytime soon. As
a result, many robots make HTTP/1.0 requests, because that protocol has few
requirements.

9.2.1 Identifying Request Headers

Despite the minimum amount of HTTP that robots tend to support, most do implement and send some
identification headers—most notably, the User-Agent HTTP header. It's
recommended that robot implementors send some basic header information to
notify the site of the capabilities of the robot, the robot's identity, and
where it originated.

This is useful information both for tracking
down the owner of an errant crawler and for giving the server some information
about what types of content the robot can handle. Some of the basic
indentifying headers that robot implementors are encouraged to implement are:

User-Agent

Tells the server
the name of the robot making the request.

From

Provides the email
address of the robot's user/administrator.[8]

[8] An
RFC 822 email address format.

Accept

Tells the server what media types
are okay to send.[9]
This can help ensure that the robot receives only content in which it's
interested (text, images, etc.).

[9] Section 3.5.2.1 lists all of the accept
headers; robots may find it useful to send headers such as Accept-Charset if
they are interested in particular versions.

Referer

Provides the URL of the document
that contains the current request-URL.[10]

[10] This can be
very useful to site administrators that are trying to track down how a robot
found links to their sites' content.

9.2.2 Virtual Hosting

Robot implementors need to support the Host header. Given the
prevalence of virtual hosting (Chapter 5 discusses virtually hosted servers
in more detail), not including the Host HTTP header in requests can lead to
robots identifying the wrong content with a particular URL. HTTP/1.1 requires
the use of the Host header for this reason.

Most servers are configured to serve a particular site by
default. Thus, a crawler not including the Host header can make a request to a
server serving two sites, like those in Figure 9-5 (www.joes-hardware.com
and www.foo.com) and, if the server is
configured to serve www.joes-hardware.com by
default (and does not require the Host header), a request for a page on www.foo.com can result in the crawler getting content
from the Joe's Hardware site. Worse yet, the crawler will actually think the
content from Joe's Hardware was from www.foo.com.
I am sure you can think of some more unfortunate situations if documents from
two sites with polar political or other views were served from the same server.

Figure 9-5. Example of virtual
docroots causing trouble if no Host header is sent with the request

[image: figs/http_0905.gif]

9.2.3 Conditional Requests

Given the enormity of some robotic endeavors, it often makes sense to minimize the amount
of content a robot retrieves. As in the case of Internet search-engine robots,
with potentially billions of web pages to download, it makes sense to
re-retrieve content only if it has changed.

Some of these robots implement conditional HTTP requests,[11]
comparing timestamps or entity tags to see if the last version that they
retrieved has been updated. This is very similar to the way that an HTTP cache
checks the validity of the local copy of a previously fetched resource. See Chapter 7 for more on how caches validate
local copies of resources.

[11] Section 3.5.2.2 gives a complete listing of
the conditional headers that a robot can implement.

9.2.4 Response Handling

Because many
robots are interested primarily in getting the content requested through simple
GET methods, often they don't do much in the way of response handling. However,
robots that use some features of HTTP (such as conditional requests), as well
as those that want to better explore and interoperate with servers, need to be
able to handle different types of HTTP responses.

9.2.4.1 Status codes

In general, robots
should be able to handle at least the common or expected status codes. All
robots should understand HTTP status codes such as 200 OK and 404 Not Found.
They also should be able to deal with status codes that they don't explicitly
understand based on the general category of response. Table 3-2 in Chapter 3 gives a breakdown of the different
status-code categories and their meanings.

It is important to note that some servers don't always return
the appropriate error codes. Some servers even return 200 OK HTTP status codes
with the text body of the message describing an error! It's hard to do much
about this—it's just something for implementors to be aware of.

9.2.4.2 Entities

Along with
information embedded in the HTTP headers, robots can look for information in
the entity itself. Meta HTML tags,[12]
such as the meta http-equiv tag,
are a means for content authors to embed additional information about
resources.

[12] Section 9.4.7.1 lists additional meta
directives that site administrators and content authors can use to control the
behavior of robots and what they do with documents that have been retrieved.

The http-equiv
tag itself is a way for content authors to override certain headers that the
server handling their content may serve:

<meta http-equiv="Refresh" content="1;URL=index.html">

This tag instructs the receiver to treat the document as if
its HTTP response header contained a Refresh HTTP header with the value
"1, URL=index.html".[13]

[13] The Refresh HTTP header sometimes is used
as a means to redirect users (or in this case, a robot) from one page to
another.

Some servers actually parse the contents of HTML pages prior
to sending them and include http-equiv
directives as headers; however, some do not. Robot implementors may want to
scan the HEAD elements of HTML documents to look for http-equiv information. [14]

[14] Meta tags must occur in the HEAD section
of HTML documents, according to the HTML specification. However, they sometimes
occur in other HTML document sections, as not all HTML documents adhere to the
specification.

9.2.5 User-Agent Targeting

Web administrators should keep in mind that many robots will
visit their sites and therefore should expect requests from them. Many sites
optimize content for various user agents, attempting to detect browser types to
ensure that various site features are supported. By doing this, the sites serve
error pages instead of content to robots. Performing a text search for the
phrase "your browser does not support frames" on some search engines
will yield a list of results for error pages that contain that phrase, when in
fact the HTTP client was not a browser at all, but a robot.

Site administrators should plan a strategy for handling robot requests.
For example, instead of limiting their content development to specific browser
support, they can develop catch-all pages for non-feature rich browsers and
robots. At a minimum, they should expect robots to visit their sites and not be
caught off guard when they do.[15]

[15] Section 9.4 provides information for how site
administrators can control the behavior of robots on their sites if there is
content that should not be accessed by robots.

9.3 Misbehaving Robots

There are many ways that wayward robots
can cause mayhem. Here are a few mistakes robots can make, and the impact of
their misdeeds:

Runaway robots

Robots issue HTTP requests much
faster than human web surfers, and they commonly run on fast computers with
fast network links. If a robot contains a programming logic error, or gets
caught in a cycle, it can throw intense load against a web server—quite
possibly enough to overload the server and deny service to anyone else. All
robot authors must take extreme care to design in safeguards to protect against
runaway robots.

Stale
URLs

Some robots visit
lists of URLs. These lists can be old. If a web site makes a big change in its
content, robots may request large numbers of nonexistent URLs. This annoys some
web site administrators, who don't like their error logs filling with access
requests for nonexistent documents and don't like having their web server
capacity reduced by the overhead of serving error pages.

Long, wrong URLs

As a result of
cycles and programming errors, robots may request large, nonsense URLs from web
sites. If the URL is long enough, it may reduce the performance of the web server,
clutter the web server access logs, and even cause fragile web servers to
crash.

Nosy robots

Some robots may
get URLs that point to private data and make that data easily accessible
through Internet search engines and other applications. If the owner of the
data didn't actively advertise the web pages, she may view the robotic
publishing as a nuisance at best and an invasion of privacy at worst.[16]

[16] Generally, if a resource is
available over the public Internet, it is likely referenced somewhere. Few
resources are truly private, with the web of links that exists on the Internet.

Usually this
happens because a hyperlink to the "private" content that the robot
followed already exists (i.e., the content isn't as secret as the owner thought
it was, or the owner forgot to remove a preexisting hyperlink). Occasionally it
happens when a robot is very zealous in trying to scavenge the documents on a
site, perhaps by fetching the contents of a directory, even if no explicit
hyperlink exists.

Robot implementors
retrieving large amounts of data from the Web should be aware that their robots
are likely to retrieve sensitive data at some point—data that the site
implementor never intended to be accessible over the Internet. This sensitive
data can include password files or even credit card information. Clearly, a
mechanism to disregard content once this is pointed out (and remove it from any
search index or archive) is important. Malicious search engine and
archive users have been known to exploit the abilities of large-scale web
crawlers to find content—some search engines, such as Google,[17]
actually archive representations of the pages they have crawled, so even if
content is removed, it can still be found and accessed for some time.

[17] See search
results at http://www.google.com. A cached link, which is
a copy of the page that the Google crawler retrieved and indexed, is available
on most results.

Dynamic
gateway access

Robots don't always know what they
are accessing. A robot may fetch a URL whose content comes from a gateway
application. In this case, the data obtained may be special-purpose and may be
expensive to compute. Many web site administrators don't like naïve robots
requesting documents that come from gateways.

9.4 Excluding Robots

The
robot community understood the problems that robotic web site access could
cause. In 1994, a simple, voluntary technique was proposed to keep robots out
of where they don't belong and provide webmasters with a mechanism to better
control their behavior. The standard was named the "Robots Exclusion
Standard" but is often just called robots.txt,
after the file where the access-control information is stored.

The idea of robots.txt is simple. Any web server can
provide an optional file named robots.txt in the document root of the
server. This file contains information about what robots can access what parts
of the server. If a robot follows this voluntary standard, it will request the robots.txt
file from the web site before accessing any other resource from that site. For
example, the robot in Figure 9-6 wants to download http://www.joes-hardware.com/specials/acetylene-torches.html
from Joe's Hardware. Before the robot can request the page, however, it needs
to check the robots.txt file to see if it has permission to fetch this
page. In this example, the robots.txt file does not block the robot, so
the robot fetches the page.

Figure 9-6. Fetching robots.txt and
verifying accessibility before crawling the target file

[image: figs/http_0906.gif]

9.4.1 The Robots Exclusion Standard

The Robots Exclusion Standard is an ad
hoc standard. At the time of this writing, no official standards body owns this
standard, and vendors implement different subsets of the standard. Still, some
ability to manage robots' access to web sites, even if imperfect, is better
than none at all, and most major vendors and search-engine crawlers implement
support for the exclusion standard.

There are three revisions of the Robots Exclusion Standard,
though the naming of the versions is not well defined. We adopt the version
numbering shown in Table 9-2.

	
Table 9-2. Robots Exclusion
 Standard versions

	
Version

	
Title and
 description

	
Date

	
0.0

	
A Standard for Robot Exclusion—Martijn Koster's original robots.txt mechanism with Disallow directive

	
June 1994

	
1.0

	
A Method for Web Robots Control—Martijn Koster's IETF draft
 with additional support for Allow

	
Nov. 1996

	
2.0

	
An Extended Standard for Robot Exclusion—Sean Conner's
 extension including regex and timing information; not widely supported

	
Nov. 1996

Most robots today adopt the v0.0 or v1.0 standards. The v2.0
standard is much more complicated and hasn't been widely adopted. It may never
be. We'll focus on the v1.0 standard here, because it is in wide use and is
fully compatible with v0.0.

9.4.2 Web Sites and robots.txt Files

Before visiting
any URLs on a web site, a robot must retrieve and process the robots.txt
file on the web site, if it is present.[18] There is a single robots.txt
resource for the entire web site defined by the hostname and port number. If
the site is virtually hosted, there can be a different robots.txt file
for each virtual docroot, as with any other file.

[18] Even though we say "robots.txt
file," there is no reason that the robots.txt resource must
strictly reside in a filesystem. For example, the robots.txt resource
could by dynamically generated by a gateway application.

Currently, there is no way to install "local" robots.txt
files in individual subdirectories of a web site. The webmaster is responsible
for creating an aggregate robots.txt file that describes the exclusion
rules for all content on the web site.

9.4.2.1 Fetching robots.txt

Robots fetch the robots.txt
resource using the HTTP GET method, like any other file on the web server. The
server returns the robots.txt file, if present, in a text/plain body. If
the server responds with a 404 Not Found HTTP status code, the robot can assume
that there are no robotic access restrictions and that it can request any file.

Robots should pass along identifying information in the From
and User-Agent headers to help site administrators track robotic accesses and
to provide contact information in the event that the site administrator needs
to inquire or complain about the robot. Here's an example HTTP crawler request
from a commercial web robot:

GET /robots.txt HTTP/1.0
Host: www.joes-hardware.com
User-Agent: Slurp/2.0
Date: Wed Oct 3 20:22:48 EST 2001

9.4.2.2 Response codes

Many web sites
do not have a robots.txt resource, but the robot doesn't know that. It
must attempt to get the robots.txt resource from every site. The robot
takes different actions depending on the result of the robots.txt
retrieval:

·
If the server responds with a success status (HTTP status code
2XX), the robot must parse the content and apply the exclusion rules to fetches
from that site.

·
If the server response indicates the resource does not exist
(HTTP status code 404), the robot can assume that no exclusion rules are active
and that access to the site is not restricted by robots.txt.

·
If the server response indicates access restrictions (HTTP status
code 401 or 403) the robot should regard access to the site as completely
restricted.

·
If the request attempt results in temporary failure (HTTP status
code 503), the robot should defer visits to the site until the resource can be
retrieved.

·
If the server response indicates redirection (HTTP status code
3XX), the robot should follow the redirects until the resource is found.

9.4.3 robots.txt File Format

The robots.txt file has a very
simple, line-oriented syntax. There are three types of lines in a robots.txt
file: blank lines, comment lines, and rule lines. Rule lines look like HTTP
headers (<Field>: <value>) and are used for pattern matching. For
example:

this robots.txt file allows Slurp & Webcrawler to crawl
the public parts of our site, but no other robots...

User-Agent: slurp
User-Agent: webcrawler
Disallow: /private

User-Agent: *
Disallow:

The lines in a robots.txt file are
logically separated into "records." Each record describes a set of
exclusion rules for a particular set of robots. This way, different exclusion
rules can be applied to different robots.

Each record consists of a set of rule lines, terminated by a
blank line or end-of-file character. A record starts with one or more
User-Agent lines, specifying which robots are affected by this record, followed
by Disallow and Allow lines that say what URLs these robots can access.[19]

[19] For practical reasons, robot software
should be robust and flexible with the end-of-line character. CR, LF, and CRLF
should all be supported.

The previous example shows a robots.txt file that
allows the Slurp and Webcrawler
robots to access any file except those files in the private
subdirectory. The same file also prevents any other robots from accessing
anything on the site.

Let's look at the User-Agent, Disallow, and Allow lines.

9.4.3.1 The User-Agent line

Each robots record starts with one or
more User-Agent lines, of the form:

User-Agent: <robot-name>

or:

User-Agent: *

The robot name (chosen by the robot implementor) is sent in
the User-Agent header of the robot's HTTP GET request.

When a robot processes a robots.txt file, it must obey
the record with either:

·
The first robot name that is a case-insensitive substring of the
robot's name

·
The first robot name that is "*"

If the robot can't find a User-Agent line that matches its
name, and can't find a wildcarded "User-Agent: *" line, no record
matches, and access is unlimited.

Because the robot name matches case-insensitive substrings, be
careful about false matches. For example, "User-Agent: bot" matches
all the robots named Bot, Robot, Bottom-Feeder,
Spambot, and Dont-Bother-Me.

9.4.3.2 The Disallow and Allow lines

The Disallow and Allow lines immediately
follow the User-Agent lines of a robot exclusion record. They describe which
URL paths are explicitly forbidden or explicitly allowed for the specified
robots.

The robot must match the desired URL against all of the Disallow and Allow rules for the exclusion
record, in order. The first match found is used. If no match is found, the URL
is allowed.[20]

[20] The robots.txt URL always is
allowed and must not appear in the Allow/Disallow rules.

For an Allow/Disallow line to match a URL, the rule path must
be a case-sensitive prefix of the URL path. For example, "Disallow:
/tmp" matches all of these URLs:

http://www.joes-hardware.com/tmp

http://www.joes-hardware.com/tmp/

http://www.joes-hardware.com/tmp/pliers.html

http://www.joes-hardware.com/tmpspc/stuff.txt

9.4.3.3 Disallow/Allow prefix matching

Here are a few more details about Disallow/Allow prefix
matching:

·
Disallow and Allow rules require case-sensitive prefix matches.
The asterisk has no special meaning (unlike in User-Agent lines), but the
universal wildcarding effect can be obtained from the empty string.

·
Any "escaped" characters (%XX) in the rule path or the
URL path are unescaped back into bytes before comparison (with the exception of
%2F, the forward slash, which must match exactly).

·
If the rule path is the empty string, it matches everything.

Table 9-3 lists several examples of matching
between rule paths and URL paths.

	
Table 9-3. Robots.txt path
 matching examples

	
Rule path

	
URL path

	
Match?

	
Comments

	
/tmp

	
/tmp

	
[image: figs/check.gif]

	
Rule path == URL path

	
/tmp

	
/tmpfile.html

	
[image: figs/check.gif]

	
Rule path is a prefix of URL path

	
/tmp

	
/tmp/a.html

	
[image: figs/check.gif]

	
Rule path is a prefix of URL path

	
/tmp/

	
/tmp

	
X

	
/tmp/ is not a prefix of /tmp

	

	
README.TXT

	
[image: figs/check.gif]

	
Empty rule path matches everything

	
/~fred/hi.html

	
%7Efred/hi.html

	
[image: figs/check.gif]

	
%7E is treated the same as ~

	
/%7Efred/hi.html

	
/~fred/hi.html

	
[image: figs/check.gif]

	
%7E is treated the same as ~

	
/%7efred/hi.html

	
/%7Efred/hi.html

	
[image: figs/check.gif]

	
Case isn't significant in escapes

	
/~fred/hi.html

	
~fred%2Fhi.html

	
X

	
%2F is slash, but slash is a special case that must match
 exactly

Prefix matching usually works pretty well, but there are a few
places where it is not expressive enough. If there are particular
subdirectories for which you also want to disallow crawling, regardless of what
the prefix of the path is, robots.txt provides no means for this. For
example, you might want to avoid crawling of RCS version control
subdirectories. Version 1.0 of the robots.txt scheme provides no way to
support this, other than separately enumerating every path to every RCS
subdirectory.

9.4.4 Other robots.txt Wisdom

Here are some other rules with respect to parsing the robots.txt
file:

·
The robots.txt file may contain
fields other than User-Agent, Disallow, and Allow, as the specification
evolves. A robot should ignore any field it doesn't understand.

·
For backward compatibility, breaking of lines is not allowed.

·
Comments are allowed anywhere in the file; they consist of
optional whitespace, followed by a comment character (#) followed by the comment, until the
end-of-line character.

·
Version 0.0 of the Robots Exclusion Standard didn't support the
Allow line. Some robots implement only the Version 0.0 specification and ignore
Allow lines. In this situation, a robot will behave conservatively, not
retrieving URLs that are permitted.

9.4.5 Caching and Expiration of robots.txt

If a robot had to refetch a robots.txt file before every file access, it would double the load on
web servers, as well as making the robot less efficient. Instead, robots are
expected to fetch the robots.txt file periodically and cache the
results. The cached copy of robots.txt should be used by the robot until
the robots.txt file expires. Standard HTTP cache-control mechanisms are
used by both the origin server and robots to control the caching of the
robots.txt file. Robots should take note of Cache-Control and Expires
headers in the HTTP response.[21]

[21] See Section 7.8 for more on handling caching
directives.

Many production crawlers today are not HTTP/1.1 clients;
webmasters should note that those crawlers will not necessarily understand the
caching directives provided for the robots.txt resource.

If no Cache-Control directives are present, the draft specification
allows caching for seven days. But, in practice, this often is too long. Web
server administrators who did not know about robots.txt often create one
in response to a robotic visit, but if the lack of a robots.txt file is
cached for a week, the newly created robots.txt file will appear to have
no effect, and the site administrator will accuse the robot administrator of
not adhering to the Robots Exclusion Standard.[22]

[22] Several large-scale web crawlers use the
rule of refetching robots.txt daily when actively crawling the Web.

9.4.6 Robot Exclusion Perl Code

A few publicly available Perl libraries exist to interact with
robots.txt files. One example is the WWW::RobotsRules module available
for the CPAN public Perl archive.

The parsed robots.txt file is kept in the WWW::RobotRules
object, which provides methods to check if access to a given URL is prohibited.
The same WWW::RobotRules object can parse multiple robots.txt files.

Here are the primary methods in the WWW::RobotRules API:

Create
RobotRules object

$rules = WWW::RobotRules->new($robot_name);

Load
the robots.txt file

$rules->parse($url, $content, $fresh_until);

Check
if a site URL is fetchable

$can_fetch = $rules->allowed($url);

Here's a short Perl program that demonstrates the use of
WWW::RobotRules:

require WWW::RobotRules;

Create the RobotRules object, naming the robot "SuperRobot"
my $robotsrules = new WWW::RobotRules 'SuperRobot/1.0';
use LWP::Simple qw(get);

Get and parse the robots.txt file for Joe's Hardware, accumulating the rules
$url = "http://www.joes-hardware.com/robots.txt";
my $robots_txt = get $url;
$robotsrules->parse($url, $robots_txt);

Get and parse the robots.txt file for Mary's Antiques, accumulating the rules
$url = "http://www.marys-antiques.com/robots.txt";
my $robots_txt = get $url;
$robotsrules->parse($url, $robots_txt);

Now RobotRules contains the set of robot exclusion rules for several
different sites. It keeps them all separate. Now we can use RobotRules
to test if a robot is allowed to access various URLs.
if ($robotsrules->allowed($some_target_url))
{
 $c = get $url;
 ...
}

The following is a hypothetical robots.txt file for www.marys-antiques.com:

###
This is the robots.txt file for Mary's Antiques web site
###

Keep Suzy's robot out of all the dynamic URLs because it doesn't
understand them, and out of all the private data, except for the
small section Mary has reserved on the site for Suzy.

User-Agent: Suzy-Spider
Disallow: /dynamic
Allow: /private/suzy-stuff
Disallow: /private

The Furniture-Finder robot was specially designed to understand
Mary's antique store's furniture inventory program, so let it
crawl that resource, but keep it out of all the other dynamic
resources and out of all the private data.

User-Agent: Furniture-Finder
Allow: /dynamic/check-inventory
Disallow: /dynamic
Disallow: /private

Keep everyone else out of the dynamic gateways and private data.

User-Agent: *
Disallow: /dynamic
Disallow: /private

This robots.txt file contains a record for the robot
called SuzySpider, a record for the robot
called FurnitureFinder, and a default record
for all other robots. Each record applies a different set of access policies to
the different robots:

·
The exclusion record for SuzySpider
keeps the robot from crawling the store inventory gateway URLs that start with /dynamic
and out of the private user data, except for the section reserved for Suzy.

·
The record for the FurnitureFinder
robot permits the robot to crawl the furniture inventory gateway URL. Perhaps
this robot understands the format and rules of Mary's gateway.

·
All other robots are kept out of all the dynamic and private web
pages, though they can crawl the remainder of the URLs.

Table 9-4 lists some examples for different
robot accessibility to the Mary's Antiques web site.

	
Table 9-4. Robot accessibility to
 the Mary's Antiques web site

	
URL

	
SuzySpider

	
FurnitureFinder

	
NosyBot

	
http://www.marys-antiques.com/

	
[image: figs/check.gif]

	
[image: figs/check.gif]

	
[image: figs/check.gif]

	
http://www.marys-antiques.com/index.html

	
[image: figs/check.gif]

	
[image: figs/check.gif]

	
[image: figs/check.gif]

	
http://www.marys-antiques.com/private/payroll.xls

	
X

	
X

	
X

	
http://www.marys-antiques.com/private/suzy-stuff/taxes.txt

	
[image: figs/check.gif]

	
X

	
X

	
http://www.marys-antiques.com/dynamic/buy-stuff?id=3546

	
X

	
X

	
X

	
http://www.marys-antiques.com/dynamic/check-inventory?kitchen

	
X

	
[image: figs/check.gif]

	
X

9.4.7 HTML Robot-Control META Tags

The robots.txt
file allows a site administrator to exclude robots from some or all of a web
site. One of the disadvantages of the robots.txt file is that it is
owned by the web site administrator, not the author of the individual content.

HTML page authors have a more direct way of restricting robots
from individual pages. They can add robot-control tags to the HTML documents
directly. Robots that adhere to the robot-control HTML tags will still be able
to fetch the documents, but if a robot exclusion tag is present, they will
disregard the documents. For example, an Internet search-engine robot would not
include the document in its search index. As with the robots.txt standard,
participation is encouraged but not enforced.

Robot exclusion tags are implemented using HTML META tags,
using the form:

<META NAME="ROBOTS" CONTENT=directive-list>

9.4.7.1 Robot META directives

There are several types of robot META
directives, and new directives are likely to be added over time and as search
engines and their robots expand their activities and feature sets. The two
most-often-used robot META directives are:

NOINDEX

Tells a robot not to process the
page's content and to disregard the document (i.e., not include the content in
any index or database).

<META NAME="ROBOTS" CONTENT="NOINDEX">

NOFOLLOW

Tells a robot not to crawl any
outgoing links from the page.

<META NAME="ROBOTS" CONTENT="NOFOLLOW">

In addition to NOINDEX and NOFOLLOW, there are the opposite
INDEX and FOLLOW directives, the NOARCHIVE directive, and the ALL and NONE directives.
These robot META tag directives are summarized as follows:

INDEX

Tells a robot that it may index the
contents of the page.

FOLLOW

Tells a robot that it may crawl any
outgoing links in the page.

NOARCHIVE

Tells a robot that it should not
cache a local copy of the page.[23]

[23] This META tag
was introduced by the folks who run the Google search engine as a way for
webmasters to opt out of allowing Google to serve cached pages of their
content. It also can be used with META NAME="googlebot".

ALL

Equivalent to INDEX, FOLLOW.

NONE

Equivalent to NOINDEX, NOFOLLOW.

The robot META tags, like all HTML META tags, must appear in
the HEAD section of an HTML page:

<html>
<head>
 <meta name="robots" content="noindex,nofollow">
 <title>...</title>
</head>
<body>
 ...
</body>
</html>

Note that the "robots" name of the tag and the
content are case-insensitive.

You obviously should not specify conflicting
or repeating directives, such as:

<meta name="robots" content="INDEX,NOINDEX,NOFOLLOW,FOLLOW,FOLLOW">

the behavior of which likely is undefined and
certainly will vary from robot implementation to robot implementation.

9.4.7.2 Search engine META tags

We just discussed robots META tags, used to
control the crawling and indexing activity of web robots. All robots META tags
contain the name="robots" attribute.

Many other types of META tags are available, including those
shown in Table 9-5. The
DESCRIPTION and KEYWORDS META tags are useful for content-indexing
search-engine robots.

	
Table 9-5. Additional
 META tag directives

	
name=

	
content=

	
Description

	
DESCRIPTION

	
<text>

	
Allows an author to define a short text
 summary of the web page. Many search engines look at META DESCRIPTION tags,
 allowing page authors to specify appropriate short abstracts to describe
 their web pages.

<meta name="description"
 content="Welcome to Mary's Antiques web site">

	
KEYWORDS

	
<comma list>

	
Associates a comma-separated list of words
 that describe the web page, to assist in keyword searches.

<meta name="keywords"
 content="antiques,mary,furniture,restoration">

	
REVISIT-AFTER [24]

	
<no. days>

	
Instructs the robot or search engine that
 the page should be revisited, presumably because it is subject to change,
 after the specified number of days.

<meta name="revisit-after" content="10 days">

[24]
This directive is not likely to have wide support.

9.5 Robot
Etiquette

In 1993,
Martijn Koster, a pioneer in the web robot community, wrote up a list of
guidelines for authors of web robots. While some of the advice is dated, much
of it still is quite useful. Martijn's original treatise, "Guidelines for
Robot Writers," can be found at http://www.robotstxt.org/wc/guidelines.html.

Table 9-6 provides
a modern update for robot designers and operators, based heavily on the spirit
and content of the original list. Most of these guidelines are targeted at
World Wide Web robots; however, they are applicable to smaller-scale crawlers
too.

	
Table 9-6. Guidelines
 for web robot operators

	
Guideline

	
Description

	
(1) Identification

	

	
Identify Your Robot

	
Use the HTTP User-Agent field to tell web
 servers the name of your robot. This will help administrators understand what
 your robot is doing. Some robots also include a URL describing the purpose
 and policies of the robot in the User-Agent header.

	
Identify Your Machine

	
Make sure your robot runs from a machine
 with a DNS entry, so web sites can reverse-DNS the robot IP address into a
 hostname. This will help the administrator identify the organization
 responsible for the robot.

	
Identify a Contact

	
Use the HTTP From field to provide a
 contact email address.

	
(2) Operations

	

	
Be Alert

	
Your robot will generate questions and
 complaints. Some of this is caused by robots that run astray. You must be
 cautious and watchful that your robot is behaving correctly. If your robot
 runs around the clock, you need to be extra careful. You may need to have
 operations people monitoring the robot 24 X 7 until your robot is well
 seasoned.

	
Be Prepared

	
When you begin a major robotic journey, be
 sure to notify people at your organization. Your organization will want to
 watch for network bandwidth consumption and be ready for any public
 inquiries.

	
Monitor and Log

	
Your robot should be richly equipped with
 diagnostics and logging, so you can track progress, identify any robot traps,
 and sanity check that everything is working right. We cannot stress enough
 the importance of monitoring and logging a robot's behavior. Problems and
 complaints will arise, and having detailed logs of a crawler's behavior can
 help a robot operator backtrack to what has happened. This is important not
 only for debugging your errant web crawler but also for defending its
 behavior against unjustified complaints.

	
Learn and Adapt

	
Each crawl, you will learn new things. Adapt
 your robot so it improves each time and avoids the common pitfalls.

	
(3) Limit Yourself

	

	
Filter on URL

	
If a URL looks like it refers to data that
 you don't understand or are not interested in, you might want to skip it. For
 example, URLs ending in ".Z", ".gz", ".tar", or
 ".zip" are likely to be compressed files or archives. URLs ending
 in ".exe" are likely to be programs. URLs ending in
 ".gif", ".tif", ".jpg" are likely to be images.
 Make sure you get what you are after.

	
Filter Dynamic URLs

	
Usually, robots don't want to crawl content
 from dynamic gateways. The robot won't know how to properly format and post
 queries to gateways, and the results are likely to be erratic or transient. If
 a URL contains "cgi" or has a "?", the robot may want to
 avoid crawling the URL.

	
Filter with Accept Headers

	
Your robot should use HTTP Accept headers
 to tell servers what kind of content it understands.

	
Adhere to robots.txt

	
Your robot should adhere to the robots.txt
 controls on the site.

	
Throttle Yourself

	
Your robot should count the number of
 accesses to each site and when they occurred, and use this information to
 ensure that it doesn't visit any site too frequently. When a robot accesses a
 site more frequently than every few minutes, administrators get suspicious. When
 a robot accesses a site every few seconds, some administrators get angry. When
 a robot hammers a site as fast as it can, shutting out all other traffic,
 administrators will be furious.

In general, you should limit your robot to
 a few requests per minute maximum, and ensure a few seconds between each request.
 You also should limit the total number of accesses to a site, to prevent
 loops.

	
(4) Tolerate Loops
 and Dups and Other Problems

	

	
Handle All Return Codes

	
You must be prepared to handle all HTTP
 status codes, including redirects and errors. You should also log and monitor
 these codes. A large number of non-success results on a site should cause
 investigation. It may be that many URLs are stale, or the server refuses to
 serve documents to robots.

	
Canonicalize URLs

	
Try to remove common aliases by normalizing
 all URLs into a standard form.

	
Aggressively Avoid Cycles

	
Work very hard to detect and avoid cycles. Treat
 the process of operating a crawl as a feedback loop. The results of problems
 and their resolutions should be fed back into the next crawl, making your
 crawler better with each iteration.

	
Monitor for Traps

	
Some types of cycles are intentional and
 malicious. These may be intentionally hard to detect. Monitor for large
 numbers of accesses to a site with strange URLs. These may be traps.

	
Maintain a Blacklist

	
When you find traps, cycles, broken sites,
 and sites that want your robot to stay away, add them to a blacklist, and
 don't visit them again.

	
(5) Scalability

	

	
Understand Space

	
Work out the math in advance for how large
 a problem you are solving. You may be surprised how much memory your
 application will require to complete a robotic task, because of the huge
 scale of the Web.

	
Understand Bandwidth

	
Understand how much network bandwidth you
 have available and how much you will need to complete your robotic task in
 the required time. Monitor the actual usage of network bandwidth. You
 probably will find that the outgoing bandwidth (requests) is much smaller
 than the incoming bandwidth (responses). By monitoring network usage, you
 also may find the potential to better optimize your robot, allowing it to
 take better advantage of the network bandwidth by better usage of its TCP
 connections.[25]

	
Understand Time

	
Understand how long it should take for your
 robot to complete its task, and sanity check that the progress matches your
 estimate. If your robot is way off your estimate, there probably is a problem
 worth investigating.

	
Divide and Conquer

	
For large-scale crawls, you will likely
 need to apply more hardware to get the job done, either using big
 multiprocessor servers with multiple network cards, or using multiple smaller
 computers working in unison.

	
(6) Reliability

	

	
Test Thoroughly

	
Test your robot thoroughly internally
 before unleashing it on the world. When you are ready to test off-site, run a
 few, small, maiden voyages first. Collect lots of results and analyze your
 performance and memory use, estimating how they will scale up to the larger
 problem.

	
Checkpoint

	
Any serious robot will need to save a
 snapshot of its progress, from which it can restart on failure. There will be
 failures: you will find software bugs, and hardware will fail. Large-scale
 robots can't start from scratch each time this happens. Design in a
 checkpoint/restart feature from the beginning.

	
Fault Resiliency

	
Anticipate failures, and design your robot
 to be able to keep making progress when they occur.

	
(7) Public Relations

	

	
Be Prepared

	
Your robot probably will upset a number of
 people. Be prepared to respond quickly to their enquiries. Make a web page
 policy statement describing your robot, and include detailed instructions on
 how to create a robots.txt file.

	
Be Understanding

	
Some of the people who contact you about
 your robot will be well informed and supportive; others will be naïve. A few
 will be unusually angry. Some may well seem insane. It's generally
 unproductive to argue the importance of your robotic endeavor. Explain the Robots
 Exclusion Standard, and if they are still unhappy, remove the complainant
 URLs immediately from your crawl and add them to the blacklist.

	
Be Responsive

	
Most unhappy webmasters are just unclear
 about robots. If you respond immediately and professionally, 90% of the
 complaints will disappear quickly. On the other hand, if you wait several
 days before responding, while your robot continues to visit a site, expect to
 find a very vocal, angry opponent.

[25] See Chapter 4 for more
on optimizing TCP performance.

9.6 Search Engines

The most widespread web robots are used by Internet search
engines. Internet search engines allow users to find documents about any
subject all around the world.

Many of the most popular sites on the Web today are search engines.
They serve as a starting point for many web users and provide the invaluable
service of helping users find the information in which they are interested.

Web crawlers feed Internet search engines, by retrieving the
documents that exist on the Web and allowing the search engines to create
indexes of what words appear in what documents, much like the index at the back
of this book. Search engines are the leading source of web robots—let's take a
quick look at how they work.

9.6.1 Think Big

When the Web was in its infancy, search engines were
relatively simple databases that helped users locate documents on the Web.
Today, with the billions of pages accessible on the Web, search engines have
become essential in helping Internet users find information. They also have
become quite complex, as they have had to evolve to handle the sheer scale of
the Web.

With billions of web pages and many millions of users looking
for information, search engines have to deploy sophisticated crawlers to
retrieve these billions of web pages, as well as sophisticated query engines to
handle the query load that millions of users generate.

Think about the task of a production web crawler, having to
issue billions of HTTP queries in order to retrieve the pages needed by the search
index. If each request took half a second to complete (which is probably slow
for some servers and fast for others[26]), that still takes (for 1
billion documents):

[26] This depends on the resources
of the server, the client robot, and the network between the two.

0.5 seconds X (1,000,000,000) / ((60 sec/day) X (60 min/hour) X
(24 hour/day))

which works out to roughly 5,700 days if the requests are made
sequentially! Clearly, large-scale crawlers need to be more clever,
parallelizing requests and using banks of machines to complete the task.
However, because of its scale, trying to crawl the entire Web still is a
daunting challenge.

9.6.2 Modern Search Engine Architecture

Today's search engines build
complicated local databases, called "full-text indexes," about the
web pages around the world and what they contain. These indexes act as a sort
of card catalog for all the documents on the Web.

Search-engine crawlers gather up web pages and bring them
home, adding them to the full-text index. At the same time, search-engine users
issue queries against the full-text index through web search gateways such as
HotBot (http://www.hotbot.com) or Google (http://www.google.com).
Because the web pages are changing all the time, and because of the amount of
time it can take to crawl a large chunk of the Web, the full-text index is at
best a snapshot of the Web.

The high-level architecture of a modern search engine is shown
in Figure 9-7.

Figure 9-7. A production search
engine contains cooperating crawlers and query gateways

[image: figs/http_0907.gif]

9.6.3 Full-Text Index

A full-text index is a database that takes a word and
immediately tells you all the documents that contain that word. The documents
themselves do not need to be scanned after the index is created.

Figure 9-8 shows three documents and the
corresponding full-text index. The full-text index lists the documents
containing each word.

For example:

·
The word "a" is in documents A and B.

·
The word "best" is in documents A and C.

·
The word "drill" is in documents A and B.

·
The word "routine" is in documents B and C.

·
The word "the" is in all three documents, A, B, and C.

Figure 9-8. Three documents and a
full-text index

[image: figs/http_0908.gif]

9.6.4 Posting the Query

When a user issues a query to a web
search-engine gateway, she fills out an HTML form and her browser sends the
form to the gateway, using an HTTP GET or POST request. The gateway program
extracts the search query and converts the web UI query into the expression used
to search the full-text index.[27]

[27] The method for passing this query is
dependent on the search solution being used.

Figure 9-9 shows a simple user query to the www.joes-hardware.com site. The user types
"drills" into the search box form, and the browser translates this
into a GET request with the query parameter as part of the URL.[28]
The Joe's Hardware web server receives the query and hands it off to its search
gateway application, which returns the resulting list of documents to the web
server, which in turn formats those results into an HTML page for the user.

[28] Section 2.2.6 discusses the common use of the
query parameter in URLs.

Figure 9-9. Example search query
request

[image: figs/http_0909.gif]

9.6.5 Sorting and Presenting the Results

Once a search engine
has used its index to determine the results of a query, the gateway application
takes the results and cooks up a results page for the end user.

Since many web pages can contain any given
word, search engines deploy clever algorithms to try to rank the results. For
example, in Figure 9-8, the
word "best" appears in multiple documents; search engines need to
know the order in which they should present the list of result documents in
order to present users with the most relevant results. This is called relevancy ranking—the process of scoring and ordering a list of search
results.

To better aid this process, many of the
larger search engines actually use census data collected during the crawl of
the Web. For example, counting how many links point to a given page can help
determine its popularity, and this information can be used to weight the order
in which results are presented. The algorithms, tips from crawling, and other
tricks used by search engines are some of their most guarded secrets.

9.6.6 Spoofing

Since users often get frustrated when they do not see what they are
looking for in the first few results of a search query, the order of search
results can be important in finding a site. There is a lot of incentive for
webmasters to attempt to get their sites listed near the top of the results
sections for the words that they think best describe their sites, particularly
if the sites are commercial and are relying on users to find them and use their
services.

This desire for better listing has led to a
lot of gaming of the search system and has created a constant tug-of-war
between search-engine implementors and those seeking to get their sites listed
prominently. Many webmasters list tons of keywords (some irrelevant) and deploy
fake pages, or spoofs—even gateway applications
that generate fake pages that may better trick the search engines' relevancy
algorithms for particular words.

As a result of all this, search engine and
robot implementors constantly have to tweak their relevancy algorithms to
better catch these spoofs.

9.7 For More
Information

For more information on web clients, refer
to:

http://www.robotstxt.org/wc/robots.html

The Web Robots
Pages—resources for robot developers, including the registry of Internet
Robots.

http://www.searchengineworld.com

Search Engine
World—resources for search engines and robots.

http://www.searchtools.com

Search Tools for
Web Sites and Intranets—resources for search tools and robots.

http://search.cpan.org/doc/ILYAZ/perl_ste/WWW/RobotRules.pm

RobotRules Perl
source.

http://www.conman.org/people/spc/robots2.html

An Extended
Standard for Robot Exclusion.

Managing Gigabytes: Compressing and Indexing Documents
and Images

Witten, I., Moffat,
A., and Bell, T., Morgan Kaufmann.

Chapter 10.
HTTP-NG

As this book nears completion, HTTP is
celebrating its tenth birthday. And it has been quite an accomplished decade
for this Internet protocol. Today, HTTP moves the absolute majority of digital
traffic around the world.

But, as HTTP grows into its teenage years it
faces a few challenges. In some ways, the pace of HTTP adoption has gotten
ahead of its design. Today, people are using HTTP as a foundation for many
diverse applications, over many different networking technologies.

This chapter outlines some of the trends and
challenges for the future of HTTP, and a proposal for a next-generation
architecture called HTTP-NG. While the working group for HTTP-NG has disbanded
and its rapid adoption now appears unlikely, it nonetheless outlines some
potential future directions of HTTP.

10.1 HTTP's
Growing Pains

HTTP originally was
conceived as a simple technique for accessing linked multimedia content from
distributed information servers. But, over the past decade, HTTP and its
derivatives have taken on a much broader role.

HTTP/1.1 now provides tagging and
fingerprinting to track document versions, methods to support document
uploading and interactions with programmatic gateways, support for multilingual
content, security and authentication, caching to reduce traffic, pipelining to
reduce latency, persistent connections to reduce startup time and improve
bandwidth, and range accesses to implement partial updates. Extensions and
derivatives of HTTP have gone even further, supporting document publishing,
application serving, arbitrary messaging, video streaming, and foundations for
wireless multimedia access. HTTP is becoming a kind of "operating
system" for distributed media applications.

The design of HTTP/1.1, while well considered, is beginning to show some
strains as HTTP is used more and more as a unified substrate for complex remote
operations. There are at least four areas where HTTP shows some growing pains:

Complexity

HTTP is quite
complex, and its features are interdependent. It is decidedly painful and
error-prone to correctly implement HTTP software, because of the complex,
interwoven requirements and the intermixing of connection management, message
handling, and functional logic.

Extensibility

HTTP is difficult
to extend incrementally. There are many legacy HTTP applications that create
incompatibilities for protocol extensions, because they contain no technology
for autonomous functionality extensions.

Performance

HTTP has
performance inefficiencies. Many of these inefficiencies will become more
serious with widespread adoption of high-latency, low-throughput wireless
access technologies.

Transport dependence

HTTP is designed
around a TCP/IP network stack. While there are no restrictions against
alternative substacks, there has been little work in this area. HTTP needs to
provide better support for alternative substacks for it to be useful as a
broader messaging platform in embedded and wireless applications.

10.2 HTTP-NG
Activity

In the summer of 1997, the World Wide Web
Consortium launched a special project to investigate and propose a major new
version of HTTP that would fix the problems related to complexity,
extensibility, performance, and transport dependence. This new HTTP was called HTTP: The Next Generation
(HTTP-NG).

A set of HTTP-NG proposals was presented at
an IETF meeting in December 1998. These proposals outlined one possible major
evolution of HTTP. This technology has not been widely implemented (and may
never be), but HTTP-NG does represent the most serious effort toward extending
the lineage of HTTP. Let's look at HTTP-NG in more detail.

10.3 Modularize
and Enhance

The theme of HTTP-NG
can be captured in three words: "modularize and enhance." Instead of
having connection management, message handling, server processing logic, and
protocol methods all intermixed, the HTTP-NG working group proposed
modularizing the protocol into three layers, illustrated in Figure 10-1:

·
Layer 1, the message
transport layer, focuses
on delivering opaque messages between endpoints, independent of the function of
the messages. The message transport layer supports various substacks (for
example, stacks for wireless environments) and focuses on the problems of
efficient message delivery and handling. The HTTP-NG project team proposed a
protocol called WebMUX for this layer.

·
Layer 2, the remote
invocation layer,
defines request/response functionality where clients can invoke operations on
server resources. This layer is independent of message transport and of the
precise semantics of the operations. It just provides a standard way of
invoking any server operation. This layer attempts to provide an extensible,
object-oriented framework more like CORBA, DCOM, and Java RMI than like the
static, server-defined methods of HTTP/1.1. The HTTP-NG project team proposed
the Binary Wire Protocol for this layer.

·
Layer 3, the web
application layer,
provides most of the content-management logic. All of the HTTP/1.1 methods
(GET, POST, PUT, etc.), as well as the HTTP/1.1 header parameters, are defined
here. This layer also supports other services built on top of remote
invocation, such as WebDAV.

Figure 10-1. HTTP-NG
separates functions into layers

[image: figs/http_1001.gif]

Once the HTTP components are modularized, they
can be enhanced to provide better performance and richer functionality.

10.4
Distributed Objects

Much of the
philosophy and functionality goals of HTTP-NG borrow heavily from structured,
object-oriented, distributed-objects systems such as CORBA and DCOM. Distributed-objects
systems can help with extensibility and feature functionality.

A community of researchers has been arguing
for a convergence between HTTP and more sophisticated distributed-objects
systems since 1996. For more information about the merits of a
distributed-objects paradigm for the Web, check out the early paper from Xerox
PARC entitled "Migrating the Web Toward Distributed Objects" (ftp://ftp.parc.xerox.com/pub/ilu/misc/webilu.html).

The ambitious philosophy of unifying the Web
and distributed objects created resistance to HTTP-NG's adoption in some
communities. Some past distributed-objects systems suffered from heavyweight
implementation and formal complexity. The HTTP-NG project team attempted to
address some of these concerns in the requirements.

10.5 Layer 1:
Messaging

Let's take a closer look at the three layers of HTTP-NG, starting
with the lowest layer. The message transport layer is concerned with the
efficient delivery of messages, independent of the meaning and purpose of the
messages. The message transport layer provides an API for messaging, regardless
of the actual underlying network stack.

This layer focuses on improving the
performance of messaging, including:

·
Pipelining and batching messages to reduce
round-trip latency

·
Reusing connections to reduce latency and
improve delivered bandwidth

·
Multiplexing multiple message streams in
parallel, over the same connection, to optimize shared connections while
preventing starvation of message streams

·
Efficient message segmentation to make it easier
to determine message boundaries

The HTTP-NG team invested much of its energy
into the development of the WebMUX protocol for layer 1
message transport. WebMUX is a high-performance message protocol that fragments
and interleaves messages across a multiplexed TCP connection. We discuss WebMUX
in a bit more detail later in this chapter.

10.6 Layer 2:
Remote Invocation

The middle layer of the HTTP-NG architecture supports remote method
invocation. This layer provides a generic request/response framework where
clients invoke operations on server resources. This layer does not concern
itself with the implementation and semantics of the particular operations
(caching, security, method logic, etc.); it is concerned only with the
interface to allow clients to remotely invoke server operations.

Many remote method invocation standards
already are available (CORBA, DCOM, and Java RMI, to name a few), and this
layer is not intended to support every nifty feature of these systems. However,
there is an explicit goal to extend the richness of HTTP RMI support from that
provided by HTTP/1.1. In particular, there is a goal to provide more general
remote procedure call support, in an extensible, object-oriented manner.

The HTTP-NG team proposed the Binary Wire Protocol for this layer. This protocol supports
a high-performance, extensible technology for invoking well-described
operations on a server and carrying back the results. We discuss the Binary
Wire Protocol in a bit more detail later in this chapter.

10.7 Layer 3:
Web Application

The web application layer is where the semantics and
application-specific logic are performed. The HTTP-NG working group shied away
from the temptation to extend the HTTP application features, focusing instead
on formal infrastructure.

The web application layer describes a system
for providing application-specific services. These services are not monolithic;
different APIs may be available for different applications. For example, the
web application for HTTP/1.1 would constitute a different application from
WebDAV, though they may share some common parts. The HTTP-NG architecture
allows multiple applications to coexist at this level, sharing underlying
facilities, and provides a mechanism for adding new applications.

The philosophy of the web application layer
is to provide equivalent functionality for HTTP/1.1 and extension interfaces,
while recasting them into a framework of extensible distributed objects. You can
read more about the web application layer interfaces at http://www.w3.org/Protocols/HTTP-NG/1998/08/draft-larner-nginterfaces-00.txt.

10.8 WebMUX

The HTTP-NG working
group has invested much of its energy in the development of the WebMUX standard
for message transport. WebMUX is a sophisticated, high-performance message
system, where messages can be transported in parallel across a multiplexed TCP
connection. Individual message streams, produced and consumed at different
rates, can efficiently be packetized and multiplexed over a single or small
number of TCP connections (see Figure 10-2).

Figure 10-2. WebMUX can
multiplex multiple messages over a single connection

[image: figs/http_1002.gif]

Here are some of the significant goals of the
WebMUX protocol:

·
Simple design.

·
High performance.

·
Multiplexing—Multiple data streams (of arbitrary
higher-level protocols) can be interleaved dynamically and efficiently over a
single connection, without stalling data waiting for slow producers.

·
Credit-based flow control—Data is produced and
consumed at different rates, and senders and receivers have different amounts
of memory and CPU resources available. WebMUX uses a "credit-based"
flow-control scheme, where receivers preannounce interest in receiving data to
prevent resource-scarcity deadlocks.

·
Alignment preserving—Data alignment is preserved
in the multiplexed stream so that binary data can be sent and processed
efficiently.

·
Rich functionality—The interface is rich enough
to support a sockets API.

You can read more about the WebMUX Protocol
at http://www.w3.org/Protocols/MUX/WD-mux-980722.html.

10.9 Binary
Wire Protocol

The HTTP-NG team proposed the Binary Wire Protocol to enhance how the next-generation
HTTP protocol supports remote operations.

HTTP-NG defines
"object types" and assigns each object type a
list of methods. Each object type is assigned a URI, so its description and
methods can be advertised. In this way, HTTP-NG is proposing a more extensible
and object-oriented execution model than that provided with HTTP/1.1, where all
methods were statically defined in the servers.

The Binary Wire Protocol carries
operation-invocation requests from the client to the server and
operation-result replies from the server to the client across a stateful
connection. The stateful connection provides extra efficiency.

Request messages contain the operation, the
target object, and optional data values. Reply messages carry back the
termination status of the operation, the serial number of the matching request
(allowing arbitrary ordering of parallel requests and responses), and optional
return values. In addition to request and reply messages, this protocol defines
several internal control messages used to improve the efficiency and robustness
of the connection.

You can read more about the Binary Wire
Protocol at http://www.w3.org/Protocols/HTTP-NG/1998/08/draft-janssen-httpng-wire-00.txt.

10.10 Current
Status

At the end of 1998,
the HTTP-NG team concluded that it was too early to bring the HTTP-NG proposals
to the IETF for standardization. There was concern that the industry and
community had not yet fully adjusted to HTTP/1.1 and that the significant
HTTP-NG rearchitecture to a distributed-objects paradigm would have been
extremely disruptive without a clear transition plan.

Two proposals were made:

·
Instead of attempting to promote the entire
HTTP-NG rearchitecture in one step, it was proposed to focus on the WebMUX
transport technology. But, at the time of this writing, there hasn't been
sufficient interest to establish a WebMUX working group.

·
An effort was launched to investigate whether
formal protocol types can be made flexible enough for use on the Web, perhaps
using XML. This is especially important for a distributed-objects system that
is extensible. This work is still in progress.

At the time of this writing, no major driving
HTTP-NG effort is underway. But, with the ever-increasing use of HTTP, its
growing use as a platform for diverse applications, and the growing adoption of
wireless and consumer Internet technology, some of the techniques proposed in
the HTTP-NG effort may prove significant in HTTP's teenage years.

10.11 For More
Information

For more information about HTTP-NG, please
refer to the following detailed specifications and activity reports:

http://www.w3.org/Protocols/HTTP-NG/

HTTP-NG Working
Group (Proposed), W3C Consortium Web Site.

http://www.w3.org/Protocols/MUX/WD-mux-980722.html

"The WebMUX
Protocol," by J. Gettys and H. Nielsen.

http://www.w3.org/Protocols/HTTP-NG/1998/08/draft-janssen-httpng-wire-00.txt

"Binary Wire
Protocol for HTTP-NG," by B. Janssen.

http://www.w3.org/Protocols/HTTP-NG/1998/08/draft-larner-nginterfaces-00.txt

"HTTP-NG Web
Interfaces," by D. Larner.

ftp://ftp.parc.xerox.com/pub/ilu/misc/webilu.html

"Migrating
the Web Toward Distributed Objects," by D. Larner.

Part III:
Identification, Authorization, and Security

The four chapters in Part III present a suite
of techniques and technologies to track identity, enforce security, and control
access to content:

·
Chapter 11 talks
about techniques to identify users, so content can be personalized to the user
audience.

·
Chapter 12
highlights the basic mechanisms to verify user identity. This chapter also
examines how HTTP authentication interfaces with databases.

·
Chapter 13
explains digest authentication, a complex proposed enhancement to HTTP that
provides significantly enhanced security.

·
Chapter 14 is a
detailed overview of Internet cryptography, digital certificates, and the
Secure Sockets Layer (SSL).

Chapter 11.
Client Identification and Cookies

Web servers may talk to thousands of different clients
simultaneously. These servers often need to keep track of who they are talking
to, rather than treating all requests as coming from anonymous clients. This
chapter discusses some of the technologies that servers can use to identify who
they are talking to.

11.1 The Personal Touch

HTTP began its life as an anonymous,
stateless, request/response protocol. A request came from a client, was
processed by the server, and a response was sent back to the client. Little
information was available to the web server to determine what user sent the
request or to keep track of a sequence of requests from the visiting user.

Modern web sites want
to provide a personal touch. They want to know more about users on the other
ends of the connections and be able to keep track of those users as they
browse. Popular online shopping sites like Amazon.com personalize their sites
for you in several ways:

Personal greetings

Welcome messages
and page contents are generated specially for the user, to make the shopping
experience feel more personal.

Targeted recommendations

By learning about
the interests of the customer, stores can suggest products that they believe
the customer will appreciate. Stores can also run birthday specials near
customers' birthdays and other significant days.

Administrative information on file

Online shoppers
hate having to fill in cumbersome address and credit card forms over and over
again. Some sites store these administrative details in a database. Once they
identify you, they can use the administrative information on file, making the
shopping experience much more convenient.

Session tracking

HTTP transactions
are stateless. Each request/response happens in isolation. Many web sites want
to build up incremental state as you interact with the site (for example,
filling an online shopping cart). To do this, web sites need a way to
distinguish HTTP transactions from different users.

This chapter summarizes a few of the
techniques used to identify users in HTTP. HTTP itself was not born with
a rich set of identification features. The early web-site designers (practical
folks that they were) built their own technologies to identify users. Each
technique has its strengths and weaknesses. In this chapter, we'll discuss the
following mechanisms to identify users:

·
HTTP headers that carry information about user identity

·
Client IP address tracking, to identify users by their IP
addresses

·
User login, using authentication to identify users

·
Fat URLs, a technique for embedding identity in URLs

·
Cookies, a powerful but efficient technique for maintaining
persistent identity

11.2 HTTP Headers

Table 11-1 shows the seven HTTP request headers that most
commonly carry information about the user. We'll discuss the first three now; the last four headers
are used for more advanced identification techniques that we'll discuss later.

	
Table 11-1. HTTP
 headers carry clues about users

	
Header name

	
Header type

	
Description

	
From

	
Request

	
User's email address

	
User-Agent

	
Request

	
User's browser software

	
Referer

	
Request

	
Page user came from by following link

	
Authorization

	
Request

	
Username and password (discussed later)

	
Client-ip

	
Extension (Request)

	
Client's IP address (discussed later)

	
X-Forwarded-For

	
Extension (Request)

	
Client's IP address (discussed later)

	
Cookie

	
Extension (Request)

	
Server-generated ID label (discussed later)

The From header contains the user's
email address. Ideally, this would be a viable source of user identification,
because each user would have a different email address. However, few browsers send
From headers, due to worries of unscrupulous servers collecting email addresses
and using them for junk mail distribution. In practice, From headers are sent
by automated robots or spiders so that if something goes astray, a webmaster
has someplace to send angry email complaints.

The User-Agent
header tells the server information about the browser the user is using,
including the name and version of the program, and often information about the
operating system. This sometimes is useful for customizing content to
interoperate well with particular browsers and their attributes, but that
doesn't do much to help identify the particular user in any meaningful way.
Here are two User-Agent headers, one sent by Netscape Navigator and the other
by Microsoft Internet Explorer:

Navigator
6.2

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:0.9.4) Gecko/20011128
 Netscape6/6.2.1

Internet
Explorer 6.01

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

The Referer
header provides the URL of the page the user is coming from. The Referer header
alone does not directly identify the user, but it does tell what page the user
previously visited. You can use this to better understand user browsing
behavior and user interests. For example, if you arrive at a web server coming
from a baseball site, the server may infer you are a baseball fan.

The From, User-Agent, and Referer headers are insufficient for
dependable identification purposes. The remaining sections discuss more precise
schemes to identify particular users.

11.3 Client IP Address

Early web pioneers tried using the IP address of the client as a
form of identification. This scheme works if each user has a distinct IP
address, if the IP address seldom (if ever) changes, and if the web server can determine
the client IP address for each request. While the client IP address typically
is not present in the HTTP headers,[1] web servers can find the IP
address of the other side of the TCP connection carrying the HTTP request.

[1] As we'll see later, some proxies do add a Client-ip header, but
this is not part of the HTTP standard.

For example, on Unix systems, the getpeername function call
returns the client IP address of the sending machine:

status = getpeername(tcp_connection_socket,...);

Unfortunately, using the client IP address to
identify the user has numerous weaknesses that limit its effectiveness as a
user-identification technology:

·
Client IP addresses describe only the computer
being used, not the user. If multiple users share the same computer, they will
be indistinguishable.

·
Many Internet service providers dynamically
assign IP addresses to users when they log in. Each time they log in, they get
a different address, so web servers can't assume that IP addresses will
identify a user across login sessions.

·
To enhance security and manage scarce addresses,
many users browse the Internet through Network Address Translation (NAT)
firewalls. These NAT devices obscure the IP addresses of the real clients
behind the firewall, converting the actual client IP address into a single,
shared firewall IP address (and different port numbers).

·
HTTP proxies and gateways typically open new TCP
connections to the origin server. The web server will see the IP address of the
proxy server instead of that of the client. Some proxies attempt to work around
this problem by adding special Client-ip or X-Forwarded-For HTTP extension headers to preserve the
original IP address (Figure 11-1). But
not all proxies support this behavior.

Figure 11-1. Proxies can add
extension headers to pass along the original client IP address

[image: figs/http_1101.gif]

Some web sites still use client IP addresses to keep track of
the users between sessions, but not many. There are too many places where IP
address targeting doesn't work well.

A few sites even use client IP addresses as a security
feature, serving documents only to users from a particular IP address. While
this may be adequate within the confines of an intranet, it breaks down in the
Internet, primarily because of the ease with which IP addresses are spoofed
(forged). The presence of intercepting proxies in the path also breaks this
scheme. Chapter 14 discusses much stronger schemes for
controlling access to privileged documents.

11.4 User Login

Rather than
passively trying to guess the identity of a user from his IP address, a web
server can explicitly ask the user who he is by requiring him to authenticate
(log in) with a username and password.

To help make web site logins easier, HTTP includes a built-in
mechanism to pass username information to web sites, using the WWW-Authenticate
and Authorization headers. Once logged in, the browsers continually send this
login information with each request to the site, so the information is always
available. We'll discuss this HTTP authentication in much more detail in Chapter 12, but let's take a quick look at it
now.

If a server wants a user to register before providing access
to the site, it can send back an HTTP 401 Login Required response code to the
browser. The browser will then display a login dialog box and supply the information
in the next request to the browser, using the Authorization header.[2] This is depicted in Figure 11-2.

[2] To save users from having to log
in for each request, most browsers will remember login information for a site
and pass in the login information for each request to the site.

Figure 11-2. Registering username
using HTTP authentication headers

[image: figs/http_1102.gif]

Here's what's happening in this figure:

·
In Figure 11-2a, a
browser makes a request from the www.joes-hardware.com
site.

·
The site doesn't know the identity of the user,
so in Figure 11-2b, the
server requests a login by returning the 401 Login Required HTTP response code
and adds the WWW-Authenticate header. This causes the browser to pop up a login
dialog box.

·
Once the user enters a username and a password
(to sanity check his identity), the browser repeats the original request. This
time it adds an Authorization header, specifying the username and password. The
username and password are scrambled, to hide them from casual or accidental
network observers.[3]

[3] As we will see in Chapter 14, the
HTTP basic authentication username and password can easily be unscrambled by
anyone who wants to go through a minimal effort. More secure techniques
will be discussed later.

·
Now, the server is aware of the user's identity.

·
For future requests, the browser will
automatically issue the stored username and password when asked and will often
even send it to the site when not asked. This makes it possible to log
in once to a site and have your identity maintained through the session, by
having the browser send the Authorization header as a token of your identity on
each request to the server.

However, logging in to web sites is tedious. As Fred browses
from site to site, he'll need to log in for each site. To make matters worse,
it is likely that poor Fred will need to remember different usernames and
passwords for different sites. His favorite username, "fred," will
already have been chosen by someone else by the time he visits many sites, and
some sites will have different rules about the length and composition of usernames
and passwords. Pretty soon, Fred will give up on the Internet and go back to
watching Oprah. The next section discusses a solution to this problem.

11.5 Fat URLs

Some web sites keep track of user
identity by generating special versions of each URL for each user. Typically, a
real URL is extended by adding some state information to the start or end of
the URL path. As the user browses the site, the web server dynamically
generates hyperlinks that continue to maintain the state information in the
URLs.

URLs modified to include user state information are called fat URLs. The following are some example fat URLs
used in the Amazon.com e-commerce web site. Each URL is suffixed by a
user-unique identification number (002-1145265-8016838, in this case) that
helps track a user as she browses the store.

...
All
 Gifts

Wish List

...
<a href="http://s1.amazon.com/exec/varzea/tg/armed-forces/-//ref=gr_af_/002-1145265-
 8016838">Salute Our Troops

Free
 Shipping

Easy
 Returns
...

You can use fat URLs to tie the independent
HTTP transactions with a web server into a single "session" or
"visit." The first time a user visits the web site, a unique ID is
generated, it is added to the URL in a server-recognizable way, and the server
redirects the client to this fat URL. Whenever the server gets a request for a
fat URL, it can look up any incremental state associated with that user ID
(shopping carts, profiles, etc.), and it rewrites all outgoing hyperlinks to
make them fat, to maintain the user ID.

Fat URLs can be used
to identify users as they browse a site. But this technology does have several
serious problems. Some of these problems include:

Ugly URLs

The fat URLs
displayed in the browser are confusing for new users.

Can't share URLs

The fat URLs
contain state information about a particular user and session. If you mail that
URL to someone else, you may inadvertently be sharing your accumulated personal
information.

Breaks
caching

Generating user-specific versions
of each URL means that there are no longer commonly accessed URLs to cache.

Extra
server load

The server needs to rewrite HTML
pages to fatten the URLs.

Escape
hatches

It is too easy for a user to
accidentally "escape" from the fat URL session by jumping to another
site or by requesting a particular URL. Fat URLs work only if the user strictly
follows the premodified links. If the user escapes, he may lose his progress
(perhaps a filled shopping cart) and will have to start again.

Not
persistent across sessions

All information is lost when the
user logs out, unless he bookmarks the particular fat URL.

11.6 Cookies

Cookies are the best current way to
identify users and allow persistent sessions. They don't suffer many of
the problems of the previous techniques, but they often are used in conjunction
with those techniques for extra value. Cookies were first developed by Netscape
but now are supported by all major browsers.

Because cookies are important, and they define new HTTP
headers, we're going to explore them in more detail than we did the previous
techniques. The presence of cookies also impacts caching, and most caches and
browsers disallow caching of any cookied content. The following sections
present more details.

11.6.1 Types of Cookies

You can classify cookies broadly into
two types: session cookies and persistent cookies. A
session cookie is a temporary cookie that keeps track of settings and
preferences as a user navigates a site. A session cookie is deleted when the
user exits the browser. Persistent cookies can live longer; they are stored on
disk and survive browser exits and computer restarts. Persistent cookies often
are used to retain a configuration profile or login name for a site that a user
visits periodically.

The only difference between session cookies and persistent
cookies is when they expire. As we will see later, a cookie is a session cookie
if its Discard parameter is set, or if there is no Expires or Max-Age parameter
indicating an extended expiration time.

11.6.2 How Cookies Work

Cookies are
like "Hello, My Name Is" stickers stuck onto users by servers. When a
user visits a web site, the web site can read all the stickers attached to the
user by that server.

The first time the user visits a web site, the web server
doesn't know anything about the user (Figure 11-3a). The web server expects that
this same user will return again, so it wants to "slap" a unique
cookie onto the user so it can identify this user in the future. The cookie
contains an arbitrary list of name=value
information, and it is attached to the user using the Set-Cookie or Set-Cookie2 HTTP
response (extension) headers.

Cookies can contain any information, but they often contain
just a unique identification number, generated by the server for tracking
purposes. For example, in Figure 11-3b, the server slaps onto the user a
cookie that says id="34294". The server can use this number to look
up database information that the server accumulates for its visitors (purchase
history, address information, etc.).

However, cookies are not restricted to just ID numbers. Many
web servers choose to keep information directly in the cookies. For example:

Cookie: name="Brian Totty"; phone="555-1212"

The browser remembers the cookie contents sent back from the server
in Set-Cookie or Set-Cookie2 headers, storing the set of cookies in a browser
cookie database (think of it like a suitcase with stickers from various
countries on it). When the user returns to the same site in the future (Figure 11-3c), the browser will select those
cookies slapped onto the user by that server and pass them back in a Cookie
request header.

Figure 11-3. Slapping a cookie onto
a user

[image: figs/http_1103.gif]

11.6.3 Cookie Jar: Client-Side State

The basic idea of cookies is to let
the browser accumulate a set of server-specific information, and provide this
information back to the server each time you visit. Because the browser is
responsible for storing the cookie information, this system is called client-side state. The
official name for the cookie specification is the HTTP
State Management Mechanism.

11.6.3.1 Netscape Navigator cookies

Different browsers store cookies in different ways. Netscape Navigator stores cookies in a single text file
called cookies.txt. For example:

Netscape HTTP Cookie File
http://www.netscape.com/newsref/std/cookie_spec.html
This is a generated file! Do not edit.
#
domain allh path secure expires name value

www.fedex.com FALSE / FALSE 1136109676 cc /us/
.bankofamericaonline.com TRUE / FALSE 1009789256 state CA
.cnn.com TRUE / FALSE 1035069235 SelEdition www
secure.eepulse.net FALSE /eePulse FALSE 1007162968 cid %FE%FF%002
www.reformamt.org TRUE /forum FALSE 1033761379 LastVisit 1003520952
www.reformamt.org TRUE /forum FALSE 1033761379 UserName Guest
 ...

Each line of the text file represents a cookie. There are
seven tab-separated fields:

domain

The domain of the cookie

allh

Whether all hosts in a domain get
the cookie, or only the specific host named

path

The path prefix in the domain
associated with the cookie

secure

Whether we should send this cookie
only if we have an SSL connection

expiration

The cookie expiration date in
seconds since Jan 1, 1970 00:00:00 GMT

name

The name of the cookie variable

value

The value of the cookie variable

11.6.3.2 Microsoft Internet Explorer cookies

Microsoft Internet Explorer stores
cookies in individual text files in the cache directory. You can browse this
directory to view the cookies, as shown in Figure 11-4. The format of the Internet
Explorer cookie files is proprietary, but many of the fields are easily
understood. Each cookie is stored one after the other in the file, and each
cookie consists of multiple lines.

Figure 11-4. Internet Explorer
cookies are stored in individual text files in the cache directory

[image: figs/http_1104.gif]

The first line of each cookie in the file contains the cookie
variable name. The next line is the variable value. The third line contains the
domain and path. The remaining lines are proprietary data, presumably including
dates and other flags.

11.6.4 Different Cookies for Different Sites

A browser can have hundreds or
thousands of cookies in its internal cookie jar, but browsers don't send every
cookie to every site. In fact, they typically send only two or three cookies to
each site. Here's why:

·
Moving all those cookie bytes would dramatically slow
performance. Browsers would actually be moving more cookie bytes than real
content bytes!

·
Most of these cookies would just be unrecognizable gibberish for
most sites, because they contain server-specific name/value pairs.

·
Sending all cookies to all sites would create a potential privacy
concern, with sites you don't trust getting information you intended only for
another site.

In general, a browser sends to a server only those cookies
that the server generated. Cookies generated by joes-hardware.com
are sent to joes-hardware.com and not to bobs-books.com or marys-movies.com.

Many web sites contract with third-party
vendors to manage advertisements. These advertisements are made to look like
they are integral parts of the web site and do push persistent cookies. When
the user goes to a different web site serviced by the same advertisement
company, the persistent cookie set earlier is sent back again by the browser
(because the domains match). A marketing company could use this technique,
combined with the Referer header, to potentially build an exhaustive data set
of user profiles and browsing habits. Modern browsers allow you to configure
privacy settings to restrict third-party cookies.

11.6.4.1 Cookie Domain attribute

A server generating a cookie can control which sites get to
see that cookie by adding a Domain attribute to the Set-Cookie response header. For
example, the following HTTP response header tells the browser to send the
cookie user="mary17" to any site in the domain .airtravelbargains.com:

Set-cookie: user="mary17"; domain="airtravelbargains.com"

If the user visits www.airtravelbargains.com,
specials.airtravelbargains.com, or any site
ending in .airtravelbargains.com, the following
Cookie header will be issued:

Cookie: user="mary17"

11.6.4.2 Cookie Path attribute

The cookie specification even lets you
associate cookies with portions of web sites.
This is done using the Path attribute, which indicates the URL path prefix
where each cookie is valid.

For example, one web server might be shared between two
organizations, each having separate cookies. The site www.airtravelbargains.com
might devote part of its web site to auto rentals—say, http://www.airtravelbargains.com/autos/—using a
separate cookie to keep track of a user's preferred car size. A special
auto-rental cookie might be generated like this:

Set-cookie: pref=compact; domain="airtravelbargains.com"; path=/autos/

If the user goes to http://www.airtravelbargains.com/specials.html,
she will get only this cookie:

Cookie: user="mary17"

But if she goes to http://www.airtravelbargains.com/autos/cheapo/index.html,
she will get both of these cookies:

Cookie: user="mary17"
Cookie: pref=compact

So, cookies are pieces of state, slapped onto the client by
the servers, maintained by the clients, and sent back to only those sites that
are appropriate. Let's look in more detail at the cookie technology and
standards.

11.6.5 Cookie Ingredients

There are two different versions of
cookie specifications in use: Version 0 cookies (sometimes called
"Netscape cookies"), and Version 1 ("RFC 2965") cookies.
Version 1 cookies are a less widely used extension of Version 0 cookies.

Neither the Version 0 or Version 1 cookie specification is
documented as part of the HTTP/1.1 specification. There are two primary adjunct
documents that best describe the use of cookies, summarized in Table 11-2.

	
Table 11-2. Cookie specifications

	
Title

	
Description

	
Location

	
Persistent Client State: HTTP Cookies

	
Original Netscape cookie standard

	
http://home.netscape.com/newsref/std/cookie_spec.html

	
RFC 2965: HTTP State Management Mechanism

	
October 2000 cookie standard, obsoletes RFC 2109

	
http://www.ietf.org/rfc/rfc2965.txt

11.6.6 Version 0 (Netscape) Cookies

The initial
cookie specification was defined by Netscape. These "Version 0"
cookies defined the Set-Cookie response header, the Cookie request header, and
the fields available for controlling cookies. Version 0 cookies look like this:

Set-Cookie: name=value [; expires=date] [; path=path] [; domain=domain] [; secure]

Cookie: name1=value1 [; name2=value2] ...

11.6.6.1 Version 0 Set-Cookie header

The Set-Cookie header has a mandatory cookie name and cookie
value. It can be followed by optional cookie attributes, separated by
semicolons. The Set-Cookie fields are described in Table 11-3.

	
Table 11-3. Version 0 (Netscape)
 Set-Cookie attributes

	
Set-Cookie
 attribute

	
Description and
 examples

	
NAME=VALUE

	
Mandatory. Both NAME and VALUE are sequences of characters, excluding
 the semicolon, comma, equals sign, and whitespace, unless quoted in double
 quotes. The web server can create any NAME=VALUE association, which will be
 sent back to the web server on subsequent visits to the site.

Set-Cookie: customer=Mary

	
Expires

	
Optional. This attribute specifies a date string that
 defines the valid lifetime of that cookie. Once the expiration date has been
 reached, the cookie will no longer be stored or given out. The date is
 formatted as:

Weekday, DD-Mon-YY HH:MM:SS GMT

The only legal time zone is GMT, and the separators between
 the elements of the date must be dashes. If Expires is not specified, the
 cookie will expire when the user's session ends.

Set-Cookie: foo=bar; expires=Wednesday, 09-Nov-99 23:12:40 GMT

	
Domain

	
Optional. A browser sends the cookie only to server
 hostnames in the specified domain. This lets servers restrict cookies to only
 certain domains. A domain of "acme.com" would match hostnames
 "anvil.acme.com" and "shipping.crate.acme.com", but not
 "www.cnn.com".

Only hosts within the specified domain can set a cookie for
 a domain, and domains must have at least two or three periods in them to
 prevent domains of the form ".com", ".edu", and
 "va.us". Any domain that falls within the fixed set of special top-level
 domains listed here requires only two periods. Any other domain requires at
 least three. The special top-level domains are: .com, .edu, .net, .org, .gov,
 .mil, .int, .biz, .info, .name, .museum, .coop, .aero, and .pro.

If the domain is not specified, it defaults to the hostname
 of the server that generated the Set-Cookie response.

Set-Cookie: SHIPPING=FEDEX; domain="joes-hardware.com"

	
Path

	
Optional. This attribute lets you assign cookies to
 particular documents on a server. If the Path attribute is a prefix of a URL
 path, a cookie can be attached. The path "/foo" matches
 "/foobar" and "/foo/bar.html". The path "/"
 matches everything in the domain.

If the path is not specified, it is set to the path of the
 URL that generated the Set-Cookie response.

Set-Cookie: lastorder=00183; path=/orders

	
Secure

	
Optional. If this attribute is included, a cookie will be
 sent only if HTTP is using an SSL secure connection.

Set-Cookie: private_id=519; secure

11.6.6.2 Version 0 Cookie header

When a client sends requests, it includes all the unexpired
cookies that match the domain, path, and secure filters to the site. All the
cookies are combined into a Cookie header:

Cookie: session-id=002-1145265-8016838; session-id-time=1007884800

11.6.7 Version 1 (RFC 2965) Cookies

An extended version of
cookies is defined in RFC 2965 (previously RFC 2109). This Version 1 standard
introduces the Set-Cookie2 and Cookie2 headers, but it also interoperates with
the Version 0 system.

The RFC 2965 cookie standard is a bit more complicated than
the original Netscape standard and is not yet completely supported. The major
changes of RFC 2965 cookies are:

·
Associate descriptive text with each cookie to explain its
purpose

·
Support forced destruction of cookies on browser exit, regardless
of expiration

·
Max-Age aging of cookies in relative seconds, instead of absolute
dates

·
Ability to control cookies by the URL port number, not just
domain and path

·
The Cookie header carries back the domain, port, and path filters
(if any)

·
Version number for interoperability

·
$ prefix in Cookie
header to distinguish additional keywords from usernames

The Version 1 cookie syntax is as follows:

set-cookie = "Set-Cookie2:" cookies
cookies = 1#cookie
cookie = NAME "=" VALUE *(";" set-cookie-av)
NAME = attr
VALUE = value
set-cookie-av = "Comment" "=" value
 | "CommentURL" "=" <"> http_URL <">
 | "Discard"
 | "Domain" "=" value
 | "Max-Age" "=" value
 | "Path" "=" value
 | "Port" ["=" <"> portlist <">]
 | "Secure"
 | "Version" "=" 1*DIGIT
portlist = 1#portnum
portnum = 1*DIGIT

cookie = "Cookie:" cookie-version 1*((";" | ",") cookie-value)
cookie-value = NAME "=" VALUE [";" path] [";" domain] [";" port]
cookie-version = "$Version" "=" value
NAME = attr
VALUE = value
path = "$Path" "=" value
domain = "$Domain" "=" value
port = "$Port" ["=" <"> value <">]

cookie2 = "Cookie2:" cookie-version

11.6.7.1 Version 1 Set-Cookie2 header

More attributes are available in the Version 1 cookie
standard than in the Netscape standard. Table 11-4 provides a quick summary of the
attributes. Refer to RFC 2965 for more detailed explanation.

	
Table 11-4. Version 1 (RFC 2965)
 Set-Cookie2 attributes

	
Set-Cookie2
 attribute

	
Description and
 examples

	
NAME=VALUE

	
Mandatory. The web server can create any NAME=VALUE association,
 which will be sent back to the web server on subsequent visits to the site.
 The name must not begin with "$", because that character is
 reserved.

	
Version

	
Mandatory. The value of this attribute is an integer,
 corresponding to the version of the cookie specification. RFC 2965 is Version
 1.

 Set-Cookie2: Part="Rocket_Launcher_0001"; Version="1"

	
Comment

	
Optional. This attribute documents how a server intends to
 use the cookie. The user can inspect this policy to decide whether to permit
 a session with this cookie. The value must be in UTF-8 encoding.

	
CommentURL

	
Optional. This attribute provides a URL pointer to detailed
 documentation about the purpose and policy for a cookie. The user can inspect
 this policy to decide whether to permit a session with this cookie.

	
Discard

	
Optional. If this attribute is present, it instructs the
 client to discard the cookie when the client program terminates.

	
Domain

	
Optional. A browser sends the cookie only to server
 hostnames in the specified domain. This lets servers restrict cookies to only
 certain domains. A domain of "acme.com" would match hostnames
 "anvil.acme.com" and "shipping.crate.acme.com", but not
 "www.cnn.com". The rules for domain matching are basically the same
 as in Netscape cookies, but there are a few additional rules. Refer to RFC
 2965 for details.

	
Max-Age

	
Optional. The value of this attribute is an integer that
 sets the lifetime of the cookie in seconds. Clients should calculate the age
 of the cookie according to the HTTP/1.1 age-calculation rules. When a
 cookie's age becomes greater than the Max-Age, the client should discard the
 cookie. A value of zero means the cookie with that name should be discarded
 immediately.

	
Path

	
Optional. This attribute lets you assign cookies to
 particular documents on a server. If the Path attribute is a prefix of a URL
 path, a cookie can be attached. The path "/foo" would match
 "/foobar" and "/foo/bar.html". The path "/"
 matches everything in the domain. If the path is not specified, it is set to
 the path of the URL that generated the Set-Cookie response.

	
Port

	
Optional. This attribute can stand alone as a keyword, or it
 can include a comma-separated list of ports to which a cookie may be applied.
 If there is a port list, the cookie can be served only to servers whose ports
 match a port in the list. If the Port keyword is provided in isolation, the
 cookie can be served only to the port number of the current responding
 server.

 Set-Cookie2: foo="bar"; Version="1"; Port="80,81,8080"
 Set-Cookie2: foo="bar"; Version="1"; Port

	
Secure

	
Optional. If this attribute is included, a cookie will be
 sent only if HTTP is using an SSL secure connection.

11.6.7.2 Version 1 Cookie header

Version 1 cookies carry back
additional information about each delivered cookie, describing the filters each
cookie passed. Each matching cookie much include any Domain, Port, or Path
attributes from the corresponding Set-Cookie2 headers.

For example, assume the client has received these five
Set-Cookie2 responses in the past from the www.joes-hardware.com
web site:

Set-Cookie2: ID="29046"; Domain=".joes-hardware.com"
Set-Cookie2: color=blue
Set-Cookie2: support-pref="L2"; Domain="customer-care.joes-hardware.com"
Set-Cookie2: Coupon="hammer027"; Version="1"; Path="/tools"
Set-Cookie2: Coupon="handvac103"; Version="1"; Path="/tools/cordless"

If the client makes another request for path /tools/cordless/specials.html, it will pass along a
long Cookie2 header like this:

Cookie: $Version="1";
 ID="29046"; $Domain=".joes-hardware.com";
 color="blue";
 Coupon="hammer027"; $Path="/tools";
 Coupon="handvac103"; $Path="/tools/cordless"

Notice that all the matching cookies are delivered with their
Set-Cookie2 filters, and the reserved keywords begin with a dollar sign ($).

11.6.7.3 Version 1 Cookie2 header and version negotiation

The Cookie2 request header is used to negotiate interoperability between clients and servers that
understand different versions of the cookie specification. The Cookie2 header
advises the server that the user agent understands new-style cookies and
provides the version of the cookie standard supported (it would have made more
sense to call it Cookie-Version):

Cookie2: $Version="1"

If the server understands new-style cookies, it recognizes the
Cookie2 header and should send Set-Cookie2 (rather than Set-Cookie) response
headers. If a client gets both a Set-Cookie and a Set-Cookie2 header for the
same cookie, it ignores the old Set-Cookie header.

If a client supports both Version 0 and Version 1 cookies but
gets a Version 0 Set-Cookie header from the server, it should send cookies with
the Version 0 Cookie header. However, the client also should send Cookie2:
$Version="1" to give the server indication that it can upgrade.

11.6.8 Cookies and Session Tracking

Cookies can be
used to track users as they make multiple transactions to a web site.
E-commerce web sites use session cookies to keep track of users' shopping carts
as they browse. Let's take the example of the popular shopping site Amazon.com.
When you type http://www.amazon.com into your browser, you
start a chain of transactions where the web server attaches identification
information through a series of redirects, URL rewrites, and cookie setting.

Figure 11-5 shows a transaction sequence
captured from an Amazon.com visit:

·
Figure 11-5a—Browser requests Amazon.com root
page for the first time.

·
Figure 11-5b—Server redirects the client to a
URL for the e-commerce software.

·
Figure 11-5c—Client makes a request to the
redirected URL.

·
Figure 11-5d—Server slaps two session cookies
on the response and redirects the user to another URL, so the client will
request again with these cookies attached. This new URL is a fat URL, meaning
that some state is embedded into the URL. If the client has cookies disabled,
some basic identification can still be done as long as the user follows the
Amazon.com-generated fat URL links and doesn't leave the site.

·
Figure 11-5e—Client requests the new URL, but
now passes the two attached cookies.

·
Figure 11-5f—Server redirects to the home.html page and attaches two more cookies.

·
Figure 11-5g—Client fetches the home.html page and passes all four cookies.

·
Figure 11-5h—Server serves back the content.

Figure 11-5. The Amazon.com web site
uses session cookies to track users

[image: figs/http_1105.gif]

11.6.9 Cookies and Caching

You have to be
careful when caching documents that are involved with cookie transactions. You
don't want to assign one user some past user's cookie or, worse, show one user
the contents of someone else's personalized document.

The rules for cookies and caching are not well established.
Here are some guiding principles for dealing with caches:

Mark documents uncacheable
if they are

The document owner knows best if a
document is uncacheable. Explicitly mark documents uncacheable if they
are—specifically, use Cache-Control: no-cache="Set-Cookie" if the
document is cacheable except for the Set-Cookie header. The other, more general
practice of using Cache-Control: public for documents that are cacheable
promotes bandwidth savings in the Web.

Be
cautious about caching Set-Cookie headers

If a response has a Set-Cookie
header, you can cache the body (unless told otherwise), but you should be extra
cautious about caching the Set-Cookie header. If you send the same Set-Cookie
header to multiple users, you may be defeating user targeting.

Some caches delete the Set-Cookie
header before storing a response in the cache, but that also can cause
problems, because clients served from the cache will no longer get cookies
slapped on them that they normally would without the cache. This situation can
be improved by forcing the cache to revalidate every request with the origin
server and merging any returned Set-Cookie headers with the client response.
The origin server can dictate such revalidations by adding this header to the
cached copy:

Cache-Control: must-revalidate, max-age=0

More conservative caches may refuse
to cache any response that has a Set-Cookie header, even though the content may
actually be cacheable. Some caches allow modes when Set-Cookied images are
cached, but not text.

Be
cautious about requests with Cookie headers

When a request arrives with a
Cookie header, it provides a hint that the resulting content might be
personalized. Personalized content must be flagged uncacheable, but some
servers may erroneously not mark this content as uncacheable.

Conservative caches may choose not
to cache any document that comes in response to a request with a Cookie header.
And again, some caches allow modes when Cookied images are cached, but not
text. The more accepted policy is to cache images with Cookie headers, with the
expiration time set to zero, thus forcing a revalidate every time.

11.6.10 Cookies, Security, and Privacy

Cookies
themselves are not believed to be a tremendous security risk, because they can
be disabled and because much of the tracking can be done through log analysis
or other means. In fact, by providing a standardized, scrutinized method for
retaining personal information in remote databases and using anonymous cookies
as keys, the frequency of communication of sensitive data from client to server
can be reduced.

Still, it is good to be cautious when dealing
with privacy and user tracking, because there is always potential for abuse. The
biggest misuse comes from third-party web sites using persistent cookies to
track users. This practice, combined with IP addresses and information from the
Referer header, has enabled these marketing companies to build fairly accurate
user profiles and browsing patterns.

In spite of all the negative publicity, the
conventional wisdom is that the session handling and transactional convenience
of cookies outweighs most risks, if you use caution about who you provide
personal information to and review sites' privacy policies.

The Computer Incident Advisory Capability
(part of the U.S. Department of Energy) wrote an assessment of the
overrepresented dangers of cookies in 1998. Here's an excerpt from that report:

CIAC I-034: Internet Cookies
(http://www.ciac.org/ciac/bulletins/i-034.shtml)

PROBLEM:

Cookies are short pieces of data used by web servers to help identify web users. The
popular concepts and rumors about what a cookie can do has reached almost mystical
proportions, frightening users and worrying their managers.

VULNERABILITY ASSESSMENT:

The vulnerability of systems to damage or snooping by using web browser cookies is
essentially nonexistent. Cookies can only tell a web server if you have been there
before and can pass short bits of information (such as a user number) from the web
server back to itself the next time you visit. Most cookies last only until you quit
your browser and then are destroyed. A second type of cookie known as a persistent
cookie has an expiration date and is stored on your disk until that date. A
persistent cookie can be used to track a user's browsing habits by identifying him
whenever he returns to a site. Information about where you come from and what web
pages you visit already exists in a web server's log files and could also be used to
track users browsing habits, cookies just make it easier.

11.7 For More
Information

Here are a few more useful sources for
additional information about cookies:

Cookies

Simon St.Laurent,
McGraw-Hill.

http://www.ietf.org/rfc/rfc2965.txt

RFC 2965,
"HTTP State Management Mechanism" (obsoletes RFC 2109).

http://www.ietf.org/rfc/rfc2964.txt

RFC 2964,
"Use of HTTP State Management."

http://home.netscape.com/newsref/std/cookie_spec.html

This classic
Netscape document, "Persistent Client State: HTTP Cookies," describes
the original form of HTTP cookies that are still in common use today.

Chapter 12.
Basic Authentication

Millions of people
use the Web to perform private transactions and access private data. The Web
makes it very easy to access this information, but easy isn't good enough. We
need assurances about who can look at our sensitive data and who can perform
our privileged transactions. Not all information is intended for the general
public.

We need to feel comfortable that unauthorized
users can't view our online travel profiles or publish documents onto our web
sites without our consent. We need to make sure our most sensitive
corporate-planning documents aren't available to unauthorized and potentially
unscrupulous members of our organization. And we need to feel at ease that our
personal web communications with our children, our spouses, and our secret
loves all occur with a modicum of privacy.

Servers need a way to know who a user is. Once
a server knows who the user is, it can decide which transactions and resources
the user can access. Authentication means proving who you are; usually, you
authenticate by providing a username and a secret password. HTTP provides a
native facility for HTTP authentication. While it's certainly possible to
"roll your own" authentication facility on top of HTTP forms and
cookies, for many situations, HTTP's native authentication fits the bill
nicely.

This chapter explains HTTP authentication and
delves into the most common form of HTTP authentication, basic authentication. The next chapter explains a
more powerful technique called digest authentication.

12.1 Authentication

Authentication means showing
some proof of your identity. When you show a photo ID, like a passport or a
driver's license, you are showing some proof that you are who you claim to be. When
you type a PIN number into an automatic teller machine, or type a secret
password into a computer's dialog box, you also are proving that you are who
you claim to be.

Now, none of these schemes are foolproof. Passwords can be
guessed or overheard, and ID cards can be stolen or forged. But each piece of
supporting evidence helps to build a reasonable trust that you are who you say
you are.

12.1.1 HTTP's Challenge/Response Authentication Framework

HTTP provides
a native challenge/response framework to make it easy to authenticate users. HTTP's
authentication model is sketched in Figure 12-1.

Figure 12-1. Simplified
challenge/response authentication

[image: figs/http_1201.gif]

Whenever a web application receives an HTTP request message,
instead of acting on the request, the server can respond with an
"authentication challenge," challenging the user to demonstrate who
she is by providing some secret information.

The user needs to attach the secret credentials (username and
password) when she repeats the request. If the credentials don't match, the
server can challenge the client again or generate an error. If the credentials
do match, the request completes normally.

12.1.2 Authentication Protocols and Headers

HTTP provides an extensible framework for different
authentication protocols, through a set of customizable control headers. The
format and content of the headers listed in Table 12-1 vary depending on the
authentication protocol. The authentication protocol also is specified in the
HTTP authentication headers.

HTTP defines two official authentication protocols: basic
authentication and digest authentication. In the future, people are free to
devise new protocols that use HTTP's challenge/response framework. The rest of
this chapter explains basic authentication. See Chapter 13 for details on digest authentication.

	
Table 12-1. Four phases of
 authentication

	
Phase

	
Headers

	
Description

	
Method/Status

	
Request

	

	
The first request has no authentication.

	
GET

	
Challenge

	
WWW-Authenticate

	
The server rejects the request with a 401 status, indicating
 that the user needs to provide his username and password.

Because the server might have different areas, each with its
 own password, the server describes the protection area in the WWW-Authenticate
 header. Also, the authentication algorithm is specified in the
 WWW-Authenticate header.

	
401 Unauthorized

	
Authorization

	
Authorization

	
The client retries the request, but this time attaching an Authorization
 header specifying the authentication algorithm, username, and password.

	
GET

	
Success

	
Authentication-Info

	
If the authorization credentials are correct, the server
 returns the document. Some authorization algorithms return some additional
 information about the authorization session in the optional
 Authentication-Info header.

	
200 OK

To make this concrete, let's take a look at Figure 12-2.

Figure 12-2. Basic authentication
example

[image: figs/http_1202.gif]

When a server challenges a user, it returns a 401 Unauthorized
response and describes how and where to authenticate in the WWW-Authenticate
header (Figure 12-2b).

When a client authorizes the server to proceed, it resends the
request but attaches an encoded password and other authentication parameters in
an Authorization header (Figure 12-2c).

When an authorized request is completed successfully, the
server returns a normal status code (e.g., 200 OK) and, for advanced
authentication algorithms, might attach additional information in an
Authentication-Info header (Figure 12-2d).

12.1.3 Security Realms

Before we discuss the details of basic
authentication, we need to explain how HTTP allows servers to associate
different access rights to different resources. You might have noticed that the
WWW-Authenticate challenge in Figure 12-2b
included a realm
directive. Web servers group protected documents into security
realms. Each security realm can have different
sets of authorized users.

For example, suppose a web server has two
security realms established: one for corporate financial information and
another for personal family documents (see Figure 12-3). Different
users will have different access to the realms. The CEO of your company
probably should have access to the sales forecast, but you might not give her
access to your family vacation photos!

Figure 12-3. Security
realms in a web server

[image: figs/http_1203.gif]

Here's a hypothetical basic authentication
challenge, with a realm specified:

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Basic realm="Corporate Financials"

A realm should have a descriptive string
name, like "Corporate Financials," to help the user understand which
username and password to use. It may also be useful to list the server hostname
in the realm name—for example, "executive-committee@bigcompany.com".

12.2 Basic Authentication

Basic
authentication is the most prevalent HTTP authentication protocol. Almost every
major client and server implements basic authentication. Basic authentication was
originally described in the HTTP/1.0 specification, but it has since been
relocated into RFC 2617, which details HTTP authentication.

In basic authentication, a web server can refuse a
transaction, challenging the client for a valid username and password. The
server initiates the authentication challenge by returning a 401 status code
instead of 200 and specifies the security realm being accessed with the WWW-Authenticate response header. When the browser
receives the challenge, it opens a dialog box requesting the username and
password for this realm. The username and password are sent back to the server
in a slightly scrambled format inside an Authorization request header.

12.2.1 Basic Authentication Example

Figure 12-2, earlier in this chapter, showed a detailed example of basic authentication:

·
In Figure 12-2a, a user requests the personal
family photo /family/jeff.jpg.

·
In Figure 12-2b, the server sends back a 401
Authorization Required password challenge for the personal family photo, along
with the WWW-Authenticate header. The header requests basic authentication for
the realm named Family.

·
In Figure 12-2c, the browser receives the 401
challenge and pops open a dialog box asking for the username and password for
the Family realm. When the user enters the
username and password, the browser joins them with a colon, encodes them into a
"scrambled" base-64 representation (discussed in the next section),
and sends them back in the Authorization header.

·
In Figure 12-2d, the server decodes the username
and password, verifies that they are correct, and returns the requested
document in an HTTP 200 OK message.

The HTTP basic authentication WWW-Authenticate and Authorization headers are summarized
in Table 12-2.

	
Table 12-2. Basic authentication
 headers

	
Challenge/Response

	
Header syntax and
 description

	
Challenge (server to client)

	
There may be different passwords for different parts of the site.
 The realm is a quoted string that names the set of documents being requested,
 so the user knows which password to use.

WWW-Authenticate: Basic realm=quoted-realm

	
Response (client to server)

	
The username and password are joined together by a colon (:)
 and then converted to base-64 encoding, making it a bit easier to include
 international characters in usernames and passwords and making it less likely
 that a cursory examination will yield usernames and passwords while watching
 network traffic.

Authorization: Basic base64-username-and-password

Note that the basic authentication protocol does not make use
of the Authentication-Info header we showed in Table 12-1.

12.2.2 Base-64 Username/Password Encoding

HTTP basic
authentication packs the username and password together (separated by a colon),
and encodes them using the base-64 encoding method. If you don't know what
base-64 encoding is, don't worry. You don't need to know much about it, and if
you are curious, you can read all about it in Appendix E. In a nutshell, base-64 encoding
takes a sequence of 8-bit bytes and breaks the sequence of bits into 6-bit
chunks. Each 6-bit piece is used to pick a character in a special 64-character
alphabet, consisting mostly of letters and numbers.

Figure 12-4 shows an example of using base-64
encoding for basic authentication. Here, the username is
"brian-totty" and the password is "Ow!". The browser joins
the username and password with a colon, yielding the packed string
"brian-totty:Ow!". This string is then base 64-encoded into this
mouthful: "YnJpYW4tdG90dHk6T3ch".

Figure 12-4. Generating a basic
Authorization header from username and password

[image: figs/http_1204.gif]

Base-64 encoding was invented to take strings
of binary, text, and international character data (which caused problems on
some systems) and convert them temporarily into a portable alphabet for
transmission. The original strings could then be decoded on the remote end
without fear of transmission corruption.

Base-64 encoding can be useful for usernames
and passwords that contain international characters or other characters that
are illegal in HTTP headers (such as quotation marks, colons, and carriage
returns). Also, because base-64 encoding trivially scrambles the username and
password, it can help prevent administrators from accidentally viewing usernames
and passwords while administering servers and networks.

12.2.3 Proxy Authentication

Authentication also
can be done by intermediary proxy servers. Some organizations use proxy servers
to authenticate users before letting them access servers, LANs, or wireless
networks. Proxy servers can be a convenient way to provide unified access
control across an organization's resources, because access policies can be
centrally administered on the proxy server. The first step in this process is
to establish the identity via proxy authentication.

The steps involved in proxy authentication
are identical to that of web server identification. However, the headers and
status codes are different. Table 12-3
contrasts the status codes and headers used in web server and proxy
authentication.

	
Table 12-3. Web server
 versus proxy authentication

	
Web server

	
Proxy server

	
Unauthorized status code: 401

	
Unauthorized status code: 407

	
WWW-Authenticate

	
Proxy-Authenticate

	
Authorization

	
Proxy-Authorization

	
Authentication-Info

	
Proxy-Authentication-Info

12.3 The Security Flaws of
Basic Authentication

Basic
authentication is simple and convenient, but it is not secure. It should only
be used to prevent unintentional access from nonmalicious parties or used in combination
with an encryption technology such as SSL.

Consider the following security flaws:

1.
Basic authentication sends the username and
password across the network in a form that can trivially be decoded. In effect,
the secret password is sent in the clear, for anyone to read and capture. Base-64
encoding obscures the username and password, making it less likely that
friendly parties will glean passwords by accidental network observation. However,
given a base 64-encoded username and password, the decoding can be performed
trivially by reversing the encoding process. Decoding can even be done in
seconds, by hand, with pencil and paper! Base 64-encoded passwords are
effectively sent "in the clear." Assume that motivated third parties
will intercept usernames and passwords sent by basic authentication. If this is
a concern, send all your HTTP transactions over SSL encrypted channels, or use
a more secure authentication protocol, such as digest authentication.

2.
Even if the secret password were encoded in a scheme
that was more complicated to decode, a third party could still capture the
garbled username and password and replay the garbled information to origin
servers over and over again to gain access. No effort is made to prevent
these replay attacks.

3.
Even if basic authentication is used for
noncritical applications, such as corporate intranet access control or
personalized content, social behavior makes this dangerous. Many users,
overwhelmed by a multitude of password-protected services, share usernames and
passwords. A clever, malicious party may capture a username and password in the
clear from a free Internet email site, for example, and find that the same
username and password allow access to critical online banking sites!

4.
Basic authentication offers no protection
against proxies or intermediaries that act as middlemen, leaving authentication
headers intact but modifying the rest of the message to dramatically change the
nature of the transaction.

5.
Basic authentication is vulnerable to spoofing
by counterfeit servers. If a user can be led to believe that he is connecting
to a valid host protected by basic authentication when, in fact, he is
connecting to a hostile server or gateway, the attacker can request a password,
store it for later use, and feign an error.

This all said, basic authentication still is
useful for providing convenient personalization or access control to documents
in an friendly environment, or where privacy is desired but not absolutely
necessary. In this way, basic authentication is used to prevent accidental or
casual access by curious users.[1]

[1] Be careful that the
username/password in basic authentication is not the same as the password on
your more secure systems, or malicious users can use them to break into your
secure accounts!

For example, inside a corporation, product management may
password-protect future product plans to limit premature distribution. Basic
authentication makes it sufficiently inconvenient for friendly parties to
access this data.[2]
Likewise, you might password-protect personal photos or private web sites that
aren't top-secret or don't contain valuable information, but really aren't
anyone else's business either.

[2] While not very secure, internal employees
of the company usually are unmotivated to maliciously capture passwords. That said,
corporate espionage does occur, and vengeful, disgruntled employees do exist,
so it is wise to place any data that would be very harmful if maliciously
acquired under a stronger security scheme.

Basic authentication can be made secure by combining it with
encrypted data transmission (such as SSL) to conceal the username and password
from malicious individuals. This is a common technique.

We discuss secure encryption in Chapter 14. The next chapter explains a more
sophisticated HTTP authentication protocol, digest authentication, that has
stronger security properties than basic authentication.

12.4 For More
Information

For more information on basic authentication
and LDAP, see:

http://www.ietf.org/rfc/rfc2617.txt

RFC 2617, "HTTP Authentication: Basic
and Digest Access Authentication."

http://www.ietf.org/rfc/rfc2616.txt

RFC 2616 "Hypertext Transfer
Protocol—HTTP/1.1."

Chapter 13.
Digest Authentication

Basic authentication is convenient and
flexible but completely insecure. Usernames and passwords are sent in the
clear,[1]
and there is no attempt to protect messages from tampering. The only way to use
basic authentication securely is to use it in conjunction with SSL.

[1] Usernames and passwords are scrambled using a trivial base-64
encoding, which can be decoded easily. This protects against unintentional
accidental viewing but offers no protection against malicious parties.

Digest authentication was developed as a
compatible, more secure alternative to basic authentication. We devote this
chapter to the theory and practice of digest authentication. Even though digest
authentication is not yet in wide use, the concepts still are important for
anyone implementing secure transactions.

13.1 The
Improvements of Digest Authentication

Digest authentication
is an alternate HTTP authentication protocol that tries to fix the most serious
flaws of basic authentication. In particular, digest authentication:

·
Never sends secret passwords across the network
in the clear

·
Prevents unscrupulous individuals from capturing
and replaying authentication handshakes

·
Optionally can guard against tampering with
message contents

·
Guards against several other common forms of
attacks

Digest authentication is not the most secure
protocol possible.[2]
Many needs for secure HTTP transactions cannot be met by digest authentication.
For those needs, Transport Layer Security (TLS) and Secure HTTP (HTTPS) are
more appropriate protocols.

[2] For example, compared to public key-based mechanisms, digest
authentication does not provide a strong authentication mechanism. Also, digest
authentication offers no confidentiality protection beyond protecting the
actual password—the rest of the request and response are available to
eavesdroppers.

However, digest authentication is
significantly stronger than basic authentication, which it was designed to
replace. Digest authentication also is stronger than many popular schemes
proposed for other Internet services, such as CRAM-MD5, which has been proposed
for use with LDAP, POP, and IMAP.

To date, digest authentication has not been widely deployed.
However, because of the security risks inherent to basic authentication, the HTTP
architects counsel in RFC 2617 that "any service in present use that uses
Basic should be switched to Digest as soon as practical."[3] It
is not yet clear how successful this standard will become.

[3] There has been significant debate about the
relevance of digest authentication, given the popularity and widespread
adoption of SSL-encrypted HTTP. Time will tell if digest authentication gains
the critical mass required.

13.1.1 Using Digests to Keep Passwords Secret

The motto of digest authentication is
"never send the password across the network." Instead of sending the
password, the client sends a "fingerprint" or "digest" of
the password, which is an irreversible scrambling of the password. The client
and the server both know the secret password, so the server can verify that the
digest provided is a correct match for the password. Given only the digest, a
bad guy has no easy way to find what password it came from, other than going
through every password in the universe, trying each one![4]

[4] There are techniques, such as dictionary
attacks, where common passwords are tried first. These cryptanalysis techniques
can dramatically ease the process of cracking passwords.

Let's see how this works (this is a
simplified version):

·
In Figure 13-1a, the client requests a protected
document.

·
In Figure 13-1b, the server refuses to serve the
document until the client authenticates its identity by proving it knows the
password. The server issues a challenge to the client, asking for the username
and a digested form of the password.

·
In Figure 13-1c, the client proves that it knows
the password by passing along the digest of the password. The server knows the
passwords for all the users,[5] so
it can verify that the user knows the password by comparing the client-supplied
digest with the server's own internally computed digest. Another party would
not easily be able to make up the right digest if it didn't know the password.

[5] In fact, the
server really needs to know only the digests of the passwords.

·
In Figure 13-1d, the server compares the
client-provided digest with the server's internally computed digest. If they
match, it shows that the client knows the password (or made a really lucky
guess!). The digest function can be set to generate so many digits that lucky
guesses effectively are impossible. When the server verifies the match, the
document is served to the client—all without ever sending the password over the
network.

Figure 13-1. Using digests for
password-obscured authentication

[image: figs/http_1301.gif]

We'll discuss the particular headers used in digest
authentication in more detail in Table 13-8.

13.1.2 One-Way Digests

A digest is a
"condensation of a body of information."[6]
Digests act as one-way functions, typically converting an infinite number of
possible input values into a finite range of condensations.[7]
One popular digest function, MD5,[8]
converts any arbitrary sequence of bytes, of any length, into a 128-bit digest.

[6] Merriam-Webster dictionary, 1998.

[7] In theory, because we are converting an
infinite number of input values into a finite number of output values, it is
possible to have two distinct inputs map to the same digest. This is called a collision.
In practice, the number of potential outputs is so large that the chance of a
collision in real life is vanishingly small and, for the purpose of password
matching, unimportant.

[8] MD5 stands for "Message Digest
#5," one in a series of digest algorithms. The Secure Hash Algorithm (SHA)
is another popular digest function.

128 bits = 2128, or about
1,000,000,000,000,000,000,000,000,000,000,000,000,000 possible distinct
condensations.

What is important about these digests is that if you don't
know the secret password, you'll have an awfully hard time guessing the correct
digest to send to the server. And likewise, if you have the digest, you'll have
an awfully hard time figuring out which of the effectively infinite number of
input values generated it.

The 128 bits of MD5 output often are written as 32 hexadecimal
characters, each character representing 4 bits. Table 13-1 shows a few examples of MD5 digests
of sample inputs. Notice how MD5 takes arbitrary inputs and yields a
fixed-length digest output.

	
Table 13-1. MD5 digest examples

	
Input

	
MD5 digest

	
"Hi"

	C1A5298F939E87E8F962A5EDFC206918

	
"bri:Ow!"

	BEAAA0E34EBDB072F8627C038AB211F8

	
"3.1415926535897"

	475B977E19ECEE70835BC6DF46F4F6DE

	
"http://www.http-guide.com/index.htm"

	C617C0C7D1D05F66F595E22A4B0EAAA5

	
"WE hold these Truths to be self-evident, that all Men
 are created equal, that they are endowed by their Creator with certain
 unalienable Rights, that among these are Life, Liberty and the Pursuit of
 Happiness—That to secure these Rights, Governments are instituted among Men,
 deriving their just Powers from the Consent of the Governed, that whenever
 any Form of Government becomes destructive of these Ends, it is the Right of
 the People to alter or to abolish it, and to institute new Government, laying
 its Foundation on such Principles, and organizing its Powers in such Form, as
 to them shall seem most likely to effect their Safety and Happiness."

	66C4EF58DA7CB956BD04233FBB64E0A4

Digest functions sometimes are called cryptographic
checksums, one-way hash functions, or fingerprint functions.

13.1.3 Using Nonces to Prevent Replays

One-way digests save us from having to
send passwords in the clear. We can just send a digest of the password instead,
and rest assured that no malicious party can easily decode the original
password from the digest.

Unfortunately, obscured passwords
alone do not save us from danger, because a bad guy can capture the digest and
replay it over and over again to the server, even though the bad guy doesn't
know the password. The digest is just as good as the password.

To prevent
such replay attacks, the server can pass along to the client a special token
called a nonce,[9] which
changes frequently (perhaps every millisecond, or for every authentication).
The client appends this nonce token to the password before computing the
digest.

[9] The word nonce means "the present
occasion" or "the time being." In a computer-security sense, the
nonce captures a particular point in time and figures that into the security
calculations.

Mixing the nonce in with the password causes the digest to
change each time the nonce changes. This prevents replay attacks, because the
recorded password digest is valid only for a particular nonce value, and
without the secret password, the attacker cannot compute the correct digest.

Digest authentication requires the use of nonces, because a
trivial replay weakness would make un-nonced digest authentication effectively
as weak as basic authentication. Nonces are passed from server to client in the
WWW-Authenticate challenge.

13.1.4 The Digest Authentication Handshake

The HTTP digest authentication
protocol is an enhanced version of authentication that uses headers similar to
those used in basic authentication. Some new options are added to the
traditional headers, and one new optional header, Authorization-Info, is added.

The simplified three-phase handshake
of digest authentication is depicted in Figure 13-2.

Figure 13-2. Digest authentication
handshake

[image: figs/http_1302.gif]

Here's what's happening in Figure 13-2:

·
In Step 1, the server computes a nonce value. In Step 2, the
server sends the nonce to the client in a WWW-Authenticate challenge message,
along with a list of algorithms that the server supports.

·
In Step 3, the client selects an algorithm and computes the
digest of the secret password and the other data. In Step 4, it sends the
digest back to the server in an Authorization message. If the client wants to
authenticate the server, it can send a client nonce.

·
In Step 5, the server receives the digest, chosen algorithm, and
supporting data and computes the same digest that the client did. The server
then compares the locally generated digest with the network-transmitted digest
and validates that they match. If the client symmetrically challenged the
server with a client nonce, a client digest is created. Additionally, the next
nonce can be precomputed and handed to the client in advance, so the client can
preemptively issue the right digest the next time.

Many of these pieces of information are optional and have
defaults. To clarify things, Figure 13-3 compares the messages sent for
basic authentication (Figure 13-3a-d) with a simple example of
digest authentication (Figure 13-3e-h).

Figure 13-3. Basic versus digest
authentication syntax

[image: figs/http_1303.gif]

Now let's look a bit more closely at the
internal workings of digest authentication.

13.2 Digest Calculations

The
heart of digest authentication is the one-way digest of
the mix of public information, secret information, and a time-limited nonce
value. Let's look now at how the digests are computed. The digest calculations
generally are straightforward.[10] Sample source code is
provided in Appendix F.

[10] However, they are made a little
more complicated for beginners by the optional compatibility modes of RFC 2617
and by the lack of background material in the specifications. We'll try to help
. . .

13.2.1 Digest Algorithm Input Data

Digests are computed from three
components:

·
A pair of functions consisting of a one-way hash function H(d) and digest KD(s,d), where s stands
for secret and d stands for data

·
A chunk of data containing security information, including the
secret password, called A1

·
A chunk of data containing nonsecret attributes of the request
message, called A2

The two pieces of data, A1 and A2, are processed by H and KD
to yield a digest.

13.2.2 The Algorithms H(d) and KD(s,d)

Digest authentication
supports the selection of a variety of digest algorithms. The two algorithms
suggested in RFC 2617 are MD5 and MD5-sess (where "sess" stands for
session), and the algorithm defaults to MD5 if no other algorithm is specified.

If either MD5 or MD5-sess is used, the H function computes the
MD5 of the data, and the KD digest function computes the MD5 of the
colon-joined secret and nonsecret data. In other words:

H(<data>) = MD5(<data>)
KD(<secret>,<data>) = H(concatenate(<secret>:<data>))

13.2.3 The Security-Related Data (A1)

The chunk of data called A1 is a
product of secret and protection information, such as the username, password,
protection realm, and nonces. A1 pertains only to security information, not to
the underlying message itself. A1 is used along with H, KD, and A2 to compute
digests.

RFC 2617 defines two ways of computing A1, depending on the
algorithm chosen:

MD5

One-way hashes are run for every
request; A1 is the colon-joined triple of username, realm, and secret password.

MD5-sess

The hash function is run only once,
on the first WWW-Authenticate handshake; the CPU-intensive hash of username,
realm, and secret password is done once and prepended to the current nonce and
client nonce (cnonce) values.

The definitions of A1 are shown in Table 13-2.

	
Table 13-2. Definitions for A1 by
 algorithm

	
Algorithm

	
A1

	
MD5

	
A1 =
 <user>:<realm>:<password>

	
MD5-sess

	
A1 =
 MD5(<user>:<realm>:<password>):<nonce>:<cnonce>

13.2.4 The Message-Related Data (A2)

The chunk of data called A2 represents
information about the message itself, such as the URL, request method, and
message entity body. A2 is used to help protect against method, resource, or
message tampering. A2 is used along with H, KD, and A1 to compute digests.

RFC 2617 defines two schemes for A2, depending on the quality of protection (qop)
chosen:

·
The first scheme involves only the HTTP request method and URL.
This is used when qop="auth", which is the default case.

·
The second scheme adds in the message entity body to provide a
degree of message integrity checking. This is used when
qop="auth-int".

The definitions of A2 are shown in Table 13-3.

	
Table 13-3. Definitions for A2 by
 algorithm (request digests)

	
qop

	
A2

	
undefined

	
<request-method>:<uri-directive-value>

	
auth

	
<request-method>:<uri-directive-value>

	
auth-int

	
<request-method>:<uri-directive-value>:H(<request-entity-body>)

The request-method is the HTTP request method. The uri-directive-value is the request URI from the request line. This may be
"*," an "absoluteURL," or an "abs_path," but it
must agree with the request URI. In particular, it must be an absolute URL if
the request URI is an absoluteURL.

13.2.5 Overall Digest Algorithm

RFC 2617 defines two ways of computing digests, given H, KD,
A1, and A2:

·
The first way is intended to be compatible with the older
specification RFC 2069, used when the qop option is missing. It computes the
digest using the hash of the secret information and the nonced message data.

·
The second way is the modern, preferred approach—it includes
support for nonce counting and symmetric authentication. This approach is used
whenever qop is "auth" or "auth-int". It adds nonce count,
qop, and cnonce data to the digest.

The definitions for the resulting digest function are shown in
Table 13-4. Notice the resulting digests use
H, KD, A1, and A2.

	
Table 13-4. Old and new digest
 algorithms

	
qop

	
Digest algorithm

	
Notes

	
undefined

	
KD(H(A1),
 <nonce>:H(A2))

	
Deprecated

	
auth or auth-int

	
KD(H(A1),
 <nonce>:<nc>:<cnonce>:<qop>:H(A2))

	
Preferred

It's a bit easy to get lost in all the layers of derivational
encapsulation. This is one of the reasons that some readers have difficulty
with RFC 2617. To try to make it a bit easier, Table 13-5 expands away the H and KD
definitions, and leaves digests in terms of A1 and A2.

	
Table 13-5. Unfolded digest
 algorithm cheat sheet

	
qop

	
Algorithm

	
Unfolded algorithm

	
undefined

	
<undefined>MD5MD5-sess

	
MD5(MD5(A1):<nonce>:MD5(A2))

	
auth

	
<undefined>MD5MD5-sess

	
MD5(MD5(A1):<nonce>:<nc>:<cnonce>:<qop>:MD5(A2))

	
auth-int

	
<undefined>MD5MD5-sess

	
MD5(MD5(A1):<nonce>:<nc>:<cnonce>:<qop>:MD5(A2))

13.2.6 Digest Authentication Session

The client response to a
WWW-Authenticate challenge for a protection space starts an authentication
session with that protection space (the realm combined
with the canonical root of the server being accessed defines a "protection
space").

The authentication session lasts until
the client receives another WWW-Authenticate challenge from any server in the
protection space. A client should remember the username, password, nonce, nonce
count, and opaque values associated with an authentication session to use to
construct the Authorization header in future requests within that protection
space.

When the nonce expires, the server can choose to accept the
old Authorization header information, even though the nonce value included may
not be fresh. Alternatively, the server may return a 401 response with a new
nonce value, causing the client to retry the request; by specifying
"stale=true" with this response, the server tells the client to retry
with the new nonce without prompting for a new username and password.

13.2.7 Preemptive Authorization

In normal authentication, each request
requires a request/challenge cycle before the transaction can be completed.
This is depicted in Figure 13-4a.

This request/challenge cycle can be eliminated if the client
knows in advance what the next nonce will be, so it can generate the correct Authorization header before the
server asks for it. If the client can compute the Authorization header before
it is requested, the client can preemptively issue the Authorization header to
the server, without first going through a request/challenge. The performance
impact is depicted in Figure 13-4b.

Figure 13-4. Preemptive
authorization reduces message count

[image: figs/http_1304.gif]

Preemptive authorization is trivial (and common) for basic
authentication. Browsers commonly maintain client-side databases of usernames
and passwords. Once a user authenticates with a site, the browser commonly
sends the correct Authorization header for subsequent requests to that URL (see
Chapter 12).

Preemptive authorization is a bit more complicated for digest authentication, because of the nonce technology
intended to foil replay attacks. Because the server generates arbitrary nonces,
there isn't always a way for the client to determine what Authorization header
to send until it receives a challenge.

Digest authentication offers a few means for preemptive
authorization while retaining many of the safety features. Here are three
potential ways a client can obtain the correct nonce without waiting for a new
WWW-Authenticate challenge:

·
Server pre-sends the next nonce in the Authentication-Info
success header.

·
Server allows the same nonce to be reused for a small window of
time.

·
Both the client and server use a synchronized, predictable
nonce-generation algorithm.

13.2.7.1 Next nonce pregeneration

The next nonce value can be provided
in advance to the client by the Authentication-Info success header. This header
is sent along with the 200 OK response from a previous successful
authentication.

Authentication-Info: nextnonce="<nonce-value>"

Given the next nonce, the client can preemptively issue an
Authorization header.

While this preemptive authorization avoids a request/challenge
cycle (speeding up the transaction), it also effectively nullifies the ability
to pipeline multiple requests to the same server, because the next nonce value
must be received before the next request can be issued. Because pipelining is
expected to be a fundamental technology for latency avoidance, the performance
penalty may be large.

13.2.7.2 Limited nonce reuse

Instead of pregenerating a sequence of
nonces, another approach is to allow limited reuse of nonces. For example, a
server may allow a nonce to be reused 5 times, or for 10 seconds.

In this case, the client can freely issue requests with the
Authorization header, and it can pipeline them, because the nonce is known in
advance. When the nonce finally expires, the server is expected to send the
client a 401 Unauthorized challenge, with the WWW-Authenticate: stale=true
directive set:

WWW-Authenticate: Digest
 realm="<realm-value>"
 nonce="<nonce-value>"
 stale=true

Reusing nonces does reduce security, because it makes it
easier for an attacker to succeed at replay attacks. Because the lifetime of
nonce reuse is controllable, from strictly no reuse to potentially long reuse,
trade-offs can be made between windows of vulnerability and performance.

Additionally, other features can be employed to make replay
attacks more difficult, including incrementing counters and IP address tests.
However, while making attacks more inconvenient, these techniques do not
eliminate the vulnerability.

13.2.7.3 Synchronized nonce generation

It is possible to employ time-synchronized
nonce-generation algorithms, where both the client and the server can generate
a sequence of identical nonces, based on a shared secret key, that a third
party cannot easily predict (such as secure ID cards).

These algorithms are beyond the scope of the digest
authentication specification.

13.2.8 Nonce Selection

The contents of the nonce are opaque
and implementation-dependent. However, the quality of performance, security,
and convenience depends on a smart choice.

RFC 2617 suggests this hypothetical nonce formulation:

BASE64(time-stamp H(time-stamp ":" ETag ":" private-key))

where time-stamp is a server-generated time or other
nonrepeating value, ETag is the value of the HTTP ETag
header associated with the requested entity, and private-key is data known only
to the server.

With a nonce of this form, a server will recalculate the hash
portion after receiving the client authentication header and reject the request
if it does not match the nonce from that header or if the time-stamp value is
not recent enough. In this way, the server can limit the duration of the nonce's
validity.

The inclusion of the ETag prevents a replay request for an
updated version of the resource. (Note that including the IP address of the
client in the nonce would appear to offer the server the ability to limit the
reuse of the nonce to the same client that originally got it. However, that
would break proxy farms, in which requests from a single user often go through
different proxies. Also, IP address spoofing is not that hard.)

An implementation might choose not to accept
a previously used nonce or digest, to protect against replay attacks. Or, an
implementation might choose to use one-time nonces or digests for POST or PUT
requests and time-stamps for GET requests.

Refer to Section 13.5 for
practical security considerations that affect nonce selection.

13.2.9 Symmetric Authentication

RFC 2617 extends digest authentication to allow the client to
authenticate the server. It does this by providing a client nonce value, to
which the server generates a correct response digest based on correct knowledge
of the shared secret information. The server then returns this digest to the
client in the Authorization-Info header.

This symmetric authentication is standard as
of RFC 2617. It is optional for backward compatibility with the older RFC 2069
standard, but, because it provides important security enhancements, all modern
clients and servers are strongly recommended to implement all of RFC 2617's
features. In particular, symmetric authentication is required to be performed
whenever a qop directive is present and required not to be performed when the
qop directive is missing.

The response digest
is calculated like the request digest, except that the message body information
(A2) is different, because there is no method in a response, and the message
entity data is different. The
methods of computation of A2 for request and response digests are compared in Table 13-6 and Table 13-7.

	
Table 13-6. Definitions
 for A2 by algorithm (request digests)

	
qop

	
A2

	
undefined

	
<request-method>:<uri-directive-value>

	
auth

	
<request-method>:<uri-directive-value>

	
auth-int

	
<request-method>:<uri-directive-value>:H(<request-entity-body>)

	
Table 13-7. Definitions for A2 by algorithm (response
 digests)

	
qop

	
A2

	
undefined

	
:<uri-directive-value>

	
auth

	
:<uri-directive-value>

	
auth-int

	
:<uri-directive-value>:H(<response-entity-body>)

The cnonce value and nc value must be the ones for the client
request to which this message is the response. The response auth, cnonce, and nonce
count directives must be present if qop="auth" or
qop="auth-int" is specified.

13.3 Quality of Protection
Enhancements

The qop field may be present in all
three digest headers: WWW-Authenticate, Authorization, and Authentication-Info.

The qop field lets clients and servers negotiate for different
types and qualities of protection. For example, some transactions may want to
sanity check the integrity of message bodies, even if that slows down
transmission significantly.

The server first exports a comma-separated list of qop options
in the WWW-Authenticate header. The client then selects one of the options that
it supports and that meets its needs and passes it back to the server in its
Authorization qop field.

Use of qop is optional, but only for backward compatibility
with the older RFC 2069 specification. The qop option should be supported by
all modern digest implementations.

RFC 2617 defines two initial quality of protection values:
"auth," indicating authentication, and "auth-int,"
indicating authentication with message integrity protection. Other qop options
are expected in the future.

13.3.1 Message Integrity Protection

If integrity
protection is applied (qop="auth-int"), H (the entity body) is the
hash of the entity body, not the message body. It is computed before any
transfer encoding is applied by the sender and after it has been removed by the
recipient. Note that this includes multipart boundaries and embedded headers in
each part of any multipart content type.

13.3.2 Digest Authentication Headers

Both the basic and digest authentication protocols contain an authorization
challenge, carried by the WWW-Authenticate header, and an authorization
response, carried by the Authorization header. Digest authentication adds an
optional Authorization-Info header, which is sent after successful authentication,
to complete a three-phase handshake and pass along the next nonce to use. The basic and digest authentication
headers are shown in Table 13-8.

	
Table 13-8. HTTP authentication
 headers

	
Phase

	
Basic

	
Digest

	
Challenge

	WWW-Authenticate: Basic
 realm="<realm-value>"

	WWW-Authenticate: Digest
 realm="<realm-value>"
 nonce="<nonce-value>"
 [domain="<list-of-URIs>"]
 [opaque="<opaque-token-value>"]
 [stale=<true-or-false>]
 [algorithm=<digest-algorithm>]
 [qop="<list-of-qop-values>"]
 [<extension-directive>]

	
Response

	Authorization: Basic
 <base64-user:pass>

	Authorization: Digest
 username="<username>"
 realm="<realm-value>"
 nonce="<nonce-value>"
 uri=<request-uri>
 response="<32-hex-digit-digest>"
 [algorithm=<digest-algorithm>]
 [opaque="<opaque-token-value>"]
 [cnonce="<nonce-value>"]
 [qop=<qop-value>]
 [nc=<8-hex-digit-nonce-count>]
 [<extension-directive>]

	
Info

	n/a

	Authentication-Info:
 nextnonce="<nonce-value>"
 [qop="<list-of-qop-values>"]
 [rspauth="<hex-digest>"]
 [cnonce="<nonce-value>"]
 [nc=<8-hex-digit-nonce-count>]

The digest authentication headers are quite a bit more complicated.
They are described in detail in Appendix F.

13.4 Practical
Considerations

There are several things you need to consider when working
with digest authentication. This section discusses some of these issues.

13.4.1 Multiple Challenges

A server can issue multiple challenges
for a resource. For example, if a server does not know the capabilities of a
client, it may provide both basic and digest authentication challenges. When
faced with multiple challenges, the client must choose to answer with the
strongest authentication mechanism that it supports.

User agents must take special care in parsing the
WWW-Authenticate or Proxy-Authenticate header field value if it contains more
than one challenge or if more than one WWW-Authenticate header field is
provided, as a challenge may itself contain a comma-separated list of
authentication parameters. Note that many browsers recognize only basic
authentication and require that it be the first authentication mechanism
presented.

There are obvious "weakest link" security concerns
when providing a spectrum of authentication options. Servers should include
basic authentication only if it is minimally acceptable, and administrators
should caution users about the dangers of sharing the same password across
systems when different levels of security are being employed.

13.4.2 Error Handling

In digest authentication, if a
directive or its value is improper, or if a required directive is missing, the
proper response is 400 Bad Request.

If a request's digest does not match,
a login failure should be logged. Repeated failures from a client may indicate
an attacker attempting to guess passwords.

The authenticating server must assure that the resource
designated by the "uri" directive is the same as the resource
specified in the request line; if they are different, the server should return
a 400 Bad Request error. (As this may be a symptom of an attack, server
designers may want to consider logging such errors.) Duplicating information
from the request URL in this field deals with the possibility that an
intermediate proxy may alter the client's request line. This altered (but,
presumably, semantically equivalent) request would not result in the same
digest as that calculated by the client.

13.4.3 Protection Spaces

The realm value, in combination with the canonical root URL of
the server being accessed, defines the protection
space.

Realms allow the protected resources
on a server to be partitioned into a set of protection spaces, each with its
own authentication scheme and/or authorization database. The realm value is a
string, generally assigned by the origin server, which may have additional
semantics specific to the authentication scheme. Note that there may be
multiple challenges with the same authorization scheme but different realms.

The protection space determines the domain
over which credentials can be automatically applied. If a prior request has
been authorized, the same credentials may be reused for all other requests
within that protection space for a period of time determined by the authentication
scheme, parameters, and/or user preference. Unless otherwise defined by the
authentication scheme, a single protection space cannot extend outside the
scope of its server.

The specific calculation of protection space
depends on the authentication mechanism:

·
In basic authentication,
clients assume that all paths at or below the request URI are within the same
protection space as the current challenge. A client can preemptively authorize
for resources in this space without waiting for another challenge from the
server.

·
In digest
authentication, the challenge's WWW-Authenticate: domain field more precisely
defines the protection space. The domain field is a quoted, space-separated
list of URIs. All the URIs in the domain list, and all URIs logically beneath
these prefixes, are assumed to be in the same protection space. If the domain
field is missing or empty, all URIs on the challenging server are in the
protection space.

13.4.4 Rewriting URIs

Proxies may rewrite URIs in ways that change the URI syntax but not the actual
resource being described. For example:

·
Hostnames may be normalized or replaced with IP
addresses.

·
Embedded characters may be replaced with
"%" escape forms.

·
Additional attributes of a type that doesn't
affect the resource fetched from the particular origin server may be appended
or inserted into the URI.

Because URIs can be changed by proxies, and
because digest authentication sanity checks the integrity of the URI value, the
digest authentication will break if any of these changes are made. See Section 13.2.4 for more information.

13.4.5 Caches

When a shared
cache receives a request containing an Authorization header and a response from
relaying that request, it must not return that response as a reply to any other
request, unless one of two Cache-Control directives was present in the
response:

·
If the original response included the "must-revalidate"
Cache-Control directive, the cache may use the entity of that response in
replying to a subsequent request. However, it must first revalidate it with the
origin server, using the request headers from the new request, so the origin
server can authenticate the new request.

·
If the original response included the "public"
Cache-Control directive, the response entity may be returned in reply to any
subsequent request.

13.5 Security
Considerations

RFC 2617 does an admirable
job of summarizing some of the security risks inherent in HTTP authentication schemes. This section describes some
of these risks.

13.5.1 Header Tampering

To provide a foolproof
system against header tampering, you need either end-to-end encryption or a
digital signature of the headers—preferably a combination of both! Digest
authentication is focused on providing a tamper-proof authentication scheme,
but it does not necessarily extend that protection to the data. The only
headers that have some level of protection are WWW-Authenticate and
Authorization.

13.5.2 Replay Attacks

A replay
attack, in the current context, is when someone uses a set of snooped
authentication credentials from a given transaction for another transaction.
While this problem is an issue with GET requests, it is vital that a foolproof
method for avoiding replay attacks be available for POST and PUT requests. The
ability to successfully replay previously used credentials while transporting
form data could cause security nightmares.

Thus, in order for a server to accept "replayed"
credentials, the nonce values must be repeated. One of the ways to mitigate
this problem is to have the server generate a nonce containing a digest of the
client's IP address, a time-stamp, the resource ETag, and a private server key
(as recommended earlier). In such a scenario, the combination of an IP address
and a short timeout value may provide a huge hurdle for the attacker.

However, this solution has a major drawback. As we discussed
earlier, using the client's IP address in creating a nonce breaks transmission
through proxy farms, in which requests from a single user may go through
different proxies. Also, IP spoofing is not too difficult.

One way to completely avoid replay attacks is to use a unique
nonce value for every transaction. In this implementation, for each
transaction, the server issues a unique nonce along with a timeout value. The
issued nonce value is valid only for the given transaction, and only for the
duration of the timeout value. This accounting may increase the load on
servers; however, the increase should be miniscule.

13.5.3 Multiple Authentication Mechanisms

When a server
supports multiple authentication schemes (such as basic and digest), it usually
provides the choice in WWW-Authenticate headers. Because the client is not
required to opt for the strongest authentication mechanism, the strength of the
resulting authentication is only as good as that of the weakest of the
authentication schemes.

The obvious ways to avoid this problem is to have the clients
always choose the strongest authentication scheme available. If this is not
practical (as most of us do use commercially available clients), the only other
option is to use a proxy server to retain only the strongest authentication
scheme. However, such an approach is feasible only in a domain in which all of
the clients are known to be able to support the chosen authentication
scheme—e.g., a corporate network.

13.5.4 Dictionary Attacks

Dictionary
attacks are typical password-guessing attacks. A malicious user can eavesdrop
on a transaction and use a standard password-guessing program against
nonce/response pairs. If the users are using relatively simple passwords and
the servers are using simplistic nonces, it is quite possible to find a match.
If there is no password aging policy, given enough time and the one-time cost
of cracking the passwords, it is easy to collect enough passwords to do some
real damage.

There really is no good way to solve this problem, other than
using relatively complex passwords that are hard to crack and a good password
aging policy.

13.5.5 Hostile Proxies and Man-in-the-Middle Attacks

Much Internet traffic today goes through a proxy at one
point or another. With the advent of redirection techniques and intercepting
proxies, a user may not even realize that his request is going through a proxy.
If one of those proxies is hostile or compromised, it could leave the client
vulnerable to a man-in-the-middle
attack.

Such an attack could be in the form of eavesdropping, or
altering available authentication schemes by removing all of the offered
choices and replacing them with the weakest authentication scheme (such as
basic authentication).

One of the ways to compromise a trusted proxy is though its
extension interfaces. Proxies sometimes provide sophisticated programming
interfaces, and with such proxies it may be feasible to write an extension
(i.e., plug-in) to intercept and modify the traffic. However, the data-center
security and security offered by proxies themselves make the possibility of
man-in-the-middle attacks via rogue plug-ins quite remote.

There is no good way to fix this problem. Possible solutions
include clients providing visual cues regarding the authentication strength,
configuring clients to always use the strongest possible authentication, etc.,
but even when using the strongest possible authentication scheme, clients still
are vulnerable to eavesdropping. The only foolproof way to guard against these
attacks is by using SSL.

13.5.6 Chosen Plaintext Attacks

Clients using
digest authentication use a nonce supplied by the server to generate the response.
However, if there is a compromised or malicious proxy in the middle
intercepting the traffic (or a malicious origin server), it can easily supply a
nonce for response computation by the client. Using the known key for computing
the response may make the cryptanalysis of the response easier. This is called
a chosen plaintext attack. There are a few
variants of chosen plaintext attacks:

Precomputed
dictionary attacks

This is a
combination of a dictionary attack and a chosen plaintext attack. First, the
attacking server generates a set of responses, using a predetermined nonce and
common password variations, and creates a dictionary. Once a sizeable
dictionary is available, the attacking server/proxy can complete the
interdiction of the traffic and start sending predetermined nonces to the
clients. When it gets a response from a client, the attacker searches the
generated dictionary for matches. If a there is a match, the attacker has the
password for that particular user.

Batched brute-force attacks

The difference in
a batched brute-force attack is in the computation of the password. Instead of
trying to match a precomputed digest, a set of machines goes to work on
enumerating all of the possible passwords for a given space. As the machines
get faster, the brute-force attack becomes more and more viable.

In general, the threat posed by these attacks
is easily countered. One way to prevent them is to configure clients to use the
optional cnonce directive, so that the response is generated at the client's
discretion, not using the nonce supplied by the server (which could be
compromised by the attacker). This, combined with policies enforcing reasonably
strong passwords and a good password aging mechanism, can mitigate the threat
of chosen plaintext attacks completely.

13.5.7 Storing Passwords

The digest authentication mechanism compares the user response to
what is stored internally by the server—usually, usernames and H(A1) tuples,
where H(A1) is derived from the digest of username, realm, and password.

Unlike with a traditional password file on a
Unix box, if a digest authentication password file is compromised, all of the
documents in the realm immediately are available to the attacker; there is no
need for a decrypting step.

Some of the ways to mitigate this problem are
to:

·
Protect the password file as though it contained
clear-text passwords.

·
Make sure the realm name is unique among all the
realms, so that if a password file is compromised, the damage is localized to a
particular realm. A fully qualified realm name with host and domain included
should satisfy this requirement.

While digest authentication provides a much
more robust and secure solution than basic authentication, it still does not
provide any protection for security of the content—a truly secure transaction
is feasible only through SSL, which we describe in the next chapter.

13.6 For More
Information

For more information on authentication, see:

http://www.ietf.org/rfc/rfc2617.txt

RFC 2617, "HTTP Authentication: Basic
and Digest Access Authentication."

Chapter 14.
Secure HTTP

The previous three chapters reviewed features
of HTTP that help identify and authenticate users. These techniques work well
in a friendly community, but they aren't strong enough to protect important
transactions from a community of motivated and hostile adversaries.

This chapter presents a more complicated and
aggressive technology to secure HTTP transactions from eavesdropping and
tampering, using digital cryptography.

14.1 Making
HTTP Safe

People use web transactions for serious things. Without strong
security, people wouldn't feel comfortable doing online shopping and banking. Without
being able to restrict access, companies couldn't place important documents on
web servers. The Web requires a secure form of HTTP.

The previous chapters talked about some
lightweight ways of providing authentication (basic and digest authentication)
and message integrity (digest qop="auth-int"). These schemes are good
for many purposes, but they may not be strong enough for large purchases, bank
transactions, or access to confidential data. For these more serious
transactions, we combine HTTP with digital encryption technology.

A secure version of HTTP needs to be
efficient, portable, easy to administer, and adaptable to the changing world. It
also has to meet societal and governmental requirements. We need a technology
for HTTP security that provides:

·
Server authentication (clients know they're talking to the real
server, not a phony)

·
Client authentication (servers know they're talking to the real
user, not a phony)

·
Integrity (clients and servers are safe from their data being
changed)

·
Encryption (clients and servers talk privately without fear of
eavesdropping)

·
Efficiency (an algorithm fast enough for inexpensive clients and
servers to use)

·
Ubiquity (protocols are supported by virtually all clients and
servers)

·
Administrative scalability (instant secure communication for anyone,
anywhere)

·
Adaptability (supports the best known security methods of the
day)

·
Social viability (meets the cultural and political needs of the
society)

14.1.1 HTTPS

HTTPS is the most popular secure
form of HTTP. It was pioneered by Netscape Communications Corporation and is
supported by all major browsers and servers.

You can tell if a web page was accessed through HTTPS instead
of HTTP, because the URL will start with the scheme https:// instead of http://
(some browsers also display iconic security cues, as shown in Figure 14-1).

Figure 14-1. Browsing secure web
sites

[image: figs/http_1401.gif]

When using HTTPS, all the HTTP request and
response data is encrypted before being sent across the network. HTTPS works by
providing a transport-level cryptographic security layer—using either the Secure Sockets Layer (SSL) or its
successor, Transport Layer
Security (TLS)—underneath HTTP (Figure 14-2). Because
SSL and TLS are so similar, in this book we use the term "SSL"
loosely to represent both SSL and TLS.

Figure 14-2. HTTPS is
HTTP layered over a security layer, layered over TCP

[image: figs/http_1402.gif]

Because most of the hard encoding and
decoding work happens in the SSL libraries, web clients and servers don't need
to change much of their protocol processing logic to use secure HTTP. For the
most part, they simply need to replace TCP input/output calls with SSL calls
and add a few other calls to configure and manage the security information.

14.2 Digital Cryptography

Before we talk in detail
about HTTPS, we need to provide a little background about the cryptographic
encoding techniques used by SSL and HTTPS. In the next few sections, we'll give
a speedy primer of the essentials of digital cryptography. If you already are
familiar with the technology and terminology of digital cryptography, feel free
to jump ahead to Section 14.7.

In this digital cryptography primer, we'll talk about:

Ciphers

Algorithms for encoding text to
make it unreadable to voyeurs

Keys

Numeric parameters that change the
behavior of ciphers

Symmetric-key
cryptosystems

Algorithms that use the same key
for encoding and decoding

Asymmetric-key
cryptosystems

Algorithms that use different keys
for encoding and decoding

Public-key
cryptography

A system making it easy for
millions of computers to send secret messages

Digital
signatures

Checksums that verify that a
message has not been forged or tampered with

Digital
certificates

Identifying information, verified
and signed by a trusted organization

14.2.1 The Art and Science of Secret Coding

Cryptography is the art and science of encoding and decoding
messages. People have used cryptographic methods to send secret messages for
thousands of years. However, cryptography can do more than just encrypt
messages to prevent reading by nosy folks; it also can be used to prevent
tampering with messages. Cryptography even can be used to prove that you indeed
authored a message or transaction, just like your handwritten signature on a
check or an embossed wax seal on an envelope.

14.2.2 Ciphers

Cryptography is based on secret codes called ciphers. A cipher is
a coding scheme—a particular way to encode a message and an accompanying way to
decode the secret later. The original message, before it is encoded, often is
called plaintext or cleartext . The coded message, after the cipher is applied, often is
called ciphertext . Figure 14-3 shows a simple example.

Figure 14-3. Plaintext and
ciphertext

[image: figs/http_1403.gif]

Ciphers have been used to generate secret messages for
thousands of years. Legend has it that Julius Caesar used a three-character
rotation cipher, where each character in the message is replaced with a
character three alphabetic positions forward. In our modern alphabet,
"A" would be replaced by "D," "B" would be replaced
by "E," and so on.

For example, in Figure 14-4, the message "meet me at the
pier at midnight" encodes into the ciphertext "phhw ph dw wkh slhu dw
plgqljkw" using the rot3 (rotate by 3 characters) cipher.[1] The ciphertext can be
decrypted back to the original plaintext message by applying the inverse
coding, rotating -3 characters in the alphabet.

[1] For simplicity of example, we
aren't rotating punctuation or whitespace, but you could.

Figure 14-4. Rotate-by-3 cipher
example

[image: figs/http_1404.gif]

14.2.3 Cipher Machines

Ciphers began as relatively simple
algorithms, because human beings needed to do the encoding and decoding
themselves. Because the ciphers were simple, people could work the codes using
pencil and paper and code books. However, it also was possible for clever
people to "crack" the codes fairly easily.

As technology advanced, people started making machines that
could quickly and accurately encode and decode messages using much more
complicated ciphers. Instead of just doing simple rotations, these cipher
machines could substitute characters, transpose the order of characters, and
slice and dice messages to make codes much harder to crack.[2]

[2] Perhaps the most famous mechanical code
machine was the World War II German Enigma code machine. Despite the complexity
of the Enigma cipher, Alan Turing and colleagues were able to crack the Enigma
codes in the early 1940s, using the earliest digital computers.

14.2.4 Keyed Ciphers

Because code
algorithms and machines could fall into enemy hands, most machines had dials
that could be set to a large number of different values that changed how the
cipher worked. Even if the machine was stolen, without the right dial settings
(key values) the decoder wouldn't work.[3]

[3] In reality, having the logic of the machine
in your possession can sometimes help you to crack the code, because the
machine logic may point to patterns that you can exploit. Modern cryptographic
algorithms usually are designed so that even if the algorithm is publicly
known, it's difficult to come up with any patterns that will help evildoers
crack the code. In fact, many of the strongest ciphers in common use have their
source code available in the public domain, for all to see and study!

These cipher parameters were called keys. You needed to enter the right
key into the cipher machine to get the decoding process to work correctly.
Cipher keys make a single cipher machine act like a set of many virtual cipher
machines, each of which behaves differently because they have different key
values.

Figure 14-5. The rotate-by-N cipher,
using different keys

[image: figs/http_1405.gif]

Figure 14-5
illustrates an example of keyed ciphers. The cipher algorithm is the trivial
"rotate-by-N" cipher. The value of N is controlled by the key. The
same input message, "meet me at the pier at midnight," passed through
the same encoding machine, generates different outputs depending on the value
of the key. Today, virtually all cipher algorithms use keys.

14.2.5 Digital Ciphers

With the advent of
digital computation, two major advances occurred:

·
Complicated encoding and decoding algorithms
became possible, freed from the speed and function limitations of mechanical
machinery.

·
It became possible to support very large keys,
so that a single cipher algorithm could yield trillions of virtual cipher
algorithms, each differing by the value of the key. The longer the key, the
more combinations of encodings are possible, and the harder it is to crack the
code by randomly guessing keys.

Unlike physical metal keys or dial settings
in mechanical devices, digital keys
are just numbers. These digital key values are inputs to the encoding and
decoding algorithms. The coding algorithms are functions that take a chunk of
data and encode/decode it based on the algorithm and the value of the key.

Given a plaintext message called P, an
encoding function called E, and a digital encoding key called e, you can
generate a coded ciphertext message C (Figure 14-6). You
can decode the ciphertext C back into the original plaintext P by using the
decoder function D and the decoding key d. Of course, the decoding and encoding
functions are inverses of each other; the decoding of the encoding of P gives
back the original message P.

Figure 14-6. Plaintext is
encoded with encoding key e, and decoded using decoding key d

[image: figs/http_1406.gif]

14.3 Symmetric-Key
Cryptography

Let's talk in more detail about how keys and ciphers work
together. Many digital cipher algorithms are called symmetric-key ciphers, because they use the
same key value for encoding as they do for decoding (e = d). Let's just call
the key k.

In a symmetric key cipher, both a sender and a receiver need
to have the same shared secret key, k, to communicate. The sender uses the
shared secret key to encrypt the message and sends the resulting ciphertext to
the receiver. The receiver takes the ciphertext and applies the decrypting
function, along with the same shared secret key, to recover the original
plaintext (Figure 14-7).

Figure 14-7. Symmetric-key
cryptography algorithms use the same key for encoding and decoding

[image: figs/http_1407.gif]

Some popular symmetric-key cipher algorithms are DES,
Triple-DES, RC2, and RC4.

14.3.1 Key Length and Enumeration Attacks

It's very
important that secret keys stay secret. In most cases, the encoding and
decoding algorithms are public knowledge, so the key is the only thing that's
secret!

A good cipher algorithm forces the enemy to try every single
possible key value in the universe to crack the code. Trying all key values by
brute force is called an enumeration attack. If there
are only a few possible key values, a bad guy can go through all of them by
brute force and eventually crack the code. But if there are a lot of possible
key values, it might take the bad guy days, years, or even the lifetime of the
universe to go through all the keys, looking for one that breaks the cipher.

The number of possible key values depends on the number of
bits in the key and how many of the possible keys are valid. For symmetric-key
ciphers, usually all of the key values are valid.[4] An 8-bit key would have only
256 possible keys, a 40-bit key would have 240 possible keys (around
one trillion keys), and a 128-bit key would generate around 262,000,000,000,000,000,000,000,000,000,000,000,000
possible keys.

[4] There are ciphers where only
some of the key values are valid. For example, in RSA, the best-known
asymmetric-key cryptosystem, valid keys must be related to prime numbers in a certain
way. Only a small number of the possible key values have this property.

For conventional symmetric-key ciphers, 40-bit keys are
considered safe enough for small, noncritical transactions. However, they are
breakable by today's high-speed workstations, which can now do billions of
calculations per second.

In contrast, 128-bit keys are considered very strong for
symmetric-key cryptography. In fact, long keys have such an impact on
cryptographic security that the U.S. government has put export controls on
cryptographic software that uses long keys, to prevent potentially antagonistic
organizations from creating secret codes that the U.S. National Security Agency
(NSA) would itself be unable to crack.

Bruce Schneier's excellent book, Applied
Cryptography (John Wiley & Sons), includes a table describing the
time it would take to crack a DES cipher by guessing all keys, using 1995
technology and economics.[5]
Excerpts of this table are shown in Table 14-1.

[5] Computation speed has increased
dramatically since 1995, and cost has been reduced. And the longer it takes you
to read this book, the faster they'll become! However, the table still is
relatively useful, even if the times are off by a factor of 5, 10, or more.

	
Table 14-1. Longer keys
 take more effort to crack (1995 data, from "Applied Cryptography")

	
Attack cost

	
40-bit key

	
56-bit key

	
64-bit key

	
80-bit key

	
128-bit key

	
$100,000

	
2 secs

	
35 hours

	
1 year

	
70,000 years

	
1019 years

	
$1,000,000

	
200 msecs

	
3.5 hours

	
37 days

	
7,000 years

	
1018 years

	
$10,000,000

	
20 msecs

	
21 mins

	
4 days

	
700 years

	
1017 years

	
$100,000,000

	
2 msecs

	
2 mins

	
9 hours

	
70 years

	
1016 years

	
$1,000,000,000

	
200 usecs

	
13 secs

	
1 hour

	
7 years

	
1015 years

Given the speed of 1995 microprocessors,
an attacker willing to spend $100,000 in 1995 could break a 40-bit DES code in
about 2 seconds. And computers in 2002 already are 20 times faster than they
were in 1995. Unless the users change keys frequently, 40-bit keys are not safe
against motivated opponents.

The DES standard key size of 56 bits is more secure. In 1995
economics, a $1 million assault still would take several hours to crack the
code. But a person with access to supercomputers could crack the code by brute
force in a matter of seconds. In contrast, 128-bit DES keys, similar in size to
Triple-DES keys, are believed to be effectively unbreakable by anyone, at any
cost, using a brute-force attack.[6]

[6] A large key does not mean that the cipher
is foolproof, though! There may be an unnoticed flaw in the cipher algorithm or
implementation that provides a weakness for an attacker to exploit. It's also
possible that the attacker may have some information about how the keys are
generated, so that he knows some keys are more likely than others, helping to focus
a brute-force attack. Or a user might leave the secret key someplace where an
attacker might be able to steal it.

14.3.2 Establishing Shared Keys

One
disadvantage of symmetric-key ciphers is that both the sender and receiver have
to have a shared secret key before they can talk to each other.

If you wanted to talk securely with Joe's Hardware store,
perhaps to order some woodworking tools after watching a home-improvement
program on public television, you'd have to establish a private secret key between
you and www.joes-hardware.com before you could
order anything securely. You'd need a way to generate the secret key and to
remember it. Both you and Joe's Hardware, and every other Internet user, would
have thousands of keys to generate and remember.

Say that Alice (A), Bob (B), and Chris (C) all wanted to talk
to Joe's Hardware (J). A, B, and C each would need to establish their own
secret keys with J. A would need key kAJ, B would need key kBJ,
and C would need key kCJ. Every pair of communicating parties needs
its own private key. If there are N nodes, and each node has to talk securely
with all the other N-1 nodes, there are roughly N2 total secret keys: an
administrative nightmare.

14.4 Public-Key
Cryptography

Instead
of a single encoding/decoding
key for every pair of hosts, public-key cryptography uses two asymmetric keys:
one for encoding messages for a host, and another for decoding the host's
messages. The encoding key is publicly known to the world (thus the name
public-key cryptography), but only the host knows the private decoding key (see
Figure 14-8). This makes key establishment
much easier, because everyone can find the public key for a particular host.
But the decoding key is kept secret, so only the recipient can decode messages
sent to it.

Figure 14-8. Public-key cryptography
is asymmetric, using different keys for encoding and decoding

[image: figs/http_1408.gif]

Node X can take its encoding key ex and publish it publicly.[7] Now anyone wanting to send a
message to node X can use the same, well-known public key. Because each host is
assigned an encoding key, which everyone uses, public-key cryptography avoids
the N2 explosion of pairwise symmetric keys (see Figure 14-9).

[7] As we'll see later, most
public-key lookup actually is done through digital certificates, but the details
of how you find public keys don't matter much now—just know that they are
publicly available somewhere.

Figure 14-9. Public-key cryptography
assigns a single, public encoding key to each host

[image: figs/http_1409.gif]

Even though everyone can encode messages to X
with the same key, no one other than X can decode the messages, because only X
has the decoding private key dx. Splitting the keys lets anyone
encode a message but restricts the ability to decode messages to only the
owner. This makes it easier for nodes to securely send messages to servers,
because they can just look up the server's public key.

Public-key encryption technology makes it
possible to deploy security protocols to every computer user around the world. Because
of the great importance of making a standardized public-key technology suite, a
massive Public-Key Infrastructure (PKI) standards initiative has been under way
for well over a decade.

14.4.1 RSA

The challenge of any public-key asymmetric cryptosystem is to make
sure no bad guy can compute the secret, private key—even if he has all of the
following clues:

·
The public key (which anyone can get, because
it's public)

·
A piece of intercepted ciphertext (obtained by
snooping the network)

·
A message and its associated ciphertext
(obtained by running the encoder on any text)

One popular public-key cryptosystem that
meets all these needs is the RSA algorithm, invented at MIT and subsequently
commercialized by RSA Data Security. Given a public key, an arbitrary piece of
plaintext, the associated ciphertext from encoding the plaintext with the
public key, the RSA algorithm itself, and even the source code of the RSA
implementation, cracking the code to find the corresponding private key is
believed to be as hard a problem as computing huge prime numbers—believed to be
one of the hardest problems in all of computer science. So, if you can find a
fast way of factoring large numbers into primes, not only can you break into
Swiss bank accounts, but you can also win a Turing Award.

The details of RSA cryptography involve some
tricky mathematics, so we won't go into them here. There are plenty of
libraries available to let you perform the RSA algorithms without you needing a
Ph.D. in number theory.

14.4.2 Hybrid Cryptosystems and Session Keys

Asymmetric, public-key cryptography is
nifty, because anyone can send secure messages to a public server, just by
knowing its public key. Two nodes don't first have to negotiate a private key
in order to communicate securely.

But public-key cryptography algorithms
tend to be computationally slow. In practice, mixtures of both symmetric and
asymmetric schemes are used. For example, it is common to use public-key
cryptography to conveniently set up secure communication between nodes but then
to use that secure channel to generate and communicate a temporary, random
symmetric key to encrypt the rest of the data through faster, symmetric
cryptography.

14.5 Digital Signatures

So far, we've been talking
about various kinds of keyed ciphers, using symmetric and asymmetric keys, to
allow us to encrypt and decrypt secret messages.

In addition to encrypting and decrypting messages, cryptosystems
can be used to sign messages, proving who wrote
the message and proving the message hasn't been tampered with. This technique,
called digital signing, is important for
Internet security certificates, which we discuss in the next section.

14.5.1 Signatures Are Cryptographic Checksums

Digital signatures are special cryptographic checksums
attached to a message. They have two benefits:

·
Signatures prove the author wrote the message. Because only the
author has the author's top-secret private key,[8] only the author can compute
these checksums. The checksum acts as a personal "signature" from the
author.

[8] This
assumes the private key has not been stolen. Most private keys expire after a
while. There also are "revocation lists" that keep track of stolen or
compromised keys.

·
Signatures prevent message tampering. If a
malicious assailant modified the message in-flight, the checksum would no
longer match. And because the checksum involves the author's secret, private
key, the intruder will not be able to fabricate a correct checksum for the
tampered-with message.

Digital signatures often are generated using
asymmetric, public-key technology. The author's private
key is used as a kind of "thumbprint," because the private key is
known only by the owner.

Figure 14-10 shows an example of how node A can send a message to node
B and sign it:

·
Node A distills the variable-length message into
a fixed-sized digest.

·
Node A applies a "signature" function
to the digest that uses the user's private key as a parameter. Because only the
user knows the private key, a correct signature function shows the signer is
the owner. In Figure 14-10, we
use the decoder function D as the signature function, because it involves the
user's private key.[9]

[9] With the RSA cryptosystem, the decoder function D is used as the
signature function, because D already takes the private key as input. Note
that the decoder function is just a function, so it can be used on any input.
Also, in the RSA cryptosystem, the D and E functions work when applied in
either order and cancel each other out. So, E(D(stuff)) = stuff, just as
D(E(stuff)) = stuff.

·
Once the signature is computed, node A appends it to the end of
the message and sends both the message and the signature to node B.

·
On receipt, if node B wants to make sure that node A really wrote
the message, and that the message hasn't been tampered with, node B can check
the signature. Node B takes the private-key scrambled signature and applies the
inverse function using the public key. If the unpacked digest doesn't match
node B's own version of the digest, either the message was tampered with
in-flight, or the sender did not have node A's private key (and therefore was
not node A).

Figure 14-10. Unencrypted digital
signature

[image: figs/http_1410.gif]

14.6 Digital Certificates

In
this section, we talk about digital certificates, the "ID cards" of
the Internet. Digital certificates (often called "certs," like the
breath mints) contain information about a user or firm that has been vouched
for by a trusted organization.

We all carry many forms of identification. Some IDs, such as
passports and drivers' licenses, are trusted enough to prove one's identity in
many situations. For example, a U.S. driver's license is sufficient proof of
identity to let you board an airplane to New York for New Year's Eve, and it's
sufficient proof of your age to let you drink intoxicating beverages with your
friends when you get there.

More trusted forms of identification, such as passports, are
signed and stamped by a government on special paper. They are harder to forge,
so they inherently carry a higher level of trust. Some corporate badges and
smart cards include electronics to help strengthen the identity of the carrier.
Some top-secret government organizations even need to match up your
fingerprints or retinal capillary patterns with your ID before trusting it!

Other forms of ID, such as business cards, are relatively easy
to forge, so people trust this information less. They may be fine for
professional interactions but probably are not enough proof of employment when
you apply for a home loan.

14.6.1 The Guts of a Certificate

Digital certificates also contain a set of information, all of
which is digitally signed by an official "certificate authority."
Basic digital certificates commonly contain basic things common to printed IDs,
such as:

·
Subject's name (person, server, organization, etc.)

·
Expiration date

·
Certificate issuer (who is vouching for the certificate)

·
Digital signature from the certificate issuer

Additionally, digital certificates
often contain the public key of the subject, as well as descriptive information
about the subject and about the signature algorithm used. Anyone can create a
digital certificate, but not everyone can get a well-respected signing
authority to vouch for the certificate's information and sign the certificate
with its private key. A typical certificate structure is shown in Figure 14-11.

Figure 14-11. Typical digital
signature format

[image: figs/http_1411.gif]

14.6.2 X.509 v3 Certificates

Unfortunately, there is no single, universal standard for digital
certificates. There are many, subtly different styles of digital certificates,
just as not all printed ID cards contain the same information in the same
place. The good news is that most certificates in use today store their
information in a standard form, called X.509 v3. X.509 v3 certificates provide
a standard way of structuring certificate information into parseable fields.
Different kinds of certificates have different field values, but most follow
the X.509 v3 structure. The fields of an X.509 certificate are described in Table 14-2.

	
Table 14-2. X.509 certificate
 fields

	
Field

	
Description

	
Version

	
The X.509 certificate version number for this certificate.
 Usually version 3 today.

	
Serial Number

	
A unique integer generated by the certification authority.
 Each certificate from a CA must have a unique serial number.

	
Signature Algorithm ID

	
The cryptographic algorithm used for the signature. For
 example, "MD2 digest with RSA encryption".

	
Certificate Issuer

	
The name for the organization that issued and signed this
 certificate, in X.500 format.

	
Validity Period

	
When this certificate is valid, defined by a start date and
 an end date.

	
Subject's Name

	
The entity described in the certificate, such as a person or
 an organization. The subject name is in X.500 format.

	
Subject's Public Key Information

	
The public key for the certificate's subject, the algorithm
 used for the public key, and any additional parameters.

	
Issuer Unique ID (optional)

	
An optional unique identifier for the certificate issuer, to
 allow the potential reuse of the same issuer name.

	
Subject Unique ID (optional)

	
An optional unique identifier for the certificate subject,
 to allow the potential reuse of the same subject name.

	
Extensions

	
An optional set of extension fields (in version 3 and
 higher). Each extension field is flagged as critical or noncritical. Critical
 extensions are important and must be understood by the certificate user. If a
 certificate user doesn't recognize a critical extension field, it must reject
 the certificate. Common extension fields in use include:

Basic
 Constraints

Subject's relationship to
 certification authority

Certificate
 Policy

The policy under which the
 certificate is granted

Key
 Usage

Restricts how the public key can
 be used

	
Certification Authority Signature

	
The certification authority's digital signature of all of
 the above fields, using the specified signing algorithm.

There are several flavors of X.509-based certificates,
including (among others) web server certificates, client email certificates,
software code-signing certificates, and certificate authority certificates.

14.6.3 Using Certificates to Authenticate Servers

When you
establish a secure web transaction through HTTPS, modern browsers automatically
fetch the digital certificate for the server being connected to. If the server
does not have a certificate, the secure connection fails. The server
certificate contains many fields, including:

·
Name and hostname of the web site

·
Public key of the web site

·
Name of the signing authority

·
Signature from the signing authority

When the browser receives the certificate, it
checks the signing authority.[10] If
it is a public, well-respected signing authority, the browser will already know
its public key (browsers ship with certificates of many signing authorities
preinstalled), so it can verify the signature as we discussed in the previous
section, Section 14.5. Figure 14-12 shows
how a certificate's integrity is verified using its digital signature.

[10] Browsers and other Internet applications try hard to hide the
details of most certificate management, to make browsing easier. But, when you
are browsing through secure connections, all the major browsers allow you to
personally examine the certificates of the sites to which you are talking, to
be sure all is on the up-and-up.

Figure 14-12. Verifying that a
signature is real

[image: figs/http_1412.gif]

If the signing authority is unknown, the browser isn't sure if
it should trust the signing authority and usually displays a dialog box for the
user to read and see if he trusts the signer. The signer might be the local IT
department, or a software vendor.

14.7 HTTPS: The
Details

HTTPS is the
most popular secure version of HTTP. It is widely implemented and available in
all major commercial browsers and servers. HTTPS combines the HTTP protocol
with a powerful set of symmetric, asymmetric, and certificate-based
cryptographic techniques, making HTTPS very secure but also very flexible and
easy to administer across the anarchy of the decentralized, global Internet.

HTTPS has accelerated the growth of Internet
applications and has been a major force in the rapid growth of web-based
electronic commerce. HTTPS also has been critical in the wide-area, secure
administration of distributed web applications.

14.7.1 HTTPS Overview

HTTPS is just HTTP sent over a secure
transport layer. Instead of sending HTTP messages unencrypted to TCP and across
the world-wide Internet (Figure 14-13a),
HTTPS sends the HTTP messages first to a security layer that encrypts them
before sending them to TCP (Figure 14-13b).

Figure 14-13. HTTP transport-level
security

[image: figs/http_1413.gif]

Today, the HTTP security layer is implemented
by SSL and its modern replacement, TLS. We follow the common practice of using
the term "SSL" to mean either SSL or TLS.

14.7.2 HTTPS Schemes

Today, secure HTTP is
optional. Thus, when making a request to a web server, we need a way to tell
the web server to perform the secure protocol version of HTTP. This is done in
the scheme of the URL.

In normal, nonsecure HTTP, the scheme prefix
of the URL is http, as in:

http://www.joes-hardware.com/index.html

In the secure HTTPS protocol, the scheme
prefix of the URL is https, as in:

https://cajun-shop.securesites.com/Merchant2/merchant.mv?Store_Code=AGCGS

When a client (such as a web browser) is asked to perform a
transaction on a web resource, it examines the scheme of the URL:

·
If the URL has an http scheme,
the client opens a connection to the server on port 80 (by default) and sends
it plain-old HTTP commands (Figure 14-14a).

·
If the URL has an https scheme,
the client opens a connection to the server on port 443 (by default) and then
"handshakes" with the server, exchanging some SSL security parameters
with the server in a binary format, followed by the encrypted HTTP commands (Figure 14-14b).

Figure 14-14. HTTP and HTTPS port
numbers

[image: figs/http_1414.gif]

Because SSL traffic is a binary
protocol, completely different from HTTP, the traffic is carried on different
ports (SSL usually is carried over port 443). If both SSL and HTTP traffic
arrived on port 80, most web servers would interpret binary SSL traffic as
erroneous HTTP and close the connection. A more integrated layering of security
services into HTTP would have eliminated the need for multiple destination
ports, but this does not cause severe problems in practice.

Let's look a bit more closely at how SSL sets up connections
with secure servers.

14.7.3 Secure Transport Setup

In unencrypted HTTP, a client opens a TCP connection to port
80 on a web server, sends a request message, receives a response message, and
closes the connection. This sequence is sketched in Figure 14-15a.

Figure 14-15. HTTP and HTTPS
transactions

[image: figs/http_1415.gif]

The procedure is slightly more complicated in HTTPS, because
of the SSL security layer. In HTTPS, the client first
opens a connection to port 443 (the default port for secure HTTP) on the web
server. Once the TCP connection is established, the client and server
initialize the SSL layer, negotiating cryptography parameters and exchanging
keys. When the handshake completes, the SSL initialization is done, and the
client can send request messages to the security layer. These messages are
encrypted before being sent to TCP. This procedure is depicted in Figure 14-15b.

14.7.4 SSL Handshake

Before you can send encrypted HTTP messages, the client
and server need to do an SSL handshake, where they:

·
Exchange protocol version numbers

·
Select a cipher that each side knows

·
Authenticate the identity of each side

·
Generate temporary session keys to encrypt the channel

Before any encrypted HTTP data flies across the network, SSL
already has sent a bunch of handshake data to establish the communication. The essence
of the SSL handshake is shown in Figure 14-16.

Figure 14-16. SSL handshake
(simplified)

[image: figs/http_1416.gif]

This is a simplified version of the SSL handshake. Depending
on how SSL is being used, the handshake can be more complicated, but this is
the general idea.

14.7.5 Server Certificates

SSL supports mutual authentication, carrying server
certificates to clients and carrying client certificates back to servers. But
today, client certificates are not commonly used for browsing. Most users don't
even possess personal client certificates.[11] A web server can demand a
client certificate, but that seldom occurs in practice.[12]

[11] Client certificates are used
for web browsing in some corporate settings, and client certificates are used
for secure email. In the future, client certificates may become more common for
web browsing, but today they've caught on very slowly.

[12] Some organizational intranets use client
certificates to control employee access to information.

On the other hand, secure HTTPS transactions always require
server certificates. When you perform a secure transaction on a web server,
such as posting your credit card information, you want to know that you are
talking to the organization you think you are talking to. Server certificates,
signed by a well-known authority, help you assess how much you trust the server
before sending your credit card or personal information.

The server certificate is an X.509 v3-derived certificate
showing the organization's name, address, server DNS domain name, and other
information (see Figure 14-17). You and your client software
can examine the certificate to make sure everything seems to be on the
up-and-up.

Figure 14-17. HTTPS certificates are
X.509 certificates with site information

[image: figs/http_1417.gif]

14.7.6 Site Certificate Validation

SSL itself doesn't require you to examine the web server
certificate, but most modern browsers do some simple sanity checks on
certificates and provide you with the means to do more thorough checks. One
algorithm for web server certificate validation, proposed by Netscape, forms
the basis of most browser's validation techniques. The steps are:

Date check

First, the browser checks the
certificate's start and end dates to ensure the certificate is still valid. If
the certificate has expired or has not yet become active, the certificate
validation fails and the browser displays an error.

Signer
trust check

Every certificate is signed by some
certificate authority (CA), who vouches for the server. There are different
levels of certificate, each requiring different levels of background
verification. For example, if you apply for an e-commerce server certificate,
you usually need to provide legal proof of incorporation as a business.

Anyone can generate certificates,
but some CAs are well-known organizations with well-understood procedures for
verifying the identity and good business behavior of certificate applicants.
For this reason, browsers ship with a list of signing authorities that are
trusted. If a browser receives a certificate signed by some unknown (and
possibly malicious) authority, the browser usually displays a warning. Browsers
also may choose to accept any certificates with a valid signing path to a
trusted CA. In other words, if a trusted CA signs a certificate for "Sam's
Signing Shop" and Sam's Signing Shop signs a site certificate, the browser
may accept the certificate as deriving from a valid CA path.

Signature
check

Once the signing authority is
judged as trustworthy, the browser checks the certificate's integrity by
applying the signing authority's public key to the signature and comparing it
to the checksum.

Site
identity check

To prevent a server from copying
someone else's certificate or intercepting their traffic, most browsers try to
verify that the domain name in the certificate matches the domain name of the
server they talked to. Server certificates usually contain a single domain
name, but some CAs create certificates that contain lists of server names or
wildcarded domain names, for clusters or farms of servers. If the hostname does
not match the identity in the certificate, user-oriented clients must either
notify the user or terminate the connection with a bad certificate error.

14.7.7 Virtual Hosting and Certificates

It's sometimes
tricky to deal with secure traffic on sites that are virtually hosted (multiple
hostnames on a single server). Some popular web server programs support only a
single certificate. If a user arrives for a virtual hostname that does not
strictly match the certificate name, a warning box is displayed.

For example, consider the Louisiana-themed e-commerce site
Cajun-Shop.com. The site's hosting provider provided the official name cajun-shop.securesites.com. When users go to https://www.cajun-shop.com,
the official hostname listed in the server certificate (*.securesites.com) does not match the virtual
hostname the user browsed to (www.cajun-shop.com),
and the warning in Figure 14-18 appears.

Figure 14-18. Certificate name
mismatches bring up certificate error dialog boxes

[image: figs/http_1418.gif]

To prevent this problem, the owners of
Cajun-Shop.com redirect all users to cajun-shop.securesites.com
when they begin secure transactions. Cert management for virtually hosted sites
can be a little tricky.

14.8 A Real HTTPS Client

SSL is a complicated binary
protocol. Unless you are a crypto expert, you shouldn't send raw SSL traffic
directly. Thankfully, several commercial and open source libraries exist to
make it easier to program SSL clients and servers.

14.8.1 OpenSSL

OpenSSL is the most popular open source
implementation of SSL and TLS. The OpenSSL Project is a collaborative volunteer
effort to develop a robust, commercial-grade, full-featured toolkit implementing
the SSL and TLS protocols, as well as a full-strength, general-purpose
cryptography library. You can get information about OpenSSL, and download the
software, from http://www.openssl.org.

You might also hear of SSLeay (pronounced S-S-L-e-a-y). OpenSSL is the successor
to the SSLeay library, and it has a very similar interface. SSLeay was
originally developed by Eric A. Young (the "eay" of SSLeay).

14.8.2 A Simple HTTPS Client

In
this section, we'll use the OpenSSL package to write an extremely primitive
HTTPS client. This client establishes an SSL connection with a server, prints
out some identification information from the site server, sends an HTTP GET
request across the secure channel, receives an HTTP response, and prints the
response.

The C program shown below is an OpenSSL implementation of the
trivial HTTPS client. To keep the program simple, error-handling and
certificate-processing logic has not been included.

Because error handling has been removed from this example
program, you should use it only for explanatory value. The software will crash
or otherwise misbehave in normal error conditions.

/**
 * https_client.c --- very simple HTTPS client with no error checking
 * usage: https_client servername
 **/

#include <stdio.h>
#include <memory.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#include <openssl/crypto.h>
#include <openssl/x509.h>
#include <openssl/pem.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

void main(int argc, char **argv)
{
 SSL *ssl;
 SSL_CTX *ctx;
 SSL_METHOD *client_method;
 X509 *server_cert;
 int sd,err;
 char *str,*hostname,outbuf[4096],inbuf[4096],host_header[512];
 struct hostent *host_entry;
 struct sockaddr_in server_socket_address;
 struct in_addr ip;

 /*==*/
 /* (1) initialize SSL library */
 /*==*/

 SSLeay_add_ssl_algorithms();
 client_method = SSLv2_client_method();
 SSL_load_error_strings();
 ctx = SSL_CTX_new(client_method);

 printf("(1) SSL context initialized\n\n");

 /*===*/
 /* (2) convert server hostname into IP address */
 /*===*/

 hostname = argv[1];
 host_entry = gethostbyname(hostname);
 bcopy(host_entry->h_addr, &(ip.s_addr), host_entry->h_length);

 printf("(2) '%s' has IP address '%s'\n\n", hostname, inet_ntoa(ip));

 /*===*/
 /* (3) open a TCP connection to port 443 on server */
 /*===*/

 sd = socket (AF_INET, SOCK_STREAM, 0);

 memset(&server_socket_address, '\0', sizeof(server_socket_address));
 server_socket_address.sin_family = AF_INET;
 server_socket_address.sin_port = htons(443);
 memcpy(&(server_socket_address.sin_addr.s_addr),
 host_entry->h_addr, host_entry->h_length);

 err = connect(sd, (struct sockaddr*) &server_socket_address,
 sizeof(server_socket_address));
 if (err < 0) { perror("can't connect to server port"); exit(1); }

 printf("(3) TCP connection open to host '%s', port %d\n\n",
 hostname, server_socket_address.sin_port);

 /*==*/
 /* (4) initiate the SSL handshake over the TCP connection */
 /*==*/

 ssl = SSL_new(ctx); /* create SSL stack endpoint */
 SSL_set_fd(ssl, sd); /* attach SSL stack to socket */
 err = SSL_connect(ssl); /* initiate SSL handshake */

 printf("(4) SSL endpoint created & handshake completed\n\n");

 /*==*/
 /* (5) print out the negotiated cipher chosen */
 /*==*/

 printf("(5) SSL connected with cipher: %s\n\n", SSL_get_cipher(ssl));

 /*==*/
 /* (6) print out the server's certificate */
 /*==*/

 server_cert = SSL_get_peer_certificate(ssl);

 printf("(6) server's certificate was received:\n\n");

 str = X509_NAME_oneline(X509_get_subject_name(server_cert), 0, 0);
 printf(" subject: %s\n", str);

 str = X509_NAME_oneline(X509_get_issuer_name(server_cert), 0, 0);
 printf(" issuer: %s\n\n", str);

 /* certificate verification would happen here */

 X509_free(server_cert);

 /***/
 /* (7) handshake complete --- send HTTP request over SSL */
 /***/

 sprintf(host_header,"Host: %s:443\r\n",hostname);
 strcpy(outbuf,"GET / HTTP/1.0\r\n");
 strcat(outbuf,host_header);
 strcat(outbuf,"Connection: close\r\n");
 strcat(outbuf,"\r\n");

 err = SSL_write(ssl, outbuf, strlen(outbuf));
 shutdown (sd, 1); /* send EOF to server */

 printf("(7) sent HTTP request over encrypted channel:\n\n%s\n",outbuf);

 /**/
 /* (8) read back HTTP response from the SSL stack */
 /**/

 err = SSL_read(ssl, inbuf, sizeof(inbuf) - 1);
 inbuf[err] = '\0';
 printf ("(8) got back %d bytes of HTTP response:\n\n%s\n",err,inbuf);

 /**/
 /* (9) all done, so close connection & clean up */
 /**/

 SSL_shutdown(ssl);
 close (sd);
 SSL_free (ssl);
 SSL_CTX_free (ctx);

 printf("(9) all done, cleaned up and closed connection\n\n");
}

This example compiles and runs on Sun Solaris, but it is
illustrative of how SSL programs work on many OS platforms. This entire
program, including all the encryption and key and certificate management, fits
in a three-page C program, thanks to the powerful features provided by OpenSSL.

Let's walk through the program section by section:

·
The top of the program includes support files needed to support
TCP networking and SSL.

·
Section 1 creates the local context that keeps track of the
handshake parameters and other state about the SSL connection, by calling SSL_CTX_new.

·
Section 2 converts the input hostname (provided as a command-line
argument) to an IP address, using the Unix gethostbyname
function. Other platforms may have other ways to provide this facility.

·
Section 3 opens a TCP connection to port 443 on the server by
creating a local socket, setting up the remote address information, and
connecting to the remote server.

·
Once the TCP connection is established, we attach the SSL layer
to the TCP connection using SSL_new and SSL_set_fd and perform the SSL handshake with the
server by calling SSL_connect. When section 4
is done, we have a functioning SSL channel established, with ciphers chosen and
certificates exchanged.

·
Section 5 prints out the value of the chosen bulk-encryption
cipher.

·
Section 6 prints out some of the information contained in the
X.509 certificate sent back from the server, including information about the
certificate holder and the organization that issued the certificate. The
OpenSSL library doesn't do anything special with the information in the server
certificate. A real SSL application, such as a web browser, would do some
sanity checks on the certificate to make sure it is signed properly and came
from the right host. We discussed what browsers do with server certificates in Section 14.7.6.

·
At this point, our SSL connection is ready to use for secure data
transfer. In section 7, we send the simple HTTP request "GET / HTTP/1.0"
over the SSL channel using SSL_write, then
close the outbound half of the connection.

·
In section 8, we read the response back from the connection using
SSL_read, and print it on the screen. Because
the SSL layer takes care of all the encryption and decryption, we can just
write and read normal HTTP commands.

·
Finally, we clean up in section 9.

Refer to http://www.openssl.org for more information
about the OpenSSL libraries.

14.8.3 Executing Our Simple OpenSSL Client

The following shows the output of our simple HTTP client when
pointed at a secure server. In this case, we pointed the client at the home
page of the Morgan Stanley Online brokerage. Online trading companies make
extensive use of HTTPS.

% https_client clients1.online.msdw.com
(1) SSL context initialized

(2) 'clients1.online.msdw.com' has IP address '63.151.15.11'

(3) TCP connection open to host 'clients1.online.msdw.com', port 443

(4) SSL endpoint created & handshake completed

(5) SSL connected with cipher: DES-CBC3-MD5

(6) server's certificate was received:

 subject: /C=US/ST=Utah/L=Salt Lake City/O=Morgan Stanley/OU=Online/CN=
 clients1.online.msdw.com
 issuer: /C=US/O=RSA Data Security, Inc./OU=Secure Server Certification
 Authority

(7) sent HTTP request over encrypted channel:

GET / HTTP/1.0
Host: clients1.online.msdw.com:443
Connection: close

(8) got back 615 bytes of HTTP response:

HTTP/1.1 302 Found
Date: Sat, 09 Mar 2002 09:43:42 GMT
Server: Stronghold/3.0 Apache/1.3.14 RedHat/3013c (Unix) mod_ssl/2.7.1 OpenSSL/0.9.6
Location: https://clients.online.msdw.com/cgi-bin/ICenter/home
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>302 Found</TITLE>
</HEAD><BODY>
<H1>Found</H1>
The document has moved here.<P>
<HR>
<ADDRESS>Stronghold/3.0 Apache/1.3.14 RedHat/3013c Server at clients1.online.msdw.com Port 443</ADDRESS>
</BODY></HTML>

(9) all done, cleaned up and closed connection

As soon as the first four sections are completed, the client
has an open SSL connection. It can then inquire about the state of the
connection and chosen parameters and can examine server certificates.

In this example, the client and server negotiated the
DES-CBC3-MD5 bulk-encryption cipher. You also can see that the server site
certificate belongs to the organization "Morgan Stanley" in
"Salt Lake City, Utah, USA". The certificate was granted by RSA Data
Security, and the hostname is "clients1.online.msdw.com," which
matches our request.

Once the SSL channel is established and the client feels
comfortable about the site certificate, it sends its HTTP request over the
secure channel. In our example, the client sends a simple "GET /
HTTP/1.0" HTTP request and receives back a 302 Redirect response,
requesting that the user fetch a different URL.

14.9 Tunneling Secure
Traffic Through Proxies

Clients often
use web proxy servers to access
web servers on their behalf (proxies are discussed in Chapter 6). For example, many corporations
place a proxy at the security perimeter of the corporate network and the public
Internet (Figure 14-19). The proxy is the only device
permitted by the firewall routers to exchange HTTP traffic, and it may employ
virus checking or other content controls.

Figure 14-19. Corporate firewall
proxy

[image: figs/http_1419.gif]

But once the client starts encrypting the data to the server,
using the server's public key, the proxy no longer has the ability to read the
HTTP header! And if the proxy cannot read the HTTP header, it won't know where
to forward the request (Figure 14-20).

Figure 14-20. Proxy can't
proxy an encrypted request

[image: figs/http_1420.gif]

To make HTTPS work with proxies, a few
modifications are needed to tell the proxy where to connect. One popular
technique is the HTTPS SSL tunneling protocol. Using the HTTPS tunneling
protocol, the client first tells the proxy the secure host and port to which it
wants to connect. It does this in plaintext, before encryption starts, so the
proxy can read this information.

HTTP is used to send the plaintext
endpoint information, using a new extension method called CONNECT. The CONNECT
method tells the proxy to open a connection to the desired host and port number
and, when that's done, to tunnel data directly between the client and server. The
CONNECT method is a one-line text command that provides the hostname and port
of the secure origin server, separated by a colon. The host:port is followed by
a space and an HTTP version string followed by a CRLF. After that there is a
series of zero or more HTTP request header lines, followed by an empty line. After
the empty line, if the handshake to establish the connection was successful,
SSL data transfer can begin. Here is an example:

CONNECT home.netscape.com:443 HTTP/1.0
User-agent: Mozilla/1.1N

<raw SSL-encrypted data would follow here...>

After the empty line in the request, the client will wait for
a response from the proxy. The proxy will evaluate the request and make sure
that it is valid and that the user is authorized to request such a connection.
If everything is in order, the proxy will make a connection to the destination
server and, if successful, send a 200 Connection Established response to the
client.

HTTP/1.0 200 Connection established
Proxy-agent: Netscape-Proxy/1.1

For more information about secure tunnels and security
proxies, refer back to Section 8.5.

14.10 For More Information

Security and cryptography are hugely important and hugely
complicated topics. If you'd like to learn more about HTTP security, digital
cryptography, digital certificates, and the Public-Key Infrastructure, here are
a few starting points.

14.10.1 HTTP Security

Web
Security, Privacy & Commerce

Simson Garfinkel, O'Reilly &
Associates, Inc. This is one of the best, most readable introductions to web
security and the use of SSL/TLS and digital certificates.

http://www.ietf.org/rfc/rfc2818.txt

RFC 2818, "HTTP Over
TLS," specifies how to implement secure HTTP over Transport Layer Security
(TLS), the modern successor to SSL.

http://www.ietf.org/rfc/rfc2817.txt

RFC 2817, "Upgrading to TLS
Within HTTP/1.1," explains how to use the Upgrade mechanism in HTTP/1.1 to
initiate TLS over an existing TCP connection. This allows unsecured and secured
HTTP traffic to share the same well-known port (in this case, http: at 80
rather than https: at 443). It also enables virtual hosting, so a single
HTTP+TLS server can disambiguate traffic intended for several hostnames at a single
IP address.

14.10.2 SSL and TLS

http://www.ietf.org/rfc/rfc2246.txt

RFC 2246, "The TLS Protocol
Version 1.0," specifies Version 1.0 of the TLS protocol (the successor to
SSL). TLS provides communications privacy over the Internet. The protocol
allows client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery.

http://developer.netscape.com/docs/manuals/security/sslin/contents.htm

"Introduction to SSL"
introduces the Secure Sockets Layer (SSL) protocol. Originally developed by
Netscape, SSL has been universally accepted on the World Wide Web for
authenticated and encrypted communication between clients and servers.

http://www.netscape.com/eng/ssl3/draft302.txt

"The SSL Protocol Version
3.0" is Netscape's 1996 specification for SSL.

http://developer.netscape.com/tech/security/ssl/howitworks.html

"How SSL Works" is
Netscape's introduction to key cryptography.

http://www.openssl.org

The OpenSSL
Project is a collaborative effort to develop a robust, commercial-grade,
full-featured, and open source toolkit implementing the Secure Sockets Layer
(SSL v2/v3) and Transport Layer Security (TLS v1) protocols, as well as a
full-strength, general-purpose cryptography library. The project is managed by
a worldwide community of volunteers that use the Internet to communicate, plan,
and develop the OpenSSL toolkit and its related documentation. OpenSSL is based
on the excellent SSLeay library developed by Eric A. Young and Tim J. Hudson. The
OpenSSL toolkit is licensed under an Apache-style licence, which basically
means that you are free to get and use it for commercial and noncommercial
purposes, subject to some simple license conditions.

14.10.3 Public-Key Infrastructure

http://www.ietf.org/html.charters/pkix-charter.html

The IETF PKIX
Working Group was established in 1995 with the intent of developing Internet
standards needed to support an X.509-based Public-Key Infrastructure. This is a
nice summary of that group's activities.

http://www.ietf.org/rfc/rfc2459.txt

RFC 2459,
"Internet X.509 Public Key Infrastructure Certificate and CRL
Profile," contains details about X.509 v3 digital certificates.

14.10.4 Digital Cryptography

Applied Cryptography

Bruce Schneier,
John Wiley & Sons. This is a classic book on cryptography for implementors.

The Code Book: The Science of Secrecy from Ancient
Egypt to Quantum Cryptography

Simon Singh,
Anchor Books. This entertaining book is a cryptography primer. While it's not
intended for technology experts, it is a lively historical tour of secret
coding.

Part IV:
Entities, Encodings, and Internationalization

Part IV is all about the entity bodies of
HTTP messages and the content that the entity bodies ship around as cargo:

·
Chapter 15
describes the formats and syntax of HTTP content.

·
Chapter 16 surveys
the web standards that allow people to exchange content in different languages
and different character sets, around the globe.

·
Chapter 17
explains mechanisms for negotiating acceptable content.

Chapter 15.
Entities and Encodings

HTTP ships billions
of media objects of all kinds every day. Images, text, movies, software
programs . . . you name it, HTTP ships it. HTTP also makes sure that its
messages can be properly transported, identified, extracted, and processed. In
particular, HTTP ensures that its cargo:

·
Can be identified correctly (using Content-Type
media formats and Content-Language headers) so browsers and other clients can
process the content properly

·
Can be unpacked properly (using Content-Length
and Content-Encoding headers)

·
Is fresh (using entity validators and
cache-expiration controls)

·
Meets the user's needs (based on
content-negotiation Accept headers)

·
Moves quickly and efficiently through the network
(using range requests, delta encoding, and other data compression)

·
Arrives complete and untampered with (using
transfer encoding headers and Content-MD5 checksums)

To make all this happen, HTTP uses
well-labeled entities to carry content.

This chapter discusses entities, their associated entity
headers, and how they work to transport web cargo. We'll show how HTTP provides
the essentials of content size, type, and encodings. We'll also explain some of
the more complicated and powerful features of HTTP entities, including range
requests, delta encoding, digests, and chunked encodings.

This chapter covers:

·
The format and behavior of HTTP message entities as HTTP data
containers

·
How HTTP describes the size of entity bodies, and what HTTP
requires in the way of sizing

·
The entity headers used to describe the format, alphabet, and
language of content, so clients can process it properly

·
Reversible content encodings, used by senders to transform the
content data format before sending to make it take up less space or be more
secure

·
Transfer encoding, which modifies how HTTP ships data to enhance
the communication of some kinds of content, and chunked encoding, a transfer
encoding that chops data into multiple pieces to deliver content of unknown
length safely

·
The assortment of tags, labels, times, and checksums that help
clients get the latest version of requested content

·
The validators that act like version numbers on content, so web
applications can ensure they have fresh content, and the HTTP header fields
designed to control object freshness

·
Ranges, which are useful for continuing aborted downloads where
they left off

·
HTTP delta encoding extensions, which allow clients to request just
those parts of a web page that actually have changed since a previously viewed
revision

·
Checksums of entity bodies, which are used to detect changes in
entity content as it passes through proxies

15.1 Messages Are Crates,
Entities Are Cargo

If you think of HTTP messages as the crates of the Internet
shipping system, then HTTP entities are the actual
cargo of the messages. Figure 15-1 shows a simple entity, carried
inside an HTTP response message.

Figure 15-1. Message entity is made
up of entity headers and entity body

[image: figs/http_1501.gif]

The entity headers indicate a plaintext document
(Content-Type: text/plain) that is a mere 18 characters long (Content-Length:
18). As always, a blank line (CRLF) separates the header fields from the start
of the body.

HTTP entity headers (covered in Chapter 3) describe the contents of an HTTP
message. HTTP/1.1 defines 10
primary entity header fields:

Content-Type

The kind of object carried by the
entity.

Content-Length

The length or size of the message
being sent.

Content-Language

The human language that best
matches the object being sent.

Content-Encoding

Any transformation (compression,
etc.) performed on the object data.

Content-Location

An alternate location for the
object at the time of the request.

Content-Range

If this is a partial entity, this
header defines which pieces of the whole are included.

Content-MD5

A checksum of the contents of the
entity body.

Last-Modified

The date on which this particular
content was created or modified at the server.

Expires

The date and time at which this
entity data will become stale.

Allow

What request methods are legal on
this resource; e.g., GET and HEAD.

ETag

A unique validator for this
particular instance[1] of the document. The ETag
header is not defined formally as an entity header, but it is an important
header for many operations involving entities.

[1]
Instances are described later in this chapter, in Section 15.7.

Cache-Control

Directives on how this document can
be cached. The Cache-Control header, like the ETag header, is not defined
formally as an entity header.

15.1.1 Entity Bodies

The entity body just
contains the raw cargo.[2] Any other descriptive information is contained in the headers.
Because the entity body cargo is just raw data, the entity headers are needed
to describe the meaning of that data. For example, the Content-Type entity
header tells us how to interpret the data (image, text, etc.), and the
Content-Encoding entity header tells us if the data was compressed or otherwise
recoded. We talk about all of this and more in upcoming sections.

[2] If
there is a Content-Encoding header, the content already has been encoded by the
content-encoding algorithm, and the first byte of the entity is the first byte
of the encoded (e.g., compressed) cargo.

The raw content begins immediately after the
blank CRLF line that marks the
end of the header fields. Whatever the content is—text or binary, document or
image, compressed or uncompressed, English or French or Japanese—it is placed
right after the CRLF.

Figure 15-2 shows
two examples of real HTTP messages, one carrying a text entity, the other
carrying an image entity. The hexadecimal values show the exact contents
of the message:

·
In Figure 15-2a, the entity body begins at byte
number 65, right after the end-of-headers CRLF. The entity body contains the
ASCII characters for "Hi! I'm a message."

·
In Figure 15-2b, the entity body begins at byte
number 67. The entity body contains the binary contents of the GIF image. GIF
files begin with 6-byte version signature, a 16-bit width, and a 16-bit height.
You can see all three of these directly in the entity body.

Figure 15-2. Hex dumps of real
message content (raw message content follows blank CRLF)

[image: figs/http_1502.gif]

15.2 Content-Length: The
Entity's Size

The Content-Length
header indicates the size of the entity body in the message, in bytes. The size
includes any content encodings (the Content-Length of a gzip-compressed text file
will be the compressed size, not the original size).

The Content-Length header is mandatory for messages with
entity bodies, unless the message is transported using chunked encoding.
Content-Length is needed to detect premature message truncation when servers
crash and to properly segment messages that share a persistent connection.

15.2.1 Detecting Truncation

Older versions of HTTP used
connection close to delimit the end of a message. But, without Content-Length,
clients cannot distinguish between successful connection close at the end of a
message and connection close due to a server crash in the middle of a message.
Clients need Content-Length to detect message truncation.

Message truncation is especially severe for caching proxy
servers. If a cache receives a truncated message and doesn't recognize the
truncation, it may store the defective content and serve it many times. Caching
proxy servers generally do not cache HTTP bodies that don't have an explicit
Content-Length header, to reduce the risk of caching truncated messages.

15.2.2 Incorrect Content-Length

An incorrect Content-Length can cause even more damage than a
missing Content-Length. Because some early clients and servers had well-known
bugs with respect to Content-Length calculations, some clients, servers, and
proxies contain algorithms to try to detect and correct interactions with
broken servers. HTTP/1.1 user agents officially are supposed to notify the user
when an invalid length is received and detected.

15.2.3 Content-Length and Persistent Connections

Content-Length is essential for persistent connections. If the
response comes across a persistent connection, another HTTP response can
immediately follow the current response. The Content-Length header lets the client know where one
message ends and the next begins. Because the connection is persistent, the
client cannot use connection close to identify the message's end. Without a
Content-Length header, HTTP applications won't know where one entity body ends
and the next message begins.

As we will see in Section 15.6, there is one situation where you
can use persistent connections without having a Content-Length header: when you
use chunked encoding. Chunked encoding sends the data in a series of chunks,
each with a specified size. Even if the server does not know the size of the
entire entity at the time the headers are generated (often because the entity
is being generated dynamically), the server can use chunked encoding to
transmit pieces of well-defined size.

15.2.4 Content Encoding

HTTP lets you encode the contents of an entity body, perhaps to make it
more secure or to compress it to take up less space (we explain compression in
detail later in this chapter). If the body has been content-encoded, the
Content-Length header specifies the length, in bytes, of the encoded body, not the
length of the original, unencoded body.

Some HTTP applications have been known to get this wrong and
to send the size of the data before the encoding, which causes serious errors,
especially with persistent connections. Unfortunately, none of the headers
described in the HTTP/1.1 specification can be used to send the length of the
original, unencoded body, which makes it difficult for clients to verify the
integrity of their unencoding processes.[3]

[3] Even the Content-MD5 header,
which can be used to send the 128-bit MD5 of the document, contains the MD5 of
the encoded document. The Content-MD5 header is described later in this
chapter.

15.2.5 Rules for Determining Entity Body Length

The following rules describe how to
correctly determine the length and end of an entity body in several different
circumstances. The rules should be applied in order; the first match applies.

1. If
a particular HTTP message type is not allowed to have a body, ignore the
Content-Length header for body calculations. The Content-Length headers are
informational in this case and do not describe the actual body length. (Naïve
HTTP applications can get in trouble if they assume Content-Length always means
there is a body).

The most important
example is the HEAD response. The HEAD method requests
that a server send the headers that would have been returned by an equivalent
GET request, but no body. Because a GET response would send back a
Content-Length header, so will the HEAD response—but unlike the GET response,
the HEAD response will not have a body. 1XX, 204, and 304 responses also can
have informational Content-Length headers but no entity body. Messages that
forbid entity bodies must terminate at the first empty line after the headers,
regardless of which entity header fields are present.

2.
If a message contains a Transfer-Encoding header
(other than the default HTTP "identity" encoding), the entity will be
terminated by a special pattern called a "zero-byte chunk," unless
the message is terminated first by closing the connection. We'll discuss
transfer encodings and chunked encodings later in this chapter.

3.
If a message has a Content-Length header (and
the message type allows entity bodies), the Content-Length value contains the
body length, unless there is a non-identity Transfer-Encoding header. If a
message is received with both a Content-Length header field and a non-identity
Transfer-Encoding header field, you must ignore the Content-Length, because the
transfer encoding will change the way entity bodies are represented and
transferred (and probably the number of bytes transmitted).

4. If the message uses the "multipart/byteranges" media type
and the entity length is not otherwise specified (in the Content-Length
header), each part of the multipart message will specify its own size. This
multipart type is the only entity body type that self-delimits its own size, so
this media type must not be sent unless the sender knows the recipient can
parse it.[4]

[4] Because a Range header might be forwarded by a more primitive proxy
that does not understand multipart/byteranges, the sender must delimit the
message using methods 1, 3, or 5 in this section if it isn't sure the receiver
understands the self- delimiting format.

5. If none of the above rules match, the entity ends when the
connection closes. In practice, only servers can use connection close to
indicate the end of a message. Clients can't close the connection to
signal the end of client messages, because that would leave no way for the
server to send back a response.[5]

[5] The client could
do a half close of just its output connection, but many server applications
aren't designed to handle this situation and will interpret a half close as the
client disconnecting from the server. Connection management was never well
specified in HTTP. See Chapter 4 for more details.

6. To
be compatible with HTTP/1.0 applications, any HTTP/1.1 request that has an
entity body also must include a valid Content-Length header field (unless the
server is known to be HTTP/1.1-compliant). The HTTP/1.1 specification counsels
that if a request contains a body and no Content-Length, the server should send
a 400 Bad Request response if it cannot determine the length of the message, or
a 411 Length Required response if it wants to insist on receiving a valid
Content-Length.

For compatibility with HTTP/1.0 applications, HTTP/1.1
requests containing an entity body must include a valid Content-Length header
field, unless the server is known to be HTTP/1.1-compliant. If a request
contains a body without a Content-Length, the server should respond with 400
Bad Request if it cannot determine the length of the message, or with 411
Length Required if it wants to insist on receiving a valid Content-Length.

15.3 Entity
Digests

Although HTTP typically
is implemented over a reliable transport protocol such as TCP/IP, parts of
messages may get modified in transit for a variety of reasons, such as
noncompliant transcoding proxies or buggy intermediary proxies. To detect
unintended (or undesired) modification of entity body data, the sender can
generate a checksum of the data when the initial entity is generated, and the
receiver can sanity check the checksum to catch any unintended entity
modification.[6]

[6] This method, of course, is not immune to a malicious attack that
replaces both the message body and digest header. It is intended only to detect
unintentional modification. Other facilities, such as digest authentication,
are needed to provide safeguards against malicious tampering.

The Content-MD5
header is used by servers to send the result of running the MD5 algorithm on
the entity body. Only the server where the response originates may compute and
send the Content-MD5 header. Intermediate proxies and caches may not modify or
add the header—that would violate the whole purpose of verifying end-to-end
integrity. The Content-MD5 header contains the MD5 of the content after all
content encodings have been applied to the entity body and before any transfer
encodings have been applied to it. Clients seeking to verify the integrity of
the message must first decode the transfer encodings, then compute the MD5 of
the resulting unencoded entity body. As an example, if a document is compressed
using the gzip algorithm, then sent with chunked encoding, the MD5 algorithm is
run on the full gzipped body.

In addition to checking message integrity,
the MD5 can be used as a key into a hash table to quickly locate documents and
reduce duplicate storage of content. Despite these possible uses, the
Content-MD5 header is not sent often.

Extensions to HTTP have proposed other digest algorithms in
IETF drafts. These extensions have proposed a new header, Want-Digest, that allows clients to specify the type of
digest they expect with the response. Quality values can be used to suggest
multiple digest algorithms and indicate preference.

15.4 Media Type and
Charset

The Content-Type header field describes the MIME type
of the entity body.[7] The MIME type is a standardized
name that describes the underlying type of media carried as cargo (HTML file,
Microsoft Word document, MPEG video, etc.). Client applications use the MIME
type to properly decipher and process the content.

[7] In the case of the HEAD
request, Content-Type shows the type that would have been sent if it was a GET
request.

The Content-Type values are standardized MIME types,
registered with the Internet Assigned Numbers Authority (IANA). MIME types
consist of a primary media type
(e.g., text, image, audio), followed by a slash, followed by a subtype that
further specifies the media type. Table 15-1 lists a few common MIME types for
the Content-Type header. More MIME types are listed in Appendix D.

	
Table 15-1. Common media types

	
Media type

	
Description

	
text/html

	
Entity body is an HTML document

	
text/plain

	
Entity body is a document in plain text

	
image/gif

	
Entity body is an image of type GIF

	
image/jpeg

	
Entity body is an image of type JPEG

	
audio/x-wav

	
Entity body contains WAV sound data

	
model/vrml

	
Entity body is a three-dimensional VRML model

	
application/vnd.ms-powerpoint

	
Entity body is a Microsoft PowerPoint presentation

	
multipart/byteranges

	
Entity body has multiple parts, each containing a different
 range (in bytes) of the full document

	
message/http

	
Entity body contains a complete HTTP message (see TRACE)

It is important to note that the Content-Type header specifies
the media type of the original entity body. If the entity has gone through
content encoding, for example, the Content-Type header will still specify the
entity body type before the encoding.

15.4.1 Character Encodings for Text Media

The Content-Type header also supports
optional parameters to further specify the content type. The
"charset" parameter is the primary example, specifying the mechanism
to convert bits from the entity into characters in a text file:

Content-Type: text/html; charset=iso-8859-4

We talk about character sets in detail in Chapter 16.

15.4.2 Multipart Media Types

MIME
"multipart" email messages contain multiple messages stuck together
and sent as a single, complex message. Each component is self-contained, with
its own set of headers describing its content; the different components are
concatenated together and delimited by a string.

HTTP also supports multipart bodies; however, they typically
are sent in only one of two situations: in fill-in form submissions and in
range responses carrying pieces of a document.

15.4.3 Multipart Form Submissions

When an HTTP fill-in form is submitted, variable-length text
fields and uploaded objects are sent as separate parts of a multipart body,
allowing forms to be filled out with values of different types and lengths. For
example, you may choose to fill out a form that asks for your name and a
description with your nickname and a small photo, while your friend may put
down her full name and a long essay describing her passion for fixing
Volkswagen buses.

HTTP sends such requests with a Content-Type:
multipart/form-data header or a Content-Type: multipart/mixed header and a
multipart body, like this:

Content-Type: multipart/form-data; boundary=[abcdefghijklmnopqrstuvwxyz]

where the boundary specifies the delimiter string between the
different parts of the body.

The following example illustrates multipart/form-data
encoding. Suppose we have this form:

<FORM action="http://server.com/cgi/handle"
 enctype="multipart/form-data"
 method="post">
<P>
What is your name? <INPUT type="text" name="submit-name">

What files are you sending? <INPUT type="file" name="files">

<INPUT type="submit" value="Send"> <INPUT type="reset">
</FORM>

If the user enters "Sally" in the text-input field
and selects the text file "essayfile.txt," the user agent might send
back the following data:

Content-Type: multipart/form-data; boundary=AaB03x
--AaB03x
Content-Disposition: form-data; name="submit-name"
Sally
--AaB03x
Content-Disposition: form-data; name="files"; filename="essayfile.txt"
Content-Type: text/plain
...contents of essayfile.txt...
--AaB03x--

If the user selected a second (image) file,
"imagefile.gif," the user agent might construct the parts as follows:

Content-Type: multipart/form-data; boundary=AaB03x
--AaB03x
Content-Disposition: form-data; name="submit-name"
Sally
--AaB03x
Content-Disposition: form-data; name="files"
Content-Type: multipart/mixed; boundary=BbC04y
--BbC04y
Content-Disposition: file; filename="essayfile.txt"
Content-Type: text/plain
...contents of essayfile.txt...
--BbC04y
Content-Disposition: file; filename="imagefile.gif"
Content-Type: image/gif
Content-Transfer-Encoding: binary
...contents of imagefile.gif...
--BbC04y--
--AaB03x--

15.4.4 Multipart Range Responses

HTTP responses to range requests also can be multipart. Such
responses come with a Content-Type: multipart/byteranges header and a multipart
body with the different ranges. Here is an example of a multipart response to a
request for different ranges of a document:

HTTP/1.0 206 Partial content
Server: Microsoft-IIS/5.0
Date: Sun, 10 Dec 2000 19:11:20 GMT
Content-Location: http://www.joes-hardware.com/gettysburg.txt
Content-Type: multipart/x-byteranges; boundary=--[abcdefghijklmnopqrstuvwxyz]--
Last-Modified: Sat, 09 Dec 2000 00:38:47 GMT

--[abcdefghijklmnopqrstuvwxyz]--
Content-Type: text/plain
Content-Range: bytes 0-174/1441

Fourscore and seven years ago our fathers brough forth on this continent
a new nation, conceived in liberty and dedicated to the proposition that
all men are created equal.
--[abcdefghijklmnopqrstuvwxyz]--
Content-Type: text/plain
Content-Range: bytes 552-761/1441

But in a larger sense, we can not dedicate, we can not consecrate,
we can not hallow this ground. The brave men, living and dead who
struggled here have consecrated it far above our poor power to add
or detract.
--[abcdefghijklmnopqrstuvwxyz]--
Content-Type: text/plain
Content-Range: bytes 1344-1441/1441

and that government of the people, by the people, for the people shall
not perish from the earth.

--[abcdefghijklmnopqrstuvwxyz]--

Range requests are discussed in more detail later in this
chapter.

15.5 Content
Encoding

HTTP applications sometimes want to encode content before sending
it. For example, a server might compress a large HTML document before sending
it to a client that is connected over a slow connection, to help lessen the
time it takes to transmit the entity. A server might scramble or encrypt the
contents in a way that prevents unauthorized third parties from viewing the
contents of the document.

These types of encodings are applied to the
content at the sender. Once the content is content-encoded, the encoded data is
sent to the receiver in the entity body as usual.

15.5.1 The Content-Encoding Process

The content-encoding process is:

1.
A web server generates an original response
message, with original Content-Type and Content-Length headers.

2.
A content-encoding server (perhaps the origin
server or a downstream proxy) creates an encoded message. The encoded message
has the same Content-Type but (if, for example, the body is compressed) a
different Content-Length. The content-encoding server adds a Content-Encoding
header to the encoded message, so that a receiving application can decode it.

3.
A receiving program gets the encoded message,
decodes it, and obtains the original.

Figure 15-3
sketches a content-encoding example.

Figure 15-3. Content-encoding
example

[image: figs/http_1503.gif]

Here, an HTML page is encoded by a gzip
content-encoding function, to produce a smaller, compressed body. The
compressed body is sent across the network, flagged with the gzip encoding. The
receiving client decompresses the entity using the gzip decoder.

This response snippet shows another example
of an encoded response (a compressed image):

HTTP/1.1 200 OK
Date: Fri, 05 Nov 1999 22:35:15 GMT
Server: Apache/1.2.4
Content-Length: 6096
Content-Type: image/gif
Content-Encoding: gzip
[...]

Note that the Content-Type header can and should still be present
in the message. It describes the original format of the entity—information that
may be necessary for displaying the entity once it has been decoded. Remember
that the Content-Length header now represents the length of the encoded body.

15.5.2 Content-Encoding Types

HTTP defines a few standard content-encoding types and allows
for additional encodings to be added as extension encodings. Encodings are
standardized through the IANA, which assigns a unique token to each
content-encoding algorithm. The Content-Encoding header uses these standardized
token values to describe the algorithm used in the encoding.

Some of the common content-encoding tokens are listed in Table 15-2.

	
Table 15-2. Content-encoding
 tokens

	
Content-encoding
 value

	
Description

	
gzip

	
Indicates that the GNU zip encoding was applied to the
 entity.[8]

	
compress

	
Indicates that the Unix file compression program has been
 run on the entity.

	
deflate

	
Indicates that the entity has been compressed into the zlib
 format.[9]

	
identity

	
Indicates that no encoding has been performed on the entity.
 When a Content-Encoding header is not present, this can be assumed.

[8] RFC 1952 describes the gzip
encoding.

[9] RFCs 1950 and 1951 describe the zlib format
and deflate compression.

The gzip, compress, and deflateencodings are lossless
compression algorithms used to reduce the size of transmitted messages without
loss of information. Of these, gzip typically is the most effective compression
algorithm and is the most widely used.

15.5.3 Accept-Encoding Headers

Of course, we don't want servers encoding content in ways that
the client can't decipher. To prevent servers from using encodings that the
client doesn't support, the client passes along a list of supported content
encodings in the Accept-Encoding request header. If the HTTP request does not
contain an Accept-Encoding header, a server can assume that the client will
accept any encoding (equivalent to passing Accept-Encoding: *).

Figure 15-4 shows an example of Accept-Encoding
in an HTTP transaction.

Figure 15-4. Content encoding

[image: figs/http_1504.gif]

The Accept-Encoding field contains a
comma-separated list of supported encodings. Here are a few examples:

Accept-Encoding: compress, gzip
Accept-Encoding:
Accept-Encoding: *
Accept-Encoding: compress;q=0.5, gzip;q=1.0
Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0

Clients can indicate preferred encodings by
attaching Q (quality) values as parameters to each encoding. Q values can range
from 0.0, indicating that the client does not want the associated encoding, to
1.0, indicating the preferred encoding. The token "*" means
"anything else." The process of selecting which content encoding to
apply is part of a more general process of deciding which content to send back
to a client in a response. This process and the Content-Encoding and
Accept-Encoding headers are discussed in more detail in Chapter 17.

The identity encoding token can be present
only in the Accept-Encoding header and is used by clients to specify relative
preference over other content-encoding algorithms.

15.6 Transfer
Encoding and Chunked Encoding

The previous section discussed content
encodings—reversible transformations applied to the body of the message. Content
encodings are tightly associated with the details of the particular content
format. For example, you might compress a text file with gzip, but not a JPEG
file, because JPEGs don't compress well with gzip.

This section discusses transfer
encodings. Transfer encodings also are reversible transformations performed on
the entity body, but they are applied for architectural reasons and are
independent of the format of the content. You apply a transfer encoding to a
message to change the way message data is transferred across the network (Figure 15-5).

Figure 15-5. Content encodings
versus transfer encodings

[image: figs/http_1505.gif]

15.6.1 Safe Transport

Historically, transfer encodings exist in other protocols to provide
"safe transport" of messages across a network. The concept of safe
transport has a different focus for HTTP, where the transport infrastructure is
standardized and more forgiving. In HTTP, there are only a few reasons why
transporting message bodies can cause trouble. Two of these are:

Unknown
size

Some gateway applications and
content encoders are unable to determine the final size of a message body
without generating the content first. Often, these servers would like to start
sending the data before the size is known. Because HTTP requires the
Content-Length header to precede the data, some servers apply a transfer
encoding to send the data with a special terminating footer that indicates the
end of data.[10]

[10] You
could close the connection as a "poor man's" end-of-message signal,
but this breaks persistent connections.

Security

You might use a transfer encoding
to scramble the message content before sending it across a shared transport
network. However, because of the popularity of transport layer security schemes
like SSL, transfer-encoding security isn't very common.

15.6.2 Transfer-Encoding Headers

There are just two defined headers to describe and control
transfer encoding:

Transfer-Encoding

Tells the receiver what encoding
has been performed on the message in order for it to be safely transported

TE

Used in the request header to tell
the server what extension transfer encodings are okay to use[11]

[11] The meaning of
the TE header would be more intuitive if it were called the
Accept-Transfer-Encoding header.

In the following example, the request uses the TE header to
tell the server that it accepts the chunked encoding (which it must if it's an
HTTP 1.1 application) and is willing to accept trailers on the end of
chunk-encoded messages:

GET /new_products.html HTTP/1.1
Host: www.joes-hardware.com
User-Agent: Mozilla/4.61 [en] (WinNT; I)
TE: trailers, chunked
...

The response includes a Transfer-Encoding header to tell the
receiver that the message has been transfer-encoded with the chunked encoding:

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Server: Apache/3.0
...

After this initial header, the structure of the message will
change.

All transfer-encoding values are case-insensitive. HTTP/1.1
uses transfer-encoding values in the TE header field and in the Transfer-Encoding
header field. The latest HTTP specification defines only one transfer encoding,
chunked encoding.

The TE header, like the Accept-Encoding header, can have Q
values to describe preferred forms of transfer encoding. The HTTP/1.1
specification, however, forbids the association of a Q value of 0.0 to chunked
encoding.

Future extensions to HTTP may drive the need for additional
transfer encodings. If and when this happens, the chunked transfer encoding
should always be applied on top of the extension transfer encodings. This
guarantees that the data will get "tunneled" through HTTP/1.1
applications that understand chunked encoding but not other transfer encodings.

15.6.3 Chunked Encoding

Chunked encoding breaks messages into chunks of known size.
Each chunk is sent one after another, eliminating the need for the size of the
full message to be known before it is sent.

Note that chunked encoding is a form of transfer encoding and
therefore is an attribute of the message, not the body. Multipart encoding, described
earlier in this chapter, is an attribute of the body and is completely separate
from chunked encoding.

15.6.3.1 Chunking and persistent connections

When the connection between the client and server is not persistent,
clients do not need to know the size of the body they are reading—they expect
to read the body until the server closes the connection.

With persistent connections, the size of the body must be
known and sent in the Content-Length header before the body can be written.
When content is dynamically created at a server, it may not be possible to know
the length of the body before sending it.

Chunked encoding provides a solution for this dilemma, by
allowing servers to send the body in chunks, specifying only the size of each
chunk. As the body is dynamically generated, a server can buffer up a portion
of it, send its size and the chunk, and then repeat the process until the full
body has been sent. The server can signal the end of the body with a chunk of
size 0 and still keep the connection open and ready for the next response.

Chunked encoding is fairly simple. Figure 15-6 shows the basic anatomy of a
chunked message. It begins with an initial HTTP response header block, followed
by a stream of chunks. Each chunk contains a length value and the data for that
chunk. The length value is in hexadecimal form and is separated from the chunk
data with a CRLF. The size of the chunk data is measured in bytes and includes
neither the CRLF sequence between the length value and the data nor the CRLF
sequence at the end of the chunk. The last chunk is special—it has a length of
zero, which signifies "end of body."

Figure 15-6. Anatomy of a chunked
message

[image: figs/http_1506.gif]

A client also may send chunked data to a server. Because the
client does not know beforehand whether the server accepts chunked encoding
(servers do not send TE headers in responses to clients), it must be prepared
for the server to reject the chunked request with a 411 Length Required
response.

15.6.3.2 Trailers in chunked messages

A trailer can be added to a chunked message if the client's TE
header indicates that it accepts trailers, or if the trailer is added by the
server that created the original response and the contents of the trailer are
optional metadata that it is not necessary for the client to understand and use
(it is okay for the client to ignore and discard the contents of the trailer).[12]

[12] The Trailer header was added after the
initial chunked encoding was added to drafts of the HTTP/1.1 specification, so
some applications may not understand it (or understand trailers) even if they
claim to be HTTP/1.1-compliant.

The trailer can contain additional header fields whose values
might not have been known at the start of the message (e.g., because the
contents of the body had to be generated first). An example of a header that
can be sent in the trailer is the Content-MD5 header—it would be difficult to
calculate the MD5 of a document before the document has been generated. Figure 15-6 illustrates the use of trailers.
The message headers contain a Trailer header listing the headers that will
follow the chunked message. The last chunk is followed by the headers listed in
the Trailer header.

Any of the HTTP headers can be sent as trailers, except for
the Transfer-Encoding, Trailer, and Content-Length headers.

15.6.4 Combining Content and Transfer Encodings

Content encoding and transfer encoding can be used
simultaneously. For example, Figure 15-7 illustrates how a sender can
compress an HTML file using a content encoding and send the data chunked using
a transfer encoding. The process to "reconstruct" the body is
reversed on the receiver.

Figure 15-7. Combining
content encoding with transfer encoding

[image: figs/http_1507.gif]

15.6.5 Transfer-Encoding Rules

When a transfer encoding is applied to a
message body, a few rules must be followed:

·
The set of transfer encodings must include
"chunked." The only exception is if the message is terminated by
closing the connection.

·
When the chunked transfer encoding is used, it
is required to be the last transfer encoding applied to the message body.

·
The chunked transfer encoding must not be
applied to a message body more than once.

These rules allow the recipient to determine
the transfer length of the message.

Transfer encodings are a relatively new
feature of HTTP, introduced in Version 1.1. Servers that implement transfer
encodings need to take special care not to send transfer-encoded messages to
non-HTTP/1.1 applications. Likewise, if a server receives a transfer-encoded
message that it can not understand, it should respond with the 501
Unimplemented status code. However, all HTTP/1.1 applications must at least
support chunked encoding.

15.7
Time-Varying Instances

Web objects are not static. The same URL can,
over time, point to different versions of an object. Take the CNN home page as
an example—going to "http://www.cnn.com" several times in a day is
likely to result in a slightly different page being returned each time.

Think of the CNN home page as being an object
and its different versions as being different instances
of the object (see Figure 15-8). The
client in the figure requests the same resource (URL) multiple times, but it
gets different instances of the resource as it changes over time. At time (a)
and (b) it has the same instance; at time (c) it has a different instance.

Figure 15-8. Instances
are "snapshots" of a resource in time

[image: figs/http_1508.gif]

The HTTP protocol specifies operations for a
class of requests and responses, called instance manipulations, that operate on instances of an
object. The two main instance-manipulation methods are range requests and delta encoding. Both of these
methods require clients to be able to identify the exact copy of the resource
that they have (if any) and request new instances conditionally. These
mechanisms are discussed later in this chapter.

15.8 Validators and
Freshness

Look back at Figure 15-8. The client does not initially
have a copy of the resource, so it sends a request to the server asking for it.
The server responds with Version 1 of the resource. The client can now cache
this copy, but for how long?

Once the document has "expired" at the client (i.e.,
once the client can no longer consider its copy a valid copy), it must request
a fresh copy from the server. If the document has not changed at the server,
however, the client does not need to receive it again—it can just continue to
use its cached copy.

This special request, called a conditional
request, requires that the client tell the server which version it
currently has, using a validator, and ask for a
copy to be sent only if its current copy is no longer valid. Let's look at the
three key concepts—freshness, validators, and conditionals—in more detail.

15.8.1 Freshness

Servers are expected to give clients information about how
long clients can cache their content and consider it fresh. Servers can provide
this information using one of two headers: Expires and Cache-Control.

The Expires header specifies the exact date and time when the
document "expires"—when it can no longer be considered fresh. The
syntax for the Expires header is:

Expires: Sun Mar 18 23:59:59 GMT 2001

For a client and server to use the Expires header correctly,
their clocks must be synchronized. This is not always easy, because neither may
run a clock synchronization protocol such as the Network Time Protocol (NTP). A
mechanism that defines expiration using relative time is more useful. The
Cache-Control header can be used to specify the maximum age for a document in
seconds—the total amount of time since the document left the server. Age is not
dependent on clock synchronization and therefore is likely to yield more
accurate results.

The Cache-Control header actually is very powerful. It can be
used by both servers and clients to describe freshness using more directives
than just specifying an age or expiration time. Table 15-3 lists some of the directives that
can accompany the Cache-Control header.

	
Table 15-3. Cache-Control header
 directives

	
Directive

	
Message type

	
Description

	
no-cache

	
Request

	
Do not return a cached copy of the document without first
 revalidating it with the server.

	
no-store

	
Request

	
Do not return a cached copy of the document. Do not store
 the response from the server.

	
max-age

	
Request

	
The document in the cache must not be older than the
 specified age.

	
max-stale

	
Request

	
The document may be stale based on the server-specified
 expiration information, but it must not have been expired for longer than the
 value in this directive.

	
min-fresh

	
Request

	
The document's age must not be more than its age plus the
 specified amount. In other words, the response must be fresh for at least the
 specified amount of time.

	
no-transform

	
Request

	
The document must not be transformed before being sent.

	
only-if-cached

	
Request

	
Send the document only if it is in the cache, without
 contacting the origin server.

	
public

	
Response

	
Response may be cached by any cache.

	
private

	
Response

	
Response may be cached such that it can be accessed only by
 a single client.

	
no-cache

	
Response

	
If the directive is accompanied by a list of header fields,
 the content may be cached and served to clients, but the listed header fields
 must first be removed. If no header fields are specified, the cached copy
 must not be served without revalidation with the server.

	
no-store

	
Response

	
Response must not be cached.

	
no-transform

	
Response

	
Response must not be modified in any way before being
 served.

	
must-revalidate

	
Response

	
Response must be revalidated with the server before being
 served.

	
proxy-revalidate

	
Response

	
Shared caches must revalidate the response with the origin
 server before serving. This directive can be ignored by private caches.

	
max-age

	
Response

	
Specifies the maximum length of time the document can be
 cached and still considered fresh.

	
s-max-age

	
Response

	
Specifies the maximum age of the document as it applies to
 shared caches (overriding the max-age directive, if one is present). This directive
 can be ignored by private caches.

Caching and freshness were discussed in more detail in Chapter
7.

15.8.2 Conditionals and Validators

When a cache's copy is requested, and it is no longer fresh, the
cache needs to make sure it has a fresh copy. The cache can fetch the current
copy from the origin server, but in many cases, the document on the server is
still the same as the stale copy in the cache. We saw this in Figure 15-8b; the cached copy may have
expired, but the server content still is the same as the cache content. If a
cache always fetches a server's document, even if it's the same as the expired
cache copy, the cache wastes network bandwidth, places unnecessary load on the
cache and server, and slows everything down.

To fix this, HTTP provides a way for clients to request a copy
only if the resource has changed, using special
requests called conditional requests.
Conditional requests are normal HTTP request messages, but they are performed
only if a particular condition is true. For example, a cache might send the
following conditional GET message to a server, asking it to send the file /announce.html
only if the file has been modified since June 29, 2002 (the date the cached
document was last changed by the author):

GET /announce.html HTTP/1.0
If-Modified-Since: Sat, 29 Jun 2002, 14:30:00 GMT

Conditional requests are implemented by conditional headers
that start with "If-". In the example above, the conditional header
is If-Modified-Since. A conditional header allows a method to execute only if
the condition is true. If the condition is not true, the server sends an HTTP
error code back.

Each conditional works on a particular validator. A validator is a particular attribute of the document
instance that is tested. Conceptually, you can think of the validator like the
serial number, version number, or last change date of a document. A wise client
in Figure 15-8b would send a conditional
validation request to the server saying, "send me the resource only if it
is no longer Version 1; I have Version 1." We discussed conditional cache
revalidation in Chapter 7, but we'll study the details of
entity validators more carefully in this chapter.

The If-Modified-Since conditional header tests the
last-modified date of a document instance, so we say that the last-modified
date is the validator. The If-None-Match conditional header tests the ETag
value of a document, which is a special keyword or version-identifying tag
associated with the entity. Last-Modified and ETag are the two primary
validators used by HTTP. Table 15-4 lists four of the HTTP headers used
for conditional requests. Next to each conditional header is the type of
validator used with the header.

	
Table 15-4. Conditional request
 types

	
Request type

	
Validator

	
Description

	
If-Modified-Since

	
Last-Modified

	
Send a copy of the resource if the version that was last modified
 at the time in your previous Last-Modified response header is no longer the
 latest one.

	
If-Unmodified-Since

	
Last-Modified

	
Send a copy of the resource only if it is
 the same as the version that was last modified at the time in your previous
 Last-Modified response header.

	
If-Match

	
ETag

	
Send a copy of the resource if its entity
 tag is the same as that of the one in your previous ETag response header.

	
If-None-Match

	
ETag

	
Send a copy of the resource if its entity
 tag is different from that of the one in your previous ETag response header.

HTTP groups validators
into two classes: weak validators and strong validators. Weak validators may not always uniquely identify an
instance of a resource; strong validators must. An example of a weak validator
is the size of the object in bytes. The resource content might change even
thought the size remains the same, so a hypothetical byte-count validator only
weakly indicates a change. A cryptographic checksum of the contents of the
resource (such as MD5), however, is a strong validator; it changes when the
document changes.

The last-modified time is considered a weak validator because,
although it specifies the time at which the resource was last modified, it
specifies that time to an accuracy of at most one second. Because a resource
can change multiple times in a second, and because servers can serve thousands
of requests per second, the last-modified date might not always reflect
changes. The ETag header is considered a strong validator, because the server
can place a distinct value in the ETag header every time a value changes.
Version numbers and digest checksums are good candidates for the ETag header,
but they can contain any arbitrary text. ETag headers are flexible; they take
arbitrary text values ("tags"), and can be used to devise a variety
of client and server validation strategies.

Clients and servers may sometimes want to adopt a looser
version of entity-tag validation. For example, a server may want to make
cosmetic changes to a large, popular cached document without triggering a mass
transfer when caches revalidate. In this case, the server might advertise a
"weak" entity tag by prefixing the tag with "W/". A weak
entity tag should change only when the associated entity changes in a
semantically significant way. A strong entity tag must change whenever the
associated entity value changes in any way.

The following example shows how a client might revalidate with
a server using a weak entity tag. The server would return a body only if the
content changed in a meaningful way from Version 4.0 of the document:

GET /announce.html HTTP/1.1
If-None-Match: W/"v4.0"

In summary, when clients access the same resource more than
once, they first need to determine whether their current copy still is fresh.
If it is not, they must get the latest version from the server. To avoid
receiving an identical copy in the event that the resource has not changed,
clients can send conditional requests to the server, specifying validators that
uniquely identify their current copies. Servers will then send a copy of the
resource only if it is different from the client's copy. For more details on cache
revalidation, please refer back to Section 7.7.

15.9 Range
Requests

We now understand how
a client can ask a server to send it a resource only if the client's copy of
the resource is no longer valid. HTTP goes further: it allows clients to
actually request just part or a range of a document.

Imagine if you were three-fourths of the way
through downloading the latest hot software across a slow modem link, and a
network glitch interrupted your connection. You would have been waiting for a
while for the download to complete, and now you would have to start all over
again, hoping the same thing does not happen again.

With range requests, an HTTP client can
resume downloading an entity by asking for the range or part of the entity it
failed to get (provided that the object did not change at the origin server
between the time the client first requested it and its subsequent range
request). For example:

GET /bigfile.html HTTP/1.1
Host: www.joes-hardware.com
Range: bytes=4000-
User-Agent: Mozilla/4.61 [en] (WinNT; I)
...

In this example, the client is requesting the remainder of the
document after the first 4,000 bytes (the end bytes do not have to be
specified, because the size of the document may not be known to the requestor).
Range requests of this form can be used for a failed request where the client
received the first 4,000 bytes before the failure. The Range header also can be
used to request multiple ranges (the ranges can be specified in any order and
may overlap)—for example, imagine a client connecting to multiple servers
simultaneously, requesting different ranges of the same document from different
servers in order to speed up overall download time for the document. In the
case where clients request multiple ranges in a single request, responses come
back as a single entity, with a multipart body and a Content-Type:
multipart/byteranges header.

Not all servers accept range requests, but many do. Servers
can advertise to clients that they accept ranges by including the header
Accept-Ranges in their responses. The value of this header is the unit of
measure, usually bytes.[13]

[13] The HTTP/1.1 specification
defines only the bytes token, but server and client implementors could come up
with their own units to measure or chop up an entity.

For example:

HTTP/1.1 200 OK
Date: Fri, 05 Nov 1999 22:35:15 GMT
Server: Apache/1.2.4
Accept-Ranges: bytes
...

Figure 15-9 shows
an example of a set of HTTP transactions involving ranges.

Figure 15-9. Entity range request
example

[image: figs/http_1509.gif]

Range headers are used extensively by popular
peer-to-peer file-sharing client software to download different parts of
multimedia files simultaneously, from different peers.

Note that range requests are a class of instance manipulations, because they are exchanges between
a client and a server for a particular instance of an object. That is, a
client's range request makes sense only if the client and server have the same
version of a document.

15.10 Delta Encoding

We
have described different versions of a web page as different instances of a
page. If a client has an expired copy of a page, it requests the latest
instance of the page. If the server has a newer instance of the page, it will
send it to the client, and it will send the full new instance of the page even
if only a small portion of the page actually has changed.

Rather than sending it the entire new page, the client would
get the page faster if the server sent just the changes to the client's copy of
the page (provided that the number of changes is small). Delta encoding is an
extension to the HTTP protocol that optimizes transfers by communicating
changes instead of entire objects. Delta encoding is a type of instance manipulation, because it relies on clients and
servers exchanging information about particular instances of an object. RFC
3229 describes delta encoding.

Figure 15-10 illustrates more clearly the
mechanism of requesting, generating, receiving, and applying a delta-encoded
document. The client has to tell the server which version of the page it has,
that it is willing to accept a delta from the
latest version of page, and which algorithms it knows for applying those deltas
to its current version. The server has to check if it has the client's version
of the page and how to compute deltas from the latest version and the client's
version (there are several algorithms for computing the difference between two
objects). It then has to compute the delta, send it to the client, let the
client know that it's sending a delta, and specify the new identifier for the
latest version of the page (because this is the version that the client will
end up with after it applies the delta to its old version).

Figure 15-10. Mechanics of
delta-encoding

[image: figs/http_1510.gif]

The client uses the unique identifier for its version of the
page (sent by the server in its previous response to the client in the ETag
header) in an If-None-Match header. This is the client's way of telling the
server, "if the latest version of the page you have does not have this
same ETag, send me the latest version of the page." Just the If-None-Match
header, then, would cause the server to send the client the full latest version
of the page (if it was different from the client's version).

The client can tell the server, however, that it is willing to
accept a delta of the page by also sending an A-IM header. A-IM is short for Accept-Instance-Manipulation ("Oh, by the way, I do
accept some forms of instance manipulation, so if you apply one of those you
will not have to send me the full document."). In the A-IM header, the
client specifies the algorithms it knows how to apply in order to generate the
latest version of a page given an old version and a delta. The server sends
back the following: a special response code (226 IM Used) telling the client
that it is sending it an instance manipulation of the requested object, not the
full object itself; an IM (short for Instance-Manipulation) header, which
specifies the algorithm used to compute the delta; the new ETag header; and a
Delta-Base header, which specifies the ETag of the document used as the base for
computing the delta (ideally, the same as the ETag in the client's
If-None-Match request!). The headers used in delta encoding are summarized in Table 15-5.

	
Table 15-5. Delta-encoding headers

	
Header

	
Description

	
ETag

	
Unique identifier for each instance of a document. Sent by
 the server in the response; used by clients in subsequent requests in
 If-Match and If-None-Match headers.

	
If-None-Match

	
Request header sent by the client, asking the server for a
 document if and only if the client's version of the document is different
 from the server's.

	
A-IM

	
Client request header indicating types of instance
 manipulations accepted.

	
IM

	
Server response header specifying the type of instance manipulation
 applied to the response. This header is sent when the response code is 226 IM
 Used.

	
Delta-Base

	
Server response header that specifies the ETag of the base
 document used for generating the delta (should be the same as the ETag in the
 client request's If-None-Match header).

15.10.1 Instance Manipulations, Delta Generators, and Delta
Appliers

Clients
can specify the types of instance manipulation they accept using the A-IM
header. Servers specify the type of instance manipulation used in the IM
header. Just what are the types of instance manipulation that are accepted, and
what do they do? Table 15-6 lists some of the IANA registered
types of instance
manipulations.

	
Table 15-6. IANA registered types
 of instance manipulations

	
Type

	
Description

	
vcdiff

	
Delta using the vcdiff algorithm[14]

	
diffe

	
Delta using the Unix diff -e
 command

	
gdiff

	
Delta using the gdiff algorithm[15]

	
gzip

	
Compression using the gzip algorithm

	
deflate

	
Compression using the deflate algorithm

	
range

	
Used in a server response to indicate that
 the response is partial content as the result of a range selection

	
identity

	
Used in a client request's A-IM header to
 indicate that the client is willing to accept an identity instance
 manipulation

[14] Internet draft draft-korn-vcdiff-01 describes the vcdiff algorithm. This
specification was approved by the IESG in early 2002 and should be released in
RFC form shortly.

[15] http://www.w3.org/TR/NOTE-gdiff-19970901.html
describes the GDIFF algorithm.

A "delta generator" at the
server, as in Figure 15-10, takes the base document and the
latest instance of the document and computes the delta between the two using
the algorithm specified by the client in the A-IM header. At the client side, a
"delta applier" takes the delta and applies it to the base document
to generate the latest instance of the document. For example, if the algorithm
used to generate the delta is the Unix diff
-e command, the client can apply the delta using the functionality
of the Unix ed text editor, because diff -e <file1> <file2>
generates the set of ed commands that will
convert <file1> into <file2>. ed is
a very simple editor with a few supported commands. In the example in Figure 15-10, 5c
says delete line 5 in the base document, and chisels.<cr>.
says add "chisels.". That's it. More complicated instructions can be
generated for bigger changes. The Unix diff
-e algorithm does a line-by-line comparison of files. This
obviously is okay for text files but breaks down for binary files. The vcdiff
algorithm is more powerful, working even for non-text files and generally
producing smaller deltas than diff -e.

The delta encoding specification defines the format of the
A-IM and IM headers in detail. Suffice it to say that multiple instance
manipulations can be specified in these headers (along with corresponding
quality values). Documents can go through multiple instance manipulations
before being returned to clients, in order to maximize compression. For
example, deltas generated by the vcdiff algorithm may in turn be compressed
using the gzip algorithm. The server response would then contain the header IM:
vcdiff, gzip. The client would first gunzip the content, then apply the results
of the delta to its base page in order to generate the final document.

Delta encoding can reduce transfer times, but it can be
tricky to implement. Imagine a page that changes frequently and is accessed by
many different people. A server supporting delta encoding must keep all the
different copies of that page as it changes over time, in order to figure out
what's changed between any requesting client's copy and the latest copy. (If
the document changes frequently, as different clients request the document,
they will get different instances of the document. When they make subsequent
requests to the server, they will be requesting changes between their instance
of the document and the latest instance of the document. To be able to send them
just the changes, the server must keep copies of all the previous instances
that the clients have.) In exchange for reduced latency in serving documents,
servers need to increase disk space to keep old instances of documents around.
The extra disk space necessary to do so may quickly negate the benefits from
the smaller transfer amounts.

15.11 For More Information

For more information on entities and encodings, see:

http://www.ietf.org/rfc/rfc2616.txt

The HTTP/1.1
specification, RFC 2616, is the primary reference for entity body management
and encodings.

http://www.ietf.org/rfc/rfc3229.txt

RFC 3229,
"Delta Encoding in HTTP," describes how delta encoding can be
supported as an extension to HTTP/1.1.

Introduction to Data Compression

Khalid Sayood,
Morgan Kaufmann Publishers. This book explains some of the compression
algorithms supported by HTTP content encodings.

http://www.ietf.org/rfc/rfc1521.txt

RFC 1521,
"Multipurpose Internet Mail Extensions, Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies,"
describes the format of MIME bodies. This reference material is useful because
HTTP borrows heavily from MIME. In particular, this document is designed to
provide facilities to include multiple objects in a single message, to
represent body text in character sets other than US-ASCII, to represent
formatted multi-font text messages, and to represent nontextual material such
as images and audio fragments.

http://www.ietf.org/rfc/rfc2045.txt

RFC 2045,
"Multipurpose Internet Mail Extensions, Part One: Format of Internet
Message Bodies," specifies the various headers used to describe the
structure of MIME messages, many of which are similar or identical to HTTP.

http://www.ietf.org/rfc/rfc1864.txt

RFC 1864,
"The Content-MD5 Header Field," provides some historical detail about
the behavior and intended use of the Content-MD5 header field in MIME content
as a message integrity check.

http://www.ietf.org/rfc/rfc3230.txt

RFC 3230, "Instance Digests in
HTTP," describes improvements to HTTP entity-digest handling that fix
weaknesses present in the Content-MD5 formulation.

Chapter 16.
Internationalization

Every day, billions of people write documents
in hundreds of languages. To live up to the vision of a truly world-wide Web,
HTTP needs to support the transport and processing of international documents,
in many languages and alphabets.

This chapter covers two primary
internationalization issues for the Web: character set
encodings and language
tags. HTTP applications use character set
encodings to request and display text in different alphabets, and they use language
tags to describe and restrict content to languages the user understands. We
finish with a brief chat about multilingual URIs and dates.

This chapter:

·
Explains how HTTP interacts with schemes and
standards for multilingual alphabets

·
Gives a rapid overview of the terminology,
technology, and standards to help HTTP programmers do things right (readers
familiar with character encodings can skip this section)

·
Explains the standard naming system for
languages, and how standardized language tags describe and select content

·
Outlines rules and cautions for international
URIs

·
Briefly discusses rules for dates and other internationalization
issues

16.1 HTTP
Support for International Content

HTTP messages can
carry content in any language, just as it can carry images, movies, or any
other kind of media. To HTTP, the entity body is just a box of bits.

To support international content, servers
need to tell clients about the alphabet and languages of each document, so the
client can properly unpack the document bits into characters and properly
process and present the content to the user.

Servers tell clients about a document's
alphabet and language with the HTTP Content-Type charset parameter and Content-Language headers. These headers describe what's in
the entity body's "box of bits," how to convert the contents into the
proper characters that can be displayed onscreen, and what spoken language the
words represent.

At the same time, the client needs to tell
the server which languages the user understands and which alphabetic coding
algorithms the browser has installed. The client sends Accept-Charset and Accept-Language headers to tell the
server which character set encoding algorithms and languages the client
understands, and which of them are preferred.

The following HTTP Accept headers might be
sent by a French speaker who prefers his native language (but speaks some
English in a pinch) and who uses a browser that supports the iso-8859-1 West
European charset encoding and the UTF-8 Unicode charset encoding:

Accept-Language: fr, en;q=0.8
Accept-Charset: iso-8859-1, utf-8

The parameter "q=0.8" is a quality factor, giving lower
priority to English (0.8) than to French (1.0 by default).

16.2 Character
Sets and HTTP

So, let's jump right into the most important (and confusing) aspects
of web internationalization—international alphabetic scripts and their
character set encodings.

Web character set standards can be pretty confusing. Lots of
people get frustrated when they first try to write international web software,
because of complex and inconsistent terminology, standards documents that you
have to pay to read, and unfamiliarity with foreign languages. This section and
the next section should make it easier for you to use character sets with HTTP.

16.2.1 Charset Is a Character-to-Bits Encoding

The HTTP charset values tell you how to convert from entity content
bits into characters in a particular alphabet. Each charset
tag names an algorithm to translate bits to characters (and vice versa). The charset tags are standardized in the MIME character set
registry, maintained by the IANA (see http://www.isi.edu/in-notes/iana/assignments/character-sets).
Appendix H summarizes many of them.

The following Content-Type header tells the receiver that the
content is an HTML file, and the charset parameter tells the receiver to use
the iso-8859-6 Arabic character set decoding scheme to decode the content bits
into characters:

Content-Type: text/html; charset=iso-8859-6

The iso-8859-6 encoding scheme maps 8-bit values into both the
Latin and Arabic alphabets, including numerals, punctuation and other symbols.[1] For example, in Figure 16-1, the highlighted bit pattern has
code value 225, which (under iso-8859-6) maps into the Arabic letter
"FEH" (a sound like the English letter "F").

[1] Unlike Chinese and Japanese,
Arabic has only 28 characters. Eight bits provides 256 unique values, which
gives plenty of room for Latin characters, Arabic characters, and other useful
symbols.

Figure 16-1. The charset parameter
tells the client how to go from bits to characters

[image: figs/http_1601.gif]

Some character encodings (e.g., UTF-8 and iso-2022-jp) are
more complicated, variable-length codes, where the number of bits per character varies.
This type of coding lets you use extra bits to support alphabets with large
numbers of characters (such as Chinese and Japanese), while using fewer bits to
support standard Latin characters.

16.2.2 How Character Sets and Encodings Work

Let's see what character sets and encodings
really do.

We want to convert from bits in a document into characters
that we can display onscreen. But because there are many different alphabets,
and many different ways of encoding characters into bits (each with advantages
and disadvantages), we need a standard way to describe and apply the
bits-to-character decoding algorithm.

Bits-to-character conversions happen in two steps, as shown in
Figure 16-2:

·
In Figure 16-2a, bits from a document are
converted into a character code that identifies a particular numbered character
in a particular coded character set. In the example, the decoded character code
is numbered 225.

·
In Figure 16-2b, the character code is used to
select a particular element of the coded character set. In iso-8859-6, the
value 225 corresponds to "ARABIC LETTER FEH." The algorithms used in
Steps a and b are determined from the MIME charset tag.

Figure 16-2. HTTP
"charset" combines a character encoding scheme and a coded character
set

[image: figs/http_1602.gif]

A key goal of internationalized character systems is the
isolation of the semantics (letters) from the presentation (graphical
presentation forms). HTTP concerns itself only with transporting the character
data and the associated language and charset labels. The presentation of the
character shapes is handled by the user's graphics display software (browser,
operating system, fonts), as shown in Figure 16-2c.

16.2.3 The Wrong Charset Gives the Wrong Characters

If the client uses the wrong charset parameter, the client
will display strange, bogus characters. Let's say a browser got the value 225
(binary 11100001) from the body:

·
If the browser thinks the body is encoded with iso-8859-1 Western
European character codes, it will show a lowercase Latin "a" with
acute accent:

á

·
If the browser is using iso-8859-6 Arabic codes, it will show
"FEH":

[image: figs/arabicFEH.gif]

·
If the browser is using iso-8859-7 Greek, it will show a small
"Alpha":

[image: figs/U03B1.gif]

·
If the browser is using iso-8859-8 Hebrew codes, it will show
"BET":

[image: figs/hebrewBET.gif]

16.2.4 Standardized MIME Charset Values

The combination of a particular character encoding and a
particular coded character set is called a MIME
charset. HTTP uses standardized MIME charset
tags in the Content-Type and Accept-Charset headers. MIME charset
values are registered with the IANA.[2] Table 16-1 lists a few MIME charset encoding
schemes used by documents and browsers. A more complete list is provided in Appendix H.

[2] See http://www.iana.org/numbers.htm
for the list of registered charset values.

	
Table 16-1. MIME charset encoding
 tags

	
MIME charset value

	
Description

	
us-ascii

	
The famous character encoding standardized in 1968 as
 ANSI_X3.4-1968. It is also named ASCII, but the "US" prefix is
 preferred because of several international variants in ISO 646 that modify
 selected characters. US-ASCII maps 7-bit values into 128 characters. The high
 bit is unused.

	
iso-8859-1

	
iso-8859-1 is an 8-bit extension to ASCII to support Western
 European languages. It uses the high bit to include many West European
 characters, while leaving the ASCII codes (0-127) intact. Also called
 iso-latin-1, or nicknamed "Latin1."

	
iso-8859-2

	
Extends ASCII to include characters for Central and Eastern European
 languages, including Czech, Polish, and Romanian. Also called iso-latin-2.

	
iso-8859-5

	
Extends ASCII to include Cyrillic characters, for languages
 including Russian, Serbian, and Bulgarian.

	
iso-8859-6

	
Extends ASCII to include Arabic characters. Because the
 shapes of Arabic characters change depending on their position in a word,
 Arabic requires a display engine that analyzes the context and generates the
 correct shape for each character.

	
iso-8859-7

	
Extends ASCII to include modern Greek characters. Formerly
 known as ELOT-928 or ECMA-118:1986.

	
iso-8859-8

	
Extends ASCII to include Hebrew and Yiddish characters.

	
iso-8859-15

	
Updates iso-8859-1, replacing some less-needed punctuation
 and fraction symbols with forgotten French and Finnish letters and replacing
 the international currency sign with the symbol for the new Euro currency.
 This character set is nicknamed "Latin0" and may one day replace
 iso-8859-1 as the preferred default character set in Europe.

	
iso-2022-jp

	
iso-2022-jp is a widely used encoding for Japanese email and
 web content. It is a variable-length encoding scheme that supports ASCII
 characters with single bytes but uses three-character modal escape sequences
 to shift into three different Japanese character sets.

	
euc-jp

	
euc-jp is an ISO 2022-compliant variable-length encoding
 that uses explicit bit patterns to identify each character, without requiring
 modes and escape sequences. It uses 1-byte, 2-byte, and 3-byte sequences of
 characters to identify characters in multiple Japanese character sets.

	
Shift_JIS

	
This encoding was originally developed by Microsoft and
 sometimes is called SJIS or MS Kanji. It is a bit complicated, for reasons of
 historic compatibility, and it cannot map all characters, but it still is
 common.

	
koi8-r

	
KOI8-R is a popular 8-bit Internet character set encoding
 for Russian, defined in IETF RFC 1489. The initials are transliterations of
 the acronym for "Code for Information Exchange, 8 bit, Russian."

	
utf-8

	
UTF-8 is a common variable-length character encoding scheme
 for representing UCS (Unicode), which is the Universal Character Set of the
 world's characters. UTF-8 uses a variable-length encoding for character code
 values, representing each character by from one to six bytes. One of the
 primary features of UTF-8 is backward compatibility with ordinary 7-bit ASCII
 text.

	
windows-1252

	
Microsoft calls its coded character sets "code
 pages." Windows code page 1252 (a.k.a. "CP1252" or
 "WinLatin1") is an extension of iso-8859-1.

16.2.5 Content-Type Charset Header and META Tags

Web servers send the client the MIME charset tag in the Content-Type header, using the charset parameter:

Content-Type: text/html; charset=iso-2022-jp

If no charset is explicitly listed, the
receiver may try to infer the character set from the document contents. For
HTML content, character sets might be found in <META
HTTP-EQUIV="Content-Type"> tags that describe the charset.

Example 16-1 shows
how HTML META tags set the charset to the Japanese encoding iso-2022-jp. If the
document is not HTML, or there is no META Content-Type tag, software may
attempt to infer the character encoding by scanning the actual text for common
patterns indicative of languages and encodings.

Example 16-1. Character encoding can be specified in HTML
META tags

<HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
 <META LANG="jp">
 <TITLE>A Japanese Document</TITLE>
</HEAD>
<BODY>
 ...

If a client cannot infer a character
encoding, it assumes iso-8859-1.

16.2.6 The Accept-Charset Header

There are thousands of defined character
encoding and decoding methods, developed over the past several decades. Most
clients do not support all the various character coding and mapping systems.

HTTP clients can tell
servers precisely which character systems they support, using the
Accept-Charset request header. The Accept-Charset
header value provides a list of character encoding schemes that the client
supports. For example, the following HTTP request header indicates that a
client accepts the Western European iso-8859-1 character system as well as the
UTF-8 variable-length Unicode compatibility system. A server is free to return
content in either of these character encoding schemes.

Accept-Charset: iso-8859-1, utf-8

Note that there is no Content-Charset
response header to match the Accept-Charset request header. The response
character set is carried back from the server by the charset parameter of the
Content-Type response header, to be compatible with MIME. It's too bad this
isn't symmetric, but all the information still is there.

16.3 Multilingual
Character Encoding Primer

The previous section described how the HTTP Accept-Charset
header and the Content-Type charset parameter carry character-encoding information
from the client and server. HTTP programmers who do a lot of work with
international applications and content need to have a deeper understanding of
multilingual character systems to understand technical specifications and
properly implement software.

It isn't easy to learn multilingual character systems—the
terminology is complex and inconsistent, you often have to pay to read the
standards documents, and you may be unfamiliar with the other languages with
which you're working. This section is an overview of character systems and
standards. If you are already comfortable with character encodings, or are not
interested in this detail, feel free to jump ahead to Section 16.4.

16.3.1 Character Set Terminology

Here are eight terms about electronic character systems that
you should know:

Character

An alphabetic letter, numeral,
punctuation mark, ideogram (as in Chinese), symbol, or other textual
"atom" of writing. The Universal Character Set (UCS) initiative,
known informally as Unicode,[3]
has developed a standardized set of textual names for many characters in many
languages, which often are used to conveniently and uniquely name characters.[4]

[3]
Unicode is a commercial consortium based on UCS that drives commercial
products.

[4] The names look
like "LATIN CAPITAL LETTER S" and "ARABIC LETTER QAF."

Glyph

A stroke pattern or unique
graphical shape that describes a character. A character may have multiple
glyphs if it can be written different ways (see Figure 16-3).

Coded
character

A unique number assigned to a
character so that we can work with it.

Coding
space

A range of integers that we plan to
use as character code values.

Code
width

The number of bits in each
(fixed-size) character code.

Character
repertoire

A particular working set of
characters (a subset of all the characters in the world).

Coded
character set

A set of coded characters that
takes a character repertoire (a selection of characters from around the world)
and assigns each character a code from a coding space. In other words, it maps
numeric character codes to real characters.

Character
encoding scheme

An algorithm to encode numeric
character codes into a sequence of content bits (and to decode them back).
Character encoding schemes can be used to reduce the amount of data required to
identify characters (compression), work around transmission restrictions, and
unify overlapping coded character sets.

16.3.2 Charset Is Poorly Named

Technically, the MIME charset tag (used in the Content-Type
charset parameter and the Accept-Charset header) doesn't specify a character
set at all. The MIME charset value names a total algorithm for mapping data
bits to codes to unique characters. It combines the two separate concepts of character encoding scheme and
coded character set
(see Figure 16-2).

This terminology is sloppy and confusing, because there
already are published standards for character encoding schemes and for coded
character sets.[5]
Here's what the HTTP/1.1 authors say about their use of terminology (in RFC
2616):

[5] Worse, the MIME charset tag often co-opts
the name of a particular coded character set or encoding scheme. For example,
iso-8859-1 is a coded character set (it assigns numeric codes to a set of 256
European characters), but MIME uses the charset value "iso-8859-1" to
mean an 8-bit identity encoding of the coded character set. This imprecise
terminology isn't fatal, but when reading standards documents, be clear on the
assumptions.

The term "character set" is used in this document to
refer to a method ... to convert a sequence of octets into a sequence of
characters... Note: This use of the term "character set" is more
commonly referred to as a "character encoding." However, since HTTP
and MIME share the same registry, it's important that the terminology also be
shared.

The IETF also adopts nonstandard terminology in RFC 2277:

This document uses the term "charset" to mean a set
of rules for mapping from a sequence of octets to a sequence of characters,
such as the combination of a coded character set and a character encoding
scheme; this is also what is used as an identifier in MIME "charset="
parameters, and registered in the IANA charset registry. (Note that this is NOT
a term used by other standards bodies, such as ISO).

So, be careful when reading standards documents, so you know
exactly what's being defined. Now that we've got the terminology sorted out,
let's look a bit more closely at characters, glyphs, character sets, and
character encodings.

16.3.3 Characters

Characters are the most basic building
blocks of writing. A character represents an alphabetic letter, numeral,
punctuation mark, ideogram (as in Chinese), mathematical symbol, or other basic
unit of writing.

Characters are independent of font and style. Figure 16-3 shows several variants of the same
character, called "LATIN SMALL LETTER A." A native reader of Western
European languages would immediately recognize all five of these shapes as the
same character, even though the stroke patterns and styles are quite different.

Figure 16-3. One character can have
many different written forms

[image: figs/http_1603.gif]

Many writing systems also have different stroke shapes for a
single character, depending on the position of the character in the word. For
example, the four strokes in Figure 16-4 all represent the character
"ARABIC LETTER AIN."[6] Figure 16-4a shows how "AIN" is
written as a standalone character. Figure 16-4d shows "AIN" at the
beginning of a word, Figure 16-4c shows "AIN" in the
middle of a word, and Figure 16-4b shows "AIN" at the end
of a word.[7]

[6] The sound "AIN" is pronounced
something like "ayine," but toward the back of the throat.

[7] Note that Arabic words are written from
right to left.

Figure 16-4. Four positional forms
of the single character "ARABIC LETTER AIN"

[image: figs/http_1604.gif]

16.3.4 Glyphs, Ligatures, and Presentation Forms

Don't confuse characters with glyphs.
Characters are the unique, abstract "atoms" of language. Glyphs are
the particular ways you draw each character. Each character has many different
glyphs, depending on the artistic style and script.[8]

[8] Many people use the term "glyph"
to mean the final rendered bitmap image, but technically a glyph is the
inherent shape of a character, independent of font and minor artistic style.
This distinction isn't very easy to apply, or useful for our purposes.

Also, don't confuse characters with presentation
forms. To make writing look nicer, many handwritten scripts and typefaces let
you join adjacent characters into pretty ligatures, in which the two characters smoothly connect.
English-speaking typesetters often join "F" and "I" into an
"FI ligature" (see Figure 16-5a-b), and Arabic writers often join
the "LAM" and "ALIF" characters into an attractive ligature
(Figure 16-5c-d).

Figure 16-5. Ligatures are stylistic
presentation forms of adjacent characters, not new characters

[image: figs/http_1605.gif]

Here's the general rule: if the meaning of the text changes
when you replace one glyph with another, the glyphs are different characters.
Otherwise, they are the same characters, with a different stylistic
presentation.[9]

[9] The division between semantics and
presentation isn't always clear. For ease of implementation, some presentation
variants of the same characters have been assigned distinct characters, but the
goal is to avoid this.

16.3.5 Coded Character Sets

Coded character sets, defined in RFCs
2277 and 2130, map integers to characters. Coded character sets often are
implemented as arrays,[10]
indexed by code number (see Figure 16-6). The array elements are
characters.[11]

[10] The arrays can be multidimensional, so
different bits of the code number index different axes of the array.

[11] Figure 16-6 uses a grid to represent a coded
character set. Each element of the grid contains a character image. These
images are symbolic. The presence of an image "D" is shorthand for
the character "LATIN CAPITAL LETTER D," not for any particular
graphical glyph.

Figure 16-6. Coded character sets
can be thought of as arrays that map numeric codes to characters

[image: figs/http_1606.gif]

Let's look at a few important coded character set standards,
including the historic US-ASCII character set, the iso-8859 extensions to
ASCII, the Japanese JIS X 0201 character set, and the Universal Character Set
(Unicode).

16.3.5.1 US-ASCII: The mother of all character sets

ASCII is the
most famous coded character set, standardized back in 1968 as ANSI standard
X3.4 "American Standard Code for Information Interchange." ASCII uses
only the code values 0-127, so only 7 bits are required to cover the code space.
The preferred name for ASCII is "US-ASCII," to distinguish it from
international variants of the 7-bit character set.

HTTP messages (headers, URIs, etc.) use US-ASCII.

16.3.5.2 iso-8859

The iso-8859 character set standards are 8-bit supersets of
US-ASCII that use the high bit to add characters for international writing. The
additional space provided by the extra bit (128 extra codes) isn't large enough
to hold even all of the European characters (not to mention Asian characters),
so iso-8859 provides customized character sets for different regions:

	
iso-8859-1

	
Western European languages (e.g., English, French)

	
iso-8859-2

	
Central and Eastern European languages (e.g., Czech, Polish)

	
iso-8859-3

	
Southern European languages

	
iso-8859-4

	
Northern European languages (e.g., Latvian, Lithuanian,
 Greenlandic)

	
iso-8859-5

	
Cyrillic (e.g., Bulgarian, Russian, Serbian)

	
iso-8859-6

	
Arabic

	
iso-8859-7

	
Greek

	
iso-8859-8

	
Hebrew

	
iso-8859-9

	
Turkish

	
iso-8859-10

	
Nordic languages (e.g., Icelandic, Inuit)

	
iso-8859-15

	
Modification to iso-8859-1 that includes the new Euro
 currency character

iso-8859-1, also known as Latin1, is the
default character set for HTML. It can be used to represent text in most
Western European languages. There has been some discussion of replacing
iso-8859-1 with iso-8859-15 as the default HTTP coded character set, because it
includes the new Euro currency symbol. However, because of the widespread
adoption of iso-8859-1, it's unlikely that a widespread change to iso-8859-15
will be adopted for quite some time.

16.3.5.3 JIS X 0201

JIS X 0201 is an extremely minimal
character set that extends ASCII with Japanese half width katakana characters.
The half-width katakana characters were originally used in the Japanese
telegraph system. JIS X 0201 is often called "JIS Roman." JIS is an
acronym for "Japanese Industrial Standard."

16.3.5.4 JIS X 0208 and JIS X 0212

Japanese includes thousands of characters from several writing
systems. While it is possible to limp by (painfully) using the 63 basic
phonetic katakana characters in JIS X 0201, a much more complete character set
is required for practical use.

The JIS X 0208 character set was the first multi-byte Japanese
character set; it defined 6,879 coded characters, most of which are
Chinese-based kanji. The JIS X 0212 character set adds an additional 6,067
characters.

16.3.5.5 UCS

The Universal Character
Set (UCS) is a worldwide standards effort to combine all of the world's
characters into a single coded character set. UCS is defined by ISO 10646.
Unicode is a commercial consortium that tracks the UCS standards. UCS has
coding space for millions of characters, although the basic set consists of
only about 50,000 characters.

16.3.6 Character Encoding Schemes

Character encoding schemes pack
character code numbers into content bits and unpack them back into character
codes at the other end (Figure 16-7). There are three broad classes of
character encoding schemes:

Fixed width

Fixed-width encodings represent
each coded character with a fixed number of bits. They are fast to process but
can waste space.

Variable
width (nonmodal)

Variable-width encodings use
different numbers of bits for different character code numbers. They can reduce
the number of bits required for common characters, and they retain
compatibility with legacy 8-bit character sets while allowing the use of
multiple bytes for international characters.

Variable
width (modal)

Modal encodings use special
"escape" patterns to shift between different modes. For example, a
modal encoding can be used to switch between multiple, overlapping character
sets in the middle of text. Modal encodings are complicated to process, but
they can efficiently support complicated writing systems.

Figure 16-7. Character encoding
scheme encodes character codes into bits and back again

[image: figs/http_1607.gif]

Let's look at a few common encoding schemes.

16.3.6.1 8-bit

The 8-bit fixed-width identity
encoding simply encodes each character code with its corresponding 8-bit value.
It supports only character sets with a code range of 256 characters. The
iso-8859 family of character sets uses the 8-bit identity encoding.

16.3.6.2 UTF-8

UTF-8 is a popular character encoding
scheme designed for UCS (UTF stands for "UCS Transformation Format").
UTF-8 uses a nonmodal, variable-length encoding for the character code values,
where the leading bits of the first byte tell the length of the encoded
character in bytes, and any subsequent byte contains six bits of code value
(see Table 16-2).

If the first encoded byte has a high bit of 0, the length is
just 1 byte, and the remaining 7 bits contain the character code. This has the
nice result of ASCII compatibility (but not iso-8859 compatibility, because
iso-8859 uses the high bit).

	
Table 16-2. UTF-8 variable-width,
 nonmodal encoding

	
Character code
 bits

	
Byte 1

	
Byte 2

	
Byte 3

	
Byte 4

	
Byte 5

	
Byte 6

	
0-7

	
0ccccccc

	
-

	
-

	
-

	
-

	
-

	
8-11

	
110ccccc

	
10cccccc

	
-

	
-

	
-

	
-

	
12-16

	
1110cccc

	
10cccccc

	
10cccccc

	
-

	
-

	
-

	
17-21

	
11110ccc

	
10cccccc

	
10cccccc

	
10cccccc

	
-

	
-

	
22-26

	
111110cc

	
10cccccc

	
10cccccc

	
10cccccc

	
10cccccc

	
-

	
27-31

	
1111110c

	
10cccccc

	
10cccccc

	
10cccccc

	
10cccccc

	
10cccccc

For example, character code 90 (ASCII "Z") would be
encoded as 1 byte (01011010), while code 5073 (13-bit binary value
1001111010001) would be encoded into 3 bytes:

11100001 10001111 10010001

16.3.6.3 iso-2022-jp

iso-2022-jp is
a widely used encoding for Japanese Internet documents. iso-2022-jp is a
variable-length, modal encoding, with all values less than 128 to prevent
problems with non-8-bit-clean software.

The encoding context always is set to one of four predefined
character sets.[12]
Special "escape sequences" shift from one set to another. iso-2022-jp
initially uses the US-ASCII character set, but it can switch to the JIS X 0201
(JIS-Roman) character set or the much larger JIS X 0208-1978 and JIS X
0208-1983 character sets using 3-byte escape sequences.

[12] The iso-2022-jp encoding is tightly bound
to these four character sets, whereas some other encodings are independent of
the particular character set.

The escape sequences are shown in Table 16-3. In practice, Japanese text begins with
"ESC $ @" or "ESC $ B" and ends with "ESC (B" or
"ESC (J".

	
Table 16-3. iso-2022-jp character
 set switching escape sequences

	
Escape sequence

	
Resulting coded
 character set

	
Bytes per code

	
ESC (B

	
US-ASCII

	
1

	
ESC (J

	
JIS X 0201-1976 (JIS Roman)

	
1

	
ESC $ @

	
JIS X 0208-1978

	
2

	
ESC $ B

	
JIS X 0208-1983

	
2

When in the US-ASCII or JIS-Roman modes, a single byte is used
per character. When using the larger JIS X 0208 character set, two bytes are used
per character code. The encoding restricts the bytes sent to be between 33 and
126.[13]

[13] Though the bytes can have only 94 values
(between 33 and 126), this is sufficient to cover all the characters in the JIS
X 0208 character sets, because the character sets are organized into a 94 X 94
grid of code values, enough to cover all JIS X 0208 character codes.

16.3.6.4 euc-jp

euc-jp is
another popular Japanese encoding. EUC stands for "Extended Unix
Code," first developed to support Asian characters on Unix operating
systems.

Like iso-2022-jp, the euc-jp encoding is a
variable-length encoding that allows the use of several standard Japanese
character sets. But unlike iso-2022-jp, the euc-jp encoding is not modal. There
are no escape sequences to shift between modes.

euc-jp supports four coded character sets:
JIS X 0201 (JIS-Roman, ASCII with a few Japanese substitutions), JIS X 0208,
half-width katakana (63 characters used in the original Japanese telegraph
system), and JIS X 0212.

One byte is used to encode JIS Roman (ASCII
compatible), two bytes are used for JIS X 0208 and half-width katakana, and
three bytes are used for JIS X 0212. The coding is a bit wasteful but is simple
to process.

The encoding patterns are outlined in Table 16-4.

	
Table 16-4. euc-jp
 encoding values

	
Which byte

	
Encoding values

	
JIS X 0201 (94 coded characters)

	

	
1st byte

	
33-126

	
JIS X 0208 (6879 coded characters)

	

	
1st byte

	
161-254

	
2nd byte

	
161-254

	
Half-width katakana (63 coded characters)

	

	
1st byte

	
142

	
2nd byte

	
161-223

	
JIS X 0212 (6067 coded characters)

	

	
1st byte

	
143

	
2nd byte

	
161-254

	
3rd byte

	
161-254

This wraps up our survey of character sets and encodings. The next
section explains language tags and how HTTP uses language tags to target
content to audiences. Please refer to Appendix H for a detailed listing of standardized
character sets.

16.4 Language Tags and
HTTP

Language tags are short, standardized
strings that name spoken languages.

We need standardized names, or some people will tag French
documents as "French," others will use "Français," others
still might use "France," and lazy people might just use
"Fra" or "F." Standardized language tags avoid this
confusion.

There are language tags for English (en), German (de), Korean
(ko), and many other languages. Language tags can describe regional variants
and dialects of languages, such as Brazilian Portuguese (pt-BR), U.S. English
(en-US), and Hunan Chinese (zh-xiang). There is even a standard language tag
for Klingon (i-klingon)!

16.4.1 The Content-Language Header

The Content-Language
entity header field describes the target audience languages for the entity. If
the content is intended primarily for a French audience, the Content-Language
header field would contain:

Content-Language: fr

The Content-Language header isn't limited to text documents.
Audio clips, movies, and applications might all be intended for a particular
language audience. Any media type that is targeted to particular language
audiences can have a Content-Language header. In Figure 16-8, the audio file is tagged for a
Navajo audience.

Figure 16-8. Content-Language header
marks a "Rain Song" audio clip for Navajo speakers

[image: figs/http_1608.gif]

If the content is intended for multiple audiences, you can
list multiple languages. As suggested in the HTTP specification, a rendition of
the "Treaty of Waitangi," presented simultaneously in the original
Maori and English versions, would call for:

Content-Language: mi, en

However, just because multiple languages are present within an
entity does not mean that it is intended for multiple linguistic audiences. A
beginner's language primer, such as "A First Lesson in Latin," which
clearly is intended to be used by an English-literate audience, would properly
include only "en".

16.4.2 The Accept-Language Header

Most of us know at least one language. HTTP lets us pass
our language restrictions and preferences along to web servers. If the web
server has multiple versions of a resource, in different languages, it can give
us content in our preferred language.[14]

[14] Servers also can use the
Accept-Language header to generate dynamic content in the language of the user
or to select images or target language-appropriate merchandising promotions.

Here, a client requests Spanish content:

Accept-Language: es

You can place multiple language tags in the Accept-Language
header to enumerate all supported languages and the order of preference (left
to right). Here, the client prefers English but will accept Swiss German
(de-CH) or other variants of German (de):

Accept-Language: en, de-CH, de

Clients use Accept-Language and Accept-Charset to request
content they can understand. We'll see how this works in more detail in Chapter 17.

16.4.3 Types of Language Tags

Language tags have a standardized
syntax, documented in RFC 3066, "Tags for the Identification of
Languages." Language tags can be used to represent:

·
General language classes (as in "es" for Spanish)

·
Country-specific languages (as in "en-GB" for English
in Great Britain)

·
Dialects of languages (as in "no-bok" for Norwegian
"Book Language")

·
Regional languages (as in "sgn-US-MA" for Martha's
Vineyard sign language)

·
Standardized nonvariant languages (e.g., "i-navajo")

·
Nonstandard languages (e.g., "x-snowboarder-slang"[15])

[15] Describes the
unique dialect spoken by "shredders."

16.4.4 Subtags

Language tags
have one or more parts, separated by hyphens, called subtags:

·
The first subtag called the primary
subtag. The values are standardized.

·
The second subtag is optional and follows its own naming
standard.

·
Any trailing subtags are unregistered.

The primary subtag contains only letters (A-Z). Subsequent
subtags can contain letters or numbers, up to eight characters in length. An
example is shown in Figure 16-9.

Figure 16-9. Language tags are
separated into subtags

[image: figs/http_1609.gif]

16.4.5 Capitalization

All tags are case-insensitive—the
tags "en" and "eN" are equivalent. However, lowercasing
conventionally is used to represent general languages, while uppercasing is
used to signify particular countries. For example, "fr" means all
languages classified as French, while "FR" signifies the country
France.[16]

[16] This convention is recommended by ISO
standard 3166.

16.4.6 IANA Language Tag Registrations

The values of
the first and second language subtags are defined by various standards
documents and their maintaining organizations. The IANA[17]
administers the list of standard language tags, using the rules outlined in RFC
3066.

[17] See http://www.iana.org and
RFC 2860.

If a language tag is composed of standard country and language
values, the tag doesn't have to be specially registered. Only those language
tags that can't be composed out of the standard country and language values
need to be registered specially with the IANA.[18]
The following sections outline the RFC 3066 standards for the first and second
subtags.

[18] At the time of writing, only 21 language
tags have been explicitly registered with the IANA, including Cantonese
("zh-yue"), New Norwegian ("no-nyn"), Luxembourgish
("i-lux"), and Klingon ("i-klingon"). The hundreds of
remaining spoken languages in use on the Internet have been composed from
standard components.

16.4.7 First Subtag: Namespace

The first subtag usually is a standardized language token, chosen from the ISO 639 set of
language standards. But it also can be the letter "i" to identify
IANA-registered names, or "x" for private, extension names. Here are
the rules:

If the first subtag has:

·
Two characters, it is a language code from the ISO 639[19]
and 639-1 standards

[19] See ISO
standard 639, "Codes for the representation of names of languages."

·
Three characters, it is a language code listed in the ISO 639-2[20]
standard and extensions

[20] See ISO 639-2,
"Codes for the representation of names of languages—Part 2: Alpha-3
code."

·
The letter "i," the language tag is explicitly
IANA-registered

·
The letter "x," the language tag is a private,
nonstandard, extension subtag

The ISO 639 and 639-2 names are summarized in Appendix G. A few examples are shown here in Table 16-5.

	
Table 16-5. Sample ISO 639 and
 639-2 language codes

	
Language

	
ISO 639

	
ISO 639-2

	
Arabic

	
ar

	
ara

	
Chinese

	
zh

	
chi/zho

	
Dutch

	
nl

	
dut/nla

	
English

	
en

	
eng

	
French

	
fr

	
fra/fre

	
German

	
de

	
deu/ger

	
Greek (Modern)

	
el

	
ell/gre

	
Hebrew

	
he

	
heb

	
Italian

	
it

	
ita

	
Japanese

	
ja

	
jpn

	
Korean

	
ko

	
kor

	
Norwegian

	
no

	
nor

	
Russian

	
ru

	
rus

	
Spanish

	
es

	
esl/spa

	
Swedish

	
sv

	
sve/swe

	
Turkish

	
tr

	
tur

16.4.8 Second Subtag: Namespace

The second subtag usually is a standardized country token, chosen from
the ISO 3166 set of country code and region standards. But it may also be
another string, which you may register with the IANA. Here are the rules:

If the second subtag has:

·
Two characters, it's a country/region defined by ISO 3166[21]

[21] The country
codes AA, QM-QZ, XA-XZ and ZZ are reserved by ISO 3166 as user-assigned codes.
These must not be used to form language tags.

·
Three to eight characters, it may be registered with the IANA

·
One character, it is illegal

Some of the ISO 3166 country codes are shown in Table 16-6. The complete list of country codes can be found in Appendix G.

	
Table 16-6. Sample ISO 3166
 country codes

	
Country

	
Code

	
Brazil

	
BR

	
Canada

	
CA

	
China

	
CN

	
France

	
FR

	
Germany

	
DE

	
Holy See (Vatican City State)

	
VA

	
Hong Kong

	
HK

	
India

	
IN

	
Italy

	
IT

	
Japan

	
JP

	
Lebanon

	
LB

	
Mexico

	
MX

	
Pakistan

	
PK

	
Russian Federation

	
RU

	
United Kingdom

	
GB

	
United States

	
US

16.4.9 Remaining Subtags: Namespace

There are no rules for the third and following
subtags, apart from being up to eight characters (letters and digits).

16.4.10 Configuring Language Preferences

You can configure language preferences
in your browser profile.

Netscape Navigator lets you set language preferences through
Edit [image: figs/U2192.gif]Preferences . . . [image: figs/U2192.gif]Languages
. . . , and Microsoft Internet Explorer lets you set
languages through Tools [image: figs/U2192.gif]Internet
Options . . . [image: figs/U2192.gif]Languages.

16.4.11 Language Tag Reference Tables

Appendix G contains
convenient reference tables for language tags:

·
IANA-registered language tags are shown in Table G-1.

·
ISO 639 language codes are shown in Table G-2.

·
ISO 3166 country codes are shown in Table G-3.

16.5 Internationalized
URIs

Today, URIs don't provide
much support for internationalization. With a few (poorly defined) exceptions,
today's URIs are comprised of a subset of US-ASCII characters. There are
efforts underway that might let us include a richer set of characters in the
hostnames and paths of URLs, but right now, these standards have not been
widely accepted or deployed. Let's review today's practice.

16.5.1 Global Transcribability Versus Meaningful Characters

The URI designers wanted everyone around the world to be able
to share URIs with each other—by email, by phone, by billboard, even over the
radio. And they wanted URIs to be easy to use and remember. These two goals are
in conflict.

To make it easy for folks around the globe to enter,
manipulate, and share URIs, the designers chose a very limited set of common
characters for URIs (basic Latin alphabet letters, digits, and a few special
characters). This small repertoire of characters is supported by most software
and keyboards around the world.

Unfortunately, by restricting the character set, the URI
designers made it much harder for people around the globe to create URIs that
are easy to use and remember. The majority of world citizens don't even recognize
the Latin alphabet, making it nearly impossible to remember URIs as abstract
patterns.

The URI authors felt it was more important to ensure
transcribability and sharability of resource identifiers than to have them
consist of the most meaningful characters. So we have URIs that (today)
essentially consist of a restricted subset of ASCII characters.

16.5.2 URI Character Repertoire

The subset of US-ASCII characters permitted in URIs can be
divided into reserved, unreserved, and escape
character classes. The unreserved character classes can be used generally
within any component of URIs that allow them. The reserved characters have
special meanings in many URIs, so they shouldn't be used in general. See Table 16-7 for a list of the unreserved,
reserved, and escape characters.

	
Table 16-7. URI character syntax

	
Character class

	
Character
 repertoire

	
Unreserved

	
[A-Za-z0-9] | "-" | "_" | "."
 | "!" | "~" | "*" | "'" |
 "(" | ")"

	
Reserved

	
";" | "/" | "?" |
 ":" | "@" | "&" | "=" |
 "+" | "$" | ","

	
Escape

	
"%" <HEX> <HEX>

16.5.3 Escaping and Unescaping

URI "escapes" provide a way to safely insert
reserved characters and other unsupported characters (such as spaces) inside
URIs. An escape is a three-character sequence, consisting of a percent
character (%) followed by two hexadecimal digit characters. The two hex digits
represent the code for a US-ASCII character.

For example, to insert a space (ASCII 32) in a URL, you could
use the escape "%20", because 20 is the hexadecimal representation of
32. Similarly, if you wanted to include a percent sign and have it not be
treated as an escape, you could enter "%25", where 25 is the
hexadecimal value of the ASCII code for percent.

Figure 16-10 shows how the conceptual
characters for a URI are turned into code bytes for the characters, in the
current character set. When the URI is needed for processing, the escapes are
undone, yielding the underlying ASCII code bytes.

Figure 16-10. URI characters are
transported as escaped code bytes but processed unescaped

[image: figs/http_1610.gif]

Internally, HTTP applications should
transport and forward URIs with the escapes in place. HTTP applications should
unescape the URIs only when the data is needed. And, more importantly, the
applications should ensure that no URI ever is unescaped twice, because percent
signs that might have been encoded in an escape will themselves be unescaped,
leading to loss of data.

16.5.4 Escaping International Characters

Note that escape values should be in the
range of US-ASCII codes (0-127). Some applications attempt to use escape values
to represent iso-8859-1 extended characters (128-255)—for example, web servers
might erroneously use escapes to code filenames that contain international
characters. This is incorrect and may cause problems with some applications.

For example, the filename Sven Ölssen.html
(containing an umlaut) might be encoded by a web server as Sven%20%D6lssen.html.
It's fine to encode the space with %20, but is technically illegal to encode
the Ö with %D6, because the code D6 (decimal 214) falls outside the range of
ASCII. ASCII defines only codes up to 0x7F (decimal 127).

16.5.5 Modal Switches in URIs

Some URIs also use sequences of ASCII
characters to represent characters in other character sets. For example,
iso-2022-jp encoding might be used to insert "ESC (J" to shift into
JIS-Roman and "ESC (B" to shift back to ASCII. This works in some
local circumstances, but the behavior is not well defined, and there is no
standardized scheme to identify the particular encoding used for the URL. As
the authors of RFC 2396 say:

For original character sequences that contain
non-ASCII characters, however, the situation is more difficult. Internet
protocols that transmit octet sequences intended to represent character
sequences are expected to provide some way of identifying the charset used, if
there might be more than one [RFC2277].

However, there is currently no provision
within the generic URI syntax to accomplish this identification. An individual
URI scheme may require a single charset, define a default charset, or provide a
way to indicate the charset used. It is expected that a systematic treatment of
character encoding within URI will be developed as a future modification of
this specification.

Currently, URIs are not very
international-friendly. The goal of URI portability outweighed the goal of
language flexibility. There are efforts currently underway to internationalize
URIs, but in the near term, HTTP applications should stick with ASCII. It's
been around since 1968, so it can't be all that bad.

16.6 Other
Considerations

This section discusses a few other things you
should keep in mind when writing international HTTP applications.

16.6.1 Headers and Out-of-Spec Data

HTTP headers must consist of characters from the US-ASCII character
set. However, not all clients and servers implement this correctly, so you may
on occasion receive illegal characters with code values larger than 127.

Many HTTP applications use operating-system
and library routines for processing characters (for example, the Unix ctype
character classification library). Not all of these libraries support character
codes outside of the ASCII range (0-127).

In some circumstances (generally, with older
implementations), these libraries may return improper results or crash the
application when given non-ASCII characters. Carefully read the documentation
for your character classification libraries before using them to process HTTP
messages, in case the messages contain illegal data.

16.6.2 Dates

The HTTP specification clearly defines the legal GMT date formats,
but be aware that not all web servers and clients follow the rules. For
example, we have seen web servers send invalid HTTP Date headers with months
expressed in local languages.

HTTP applications should attempt to be
tolerant of out-of-spec dates, and not crash on receipt, but they may not
always be able to interpret all dates sent. If the date is not parseable,
servers should treat it conservatively.

16.6.3 Domain Names

DNS doesn't currently support international characters in domain
names. There are standards efforts under way to support multilingual domain
names, but they have not yet been widely deployed.

16.7 For More Information

The very success of the World Wide Web means that HTTP
applications will continue to exchange more and more content in different
languages and character sets. For more information on the important but
slightly complex topic of multilingual multimedia, please refer to the
following sources.

16.7.1 Appendixes

·
IANA-registered charset tags are listed in Table H-1.

·
IANA-registered language tags are shown in Table G-1.

·
ISO 639 language codes are shown in Table G-2.

·
ISO 3166 country codes are shown in Table G-3.

16.7.2 Internet Internationalization

http://www.w3.org/International/

"Making the WWW Truly World
Wide"—the W3C Internationalization and Localization web site.

http://www.ietf.org/rfc/rfc2396.txt

RFC 2396, "Uniform Resource
Identifiers (URI): Generic Syntax," is the defining document of URIs. This
document includes sections describing character set restrictions for
international URIs.

CJKV
Information Processing

Ken Lunde,
O'Reilly & Associates, Inc. CJKV is the bible of Asian electronic character
processing. Asian character sets are varied and complex, but this book provides
an excellent introduction to the standards technologies for large character
sets.

http://www.ietf.org/rfc/rfc2277.txt

RFC 2277,
"IETF Policy on Character Sets and Languages," documents the current
policies being applied by the Internet Engineering Steering Group (IESG) toward
the standardization efforts in the Internet Engineering Task Force (IETF) in
order to help Internet protocols interchange data in multiple languages and
characters.

16.7.3 International Standards

http://www.iana.org/numbers.htm

The Internet
Assigned Numbers Authority (IANA) contains repositories of registered names and
numbers. The "Protocol Numbers and Assignments Directory" contains
records of registered character sets for use on the Internet. Because much work
on international communications falls under the domain of the ISO, and not the
Internet community, the IANA listings are not exhaustive.

http://www.ietf.org/rfc/rfc3066.txt

RFC 3066,
"Tags for the Identification of Languages," describes language tags,
their values, and how to construct them.

"Codes for the representation of names of
languages"

ISO 639:1988 (E/F),
The International Organization for Standardization, first edition.

"Codes for the representation of names of
languages—Part 2: Alpha-3 code"

ISO 639-2:1998, Joint Working Group
of ISO TC46/SC4 and ISO TC37/SC2, first edition.

"Codes
for the representation of names of countries"

ISO 3166:1988 (E/F), The
International Organization for Standardization, third edition.

Chapter 17.
Content Negotiation and Transcoding

Often, a single URL may need to correspond to
different resources. Take the case of a web site that wants to offer its
content in multiple languages. If a site such as Joe's Hardware has both
French- and English-speaking users, it might want to offer its web site in both
languages. However, if this is the case, when one of Joe's customers requests
"http://www.joes-hardware.com," which version should the server send?
French or English?

Ideally, the server will send the English
version to an English speaker and the French version to a French speaker—a user
could go to Joe's Hardware's home page and get content in the language he
speaks. Fortunately, HTTP provides content-negotiation methods that allow clients and servers to make
just such determinations. Using these methods, a single URL can correspond to
different resources (e.g., a French and English version of the same web page). These
different versions are called variants.

Servers also can make other types of
decisions about what content is best to send to a client for a particular URL. In
some cases, servers even can automatically generate customized pages—for
instance, a server can convert an HTML page into a WML page for your handheld
device. These kinds of dynamic content transformations are called transcodings. They are done
in response to content negotiation between HTTP clients and servers.

In this chapter, we will discuss content
negotiation and how web applications go about their content-negotiation duties.

17.1
Content-Negotiation Techniques

There are three
distinct methods for deciding which page at a server is the right one for a
client: present the choice to the client, decide automatically at the server,
or ask an intermediary to select. These three techniques are called
client-driven negotiation, server-driven negotiation, and transparent
negotiation, respectively (see Table 17-1). In
this chapter, we will look at the mechanics of each technique as well as their advantages
and disadvantages.

	
Table 17-1. Summary of
 content-negotiation techniques

	
Technique

	
How it works

	
Advantages

	
Drawbacks

	
Client-driven

	
Client makes a request, server sends list
 of choices to client, client chooses.

	
Easiest to implement at server side. Client
 can make best choice.

	
Adds latency: at least two requests are
 needed to get the correct content.

	
Server-driven

	
Server examines client's request headers
 and decides what version to serve.

	
Quicker than client-driven negotiation. HTTP
 provides a q-value mechanism to allow servers to make approximate matches and
 a Vary header for servers to tell downstream devices how to evaluate
 requests.

	
If the decision is not obvious (headers don't match up), the
 server must guess.

	
Transparent

	
An intermediate device (usually a proxy cache) does the
 request negotiation on the client's behalf.

	
Offloads the negotiation from the web server. Quicker than
 client-driven negotiation.

	
No formal specifications for how to do transparent
 negotiation.

17.2
Client-Driven Negotiation

The easiest thing for a server to do when it receives a client
request is to send back a response listing the available pages and let the
client decide which one it wants to see. This, of course, is the easiest to
implement at the server and is likely to result in the best copy being selected
(provided that the list has enough information to allow the client to pick the
right copy). The disadvantage is that two requests are
needed for each page—one to get the list and a second to get the selected copy.
This is a slow and tedious process, and it's likely to become annoying to the
client.

Mechanically, there are actually two ways for
servers to present the choices to the client for selection: by sending back an
HTML document with links to the different versions of the page and descriptions
of each of the versions, or by sending back an HTTP/1.1 response with the 300
Multiple Choices response code. The client browser may receive this response
and display a page with the links, as in the first method, or it may pop up a
dialog window asking the user to make a selection. In any case, the decision is
made manually at the client side by the browser user.

In addition to the increased latency and
annoyance of multiple requests per page, this method has another drawback: it
requires multiple URLs—one for the main page and one for each specific page. So,
if the original request was for www.joes-hardware.com,
Joe's server may respond with a page that has links to www.joes-hardware.com/english and www.joes-hardware.com/french. Should clients now
bookmark the original main page or the selected ones? Should they tell their
friends about the great web site at www.joes-hardware.com
or tell only their English-speaking friends about the web site at www.joes-hardware.com/english?

17.3 Server-Driven
Negotiation

Client-driven
negotiation has several drawbacks, as discussed in the previous section. Most
of these drawbacks center around the increased communication between the client
and server to decide on the best page in response to a request. One way to
reduce this extra communication is to let the server decide which page to send
back—but to do this, the client must send enough information about its
preferences to allow the server to make an informed decision. The server gets
this information from the client's request headers.

There are two mechanisms that HTTP servers use to evaluate the
proper response to send to a client:

·
Examining the set of content-negotiation headers. The server
looks at the client's Accept headers and tries to match them with corresponding
response headers.

·
Varying on other (non-content-negotiation) headers. For example,
the server could send responses based on the client's User-Agent header.

These two mechanisms are explained in more detail in the
following sections.

17.3.1 Content-Negotiation Headers

Clients may send their preference
information using the set of HTTP headers listed in Table 17-2.

	
Table 17-2. Accept headers

	
Header

	
Description

	
Accept

	
Used to tell the server what media types are okay to send

	
Accept-Language

	
Used to tell the server what languages are okay to send

	
Accept-Charset

	
Used to tell the server what charsets are okay to send

	
Accept-Encoding

	
Used to tell the server what encodings are okay to send

Notice how similar these headers are to the entity headers
discussed in Chapter 15. However, there is a clear
distinction between the purposes of the two types of headers. As mentioned in Chapter 15, entity headers are like shipping
labels—they specify attributes of the message body that are necessary during
the transfer of messages from the server to the client. Content-negotiation
headers, on the other hand, are used by clients and servers to exchange
preference information and to help choose between different versions of a
document, so that the one most closely matching the client's preferences is
served.

Servers match clients' Accept headers with the corresponding
entity headers, listed in Table 17-3.

	
Table 17-3. Accept and matching
 document headers

	
Accept header

	
Entity header

	
Accept

	
Content-Type

	
Accept-Language

	
Content-Language

	
Accept-Charset

	
Content-Type

	
Accept-Encoding

	
Content-Encoding

Note that because HTTP is a stateless protocol (meaning that
servers do not keep track of client preferences across requests), clients must
send their preference information with every request.

If both clients sent Accept-Language header information specifying
the language in which they were interested, the server could decide which copy
of www.joes-hardware.com to send back to each
client. Letting the server automatically pick which document to send back
reduces the latency associated with the back-and-forth communication required
by the client-driven model.

However, say that one of the clients prefers Spanish. Which
version of the page should the server send back? English or French? The server
has just two choices: either guess, or fall back on the client-driven model and
ask the client to choose. However, if the Spaniard happens to understand some
English, he might choose the English page—it wouldn't be ideal, but it would
do. In this case, the Spaniard needs the ability to pass on more information about
his preferences, conveying that he does have minimal knowledge of English and
that, in a pinch, English will suffice.

Fortunately, HTTP does provide a mechanism for letting clients
like our Spaniard give richer descriptions of their preferences, using quality values ("q values" for short).

17.3.2 Content-Negotiation Header Quality Values

The HTTP protocol defines quality values to allow clients to
list multiple choices for each category of preference and associate an order of
preference with each choice. For example, clients can send an Accept-Language header of the
form:

Accept-Language: en;q=0.5, fr;q=0.0, nl;q=1.0, tr;q=0.0

Where the q values can range from 0.0 to 1.0 (with 0.0 being
the lowest preference and 1.0 being the highest). The header above, then, says
that the client prefers to receive a Dutch (nl) version of the document, but an
English (en) version will do. Under no circumstances does the client want a
French (fr) or Turkish (tr) version, though. Note that the order in which the
preferences are listed is not important; only the q values associated with them
are.

Occasionally, the server may not have any documents that match
any of the client's preferences. In this case, the server may change or
transcode the document to match the client's preferences. This mechanism is
discussed later in this chapter.

17.3.3 Varying on Other Headers

Servers also can attempt to match up responses with other
client request headers, such as User-Agent. Servers may know that old versions
of a browser do not support JavaScript, for example, and may therefore send
back a version of the page that does not contain JavaScript.

In this case, there is no q-value mechanism to look for
approximate "best" matches. The server either looks for an exact
match or simply serves whatever it has (depending on the implementation of the
server).

Because caches must attempt to serve correct "best"
versions of cached documents, the HTTP protocol defines a Vary header that the
server sends in responses; the Vary header tells caches (and clients, and any
downstream proxies) which headers the server is using to determine the best
version of the response to send. The Vary header is discussed in more detail
later in this chapter.

17.3.4 Content Negotiation on Apache

Here is an
overview of how the Apache web server supports content negotiation. It is up to
the web site content provider—Joe, for example—to provide different versions of
Joe's index page. Joe must put all his index page files in the appropriate
directory on the Apache server corresponding to his web site. There are two
ways to enable content negotiation:

·
In the web site directory, create a type-map
file for each URI in the web site that has variants. The type-map file
lists all the variants and the content-negotiation headers to which they
correspond.

·
Enable the MultiViews directive, which causes Apache to create
type-map files for the directory automatically.

17.3.4.1 Using type-map files

The Apache
server needs to know what type-map files look like. To configure this, set a
handler in the server configuration file that specifies the file suffix for
type-map files. For example:

AddHandler type-map .var

This line indicates that files with the
extension .var are type-map files.

Here is a sample type-map file:

 URI: joes-hardware.html

 URI: joes-hardware.en.html
 Content-type: text/html
 Content-language: en

 URI: joes-hardware.fr.de.html
 Content-type: text/html;charset=iso-8859-2
 Content-language: fr, de

From this type-map file, the Apache server
knows to send joes-hardware.en.html to clients
requesting English and joes-hardware.fr.de.html
to clients requesting French. Quality values also are supported; see the Apache
server documentation.

17.3.4.2 Using MultiViews

To use MultiViews,
you must enable it for the directory containing the web site, using an Options
directive in the appropriate section of the access.conf
file (<Directory>, <Location>, or <Files>).

If MultiViews is enabled and a browser requests a resource
named joes-hardware, the server looks for all
files with "joes-hardware" in the name and creates a type-map file
for them. Based on the names, the server guesses the appropriate
content-negotiation headers to which the files correspond. For example, a
French-language version of joes-hardware should
contain .fr.

17.3.5 Server-Side Extensions

Another way to
implement content negotiation at the server is by server-side extensions, such
as Microsoft's Active Server Pages (ASP). See Chapter 8 for an overview of server-side
extensions.

17.4 Transparent
Negotiation

Transparent
negotiation seeks to move the load of server-driven negotiation away from the
server, while minimizing message exchanges with the client by having an
intermediary proxy negotiate on behalf of the client.
The proxy is assumed to have knowledge of the client's expectations and be
capable of performing the negotiations on its behalf (the proxy has received
the client's expectations in the request for content). To support transparent
content negotiation, the server must be able to tell proxies what request
headers the server examines to determine the best match for the client's
request. The HTTP/1.1 specification does not define any mechanisms for
transparent negotiation, but it does define the Vary header. Servers send Vary
headers in their responses to tell intermediaries what request headers they use
for content negotiation.

Caching proxies can store different copies of documents
accessed via a single URL. If servers communicate their decision-making
processes to caches, the caches can negotiate with clients on behalf of the
servers. Caches also are great places to transcode content, because a
general-purpose transcoder deployed in a cache can transcode content from any
server, not just one. Transcoding of content at a cache is illustrated in Figure 17-3 and discussed in more detail later
in the chapter.

17.4.1 Caching and Alternates

Caching of content assumes that the
content can be reused later. However, caches must employ much of the
decision-making logic that servers do when sending back a response, to ensure
that they send back the correct cached response to a client request.

The previous section described the Accept headers sent by
clients and the corresponding entity headers that servers match them up against
in order to choose the best response to each request. Caches must use these
same headers to decide which cached response to send back.

Figure 17-1 illustrates both a correct and
incorrect sequence of operations involving a cache. The first request results
in the cache forwarding the request to the server and storing the response. The
second response is looked up by the cache, and a document matching the URL is
found. This document, however, is in French, and the requestor wants a Spanish
document. If the cache just sends back the French document to the requestor, it
will be behaving incorrectly.

Figure 17-1. Caches use
content-negotiation headers to send back correct responses to clients

[image: figs/http_1701.gif]

The cache must therefore forward the second request to the
server as well, and store both the response and an "alternate"
response for that URL. The cache now has two different documents for the same
URL, just as the server does. These different versions are called variants or alternates.
Content negotiation can be thought of as the process of selecting, from the
variants, the best match for a client request.

17.4.2 The Vary Header

Here's a typical set of request and response headers from
a browser and server:

 GET http://www.joes-hardware.com/ HTTP/1.0
 Proxy-Connection: Keep-Alive
 User-Agent: Mozilla/4.73 [en] (WinNT; U)
 Host: www.joes-hardware.com
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
 Accept-Encoding: gzip
 Accept-Language: en, pdf
 Accept-Charset: iso-8859-1, *, utf-8

 HTTP/1.1 200 OK
 Date: Sun, 10 Dec 2000 22:13:40 GMT
 Server: Apache/1.3.12 OpenSSL/0.9.5a (Unix) FrontPage/4.0.4.3
 Last-Modified: Fri, 05 May 2000 04:42:52 GMT
 Etag: "1b7ddf-48-3912514c"
 Accept-Ranges: Bytes
 Content-Length: 72
 Connection: close
 Content-Type: text/html

What happens, however, if the server's decision was based on
headers other than the Accept headers, such as the User-Agent header? This is
not as radical as it may sound. Servers may know that old versions of a browser
does not support JavaScript, for example, and may therefore send back a version
of the page that does not have JavaScript in it. If servers are using other
headers to make their decisions about which pages to send back, caches must
know what those headers are, so that they can perform parallel logic in
choosing which cached page to send back.

The HTTP Vary response header lists all of the client request
headers that the server considers to select the document or generate custom
content (in addition to the regular content-negotiation headers). For example,
if the served document depends on the User-Agent header, the Vary header must
include "User-Agent".

When a new request arrives, the cache finds the best match
using the content-negotiation headers. Before it can serve this document to the
client, however, it must see whether the server sent a Vary header in the
cached response. If a Vary header is present, the header values for the headers
in the new request must match the header values in the old, cached request.
Because servers may vary their responses based on client request headers,
caches must store both the client request headers and the corresponding server
response headers with each cached varaint, in order to implement transparent
negotiation. This is illustrated in Figure 17-2.

Figure 17-2. If servers vary on
specific request headers, caches must match those request headers in addition
to the regular content-negotiation headers before sending back cached responses

[image: figs/http_1702.gif]

If a server's Vary header looked like this,
the huge number of different User-Agent and Cookie values could generate many
variants:

Vary: User-Agent, Cookie

A cache would have to store each document
version corresponding to each variant. When the cache does a lookup, it first
does content matching with the content-negotiation headers, then matches the
request's variant with cached variants. If there is no match, the cache fetches
the document from the origin server.

17.5 Transcoding

We have discussed in some
detail the mechanism by which clients and servers can choose between a set of
documents for a URL and send the one that best matches the client's needs.
These mechanisms rely on the presence of documents that match the client's
needs—whether they match the needs perfectly or not so well.

What happens, however, when a server does not have a document
that matches the client's needs at all? The server may have to respond with an
error, but theoretically, the server may be able to transform one of its
existing documents into something that the client can use. This option is
called transcoding.

Table 17-4 lists some hypothetical
transcodings.

	
Table 17-4. Hypothetical
 transcodings

	
Before

	
After

	
HTML document

	
WML document

	
High-resolution image

	
Low-resolution image

	
Image in 64K colors

	
Black-and-white image

	
Complex page with frames

	
Simple text page without frames or images

	
HTML page with Java applets

	
HTML page without Java applets

	
Page with ads

	
Page with ads removed

There are three categories of transcoding:
format conversion, information synthesis, and content injection.

17.5.1 Format Conversion

Format conversion is the transformation of data
from one format to another to make it viewable by a client. A wireless device
seeking to access a document typically viewed by a desktop client may be able
do so with an HTML-to-WML conversion. A client accessing a web page over a slow
link that is not very interested in high-resolution images may be able to view
an image-rich page more easily if the images are reduced in size and resolution
by converting them from color to black and white and shrinking them.

Format conversion is driven by the content-negotiation headers
listed in Table 17-2, although it may also be driven by
the User-Agent header. Note that content transformation or transcoding is
different from content encoding or transfer encoding, in that the latter two
typically are used for more efficient or safe transport of content, whereas the
former is used to make content viewable on the access device.

17.5.2 Information Synthesis

The extraction of key pieces of information from a
document—known as information synthesis—can be a useful transcoding process. A simple example of
this is the generation of an outline of a document based on section headings,
or the removal of advertisements and logos from a page.

More sophisticated technologies that categorize pages based on
keywords in content also are useful in summarizing the essence of a document.
This technology often is used by automatic web page-classification systems,
such as web-page directories at portal sites.

17.5.3 Content Injection

The two categories of transcodings described so far typically
reduce the amount of content in web documents, but there is another category of
transformations that increases the amount of content: content-injection
transcodings. Examples of content-injection transcodings are automatic ad
generators and user-tracking systems.

Imagine the appeal (and offence) of an
ad-insertion transcoder that automatically adds advertisements to each HTML
page as it goes by. Transcoding of this type has to be dynamic—it must be done
on the fly in order to be effective in adding ads that currently are relevant
or somehow have been targeted for a particular user. User-tracking systems also
can be built to add content to pages dynamically, for the purpose of collecting
statistics about how the page is viewed and how clients surf the Web.

17.5.4 Transcoding Versus Static Pregeneration

An alternative to transcodings
is to build different copies of web pages at the web server—for example, one
with HTML, one with WML, one with high-resolution images, one with
low-resolution images, one with multimedia content, and one without. This,
however, is not a very practical technique, for many reasons: any small change
in a page requires multiple pages to be modified, more space is necessary to
store all the different versions of each page, and it's harder to catalog pages
and program web servers to serve the right ones. Some transcodings, such as ad
insertion (especially targeted ad insertion), cannot be done statically—the ad
inserted will depend upon the user requesting the page.

An on-the-fly transformation of a single root
page can be an easier solution than static pregeneration. It can come, however,
at the cost of increased latency in serving the content. Some of this
computation can, however, be done by a third party, thereby offloading the
computation from the web server—the transformation can be done by an external
agent at a proxy or cache. Figure 17-3 illustrates transcoding at a proxy
cache.

Figure 17-3. Content transformation
or transcoding at a proxy cache

[image: figs/http_1703.gif]

17.6 Next Steps

The story of content negotiation does not end
with the Accept and Content headers, for a couple of reasons:

·
Content negotiation in HTTP incurs some
performance limits. Searching through many variants for appropriate content, or
trying to "guess" the best match, can be costly. Are there ways to
streamline and focus the content-negotiation protocol? RFCs 2295 and 2296
attempt to address this question for transparent HTTP content negotiation.

·
HTTP is not the only protocol that needs to do
content negotiation. Streaming media and fax are two other examples where
client and server need to discuss the best answer to the client's request. Can
a general content-negotiation protocol be developed on top of TCP/IP
application protocols? The Content Negotiation Working Group was formed to
tackle this question. The group is now closed, but it contributed several RFCs.
See the next section for a link to the group's web site.

17.7 For More
Information

The following Internet drafts and online
documentation can give you more details about content negotiation:

http://www.ietf.org/rfc/rfc2616.txt

RFC 2616,
"Hypertext Transfer Protocol—HTTP/1.1," is the official specification
for HTTP/1.1, the current version of the HTTP protocol. The specification is a
well-written, well-organized, detailed reference for HTTP, but it isn't ideal
for readers who want to learn the underlying concepts and motivations of HTTP
or the differences between theory and practice. We hope that this book fills in
the underlying concepts, so you can make better use of the specification.

http://www.ietf.org/rfc/rfc2295.txt

RFC 2295,
"Transparent Content Negotiation in HTTP," is a memo describing a
transparent content-negotiation protocol on top of HTTP. The status of this
memo remains experimental.

http://www.ietf.org/rfc/rfc2296.txt

RFC 2296,
"HTTP Remote Variant Selection Algorithm—RVSA 1.0," is a memo
describing an algorithm for the transparent selection of the "best"
content for a particular HTTP request. The status of this memo remains
experimental.

http://www.ietf.org/rfc/rfc2936.txt

RFC 2936,
"HTTP MIME Type Handler Detection," is a memo describing an approach
for determining the actual MIME type handlers that a browser supports. This
approach can help if the Accept header is not specific enough.

http://www.imc.org/ietf-medfree/index.htm

This is a link to the Content
Negotiation (CONNEG) Working Group, which looked into transparent content
negotiation for HTTP, fax, and print. This group is now closed.

Part V: Content
Publishing and Distribution

Part V talks all about the technology for
publishing and disseminating web content:

·
Chapter 18 discusses
the ways people deploy servers in modern web hosting environments, HTTP support
for virtual web hosting, and how to replicating content across geographically
distant servers.

·
Chapter 19
discusses the technologies for creating web content and installing it onto web
servers.

·
Chapter 20 surveys
the tools and techniques for distributing incoming web traffic among a
collection of servers.

·
Chapter 21 covers
log formats and common questions.

Chapter 18. Web
Hosting

When you place resources on a public web
server, you make them available to the Internet community. These resources can
be as simple as text files or images, or as complicated as real-time driving
maps or e-commerce shopping gateways. It's critical that this rich variety of
resources, owned by different organizations, can be conveniently published to
web sites and placed on web servers that offer good performance at a fair
price.

The collective duties of storing, brokering,
and administering content resources is called web
hosting. Hosting is one of the primary
functions of a web server. You need a server to hold, serve, log access to, and
administer your content. If you don't want to manage the required hardware and
software yourself, you need a hosting service, or hoster.
Hosters rent you serving and web-site administration services and provide
various degrees of security, reporting, and ease of use. Hosters typically pool
web sites on heavy-duty web servers for cost-efficiency, reliability, and
performance.

This chapter explains some of the most
important features of web hosting services and how they interact with HTTP
applications. In particular, this chapter covers:

·
How different web sites can be "virtually
hosted" on the same server, and how this affects HTTP

·
How to make web sites more reliable under heavy
traffic

·
How to make web sites load faster

18.1 Hosting Services

In the early
days of the World Wide Web, individual organizations purchased their own
computer hardware, built their own computer rooms, acquired their own network
connections, and managed their own web server software.

As the Web quickly became mainstream,
everyone wanted a web site, but few people had the skills or time to build
air-conditioned server rooms, register domain names, or purchase network
bandwidth. To save the day, many new businesses emerged, offering professionally
managed web hosting services. Many levels of service are available, from
physical facilities management (providing space, air conditioning, and wiring)
to full-service web hosting, where all the customer does is provide the
content.

This chapter focuses on what the hosting web
server provides. Much of what makes a web site work—as well as, for example,
its ability to support different languages and its ability to do secure
e-commerce transactions—depends on what capabilities the hosting web server
supports.

18.1.1 A Simple Example: Dedicated Hosting

Suppose that Joe's Hardware Online and Mary's
Antique Auction both want fairly high-volume web sites. Irene's ISP has racks
and racks full of identical, high-performance web servers that it can lease to
Joe and Mary, instead of having Joe and Mary purchase their own servers and
maintain the server software.

In Figure 18-1, both
Joe and Mary sign up for the dedicated web hosting service offered by Irene's ISP. Joe
leases a dedicated web server that is purchased and maintained by Irene's ISP. Mary
gets a different dedicated server from Irene's ISP. Irene's ISP gets to buy
server hardware in volume and can select hardware that is reliable,
time-tested, and low-cost. If either Joe's Hardware Online or Mary's Antique
Auction grows in popularity, Irene's ISP can offer Joe or Mary additional
servers immediately.

Figure 18-1. Outsourced dedicated
hosting

[image: figs/http_1801.gif]

In this example, browsers send HTTP requests for www.joes-hardware.com to the IP address of Joe's
server and requests for www.marys-antiques.com
to the (different) IP address of Mary's server.

18.2 Virtual Hosting

Many folks want to have a web presence but don't have
high-traffic web sites. For these people, providing a dedicated web server may
be a waste, because they're paying many hundreds of dollars a month to lease a server
that is mostly idle!

Many web hosters offer lower-cost web hosting services by
sharing one computer between several customers. This is called shared hosting or virtual hosting. Each web site appears to be hosted
by a different server, but they really are hosted on the same physical server.
From the end user's perspective, virtually hosted web sites should be
indistinguishable from sites hosted on separate dedicated servers.

For cost efficiency, space, and management reasons, a virtual
hosting company wants to host tens, hundreds, or thousands of web sites on the
same server—but this does not necessarily mean that 1,000 web sites are served
from only one PC. Hosters can create banks of replicated servers (called server farms) and spread the load across the farm of servers. Because
each server in the farm is a clone of the others, and hosts many virtual web
sites, administration is much easier. (We'll talk more about server farms in Chapter 20.)

When Joe and Mary started their businesses, they might have
chosen virtual hosting to save money until their traffic levels made a
dedicated server worthwhile (see Figure 18-2).

Figure 18-2. Outsourced virtual
hosting

[image: figs/http_1802.gif]

18.2.1 Virtual Server Request Lacks Host Information

Unfortunately, there is a design flaw
in HTTP/1.0 that makes virtual hosters pull their hair out. The HTTP/1.0 specification didn't give any means for shared
web servers to identify which of the virtual web sites they're hosting is being
accessed.

Recall that HTTP/1.0 requests send only the path component of
the URL in the request message. If you try to get http://www.joes-hardware.com/index.html, the
browser connects to the server www.joes-hardware.com,
but the HTTP/1.0 request says "GET /index.html", with no further
mention of the hostname. If the server is virtually hosting multiple sites,
this isn't enough information to figure out what virtual web site is being
accessed. For example, in Figure 18-3:

·
If client A tries to access http://www.joes-hardware.com/index.html, the
request "GET /index.html" will be sent to the shared web server.

·
If client B tries to access http://www.marys-antiques.com/index.html,
the identical request "GET
/index.html" will be sent to the shared web server.

Figure 18-3. HTTP/1.0 server
requests don't contain hostname information

[image: figs/http_1803.gif]

As far as the web server is concerned, there is not enough
information to determine which web site is being accessed! The two requests
look the same, even though they are for totally different documents (from
different web sites). The problem is that the web site host information has
been stripped from the request.

As we saw in Chapter 6, HTTP surrogates (reverse proxies)
and intercepting proxies also need site-specifying information.

18.2.2 Making Virtual Hosting Work

The missing host information was an oversight in the original
HTTP specification, which mistakenly assumed that each web server would host exactly
one web site. HTTP's designers didn't provide support for virtually hosted,
shared servers. For this reason, the hostname information in the URL was viewed
as redundant and stripped away; only the path component was required to be
sent.

Because the early specifications did not make provisions for
virtual hosting, web hosters needed to develop workarounds and conventions to
support shared virtual hosting. The problem could have been solved simply by
requiring all HTTP request messages to send the full URL instead of just the
path component. HTTP/1.1 does require servers to handle full URLs in the
request lines of HTTP messages, but it will be a long time before all legacy
applications are upgraded to this specification. In the meantime, four techniques have emerged:

Virtual
hosting by URL path

Adding a special path component to
the URL so the server can determine the site.

Virtual
hosting by port number

Assigning a different port number
to each site, so requests are handled by separate instances of the web server.

Virtual
hosting by IP address

Dedicating different IP addresses
for different virtual sites and binding all the IP addresses to a single
machine. This allows the web server to identify the site name by IP address.

Virtual
hosting by Host header

Many web hosters pressured the HTTP
designers to solve this problem. Enhanced versions of HTTP/1.0 and the official
version of HTTP/1.1 define a Host request header that carries the site name.
The web server can identify the virtual site from the Host header.

Let's take a closer look at each technique.

18.2.2.1 Virtual hosting by URL path

You can use
brute force to isolate virtual sites on a shared server by assigning them
different URL paths. For example, you could give each logical web site a special
path prefix:

·
Joe's Hardware store could be http://www.joes-hardware.com/joe/index.html.

·
Mary's Antiques store could be http://www.marys-antiques.com/mary/index.html.

When the requests arrive at the server, the hostname
information is not present in the request, but the server can tell them apart
based on the path:

·
The request for Joe's hardware is "GET
/joe/index.html".

·
The request for Mary's antiques is "GET
/mary/index.html".

This is not a good solution. The "/joe" and
"/mary" prefixes are redundant and confusing (we already mentioned
"joe" in the hostname). Worse, the common convention of specifying http://www.joes-hardware.com
or http://www.joes-hardware.com/index.html for
the home page won't work.

In general, URL-based virtual hosting is a poor solution and
seldom is used.

18.2.2.2 Virtual hosting by port number

Instead of
changing the pathname, Joe and Mary could each be assigned a different port
number on the web server. Instead of port 80, for example, Joe could get 82 and
Mary could have 83. But this solution has the same problem: an end user would
expect to find the resources without having to specify a nonstandard port in
the URL.

18.2.2.3 Virtual hosting by IP address

A much better
approach (in common use) is virtual IP addressing. Here, each virtual web site
gets one or more unique IP addresses. The IP addresses for all of the virtual web
sites are attached to the same shared server. The server can look up the
destination IP address of the HTTP connection and use that to determine what
web site the client thinks it is connected to.

Say a hoster assigned the IP address 209.172.34.3 to www.joes-hardware.com, assigned 209.172.34.4 to www.marys-antiques.com, and tied both IP addresses to
the same physical server machine. The web server could then use the destination
IP address to identify which virtual site is being requested, as shown in Figure 18-4:

·
Client A fetches http://www.joes-hardware.com/index.html.

·
Client A finds the IP address for www.joes-hardware.com,
getting 209.172.34.3.

·
Client A opens a TCP connection to the shared web server at
209.172.34.3.

·
Client A sends the request "GET /index.html HTTP/1.0".

·
Before the web server serves a response, it notes the actual
destination IP address (209.172.34.3), determines that this is a virtual IP
address for Joe's web site, and fulfills the request from the /joe
subdirectory. The page /joe/index.html is returned.

Figure 18-4. Virtual IP hosting

[image: figs/http_1804.gif]

Similarly, if client B asks for http://www.marys-antiques.com/index.html:

·
Client B finds the IP address for www.marys-antiques.com,
getting 209.172.34.4.

·
Client B opens a TCP connection to the web server at
209.172.34.4.

·
Client B sends the request "GET /index.html HTTP/1.0".

·
The web server determines that 209.172.34.4 is Mary's web site
and fulfills the request from the /mary subdirectory, returning the
document /mary/index.html.

Virtual IP hosting works, but it
causes some difficulties, especially for large hosters:

·
Computer systems usually have a limit on how many virtual IP
addresses can be bound to a machine. Hosters that want hundreds or thousands of
virtual sites to be hosted on a shared server may be out of luck.

·
IP addresses are a scarce commodity. Hosters with many virtual
sites might not be able to obtain enough virtual IP addresses for the hosted
web sites.

·
The IP address shortage is made worse when hosters replicate
their servers for additional capacity. Different virtual IP addresses may be
needed on each replicated server, depending on the load-balancing architecture,
so the number of IP addresses needed can multiply by the number of replicated
servers.

Despite the address consumption problems with virtual IP
hosting, it is used widely.

18.2.2.4 Virtual hosting by Host header

To avoid
excessive address consumption and virtual IP limits, we'd like to share the
same IP address among virtual sites, but still be able to tell the sites apart.
But as we've seen, because most browsers send just the path component of the
URL to servers, the critical virtual hostname information is lost.

To solve this problem, browser and server implementors
extended HTTP to provide the original hostname to servers. But browsers
couldn't just send a full URL, because that would break many servers that
expected to receive only a path component. Instead, the hostname (and port) is
passed in a Host extension header in all requests.

In Figure 18-5, client A and client B both send
Host headers that carry the original hostname being accessed. When the server
gets the request for /index.html, it can use the Host header to decide
which resources to use.

Figure 18-5. Host headers distinguish
virtual host requests

[image: figs/http_1805.gif]

Host headers were first introduced with HTTP/1.0+, a
vendor-extended superset of HTTP/1.0. Host headers are required for HTTP/1.1
compliance. Host headers are supported by most modern browsers and servers, but
there are still a few clients and servers (and robots) that don't support them.

18.2.3 HTTP/1.1 Host Headers

The Host header is an HTTP/1.1 request
header, defined in RFC 2068. Virtual servers are so common that most HTTP
clients, even if they are not HTTP/1.1-compliant, implement the Host header.

18.2.3.1 Syntax and usage

The Host header specifies the Internet host and port number
for the resource being requested, as obtained from the original URL:

Host = "Host" ":" host [":" port]

In particular:

·
If the Host header does not contain a port, the default port for
the scheme is assumed.

·
If the URL contains an IP address, the Host header should contain
the same address.

·
If the URL contains a hostname, the Host header must contain the
same name.

·
If the URL contains a hostname, the Host header should not contain the IP address equivalent to the URL's
hostname, because this will break virtually hosted servers, which layer
multiple virtual sites over a single IP address.

·
If the URL contains a hostname, the Host header should not
contain another alias for this hostname, because this also will break virtually
hosted servers.

·
If the client is
using an explicit proxy server, the client must include the name and port of
the origin server in the Host header, not the proxy server. In the past, several web
clients had bugs where the outgoing Host header was set to the hostname of the
proxy, when the client's proxy setting was enabled. This incorrect behavior
causes proxies and origin servers to misbehave.

·
Web clients must include a Host header field in all request
messages.

·
Web proxies must add Host headers to
request messages before forwarding them.

·
HTTP/1.1 web servers must respond with a 400
status code to any HTTP/1.1 request message that lacks a Host header field.

Here is a sample HTTP request message used to
fetch the home page of www.joes-hardware.com,
along with the required Host header field:

GET http://www.joes-hardware.com/index.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.51 [en] (X11; U; IRIX 6.2 IP22)
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Host: www.joes-hardware.com

18.2.3.2 Missing Host headers

A small percentage of old browsers in use
do not send Host headers. If a virtual hosting server is using Host headers to
determine which web site to serve, and no Host header is present, it probably
will either direct the user to a default web page (such as the web page of the
ISP) or return an error page suggesting that the user upgrade her browser.

18.2.3.3 Interpreting Host headers

An origin server that isn't virtually hosted, and doesn't allow
resources to differ by the requested host, may ignore the Host header field
value. But any origin server that does differentiate resources based on the
host must use the following rules for determining the requested resource on an
HTTP/1.1 request:

1.
If the URL in the HTTP request message is
absolute (i.e., contains a scheme and host component), the value in the Host
header is ignored in favor of the URL.

2.
If the URL in the HTTP request message doesn't
have a host, and the request contains a Host header, the value of the host/port
is obtained from the Host header.

3. If
no valid host can be determined through Steps 1 or 2, a 400 Bad Response
response is returned to the client.

18.2.3.4 Host headers and proxies

Some browser versions send incorrect
Host headers, especially when configured to use proxies. For example, when
configured to use a proxy, some older versions of Apple and PointCast clients
mistakenly sent the name of the proxy instead of the origin server in the Host
header.

18.3 Making Web Sites
Reliable

There are several times
during which web sites commonly break:

·
Server downtime

·
Traffic spikes: suddenly everyone wants to see a particular news
broadcast or rush to a sale. Sudden spikes can overload a web server, slowing
it down or stopping it completely.

·
Network outages or losses

This section presents some ways of anticipating and dealing
with these common problems.

18.3.1 Mirrored Server Farms

A server farm is a bank of identically configured web
servers that can cover for each other. The content on each server in the farm
can be mirrored, so that if one has a problem, another can fill in.

Often, mirrored servers follow a hierarchical relationship.
One server might act as the "content authority"—the server that
contains the original content (perhaps a server to which the content authors
post). This server is called the master origin
server. The mirrored
servers that receive content from the master origin server are called replica
origin servers. One simple
way to deploy a server farm is to use a network switch to distribute requests
to the servers. The IP address for each of the web sites hosted on the servers
is the IP address of the switch.

In the mirrored server farm shown in Figure 18-6, the master origin server is
responsible for sending content to the replica origin servers. To the outside
world, the IP address for this content is the IP address of the switch. The
switch is responsible for sending requests to the servers.

Figure 18-6. Mirrored server farm

[image: figs/http_1806.gif]

Mirrored web servers can contain copies of the exact same
content at different locations. Figure 18-7 illustrates four mirrored servers,
with a master server in Chicago and replicas in New York, Miami, and Little
Rock. The master server serves clients in the Chicago area and also has the job
of propagating its content to the replica servers.

Figure 18-7. Dispersed mirrored
servers

[image: figs/http_1807.gif]

In the Figure 18-7 scenario, there are a couple of
ways that client requests would be directed to a particular server:

HTTP
redirection

The URL for the content could
resolve to the IP address of the master server, which could then send redirects
to replica servers.

DNS
redirection

The URL for the content could
resolve to four IP addresses, and the DNS server could choose the IP address
that it sends to clients.

See Chapter 20 for more details.

18.3.2 Content Distribution Networks

A content distribution network (CDN) is simply a network whose
purpose is the distribution of specific content. The nodes of the network can
be web servers, surrogates, or proxy caches.

18.3.3 Surrogate Caches in CDNs

Surrogate
caches can be used in place of replica origin servers in Figures 18-6 and 18-7.
Surrogates, also known as reverse proxies, receive server requests for content
just as mirrored web servers do. They receive server requests on behalf of a
specific set of origin servers (this is possible because of the way IP
addresses for content are advertised; there usually is a working relationship
between origin server and surrogate, and surrogates expect to receive requests
aimed at specific origin servers).

The difference between a surrogate and a
mirrored server is that surrogates typically are demand-driven. They do not
store entire copies of the origin server content; they store whatever content
their clients request. The way content is distributed in their caches depends
on the requests that they receive; the origin server does not have the
responsibility to update their content. For easy access to "hot"
content (content that is in high demand), some surrogates have
"prefetching" features that enable them to pull content in advance of
user requests.

An added complexity in CDNs with surrogates
is the possibility of cache hierarchies.

18.3.4 Proxy Caches in CDNs

Proxy caches also can be deployed in
configurations similar to those in Figures 18-6 and 18-7. Unlike surrogates,
traditional proxy caches can receive requests aimed at any web servers (there
need not be any working relationship or IP address agreement between a proxy
cache and an origin server). As with surrogates, however, proxy cache content
typically is demand-driven and is not expected to be an exact duplicate of the
origin server content. Some proxy caches also can be preloaded with hot
content.

Demand-driven proxy caches can be deployed in other kinds of
configurations—in particular, interception configurations, where a layer-2 or
-3 device (switch or router) intercepts web traffic and sends it to a proxy
cache (see Figure 18-8).

Figure 18-8. Client requests
intercepted by a switch and sent to a proxy

[image: figs/http_1808.gif]

An interception configuration depends on being able to set up
the network between clients and servers so that all of the appropriate HTTP
requests are physically channeled to the cache. (See Chapter 20). The content is distributed in the
cache according to the requests it receives.

18.4 Making Web
Sites Fast

Many of the
technologies mentioned in the previous section also help web sites load faster.
Server farms and distributed proxy caches or surrogate servers distribute
network traffic, avoiding congestion. Distributing the content brings it closer
to end users, so that the travel time from server to client is lower. The key
to speed of resource access is how requests and responses are directed from
client to server and back across the Internet. See Chapter 20 for
details on redirection methods.

Another approach to speeding up web sites is
encoding the content for fast transportation. This can mean, for example,
compressing the content, assuming that the receiving client can uncompress it. See
Chapter 15 for details.

18.5 For More
Information

See Part III for
details on how to make web sites secure. The following Internet drafts and documentation
can give you more details about web hosting and content distribution:

http://www.ietf.org/rfc/rfc3040.txt

RFC 3040,
"Internet Web Replication and Caching Taxonomy," is a reference for
the vocabulary of web replication and caching applications.

http://www.ietf.org/internet-drafts/draft-ietf-cdi-request-routing-reqs-00.txt

"Request-Routing
Requirements for Content Internetworking."

Apache: The Definitive Guide

Ben Laurie and
Peter Laurie, O'Reilly & Associates, Inc. This book describes how to run
the open source Apache web server.

Chapter 19.
Publishing Systems

How do you create web
pages and get them onto a web server? In the dark ages of the Web (let's say,
1995), you might have hand-crafted your HTML in a text editor and manually
uploaded the content to the web server using FTP. This procedure was painful,
difficult to coordinate with coworkers, and not particularly secure.

Modern-day publishing
tools make it much more convenient to create, publish, and manage web content. Today,
you can interactively edit web content as you'll see it on the screen and
publish that content to servers with a single click, while being notified of
any files that have changed.

Many of the tools that support remote
publishing of content use extensions to the HTTP protocol. In this chapter, we
explain two important technologies for web-content publishing based on HTTP:
FrontPage and DAV.

19.1 FrontPage Server
Extensions for Publishing Support

FrontPage (commonly referred to as FP) is a versatile web
authoring and publishing toolkit provided by Microsoft Corp. The original idea
for FrontPage (FrontPage 1.0) was conceived in 1994, at Vermeer
Technologies, Inc., and was dubbed the first product to combine web site
management and creation into a single, unified tool. Microsoft purchased
Vermeer and shipped FrontPage 1.1 in 1996. The latest version, FrontPage
Version 2002, is the sixth version in the line and a core part of the Microsoft
Office suite.

19.1.1 FrontPage Server Extensions

As part of the "publish anywhere" strategy,
Microsoft released a set of server-side software called FrontPage Server Extensions (FPSE). These server-side
components integrate with the web server and provide the necessary translation
between the web site and the client running FrontPage (and other clients that
support these extensions).

Our primary interest lies in the publishing protocol between
the FP clients and FPSE. This protocol provides an example of designing
extensions to the core services available in HTTP without changing HTTP
semantics.

The FrontPage
publishing protocol implements an RPC layer on top of the HTTP POST request.
This allows the FrontPage client to send commands to the server to update
documents on the web site, perform searches, collaborate amongst the web
authors, etc. Figure 19-1 gives an overview of the
communication.

Figure 19-1. FrontPage publishing
architecture

[image: figs/http_1901.gif]

The web server sees POST requests addressed to the FPSE
(implemented as a set of CGI programs, in the case of a non-Microsoft IIS
server) and directs those requests accordingly. As long as intervening
firewalls and proxy servers are configured to allow the POST method, FrontPage
can continue communicating with the server.

19.1.2 FrontPage Vocabulary

Before we dive deeper into the RPC layer defined by FPSE, it
may help to establish the common vocabulary:

Virtual server

One of the multiple web sites
running on the same server, each with a unique domain name and IP address. In
essence, a virtual server allows a single web server to host multiple web
sites, each of which appears to a browser as being hosted by its own web
server. A web server that supports virtual servers is called a multi-hosting web server. A machine that is
configured with multiple IP addresses is called a multi-homed
server (for more details, please refer to Section 18.2).

Root
web

The default, top-level content
directory of a web server, or, in a multi-hosting environment, the top-level
content directory of a virtual web server. To access the root web, it is enough
to specify the URL of the server without specifying a page name. There can be
only one root web per web server.

Subweb

A named subdirectory of the root
web or another subweb that is a complete FPSE extended web. A subweb can be a
complete independent entity with the ability to specify its own administration
and authoring permissions. In addition, subwebs may provide scoping for methods
such as searches.

19.1.3 The FrontPage RPC Protocol

The FrontPage client and FPSE
communicate using a proprietary RPC protocol. This protocol is layered on top
of HTTP POST by embedding the RPC methods and their associated variables in the
body of the POST request.

To start the process, the client needs to determine the
location and the name of the target programs on the server (the part of the
FPSE package that can execute the POST request). It then issues a special GET
request (see Figure 19-2).

Figure 19-2. Initial request

[image: figs/http_1902.gif]

When the file is returned, the FrontPage client reads the
response and finds the values associated with FPShtmlScriptUrl,
FPAuthorScriptUrl, and FPAdminScriptUrl. Typically, this may look
like:

FPShtmlScriptUrl="_vti_bin/_vti_rpc/shtml.dll"
FPAuthorScriptUrl="_vti_bin/_vti_aut/author.dll"
FPAdminScriptUrl="_vti_bin/_vti_adm/admin.dll"

FPShtmlScriptUrltells the client where to POST requests for "browse
time" commands (e.g., getting the version of FPSE) to be executed.

FPAuthorScriptUrltells the client where to POST requests for
"authoring time" commands to be executed. Similarly, FPAdminScriptUrltells
FrontPage where to POST requests for administrative actions.

Now that we know where the various programs are located, we
are ready to send a request.

19.1.3.1 Request

The body of the POST request contains the RPC command, in the
form of "method=<command>" and any required parameters. For
example, consider the RPC message requesting a list of documents, as follows:

POST /_vti_bin/_vti_aut/author.dll HTTP/1.1
Date: Sat, 12 Aug 2000 20:32:54 GMT
User-Agent: MSFrontPage/4.0
..

<BODY>
method=list+documents%3a4%2e0%2e2%2e3717&service%5fname=&listHiddenDocs=false&listExp
lorerDocs=false&listRecurse=false&listFiles=true&listFolders=true&listLinkInfo=true&l
istIncludeParent=true&listDerived=false
&listBorders=false&listChildWebs=true&initialUrl=&folderList=%5b%3bTW%7c12+Aug+2000+2
0%3a33%3a04+%2d0000%5d

The body of the POST command contains the RPC command being
sent to the FPSE. As with CGI programs, the spaces in the method are encoded as
plus sign (+) characters. All
other nonalphanumeric characters in the method are encoded using %XX format, where the XX stands for the ASCII representation
of the character. Using this notation, a more readable version of the body
would look like the following:

method=list+documents:4.0.1.3717
&service_name=
&listHiddenDocs=false
&listExplorerDocs=false
.....

Some of the elements listed are:

service_name

The URL of the web site on which
the method should act. Must be an existing folder or one level below an
existing folder.

listHiddenDocs

Shows the hidden documents in a web
if its value is "true". The "hidden" documents are
designated by URLs with path components starting with "_".

listExploreDocs

If the value is "true",
lists the task lists.

19.1.3.2 Response

Most RPC protocol methods have return values. Most common
return values are for successful methods and errors. Some methods also have a
third subsection, "Sample Return Code." FrontPage properly interprets
the codes to provide accurate feedback to the user.

Continuing with our example, the FPSE processes the
"list+documents" request and returns the necessary information. A
sample response follows:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Sat, 12 Aug 2000 22:49:50 GMT
Content-type: application/x-vermeer-rpc
X-FrontPage-User-Name: IUSER_MINSTAR

<html><head><title>RPC packet</title></head>
<body>
<p>method=list documents: 4.0.2.3717
<p>document_list=

 document_name=help.gif
<\ul>

As you can see from the response, a formatted
list of documents available on the web server is returned to the FP client. You
can find the complete list of commands and responses at the Microsoft web site.

19.1.4 FrontPage Security Model

Any publishing system directly accessing web server content needs to
be very conscious of the security implications of its actions. For the most
part, FPSE depends on the web server to provide the security.

The FPSE security model defines three kinds
of users: administrators, authors, and browsers, with administrators having
complete control. All permissions are cumulative; i.e., all administrators may
author and browse the FrontPage web. Similarly, all authors have browsing
permissions.

The list of administrators, authors, and
browsers is defined for a given FPSE extended web. All of the subwebs may
inherit the permissions from the root web or set their own. For non-IIS
web servers, all the FPSE programs are required to be stored in directories
marked "executable" (the same restriction as for any other CGI
program). Fpsrvadm, the FrontPage server
administrator utility, may be used for this purpose. On IIS servers, the
integrated Windows security model prevails.

On non-IIS servers, web server access-control mechanisms
specify the users who are allowed to access a given program. On Apache and NCSA
web servers, the file is named .htaccess; on
Netscape servers, it is named .nsconfig. The
access file associates users, groups, and IP addresses with various levels of
permissions: GET (read), POST (execute), etc. For example, for a user to be an
author on an Apache web server, the .htaccess file should permit that
user to POST to author.exe.
These access-specification files often are defined on a per-directory basis,
providing greater flexibility in defining the permissions.

On IIS servers, the permissions are checked against the ACLs
for a given root or subroot. When IIS gets a request, it first logs on and
impersonates the user, then sends the request to one of the three extension
dynamic link libraries (DLLs). The DLL checks the impersonation credentials
against the ACL defined for the destination folder. If the check is successful,
the requested operation is executed by the extension DLL. Otherwise, a
"permission denied" message is sent back to the client. Given the
tight integration of Windows security with IIS, the User Manager may be used to
define fine-grained control.

In spite of this elaborate security model, enabling FPSE has
gained notoriety as a nontrivial security risk. In most cases, this is due to
sloppy practices adopted by web site administrators. However, the earlier
versions of FPSE did have severe security loopholes and thus contributed to the
general perception of security risk. This problem also was exacerbated by the
arcane practices needed to fully implement a tight security model.

19.2 WebDAV and
Collaborative Authoring

Web Distributed Authoring and Versioning
(WebDAV) adds an extra dimension to web publishing—collaboration. Currently, the most common
practice of collaboration is decidedly low-tech: predominantly email, sometimes
combined with distributed fileshares. This practice has proven to be very
inconvenient and error-prone, with little or no control over the process.
Consider an example of launching a multinational, multilingual web site for an
automobile manufacturer. Its easy to see the need for a robust system with
secure, reliable publishing primitives, along with collaboration primitives
such as locking and versioning.

WebDAV (published as RFC 2518) is focused on extending HTTP to
provide a suitable platform for collaborative authoring. It currently is an
IETF effort with support from various vendors, including Adobe, Apple, IBM,
Microsoft, Netscape, Novell, Oracle, and Xerox.

19.2.1 WebDAV Methods

WebDAV defines a set of new HTTP
methods and modifies the operational scope of a few other HTTP methods. The new
methods added by WebDAV are:

PROPFIND

Retrieves the properties of a
resource.

PROPPATCH

Sets one or more properties on one
or many resources.

MKCOL

Creates collections.

COPY

Copies a resource or a collection
of resources from a given source to a given destination. The destination need
not be on the same machine.

MOVE

Moves a resource or a collection of
resources from a given source to a given destination. The destination need not
be on the same machine.

LOCK

Locks a resource or multiple
resources.

UNLOCK

Unlocks a previously locked
resource.

HTTP methods modified by WebDAV are DELETE, PUT, and OPTIONS.
Both the new and the modified methods are discussed in detail later in this
chapter.

19.2.2 WebDAV and XML

WebDAV's
methods generally require a great deal of information to be associated with
both requests and responses. HTTP usually communicates this information in
message headers. However, transporting necessary information in headers alone
imposes some limitations, including the difficulties of selective application
of header information to multiple resources in a request, to represent
hierarchy, etc.

To solve this problem, WebDAV embraces the Extensible Markup Language (XML), a meta-markup language
that provides a format for describing structured data. XML provides WebDAV
with:

·
A method of formatting instructions describing how data is to be
handled

·
A method of formatting complex responses from the server

·
A method of communicating customized information about the
collections and resources handled

·
A flexible vehicle for the data itself

·
A robust solution for most of the internationalization issues

Traditionally, the schema definition
for XML documents is kept in a Document Type Definition (DTD) file that is
referenced within the XML document itself. Therefore, when trying to interpret
an XML document, the DOCTYPE definition entity gives the name of the DTD file
associated with the XML document in question.

WebDAV defines an explicit XML namespace, "DAV:".
Without going into many details, an XML namespace is a
collection of names of elements or attributes. The namespace
qualifies the embedded names unique across the domain, thus avoiding any name
collisions.

The complete XML schema is defined in the WebDAV
specification, RFC 2518. The presence of a predefined schema allows the parsing
software to make assumptions on the XML schema without having to read in DTD
files and interpret them correctly.

19.2.3 WebDAV Headers

WebDAV does
introduce several HTTP headers to augment the functionality of the new methods.
This section provides a brief overview; see RFC 2518 for more information. The
new headers are:

DAV

Used to communicate the WebDAV
capabilities of the server. All resources supported by WebDAV are required to
return this header in the response to the OPTIONS request. See Section 19.2.14.2 for more details.

DAV = "DAV" ":" "1" ["," "2"] ["," 1#extend]

Depth

The crucial element for extending
WebDAV to grouped resources with multiple levels of hierarchy (for more
detailed explanation about collections, please refer to Section 19.2.10).

Depth = "Depth" ":" ("0" | "1" | "infinity")

Let's look at a simple example.
Consider a directory DIR_A with files file_1.html and file_2.html.
If a method uses Depth: 0, the method applies to the DIR_A directory
alone, and Depth: 1 applies to the DIR_A directory and its files, file_1.html
and file_2.html.

The Depth header modifies many
WebDAV-defined methods. Some of the methods that use the Depth header are LOCK,
COPY, and MOVE.

Destination

Defined to assist the COPY or MOVE
methods in identifying the destination URI.

Destination = "Destination" ":" absoluteURI

If

The only defined state token is a
lock token (see Section 19.2.5). The If header defines a set
of conditionals; if they all evaluate to false, the request will fail. Methods
such as COPY and PUT conditionalize the applicability by specifying
preconditions in the If header. In practice, the most common precondition to be
satisfied is the prior acquisition of a lock.

If = "If" ":" (1*No-tag-list | 1*Tagged-list)
 No-tag-list = List
 Tagged-list = Resource 1*List
 Resource = Coded-URL
 List = "(" 1*(["Not"](State-token | "[" entity-tag "]")) ")"
 State-token = Coded-URL
 Coded-URL = "<" absoluteURI ">"

Lock-Token

Used by the UNLOCK method to
specify the lock that needs to be removed. A response to a LOCK method also has
a Lock-Token header, carrying the necessary information about the lock taken.

Lock-Token = "Lock-Token" ":" Coded-URL

Overwrite

Used by the COPY and MOVE methods
to designate whether the destination should be overwritten. See the discussion
of the COPY and MOVE methods later in this chapter for more details.

Overwrite = "Overwrite" ":" ("T" | "F")

Timeout

A request header used by a client
to specify a desired lock timeout value. For more information, refer to Section 19.2.5.3.

TimeOut = "Timeout" ":" 1#TimeType
TimeType = ("Second-" DAVTimeOutVal | "Infinite" | Other)
DAVTimeOutVal = 1*digit
Other = "Extend" field-value

Now that we have sketched the intent and implementation of
WebDAV, let's look more closely at the functions provided.

19.2.4 WebDAV Locking and Overwrite Prevention

By definition,
collaboration requires more than one person working on a given document. The
inherent problem associated with collaboration is illustrated in Figure 19-3.

Figure 19-3. Lost update problem

[image: figs/http_1903.gif]

In this example, authors A and B are jointly writing a
specification. A and B independently make a set of changes to the document. A
pushes the updated document to the repository, and at a later point, B posts
her own version of the document into the repository. Unfortunately, because B
never knew about A's changes, she never merged her version with A's version,
resulting in A's work being lost.

To ameliorate the problem, WebDAV supports the concept of locking. Locking alone will not fully solve the problem.
Versioning and messaging support are needed to complete the solution.

WebDAV supports two types of locks:

·
Exclusive write locking of a resource or a collection

·
Shared write locking of a resource or a collection

An exclusive write lock
guarantees write privileges only to the lock owner. This type of locking
completely eliminates potential conflicts. A shared
write lock allows a group of people to work on a given document. This type of
locking works well in an environment where all the authors are aware of each
other's activities. WebDAV provides a property discovery mechanism, via
PROPFIND, to determine the support for locking and the types of locks
supported.

WebDAV has two new methods to support locking: LOCK and
UNLOCK.

To accomplish locking, there needs to be a mechanism for
identifying the author. WebDAV requires digest authentication (discussed in Chapter 13).

When a lock is granted, the server returns a token that is unique
across the domain to the client. The specification refers to this as the opaquelocktoken
lock token URI scheme. When the client subsequently wants to perform a write,
it connects to the server and completes the digest authentication sequence.
Once the authentication is complete, the WebDAV client presents the lock token,
along with the PUT request. Thus, the combination of the correct user and the
lock token is required to complete the write.

19.2.5 The LOCK Method

A powerful feature of WebDAV is its ability to lock multiple
resources with a single LOCK
request. WebDAV locking does not require the client to stay connected to the
server.

For example, here's a simple LOCK request:

LOCK /ch-publish.fm HTTP/1.1
Host: minstar
Content-Type: text/xml
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT)
Content-Length: 201

<?xml version="1.0"?>
<a:lockinfo xmlns:a="DAV:">
 <a:lockscope><a:exclusive/></a:lockscope>
 <a:locktype><a:write/></a:locktype>
 <a:owner><a:href>AuthorA</a:href></a:owner>
</a:lockinfo>

The XML being submitted has the <lockinfo> element as its base element. Within the
<lockinfo> structure, there are three subelements:

<locktype>

Indicates the type of lock.
Currently there is only one, "write."

<lockscope>

Indicates whether this is an
exclusive lock or a shared lock.

<owner>

Field is set with the person who
holds the current lock.

Here's a successful response to our LOCK request:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Fri, 10 May 2002 20:56:18 GMT
Content-Type: text/xml
Content-Length: 419

<?xml version="1.0"?>
<a:prop xmlns:a="DAV:">
<a:lockdiscovery><a:activelock>
<a:locktype><a:write/></a:locktype>
<a:lockscope><a:exclusive/></a:lockscope>
<a:owner xmlns:a="DAV:"><a:href>AutherA</a:href></a:owner>
<a:locktoken><a:href>opaquelocktoken:*****</a:href></a:locktoken>
<a:depth>0</a:depth>
<a:timeout>Second-180</a:timeout>
</a:activelock></a:lockdiscovery>
</a:prop>

The <lockdiscovery> element acts as a container for
information about the lock. Embedded in the <lockdiscovery> element is an
<activelock> subelement that holds the information sent with the request
(<locktype>, <lockscope>, and <owner>). In addition,
<activelock> has the following subelements:

<locktoken>

Uniquely identifies the lock in a
URI scheme called opaquelocktoken.
Given the stateless nature of HTTP, this token is used to identify the
ownership of the lock in future requests.

<depth>

Mirrors the value of the Depth
header.

<timeout>

Indicates the timeout associated
with the lock. In the above response (Figure 19-3), the timeout value is 180
seconds.

19.2.5.1 The opaquelocktoken scheme

The opaquelocktoken scheme is designed to provide a unique token across all
resources for all times. To guarantee uniqueness, the WebDAV specification
mandates the use of the universal unique identifier (UUID) mechanism, as
described in ISO-11578.

When it comes to actual implementation, there is some leeway.
The server has the choice of generating a UUID for each LOCK request, or
generating a single UUID and maintaining the uniqueness by appending extra
characters at the end. For performance considerations, the latter choice is
better. However, if the server chooses to implement the latter choice, it is
required to guarantee that none of the added extensions will ever be reused.

19.2.5.2 The <lockdiscovery> XML element

The <lockdiscovery> XML element
provides a mechanism for active lock discovery. If others try to lock the file
while a lock is in place, they will receive a <lockdiscovery> XML element
that indicates the current owner. The <lockdiscovery> element lists all
outstanding locks along with their properties.

19.2.5.3 Lock refreshes and the Timeout header

To refresh a lock, a client needs to
resubmit a lock request with the lock token in the If header. The timeout value
returned may be different from the earlier timeout values.

Instead of accepting the timeout value given by the server, a
client may indicate the timeout value required in the LOCK request. This is
done through the Timeout
header. The syntax of the Timeout header allows the client to specify a few
options in a comma-separated list. For example:

Timeout : Infinite, Second-86400

The server is not obligated to honor either of the options.
However, it is required to provide the lock expiration time in the
<timeout> XML element. In all cases, lock timeout is only a guideline and
is not necessarily binding on the server. The administrator may do a manual
reset, or some other extraordinary event may cause the server to reset the
lock. The clients should avoid taking lengthy locks.

In spite of these primitives, we may not completely solve the
"lost update problem" illustrated in Figure 19-3. To completely solve it, a
cooperative event system with a versioning control is needed.

19.2.6 The UNLOCK Method

The UNLOCK
method removes a lock on a resource, as follows:

UNLOCK /ch-publish.fm HTTP/1.1
Host: minstar.inktomi.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT)
Lock-Token:
opaquelocktoken:*********

HTTP/1.1 204 OK
Server: Microsoft-IIS/5.0
Date: Fri, 10 May 2002 20:56:18 GMT

As with most resource management requests, WebDAV has two
requirements for UNLOCK to succeed: prior completion of a successful digest
authentication sequence, and matching the lock token that is sent in the
Lock-Token header.

If the unlock is successful, a 204 No Content status code is
returned to client. Table 19-1 summarizes the possible status
codes with the LOCK and UNLOCK methods.

	
Table 19-1. Status codes for LOCK
 and UNLOCK methods

	
Status code

	
Defined by

	
Method

	
Effect

	
200 OK

	
HTTP

	
LOCK

	
Indicates successful locking.

	
201 Created

	
HTTP

	
LOCK

	
Indicates that a lock on a nonexistent resource succeeded by
 creating the resource.

	
204 No Content

	
HTTP

	
UNLOCK

	
Indicates successful unlocking.

	
207 Multi-Status

	
WebDAV

	
LOCK

	
The request was for locking multiple resources. Not all
 status codes returned were the same. Hence, they are all encapsulated in a
 207 response.

	
403 Forbidden

	
HTTP

	
LOCK

	
Indicates that the client does not have permission to lock
 the resource.

	
412 Precondition Failed

	
HTTP

	
LOCK

	
Either the XML sent with the LOCK command indicated a
 condition to be satisfied and the server failed to complete the required
 condition, or the lock token could not be enforced.

	
422 Unprocessable Property

	
WebDAV

	
LOCK

	
Inapplicable semantics—an example may be specifying a
 nonzero Depth for a resource that is not a collection.

	
423 Locked

	
WebDAV

	
LOCK

	
Already locked.

	
424 Failed Dependency

	
WebDAV

	
UNLOCK

	
UNLOCK specifies other actions and their success as a
 condition for the unlocking. This error is returned if the dependency fails
 to complete.

19.2.7 Properties and META Data

Properties
describe information about the resource, including the author's name,
modification date, content rating, etc. META tags in HTML do provide a
mechanism to embed this information as part of the content; however, many
resources (such as any binary data) have no capability for embedding META data.

A distributed collaborative system such as WebDAV adds more
complexity to the property requirement. For example, consider an author
property: when a document gets edited, this property needs to be updated to
reflect the new authors. WebDAV terms such dynamically modifiable properties
"live" properties. The more permanent, static properties, such as
Content-Type, are termed "dead" properties.

To support discovery and modification of properties, WebDAV
extends HTTP to include two new methods, PROPFIND and PROPPATCH. Examples and
corresponding XML elements are described in the following sections.

19.2.8 The PROPFIND Method

The PROPFIND
(property find) method is used for retrieving the properties of a given file or
a group of files (also known as a "collection"). PROPFIND supports
three types of operations:

·
Request all properties and their values.

·
Request a selected set of properties and values.

·
Request all property names.

Here's the scenario where all the properties and their values
are requested:

PROPFIND /ch-publish.fm HTTP/1.1
Host: minstar.inktomi.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT)
Depth: 0
Cache-Control: no-cache
Connection: Keep-Alive
Content-Length: 0

The <propfind> request element specifies the properties
to be returned from a PROPFIND method. The following list summarizes a few XML elements
that are used with PROPFIND requests:

<allprop>

Requires all property names and
values to be returned. To request all properties and their values, a WebDAV
client may either send an <allprop> XML subelement as part of the
<propfind> element, or submit a request with no body.

<propname>

Specifies the set of property names
to be returned.

<prop>

A subelement of the
<propfind> element. Specifies a specific property whose value is to be
returned. For example: "<a:prop> <a:owner />.....
</a:prop>".

Here's a response to a sample PROPFIND request:

HTTP/1.1 207 Multi-Status
Server: Microsoft-IIS/5.0
...........

<?xml version="1.0"?>
<a:multistatusxmlns:b="urn:uuid:********/" xmlns:c="xml:" xmlns:a="DAV:">
<a:response>
 <a:href>http://minstar/ch-publish.fm </a:href>
 <a:propstat>
 <a:status>HTTP/1.1 200OK</a:status>
 <a:prop>
 <a:getcontentlength b:dt="int">1155</a:getcontentlength>

 <a:ishidden b:dt="boolean">0</a:ishidden>
 <a:iscollection b:dt="boolean">0</a:iscollection>
 </a:prop>
 </a:propstat>
</a:response></a:multistatus>

In this example, the server responds with a 207 Multi-Status
code. WebDAV uses the 207 response for PROPFIND and a few other WebDAV methods
that act simultaneously on multiple resources and potentially have different
responses for each resource.

A few XML elements in the response
need to be defined:

<multistatus>

A container for multiple responses.

<href>

Identifies the resource's URI.

<status>

Contains the HTTP status code for
the particular request.

<propstat>

Groups one <status> element
and one <prop> element. The <prop> element may contain one or more
property name/value pairs for the given resource.

In the sample response listed above, the response is for one
URI, http://minstar/ch-publish.fm. The
<propstat> element embeds one <status> element and one <prop>
element. For this URI, the server returned a 200 OK response, as defined by the
<status> element. The <prop> element has several subelements; only
some are listed in the example.

One instant application of PROPFIND is the support for
directory listing. Given the expressability of a PROPFIND request, one single
call can retrieve the entire hierarchy of the collection with all the properties
of individual entities.

19.2.9 The PROPPATCH Method

The PROPPATCH method provides an atomic mechanism to
set or remove multiple properties on a given resource. The atomicity will
guarantee that either all of the requests are successful or none of them made
it.

The base XML element for the PROPPATCH
method is <propertyupdate>. It acts as a
container for all the properties that need updating. The XML elements
<set> and <remove> are used to specify the operation:

<set>

Specifies the property values to be
set. The <set> contains one or more <prop> subelements, which in
turn contains the name/value pairs of the properties to be set for the
resource. If the property already exists, the value is replaced.

<remove>

Specifies the properties that are
to be removed. Unlike with <set>, only the names of the properties are
listed in the <prop> container.

This trivial example sets and removes the "owner"
property:

 <d:propertyupdate xmlns:d="DAV:" xmlns:o="http://name-space/scheme/">
 <d:set>
 <d:prop>
 <o:owner>Author A</o:owner>
 </d:prop>
 </d:set>

 <d:remove>
 <d:prop>
 <o:owner/>
 </d:prop>
 </d:remove>
</d:propertyupdate>

The response to PROPPATCH requests is very similar to that for
PROPFIND requests. For more information, refer to RFC 2518.

Table 19-2 summarizes the status codes for the
PROPFIND and PROPPATCH methods.

	
Table 19-2. Status codes for
 PROPFIND and PROPPATCH methods

	
Status code

	
Defined by

	
Methods

	
Effect

	
200 OK

	
HTTP

	
PROPFIND, PROPPATCH

	
Command success.

	
207 Multi-Status

	
WEBDAV

	
PROPFIND, PROPPATCH

	
When acting on one or more resources (or a collection), the
 status for each object is encapsulated into one 207 response. This is a
 typical success response.

	
401 Unauthorized

	
HTTP

	
PROPATCH

	
Requires authorization to complete the property modification
 operation.

	
403 Forbidden

	
HTTP

	
PROPFIND, PROPPATCH

	
For PROPFIND, the client is not allowed to access the
 property. For PROPPATCH, the client may not change the property.

	
404 Not Found

	
HTTP

	
PROPFIND

	
No such property.

	
409 Conflict

	
HTTP

	
PROPPATCH

	
Conflict of update semantics—for example, trying to update a
 read-only property.

	
423 Locked

	
WebDAV

	
PROPPATCH

	
Destination resource is locked and there is no lock token or
 the lock token does not match.

	
507 Insufficient Storage

	
WebDAV

	
PROPPATCH

	
Not enough space for registering the modified property.

19.2.10 Collections and Namespace Management

A collection refers to a logical or physical grouping of
resources in a predefined hierachy. A classic example of a collection is a
directory. Like directories in a filesystem, collections act as containers of other
resources, including other collections (equivalent to directories on the
filesystem).

WebDAV uses the XML namespace mechanism. Unlike traditional
namespaces, XML namespace partitions allow for precise structural control while
preventing any namespace collisions.

WebDAV provides five methods for manipulating the namespace: DELETE, MKCOL, COPY, MOVE, and PROPFIND.
PROPFIND was discussed previously in this chapter, but let's talk about the
other methods.

19.2.11 The MKCOL Method

The MKCOL method allows clients to
create a collection at the indicated URL on the server. At first sight, it may
seem rather redundant to define an entire new method just for creating a
collection. Overlaying on top of a PUT or POST method seems like a perfect
alternative. The designers of the WebDAV protocol did consider these
alternatives and still chose to define a new method. Some of the reasons behind
that decision are:

·
To have a PUT or a POST create a collection, the client needs to
send some extra "semantic glue" along with the request. While this
certainly is feasible, defining an ad hoc protocol may become tedious and
error-prone.

·
Most of the access-control mechanisms are based on the type of
methods—only a few are allowed to create and delete resources in the repository.
If we overload other methods, these access-control mechanisms will not work.

For example, a request might be:

MKCOL /publishing HTTP/1.1
Host: minstar
Content-Length: 0
Connection: Keep-Alive

And the response might be:

HTTP/1.1 201 Created
Server: Microsoft-IIS/5.0
Date: Fri, 10 May 2002 23:20:36 GMT
Location: http://minstar/publishing/
Content-Length: 0

Let us examine a few pathological cases:

·
Suppose the collection already exists. If a MKCOL /colA request is
made and colA already exists (i.e., namespace conflict), the request will fail
with a 405 Method Not Allowed status code.

·
If there are no write permissions, the MKCOL request will fail
with a 403 Forbidden status code.

·
If a request such as MKCOL /colA/colB is made and colA does not
exist, the request will fail with a 409 Conflict status code.

Once the file or collection is created, we can delete it with
the DELETE method.

19.2.12 The DELETE Method

We already saw the DELETE method in Chapter 3. WebDAV extends the semantics to
cover collections.

If we need to delete a directory, the Depth header is needed.
If the Depth header is not specified, the DELETE method assumes the Depth
header to be set to infinity—that is, all the files in the directory and any
subdirectories thereof are deleted. The response also has a Content-Location
header identifying the collection that just got deleted. The request might read:

DELETE /publishing HTTP/1.0
Host: minstar

And the response might read:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 14 May 2002 16:41:44 GMT
Content-Location: http://minstar/publishing/
Content-Type: text/xml
Content-Length: 0

When removing collections, there always is a chance that a
file in the collection is locked by someone else and can't be deleted. In such
a case, the collection itself can't be deleted, and the server replies with a
207 Multi-Status status code. The request might read:

DELETE /publishing HTTP/1.0
Host: minstar

And the response might read:

HTTP/1.1 207 Multi-Status
Server: Microsoft-IIS/5.0
Content-Location: http://minstar/publishing/
..............
<?xml version="1.0"?>
<a:multistatus xmlns:a="DAV:">
<a:response>
<a:href>http://minstar/index3/ch-publish.fm</a:href>
<a:status> HTTP/1.1 423 Locked </a:status>
</a:response>
</a:multistatus>

In this transaction, the <status> XML element contains
the status code 403 Locked, indicating that the resource ch-publish.fm
is locked by another user.

19.2.13 The COPY and MOVE Methods

As with MKCOL, there are alternatives to defining new methods
for COPY and MOVE operations.
One such alternative for the COPY method is to do a GET request on the source,
thus downloading the resource, and then to upload it back to the server with a
PUT request. A similar scenario could be envisioned for MOVE (with the
additional DELETE operation). However, this process does not scale
well—consider all the issues involved in managing a COPY or MOVE operation on a
multilevel collection.

Both the COPY and MOVE methods use the request URL as the
source and the contents of the Destination HTTP header as the target. The MOVE
method performs some additional work beyond that of the COPY method: it copies
the source URL to the destination, checks the integrity of the newly created
URI, and then deletes the source. The request might read:

{COPY,MOVE} /publishing HTTP/1.1
Destination: http://minstar/pub-new
Depth: infinity
Overwrite: T
Host: minstar

And the response might read:

HTTP/1.1 201 Created
Server: Microsoft-IIS/5.0
Date: Wed, 15 May 2002 18:29:53 GMT
Location: http://minstar.inktomi.com/pub-new/
Content-Type: text/xml
Content-Length: 0

When acting on a collection, the behavior of COPY or MOVE is
affected by the Depth header. In the absence of the Depth header, infinity is
assumed (i.e., by default, the entire structure of the source directory will be
copied or moved). If the Depth is set to zero, the method is applied just to
the resource. If we are doing a copy or a move of a collection, only a
collection with properties identical to those of the source is created at the
destination—no internal members of the collection are copied or moved.

For obvious reasons, only a Depth value of infinity is allowed
with the MOVE method.

19.2.13.1 Overwrite header effect

The COPY and MOVE methods also may use the Overwrite header. The Overwrite
header can be set to either T or
F. If it's set to T and the destination exists, a DELETE
with a Depth value of infinity is performed on the destination resource before
a COPY or MOVE operation. If the Overwrite flag is set to F and the destination resource exists, the
operation will fail.

19.2.13.2 COPY/MOVE of properties

When a collection or an element is copied, all of its
properties are copied by default. However, a request may contain an optional
XML body that supplies additional information for the operation. You can
specify that all properties must be copied successfully for the operation to
succeed, or define which properties must be copied for the operation to
succeed.

A couple of pathological cases to consider are:

·
Suppose COPY or MOVE is applied to the output of a CGI program or
other script that generates content. To preserve the semantics, if a file
generated by a CGI script is to be copied or moved, WebDAV provides
"src" and "link" XML elements that point to the location of
the program that generated the page.

·
The COPY and MOVE methods may not be able to completely duplicate
all of the live properties. For example, consider a CGI program. If it is
copied away from the cgi-bin directory, it may no longer be executed.
The current specification of WebDAV makes COPY and MOVE a "best
effort" solution, copying all the static properties and the appropriate
live properties.

19.2.13.3 Locked resources and COPY/MOVE

If a resource currently is locked, both COPY and MOVE are
prohibited from moving or duplicating the lock at the destination. In both
cases, if the destination is to be created under an existing collection with
its own lock, the duplicated or moved resource is added to the lock. Consider
the following example:

COPY /publishing HTTP/1.1
Destination: http://minstar/archived/publishing-old

Let's assume that /publishing and /archived
already are under two different locks, lock1 and lock2. When the COPY operation
completes, /publishing continues to be under the scope of lock1, while,
by virtue of moving into a collection that's already locked by lock2, publishing-old
gets added to lock2. If the operation was a MOVE, just publishing-old
gets added to lock2.

Table 19-3 lists most of the possible status
codes for the MKCOL, DELETE, COPY, and MOVE methods.

	
Table 19-3. Status codes for the
 MKCOL, DELETE, COPY, and MOVE methods

	
Status code

	
Defined by

	
Methods

	
Effect

	
102 Processing

	
WebDAV

	
MOVE, COPY

	
If the request takes longer than 20 seconds, the server
 sends this status code to keep clients from timing out. This usually is seen
 with a COPY or MOVE of a large collection.

	
201 Created

	
HTTP

	
MKCOL, COPY, MOVE

	
For MKCOL, a collection has been created. For COPY and MOVE,
 a resource/collection was copied or moved successfully.

	
204 No Content

	
HTTP

	
DELETE, COPY, MOVE

	
For DELETE, a standard success response. For COPY and MOVE,
 the resource was copied over successfully or moved to replace an existing
 entity.

	
207 Multi-Status

	
WebDAV

	
MKCOL, COPY, MOVE

	
For MKCOL, a typical success response. For COPY and MOVE, if
 an error is associated with a resource other than the request URI, the server
 returns a 207 response with the XML body detailing the error.

	
403 Forbidden

	
HTTP

	
MKCOL, COPY, MOVE

	
For MKCOL, the server does not allow creation of a
 collection at the specified location. For COPY and MOVE, the source and
 destination are the same.

	
409 Conflict

	
HTTP

	
MKCOL, COPY, MOVE

	
In all cases, the methods are trying to create a collection
 or a resource when an intermediate collection does not exist—for example,
 trying to create colA/colB when colA does not exist.

	
412 Precondition Failed

	
HTTP

	
COPY, MOVE

	
Either the Overwrite header is set to F and the destination
 exists, or the XML body specifies a certain requirement (such as keeping the
 "liveness" property) and the COPY or MOVE methods are not able to
 retain the property.

	
415 Unsupported Media Type

	
HTTP

	
MKCOL

	
The server does not support or understand the creation of
 the request entity type.

	
422 Unprocessable Entity

	
WebDAV

	
MKCOL

	
The server does not understand the XML body sent with the
 request.

	
423 Locked

	
WebDAV

	
DELETE, COPY, MOVE

	
The source or the destination resource is locked, or the
 lock token supplied with the method does not match.

	
502 Bad Gateway

	
HTTP

	
COPY, MOVE

	
The destination is on a different server and permissions are
 missing.

	
507 Insufficient Storage

	
WebDAV

	
MKCOL COPY

	
There is not enough free space to create the resource.

19.2.14 Enhanced HTTP/1.1 Methods

WebDAV modifies
the semantics of the HTTP methods DELETE, PUT, and OPTIONS. Semantics for the
GET and HEAD methods remain unchanged. Operations performed by POST always are
defined by the specific server implementation, and WebDAV does not modify any
of the POST semantics. We already covered the DELETE method, in Section 19.2.10. We'll discuss the PUT and
OPTIONS methods here.

19.2.14.1 The PUT method

Though PUT is not defined by WebDAV, it is the only way for an
author to transport the content to a shared site. We discussed the general
functionality of PUT in Chapter 3. WebDAV modifies its behavior to
support locking.

Consider the following example:

PUT /ch-publish.fm HTTP/1.1
Accept: */*
If:<http://minstar/index.htm>(<opaquelocktoken:********>)
User-Agent: DAV Client (C)
Host: minstar.inktomi.com
Connection: Keep-Alive
Cache-Control: no-cache
Content-Length: 1155

To support locking, WebDAV adds an If header to the PUT
request. In the above transaction, the semantics of the If header state that if
the lock token specified with the If header matches the lock on the resource
(in this case, ch-publish.fm), the PUT operation should be performed.
The If header also is used with a few other methods, such as PROPPATCH, DELETE,
MOVE, LOCK, UNLOCK, etc.

19.2.14.2 The OPTIONS method

We discussed OPTIONS in Chapter 3. This usually is the first request a
WebDAV-enabled client makes. Using the OPTIONS method, the client tries to
establish the capability of the WebDAV server. Consider a transaction in which
the request reads:

OPTIONS /ch-publish.fm HTTP/1.1
Accept: */*
Host: minstar.inktomi.com

And the response reads:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
MS-Author-Via: DAV
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL,PROPFIND,
PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, COPY, MOVE, PROPFIND,PROPPATCH,
SEARCH, LOCK, UNLOCK

There are several interesting headers in the response to the OPTIONS method. A slightly out-of-order examination
follows:

·
The DAV header
carries the information about DAV compliance classes. There are two classes of
compliance:

Class 1 compliance

Requires the
server to comply with all MUST requirements in all sections of RFC 2518. If the
resource complies only at the Class 1 level, it will send 1 with the DAV
header.

Class 2 compliance

Meets all the
Class 1 requirements and adds support for the LOCK method. Along with LOCK,
Class 2 compliance requires support for the Timeout and Lock-Token headers and
the <supportedlock> and <lockdiscovery> XML elements. A value of 2
in the DAV header indicates Class 2 compliance.

In the above
example, the DAV header indicates both Class 1 and Class 2 compliance.

·
The Public header lists all methods supported by
this particular server.

·
The Allow header usually contains a subset of
the Public header methods. It lists only those methods that are allowed on this
particular resource (ch-publish.fm).

·
The DASL header provides the type of query
grammar used in the SEARCH method. In this case, it is sql. More details about
the DASL header are provided at http://www.webdav.org.

19.2.15 Version Management in WebDAV

It may be ironic,
given the "V" in "DAV," but versioning is a feature that
did not make the first cut. In a multi-author, collaborative environment,
version management is critical. In fact, to completely fix the lost update
problem (illustrated in Figure 19-3),
locking and versioning are essential. Some of the common features associated
with versioning are the ability to store and access previous document versions
and the ability to manage the change history and any associated annotations
detailing the changes.

Versioning was added to WebDAV in RFC 3253.

19.2.16 Future of WebDAV

WebDAV is well supported today. Working
implementations of clients include IE 5.x and above, Windows Explorer, and
Microsoft Office. On the server side, implementations include IIS5.x and above,
Apache with mod_dav, and many others. Both Windows XP and Mac OS 10.x provide
support for WebDAV out of the box; thus, any applications written to run on
these operating systems are WebDAV-enabled natively.

19.3 For More
Information

For more information, refer to:

http://officeupdate.microsoft.com/frontpage/wpp/serk/

Microsoft
FrontPage 2000 Server Extensions Resource Kit.

http://www.ietf.org/rfc/rfc2518.txt?number=2518

"HTTP
Extensions for Distributed Authoring—WEBDAV," by Y. Goland, J. Whitehead,
A. Faizi, S. Carter, and D. Jensen.

http://www.ietf.org/rfc/rfc3253.txt?number=3253

"Versioning
Extensions to WebDAV," by G. Clemm, J. Amsden, T. Ellison, C. Kaler, and
J. Whitehead.

http://www.ics.uci.edu/pub/ietf/webdav/intro/webdav_intro.pdf

"WEBDAV: IETF
Standard for Collaborative Authoring on the Web," by J. Whitehead and M.
Wiggins.

http://www.ics.uci.edu/~ejw/http-future/whitehead/http_pos_paper.html

"Lessons from
WebDAV for the Next Generation Web Infrastructure," by J. Whitehead.

http://www.microsoft.com/msj/0699/dav/davtop.htm

"Distributed
Authoring and Versioning Extensions for HTTP Enable Team Authoring," by L.
Braginski and M. Powell.

http://www.webdav.org/dasl/protocol/draft-dasl-protocol-00.html

"DAV Searching &
Locating," by S. Reddy, D. Lowry, S. Reddy, R. Henderson, J. Davis, and A.
Babich.

Chapter 20.
Redirection and Load Balancing

HTTP does not walk the Web alone. The data in
an HTTP message is governed by many protocols on its journey. HTTP cares only
about the endpoints of the journey—the sender and the receiver—but in a world
with mirrored servers, web proxies, and caches, the destination of an HTTP
message is not necessarily straightforward.

This chapter is about redirection technologies—network tools, techniques,
and protocols that determine the final destination of an HTTP message. Redirection
technologies usually determine whether the message ends up at a proxy, a cache,
or a particular web server in a server farm. Redirection technologies may send
your messages to places a client didn't explicitly request.

In this chapter, we'll take a look at the
following redirection techniques, how they work, and
what their load-balancing capabilities are (if any):

·
HTTP redirection

·
DNS redirection

·
Anycast routing

·
Policy routing

·
IP MAC forwarding

·
IP address forwarding

·
The Web Cache Coordination Protocol (WCCP)

·
The Intercache Communication Protocol (ICP)

·
The Hyper Text Caching Protocol (HTCP)

·
The Network Element Control Protocol (NECP)

·
The Cache Array Routing Protocol (CARP)

·
The Web Proxy Autodiscovery Protocol (WPAD)

20.1 Why
Redirect?

Redirection is a fact
of life in the modern Web because HTTP applications always want to do three
things:

·
Perform HTTP transactions reliably

·
Minimize delay

·
Conserve network bandwidth

For these reasons, web content often is
distributed in multiple locations. This is done for reliability, so that if one
location fails, another is available; it is done to lower response times,
because if clients can access a nearer resource, they receive their requested
content faster; and it's done to lower network congestion, by spreading out
target servers. You can think of redirection as a set of techniques that help
to find the "best" distributed content.

The subject of load
balancing is included because redirection and load balancing coexist. Most
redirection deployments include some form of load
balancing; that is, they are capable of spreading incoming message load among a
set of servers. Conversely, any form of load balancing involves redirection,
because incoming messages must somehow be somehow among the servers sharing the
load.

20.2 Where to
Redirect

Servers, proxies, caches, and gateways all
appear to clients as servers, in the sense that a client sends them an HTTP
request, and they process it. Many redirection techniques work for servers,
proxies, caches, and gateways because of their common, server-like traits. Other
redirection techniques are specially designed for a particular class of
endpoint and are not generally applicable. We'll see general techniques and
specialized techniques in later sections of this chapter.

Web servers handle
requests on a per-IP basis. Distributing requests to duplicate servers means
that each request for a specific URL should be sent to an optimal web server
(the one nearest to the client, or the least-loaded one, or some other
optimization). Redirecting to a server is like sending all drivers in search of
gasoline to the nearest gas station.

Proxies tend to handle requests on a per-protocol basis. Ideally,
all HTTP traffic in the neighborhood of a proxy should go through the proxy. For
instance, if a proxy cache is near various clients, all requests ideally will
flow through the proxy cache, because the cache will store popular documents
and serve them directly, avoiding longer and more expensive trips to the origin
servers. Redirecting to a proxy is like siphoning off traffic on a main access
road (no matter where it is headed) to a local shortcut.

20.3 Overview of
Redirection Protocols

The goal of redirection is to send HTTP messages to available web
servers as quickly as possible. The direction that an HTTP message takes on its
way through the Internet is affected by the HTTP applications and routing
devices it passes from, through, and toward. For example:

·
The browser application that creates the client's message could
be configured to send it to a proxy server.

·
DNS resolvers choose the IP address that is used for addressing
the message. This IP address can be different for different clients in
different geographical locations.

·
As the message passes through networks, it is divided into
addressed packets; switches and routers examine the TCP/IP addressing on the
packets and make decisions about routing the packets on that basis.

·
Web servers can bounce requests back to different web servers
with HTTP redirects.

Browser configuration, DNS, TCP/IP routing, and HTTP all
provide mechanisms for redirecting messages. Notice that some methods, such as
browser configuration, make sense only for redirecting traffic to proxies,
while others, such as DNS redirection, can be used to send traffic to any
server.

Table 20-1 summarizes the redirection methods
used to redirect messages to servers, each of which is discussed later in this
chapter.

	
Table 20-1. General redirection
 methods

	
Mechanism

	
How it works

	
Basis for
 rerouting

	
Limitations

	
HTTP redirection

	
Initial HTTP request goes to a first web server that chooses
 a "best" web server to serve the content. The first web server
 sends the client an HTTP redirect to the chosen server. The client resends
 the request to the chosen server.

	
Many options, from round-robin load balancing, to minimizing
 latency, to choosing the shortest path.

	
Can be slow—every transaction involves the extra redirect
 step. Also, the first server must be able to handle the request load.

	
DNS redirection

	
DNS server decides which IP address, among several, to
 return for the hostname in the URL.

	
Many options, from round-robin load balancing, to minimizing
 latency, to choosing the shortest path.

	
Need to configure DNS server.

	
Anycast addressing

	
Several servers use the same IP address. Each server
 masquerades as a backbone router. The other routers send packets addressed to
 the shared IP to the nearest server (believing they are sending packets to
 the nearest router).

	
Routers use built-in shortest-path routing capabilities.

	
Need to own/configure routers. Risks address conflicts.
 Established TCP connections can break if routing changes and packets
 associated with a connection get sent to different servers.

	
IP MAC forwarding

	
A network element such as a switch or router reads a
 packet's destination address; if the packet should be redirected, the switch
 gives the packet the destination MAC address of a server or proxy.

	
Save bandwidth and improve QOS. Load balance.

	
Server or proxy must be one hop away.

	
IP address forwarding

	
Layer-4 switch evaluates a packet's destination port and
 changes the IP address of a redirect packet to that of a proxy or mirrored
 server.

	
Save bandwidth and improve QOS. Load balance.

	
IP address of the client can be lost to the server/proxy.

Table 20-2
summarizes the redirection methods used to redirect
messages to proxy servers.

	
Table 20-2. Proxy and
 cache redirection techniques

	
Mechanism

	
How it works

	
Basis for
 rerouting

	
Limitations

	
Explicit browser configuration

	
Web browser is configured to send HTTP
 messages to a nearby proxy, usually a cache. The configuration can be done by
 the end user or by a service that manages the browser.

	
Save bandwidth and improve QOS. Load
 balance.

	
Depends on ability to configure the
 browser.

	
Proxy auto-configuration (PAC)

	
Web browser retrieves a PAC file from a
 configuration server. The PAC file tells the browser what proxy to use for
 each URL.

	
Save bandwidth and improve QOS. Load
 balance.

	
Browser must be configured to query the
 configuration server.

	
Web ProxyAutodiscovery Protocol (WPAD)

	
Web browser asks a configuration server for
 the URL of a PAC file. Unlike PAC alone, the browser does not have to be
 configured with a specific configuration server.

	
The configuration server bases the URL on
 information in client HTTP request headers. Load balance.

	
Only a few browsers support WPAD.

	
Web Cache Coordination Protocol (WCCP)

	
Router evaluates a packet's destination address
 and encapsulates redirect packets with the IP address of a proxy or mirrored
 server. Works with many existing routers. Packet can be encapsulated, so the
 client's IP address is not lost.

	
Save bandwidth and improve QOS. Load
 balance.

	
Must use routers that support WCCP. Some
 topological limitations.

	
Internet Cache Protocol (ICP)

	
A proxy cache can query a group of sibling
 caches for requested content. Also supports cache hierarchies.

	
Obtaining content from a sibling or parent
 cache is faster than applying to the origin server.

	
False cache hits can arise because only the
 URL is used to request content.

	
Cache Array Routing Protocol (CARP)

	
A proxy cache hashing protocol. Allows a
 cache to forward a request to a parent cache. Unlike with ICP, the content on
 the caches is disjoint, and the group of caches acts as a single large cache.

	
Obtaining content from a nearby peer cache
 is faster than applying to the origin server.

	
CARP cannot support sibling relationships. All
 CARP clients must agree on the configuration; otherwise, different clients
 will send the same URI to different parents, reducing hit ratios.

	
Hyper Text Caching Protocol (HTCP)

	
Participating proxy caches can query a group of sibling
 caches for requested content. Supports HTTP 1.0 and 1.1 headers to fine-tune
 cache queries.

	
Obtaining content from a sibling or parent cache is faster
 than applying to the origin server.

	

20.4 General Redirection
Methods

In this section, we will delve deeper into the various
redirection methods that are commonly used for both servers and proxies. These
techniques can be used to redirect traffic to a different (presumably more optimal)
server or to vector traffic through a proxy. Specifically, we'll cover HTTP
redirection, DNS redirection, anycast addressing, IP MAC forwarding, and IP
address forwarding.

20.4.1 HTTP Redirection

Web
servers can send short redirect messages back to clients, telling them to try
someplace else. Some web sites use HTTP redirection as a simple form of load
balancing; the server that handles the redirect (the redirecting server) finds
the least-loaded content server available and redirects the browser to that
server. For widely distributed web sites, determining the "best"
available server gets more complicated, taking into account not only the
servers' load but the Internet distance between the browser and the server. One
advantage of HTTP redirection over some other forms of redirection is that the
redirecting server knows the client's IP address; in theory, it may be able to
make a more informed choice.

Here's how HTTP redirection works. In Figure 20-1a, Alice sends a request to www.joes-hardware.com:

GET /hammers.html HTTP/1.0
Host: www.joes-hardware.com
User-Agent: Mozilla/4.51 [en] (X11; U; IRIX 6.2 IP22)

In Figure 20-1b, instead of sending back a web
page body with HTTP status code 200, the server sends back a redirect message
with status code 302:

HTTP/1.0 302 Redirect
Server: Stronghold/2.4.2 Apache/1.3.6
Location: http://161.58.228.45/hammers.html

Now, in Figure 20-1c, the browser resends the request
using the redirected URL, this time to host 161.58.228.45:

GET /hammers.html HTTP/1.0
Host: 161.58.228.45
User-Agent: Mozilla/4.51 [en] (X11; U; IRIX 6.2 IP22)

Another client could get redirected to a different server. In Figure 20-1d-f, Bob's request gets redirected
to 161.58.228.46.

Figure 20-1. HTTP redirection

[image: figs/http_2001.gif]

HTTP redirection can vector requests across servers, but it
has several disadvantages:

·
A significant amount of processing power is required from the
original server to determine which server to redirect to. Sometimes almost as
much server horsepower is required to issue the redirect as would be to serve
up the page itself.

·
User delays are increased, because two round trips are required
to access pages.

·
If the redirecting server is broken, the site will be broken.

Because of these weaknesses, HTTP redirection usually is used
in combination with some of the other redirection technique.

20.4.2 DNS Redirection

Every
time a client tries to access Joe's Hardware's web site, the domain name www.joes-hardware.com must be resolved to an IP
address. The DNS resolver may be the client's own
operating system, a DNS server in the client's network, or a more remote DNS
server. DNS allows several IP addresses to be associated to a single domain,
and DNS resolvers can be configured or programmed to return varying IP
addresses. The basis on which the resolver returns the IP address can run from
the simple (round robin) to the complex (such as
checking the load on several servers and returning the IP address of the
least-loaded server).

In Figure 20-2, Joe runs four servers for www.joes-hardware.com. The DNS server has to decide
which of four IP addresses to return for www.joes-hardware.com.
The easiest DNS decision algorithm is a simple round robin.

Figure 20-2. DNS-based redirection

[image: figs/http_2002.gif]

For a run-through of the DNS resolution process, see the DNS
reference listed at the end of this chapter.

20.4.2.1 DNS round robin

One of the most common redirection
techniques also is one of the simplest. DNS round robin uses a feature of DNS
hostname resolution to balance load across a farm of web servers. It is a pure load-balancing
strategy, and it does not take into account any factors about the location of
the client relative to the server or the current stress on the server.

Let's look at what CNN.com really does. In early May of 2000,
we used the nslookup Unix tool
to find the IP addresses associated with CNN.com. Example 20-1 shows the results.[1]

[1] DNS results as of May 7,
2000 and resolved from Northern California. The particular values likely will
change over time, and some DNS systems return different values based on client
location.

Example 20-1. IP addresses for www.cnn.com

% nslookup www.cnn.com
Name: cnn.com
Addresses: 207.25.71.5, 207.25.71.6, 207.25.71.7, 207.25.71.8
 207.25.71.9, 207.25.71.12, 207.25.71.20, 207.25.71.22, 207.25.71.23
 207.25.71.24, 207.25.71.25, 207.25.71.26, 207.25.71.27, 207.25.71.28
 207.25.71.29, 207.25.71.30, 207.25.71.82, 207.25.71.199, 207.25.71.245
 207.25.71.246
Aliases: www.cnn.com

The web site www.cnn.com
actually is a farm of 20 distinct IP addresses! Each IP address might typically
translate to a different physical server.

20.4.2.2 Multiple addresses and round-robin address rotation

Most DNS clients just use the first
address of the multi-address set. To balance load, most DNS servers rotate the
addresses each time a lookup is done. This address rotation often is called DNS round robin.

For example, three consecutive DNS lookups of www.cnn.com might return rotated lists of IP
addresses like those shown in Example 20-2.

Example 20-2. Rotating DNS address lists

% nslookup www.cnn.com
Name: cnn.com
Addresses: 207.25.71.5, 207.25.71.6, 207.25.71.7, 207.25.71.8
 207.25.71.9, 207.25.71.12, 207.25.71.20, 207.25.71.22, 207.25.71.23
 207.25.71.24, 207.25.71.25, 207.25.71.26, 207.25.71.27, 207.25.71.28
 207.25.71.29, 207.25.71.30, 207.25.71.82, 207.25.71.199, 207.25.71.245
 207.25.71.246

% nslookup www.cnn.com
Name: cnn.com
Addresses: 207.25.71.6, 207.25.71.7, 207.25.71.8, 207.25.71.9
 207.25.71.12, 207.25.71.20, 207.25.71.22, 207.25.71.23, 207.25.71.24
 207.25.71.25, 207.25.71.26, 207.25.71.27, 207.25.71.28, 207.25.71.29
 207.25.71.30, 207.25.71.82, 207.25.71.199, 207.25.71.245, 207.25.71.246
 207.25.71.5

% nslookup www.cnn.com
Name: cnn.com
Addresses: 207.25.71.7, 207.25.71.8, 207.25.71.9, 207.25.71.12
 207.25.71.20, 207.25.71.22, 207.25.71.23, 207.25.71.24, 207.25.71.25
 207.25.71.26, 207.25.71.27, 207.25.71.28, 207.25.71.29, 207.25.71.30
 207.25.71.82, 207.25.71.199, 207.25.71.245, 207.25.71.246, 207.25.71.5
 207.25.71.6

In Example 20-2:

·
The first address of the first DNS lookup is 207.25.71.5.

·
The first address of the second DNS lookup is 207.25.71.6.

·
The first address of the third DNS lookup is 207.25.71.7.

20.4.2.3 DNS round robin for load balancing

Because most DNS clients just use the
first address, the DNS rotation serves to balance load among servers. If DNS
did not rotate the addresses, most clients would always send load to the first
client.

Figure 20-3 shows how DNS round-robin rotation
acts to balance load:

·
When Alice tries to connect to www.cnn.com,
she looks up the IP address using DNS and gets back 207.25.71.5 as the first IP
address. Alice connects to the web server 207.25.71.5 in Figure 20-3c.

·
When Bob subsequently tries to connect to www.cnn.com, he also looks up the IP address using
DNS, but he gets back a different result because the address list has been
rotated one position, based on Alice's previous request. Bob gets back
207.25.71.6 as the first IP address, and he connects to this server in Figure 20-3f.

Figure 20-3. DNS round robin load balances
across servers in a server farm

[image: figs/http_2003.gif]

20.4.2.4 The impact of DNS caching

DNS address rotation spreads the load around, because each
DNS lookup to a server gets a different ordering of server addresses. However,
this load balancing isn't perfect, because the results of the DNS lookup may be
memorized and reused by applications, operating systems, and some primitive
child DNS servers. Many web browsers perform a DNS lookup for a host but then
use the same address over and over again, to eliminate the cost of DNS lookups
and because some servers prefer to keep talking to the same client.
Furthermore, many operating systems perform the DNS lookup automatically, and
cache the result, but don't rotate the addresses. Consequently, DNS round robin
generally doesn't balance the load of a single client—one client typically will
be stuck to one server for a long period of time.

But, even though DNS doesn't deal out the transactions of a
single client across server replicas, it does a decent job of spreading the
aggregate load of multiple clients. As long as there is a modestly large number
of clients with similar demand, the load will be relatively well distributed across
servers.

20.4.2.5 Other DNS-based redirection algorithms

We've already discussed how DNS rotates address lists with
each request. However, some enhanced DNS servers use other techniques for
choosing the order of the addresses:

Load-balancing
algorithms

Some DNS servers keep track of the
load on the web servers and place the least-loaded web servers at the front of
the list.

Proximity-routing
algorithms

DNS servers can attempt to direct
users to nearby web servers, when the farm of web servers is geographically
dispersed.

Fault-masking
algorithms

DNS servers can monitor the health
of the network and route requests away from service interruptions or other
faults.

Typically, the DNS server that runs sophisticated server-tracking
algorithms is an authoritative server that is under the control of the content
provider (see Figure 20-4).

Figure 20-4. DNS request involving
authoritative server

[image: figs/http_2004.gif]

Several distributed hosting services use this DNS redirection
model. One drawback of the model for services that look for nearby servers is
that the only information that the authoritative DNS server uses to make its decision
is the IP address of the local DNS server, not the IP address of the client.

20.4.3 Anycast Addressing

In anycast
addressing, several geographically dispersed web servers have the exact same IP
address and rely on the "shortest-path" routing capabilities of
backbone routers to send client requests to the server nearest to the client.
One way this method can work is for each web server to advertise itself as a router to a neighboring backbone router. The web server
talks to its neighboring backbone router using a router communication protocol.
When the backbone router receives packets aimed at the anycast address, it
looks (as it usually would) for the nearest "router" that accepts
that IP address. Because the server will have advertised itself as a router for
that address, the backbone router will send the server the packet.

In Figure 20-5, three servers front the same IP
address, 10.10.10.1. The Los Angeles (LA) server advertises this address to the
LA router, the New York (NY) server advertises the same address to the NY
router, and so on. The servers communicate with the routers using a router
protocol. The routers automatically route client requests aimed at 10.10.10.1
to the nearest server that advertises the address. In Figure 20-5, a request for the IP address
10.10.10.1 will be routed to server 3.

Figure 20-5. Distributed anycast
addressing

[image: figs/http_2005.gif]

Anycast addressing is still an experimental technique. For
distributed anycast to work, the servers must "speak router language"
and the routers must be able to handle possible address conflicts, because
Internet addressing basically assumes one server for one address. (If done
improperly, this can lead to serious problems known as "route
leaks.") Distributed anycast is an emerging technology and might be a
solution for content providers who control their own backbone networks.

20.4.4 IP MAC Forwarding

In Ethernet
networks, HTTP messages are sent in the form of addressed data packets. Each
packet has a layer-4 address, consisting of the source and destination IP
address and TCP port numbers; this is the address to which layer 4-aware
devices pay attention. Each packet also has a layer-2 address, the Media Access Control (MAC)
address, to which layer-2 devices (commonly switches and hubs) pay attention.
The job of layer-2 devices is to receive packets with particular incoming MAC
addresses and forward them to particular outgoing MAC addresses.

In Figure 20-6, for example, the switch is
programmed to send all traffic from MAC address "MAC3" to MAC address
"MAC4."

Figure 20-6. Layer-2 switch sending
client requests to a gateway

[image: figs/http_2006.gif]

A layer 4-aware switch is able to examine the layer-4
addressing (IP addresses and TCP port numbers) and make routing decisions based
on this information. For example, a layer-4 switch could send all port
80-destined web traffic to a proxy. In Figure 20-7, the switch is programmed to send
all port 80 traffic from MAC3 to MAC6 (a proxy cache). All other MAC3 traffic
goes to MAC5.

Figure 20-7. MAC forwarding using a
layer-4 switch

[image: figs/http_2007.gif]

Typically, if the requested HTTP content is in the cache and
is fresh, the proxy cache serves it; otherwise, the proxy cache sends an HTTP
request to the origin server for the content, on the client's behalf. The
switch sends port 80 requests from the proxy (MAC6) to the Internet gateway
(MAC5).

Layer-4 switches that support MAC forwarding usually can
forward requests to several proxy caches and balance the load among them.
likewise, HTTP traffic also can be forwarded to alternate HTTP servers.

Because MAC address forwarding is point-to-point only, the server
or proxy has to be located one hop away from the switch.

20.4.5 IP Address Forwarding

In IP address
forwarding, a switch or other layer 4-aware device examines TCP/IP addressing
on incoming packets and routes packets accordingly by changing the destination
IP address, instead of the destination MAC address. An advantage over MAC
forwarding is that the destination server need not be one hop away; it just
needs to be located upstream from the switch, and the usual layer-3 end-to-end
Internet routing gets the packet to the right place. This type of forwarding
also is called Network Address
Translation (NAT).

There is a catch, however: routing symmetry. The switch that
accepts the incoming TCP connection from the client is managing that
connection; the switch must send the response back to the client on that TCP
connection. Therefore, any response from the destination server or proxy must
return to the switch (see Figure 20-8).

Figure 20-8. A switch doing IP
forwarding to a caching proxy or mirrored web server

[image: figs/http_2008.gif]

Two ways to control the return path of the response are:

·
Change the source IP address of the packet to the IP address of
the switch. That way, regardless of the network configuration between the
switch and server, the response packet goes to the switch. This is called full NAT, where the IP
forwarding device translates both destination and source IP addresses. Figure 20-9 shows the effect of full NAT on a
TCP/IP datagram. The consequence is that the client IP address is unknown to
the web server, which might want it for authentication or billing purposes, for
example.

·
If the source IP address remains the client's IP address, make
sure (from a hardware perspective) that no routes exist directly from server to
client (bypassing the switch). This sometimes is called half NAT. The advantage here
is that the server obtains the client IP address, but the disadvantage is the
requirement of some control of the entire network between client and server.

Figure 20-9. Full NAT of a TCP/IP
datagram

[image: figs/http_2009.gif]

20.4.6 Network Element Control Protocol

The Network
Element Control Protocol (NECP) allows network elements (NEs)—devices such as
routers and switches that forward IP packets—to talk with server elements
(SEs)—devices such as web servers and proxy caches that serve application layer
requests. NECP does not explicitly support load balancing; it only offers a way
for an SE to send an NE load-balancing information so that the NE can load
balance as it sees fit. Like WCCP, NECP offers several ways to forward packets:
MAC forwarding, GRE encapsulation, and NAT.

NECP supports the idea of exceptions. The SE
can decide that it cannot service particular source IP addresses, and send
those addresses to the NE. The NE can then forward requests from those IP
addresses to the origin server.

20.4.6.1 Messages

The NECP messages are described in Table 20-3.

	
Table 20-3. NECP messages

	
Message

	
Who sends it

	
Meaning

	
NECP_NOOP

	

	
No operation—do nothing.

	
NECP_INIT

	
SE

	
SE initiates communication with NE. SE
 sends this message to NE after opening TCP connection with NE. SE must
 know which NE port to connect to.

	
NECP_INIT_ACK

	
NE

	
Acknowledges NECP_INIT.

	
NECP_KEEPALIVE

	
NE or SE

	
Asks if peer is alive.

	
NECP_KEEPALIVE_ACK

	
NE or SE

	
Answers keep-alive message.

	
NECP_START

	
SE

	
SE says "I am here and ready to accept
 network traffic." Can specify a port.

	
NECP_START_ACK

	
NE

	
Acknowledges NECP_START.

	
NECP_STOP

	
SE

	
SE tells NE "stop sending me
 traffic."

	
NECP_STOP_ACK

	
NE

	
NE acknowledges stop.

	
NECP_EXCEPTION_ADD

	
SE

	
SE says to add one or more exceptions to
 NE's list. Exceptions can be based on source IP, destination IP,
 protocol (above IP), or port.

	
NECP_EXCEPTION_ADD_ACK

	
NE

	
Confirms EXCEPTION_ADD.

	
NECP_EXCEPTION_DEL

	
SE

	
Asks NE to delete one or more exceptions from its list.

	
NECP_EXCEPTION_DEL_ACK

	
NE

	
Confirms EXCEPTION_DEL.

	
NECP_EXCEPTION_RESET

	
SE

	
Asks NE to delete entire exception list.

	
NECP_EXCEPTION_RESET_ACK

	
NE

	
Confirms EXCEPTION_RESET.

	
NECP_EXCEPTION_QUERY

	
SE

	
Queries NE's entire exception list.

	
NECP_EXCEPTION_RESP

	
NE

	
Responds to exception query.

20.5 Proxy Redirection
Methods

So
far, we have talked about general redirection methods. Content also may need to
be accessed through various proxies (potentially for security reasons), or
there might be a proxy cache in the network that a client should take advantage
of (because it likely will be much faster to retrieve the cached content than
it would be to go directly to the origin server).

But how do clients such as web browsers know to go to a proxy?
There are three ways to determine this: by explicit browser configuration, by
dynamic automatic configuration, and by transparent interception. We will
discuss these three techniques in this section.

A proxy can, in turn, redirect client requests to a different
proxy. For example, a proxy cache that does not have the content in its cache
may choose to redirect the client to another cache. As this results in the
response coming from a location different from the one from which the client
requested the resource, we also will discuss several protocols used for peer
proxy-cache redirection: the Internet Cache Protocol (ICP), the Cache Array
Routing Protocol (CARP), and the Hyper Text Caching Protocol (HTCP).

20.5.1 Explicit Browser Configuration

Most browsers can be configured to
contact a proxy server for content—there is a pull-down menu where the user can
enter the proxy's name or IP address and port number. The browser then contacts
the proxy for all requests. Rather than relying on users to correctly configure
their browsers to use proxies, some service providers require users to download
preconfigured browsers. These browsers know the address of the proxy to
contact.

Explicit browser configuration has two
main disadvantages:

·
Browsers configured to use proxies do not contact the origin
server even if the proxy is not responding. If the proxy is down or if the
browser is incorrectly configured, the user experiences connectivity problems.

·
It is difficult to make changes in network architecture and
propagate those changes to all end users. If a service provider wants to add
more proxies or take some out of service, browser users have to change their
proxy settings.

20.5.2 Proxy Auto-configuration

Explicit configuration of browsers to contact specific proxies
can restrict changes in network architecture, because it depends on users to
intervene and reconfigure their browsers. An automatic configuration
methodology that allows browsers to dynamically configure themselves to contact
the correct proxy server solves this problem. Such a methodology exists; it is
called the Proxy Auto-configuration (PAC) protocol. PAC was defined
by Netscape and is supported by the Netscape Navigator and Microsoft Internet
Explorer browsers.

The basic idea behind PAC is to have browsers retrieve a special
file, called the PAC file, which specifies the proxy to contact for each URL.
The browser must be configured to contact a specific server for the PAC file.
The browser then fetches the PAC file every time it is restarted.

The PAC file is a JavaScript file, which must define the
function:

function FindProxyForURL(url, host)

Browsers call this function for every requested URL, as
follows:

return_value = FindProxyForURL(url_of_request, host_in_url);

where the return value is a string specifying where the
browser should request this URL. The return value can be a list of the names of
proxies to contact (for example, "PROXY proxy1.domain.com; PROXY
proxy2.domain.com") or the string "DIRECT", which means that the
browser should go directly to the origin server, bypassing any proxies.

The sequence of operations that illustrate the request for and
response to a browser's request for the PAC file are illustrated in Figure 20-10. In this example, the server
sends back a PAC file with a JavaScript program. The JavaScript program has a
function called "FindProxyForURL" that tells the browser to contact
the origin server directly if the host in the requested URL is in the
"netscape.com" domain, and to go to "proxy1.joes-cache.com"
for all other requests. The browser calls this function for each URL it
requests and connects according to the results returned by the function.

Figure 20-10. Proxy
auto-configuration

[image: figs/http_2010.gif]

The PAC protocol is quite powerful: the JavaScript program can
ask the browser to choose a proxy based on any of a number of parameters
related to the hostname, such as the DNS address and subnet, and even the day
of week or time of day. PAC allows browsers automatically to contact the right
proxy with changes in network architecture, as long as the PAC file is updated
at the server to reflect changes to the proxy locations. The main drawback with
PAC is that the browser must be configured to know which server to fetch the
PAC file from, so it is not a completely automatic configuration system. WPAD,
discussed in the next section, addresses this problem.

PAC, like preconfigured browsers, is used by some major ISPs
today.

20.5.3 Web Proxy Autodiscovery Protocol

The Web
Proxy Autodiscovery Protocol (WPAD) aims to provide a way for web browsers to
find and use nearby proxies, without requiring the end user to manually
configure a proxy setting and without relying on transparent traffic
interception. The general problem of defining a web proxy autodiscovery
protocol is complicated by the existence of many discovery protocols to choose
from and the differences in proxy-use configurations in different browsers.

This section contains an abbreviated and slightly reorganized
version of the WPAD Internet draft. The draft currently is being developed as
part of the Web Intermediaries Working Group of the IETF.

20.5.3.1 PAC file autodiscovery

WPAD enables
HTTP clients to locate a PAC file and use the PAC file to discover the name of
an appropriate proxy server. WPAD does not directly determine the name of the
proxy server, because that would circumvent the additional capabilities
provided by PAC files (load balancing, request routing to an array of servers,
automated failover to backup proxy servers, and so on).

As shown in Figure 20-11, the WPAD protocol discovers a
PAC file URL, also known as a configuration URL (CURL). The PAC file executes a JavaScript program that
returns the address of an appropriate proxy server.

Figure 20-11. WPAD determines the
PAC URL, which determines the proxy server

[image: figs/http_2011.gif]

An HTTP client that implements the WPAD protocol:

·
Uses WPAD to find the PAC file CURL

·
Fetches the PAC file (a.k.a. configuration file, or CFILE)
corresponding to the CURL

·
Executes the PAC file to determine the proxy server

·
Sends HTTP requests to the proxy server returned by the PAC file

20.5.3.2 WPAD algorithm

WPAD uses a
series of resource-discovery techniques to determine the proper PAC file CURL.
Multiple discovery techniques are specified, because not all organizations can
use all techniques. WPAD clients attempt each technique, one by one, until they
succeed in obtaining a CURL.

The current WPAD specification defines the following
techniques, in order:

·
DHCP (Dynamic Host Discovery Protocol)

·
SLP (Service Location Protocol)

·
DNS well-known hostnames

·
DNS SRV records

·
DNS service URLs in TXT records

Of these five mechanisms, only the DHCP and DNS well-known
hostname techniques are required for WPAD clients. We present more details in
subsequent sections.

The WPAD client sends a series of resource-discovery requests,
using the discovery mechanisms mentioned above, in order. Clients attempt only
mechanisms that they support. Whenever a discovery attempt succeeds, the client
uses the information obtained to construct a PAC CURL.

If a PAC file is retrieved successfully at that CURL, the
process completes. If not, the client resumes where it left off in the
predefined series of resource-discovery requests. If, after trying all
discovery mechanisms, no PAC file is retrieved, the WPAD protocol fails and the
client is configured to use no proxy server.

The client tries DHCP first, followed by SLP. If no PAC file
is retrieved, the client moves on to the DNS-based mechanisms.

The client cycles through the DNS SRV, well-known hostnames,
and DNS TXT record methods multiple times. Each time, the DNS query QNAME is
made less and less specific. In this manner, the client can locate the most
specific configuration information possible, but still can fall back on less specific
information. Every DNS lookup has the QNAME prefixed with "wpad" to
indicate the resource type being requested.

Consider a client with hostname johns-desktop.development.foo.com.
This is the sequence of discovery attempts a complete WPAD client would
perform:

·
DHCP

·
SLP

·
DNS A lookup on "QNAME=wpad.development.foo.com"

·
DNS SRV lookup on "QNAME=wpad.development.foo.com"

·
DNS TXT lookup on "QNAME=wpad.development.foo.com"

·
DNS A lookup on "QNAME=wpad.foo.com"

·
DNS SRV lookup on "QNAME=wpad.foo.com"

·
DNS TXT lookup on "QNAME=wpad.foo.com"

Refer to the WPAD specification to get detailed pseudocode
that addresses the entire sequence of operations. The following sections
discuss the two required mechanisms, DHCP and DNS A lookup. For more details
about the reminder of the CURL discovery methods, refer to the WPAD
specification.

20.5.3.3 CURL discovery using DHCP

For this mechanism to work, the CURLs
must be stored on DHCP servers that WPAD clients can query. The WPAD client
obtains the CURL by sending a DHCP query to a DHCP server. The CURL is
contained in DHCP option code 252 (if the DHCP server is configured with this
information). All WPAD client implementations are required to support DHCP. The
DHCP protocol is detailed in RFC 2131. See RFC 2132 for a list of existing DHCP
options.

If the WPAD client already has conducted DHCP queries during
its initialization, the DHCP server might already have supplied that value. If
the value is not available through a client OS API, the client sends a
DHCPINFORM message to query the DHCP server to obtain the value.

The DHCP option code 252 for WPAD is of type STRING and is of
arbitrary size. This string contains a URL that points to an appropriate PAC
file. For example:

"http://server.domain/proxyconfig.pac"

20.5.3.4 DNS A record lookup

For this
mechanism to work, the IP addresses of suitable proxy servers must be stored on
DNS servers that the WPAD clients can query. The WPAD client obtains the CURL
by sending an A record lookup to a DNS server. The result of a successful
lookup contains an IP address for an appropriate proxy server.

WPAD client implementations are required to support this
mechanism. This should be straightforward, as only basic DNS lookup of A
records is required. See RFC 2219 for a description of using well-known DNS
aliases for resource discovery. For WPAD, the specification uses "well
known alias" of "wpad" for web proxy autodiscovery.

The client performs the following DNS lookup:

QNAME=wpad.TGTDOM., QCLASS=IN, QTYPE=A

A successful lookup contains an IP address from which the WPAD
client constructs the CURL.

20.5.3.5 Retrieving the PAC file

Once a candidate CURL is created, the
WPAD client usually makes a GET request to the CURL. When making requests, WPAD
clients are required to send Accept headers with appropriate CFILE format
information that they are capable of handling. For example:

Accept: application/x-ns-proxy-autoconfig

In addition, if the CURL results in a redirect, the clients
are required to follow the redirect to its final destination.

20.5.3.6 When to execute WPAD

The web proxy autodiscovery process is
required to occur at least as frequently as one of the following:

·
Upon startup of the web client—WPAD is performed only for the
start of the first instance. Subsequent instances inherit the settings.

·
Whenever there is an indication from the networking stack that
the IP address of the client host has changed.

A web client can use either option, depending on what makes
sense in its environment. In addition, the client must attempt a discovery
cycle upon expiration of a previously downloaded PAC file in accordance with
HTTP expiration. It's important that the client obey the timeouts and rerun the
WPAD process when the PAC file expires.

Optionally, the client also may implement rerunning the WPAD
process on failure of the currently configured proxy if the PAC file does not
provide an alternative.

Whenever the client decides to invalidate the current PAC
file, it must rerun the entire WPAD protocol to ensure it discovers the
currently correct CURL. Specifically, there is no provision in the protocol to
do an If-Modified-Since conditional fetch of the PAC file.

A number of network round trips might be required during the
WPAD protocol broadcast and/or multicast communications. The WPAD protocol
should not be invoked at a more frequent rate than specified above (such as
per-URL retrieval).

20.5.3.7 WPAD spoofing

The IE 5 implementation of WPAD enabled web clients to detect proxy
settings automatically, without user intervention. The algorithm used by WPAD
prepends the hostname "wpad" to the fully qualified domain name and
progressively removes subdomains until it either finds a WPAD server answering
the hostname or reaches the third-level domain. For instance, web clients in
the domain a.b.microsoft.com would query wpad.a.b.microsoft, wpad.b.microsoft.com,
then wpad.microsoft.com.

This exposed a security hole, because in
international usage (and certain other configurations), the third-level domain
may not be trusted. A malicious user could set up a WPAD server and serve proxy
configuration commands of her choice. Subsequent versions of IE (5.01 and
later) rectified the problem.

20.5.3.8 Timeouts

WPAD goes through
multiple levels of discovery, and clients must make sure that each phase is
time-bound. When possible, limiting each phase to 10 seconds is considered
reasonable, but implementors may choose a different value that is more
appropriate to their network properties. For example, a device implementation,
operating over a wireless network, might use a much larger timeout to account
for low bandwidth or high latency.

20.5.3.9 Administrator considerations

Administrators should
configure at least one of the DHCP or DNS A record lookup methods in their
environments, as those are the only two that all compatible clients are
required to implement. Beyond that, configuring to support mechanisms earlier
in the search order will improve client startup time.

One of the major motivations for this
protocol structure was to support client location of nearby proxy servers. In
many environments, there are several proxy servers (workgroup, corporate
gateway, ISP, backbone).

There are a number of possible points at
which "nearness" decisions can be made in the WPAD framework:

·
DHCP servers for different subnets can return
different answers. They also can base decisions on the client cipaddr field or
the client identifier option.

·
DNS servers can be configured to return
different SRV/A/TXT resource records (RRs) for different domain suffixes (for
example, QNAMEs wpad.marketing.bigcorp.com and wpad.development.bigcorp.com).

·
The web server handling the CURL request can make decisions based
on the User-Agent header, Accept header, client IP address/subnet/hostname,
topological distribution of nearby proxy servers, etc. This can occur inside a
CGI executable created to handle the CURL. As mentioned earlier, it even can be
a proxy server handling the CURL requests and making these decisions.

·
The PAC file may be expressive enough to select from a set of
alternatives at runtime on the client. CARP is based on this premise for an
array of caches. It is not inconceivable that the PAC file could compute some
network distance or fitness metrics to a set of candidate proxy servers and
then select the "closest" or "most responsive" server.

20.6 Cache
Redirection Methods

We've discussed techniques to redirect traffic to general servers
and specialized techniques to vector traffic to proxies and gateways. This
final section will explain some of the more sophisticated redirection
techniques used for caching proxy servers. These techniques are more complex
than the previously discussed protocols because they try to be reliable,
high-performance, and content-aware—dispatching requests to locations likely to
have particular pieces of content.

20.6.1 WCCP Redirection

Cisco Systems developed the Web Cache
Coordination Protocol (WCCP) to enable routers to redirect web traffic to proxy
caches. WCCP governs communication between routers and caches so that routers
can verify caches (make sure they are up and running), load balance among
caches, and send specific types of traffic to specific caches. WCCP Version 2 (WCCP2) is an open protocol. We'll discuss
WCCP2 here.

20.6.1.1 How WCCP redirection works

Here's a brief
overview of how WCCP redirection works for HTTP (WCCP redirects other protocols
similarly):

·
Start with a network containing WCCP-enabled
routers and caches that can communicate with one another.

·
A set of routers and their target caches form a
WCCP service group. The configuration of the service group specifies what
traffic is sent where, how traffic is sent, and how load should be balanced
among the caches in the service group.

·
If the service group is configured to redirect
HTTP traffic, routers in the service group send HTTP requests to caches in the
service group.

·
When an HTTP request arrives at a router in the
service group, the router chooses one of the caches in the service group to
serve the request (based on either a hash on the request's IP address or a
mask/value set pairing scheme).

·
The router sends the request packets to the
cache, either by encapsulating the packets with the cache's IP address or by IP
MAC forwarding.

·
If the cache cannot serve the request, the
packets are returned to the router for normal forwarding.

·
The members of the service group exchange
heartbeat messages with one another, continually verifying one another's
availability.

20.6.1.2 WCCP2 messages

There are four WCCP2
messages, described in Table 20-4.

	
Table 20-4. WCCP2 messages

	
Message name

	
Who sends it

	
Information
 carried

	
WCCP2_HERE_I_AM

	
Cache to router

	
These messages tell routers that caches are available to receive
 traffic. The messages contain all of the cache's service group information.
 As soon as a cache joins a service group, it sends these messages to all
 routers in the group. These messages negotiate with routers sending
 WCCP2_I_SEE_YOU messages.

	
WCCP2_I_SEE_YOU

	
Router to cache

	
These messages respond to WCCP2_HERE_I_AM messages. They are
 used to negotiate the packet forwarding method, assignment method (who is the
 designated cache), packet return method, and security.

	
WCCP2_REDIRECT_ASSIGN

	
Designated cache to router

	
These messages make assignments for load balancing; they
 send bucket information for hash table load balancing or mask/value set pair
 information for mask/value load balancing.

	
WCCP2_REMOVAL_QUERY

	
Router to cache that has not sent WCCP2_HERE_I_AM messages
 for 2.5 X HERE_I_AM_T seconds

	
If a router does not receive WCCP2_HERE_I_AM messages
 regularly, the router sends this message to see if the cache should be
 removed from the service group. The proper response from a cache is three
 identical WCCP2_HERE_I_AM messages, separated by HERE_I_AM_T/10 seconds.

The WCCP2_HERE_I_AM message format is:

WCCP Message Header
Security Info Component
Service Info Component
Web-cache Identity Info Component
Web-cache View Info Component
Capability Info Component (optional)
Command Extension Component (optional)

The WCCP2_I_SEE_YOU message format is:

WCCP Message Header
Security Info Component
Service Info Component
Router Identity Info Component
Router View Info Component
Capability Info Component (optional)
Command Extension Component (optional)

The WCCP2_REDIRECT_ASSIGN message format is:

WCCP Message Header
Security Info Component
Service Info Component
Assignment Info Component, or Alternate Assignment Component

The WCCP2_REMOVAL_QUERY message format is:

WCCP Message Header
Security Info Component
Service Info Component
Router Query Info Component

20.6.1.3 Message components

Each WCCP2 message consists of a
header and components. The WCCP header information contains the message type
(Here I Am, I See You, Assignment, or Removal Query), WCCP version, and message
length (not including the length of the header).

The components each begin with a four-octet header describing
the component type and length. The component length does not include the length
of the component header. The message components are described in Table 20-5.

	
Table 20-5. WCCP2 message
 components

	
Component

	
Description

	
Security Info

	
Contains the security option and security implementation.
 The security option can be:

 WCCP2_NO_SECURITY (0)
 WCCP2_MD5_SECURITY (1)

If the option is no security, the security implementation
 field does not exist. If the option is MD5, the security implementation field
 is a 16-octet field containing the message checksum and Service Group
 password. The password can be no more than eight octets.

	
Service Info

	
Describes the service group. The service type ID can have
 two values:

WCCP2_SERVICE_STANDARD (0)
WCCP2_SERVICE_DYNAMIC (1)

If the service type is standard, the service is a well-known
 service, defined entirely by service ID. HTTP is an example of a well-known
 service. If the service type is dynamic, the following settings define the
 service: priority, protocol, service flags (which determine hashing), and
 port.

	
Router Identity Info

	
Contains the router IP address and ID, and lists (by IP
 address) all of the web caches with which the router intends to communicate.

	
Web Cache Identity Info

	
Contains the web cache IP address and redirection hash table
 mapping.

	
Router View Info

	
Contains the router's view of the service group (identities
 of the routers and caches).

	
Web Cache View Info

	
Contains the web cache's view of the service group.

	
Assignment Info

	
Shows the assignment of a web cache to a particular hashing
 bucket.

	
Router Query Info

	
Contains the router's IP address, address of the web cache being
 queried, and ID of the last router in the service group that received a Here
 I Am message from the web cache.

	
Capabilities Info

	
Used by routers to advertise supported packet forwarding,
 load balancing, and packet return methods; used by web caches to let routers
 know what method the web cache prefers.

	
Alternate Assignment

	
Contains hash table assignment information for load
 balancing.

	
Assignment Map

	
Contains mask/value set elements for service group.

	
Command Extension

	
Used by web caches to tell routers they are shutting down;
 used by routers to acknowledge a cache shutdown.

20.6.1.4 Service groups

A service group consists of a set of WCCP-enabled
routers and caches that exchange WCCP messages. The routers send web traffic to
the caches in the service group. The configuration of the service group
determines how traffic is distributed to caches in the service group. The
routers and caches exchange service group configuration information in Here I
Am and I See You messages.

20.6.1.5 GRE packet encapsulation

Routers that support WCCP redirect HTTP
packets to a particular server by encapsulating them with the server's IP
address. The packet encapsulation also contains an IP header proto field that
indicates Generic Router Encapsulation (GRE). The existence of the proto field
tells the receiving proxy that it has an encapsulated packet. Because the
packet is encapsulated, the client IP address is not lost. Figure 20-12
illustrates GRE packet encapsulation.

Figure 20-12. How a WCCP
router changes an HTTP packet's destination IP address

[image: figs/http_2012.gif]

20.6.1.6 WCCP load balancing

In addition to
routing, WCCP routers can balance load among several receiving servers. WCCP
routers and their receiving servers exchange heartbeat
messages to let one
another know they are up and running. If a particular receiving server stops
sending heartbeat messages, the WCCP router sends request traffic directly to
the Internet, instead of redirecting it to that node. When the node returns to
service, the WCCP router begins receiving heartbeat messages again and resumes
sending request traffic to the node.

20.7 Internet Cache
Protocol

The Internet Cache Protocol (ICP) allows caches to look for
content hits in sibling caches. If a cache does not have the content requested
in an HTTP message, it can find out if the content is in a nearby sibling cache
and, if so, retrieve the content from there, hopefully avoiding a more costly
query to an origin server. ICP can be thought of as a cache clustering
protocol. It is a redirection protocol in the sense that the final destination
of an HTTP request message can be determined by a series of ICP queries.

ICP is an object discovery protocol. It asks nearby caches,
all at the same time, if any of them have a particular URL in their caches. The
nearby caches send back a short message saying "HIT" if they have that
URL or "MISS" if they don't. The cache is then free to open an HTTP
connection to a neighbor cache that has the object.

ICP is simple and lightweight. ICP messages are 32-bit packed
structures in network byte order, making them easy to parse. They are carried
in UDP datagrams for efficiency. UDP is an unreliable Internet protocol, which
means that the data can get destroyed in transit, so programs that speak ICP
need to have timeouts to detect lost datagrams.

Here is a brief description of the parts of an ICP message:

Opcode

The opcode is an 8-bit value that
describes the meaning of the ICP message. Basic opcodes are ICP_OP_QUERY
request messages and ICP_OP_HIT and ICP_OP_MISS response messages.

Version

The 8-bit version number describes
the version number of the ICP protocol. The version of ICP used by Squid,
documented in Internet RFC 2186, is Version 2.

Message length

The total size in
bytes of the ICP message. Because there are only 16 bits, the ICP message size
cannot be larger than 16,383 bytes. URLs usually are shorter than 16 KB; if
they're longer than that, many web applications will not process them.

Request number

ICP-enabled caches
use the request number to keep track of multiple simultaneous requests and
replies. An ICP reply message always must contain the same request number as
the ICP request message that triggered the reply.

Options

The 32-bit ICP
options field is a bit vector containing flags that modify ICP behavior. ICPv2
defines two flags, both of which modify ICP_OP_QUERY requests. The
ICP_FLAG_HIT_OBJ flag enables and disables the return of document data in ICP
responses. The ICP_FLAG_SRC_RTT flag requests an estimate of the round-trip
time to the origin server, as measured by a sibling cache.

Option data

The 32-bit option
data is reserved for optional features. ICPv2 uses the low 16 bits of the
option data to hold an optional round-trip time estimate from the sibling to
the origin server.

Sender host address

A historic field
carrying the 32-bit IP address of the message sender; not used in practice.

Payload

The contents of
the payload vary depending on the message type. For ICP_OP_QUERY, the payload
is a 4-byte original requester host address followed by a NUL-terminated URL. For
ICP_OP_HIT_OBJ, the payload is a NUL-terminated URL followed by a 16 bit object
size, followed by the object data.

For more information about ICP, refer to informational RFCs
2186 and 2187. Excellent ICP and peering references also are available from the
U.S. National Laboratory for Applied Network Research (http://www.nlanr.net/Squid/
).

20.8 Cache
Array Routing Protocol

Proxy servers greatly reduce traffic to
the Internet by intercepting requests from individual users and serving cached
copies of the requested web objects. However, as the number of users grows, a high
volume of traffic can overload the proxy servers themselves.

One solution to this problem is to use
multiple proxy servers to distribute the load to a collection of servers. The
Cache Array Routing Protocol (CARP) is a standard proposed by Microsoft Corporation
and Netscape Communication Corporation to administer a collection of proxy
servers such that an array of proxy servers appears to clients as one logical
cache.

CARP is an alternative to ICP. Both CARP and
ICP allow administrators to improve performance by using multiple proxy
servers. This section discusses how CARP differs from ICP, the advantages and disadvantages of
using CARP over ICP, and the technical details of how the CARP protocol is
implemented.

Upon a cache miss in ICP, the proxy server
queries neighboring caches using an ICP message format to determine the
availability of the web object. The neighboring caches respond with either a
"HIT" or a "MISS," and the requesting proxy server uses
these responses to select the most appropriate location from which to retrieve
the object. If the ICP proxy servers were arranged in a hierarchical fashion, a
miss would be elevated to the parent. Figure 20-13
diagrammatically shows how hits and misses are resolved using ICP.

Figure 20-13. ICP queries

[image: figs/http_2013.gif]

Note that each of the proxy servers,
connected together using the ICP protocol, is a standalone cache server with
redundant mirrors of content, meaning that duplicate entries of web objects
across proxy servers is possible. In contrast, the collection of servers
connected using CARP operates as a single, large server with each component
server containing only a fraction of the total cached documents. By applying a
hash function to the URL of a web object, CARP maps web objects to a specific
proxy server. Because each web object has a unique home, we can determine the
location of the object by a single lookup, rather than polling each of the proxy
servers configured in the collection. Figure 20-14 summarizes the CARP approach.

Figure 20-14. CARP redirection

[image: figs/http_2014.gif]

Although Figure 20-14 shows
the caching proxy as being the intermediary between clients and proxy servers
that distributes the load to the various proxy servers, it is possible for this
function to be served by the clients themselves. Commercial browsers such as Internet
Explorer and Netscape Navigator can be configured to compute the hash function
in the form of a plug-in that determines the proxy server to which the request
should be sent.

Deterministic resolution of the proxy server
in CARP means that it isn't necessary to send queries to all the neighbors,
which means that this method requires fewer inter-cache messages to be sent
out. As more proxy servers are added to the configuration, the collective cache
system will scale fairly well. However, a disadvantage of CARP is that if one of the proxy servers becomes
unavailable, the hash function needs to be modified to reflect this change, and
the contents of the proxy servers must be reshuffled across the existing proxy
servers. This can be expensive if the proxy server crashes often. In contrast,
redundant content in ICP proxy servers means that reshuffling is not required. Another
potential problem is that, because CARP is a new protocol, existing proxy
servers running only the ICP protocol may not be included readily in a CARP
collection.

Having described the difference between CARP
and ICP, let us now describe CARP in a little more detail. The CARP
redirection method involves the following tasks:

·
Keep a table of participating proxy servers. These
proxy servers are polled periodically to see which ones are still active.

·
For each participating proxy server, compute a
hash function. The value returned by the hash function takes into account the
amount of load this proxy can handle.

·
Define a separate hash function that returns a
number based on the URL of the requested web object.

·
Take the sum of the hash function of the URL and
the hash function of the proxy servers to get an array of numbers. The maximum
value of these numbers determines the proxy server to use for the URL. Because
the computed values are deterministic, subsequent requests for the same web
object will be forwarded to the same proxy server.

These four chores can either be carried out
on the browser, in a plug-in, or be computed on an intermediate server.

For each collection of proxy servers, create
a table listing all of the servers in the collection. Each entry in the table
should contain information about load factors, time-to-live (TTL) countdown
values, and global parameters such as how often members should be polled. The
load factor indicates how much load that machine can handle, which depends on
the CPU speed and hard drive capacity of that machine. The table can be
maintained remotely via an RPC interface. Once the fields in the tables have
been updated by RPC, they can be made available or published to downstream
clients and proxies. This publication is done in HTTP, allowing any client or
proxy server to consume the table information without introducing another
inter-proxy protocol. Clients and proxy servers simply use a well-known URL to
retrieve the table.

The hash function used must ensure that the
web objects are statistically distributed across the participating proxy
servers. The load factor of the proxy server should be used to determine the
statistic probability of a web object being assigned to that proxy.

In summary, the CARP protocol allows a group
of proxy servers to be viewed as single collective cache, instead of a group of
cooperating but separate caches (as in ICP). A deterministic request resolution
path finds the home of a specific web object within a single hop. This
eliminates the inter-proxy traffic that often is generated to find the web
object in a group of proxy servers in ICP. CARP also avoids duplicate copies of
web objects being stored on different proxy servers, which has the advantage
that the cache system collectively has a larger capacity for storing web
objects but also has the disadvantage that a failure in any one proxy requires reshuffling
some of the cache contents to existing proxies.

20.9 Hyper Text Caching
Protocol

Earlier, we discussed ICP, a protocol that allows proxy
caches to query siblings about the presence of documents. ICP, however, was
designed with HTTP/0.9 in mind and therefore allows caches to send just the URL
when querying a sibling about the presence of a resource. Versions 1.0 and 1.1
of HTTP introduced many new request headers that, along with the URL, are used
to make decisions about document matching, so simply sending the URL in a
request may not result in accurate responses.

The Hyper Text Caching Protocol (HTCP) reduces the probability
of false hits by allowing siblings to query each other for the presence of
documents using the URL and all of the request and response headers. Further,
HTCP allows sibling caches to monitor and request the addition and deletion of
selected documents in each other's caches and to make changes in the caching
policies of each other's cached documents.

Figure 20-13, which illustrates an ICP
transaction, also can be used to illustrate an HTCP transaction—HTCP is just
another object discovery protocol. If a nearby cache has the document, the
requesting cache can open an HTTP connection to the cache to get a copy of the
document. The difference between an ICP and an HTCP transaction is in the level
of detail in the requests and responses.

The structure of HTCP messages is
illustrated in Figure 20-15. The Header portion includes the
message length and message versions. The Data portion starts with the data
length and includes opcodes, response codes, and some flags and IDs, and it
terminates with the actual data. An optional Authentication section may follow
the Data section.

Figure 20-15. HTCP message format

[image: figs/http_2015.gif]

Details of the message fields are as follows:

Header

The Header section consists of a
32-bit message length, an 8-bit major protocol version, and an 8-bit minor
protocol version. The message length includes all of the header, data, and
authentication sizes.

Data

The Data section contains the HTCP
message and has the structure illustrated in Figure 20-15. The data components are
described in Table 20-6.

	
Table 20-6. HTCP data components

	
Component

	
Description

	
Data length

	
A 16-bit value of the number of bytes in the Data section
 including the length of the Length field itself.

	
Opcode

	
The 4-bit operation code for the HTCP transaction. The full
 list of opcodes is provided in Table 20-7.

	
Response code

	
A 4-bit key indicating the success or failure of the
 transaction. The possible values are:

·
 0—Authentication was not used, but is needed

·
 1—Authentication was used, but is not satisfactory

·
 2—Unimplemented opcode

·
 3—Major version not supported

·
 4—Minor version not supported

·
 5—Inappropriate, disallowed, or undesirable opcode

	
F1

	
F1 is overloaded—if the message is a request, F1is a 1-bit
 flag set by the requestor indicating that it needs a response (F1=1); if the
 message is a response, F1 is a 1-bit flag indicating whether the response is
 to be interpreted as a response to the overall message (F1=1) or just as a
 response to the Opcode data fields (F1=0).

	
RR

	
A 1-bit flag indicating that the message is a request (RR=0)
 or a response (RR=1).

	
Transaction ID

	
A 32-bit value that, combined with the requestor's network
 address, uniquely identifies the HTCP transaction.

	
Opcode data

	
Opcode data is opcode-dependent. See Table 20-7.

Table 20-7 lists the HTCP
opcodes and their corresponding data types.

	
Table 20-7. HTCP opcodes

	
Opcode

	
Value

	
Description

	
Response codes

	
Opcode data

	
NOP

	
0

	
Essentially a "ping" operation.

	
Always 0

	
None

	
TST

	
1

	

	
0 if entity is present, 1 if entity is not present

	
Contains the URL and request headers in the request and just
 response headers in the response

	
MON

	
2

	

	
0 if accepted, 1 if refused

	

	
SET

	
3

	
The SET message allows caches to request changes in caching
 policies. See Table 20-9 for a list of the headers that
 can be used in SET messages.

	
0 if accepted, 1 if ignored

	

	
CLR

	
4

	

	
0if I had it, but it's now gone; 1 if I had it, but I am
 keeping it; and 2 if I didn't have it

	

20.9.1 HTCP Authentication

The
authentication portion of the HTCP message is optional. Its structure is
illustrated in Figure 20-15, and its components are described
in Table 20-8.

	
Table 20-8. HTCP authentication
 components

	
Component

	
Description

	
Auth length

	
The 16-bit number of bytes in the Authentication section of
 the message, including the length of the Length field itself.

	
Sig time

	
A 32-bit number representing the number of seconds since
 00:00:00 Jan 1, 1970 GMT at the time that the signature is generated.

	
Sig expire

	
A 32-bit number representing the number of seconds since
 00:00:00 Jan 1, 1970 GMT when the signature will expire.

	
Key name

	
A string that specifies the name of the shared secret. The
 Key section has two parts: the 16-bit length in bytes of the string that
 follows, followed by the stream of uninterrupted bytes of the string.

	
Signature

	
The HMAC-MD5 digest with a B value of 64
 (representing the source and destination IP addresses and ports), the major
 and minor HTCP versions of the message, the Sig time and Sig expires values,
 the full HTCP data, and the key. The Signature also has two parts: the 16-bit
 length in bytes of the string, followed by the string.

20.9.2 Setting Caching Policies

The SET message
allows caches to request changes in the caching policies of cached documents. The
headers that can be used in SET
messages are described in Table 20-9.

	
Table 20-9. List of
 Cache headers for modifying caching policies

	
Header

	
Description

	
Cache-Vary

	
The requestor has learned that the content
 varies on a set of headers different from the set in the response Vary
 header. This header overrides the response Vary header.

	
Cache-Location

	
The list of proxy caches that also may have
 copies of this object.

	
Cache-Policy

	
The requestor has learned the caching
 policies for this object in more detail than is specified in the response
 headers. Possible values are: "no-cache," meaning that the response
 is not cacheable but may be shareable among simultaneous requestors;
 "no-share," meaning that the object is not shareable; and
 "no-cache-cookie," meaning that the content may change as a result
 of cookies and caching therefore is not advised.

	
Cache-Flags

	
The requestor has modified the object's
 caching policies and the object may have to be treated specially and not
 necessarily in accordance with the object's actual policies.

	
Cache-Expiry

	
The actual expiration time for the document
 as learned by the requestor.

	
Cache-MD5

	
The requestor-computed MD5 checksum of the
 object, which may be different from the value in the Content-MD5 header, or
 may be supplied because the object does not have a Content-MD5 header.

	
Cache-to-Origin

	
The requestor-measured round-trip time to
 an origin server. The format of the values in this header is <origin server name or ip> <average round-trip
 time in seconds> <number of samples> <number of router hops
 between requestor and origin server>.

By allowing request and response headers to be sent in query
messages to sibling caches, HTCP can decrease the false-hit rate in cache
queries. By further allowing sibling caches to exchange policy information with
each other, HTCP can improve sibling caches' ability to cooperate with each
other.

20.10 For More Information

For more information, consult the following references:

DNS
and Bind

Cricket Liu, Paul Albitz, and Mike
Loukides, O'Reilly & Associates, Inc.

http://www.wrec.org/Drafts/draft-cooper-webi-wpad-00.txt

"Web Proxy Auto-Discovery
Protocol."

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html

"Navigator Proxy Auto-Config
File Format."

http://www.ietf.org/rfc/rfc2186.txt

IETF RFC 2186,
"Intercache Communication Protocol (ICP) Version 2," by D. Wessels
and K. Claffy.

http://icp.ircache.net/carp.txt

"Cache Array
Routing Protocol v1.0."

http://www.ietf.org/rfc/rfc2756.txt

IETF RFC 2756,
"Hyper Text Caching Protocol (HTCP/0.0)," by P. Vixie and D. Wessels.

http://www.ietf.org/internet-drafts/draft-wilson-wrec-wccp-v2-00.txt

draft-wilson-wrec-wccp-v2-01.txt,
"Web Cache Communication Protocol V2.0," by M. Cieslak, D. Forster,
G. Tiwana, and R. Wilson.

http://www.ietf.org/rfc/rfc2131.txt?number=2131

"Dynamic Host
Configuration Protocol."

http://www.ietf.org/rfc/rfc2132.txt?number=2132

"DHCP Options
and BOOTP Vendor Extensions."

http://www.ietf.org/rfc/rfc2608.txt?number=2608

"Service
Location Protocol, Version 2."

http://www.ietf.org/rfc/rfc2219.txt?number=2219

"Use of DNS Aliases for
Network Services."

Chapter 21.
Logging and Usage Tracking

Almost all servers and proxies log summaries
of the HTTP transactions they process. This is done for a variety of reasons:
usage tracking, security, billing, error detection, and so on. In this chapter,
we take a brief tour of logging, examining what information about HTTP
transactions typically is logged and what some of the common log formats
contain.

21.1 What to
Log?

For the most
part, logging is done for two reasons: to look for problems on the server or
proxy (e.g., which requests are failing), and to generate statistics about how
web sites are accessed. Statistics are useful for marketing, billing, and
capacity planning (for instance, determining the need for additional servers or
bandwidth).

You could log all of the headers in an HTTP
transaction, but for servers and proxies that process millions of transactions
per day, the sheer bulk of all of that data quickly would get out of hand. You
also would end up logging a lot of information that you don't really care about
and may never even look at.

Typically, just the
basics of a transaction are logged. A few examples of commonly logged fields
are:

·
HTTP method

·
HTTP version of client and server

·
URL of the requested resource

·
HTTP status code of the response

·
Size of the request and response messages
(including any entity bodies)

·
Timestamp of when the transaction occurred

·
Referer and User-Agent header values

The HTTP method and
URL tell what the request was trying to do—for example, GETting a resource or
POSTing an order form. The URL can be used to track popularity of pages
on the web site.

The version strings give hints about the client and server,
which are useful in debugging strange or unexpected interactions between
clients and servers. For example, if requests are failing at a
higher-than-expected rate, the version information may point to a new release
of a browser that is unable to interact with the server.

The HTTP status code tells what happened to the request:
whether it was successful, the authorization attempt failed, the resource was
found, etc. (See Section 3.2.2.4 for a list of HTTP status
codes.)

The size of the request/response and the timestamp are used
mainly for accounting purposes; i.e., to track how many bytes flowed into, out
of, or through the application. The timestamp also can be used to correlate
observed problems with the requests that were being made at the time.

21.2 Log Formats

Several log formats have
become standard, and we'll discuss some of the most common formats in this
section. Most commercial and open source HTTP applications support logging in one
or more of these common formats. Many of these applications also support the
ability of administrators to configure log formats and create their own custom
formats.

One of the main benefits of supporting (for applications) and
using (for administrators) these more standard formats rests in the ability to
leverage the tools that have been built to process and generate basic
statistics from these logs. Many open source and commercial packages exist to
crunch logs for reporting purposes, and by utilizing standard formats,
applications and their administrators can plug into these resources.

21.2.1 Common Log Format

One of the
most common log formats in use today is called, appropriately, the Common Log
Format. Originally defined by NCSA, many servers use this log format as a
default. Most commercial and open source servers can be configured to use this
format, and many commercial and freeware tools exist to help parse common log
files. Table 21-1 lists, in order, the fields of the
Common Log Format.

	
Table 21-1. Common Log Format
 fields

	
Field

	
Description

	
remotehost

	
The hostname or IP address of the requestor's machine (IP if
 the server was not configured to perform reverse DNS or cannot look up the
 requestor's hostname)

	
username

	
If an ident lookup was
 performed, the requestor's authenticated username[1]

	
auth-username

	
If authentication was performed, the username with which the
 requestor authenticated

	
timestamp

	
The date and time of the request

	
request-line

	
The exact text of the HTTP request line, "GET
 /index.html HTTP/1.1"

	
response-code

	
The HTTP status code that was returned in the response

	
response-size

	
The Content-Length of the response entity—if no entity was
 returned in the response, a zero is logged

[1] RFC 931 describes the ident lookup used in this authentication. The ident protocol was discussed in Chapter 5.

Example 21-1 lists a few examples of Common
Log Format entries.

Example 21-1. Common Log Format

209.1.32.44 - - [03/Oct/1999:14:16:00 -0400] "GET / HTTP/1.0" 200 1024
http-guide.com - dg [03/Oct/1999:14:16:32 -0400] "GET / HTTP/1.0" 200 477
http-guide.com - dg [03/Oct/1999:14:16:32 -0400] "GET /foo HTTP/1.0" 404 0

In these examples, the fields are assigned as follows:

	
Field

	
Entry 1

	
Entry 2

	
Entry 2

	
remotehost

	
209.1.32.44

	
http-guide.com

	
http-guide.com

	
username

	
<empty>

	
<empty>

	
<empty>

	
auth-username

	
<empty>

	
dg

	
dg

	
timestamp

	
03/Oct/1999:14:16:00 -0400

	
03/Oct/1999:14:16:32 -0400

	
03/Oct/1999:14:16:32 -0400

	
request-line

	
GET / HTTP/1.0

	
GET / HTTP/1.0

	
GET /foo HTTP/1.0

	
response-code

	
200

	
200

	
404

	
response-size

	
1024

	
477

	
0

Note that the remotehost field
can be either a hostname, as in http-guide.com,
or an IP address, such as 209.1.32.44.

The dashes in the second (username) and third (auth-username)
fields indicate that the fields are empty. This indicates that either an ident lookup did not occur (second field empty) or
authentication was not performed (third field empty).

21.2.2 Combined Log Format

Another
commonly used log format is the Combined Log Format. This format is supported
by servers such as Apache. The Combined Log Format is very similar to the
Common Log Format; in fact, it mirrors it exactly, with the addition of two
fields (listed in Table 21-2). The User-Agent field is useful in
noting which HTTP client applications are making the logged requests, while the
Referer field provides more detail about where the requestor found this URL.

	
Table 21-2. Additional Combined
 Log Format fields

	
Field

	
Description

	
Referer

	
The contents of the Referer HTTP header

	
User-Agent

	
The contents of the User-Agent HTTP header

Example 21-2 gives an example of a Combined
Log Format entry.

Example 21-2. Combined Log Format

209.1.32.44 - - [03/Oct/1999:14:16:00 -0400] "GET / HTTP/1.0" 200 1024 "http://www.joes-
hardware.com/" "5.0: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98)"

In Example 21-2, the Referer and User-Agent
fields are assigned as follows:

	
Field

	
Value

	
Referer

	
http://www.joes-hardware.com/

	
User-Agent

	
5.0: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98)

The first seven fields of the example Combined Log Format
entry in Example 21-2 are exactly as they would be in
the Common Log Format (see the first entry in Example 21-1). The two new fields, Referer and
User-Agent, are tacked onto the end of the log entry.

21.2.3 Netscape Extended Log Format

When Netscape
entered into the commercial HTTP application space, it defined for its servers
many log formats that have been adopted by other HTTP application developers.
Netscape's formats derive from the NCSA Common Log Format, but they extend that
format to incorporate fields relevant to HTTP applications such as proxies and
web caches.

The first seven fields in the Netscape Extended Log Format are
identical to those in the Common Log Format (see Table 21-1). Table 21-3 lists, in order, the new fields
that the Netscape Extended Log Format introduces.

	
Table 21-3. Additional Netscape
 Extended Log Format fields

	
Field

	
Description

	
proxy-response-code

	
If the transaction went through a proxy, the HTTP response
 code from the server to the proxy

	
proxy-response-size

	
If the transaction went through a proxy, the Content-Length
 of the server's response entity sent to the proxy

	
client-request-size

	
The Content-Length of any body or entity in the client's request
 to the proxy

	
proxy-request-size

	
If the transaction went through a proxy, the Content-Length
 of any body or entity in the proxy's request to the server

	
client-request-hdr-size

	
The length, in bytes, of the client's request headers

	
proxy-response-hdr-size

	
If the transaction went through a proxy, the length, in
 bytes, of the proxy's response headers that were sent to the requestor

	
proxy-request-hdr-size

	
If the transaction went through a proxy, the length, in
 bytes, of the proxy's request headers that were sent to the server

	
server-response-hdr-size

	
The length, in bytes, of the server's response headers

	
proxy-timestamp

	
If the transaction went through a proxy, the elapsed time
 for the request and response to travel through the proxy, in seconds

Example 21-3 gives an example of a Netscape
Extended Log Format entry.

Example 21-3. Netscape Extended Log Format

209.1.32.44 - - [03/Oct/1999:14:16:00-0400] "GET / HTTP/1.0" 200 1024 200 1024 0 0 215 260
279 254 3

In this example, the extended fields are assigned as follows:

	
Field

	
Value

	
proxy-response-code

	
200

	
proxy-response-size

	
1024

	
client-request-size

	
0

	
proxy-request-size

	
0

	
client-request-hdr-size

	
215

	
proxy-response-hdr-size

	
260

	
proxy-request-hdr-size

	
279

	
server-response-hdr-size

	
254

	
proxy-timestamp

	
3

The first seven fields of the example Netscape Extended Log
Format entry in Example 21-3 mirror the entries in the Common
Log Format example (see the first entry in Example 21-1).

21.2.4 Netscape Extended 2 Log Format

Another
Netscape log format, the Netscape Extended 2 Log Format, takes the Extended Log
Format and adds further information relevant to HTTP proxy and web caching
applications. These extra fields help paint a better picture of the
interactions between an HTTP client and an HTTP proxy application.

The Netscape Extended 2 Log Format derives from the Netscape
Extended Log Format, and its initial fields are identical to those listed in Table 21-3 (it also extends the Common Log
Format fields listed in Table 21-1).

Table 21-4 lists, in order, the additional
fields of the Netscape Extended 2 Log Format.

	
Table 21-4. Additional Netscape
 Extended 2 Log Format fields

	
Field

	
Description

	
route

	
The route that the proxy used to make the request for the
 client (see Table 21-5)

	
client-finish-status-code

	
The client finish status code; specifies whether the client request
 to the proxy completed successfully (FIN) or was interrupted (INTR)

	
proxy-finish-status-code

	
The proxy finish status code; specifies whether the proxy
 request to the server completed successfully (FIN) or was interrupted (INTR)

	
cache-result-code

	
The cache result code; tells how the cache responded to the
 request[2]

[2] Table 21-7 lists the Netscape cache result
codes.

Example 21-4 gives an example of a Netscape
Extended 2 Log Format entry.

Example 21-4. Netscape Extended 2 Log Format

209.1.32.44 - - [03/Oct/1999:14:16:00-0400] "GET / HTTP/1.0" 200 1024 200 1024 0 0 215 260
279 254 3 DIRECT FIN FIN WRITTEN

The extended fields in this example are assigned as follows:

	
Field

	
Value

	
route

	
DIRECT

	
client-finish-status-code

	
FIN

	
proxy-finish-status-code

	
FIN

	
cache-result-code

	
WRITTEN

The first 16 fields in the Netscape Extended 2 Log Format
entry in Example 21-4 mirror the entries in the
Netscape Extended Log Format example (see Example 21-3).

Table 21-5 lists the valid Netscape route
codes.

	
Table 21-5. Netscape route codes

	
Value

	
Description

	
DIRECT

	
The resource was fetched directly from the server.

	
PROXY(host:port)

	
The resource was fetched through the proxy "host."

	
SOCKS(socks:port)

	
The resource was fetched through the SOCKS server
 "host."

Table 21-6 lists the valid Netscape finish
codes.

	
Table 21-6. Netscape finish status
 codes

	
Value

	
Description

	
-

	
The request never even started.

	
FIN

	
The request was completed successfully.

	
INTR

	
The request was interrupted by the client or ended by a
 proxy/server.

	
TIMEOUT

	
The request was timed out by the proxy/server.

Table 21-7 lists the valid Netscape cache
codes.[3]

[3] Chapter 7 discusses HTTP caching in detail.

	
Table 21-7. Netscape cache codes

	
Code

	
Description

	
-

	
The resource was uncacheable.

	
WRITTEN

	
The resource was written into the cache.

	
REFRESHED

	
The resource was cached and it was refreshed.

	
NO-CHECK

	
The cached resource was returned; no freshness check was
 done.

	
UP-TO-DATE

	
The cached resource was returned; a freshness check was
 done.

	
HOST-NOT-AVAILABLE

	
The cached resource was returned; no freshness check was
 done because the remote server was not available.

	
CL-MISMATCH

	
The resource was not written to the cache; the write was
 aborted because the Content-Length did not match the resource size.

	
ERROR

	
The resource was not written to the cache due to some error;
 for example, a timeout occurred or the client aborted the transaction.

Netscape applications, like many other HTTP applications, have
other log formats too, including a Flexible Log Format and a means for
administrators to output custom log fields. These formats allow administrators
greater control and the ability to customize their logs by choosing which parts
of the HTTP transaction (headers, status, sizes, etc.) to report in their logs.

The ability for administrators to configure custom formats was
added because it is difficult to predict what information administrators will
be interested in getting from their logs. Many other proxies and servers also
have the ability to emit custom logs.

21.2.5 Squid Proxy Log Format

The
Squid proxy cache (http://www.squid-cache.org) is a venerable
part of the Web. Its roots trace back to one of the early web proxy cache
projects (ftp://ftp.cs.colorado.edu/pub/techreports/schwartz/Harvest.Conf.ps.Z).
Squid is an open source project that has been extended and enhanced by the open
source community over the years. Many tools have been written to help
administer the Squid application, including tools to help process, audit, and
mine its logs. Many subsequent proxy caches adopted the Squid format for their
own logs so that they could leverage these tools.

The format of a Squid log entry is fairly simple. Its fields
are summarized in Table 21-8.

	
Table 21-8. Squid Log Format fields

	
Field

	
Description

	
timestamp

	
The timestamp when the request arrived, in seconds since
 January 1, 1970 GMT.

	
time-elapsed

	
The elapsed time for request and response to travel through
 the proxy, in milliseconds.

	
host-ip

	
The IP address of the client's (requestor's) host machine.

	
result-code/status

	
The result field is a Squid-ism that tells what action the
 proxy took during this request[4];
 the code field is the HTTP response code that the proxy sent to the client.

	
size

	
The length of the proxy's response to the client, including
 HTTP response headers and body, in bytes.

	
method

	
The HTTP method of the client's request.

	
url

	
The URL in the client's request.[5]

	
rfc931-ident[6]

	
The client's authenticated username.[7]

	
hierarchy/from

	
Like the route field in Netscape formats, the hierarchy
 field tells what route the proxy used to make the request for the client.[8]
 The from field tells the name of the server that the proxy used to make the
 request.

	
content-type

	
The Content-Type of the proxy response entity.

[4] Table 21-9 lists the various result codes and
their meanings.

[5] Recall from Chapter 2 that proxies often log the entire
requested URL, so if a username and password component are in the URL, a proxy
can inadvertently record this information.

[6] The rfc931-ident, hierarchy/from, and
content-type fields were added in Squid 1.1. Previous versions did not have
these fields.

[7] RFC 931 describes the ident lookup used in this authentication.

[8] http://squid.nlanr.net/Doc/FAQ/FAQ-6.html#ss6.6
lists all of the valid Squid hierarchy codes.

Example 21-5 gives an example of a Squid Log
Format entry.

Example 21-5. Squid Log Format

99823414 3001 209.1.32.44 TCP_MISS/200 4087 GET http://www.joes-hardware.com - DIRECT/
proxy.com text/html

The fields are assigned as follows:

	
Field

	
Value

	
timestamp

	
99823414

	
time-elapsed

	
3001

	
host-ip

	
209.1.32.44

	
action-code

	
TCP_MISS

	
status

	
200

	
size

	
4087

	
method

	
GET

	
URL

	
http://www.joes-hardware.com

	
RFC 931 ident

	
-

	
hierarchy

	
DIRECT[9]

	
from

	
proxy.com

	
content-type

	
text/html

[9] The DIRECT Squid hierarchy value is the
same as the DIRECT route value in Netscape log formats.

Table 21-9 lists the various Squid result
codes.[10]

[10] Several of these action codes deal more
with the internals of the Squid proxy cache, so not all of them are used by
other proxies that implement the Squid Log Format.

	
Table 21-9. Squid result codes

	
Action

	
Description

	
TCP_HIT

	
A valid copy of the resource was served out of the cache.

	
TCP_MISS

	
The resource was not in the cache.

	
TCP_REFRESH_HIT

	
The resource was in the cache but needed to be checked for freshness.
 The proxy revalidated the resource with the server and found that the
 in-cache copy was indeed still fresh.

	
TCP_REF_FAIL_HIT

	
The resource was in the cache but needed to be checked for freshness.
 However, the revalidation failed (perhaps the proxy could not connect to the
 server), so the "stale" resource was returned.

	
TCP_REFRESH_MISS

	
The resource was in the cache but needed to
 be checked for freshness. Upon checking with the server, the proxy learned
 that the resource in the cache was out of date and received a new version.

	
TCP_CLIENT_REFRESH_MISS

	
The requestor sent a Pragma: no-cache or
 similar Cache-Control directive, so the proxy was forced to fetch the
 resource.

	
TCP_IMS_HIT

	
The requestor issued a conditional request,
 which was validated against the cached copy of the resource.

	
TCP_SWAPFAIL_MISS

	
The proxy thought the resource was in the
 cache but for some reason could not access it.

	
TCP_NEGATIVE_HIT

	
A cached response was returned, but the
 response was a negatively cached response. Squid supports the notion of
 caching errors for resources—for example, caching a 404 Not Found response—so
 if multiple requests go through the proxy-cache for an invalid resource, the
 error is served from the proxy cache.

	
TCP_MEM_HIT

	
A valid copy of the resource was served out
 of the cache, and the resource was in the proxy cache's memory (as opposed to
 having to access the disk to retrieve the cached resource).

	
TCP_DENIED

	
The request for this resource was denied,
 probably because the requestor does not have permission to make requests for
 this resource.

	
TCP_OFFLINE_HIT

	
The requested resource was retrieved from
 the cache during its offline mode. Resources
 are not validated when Squid (or another proxy using this format) is in
 offline mode.

	
UDP_*

	
The UDP_* codes indicate that requests were
 received through the UDP interface to the proxy. HTTP normally uses the TCP
 transport protocol, so these requests are not using the HTTP protocol.[11]

	
UDP_HIT

	
A valid copy of the resource was served out
 of the cache.

	
UDP_MISS

	
The resource was not in the cache.

	
UDP_DENIED

	
The request for this resource was denied,
 probably because the requestor does not have permission to make requests for
 this resource.

	
UDP_INVALID

	
The request that the proxy received was
 invalid.

	
UDP_MISS_NOFETCH

	
Used by Squid during specific operation modes or in the
 cache of frequent failures. A cache miss was returned and the resource was
 not fetched.

	
NONE

	
Logged sometimes with errors.

	
TCP_CLIENT_REFRESH

	
See TCP_CLIENT_REFRESH_MISS.

	
TCP_SWAPFAIL

	
See TCP_SWAPFAIL_MISS.

	
UDP_RELOADING

	
See UDP_MISS_NOFETCH.

[11] Squid has its own protocol for making
these requests: ICP. This protocol is used for cache-to-cache requests. See http://www.squid-cache.org
for more information.

21.3 Hit
Metering

Origin servers often keep detailed logs for billing purposes. Content
providers need to know how often URLs are accessed, advertisers want to know
how often their ads are shown, and web authors want to know how popular their
content is. Logging works well for tracking these things when clients visit web
servers directly.

However, caches stand between clients and
servers and prevent many accesses from reaching servers (the very purpose of
caches).[12]
Because caches handle many HTTP requests and satisfy them without visiting the
origin server, the server has no record that a client accessed its content,
creating omissions in log files.

[12] Recall that virtually every browser has a cache.

Missing log data makes content providers
resort to cache busting
for their most important pages. Cache busting refers to a content producer
intentionally making certain content uncacheable, so all requests for this
content must go to the origin server.[13] This allows the origin server to log the access. Defeating caching
might yield better logs, but it slows down requests and increases load on the
origin server and network.

[13] Chapter 7
describes how HTTP responses can be marked as uncacheable.

Because proxy caches (and some clients) keep
their own logs, if servers could get access to these logs—or at least have a
crude way to determine how often their content is served by a proxy cache—cache
busting could be avoided. The proposed Hit Metering protocol, an extension to
HTTP, suggests a solution to this problem. The Hit Metering protocol requires
caches to periodically report cache access statistics to origin servers.

RFC 2227 defines the Hit Metering protocol in
detail. This section provides a brief tour of the proposal.

21.3.1 Overview

The Hit Metering protocol defines an
extension to HTTP that provides a few basic facilities that caches and servers
can implement to share access information and to regulate how many times cached
resources can be used.

Hit Metering is, by design, not a complete
solution to the problem caches pose for logging access, but it does provide a
basic means for obtaining metrics that servers want to track. The Hit Metering
protocol has not been widely implemented or deployed (and may never be). That
said, a cooperative scheme like Hit Metering holds some promise of providing
accurate access statistics while retaining caching performance gains. Hopefully,
that will be motivation to implement the Hit Metering protocol instead of
marking content uncacheable.

21.3.2 The Meter Header

The Hit Metering extension proposes the addition of a new
header, Meter, that caches and servers can use to pass to each other directives
about usage and reporting, much like the Cache-Control header allows caching
directives to be exchanged.

Table 21-10 defines the various directives and
who can pass them in the Meter header.

	
Table 21-10. Hit Metering directives

	
Directive

	
Abbreviation

	
Who

	
Description

	
will-report-and-limit

	
w

	
Cache

	
The cache is capable of reporting usage and obeying any
 usage limits the server specifies.

	
wont-report

	
x

	
Cache

	
The cache is able to obey usage limits but won't report
 usage.

	
wont-limit

	
y

	
Cache

	
The cache is able to report usage but won't limit usage.

	
count

	
c

	
Cache

	
The reporting directive, specified as
 "uses/reuses" integers—for example, ":count=2/4".[14]

	
max-uses

	
u

	
Server

	
Allows the server to specify the maximum number of times a
 response can be used by a cache—for example, "max-uses=100".

	
max-reuses

	
r

	
Server

	
Allows the server to specify the maximum number of times a response
 can be reused by a cache—for example, "max-reuses=100".

	
do-report

	
d

	
Server

	
The server requires proxies to send usage reports.

	
dont-report

	
e

	
Server

	
The server does not want usage reports.

	
timeout

	
t

	
Server

	
Allows the server to specify a timeout on the metering of a
 resource. The cache should send a report at or before the specified timeout,
 plus or minus 1 minute. The timeout is specified in minutes—for example,
 "timeout=60".

	
wont-ask

	
n

	
Server

	
The server does not want any metering information.

[14] Hit Metering defines a use as satisfying a request with the response,
whereas a reuse is revalidating a client
request.

Figure 21-1 shows an example of Hit Metering
in action. The first part of the transaction is just a normal HTTP transaction
between a client and proxy cache, but in the proxy request, note the insertion
of the Meter header and the response from the server. Here, the proxy is
informing the server that it is capable of doing Hit Metering, and the server
in turn is asking the proxy to report its hit counts.

Figure 21-1. Hit Metering example

[image: figs/http_2101.gif]

The request completes as it normally would,
from the client's perspective, and the proxy begins tracking hits to that
resource on behalf of the server. Later, the proxy tries to revalidate the
resource with the server. The proxy embeds the metered information it has been
tracking in the conditional request to the server.

21.4 A Word on
Privacy

Because logging really is an administrative function that servers
and proxies perform, the whole operation is transparent to users. Often, they
may not even be aware that their HTTP transactions are being logged—in fact,
many users probably do not even know that they are using the HTTP protocol when
accessing content on the Web.

Web application developers and administrators
need to be aware of the implications of tracking a user's HTTP transactions. Much
can be gleaned about a user based on the information he retrieves. This
information obviously can be put to bad use—discrimination, harassment,
blackmail, etc. Web servers and proxies that log must be vigilant in protecting
the privacy of their end users.

Sometimes, such as in work environments,
tracking a user's usage to make sure he is not goofing off may be appropriate,
but administrators also should make public the fact that people's transactions
are being monitored.

In short, logging is a very useful tool for
the administrator and developer—just be aware of the privacy infringements that
logs can have without the permission or knowledge of the users whose actions
are being logged.

21.5 For More
Information

For more information on logging, refer to:

http://httpd.apache.org/docs/logs.html

"Apache HTTP
Server: Log Files." Apache HTTP Server Project web site.

http://www.squid-cache.org/Doc/FAQ/FAQ-6.html

"Squid Log
Files." Squid Proxy Cache web site.

http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

"Logging
Control in W3C httpd."

http://www.w3.org/TR/WD-logfile.html

"Extended Log
File Format."

http://www.ietf.org/rfc/rfc2227.txt

RFC 2227,
"Simple Hit-Metering and Usage-Limiting for HTTP," by J. Mogul and P.
Leach.

Part VI:
Appendixes

This collection of appendixes contains useful
reference tables, background information, and tutorials on a variety of topics
relevant to HTTP architecture and implementation:

·
Appendix A

·
Appendix B

·
Appendix C

·
Appendix D

·
Appendix E

·
Appendix F

·
Appendix G

·
Appendix H

Appendix A. URI Schemes

Many
URI schemes have been defined, but few are in common use. Generally speaking,
those URI schemes with associated RFCs are in more common use, though there are
a few schemes that have been developed by leading software corporations
(notably Netscape and Microsoft), but not formalized, that also are in wide
use.

The W3C maintains a list of URI schemes, which you can view
at:

http://www.w3.org/Addressing/schemes.html

The IANA also maintains a list of URL schemes, at:

http://www.iana.org/assignments/uri-schemes

Table A-1 informally describes some of the
schemes that have been proposed and those that are in active use. Note that
many of the approximately 90 schemes in the table are not widely used, and many
are extinct.

	
Table A-1. URI schemes from the
 W3C registry

	
Scheme

	
Description

	
RFCs

	
about

	
Netscape scheme to explore aspects of the browser. For
 example: about by itself is the same as choosing "About
 Communicator" from the Navigator Help menu, about:cache displays
 disk-cache statistics, and about:plugins displays information about configured
 plug-ins. Other browsers, such as Microsoft Internet Explorer, also use this
 scheme.

	

	
acap

	
Application Configuration Access Protocol.

	
2244

	
afp

	
For file-sharing services using the Apple Filing Protocol
 (AFP) protocol, defined as part of the expired IETF draft-ietf-svrloc-afp-service-01.txt.

	

	
afs

	
Reserved for future use by the Andrew File System.

	

	
callto

	
Initiates a Microsoft NetMeeting conference session, such
 as:

callto: ws3.joes-hardware.com/joe@joes-hardware.com

	

	
chttp

	
The CHTTP caching protocol defined by Real Networks.
 RealPlayer does not cache all items streamed by HTTP. Instead, you designate
 files to cache by using chttp:// instead of http:// in the file's URL. When RealPlayer reads a
 CHTTP URL in a SMIL file, it first checks its disk cache for the file. If the
 file isn't present, it requests the file through HTTP, storing the file in
 its cache.

	

	
cid

	
The use of [MIME] within email to convey web pages and their
 associated images requires a URL scheme to permit the HTML to refer to the
 images or other data included in the message. The Content-ID URL,
 "cid:", serves that purpose.

	
23922111

	
clsid

	
Allows Microsoft OLE/COM (Component Object Model) classes to
 be referenced. Used to insert active objects into web pages.

	

	
data

	
Allows inclusion of small, constant data items as
 "immediate" data. This URL encodes the text/plain string "A
 brief note":

data:A%20brief%20note

	
2397

	
date

	
Proposal for scheme to support dates, as in date:1999-03-04T20:42:08.

	

	
dav

	
To ensure correct interoperation based on this
 specification, the IANA must reserve the URI namespaces starting with
 "DAV:" and with "opaquelocktoken:" for use by this
 specification, its revisions, and related WebDAV specifications.

	
2518

	
dns

	
Used by REBOL software.

See http://www.rebol.com/users/valurl.html.

	

	
eid

	
The external ID (eid) scheme provides a mechanism by which
 the local application can reference data that has been obtained by other,
 non-URL scheme means. The scheme is intended to provide a general escape
 mechanism to allow access to information for applications that are too
 specialized to justify their own schemes. There is some controversy about
 this URI.

See http://www.ics.uci.edu/pub/ietf/uri/draft-finseth-url-00.txt.

	

	
fax

	
The "fax" scheme describes a connection to a
 terminal that can handle telefaxes (facsimile machines).

	
2806

	
file

	
Designates files accessible on a particular host computer. A
 hostname can be included, but the scheme is unusual in that it does not
 specify an Internet protocol or access method for such files; as such, its
 utility in network protocols between hosts is limited.

	
1738

	
finger

	
The finger URL has the form:

finger://host[:port][/<request>]

The <request> must conform with the RFC 1288 request
 format.

See http://www.ics.uci.edu/pub/ietf/uri/draft-ietf-uri-url-finger-03.txt.

	

	
freenet

	
URIs for information in the Freenet distributed information
 system.

See http://freenet.sourceforge.net.

	

	
ftp

	
File Transfer Protocol scheme.

	
1738

	
gopher

	
The archaic gopher protocol.

	
1738

	
gsm-sms

	
URIs for the GSM mobile phone short message service.

	

	
h323, h324

	
Multimedia conferencing URI schemes.

See http://www.ics.uci.edu/pub/ietf/uri/draft-cordell-sg16-conv-url-00.txt.

	

	
hdl

	
The Handle System is a comprehensive system for assigning,
 managing, and resolving persistent identifiers, known as "handles,"
 for digital objects and other resources on the Internet. Handles can be used
 as URNs.

See http://www.handle.net.

	

	
hnews

	
HNEWS is an HTTP-tunneling variant of the NNTP news
 protocol. The syntax of hnews URLs is designed to be compatible with the
 current common usage of the news URL scheme.

See http://www.ics.uci.edu/pub/ietf/uri/draft-stockwell-hnews-url-00.txt.

	

	
http

	
The HTTP protocol. Read this book for more information.

	
2616

	
https

	
HTTP over SSL.

See http://sitesearch.netscape.com/eng/ssl3/draft302.txt.

	

	
iioploc

	
CORBA extensions. The Interoperable Name Service defines one
 URL-format object reference, iioploc, that can be typed into a program to
 reach defined services at remote locations, including the Naming Service. For
 example, this iioploc identifier:

iioploc://www.omg.org/NameService

would resolve to the CORBA Naming Service running on the
 machine whose IP address corresponded to the domain name www.omg.org.

See http://www.omg.org.

	

	
ilu

	
The Inter-Language Unification (ILU) system is a
 multilingual object interface system. The object interfaces provided by ILU
 hide implementation distinctions between different languages, different
 address spaces, and different operating system types. ILU can be used to
 build multilingual object-oriented libraries ("class libraries")
 with well-specified, language-independent interfaces. It also can be used to
 implement distributed systems.

See ftp://parcftp.parc.xerox.com/pub/ilu/ilu.html.

	

	
imap

	
The IMAP URL scheme is used to designate IMAP servers,
 mailboxes, messages, MIME bodies [MIME], and search programs on Internet
 hosts accessible using the IMAP protocol.

	
2192

	
IOR

	
CORBA interoperable object reference.

See http://www.omg.org.

	

	
irc

	
The irc URL scheme is used to refer to either Internet Relay
 Chat (IRC) servers or individual entities (channels or people) on IRC
 servers.

See http://www.w3.org/Addressing/draft-mirashi-url-irc-01.txt.

	

	
isbn

	
Proposed scheme for ISBN book references.

See http://lists.w3.org/Archives/Public/www-talk/1991NovDec/0008.html.

	

	
java

	
Identifies Java classes.

	

	
javascript

	
The Netscape browser processes javascript URLs, evaluates
 the expression after the colon (:), if there is one, and loads a page
 containing the string value of the expression, unless it is undefined.

	

	
jdbc

	
Used in the Java SQL API.

	

	
ldap

	
Allows Internet clients direct access to the LDAP protocol.

	
2255

	
lid

	
The Local Identifier (lid:) scheme.

See draft-blackketter-lid-00.

	

	
lifn

	
A Location-Independent File Name (LIFN) for the Bulk File
 Distribution distributed storage system developed at UTK.

	

	
livescript

	
Old name for JavaScript.

	

	
lrq

	
See h323.

	

	
mailto

	
The mailto URL scheme is used to designate the Internet
 mailing address of an individual or service.

	
2368

	
mailserver

	
Old proposal from 1994-1995 to let an entire message be
 encoded in a URL, so that (for example) the URL can automatically send email
 to a mail server for subscribing to a mailing list.

	

	
md5

	
MD5 is a cryptographic checksum.

	

	
mid

	
The mid scheme uses (a part of) the message-id of an email message
 to refer to a specific message.

	
23922111

	
mocha

	
See javascript.

	

	
modem

	
The modem scheme describes a connection to a terminal that
 can handle incoming data calls.

	
2806

	
mms, mmst, mmsu

	
Scheme for Microsoft Media Server (MMS) to stream Active
 Streaming Format (ASF) files. To force UDP transport, use the mmsu scheme. To
 force TCP transport, use mmst.

	

	
news

	
The news URL scheme is used to refer to either news groups
 or individual articles of USENET news. A news URL takes one of two forms: news:<newsgroup-name> or news:<message-id>.

	
17381036

	
nfs

	
Used to refer to files and directories on NFS servers.

	
2224

	
nntp

	
An alternative method of referencing news articles, useful
 for specifying news articles from NNTP servers. An nntp URL looks like:

nntp://<host>:<port>/<newsgroup-name>/<article-num>

Note that while nntp URLs specify a unique location for the article
 resource, most NNTP servers currently on the Internet are configured to allow
 access only from local clients, and thus nntp URLs do not designate globally
 accessible resources. Hence, the news form of URL is preferred as a way of
 identifying news articles.

	
1738977

	
opaquelocktoken

	
A WebDAV lock token, represented as a URI, that identifies a
 particular lock. A lock token is returned by every successful LOCK operation
 in the lockdiscovery property in the response body and also can be found through
 lock discovery on a resource. See RFC 2518.

	

	
path

	
The path scheme defines a uniformly hierarchical namespace
 where a path URN is a sequence of components and an optional opaque string.

See http://www.hypernews.org/~liberte/www/path.html.

	

	
phone

	
Used in "URLs for Telephony"; replaced with tel:
 in RFC 2806.

	

	
pop

	
The POP URL designates a POP email server, and optionally a port
 number, authentication mechanism, authentication ID, and/or authorization ID.

	
2384

	
pnm

	
Real Networks's streaming protocol.

	

	
pop3

	
The POP3 URL scheme allows a URL to specify a POP3 server, allowing
 other protocols to use a general "URL to be used for mail access"
 in place of an explicit reference to POP3. Defined in expired draft-earhart-url-pop3-00.txt.

	

	
printer

	
Abstract URLs for use with the Service Location standard.

See draft-ietf-srvloc-printer-scheme-02.txt.

	

	
prospero

	
Names resources to be accessed via the Prospero Directory
 Service.

	
1738

	
res

	
Microsoft scheme that specifies a resource to be obtained
 from a module. Consists of a string or numerical resource type, and a string
 or numerical ID.

	

	
rtsp

	
Real-time streaming protocol that is the basis for Real
 Networks's modern streaming control protocols.

	
2326

	
rvp

	
URLs for the RVP rendezvous protocol, used to notify the
 arrival of users on a computer network.

See draft-calsyn-rvp-01.

	

	
rwhois

	
RWhois is an Internet directory access protocol, defined in
 RFC 1714 and RFC 2167. The RWhois URL gives clients direct access to rwhois.

See http://www.rwhois.net/rwhois/docs/.

	

	
rx

	
An architecture to allow remote graphical applications to
 display data inside web pages.

See http://www.w3.org/People/danield/papers/mobgui/.

	

	
sdp

	
Session Description Protocol (SDP) URLs. See RFC 2327.

	

	
service

	
The service scheme is used to provide access information for
 arbitrary network services. These URLs provide an extensible framework for
 client-based network software to obtain configuration information required to
 make use of network services.

	
2609

	
sip

	
The sip* family of schemes are used to establish multimedia
 conferences using the Session Initiation Protocol (SIP).

	
2543

	
shttp

	
S-HTTP is a superset of HTTP designed to secure HTTP connections
 and provide a wide variety of mechanisms to provide for confidentiality,
 authentication, and integrity. It has not been widely deployed, and it has
 mostly been supplanted with HTTPS SSL-encrypted HTTP.

See http://www.homeport.org/~adam/shttp.html.

	

	
snews

	
SSL-encrypted news.

	

	
STANF

	
Old proposal for stable network filenames. Related to URNs.

See http://web3.w3.org/Addressing/#STANF.

	

	
t120

	
See h323.

	

	
tel

	
URL to place a call using the telephone network.

	
2806

	
telephone

	
Used in previous drafts of tel.

	

	
telnet

	
Designates interactive services that may be
 accessed by the Telnet protocol. A telnet URL takes the form:

telnet://<user>:<password>@<host>:<port>/

	
1738

	
tip

	
Supports TIP atomic Internet transactions.

	
23712372

	
tn3270

	
Reserved, as per ftp://ftp.isi.edu/in-notes/iana/assignments/url-schemes.

	

	
tv

	
The TV URL names a particular television
 broadcast channel.

	
2838

	
uuid

	
Universally unique identifiers (UUIDs)
 contain no information about location. They also are known as globally unique
 identifiers (GUIDs). They are persistent over time, like URNs, and consist of
 a 128-bit unique ID. UUID URIs are useful in situations where a unique
 identifier is required that cannot or should not be tied to a particular
 physical root namespace (such as a DNS name).

See draft-kindel-uuid-uri-00.txt.

	

	
urn

	
Persistent, location-independent, URNs.

	
2141

	
vemmi

	
Allows versatile multimedia interface
 (VEMMI) client software and VEMMI terminals to connect to VEMMI-compliant
 services. VEMMI is an international standard for online multimedia
 services.

	
2122

	
videotex

	
Allows videotex client software or terminals to connect to
 videotex services compliant with the ITU-T and ETSI videotex standards.

See http://www.ics.uci.edu/pub/ietf/uri/draft-mavrakis-videotex-url-spec-01.txt.

	

	
view-source

	
Netscape Navigator source viewers. These view-source URLs
 display HTML that was generated with JavaScript.

	

	
wais

	
The wide area information service—an early form of search
 engine.

	
1738

	
whois++

	
URLs for the WHOIS++ simple Internet directory protocol.

See http://martinh.net/wip/whois-url.txt.

	
1835

	
whodp

	
The Widely Hosted Object Data Protocol (WhoDP) exists to
 communicate the current location and state of large numbers of dynamic,
 relocatable objects. A WhoDP program "subscribes" to locate and
 receive information about an object and "publishes" to control the
 location and visible state of an object.

See draft-mohr-whodp-00.txt.

	

	
z39.50r, z39.50s

	
Z39.50 session and retrieval URLs. Z39.50 is an information
 retrieval protocol that does not fit neatly into a retrieval model designed
 primarily around the stateless fetch of data. Instead, it models a general
 user inquiry as a session-oriented, multi-step task, any step of which may be
 suspended temporarily while the server requests additional parameters from
 the client before continuing.

	
2056

Appendix B.
HTTP Status Codes

This appendix is a quick
reference of HTTP status codes and their meanings.

B.1 Status Code
Classifications

HTTP status codes are segmented into five
classes, shown in Table B-1.

	
Table B-1. Status code
 classifications

	
Overall range

	
Defined range

	
Category

	
100-199

	
100-101

	
Informational

	
200-299

	
200-206

	
Successful

	
300-399

	
300-305

	
Redirection

	
400-499

	
400-415

	
Client error

	
500-599

	
500-505

	
Server error

B.2 Status Codes

Table B-2 is a quick reference for all the
status codes defined in the HTTP/1.1 specification, providing a brief summary
of each. Section 3.4 goes into more detailed descriptions
of these status codes and their uses.

	
Table B-2. Status codes

	
Status code

	
Reason phrase

	
Meaning

	
100

	
Continue

	
An initial part of the request was received, and the client
 should continue.

	
101

	
Switching Protocols

	
The server is changing protocols, as specified by the
 client, to one listed in the Upgrade header.

	
200

	
OK

	
The request is okay.

	
201

	
Created

	
The resource was created (for requests that create server
 objects).

	
202

	
Accepted

	
The request was accepted, but the server has not yet
 performed any action with it.

	
203

	
Non-Authoritative Information

	
The transaction was okay, except the information contained
 in the entity headers was not from the origin server, but from a copy of the
 resource.

	
204

	
No Content

	
The response message contains headers and a status line, but
 no entity body.

	
205

	
Reset Content

	
Another code primarily for browsers; basically means that
 the browser should clear any HTML form elements on the current page.

	
206

	
Partial Content

	
A partial request was successful.

	
300

	
Multiple Choices

	
A client has requested a URL that actually refers to
 multiple resources. This code is returned along with a list of options; the
 user can then select which one he wants.

	
301

	
Moved Permanently

	
The requested URL has been moved. The response should contain
 a Location URL indicating where the resource now resides.

	
302

	
Found

	
Like the 301 status code, but the move is temporary. The
 client should use the URL given in the Location header to locate the resource
 temporarily.

	
303

	
See Other

	
Tells the client that the resource should be fetched using a
 different URL. This new URL is in the Location header of the response
 message.

	
304

	
Not Modified

	
Clients can make their requests conditional by the request
 headers they include. This code indicates that the resource has not changed.

	
305

	
Use Proxy

	
The resource must be accessed through a proxy, the location
 of the proxy is given in the Location header.

	
306

	
(Unused)

	
This status code currently is not used.

	
307

	
Temporary Redirect

	
Like the 301 status code; however, the client should use the
 URL given in the Location header to locate the resource temporarily.

	
400

	
Bad Request

	
Tells the client that it sent a malformed request.

	
401

	
Unauthorized

	
Returned along with appropriate headers that ask the client
 to authenticate itself before it can gain access to the resource.

	
402

	
Payment Required

	
Currently this status code is not used, but
 it has been set aside for future use.

	
403

	
Forbidden

	
The request was refused by the server.

	
404

	
Not Found

	
The server cannot find the requested URL.

	
405

	
Method Not Allowed

	
A request was made with a method that is
 not supported for the requested URL. The Allow header should be included in
 the response to tell the client what methods are allowed on the requested
 resource.

	
406

	
Not Acceptable

	
Clients can specify parameters about what
 types of entities they are willing to accept. This code is used when the
 server has no resource matching the URL that is acceptable for the client.

	
407

	
Proxy Authentication Required

	
Like the 401 status code, but used for
 proxy servers that require authentication for a resource.

	
408

	
Request Timeout

	
If a client takes too long to complete its request, a server
 can send back this status code and close down the connection.

	
409

	
Conflict

	
The request is causing some conflict on a resource.

	
410

	
Gone

	
Like the 404 status code, except that the server once held
 the resource.

	
411

	
Length Required

	
Servers use this code when they require a Content-Length
 header in the request message. The server will not accept requests for the
 resource without the Content-Length header.

	
412

	
Precondition Failed

	
If a client makes a conditional request and one of the
 conditions fails, this response code is returned.

	
413

	
Request Entity Too Large

	
The client sent an entity body that is larger than the
 server can or wants to process.

	
414

	
Request URI Too Long

	
The client sent a request with a request URL that is larger
 than what the server can or wants to process.

	
415

	
Unsupported Media Type

	
The client sent an entity of a content type that the server
 does not understand or support.

	
416

	
Requested Range Not Satisfiable

	
The request message requested a range of a given resource,
 and that range either was invalid or could not be met.

	
417

	
Expectation Failed

	
The request contained an expectation in the Expect request
 header that could not be satisfied by the server.

	
500

	
Internal Server Error

	
The server encountered an error that prevented it from servicing
 the request.

	
501

	
Not Implemented

	
The client made a request that is beyond the server's
 capabilities.

	
502

	
Bad Gateway

	
A server acting as a proxy or gateway encountered a bogus response
 from the next link in the request response chain.

	
503

	
Service Unavailable

	
The server cannot currently service the request but will be
 able to in the future.

	
504

	
Gateway Timeout

	
Similar to the 408 status code, except that the response is
 coming from a gateway or proxy that has timed out waiting for a response to
 its request from another server.

	
505

	
HTTP Version Not Supported

	
The server received a request in a version of the protocol
 that it can't or won't support.

Appendix C.
HTTP Header Reference

It's almost
amusing to remember that the first version of HTTP, 0.9, had no headers. While
this certainly had its down sides, its fun to marvel in its simplistic
elegance.

Well, back to reality. Today there are a
horde of HTTP headers, many part of the specification and still others that are
extensions to it. This appendix provides some background on these official and
extension headers. It also acts as an index for the various headers in this
book, pointing out where their concepts and features are discussed in the
running text. Most of these headers are simple up-front; it's the interactions
with each other and other features of HTTP where things get hairy. This
appendix provides a bit of background for the headers listed and directs you to
the sections of the book where they are discussed at length.

The headers listed in this appendix are drawn
from the HTTP specifications, related documents, and our own experience poking around
with HTTP messages and the various servers and clients on the Internet.

This list is far from exhaustive. There are
many other extension headers floating around on the Web, not to mention those
potentially used in private intranets. Nonetheless, we have attempted to make
this list as complete as possible. See RFC 2616 for the current version of the
HTTP/1.1 specification and a list of official headers and their specification
descriptions.

	
Accept

	

	

	

The Accept
header is used by clients to let servers know what media types are acceptable. The value of the Accept header field is a
list of media types that the client can use. For instance, your web browser cannot
display every type of multimedia object on the Web. By including an Accept
header in your requests, your browser can save you from downloading a video or
other type of object that you can't use.

The Accept header field also may include a
list of quality values (q values) that tell the server which media type is
preferred, in case the server has multiple versions of the media type. See Chapter 17 for a complete
discussion of content negotiation and q values.

Type

Request header

Notes

"*" is a special value that is used
to wildcard media types. For example, "*/*" represents all types, and
"image/*" represents all image types.

Examples

Accept: text/*, image/*

Accept: text/*, image/gif, image/jpeg;q=1

	
Accept-Charset

	

	

	

The Accept-Charset
header is used by clients to tell servers what character sets are acceptable or
preferred. The value of this request header is a list of character sets and possibly
quality values for the listed character sets. The quality values let the server
know which character set is preferred, in case the server has the document in
multiple acceptable character sets. See Chapter 17 for a
complete discussion of content negotiation and q values.

Type

Request header

Notes

As with the Accept header, "*" is a
special character. If present, it represents all character sets, except those
that also are mentioned explicitly in the value. If it's not present, any
charset not in the value field has a default q value of zero, with the
exception of the iso-latin-1 charset, which gets a default of 1.

Basic Syntax

Accept-Charset: 1# ((charset | "*")
[";" "q" "=" qvalue])

Example

Accept-Charset: iso-latin-1

	
Accept-Encoding

	

	

	

The Accept-Encoding
header is used by clients to tell servers what encodings are acceptable. If the
content the server is holding is encoded (perhaps compressed), this request header
lets the server know whether the client will accept it. Chapter 17
contains a complete description of the Accept-Encoding header.

Type

Request header

Basic Syntax

Accept-Encoding: 1# ((content-coding |
"*") [";" "q" "=" qvalue])

Examples

Accept-Encoding:[1]

[1] The empty Accept-Encoding example is not a typo. It refers to the
identity encoding—that is, the unencoded content. If the Accept-Encoding header
is present and empty, only the unencoded content is acceptable.

Accept-Encoding: gzip

Accept-Encoding: compress;q=0.5, gzip;q=1

	
Accept-Language

	

	

	

The Accept-Language
request header functions like the other Accept headers, allowing clients to
inform the server about what languages (e.g., the natural language for content)
are acceptable or preferred. Chapter 17
contains a complete description of the Accept-Language header.

Type

Request header

Basic Syntax

Accept-Language: 1# (language-range
[";" "q" "="qvalue])

language-range = ((1*8ALPHA * ("-"
1*8ALPHA)) | "*")

Examples

Accept-Language: en

Accept-Language: en;q=0.7, en-gb;q=0.5

	
Accept-Ranges

	

	

	

The Accept-Ranges
header differs from the other Accept headers—it is a response header used by
servers to tell clients whether they accept requests for ranges of a resource. The
value of this header tells what type of ranges, if any, the server accepts for
a given resource.

A client can attempt to make a range request
on a resource without having received this header. If the server does not
support range requests for that resource, it can respond with an appropriate
status code[2]
and the Accept-Ranges value "none". Servers might want to send the
"none" value for normal requests to discourage clients from making
range requests in the future.

[2] For example, status code 416 (see Section 3.4.4).

Chapter 17 contains
a complete description of the Accept-Ranges header.

Type

Response header

Basic Syntax

Accept-Ranges: 1# range-unit | none

Examples

Accept-Ranges: none

Accept-Ranges: bytes

	
Age

	

	

	

The Age
header tells the receiver how old a response is. It is the sender's best guess
as to how long ago the response was generated by or revalidated with the origin
server. The value of the header is the sender's guess, a delta in seconds. See Chapter 7 for more
on the Age header.

Type

Response header

Notes

HTTP/1.1 caches must include an Age header in
every response they send.

Basic Syntax

Age: delta-seconds

Example

Age: 60

	
Allow

	

	

	

The Allow
header is used to inform clients what HTTP methods are supported on a
particular resource.

Type

Response header

Notes

An HTTP/1.1 server sending a 405 Method Not
Allowed response must include an Allow header.[3]

[3] See Section 3.4 for
more on the 405 status code.

Basic Syntax

Allow: #Method

Example

Allow: GET, HEAD

	
Authorization

	

	

	

The Authorization
header is sent by a client to authenticate itself with a server. A client will
include this header in its request after receiving a 401 Authentication
Required response from a server. The value of this header depends on the
authentication scheme in use. See Chapter 14 for a
detailed discussion of the Authorization header.

Type

Response header

Basic Syntax

Authorization: authentication-scheme
#authentication-param

Example

Authorization: Basic YnJpYW4tdG90dHk6T3ch

	
Cache-Control

	

	

	

The Cache-Control header is used to pass information about how an
object can be cached. This header is one of the more complex headers introduced
in HTTP/1.1. Its value is a caching directive, giving caches special instructions
about an object's cacheability.

In Chapter 7, we
discuss caching in general as well as the specific details about this header.

Type

General header

Example

Cache-Control: no-cache

	
Client-ip

	

	

	

The Client-ip
header is an extension header used by some older clients and some proxies to
transmit the IP address of the machine on which the client is running.

Type

Extension request header

Notes

Implementors should be aware that the
information provided in the value of this header is not secure.

Basic Syntax

Client-ip: ip-address

Example

Client-ip: 209.1.33.49

	
Connection

	

	

	

The Connection header is a somewhat overloaded header that can
lead to a bit of confusion. This header was used in HTTP/1.0 clients that were
extended with keep-alive connections for control information.[4]
In HTTP/1.1, the older semantics are mostly recognized, but the header has
taken on a new function.

[4] See Chapter 4 for more
on keep-alive and persistent connections.

In HTTP/1.1, the Connection header's value is
a list of tokens that correspond to header names. Applications receiving an
HTTP/1.1 message with a Connection header are supposed to parse the list and
remove any of the headers in the message that are in the Connection header
list. This is mainly for proxies, allowing a server or other proxy to specify
hop-by-hop headers that should not be passed along.

One special token value is "close".
This token means that the connection is going to be closed after the response
is completed. HTTP/1.1 applications that do not support persistent connections
need to insert the Connection header with the "close" token in all
requests and responses.

Type

General header

Notes

While RFC 2616 does not specifically mention
keep-alive as a connection token, some browsers (including those sending
HTTP/1.1 as their versions) use it in making requests.

Basic Syntax

Connection: 1# (connection-token)

Examples

Connection: close

	
Content-Base

	

	

	

The Content-Base
header provides a way for a server to specify a base URL for resolving URLs
found in the entity body of a response.[5]
The value of the Content-Base header is an absolute URL that can be used to
resolve relative URLs found inside the entity.

[5] See Section 2.3 for
more on base URLs.

Type

Entity header

Notes

This header is not defined in RFC 2616; it
was previously defined in RFC 2068, an earlier draft of the HTTP/1.1
specification, and has since been removed from the official specification.

Basic Syntax

Content-Base: absoluteURL

Example

Content-Base: http://www.joes-hardware.com/

	
Content-Encoding

	

	

	

The Content-Encoding
header is used to specify whether any encodings have been performed on the
object. By encoding the content, a server can compress it before sending the response.
The value of the Content-Encoding header tells the client what type or types of
encoding have been performed on the object. With that information, the client
can then decode the message.

Sometimes more than one encoding is applied
to an entity, in which case the encodings must be listed in the order in which
they were performed.

Type

Entity header

Basic Syntax

Content-Encoding: 1# content-coding

Examples

Content-Encoding: gzip

Content-Encoding: compress, gzip

	
Content-Language

	

	

	

The Content-Language
header tells the client the natural language that should be understood in order
to understand the object. For instance, a document written in French would have
a Content-Language value indicating French. If this header is not present in
the response, the object is intended for all audiences. Multiple languages in
the header's value indicate that the object is suitable for audiences of each
language listed.

One caveat about this header is that the
header's value may just represent the natural language of the intended audience
of this object, not all or any of the languages contained in the object. Also,
this header is not limited to text or written data objects; images, video, and
other media types can be tagged with their intended audiences' natural
languages.

Type

Entity header

Basic Syntax

Content-Language: 1# language-tag

Examples

Content-Language: en

Content-Language: en, fr

	
Content-Length

	

	

	

The Content-Length
header gives the length or size of the entity body. If the header is in a
response message to a HEAD HTTP request, the value of the header indicates the size
that the entity body would have been had it been sent.

Type

Entity header

Basic Syntax

Content-Length: 1*DIGIT

Example

Content-Length: 2417

	
Content-Location

	

	

	

The Content-Location
header is included in an HTTP message to give the URL corresponding to the
entity in the message. For objects that may have multiple URLs, a response message
can include a Content-Location header indicating the URL of the object used to
generate the response. The Content-Location can be different from the requested
URL. This generally is used by servers that are directing or redirecting a
client to a new URL.

If the URL is relative, it should be
interpreted relative to the Content-Base header. If the Content-Base header is
not present, the URL used in the request should be used.

Type

Entity header

Basic Syntax

Content-Location: (absoluteURL | relativeURL)

Example

Content-Location:
http://www.joes-hardware.com/index.html

	
Content-MD5

	

	

	

The Content-MD5
header is used by servers to provide a message-integrity check for the message
body. Only an origin server or requesting client should insert a Content-MD5 header
in the message. The value of the header is an MD5 digest[6]
of the (potentially encoded) message body.

[6] The MD5 digest is defined in RFC 1864.

The value of this header allows for an
end-to-end check on the data, useful for detecting unintentional modifications
to the data in transit. It is not intended to be used for security purposes.

RFC 1864 defines this header in more detail.

Type

Entity header

Notes

The MD5 digest value is a base-64 (see Appendix E) or
128-bit MD5 digest, as defined in RFC 1864.

Basic Syntax

Content-MD5: md5-digest

Example

Content-MD5: Q2h1Y2sgSW51ZwDIAXR5IQ==

	
Content-Range

	

	

	

The Content-Range
header is sent as the result of a request that transmitted a range of a
document. It provides the location (range) within the original entity that this
entity represents. It also gives the length of the entire entity.

If an "*" is present in the value
instead of the length of the entire entity, this means that the length was not
known when the response was sent.

See Chapter 15 for
more on the Content-Range header.

Type

Entity header

Notes

Servers responding with the 206 Partial
Content response code must not include a Content-Range header with an
"*" as the length.

Example

Content-Range: bytes 500-999 / 5400

	
Content-Type

	

	

	

The Content-Type
header tells the media type of the object in the message.

Type

Entity header

Basic Syntax

Content-Type: media-type

Example

Content-Type: text/html; charset=iso-latin-1

	
Cookie

	

	

	

The Cookie
header is an extension header used for client identification and tracking. Chapter 11 talks
about the Cookie header and its use in detail (also see Set-Cookie).

Type

Extension request header

Example

Cookie:
ink=IUOK164y59BC708378908CFF89OE5573998A115

	
Cookie2

	

	

	

The Cookie2
header is an extension header used for client identification and tracking. Cookie2
is used to identify what version of cookies a requestor understands. It is
defined in greater detail in RFC 2965.

Chapter 11 talks
about the Cookie2 header and its use in detail.

Type

Extension request header

Example

Cookie2: $version="1"

	
Date

	

	

	

The Date
header gives the date and time at which the message was created. This header is
required in servers' responses because the time and date at which the server
believes the message was created can be used by caches in evaluating the
freshness of a response. For clients, this header is completely optional,
although it's good form to include it.

Type

General header

Basic Syntax

Date: HTTP-date

Examples

Date: Tue, 3 Oct 1997 02:15:31 GMT

HTTP has a few specific date formats. This
one is defined in RFC 822 and is the preferred format for HTTP/1.1 messages. However,
in earlier specifications of HTTP, the date format was not spelled out as well,
so server and client implementors have used other formats, which need to be
supported for the sake of legacy. You will run into date formats like the one
specified in RFC 850, as well as dates in the format produced by the asctime() system call. Here they are for the date
represented above:

Date: Tuesday, 03-Oct-97 02:15:31 GMT RFC 850 format
Date: Tue Oct 3 02:15:31 1997 asctime() format

The asctime()
format is looked down on because it is in local time and it does not specify
its time zone (e.g., GMT). In general, the date header should be in GMT;
however, robust applications should handle dates that either do not specify the
time zone or include Date values in non-GMT time.

	
ETag

	

	

	

The ETag
header provides the entity tag for the entity
contained in the message. An entity tag is basically a way of identifying a
resource.

Entity tags and their relationship to
resources are discussed in detail in Chapter 15.

Type

Entity header

Basic Syntax

ETag: entity-tag

Examples

ETag: "11e92a-457b-31345aa"

ETag: W/"11e92a-457b-3134b5aa"

	
Expect

	

	

	

The Expect
header is used by clients to let servers know that they expect certain
behavior. This header currently is closely tied to the response code 100
Continue (see Section 3.4.1).

If a server does not understand the Expect
header's value, it should respond with a status code of 417 Expectation Failed.

Type

Request header

Basic Syntax

Expect: 1# ("100-continue" |
expectation-extension)

Example

Expect: 100-continue

	
Expires

	

	

	

The Expires
header gives a date and time at which the response is no longer valid. This
allows clients such as your browser to cache a copy and not have to ask the
server if it is still valid until after this time has expired.

Chapter 7
discusses how the Expires header is used—in particular, how it relates to
caches and having to revalidate responses with the origin server.

Type

Entity header

Basic Syntax

Expires: HTTP-date

Example

Expires: Thu, 03 Oct 1997 17:15:00 GMT

	
From

	

	

	

The From
header says who the request is coming from. The format is just a valid Internet
email address (specified in RFC 1123) for the user of the client.

There are potential privacy issues with
using/populating this header. Client implementors should be careful to inform
their users and give them a choice before including this header in a request
message. Given the potential for abuse by people collecting email addresses for
unsolicited mail messages, woe to the implementor who broadcasts this header
unannounced and has to answer to angry users.

Type

Request header

Basic Syntax

From: mailbox

Example

From: slurp@inktomi.com

	
Host

	

	

	

The Host
header is used by clients to provide the server with the Internet hostname and
port number of the machine from which the client wants to make a request. The
hostname and port are those from the URL the client was requesting.

The Host header allows servers to
differentiate different relative URLs based on the hostname, giving the server
the ability to host several different hostnames on the same machine (i.e., the
same IP address).

Type

Request header

Notes

HTTP/1.1 clients must include a Host header
in all requests. All HTTP/1.1 servers must respond with the 400 Bad Request
status code to HTTP/1.1 clients that do not provide a Host header.

Basic Syntax

Host: host [":" port]

Example

Host: www.hotbot.com:80

	
If-Modified-Since

	

	

	

The If-Modified-Since
request header is used to make conditional requests. A client can use the GET
method to request a resource from a server, having the response hinge on
whether the resource has been modified since the client last requested it.

If the object has not been modified, the
server will respond with a 304 Not Modified response, instead of with the
resource. If the object has been modified, the server will respond as if it was
a non-conditional GET request. Chapter 7
discusses conditional requests in detail.

Type

Request header

Basic Syntax

If-Modified-Since: HTTP-date

Example

If-Modified-Since: Thu, 03 Oct 1997 17:15:00
GMT

	
If-Match

	

	

	

Like the If-Modified-Since header, the If-Match header can be used to make a
request conditional. Instead of a date, the If-Match request uses an entity
tag. The server compares the entity tag in the If-Match header with the current
entity tag of the resource and returns the object if the tags match.

The server should use the If-Match value of
"*" to match any entity tag it has for a resource; "*" will
always match, unless the server no longer has the resource.

This header is useful for updating resources
that a client or cache already has. The resource is returned only if it has
changed—that is, if the previously requested object's entity tag does not match
the entity tag of the current version on the server. Chapter 7
discusses conditional requests in detail.

Type

Request header

Basic Syntax

If-Match: ("*" | 1# entity-tag)

Example

If-Match: "11e92a-457b-31345aa"

	
If-None-Match

	

	

	

The If-None-Match
header, like all the If headers, can be used to make a request conditional. The
client supplies the server with a list of entity tags, and the server compares those
tags against the entity tags it has for the resource, returning the resource
only if none match.

This allows a cache to update resources only
if they have changed. Using the If-None-Match header, a cache can use a single
request to both invalidate the entities it has and receive the new entity in
the response. Chapter 7
discusses conditional requests in detail.

Type

Request header

Basic Syntax

If-None-Match: ("*" | 1#
entity-tag)

Example

If-None-Match: "11e92a-457b-31345aa"

	
If-Range

	

	

	

The If-Range
header, like all the If headers, can be used to make a request conditional. It
is used when an application has a copy of a range of a resource, to revalidate
the range or get the complete resource if the range is no longer valid. Chapter 7
discusses conditional requests in detail.

Type

Request header

Basic Syntax

If-Range: (HTTP-date | entity-tag)

Examples

If-Range: Tue, 3 Oct 1997 02:15:31 GMT

If-Range: "11e92a-457b-3134b5aa"

	
If-Unmodified-Since

	

	

	

The If-Unmodified-Since
header is the twin of the If-Modified-Since header. Including it in a request
makes the request conditional. The server should look at the date value of the
header and return the object only if it has not been modified since the date
provided. Chapter 7
discusses conditional requests in detail.

Type

Request header

Basic Syntax

If-Unmodified-Since: HTTP-date

Example

If-Unmodified-Since: Thu, 03 Oct 1997 17:15:00 GMT

	
Last-Modified

	

	

	

The Last-Modified
header tries to provide information about the last time this entity was
changed. This could mean a lot of things. For example, resources typically are
files on a server, so the Last-Modified value could be the last-modified time
provided by the server's filesystem. On the other hand, for dynamically created
resources such as those created by scripts, the Last-Modified value could be
the time the response was created.

Servers need to be careful that the
Last-Modified time is not in the future. HTTP/1.1 servers should reset the
Last-Modified time if it is later than the value that would be sent in the Date
header.

Type

Entity header

Basic Syntax

Last-Modified: HTTP-date

Example

Last-Modified: Thu, 03 Oct 1997 17:15:00 GMT

	
Location

	

	

	

The Location
header is used by servers to direct clients to the location of a resource that
either was moved since the client last requested it or was created in response
to the request.

Type

Response header

Basic Syntax

Location: absoluteURL

Example

Location: http://www.hotbot.com

	
Max-Forwards

	

	

	

This
header is used only with the TRACE method, to limit the number of proxies or
other intermediaries that a request goes through. Its value is an integer. Each
application that receives a TRACE request with this header should decrement the
value before it forwards the request along.

If the value is zero when the application
receives the request, it should send back a 200 OK response to the request,
with an entity body containing the original request. If the Max-Forwards header
is missing from a TRACE request, assume that there is no maximum number of
forwards.

For other HTTP methods, this header should be
ignored. See Section 3.3 for
more on the TRACE method.

Type

Request header

Basic Syntax

Max-Forwards: 1*DIGIT

Example

Max-Forwards: 5

	
MIME-Version

	

	

	

MIME
is HTTP's cousin. While they are radically different, some HTTP servers do
construct messages that are valid under the MIME specification. When this is
the case, the MIME-Version header can be supplied by the server.

This header has never been part of the
official specification, although it is mentioned in the HTTP/1.0 specification.
Many older servers send messages with this header, however, those messages
often are not valid MIME messages, making this header both confusing and
impossible to trust.

Type

Extension general header

Basic Syntax

MIME-Version: DIGIT "." DIGIT

Example

MIME-Version: 1.0

	
Pragma

	

	

	

The Pragma
header is used to pass directions along with the message. These directions
could be almost anything, but often they are used to control caching behavior. Proxies
and gateways must not remove the Pragma header, because it could be intended
for all applications that receive the message.

The most common form of Pragma, Pragma:
no-cache, is a request header that forces caches to request or revalidate the
document from the origin server even when a fresh copy is available in the
cache. It is sent by browsers when users click on the Reload/Refresh button. Many
servers send Pragma: no-cache as a response header (as an equivalent to
Cache-Control: no-cache), but despite its common use, this behavior is
technically undefinded. Not all applications support Pragma response headers.

Chapter 7
discusses the Pragma header and how it is used by HTTP/1.0 applications to
control caches.

Type

Request header

Basic Syntax

Pragma: 1# pragma-directive[7]

[7] The only specification-defined Pragma directive is
"no-cache"; however, you may run into other Pragma headers that have
been defined as extensions to the specification.

Example

Pragma: no-cache

	
Proxy-Authenticate

	

	

	

The Proxy-Authenticate
header functions like the WWW-Authenticate header. It is used by proxies to
challenge an application sending a request to authenticate itself. The full
details of this challenge/response, and other security mechanisms of HTTP, are
discussed in detail in Chapter 14.

If an HTTP/1.1 proxy server is sending a 407
Proxy Authentication Required response, it must include the Proxy-Authenticate
header.

Proxies and gateways must be careful in
interpreting all the Proxy headers. They generally are hop-by-hop headers,
applying only to the current connection. For instance, the Proxy-Authenticate
header requests authentication for the current connection.

Type

Response header

Basic Syntax

Proxy-Authenticate: challenge

Example

Proxy-Authenticate: Basic realm="Super
Secret Corporate FinancialDocuments"

	
Proxy-Authorization

	

	

	

The Proxy-Authorization
header functions like the Authorization header. It is used by client
applications to respond to Proxy-Authenticate challenges. See Chapter 14 for
more on how the challenge/response security mechanism works.

Type

Request header

Basic Syntax

Proxy-Authorization: credentials

Example

Proxy-Authorization: Basic YnJpYW4tdG90dHk6T3ch

	
Proxy-Connection

	

	

	

The Proxy-Connection header was meant to have similar semantics
to the HTTP/1.0 Connection header. It was to be used between clients and
proxies to specify options about the connections (chiefly keep-alive
connections).[8]
It is not a standard header and is viewed as an ad hoc header by the standards
committee. However, it is widely used by browsers and proxies.

[8] See Chapter 4 for more
on keep-alive and persistent connections.

Browser implementors created the
Proxy-Connection header to solve the problem of a client sending an HTTP/1.0
Connection header that gets blindly forwarded by a dumb proxy. A server
receiving the blindly forwarded Connection header could confuse the
capabilities of the client connection with those of the proxy connection.

The Proxy-Connection header is sent instead
of the Connection header when the client knows that it is going through a
proxy. Because servers don't recognize the Proxy-Connection header, they ignore
it, allowing dumb proxies that blindly forward the header to do so without
causing harm.

The problem with this solution occurs if
there is more than one proxy in the path of the client to the server. If the
first one blindly forwards the header to the second, which understands it, the
second proxy can suffer from the same confusion the server did with the
Connection header.

This is the problem that the HTTP working
group had with this solution—they saw it as a hack that solved the case of a
single proxy, but not the bigger problem. Nonetheless, it does handle some of
the more common cases, and because older versions of both Netscape Navigator
and Microsoft Internet Explorer implement it, proxy implementors need to deal
with it. See Chapter 4 for more
information.

Type

General header

Basic Syntax

Proxy-Connection: 1# (connection-token)

Example

Proxy-Connection: close

	
Public

	

	

	

The Public
header allows a server to tell a client what methods it supports. These methods
can be used in future requests by the client. Proxies need to be careful when
they receive a response from a server with the Public header. The header
indicates the capabilities of the server, not the proxy, so the proxy needs to
either edit the list of methods in the header or remove the header before it
sends the response to the client.

Type

Response header

Notes

This header is not defined in RFC 2616. It
was previously defined in RFC 2068, an earlier draft of the HTTP/1.1
specification, but it has since been removed from the official specification.

Basic Syntax

Public: 1# HTTP-method

Example

Public: OPTIONS, GET, HEAD, TRACE, POST

	
Range

	

	

	

The Range
header is used in requests for parts or ranges of an entity. Its value
indicates the range of the entity that is included in the message.

Requests for ranges of a document allow for
more efficient requests of large objects (by requesting them in segments) or
for recovery from failed transfers (allowing a client to request the range of
the resource that did not make it). Range requests and the headers that make
the requests possible are discussed in detail in Chapter 15.

Type

Entity header

Example

Range: bytes=500-1500

	
Referer

	

	

	

The Referer
header is inserted into client requests to let the server know where the client
got the URL from. This is a voluntary effort, for the server's benefit; it
allows the server to better log the requests or perform other tasks. The
misspelling of "Referer" hearkens back to the early days of HTTP, to
the frustration of English-speaking copyeditors throughout the world.

What your browser does is fairly simple. If
you get home page A and click on a link to go to home page B, your browser will
insert a Referer header in the request with value A. Referer headers are
inserted by your browser only when you click on links; requests for URLs you
type in yourself will not contain a Referer header.

Because some pages are private, there are
some privacy concerns with this header. While some of this is unwarranted
paranoia, this header does allow web servers and their administrators to see
where you came from, potentially allowing them to better track your surfing. As
a result, the HTTP/1.1 specification recommends that application writers allow
the user to decide whether this header is transmitted.

Type

Request header

Basic Syntax

Referer: (absoluteURL | relativeURL)

Example

Referer: http://www.inktomi.com/index.html

	
Retry-After

	

	

	

Servers can use the Retry-After header to tell a client when to retry its
request for a resource. It is used with the 503 Service Unavailable status code
to give the client a specific date and time (or number of seconds) at which it
should retry its request.

A server can also use this header when it is
redirecting clients to resources, giving the client a time to wait before
making a request on the resource to which it is redirected.[9]
This can be very useful to servers that are creating dynamic resources,
allowing the server to redirect the client to the newly created resource but
giving time for the resource to be created.

[9] See Table 3-8 for more
on server redirect responses.

Type

Response header

Basic Syntax

Retry-After: (HTTP-date | delta-seconds)

Examples

Retry-After: Tue, 3 Oct 1997 02:15:31 GMT

Retry-After: 120

	
Server

	

	

	

The Server
header is akin to the User-Agent header; it provides a way for servers to
identify themselves to clients. Its value is the server name and an optional
comment about the server.

Because the Server header identifies the
server product and can contain additional comments about the product, its
format is somewhat free-form. If you are writing software that depends on how a
server identifies itself, you should experiment with the server software to see
what it sends back, because these tokens vary from product to product and
release to release.

As with the User-Agent header, don't be
surprised if an older proxy or gateway inserts what amounts to a Via header in
the Server header itself.

Type

Response header

Basic Syntax

Server: 1* (product | comment)

Examples

Server:
Microsoft-Internet-Information-Server/1.0

Server: websitepro/1.1f (s/n wpo-07d0)

Server: apache/1.2b6 via proxy gateway
CERN-HTTPD/3.0 libwww/2.13

	
Set-Cookie

	

	

	

The Set-Cookie
header is the partner to the Cookie header; in Chapter 11, we
discuss the use of this header in detail.

Type

Extension response header

Basic Syntax

Set-Cookie: command

Examples

Set-Cookie: lastorder=00183; path=/orders

Set-Cookie: private_id=519; secure

	
Set-Cookie2

	

	

	

The Set-Cookie2
header is an extension of the Set-Cookie header; in Chapter 11, we
discuss the use of this header in detail.

Type

Extension response header

Basic Syntax

Set-Cookie2: command

Examples

Set-Cookie2: ID="29046";
Domain=".joes-hardware.com"

Set-Cookie2: color=blue

	
TE

	

	

	

The poorly named TE header functions like the Accept-Encoding header, but for
transfer encodings (it could have been named Accept-Transfer-Encoding, but it
wasn't). The TE header also can be used to indicate whether a client can handle
headers in the trailer of a response that has been through the chunked
encoding. See Chapter 15 for more
on the TE header, chunked encoding, and trailers.

Type

Request header

Notes

If the value is empty, only the chunked
transfer encoding is acceptable. The special token "trailers"
indicates that trailer headers are acceptable in a chunked response.

Basic Syntax

TE: # (transfer-codings)

transfer-codings= "trailers" |
(transfer-extension [accept-params])

Examples

TE:

TE: chunked

	
Trailer

	

	

	

The Trailer
header is used to indicate which headers are present in the trailer of a
message. Chapter 15 discusses
chunked encodings and trailers in detail.

Type

General header

Basic Syntax

Trailer: 1#field-name

Example

Trailer: Content-Length

	
Title

	

	

	

The Title
header is a non-specification header that is supposed to give the title of the
entity. This header was part of an early HTTP/1.0 extension and was used
primarily for HTML pages, which have clear title markers that servers can use. Because
many, if not most, media types on the Web do not have such an easy way to
extract a title, this header has limited usefulness. As a result, it never made
it into the official specification, though some older servers on the Net still
send it faithfully.

Type

Response header

Notes

The Title header is not defined in RFC 2616. It
was originally defined in the HTTP/1.0 draft definition (http://www.w3.org/Protocols/HTTP/HTTP2.html) but has since been removed from the official specification.

Basic Syntax

Title: document-title

Example

Title: CNN Interactive

	
Transfer-Encoding

	

	

	

If some encoding had to be performed to
transfer the HTTP message body safely, the message will contain the Transfer-Encoding header. Its value is
a list of the encodings that were performed on the message body. If multiple
encodings were performed, they are listed in order.

The Transfer-Encoding header differs from the
Content-Encoding header because the transfer encoding is an encoding that was
performed by a server or other intermediary application to transfer the
message.

Transfer encodings are discussed in Chapter 15.

Type

General header

Basic Syntax

Transfer-Encoding: 1# transfer-coding

Example

Transfer-Encoding: chunked

	
UA-(CPU, Disp, OS, Color,
 Pixels)

	

	

	

These User-Agent headers are nonstandard and no longer common. They
provide information about the client machine that could allow for better
content selection by a server. For instance, if a server knew that a user's
machine had only an 8-bit color display, the server could select images that
were optimized for that type of display.

With any header that gives information about
the client that otherwise would be unavailable, there are some security
concerns (see Chapter 14 for
more information).

Type

Extension request headers

Notes

These headers are not defined in RFC 2616,
and their use is frowned upon.

Basic Syntax

"UA" "-" ("CPU"
| "Disp" | "OS" | "Color" | "Pixels")
":" machine-value

machine-value = (cpu | screensize | os-name
|display-color-depth)

Examples

	
UA-CPU: x86

	
CPU of client's machine

	
UA-Disp: 640, 480, 8

	
Size and color
 depth of client's display

	
UA-OS: Windows 95

	
Operating system of client machine

	
UA-Color: color8

	
Color depth of client's display

	
UA-Pixels: 640x480

	
Size of client's display

	
Upgrade

	

	

	

The Upgrade
header provides the sender of a message with a means of broadcasting the desire
to use another, perhaps completely different, protocol. For instance, an
HTTP/1.1 client could send an HTTP/1.0 request to a server and include an
Upgrade header with the value "HTTP/1.1", allowing the client to test
the waters and see whether the server speaks HTTP/1.1.

If the server is capable, it can send an
appropriate response letting the client know that it is okay to use the new
protocol. This provides an efficient way to move to other protocols. Most
servers currently are only HTTP/1.0-compliant, and this strategy allows a
client to avoid confusing a server with too many HTTP/1.1 headers until it
determines whether the server is indeed capable of speaking HTTP/1.1.

When a server sends a 101 Switching Protocols
response, it must include this header.

Type

General header

Basic Syntax

Upgrade: 1# protocol

Example

Upgrade: HTTP/2.0

	
User-Agent

	

	

	

The User-Agent
header is used by client applications to identify themselves, much like the
Server header for servers. Its value is the product name and possibly a comment
describing the client application.

This header's format is somewhat free-form. Its
value varies from client product to product and release to release. This header
sometimes even contains information about the machine on which the client is
running.

As with the Server header, don't be surprised
if older proxy or gateway applications insert what amounts to a Via header in
the User-Agent header itself.

Type;

Request header

Basic Syntax

User-Agent: 1* (product | comment)

Example

User-Agent: Mozilla/4.0 (compatible; MSIE
5.5; Windows NT 5.0)

	
Vary

	

	

	

The Vary
header is used by servers to inform clients what headers from a client's
request will be used in server-side negotiation.[10]
Its value is a list of headers that the server looks at to determine what to
send the client as a response.

[10] See Chapter 17 for
more on content negotiation.

An example of this would be a server that
sends special HTML pages based on your web browser's features. A server sending
these special pages for a URL would include a Vary header that indicated that
it looked at the User-Agent header of the request to determine what to send as
a response.

The Vary header also is used by caching
proxies; see Chapter 7 for more
on how the Vary header relates to cached HTTP responses.

Type

Response header

Basic Syntax

Vary: ("*" | 1# field-name)

Example

Vary: User-Agent

	
Via

	

	

	

The Via
header is used to trace messages as they pass through proxies and gateways. It
is an informational header that can be used to see what applications are
handling requests and responses.

When a message passes through an HTTP
application on its way to a client or a server, that application can use the
Via header to tag the message as having gone via
it. This is an HTTP/1.1 header; many older applications insert a Via-like
string in the User-Agent or Server headers of requests and responses.

If the message passes through multiple
in-between applications, each one should tack on its Via string. The Via header
must be inserted by HTTP/1.1 proxies and gateways.

Type

General header

Basic Syntax

Via: 1# (received-protocol received-by
[comment])[11]

[11] See the HTTP/1.1 specification for the complete Via header syntax.

Example

Via: 1.1 joes-hardware.com (Joes-Server/1.0)

The above says that the message passed through the Joes Server
Version 1.0 software running on the machine joes-hardware.com.
Joe's Server was speaking HTTP 1.1. The Via header should be formatted like
this:

HTTP-Version machine-hostname (Application-Name-Version)

	
Warning

	

	

	

The Warning header
is used to give a little more information about what happened during a request.
It provides the server with a way to send additional information that is not in
the status code or reason phrase. Several warning codes are defined in the
HTTP/1.1 specification:

101
Response Is Stale

When a response message is known to
be stale—for instance, if the origin server is unavailable for
revalidation—this warning must be included.

111
Revalidation Failed

If a cache attempts to revalidate a
response with an origin server and the revalidation fails because the cache
cannot reach the origin server, this warning must be included in the response
to the client.

112 Disconnected Operation

An informative
warning; should be used if a cache's connectivity to the network is removed.

113 Heuristic Expiration

Caches must
include this warning if their freshness heuristic is greater than 24 hours and
they are returning a response with an age greater than 24 hours.

199 Miscellaneous Warning

Systems receiving
this warning must not take any automated response; the message may and probably
should contain a body with additional information for the user.

214 Transformation Applied

Must be added by
any intermediate application, such as a proxy, if the application performs any
transformation that changes the content encoding of the response.

299 Miscellaneous Persistent Warning

Systems receiving
this warning must not take any automated reaction; the error may contain a body
with more information for the user.

Type

Response header

Basic Syntax

Warning: 1# warning-value

Example

Warning: 113

	
WWW-Authenticate

	

	

	

The WWW-Authenticate
header is used in 401 Unauthorized responses to issue a challenge
authentication scheme to the client. Chapter 14
discusses the WWW-Authenticate header and its use in HTTP's basic
challenge/response authentication system.

Type

Response header

Basic Syntax

WWW-Authenticate: 1# challenge

Example

WWW-Authenticate: Basic realm="Your
Private Travel Profile"

	
X-Cache

	

	

	

The X headers are all extension headers. The X-Cache header is used by Squid to
inform a client whether a resource is available.

Type

Extension response header

Example

X-Cache: HIT

	
X-Forwarded-For

	

	

	

This
header is used by many proxy servers (e.g., Squid) to note whom a request has
been forwarded for. Like the Client-ip header mentioned earlier, this request
header notes the address from which the request originates.

Type

Extension request header

Basic Syntax

X-Forwarded-For: addr

Example

X-Forwarded-For: 64.95.76.161

	
X-Pad

	

	

	

This
header is used to overcome a bug related to response header length in some
browsers; it pads the response message headers with extra bytes to work around
the bug.

Type

Extension general header

Basic Syntax

X-Pad: pad-text

Example

X-Pad: bogosity

	
X-Serial-Number

	

	

	

The X-Serial-Number
header is an extension header. It was used by some older HTTP applications to
insert the serial number of the licensed software in the HTTP message.

Its use has pretty much died out, but it is
listed here as an example of the X headers that are out there.

Type

Extension general header

Basic Syntax

X-Serial-Number: serialno

Example

X-Serial-Number: 010014056

Appendix D.
MIME Types

MIME media
types (MIME types, for short) are standardized names that describe the contents
of a message entity body (e.g., text/html, image/jpeg). This appendix explains
how MIME types work, how to register new ones, and where to go for more
information.

In addition, this appendix contains 10
convenient tables, detailing hundreds of MIME types, gathered from many sources
around the globe. This may be the most detailed tabular listing of MIME types
ever compiled. We hope these tables are useful to you.

In this appendix, we will:

·
Outline the primary reference material, in Section D.1.

·
Explain the structure of MIME types, in Section D.2.

·
Show you how to register MIME types, in Section D.3.

·
Make it easier for you to look up MIME types.

The following MIME type tables are included
in this appendix:

·
application/*—Table D-3

·
audio/*—Table D-4

·
chemical/*—Table D-5

·
image/*—Table D-6

·
message/*—Table D-7

·
model/*—Table D-8

·
multipart/*—Table D-9

·
text/*—Table D-10

·
video/*—Table D-11

·
Other—Table D-12

D.1 Background

MIME types originally
were developed for multimedia email (MIME stands for Multipurpose Internet Mail
Extensions), but they have been reused for HTTP and several other protocols
that need to describe the format and purpose of data objects.

MIME is defined by five primary documents:

RFC 2045, "MIME: Format of Internet Message
Bodies"

Describes the
overall MIME message structure, and introduces the Content-Type header,
borrowed by HTTP

RFC 2046, "MIME: Media Types"

Introduces MIME
types and their structure

RFC 2047, "MIME: Message Header Extensions for
Non-ASCII Text"

Defines ways to
include non-ASCII characters in headers

RFC 2048, "MIME: Registration Procedures"

Defines how to
register MIME values with the Internet Assigned Numbers Authority (IANA)

RFC 2049, "MIME: Conformance Criteria and
Examples"

Details rules for
compliance, and provides examples

For the purposes of HTTP, we are most
interested in RFC 2046 (Media Types) and RFC 2048 (Registration Procedures).

D.2 MIME Type Structure

Each MIME media type consists of a type,
a subtype, and a list of optional parameters. The type and subtype are
separated by a slash, and the optional parameters begin with a semicolon, if
they are present. In HTTP, MIME media types are widely used in Content-Type and
Accept headers. Here are a few examples:

Content-Type: video/quicktime
Content-Type: text/html; charset="iso-8859-6"
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
Accept: image/gif

D.2.1 Discrete Types

MIME types can
directly describe the object type, or they can describe collections or packages
of other object types. If a MIME type describes an object type directly, it is
a discrete type. These include text files, videos,
and application-specific file formats.

D.2.2 Composite Types

If a MIME type describes a collection or encapsulation of
other content, the MIME type is called a composite
type. A composite type
describes the format of the enclosing package. When the enclosing package is
opened, each enclosed object will have its own type.

D.2.3 Multipart Types

Multipart media
types are composite types. A multipart object consists of multiple component
types. Here's an example of multipart/mixed content, where each component has
its own MIME type:

Content-Type: multipart/mixed; boundary=unique-boundary-1

--unique-boundary-1
Content-type: text/plain; charset=US-ASCII

Hi there, I'm some boring ASCII text...

--unique-boundary-1
Content-Type: multipart/parallel; boundary=unique-boundary-2

--unique-boundary-2
Content-Type: audio/basic

 ... 8000 Hz single-channel mu-law-format
 audio data goes here ...

--unique-boundary-2
Content-Type: image/jpeg

 ... image data goes here ...

--unique-boundary-2--

--unique-boundary-1
Content-type: text/enriched

This is <bold><italic>enriched.</italic></bold>
<smaller>as defined in RFC 1896</smaller>

Isn't it <bigger><bigger>cool?</bigger></bigger>

--unique-boundary-1
Content-Type: message/rfc822

From: (mailbox in US-ASCII)
To: (address in US-ASCII)
Subject: (subject in US-ASCII)
Content-Type: Text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: Quoted-printable

 ... Additional text in ISO-8859-1 goes here ...

--unique-boundary-1--

D.2.4 Syntax

As we stated
earlier, MIME types consist of a primary type, a subtype, and an optional list
of parameters.

The primary type can be a predefined type, an IETF-defined
extension token, or an experimental token (beginning with "x-"). Some
common primary types are described in Table D-1.

	
Table D-1. Common primary MIME
 types

	
Type

	
Description

	
application

	
Application-specific content format
 (discrete type)

	
audio

	
Audio format (discrete type)

	
chemical

	
Chemical data set (discrete IETF extension
 type)

	
image

	
Image format (discrete type)

	
message

	
Message format (composite type)

	
model

	
3-D model format (discrete IETF extension
 type)

	
multipart

	
Collection of multiple objects (composite
 type)

	
text

	
Text format (discrete type)

	
video

	
Video movie format (discrete type)

Subtypes can be primary types (as in "text/text"),
IANA-registered subtypes, or experimental extension tokens (beginning with
"x-").

Types and subtypes are made up of a subset of US-ASCII
characters. Spaces and certain reserved grouping and punctuation characters,
called "tspecials," are control characters and are forbidden from
type and subtype names.

The grammar from RFC 2046 is shown below:

TYPE := "application" | "audio" | "image" | "message" | "multipart" |
 "text" | "video" | IETF-TOKEN | X-TOKEN
SUBTYPE := IANA-SUBTOKEN | IETF-TOKEN | X-TOKEN

IETF-TOKEN := <extension token with RFC and registered with IANA>
IANA-SUBTOKEN := <extension token registered with IANA>
X-TOKEN := <"X-" or "x-" prefix, followed by any token>

PARAMETER := TOKEN "=" VALUE
VALUE := TOKEN / QUOTED-STRING
TOKEN := 1*<any (US-ASCII) CHAR except SPACE, CTLs, or TSPECIALS>
TSPECIALS := "(" | ")" | "<" | ">" | "@" |
 "," | ";" | ":" | "\" | <"> |
 "/" | "[" | "]" | "?" | "="

D.3 MIME Type IANA
Registration

The
MIME media type registration process is described in RFC 2048. The goal of the
registration process is to make it easy to register new media types but also to
provide some sanity checking to make sure the new types are well thought out.

D.3.1 Registration Trees

MIME type tokens are split into four
classes, called "registration trees," each with its own registration
rules. The four trees—IETF, vendor, personal, and experimental—are described in
Table D-2.

	
Table D-2. Four MIME media type
 registration trees

	
Registration tree

	
Example

	
Description

	
IETF

	
text/html

(HTML text)

	
The IETF tree is intended for types that are of general significance
 to the Internet community. New IETF tree media types require approval by the
 Internet Engineering Steering Group (IESG) and an accompanying
 standards-track RFC.

IETF tree types have no periods (.) in tokens.

	
Vendor

(vnd.)

	
image/vnd.fpx

(Kodak FlashPix image)

	
The vendor tree is intended for media types used by
 commercially available products. Public review of new vendor types is
 encouraged but not required.

Vendor tree types begin with "vnd.".

	
Personal/Vanity

(prs.)

	
image/prs.btif

(internal check-management format used by Nations Bank)

	
Private, personal, or vanity media types can be registered
 in the personal tree. These media types will not be distributed commercially.

Personal tree types begin with "prs.".

	
Experimental

(x- or x.)

	
application/x-tar

(Unix tar archive)

	
The experimental tree is for unregistered or experimental
 media types. Because it's relatively simple to register a new vendor or
 personal media type, software should not be distributed widely using x-
 types.

Experimental tree types begin with "x." or
 "x-".

D.3.2 Registration Process

Read RFC 2048 carefully for the details of MIME media type
registration.

The basic registration process is not a formal
standards process; it's just an administrative procedure intended to sanity
check new types with the community, and record them in a registry, without much
delay. The process follows the following steps:

1. Present
the media type to the community for review.

Send a proposed media type
registration to the ietf-types@iana.org mailing list for a
two-week review period. The public posting solicits feedback about the choice
of name, interoperability, and security implications. The "x-" prefix
specified in RFC 2045 can be used until registration is complete.

2. IESG
approval (for IETF tree only).

If the media type is being
registered in the IETF tree, it must be submitted to the IESG for approval and
must have an accompanying standards-track RFC.

3. IANA
registration.

As soon as the media type meets the
approval requirements, the author can submit the registration request to the
IANA, using the email template in Example D-1 and mailing the information to ietf-types@iana.org.
The IANA will register the media type and make the media type application
available to the community at http://www.isi.edu/in-notes/iana/assignments/media-types/.

D.3.3 Registration Rules

The IANA will register media types in
the IETF tree only in response to a communication from the IESG stating that a
given registration has been approved.

Vendor and personal types will be registered by the IANA
automatically and without any formal review as long as the following minimal
conditions are met:

1. Media
types must function as actual media formats. Types that act like transfer
encodings or character sets may not be registered as media types.

2. All
media types must have proper type and subtype names. All type names must be
defined by standards-track RFCs. All subtype names must be unique, must conform
to the MIME grammar for such names, and must contain the proper tree prefixes.

3. Personal
tree types must provide a format specification or a pointer to one.

4. Any
security considerations given must not be obviously bogus. Everyone who is
developing Internet software needs to do his part to prevent security holes.

D.3.4 Registration Template

The actual IANA registration is done via
email. You complete a registration form using the template shown in Example D-1, and mail it to ietf-types@iana.org.[1]

[1] The lightly structured
nature of the form makes the submitted information fine for human consumption
but difficult for machine processing. This is one reason why it is difficult to
find a readable, well-organized summary of MIME types, and the reason we
created the tables that end this appendix.

Example D-1. IANA MIME registration email template

To: ietf-types@iana.org
Subject: Registration of MIME media type XXX/YYY

MIME media type name:

MIME subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications which use this media type:

Additional information:

 Magic number(s):
 File extension(s):
 Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

(One of COMMON, LIMITED USE or OBSOLETE)

Author/Change controller:

(Any other information that the author deems interesting may be added below this line.)

D.3.5 MIME Media Type Registry

The submitted forms are
accessible from the IANA web site (http://www.iana.org). At the time of writing, the actual database of MIME media types
is stored on an ISI web server, at http://www.isi.edu/in-notes/iana/assignments/media-types/.

The media types are stored in a directory
tree, structured by primary type and subtype, with one leaf file per media
type. Each file contains the email submission. Unfortunately, each person
completes the registration template slightly differently, so the quality and
format of information varies across submissions. (In the tables in this
appendix, we tried to fill in the holes omitted by registrants.)

D.4 MIME Type Tables

This section summarizes
hundreds of MIME types in 10 tables. Each table lists the MIME media types
within a particular primary type (image, text, etc.).

The information is gathered from many sources, including the IANA
media type registry, the Apache mime.types file, and assorted Internet
web pages. We spent several days refining the data, plugging holes, and
including descriptive summaries from cross-references to make the data more
useful.

This may well be the most detailed tabular listing of MIME
types ever compiled. We hope you find it handy!

D.4.1 application/*

Table D-3 describes many
of the application-specific MIME media types.

	
Table D-3. "Application"
 MIME types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
application/activemessage

	
Supports the Active Mail groupware system.

	

	
"Active Mail: A Framework for Integrated Groupware
 Applications" in Readings in Groupware and
 Computer-Supported Cooperative Work, Ronald M. Baecker, ed., Morgan
 Kaufmann, ISBN 1558602410

	
application/andrew-inset

	
Supports the creation of multimedia content with the Andrew
 toolkit.

	
ez

	
Multimedia Applications Development
 with the Andrew Toolkit, Nathaniel S. Borenstein, Prentice Hall, ASIN
 0130366331

nsb@bellcore.com

	
application/applefile

	
Permits MIME-based transmission of data with
 Apple/Macintosh-specific information, while allowing general access to
 nonspecific user data.

	

	
RFC 1740

	
application/atomicmail

	
ATOMICMAIL was an experimental research project at Bellcore,
 designed for including programs in electronic mail messages that are executed
 when mail is read. ATOMICMAIL is rapidly becoming obsolete in favor of safe-tcl.

	

	
"ATOMICMAIL Language Reference Manual," Nathaniel
 S. Borenstein, Bellcore Technical Memorandum TM ARH-018429

	
application/batch-SMTP

	
Defines a MIME content type suitable for tunneling an ESMTP mail
 transaction through any MIME-capable transport.

	

	
RFC 2442

	
application/beep+xml

	
Supports the interaction protocol called BEEP. BEEP permits
 simultaneous and independent exchanges of MIME messages between peers, where
 the messages usually are XML-structured text.

	

	
RFC 3080

	
application/cals-1840

	
Supports MIME email exchanges of U.S. Department of Defense
 digital data that was previously exchanged by tapem, as defined by
 MIL-STD-1840.

	

	
RFC 1895

	
application/commonground

	
Common Ground is an electronic document exchange and
 distribution program that lets users create documents that anyone can view,
 search, and print, without requiring that they have the creating applications
 or fonts on their systems.

	

	
Nick Gault

No Hands Software

ngault@nohands.com

	
application/cybercash

	
Supports credit card payment through the CyberCash protocol.
 When a user starts payment, a message is sent by the merchant to the customer
 as the body of a message of MIME type application/cybercash.

	

	
RFC 1898

	
application/dca-rft

	
IBM Document Content Architecture.

	

	
"IBM Document Content Architecture/Revisable Form Text Reference,"
 document number SC23-0758-1, International Business Machines

	
application/dec-dx

	
DEC Document Transfer Format.

	

	
"Digital Document Transmission (DX) Technical
 Notebook," document number EJ29141-86, Digital Equipment Corporation

	
application/dvcs

	
Supports the protocols used by a Data Validation and
 Certification Server (DVCS), which acts as a trusted third party in a
 public-key security infrastructure.

	

	
RFC 3029

	
application/EDI-Consent

	
Supports bilateral trading via electronic data interchange
 (EDI), using nonstandard specifications.

	

	
http://www.isi.edu/in-notes/iana/assignments/media-types/application/EDI-Consent

	
application/EDI-X12

	
Supports bilateral trading via electronic data interchange
 (EDI), using the ASC X12 EDI specifications.

	

	
http://www.isi.edu/in-notes/iana/assignments/media-types/application/EDI-X12

	
application/EDIFACT

	
Supports bilateral trading via electronic data interchange
 (EDI), using the EDIFACT specifications.

	

	
http://www.isi.edu/in-notes/iana/assignments/media-types/application/EDIFACT

	
application/eshop

	
Unknown.

	

	
Steve Katz

System Architecture Shop

steve_katz@eshop.com

	
application/font-tdpfr

	
Defines a Portable Font Resource (PFR) that contains a set
 of glyph shapes, each associated with a character code.

	

	
RFC 3073

	
application/http

	
Used to enclose a pipeline of one or more HTTP request or
 response messages (not intermixed).

	

	
RFC 2616

	
application/hyperstudio

	
Supports transfer of HyperStudio educational hypermedia
 files.

	
stk

	
http://www.hyperstudio.com

	
application/iges

	
A commonly used format for CAD model interchange.

	

	
"ANS/US PRO/IPO-100" U.S. Product Data
 Association2722 Merrilee Drive, Suite 200Fairfax, VA 22031-4499

	
application/index

application/index.cmd

application/index.obj

application/index.response

application/index.vnd

	
Support the Common Indexing Protocol (CIP). CIP is an
 evolution of the Whois++ directory service, used to pass indexing information
 from server to server in order to redirect and replicate queries through a
 distributed database system.

	

	
RFC 2652, and RFCs 2651, 1913, and 1914

	
application/iotp

	
Supports Internet Open Trading Protocol (IOTP) messages over
 HTTP.

	

	
RFC 2935

	
application/ipp

	
Supports Internet Printing Protocol (IPP) over HTTP.

	

	
RFC 2910

	
application/mac-binhex40

	
Encodes a string of 8-bit bytes into a string of 7-bit
 bytes, which is safer for some applications (though not quite as safe as the
 6-bit base-64 encoding).

	
hqx

	
RFC 1341

	
application/mac-compactpro

	
From Apache mime.types.

	
cpt

	

	
application/macwriteii

	
Claris MacWrite II.

	

	

	
application/marc

	
MARC objects are Machine-Readable Cataloging
 records—standards for the representation and communication of bibliographic
 and related information.

	
mrc

	
RFC 2220

	
application/mathematica

application/mathematica-old

	
Supports Mathematica and MathReader numerical analysis
 software.

	
nb, ma, mb

	
The Mathematica Book,
 Stephen Wolfram, Cambridge University Press, ISBN 0521643147

	
application/msword

	
Microsoft Word MIME type.

	
doc

	

	
application/news-message-id

	

	

	
RFCs 822 (message IDs), 1036 (application to news), and 977
 (NNTP)

	
application/news-transmission

	
Allows transmission of news articles by email or other
 transport.

	

	
RFC 1036

	
application/ocsp-request

	
Supports the Online Certificate Status Protocol (OCSP),
 which provides a way to check on the validity of a digital certificate
 without requiring local certificate revocation lists.

	
orq

	
RFC 2560

	
application/ocsp-response

	
Same as above.

	
ors

	
RFC 2560

	
application/octet-stream

	
Unclassified binary data.

	
bin, dms, lha, lzh, exe, class

	
RFC 1341

	
application/oda

	
Used for information encoded according to the Office
 Document Architecture (ODA) standards, using the Office Document Interchange
 Format (ODIF) representation format. The Content-Type line also should
 specify an attribute/value pair that indicates the document application
 profile (DAP), as in:

Content-Type: application/oda;profile=Q112

	
oda

	
RFC 1341

ISO 8613; "Information Processing: Text and Office
 System; Office Document Architecture (ODA) and Interchange Format
 (ODIF)," Part 1-8, 1989

	
application/parityfec

	
Forward error correction parity encoding for RTP data
 streams.

	

	
RFC 3009

	
application/pdf

	
Adode PDF files.

	
pdf

	
See Portable Document Format
 Reference Manual, Adobe Systems, Inc., Addison Wesley, ISBN 0201626284

	
application/pgp-encrypted

	
PGP encrypted data.

	

	
RFC 2015

	
application/pgp-keys

	
PGP public-key blocks.

	

	
RFC 2015

	
application/pgp-signature

	
PGP cryptographic signature.

	

	
RFC 2015

	
application/pkcs10

	
Public Key Crypto System #10—the application/pkcs10 body
 type must be used to transfer a PKCS #10
 certification request.

	
p10

	
RFC 2311

	
application/pkcs7-mime

	
Public Key Crypto System #7—this type is used to carry PKCS
 #7 objects of several types including envelopedData and signedData.

	
p7m

	
RFC 2311

	
application/pkcs7-signature

	
Public Key Crypto System #7—this type always contains a
 single PKCS #7 object of type signedData.

	
p7s

	
RFC 2311

	
application/pkix-cert

	
Transports X.509 certificates.

	
cer

	
RFC 2585

	
application/pkix-crl

	
Transports X.509 certificate revocation lists.

	
crl

	
RFC 2585

	
application/pkixcmp

	
Message format used by X.509 Public Key Infrastructure
 Certificate Management Protocols.

	
pki

	
RFC 2510

	
application/postscript

	
An Adobe PostScript graphics file (program).

	
ai, ps, eps

	
RFC 2046

	
application/prs.alvestrand.titrax-sheet

	
"TimeTracker" program by Harald T. Alvestrand.

	

	
http://domen.uninett.no/~hta/titrax/

	
application/prs.cww

	
CU-Writer for Windows.

	
cw, cww

	
Dr. Somchai Prasitjutrakul

somchaip@chulkn.car.chula.ac.th

	
application/prs.nprend

	
Unknown.

	
rnd, rct

	
John M. Doggett

jdoggett@tiac.net

	
application/remote-printing

	
Contains meta information used when remote printing, for the
 printer cover sheet.

	

	
RFC 1486

Marshall T. Rose

mrose@dbc.mtview.ca.us

	
application/riscos

	
Acorn RISC OS binaries.

	

	
RISC OS Programmer's Reference
 Manuals, Acorn Computers, Ltd., ISBN1852501103

	
application/sdp

	
SDP is intended for describing live multimedia sessions for
 the purposes of session announcement, session invitation, and other forms of
 multimedia session initiation.

	

	
RFC 2327

Henning Schulzrinne

hgs@cs.columbia.edu

	
application/set-payment

application/set-payment-initiation

application/set-registration

application/set-registration-initiation

	
Supports the SET secure electronic transaction payment
 protocol.

	

	
http://www.visa.com

http://www.mastercard.com

	
application/sgml-open-catalog

	
Intended for use with systems that support the SGML Open TR9401:1995
 "Entity Management" specification.

	

	
SGML Open

910 Beaver Grade Road, #3008

Coraopolis, PA 15109

info@sgmlopen.org

	
application/sieve

	
Sieve mail filtering script.

	

	
RFC 3028

	
application/slate

	
The BBN/Slate document format is published as part of the
 standard documentation set distributed with the BBN/Slate product.

	

	
BBN/Slate Product Mgr

BBN Systems and Technologies

10 Moulton Street

Cambridge, MA 02138

	
application/smil

	
The Synchronized Multimedia Integration Language (SMIL)
 integrates a set of independent multimedia objects into a synchronized
 multimedia presentation.

	
smi, smil

	
http://www.w3.org/AudioVideo/

	
application/tve-trigger

	
Supports embedded URLs in enhanced television receivers.

	

	
"SMPTE: Declarative Data Essence, Content Level
 1," produced by the Society of Motion Picture and Television Engineers

http://www.smpte.org

	
application/vemmi

	
Enhanced videotex standard.

	

	
RFC 2122

	
application/vnd.3M.Post-it-Notes

	
Used by the "Post-it® Notes for Internet
 Designers" Internet control/plug-in.

	
pwn

	
http://www.3M.com/psnotes/

	
application/vnd.accpac.simply.aso

	
Simply Accounting v7.0 and higher. Files of this type
 conform to Open Financial Exchange v1.02 specifications.

	
aso

	
http://www.ofx.net

	
application/vnd.accpac.simply.imp

	
Used by Simply Accounting v7.0 and higher, to import its own
 data.

	
imp

	
http://www.ofx.net

	
application/vnd.acucobol

	
ACUCOBOL-GT Runtime.

	

	
Dovid Lubin

dovid@acucobol.com

	
application/vnd.aether.imp

	
Supports airtime-efficient Instant Message communications between
 an Instant Messaging service, such as AOL Instant Messenger, Yahoo!
 Messenger, or MSN Messenger, and a special set of Instant Messaging client
 software on a wireless device.

	

	
Wireless Instant Messaging Protocol (IMP) specification
 available from Aether Systems by license

	
application/vnd.anser-web-certificate-issue-initiation

	
Trigger for web browsers to launch the ANSER-WEB Terminal
 Client.

	
cii

	
Hiroyoshi Mori

mori@mm.rd.nttdata.co.jp

	
application/vnd.anser-web-funds-transfer-initiation

	
Same as above.

	
fti

	
Same as above

	
application/vnd.audiograph

	
AudioGraph.

	
aep

	
Horia Cristian

H.C.Slusanschi@massey.ac.nz

	
application/vnd.bmi

	
BMI graphics format by CADAM Systems.

	
bmi

	
Tadashi Gotoh

tgotoh@cadamsystems.co.jp

	
application/vnd.businessobjects

	
BusinessObjects 4.0 and higher.

	
rep

	

	
application/vnd.canon-cpdl

application/vnd.canon-lips

	
Supports Canon, Inc. office imaging products.

	

	
Shin Muto

shinmuto@pure.cpdc.canon.co.jp

	
application/vnd.claymore

	
Claymore.exe.

	
cla

	
Ray Simpson

ray@cnation.com

	
application/vnd.commerce-battelle

	
Supports a generic mechanism for delimiting smart card-based
 information, for digital commerce, identification, authentication, and
 exchange of smart card-based card holder information.

	
ica, icf, icd, icc, ic0, ic1, ic2, ic3, ic4, ic5, ic6, ic7,
 ic8

	
David C. Applebaum

applebau@131.167.52.15

	
application/vnd.commonspace

	
Allows for proper transmission of CommonSpace™ documents via
 MIME-based processes. CommonSpace is published by Sixth Floor Media, part of
 the Houghton-Mifflin Company.

	
csp, cst

	
Ravinder Chandhok

chandhok@within.com

	
application/vnd.contact.cmsg

	
Used for CONTACT software's CIM DATABASE.

	
cdbcmsg

	
Frank Patz

fp@contact.de

http://www.contact.de

	
application/vnd.cosmocaller

	
Allows for files containing connection parameters to be
 downloaded from web sites, invokes the CosmoCaller application to interpret
 the parameters, and initiates connections with the CosmoCallACD server.

	
cmc

	
Steve Dellutri

sdellutri@cosmocom.com

	
application/vnd.ctc-posml

	
Continuum Technology's PosML.

	
pml

	
Bayard Kohlhepp

bayardk@ctcexchange.com

	
application/vnd.cups-postscript

application/vnd.cups-raster

application/vnd.cups-raw

	
Supports Common UNIX Printing System (CUPS) servers and
 clients.

	

	
http://www.cups.org

	
application/vnd.cybank

	
Proprietary data type for Cybank data.

	

	
Nor Helmee B. Abd. Halim

helmee@cybank.net

http://www.cybank.net

	
application/vnd.dna

	
DNA is intended to easily Web-enable any 32-bit Windows
 application.

	
dna

	
Meredith Searcy

msearcy@newmoon.com

	
application/vnd.dpgraph

	
Used by DPGraph 2000 and MathWare Cyclone.

	
dpg, mwc, dpgraph

	
David Parker

http://www.davidparker.com

	
application/vnd.dxr

	
Digital Xpress Reports by PSI Technologies.

	
dxr

	
Michael Duffy

miked@psiaustin.com

	
application/vnd.ecdis-update

	
Supports ECDIS applications.

	

	
http://www.sevencs.com

	
application/vnd.ecowin.chart

application/vnd.ecowin.filerequest

application/vnd.ecowin.fileupdate

application/vnd.ecowin.series

application/vnd.ecowin.seriesrequest

application/vnd.ecowin.seriesupdate

	
EcoWin.

	
mag

	
Thomas Olsson

thomas@vinga.se

	
application/vnd.enliven

	
Supports delivery of Enliven interactive multimedia.

	
nml

	
Paul Santinelli

psantinelli@narrative.com

	
application/vnd.epson.esf

	
Proprietary content for Seiko Epson QUASS Stream Player.

	
esf

	
Shoji Hoshina

Hoshina.Shoji@exc.epson.co.jp

	
application/vnd.epson.msf

	
Proprietary content for Seiko Epson QUASS Stream Player.

	
msf

	
Same as above

	
application/vnd.epson.quickanime

	
Proprietary content for Seiko Epson QuickAnime Player.

	
qam

	
Yu Gu

guyu@rd.oda.epson.co.jp

	
application/vnd.epson.salt

	
Proprietary content for Seiko Epson SimpleAnimeLite Player.

	
slt

	
Yasuhito Nagatomo

naga@rd.oda.epson.co.jp

	
application/vnd.epson.ssf

	
Proprietary content for Seiko Epson QUASS Stream Player.

	
ssf

	
Shoji Hoshina

Hoshina.Shoji@exc.epson.co.jp

	
application/vnd.ericsson.quickcall

	
Phone Doubler Quick Call.

	
qcall, qca

	
Paul Tidwell

paul.tidwell@ericsson.com

http://www.ericsson.com

	
application/vnd.eudora.data

	
Eudora Version 4.3 and later.

	

	
Pete Resnick

presnick@qualcomm.com

	
application/vnd.fdf

	
Adobe Forms Data Format.

	

	
"Forms Data Format," Technical Note 5173, Adobe
 Systems

	
application/vnd.ffsns

	
Used for application communication with FirstFloor's Smart
 Delivery.

	

	
Mary Holstege

holstege@firstfloor.com

	
application/vnd.FloGraphIt

	
NpGraphIt.

	
gph

	

	
application/vnd.framemaker

	
Adobe FrameMaker files.

	
fm, mif, book

	
http://www.adobe.com

	
application/vnd.fsc.weblaunch

	
Supports Friendly Software Corporation's golf simulation
 software.

	
fsc

	
Derek Smith

derek@friendlysoftware.com

	
application/vnd.fujitsu.oasys

application/vnd.fujitsu.oasys2

	
Supports Fujitsu's OASYS software.

	
oas

	
Nobukazu Togashi

togashi@ai.cs.fujitsu.co.jp

	
application/vnd.fujitsu.oasys2

	
Supports Fujitsu's OASYS V2 software.

	
oa2

	
Same as above

	
application/vnd.fujitsu.oasys3

	
Support's Fujitsu's OASYS V5 software.

	
oa3

	
Seiji Okudaira

okudaira@candy.paso.fujitsu.co.jp

	
application/vnd.fujitsu.oasysgp

	
Supports Fujitsu's OASYS GraphPro software.

	
fg5

	
Masahiko Sugimoto

sugimoto@sz.sel.fujitsu.co.jp

	
application/vnd.fujitsu.oasysprs

	
Support's Fujitsu's OASYS Presentation software.

	
bh2

	
Masumi Ogita

ogita@oa.tfl.fujitsu.co.jp

	
application/vnd.fujixerox.ddd

	
Supports Fuji Xerox's EDMICS 2000 and DocuFile.

	
ddd

	
Masanori Onda

Masanori.Onda@fujixerox.co.jp

	
application/vnd.fujixerox.docuworks

	
Supports Fuji Xerox's DocuWorks Desk and DocuWorks Viewer
 software.

	
xdw

	
Yasuo Taguchi

yasuo.taguchi@fujixerox.co.jp

	
application/vnd.fujixerox.docuworks.binder

	
Supports Fuji Xerox's DocuWorks Desk and DocuWorks Viewer
 software.

	
xbd

	
Same as above.

	
application/vnd.fut-misnet

	
Unknown.

	

	
Jaan Pruulmann

jaan@fut.ee

	
application/vnd.grafeq

	
Lets users of GrafEq exchange GrafEq documents through the
 Web and email.

	
gqf, gqs

	
http://www.peda.com

	
application/vnd.groove-account

	
Groove is a peer-to-peer communication system implementing a
 virtual space for small group interaction.

	
gac

	
Todd Joseph

todd_joseph@groove.net

	
application/vnd.groove-identity-message

	
Same as above.

	
gim

	
Same as above

	
application/vnd.groove-injector

	
Same as above.

	
grv

	
Same as above

	
application/vnd.groove-tool-message

	
Same as above.

	
gtm

	
Same as above

	
application/vnd.groove-tool-template

	
Same as above.

	
tpl

	
Same as above

	
application/vnd.groove-vcard

	
Same as above.

	
vcg

	
Same as above

	
application/vnd.hhe.lesson-player

	
Supports the LessonPlayer and PresentationEditor software.

	
les

	
Randy Jones

Harcourt E-Learning

randy_jones@archipelago.com

	
application/vnd.hp-HPGL

	
HPGL files.

	

	
The HP-GL/2 and HP RTL Reference
 Guide, Addison Wesley, ISBN 0201310147

	
application/vnd.hp-hpid

	
Supports Hewlett-Packard's Instant Delivery Software.

	
hpi, hpid

	
http://www.instant-delivery.com

	
application/vnd.hp-hps

	
Supports Hewlett-Packard's WebPrintSmart software.

	
hps

	
http://www.hp.com/go/webprintsmart_mimetype_specs/

	
application/vnd.hp-PCL

application/vnd.hp-PCLXL

	
PCL printer files.

	
pcl

	
"PCL-PJL Technical Reference Manual Documentation
 Package," HP Part No. 5012-0330

	
application/vnd.httphone

	
HTTPhone asynchronous voice over IP system.

	

	
Franck LeFevre

franck@k1info.com

	
application/vnd.hzn-3d-crossword

	
Used to encode crossword puzzles by Horizon, A Glimpse of
 Tomorrow.

	
x3d

	
James Minnis

james_minnis@glimpse-of-tomorrow.com

	
application/vnd.ibm.afplinedata

	
Print Services Facility (PSF), AFP Conversion and Indexing
 Facility (ACIF).

	

	
Roger Buis

buis@us.ibm.com

	
application/vnd.ibm.MiniPay

	
MiniPay authentication and payment software.

	
mpy

	
Amir Herzberg

amirh@vnet.ibm.com

	
application/vnd.ibm.modcap

	
Mixed Object Document Content.

	
list3820, listafp, afp, pseg3820

	
Reinhard Hohensee

rhohensee@vnet.ibm.com

"Mixed Object Document Content Architecture
 Reference," IBM publication SC31-6802

	
application/vnd.informix-visionary

	
Informix Visionary.

	
vis

	
Christopher Gales

christopher.gales@informix.com

	
application/vnd.intercon.formnet

	
Supports Intercon Associates FormNet software.

	
xpw, xpx

	
Thomas A. Gurak

assoc@intercon.roc.servtech.com

	
application/vnd.intertrust.digibox

application/vnd.intertrust.nncp

	
Supports InterTrust architecture for secure electronic
 commerce and digital rights management.

	

	
InterTrust Technologies

460 Oakmead ParkwaySunnyvale, CA 94086 USA

info@intertrust.com

http://www.intertrust.com

	
application/vnd.intu.qbo

	
Intended for use only with QuickBooks 6.0 (Canada).

	
qbo

	
Greg Scratchley

greg_scratchley@intuit.com

Format of these files discussed in the Open Financial
 Exchange specs, available from http://www.ofx.net

	
application/vnd.intu.qfx

	
Intended for use only with Quicken 99 and following
 versions.

	
qfx

	
Same as above

	
application/vnd.is-xpr

	
Express by Infoseek.

	
xpr

	
Satish Natarajan

satish@infoseek.com

	
application/vnd.japannet-directory-service

application/vnd.japannet-jpnstore-wakeup

application/vnd.japannet-payment-wakeup

application/vnd.japannet-registration

application/vnd.japannet-registration-wakeup

application/vnd.japannet-setstore-wakeup

application/vnd.japannet-verification

application/vnd.japannet-verification-wakeup

	
Supports Mitsubishi Electric's JapanNet security,
 authentication, and payment sofwtare.

	

	
Jun Yoshitake

yositake@iss.isl.melco.co.jp

	
application/vnd.koan

	
Supports the automatic playback of Koan music files over the
 Internet, by helper applications such as SSEYO Koan Netscape Plugin.

	
skp, skd, skm, skt

	
Peter Cole

pcole@sseyod.demon.co.uk

	
application/vnd.lotus-1-2-3

	
Lotus 1-2-3 and Lotus approach.

	
123, wk1, wk3, wk4

	
Paul Wattenberger

Paul_Wattenberger@lotus.com

	
application/vnd.lotus-approach

	
Lotus Approach.

	
apr, vew

	
Same as above

	
application/vnd.lotus-freelance

	
Lotus Freelance.

	
prz, pre

	
Same as above

	
application/vnd.lotus-notes

	
Lotus Notes.

	
nsf, ntf, ndl, ns4, ns3, ns2, nsh, nsg

	
Michael Laramie

laramiem@btv.ibm.com

	
application/vnd.lotus-organizer

	
Lotus Organizer.

	
or3, or2, org

	
Paul Wattenberger

Paul_Wattenberger@lotus.com

	
application/vnd.lotus-screencam

	
Lotus ScreenCam.

	
scm

	
Same as above

	
application/vnd.lotus-wordpro

	
Lotus Word Pro.

	
lwp, sam

	
Same as above

	
application/vnd.mcd

	
Micro CADAM CAD software.

	
mcd

	
Tadashi Gotoh

tgotoh@cadamsystems.co.jp

http://www.cadamsystems.co.jp

	
application/vnd.mediastation.cdkey

	
Supports Media Station's CDKey remote CDROM communications
 protocol.

	
cdkey

	
Henry Flurry

henryf@mediastation.com

	
application/vnd.meridian-slingshot

	
Slingshot by Meridian Data.

	

	
Eric Wedel

Meridian Data, Inc. 5615 Scotts Valley Drive

Scotts Valley, CA 95066

ewedel@meridian-data.com

	
application/vnd.mif

	
FrameMaker interchange format.

	
mif

	
ftp://ftp.frame.com/pub/techsup/techinfo/dos/mif4.zip

Mike Wexler

Adobe Systems, Inc333 W. San Carlos St.

San Jose, CA 95110 USA

mwexler@adobe.com

	
application/vnd.minisoft-hp3000-save

	
NetMail 3000 save format.

	

	
Minisoft, Inc.

support@minisoft.com

ftp://ftp.3k.com/DOC/ms92-save-format.txt

	
application/vnd.mitsubishi.misty-guard.trustweb

	
Supports Mitsubishi Electric's Trustweb software.

	

	
Manabu Tanaka

mtana@iss.isl.melco.co.jp

	
application/vnd.Mobius.DAF

	
Supports Mobius Management Systems software.

	
daf

	
Celso Rodriguez

crodrigu@mobius.com

Greg Chrzczon

gchrzczo@mobius.com

	
application/vnd.Mobius.DIS

	
Same as above.

	
dis

	
Same as above

	
application/vnd.Mobius.MBK

	
Same as above.

	
mbk

	
Same as above

	
application/vnd.Mobius.MQY

	
Same as above.

	
mqy

	
Same as above

	
application/vnd.Mobius.MSL

	
Same as above.

	
msl

	
Same as above

	
application/vnd.Mobius.PLC

	
Same as above.

	
plc

	
Same as above

	
application/vnd.Mobius.TXF

	
Same as above.

	
txf

	
Same as above

	
application/vnd.motorola.flexsuite

	
FLEXsuite™ is a collection of wireless messaging protocols. This
 type is used by the network gateways of wireless messaging service providers
 as well as wireless OSs and applications.

	

	
Mark Patton

Motorola Personal Networks Group

fmp014@email.mot.com

FLEXsuite™ specification available from Motorola under
 appropriate licensing agreement

	
application/vnd.motorola.flexsuite.adsi

	
FLEXsuite™ is a collection of wireless messaging protocols.
 This type provides a wireless-friendly format for enabling various data-encryption
 solutions.

	

	
Same as above

	
application/vnd.motorola.flexsuite.fis

	
FLEXsuite™ is a collection of wireless messaging protocols.
 This type is a wireless-friendly format for the efficient delivery of
 structured information (e.g., news, stocks, weather) to a wireless device.

	

	
Same as above

	
application/vnd.motorola.flexsuite.gotap

	
FLEXsuite™ is a collection of wireless messaging protocols.
 This type provides a common wireless-friendly format for the programming of wireless
 device attributes via over-the-air messages.

	

	
Same as above

	
application/vnd.motorola.flexsuite.kmr

	
FLEXsuite™ is a collection of wireless messaging protocols.
 This type provides a wireless-friendly format for encryption key management.

	

	
Same as above

	
application/vnd.motorola.flexsuite.ttc

	
FLEXsuite™ is a collection of wireless messaging protocols.
 This type supports a wireless-friendly format for the efficient delivery of
 text using token text compression.

	

	
Same as above

	
application/vnd.motorola.flexsuite.wem

	
FLEXsuite™ is a collection of wireless messaging protocols.
 This type provides a wireless-friendly format for the communication of
 Internet email to wireless devices.

	

	
Same as above

	
application/vnd.mozilla.xul+xml

	
Supports the Mozilla Internet application suite.

	
xul

	
Dan Rosen2

dr@netscape.com

	
application/vnd.ms-artgalry

	
Supports Microsoft's Art Gallery.

	
cil

	
deansl@microsoft.com

	
application/vnd.ms-asf

	
ASF is a multimedia file format whose contents are designed
 to be streamed across a network to support distributed multimedia
 applications. ASF content may include any combination of any media type
 (e.g., audio, video, images, URLs, HTML content, MIDI, 2-D and 3-D modeling,
 scripts, and objects of various types).

	
asf

	
Eric Fleischman

ericf@microsoft.com

http://www.microsoft.com/mind/0997/netshow/netshow.asp

	
application/vnd.ms-excel

	
Microsoft Excel spreadsheet.

	
xls

	
Sukvinder S. Gill

sukvg@microsoft.com

	
application/vnd.ms-lrm

	
Microsoft proprietary.

	
lrm

	
Eric Ledoux

ericle@microsoft.com

	
application/vnd.ms-powerpoint

	
Microsoft PowerPoint presentation.

	
ppt

	
Sukvinder S. Gill

sukvg@microsoft.com

	
application/vnd.ms-project

	
Microsoft Project file.

	
mpp

	
Same as above

	
application/vnd.ms-tnef

	
Identifies an attachment that in general would be
 processable only by a MAPI-aware application. This type is an encapsulated
 format of rich MAPI properties, such as Rich Text and Icon information, that
 may otherwise be degraded by the messaging transport.

	

	
Same as above

	
application/vnd.ms-works

	
Microsoft Works software.

	

	
Same as above

	
application/vnd.mseq

	
MSEQ is a compact multimedia format suitable for wireless
 devices.

	
mseq

	
Gwenael Le Bodic

Gwenael.le_bodic@alcatel.fr

http://www.3gpp.org

	
application/vnd.msign

	
Used by applications implementing the msign protocol, which
 requests signatures from mobile devices.

	

	
Malte Borcherding

Malte.Borcherding@brokat.com

	
application/vnd.music-niff

	
NIFF music files.

	

	
Cindy Grande

72723.1272@compuserve.com

ftp://blackbox.cartah.washington.edu/pub/NIFF/NIFF6A.TXT

	
application/vnd.musician

	
MUSICIAN scoring language/encoding conceived and developed
 by RenaiScience Corporation.

	
mus

	
Robert G. Adams

gadams@renaiscience.com

	
application/vnd.netfpx

	
Intended for dynamic retrieval of multiresolution image information,
 as used by Hewlett-Packard Company Imaging for Internet.

	
fpx

	
Andy Mutz

andy_mutz@hp.com

	
application/vnd.noblenet-directory

	
Supports the NobleNet Directory software, purchased by
 RogueWave.

	
nnd

	
http://www.noblenet.com

	
application/vnd.noblenet-sealer

	
Supports the NobleNet Sealer software, purchased by
 RogueWave.

	
nns

	
http://www.noblenet.com

	
application/vnd.noblenet-web

	
Supports the NobleNet Web software, purchased by RogueWave.

	
nnw

	
http://www.noblenet.com

	
application/vnd.novadigm.EDM

	
Supports Novadigm's RADIA and EDM products.

	
edm

	
Phil Burgard

pburgard@novadigm.com

	
application/vnd.novadigm.EDX

	
Same as above.

	
edx

	
Same as above

	
application/vnd.novadigm.EXT

	
Same as above.

	
ext

	
Same as above

	
application/vnd.osa.netdeploy

	
Supports the Open Software Associates netDeploy application
 deployment software.

	
ndc

	
Steve Klos

stevek@osa.com

http://www.osa.com

	
application/vnd.palm

	
Used by PalmOS system software and applications—this new
 type, "application/vnd.palm," replaces the old type
 "application/x-pilot."

	
prc, pdb, pqa, oprc

	
Gavin Peacock

gpeacock@palm.com

	
application/vnd.pg.format

	
Proprietary Proctor & Gamble Standard Reporting System.

	
str

	
April Gandert

TN152

Procter & Gamble Way

Cincinnati, Ohio 45202

(513) 983-4249

	
application/vnd.pg.osasli

	
Proprietary Proctor & Gamble Standard Reporting System.

	
ei6

	
Same as above

	
application/vnd.powerbuilder6

application/vnd.powerbuilder6-s

application/vnd.powerbuilder7

application/vnd.powerbuilder7-s

application/vnd.powerbuilder75

application/vnd.powerbuilder75-s

	
Used only by Sybase PowerBuilder release 6, 7, and 7.5
 runtime environments, nonsecure and secure.

	
pbd

	
Reed Shilts

reed.shilts@sybase.com

	
application/vnd.previewsystems.box

	
Preview Systems ZipLock/VBox product.

	
box, vbox

	
Roman Smolgovsky

romans@previewsystems.com

http://www.previewsystems.com

	
application/vnd.publishare-delta-tree

	
Used by Capella Computers' PubliShare runtime environment.

	
qps

	
Oren Ben-Kiki

publishare-delta-tree@capella.co.il

	
application/vnd.rapid

	
Emultek's rapid packaged applications.

	
zrp

	
Itay Szekely

etay@emultek.co.il

	
application/vnd.s3sms

	
Integrates the transfer mechanisms of the Sonera SmartTrust
 products into the Internet infrastructure.

	

	
Lauri Tarkkala

Lauri.Tarkkala@sonera.com

http://www.smarttrust.com

	
application/vnd.seemail

	
Supports the transmission of SeeMail files. SeeMail is an
 application that captures video and sound and uses bitwise compression to
 compress and archive the two pieces into one file.

	
see

	
Steven Webb

steve@wynde.com

http://www.realmediainc.com

	
application/vnd.shana.informed.formdata

	
Shana e-forms data formats.

	
ifm

	
Guy Selzler

Shana Corporation

gselzler@shana.com

	
application/vnd.shana.informed.formtemp

	
Shana e-forms data formats.

	
itp

	
Same as above

	
application/vnd.shana.informed.interchange

	
Shana e-forms data formats.

	
iif, iif1

	
Same as above

	
application/vnd.shana.informed.package

	
Shana e-forms data formats.

	
ipk, ipkg

	
Same as above

	
application/vnd.street-stream

	
Proprietary to Street Technologies.

	

	
Glenn Levitt

Street Technologies

streetd1@ix.netcom.com

	
application/vnd.svd

	
Dateware Electronics SVD files.

	

	
Scott Becker

dataware@compumedia.com

	
application/vnd.swiftview-ics

	
Supports SwiftView®.

	

	
Randy Prakken

tech@ndg.com

http://www.ndg.com/svm.htm

	
application/vnd.triscape.mxs

	
Supports Triscape Map Explorer.

	
mxs

	
Steven Simonoff

scs@triscape.com

	
application/vnd.trueapp

	
True BASIC files.

	
tra

	
J. Scott Hepler

scott@truebasic.com

	
application/vnd.truedoc

	
Proprietary to Bitstream, Inc.

	

	
Brad Chase

brad_chase@bitstream.com

	
application/vnd.ufdl

	
UWI's UFDL files.

	
ufdl, ufd, frm

	
Dave Manning

dmanning@uwi.com

http://www.uwi.com/

	
application/vnd.uplanet.alert

application/vnd.uplanet.alert-wbxml

application/vnd.uplanet.bearer-choi-wbxml

application/vnd.uplanet.bearer-choice

application/vnd.uplanet.cacheop

application/vnd.uplanet.cacheop-wbxml

application/vnd.uplanet.channel

application/vnd.uplanet.channel-wbxml

application/vnd.uplanet.list

application/vnd.uplanet.list-wbxml

application/vnd.uplanet.listcmd

application/vnd.uplanet.listcmd-wbxml

application/vnd.uplanet.signal

	
Formats used by Unwired Planet (now Openwave) UP browser
 microbrowser for mobile devices.

	

	
iana-registrar@uplanet.com

http://www.openwave.com

	
application/vnd.vcx

	
VirtualCatalog.

	
vcx

	
Taisuke Sugimoto

sugimototi@noanet.nttdata.co.jp

	
application/vnd.vectorworks

	
VectorWorks graphics files.

	
mcd

	
Paul C. Pharr

pharr@diehlgraphsoft.com

	
application/vnd.vidsoft.vidconference

	
VidConference format.

	
vsc

	
Robert Hess

hess@vidsoft.de

	
application/vnd.visio

	
Visio files.

	
vsd, vst, vsw, vss

	
Troy Sandal

troys@visio.com

	
application/vnd.vividence.scriptfile

	
Vividence files.

	
vsf, vtd, vd

	
Mark Risher

markr@vividence.com

	
application/vnd.wap.sic

	
WAP Service Indication format.

	
sic, wbxml

	
WAP Forum Ltd

http://www.wapforum.org

	
application/vnd.wap.slc

	
WAP Service Loading format.

Anything that conforms to the Service Loading specification,
 available at http://www.wapforum.org.

	
slc, wbxml

	
Same as above

	
application/vnd.wap.wbxml

	
WAP WBXML binary XML format for wireless devices.

	
wbxml

	
Same as above

"WAP Binary XML Content Format—WBXML version 1.1"

	
application/vnd.wap.wmlc

	
WAP WML format for wireless devices.

	
wmlc, wbxml

	
Same as above

	
application/vnd.wap.wmlscriptc

	
WAP WMLScript format.

	
wmlsc

	
Same as above

	
application/vnd.webturbo

	
WebTurbo format.

	
wtb

	
Yaser Rehem

Sapient Corporation

yrehem@sapient.com

	
application/vnd.wrq-hp3000-labelled

	
Supports HP3000 formats.

	

	
support@wrq.com

support@3k.com

	
application/vnd.wt.stf

	
Supports Worldtalk software.

	
stf

	
Bill Wohler

wohler@worldtalk.com

	
application/vnd.xara

	
Xara files are saved by CorelXARA, an object-oriented vector
 graphics package written by Xara Limited (and marketed by Corel).

	
xar

	
David Matthewman

david@xara.com

http://www.xara.com

	
application/vnd.xfdl

	
UWI's XFDL files.

	
xfdl, xfd, frm

	
Dave Manning

dmanning@uwi.com

http://www.uwi.com

	
application/vnd.yellowriver-custom-menu

	
Supports the Yellow River CustomMenu plug-in, which provides
 customized browser drop-down menus.

	
cmp

	
yellowriversw@yahoo.com

	
application/whoispp-query

	
Defines Whois++ protocol queries within MIME.

	

	
RFC 2957

	
application/whoispp-response

	
Defines Whois++ protocol responses within MIME.

	

	
RFC 2958

	
application/wita

	
Wang Information Transfer Architecture.

	

	
Document number 715-0050A, Wang Laboratories

campbell@redsox.bsw.com

	
application/wordperfect5.1

	
WordPerfect documents.

	

	

	
application/x400-bp

	
Carries any X.400 body part for which there is no registered
 IANA mapping.

	

	
RFC 1494

	
application/x-bcpio

	
Old-style binary CPIO archives.

	
bcpio

	

	
application/x-cdlink

	
Allows integration of CD-ROM media within web pages.

	
vcd

	
http://www.cdlink.com

	
application/x-chess-pgm

	
From Apache mime.types.

	
pgn

	

	
application/x-compress

	
Binary data from Unix compress.

	
z

	

	
application/x-cpio

	
CPIO archive file.

	
cpio

	

	
application/x-csh

	
CSH scripts.

	
csh

	

	
application/x-director

	
Macromedia director files.

	
dcr, dir, dxr

	

	
application/x-dvi

	
TeX DVI files.

	
dvi

	

	
application/x-futuresplash

	
From Apache mime.types.

	
spl

	

	
application/x-gtar

	
GNU tar archives.

	
gtar

	

	
application/x-gzip

	
GZIP compressed data.

	
gz

	

	
application/x-hdf

	
From Apache mime.types.

	
hdf

	

	
application/x-javascript

	
JavaScript files.

	
js

	

	
application/x-koan

	
Supports the automatic playback of Koan music files over the
 Internet, by helper applications such as SSEYO Koan Netscape Plugin.

	
skp, skd, skt, skm

	

	
application/x-latex

	
LaTeX files.

	
latex

	

	
application/x-netcdf

	
NETCDF files.

	
nc, cdf

	

	
application/x-sh

	
SH scripts.

	
sh

	

	
application/x-shar

	
SHAR archives.

	
shar

	

	
application/x-shockwave-flash

	
Macromedia Flash files.

	
swf

	

	
application/x-stuffit

	
StuffIt archives.

	
sit

	

	
application/x-sv4cpio

	
Unix SysV R4 CPIO archives.

	
sv4cpio

	

	
application/x-sv4crc

	
Unix SysV R4 CPIO w/CRC archives.

	
sv4crc

	

	
application/x-tar

	
TAR archives.

	
tar

	

	
application/x-tcl

	
TCL scripts.

	
tcl

	

	
application/x-tex

	
TeX files.

	
tex

	

	
application/x-texinfo

	
TeX info files.

	
texinfo, texi

	

	
application/x-troff

	
TROFF files.

	
t, tr, roff

	

	
application/x-troff-man

	
TROFF Unix manpages.

	
man

	

	
application/x-troff-me

	
TROFF+me files.

	
me

	

	
application/x-troff-ms

	
TROFF+ms files

	
ms

	

	
application/x-ustar

	
The extended tar interchange format.

	
ustar

	
See the IEEE 1003.1(1990) specifications

	
application/x-wais-source

	
WAIS source structure.

	
src

	

	
application/xml

	
Extensible Markup Language format file (use text/xml if you
 want the file treated as plain text by browsers, etc.).

	
xml, dtd

	
RFC 2376

	
application/zip

	
PKWARE zip archives.

	
zip

	

D.4.2 audio/*

Table D-4 summarizes audio
content types.

	
Table D-4. "Audio" MIME
 types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
audio/32kadpcm

	
8 kHz ADPCM audio encoding.

	

	
RFC 2421

	
audio/basic

	
Audio encoded with 8-kHz monaural 8-bit ISDN u-law PCM.

	
au, snd

	
RFC 1341

	
audio/G.772.1

	
G.722.1 compresses 50Hz-7kHz audio signals into 24 kbit/s or
 32 kbit/s. It may be used for speech, music, and other types of audio.

	

	
RFC 3047

	
audio/L16

	
Audio/L16 is based on L16, described in RFC 1890. L16
 denotes uncompressed audio data, using 16-bit signed representation.

	

	
RFC 2586

	
audio/MP4A-LATM

	
MPEG-4 audio.

	

	
RFC 3016

	
audio/midi

	
MIDI music files.

	
mid, midi, kar

	

	
audio/mpeg

	
MPEG encoded audio files.

	
mpga, mp2, mp3

	
RFC 3003

	
audio/parityfec

	
Parity-based forward error correction for RTP audio.

	

	
RFC 3009

	
audio/prs.sid

	
Commodore 64 SID audio files.

	
sid, psid

	
http://www.geocities.com/SiliconValley/Lakes/5147/sidplay/docs.html#fileformats

	
audio/telephone-event

	
Logical telephone event.

	

	
RFC 2833

	
audio/tone

	
Telephonic sound pattern.

	

	
RFC 2833

	
audio/vnd.cns.anp1

	
Supports voice and unified messaging application features
 available on the Access NP network services platform from Comverse Network
 Systems.

	

	
Ann McLaughlin

Comverse Network Systems

amclaughlin@comversens.com

	
audio/vnd.cns.inf1

	
Supports voice and unified messaging application features
 available on the TRILOGUE Infinity network services platform from Comverse
 Network Systems.

	

	
Same as above

	
audio/vnd.digital-winds

	
Digital Winds music is never-ending, reproducible, and
 interactive MIDI music in very small packages (<3K).

	
eol

	
Armands Strazds

armands.strazds@medienhaus-bremen.de

	
audio/vnd.everad.plj

	
Proprietary EverAD audio encoding.

	
plj

	
Tomer Weisberg

tomer@everad.com

	
audio/vnd.lucent.voice

	
Voice messaging including Lucent Technologies' Intuity™
 AUDIX® Multimedia Messaging System and the Lucent Voice Player.

	
lvp

	
Frederick Block

rickblock@lucent.com

http://www.lucent.com/lvp/

	
audio/vnd.nortel.vbk

	
Proprietary Nortel Networks Voice Block audio encoding.

	
vbk

	
Glenn Parsons

Glenn.Parsons@NortelNetworks.com

	
audio/vnd.nuera.ecelp4800

	
Proprietary Nuera Communications audio and speech encoding,
 available in Nuera voice-over-IP gateways, terminals, application servers,
 and as a media service for various host platforms and OSs.

	
ecelp4800

	
Michael Fox

mfox@nuera.com

	
audio/vnd.nuera.ecelp7470

	
Same as above.

	
ecelp7470

	
Same as above

	
audio/vnd.nuera.ecelp9600

	
Same as above.

	
ecelp9600

	
Same as above

	
audio/vnd.octel.sbc

	
Variable-rate encoding averaging 18 kbps used for voice
 messaging in Lucent Technologies' Sierra™, Overture™, and IMA™ platforms.

	

	
Jeff Bouis

jbouis@lucent.com

	
audio/vnd.qcelp

	
Qualcomm audio encoding.

	
qcp

	
Andy Dejaco

adejaco@qualcomm.com

	
audio/vnd.rhetorex.32kadpcm

	
32-kbps Rhetorex™ ADPCM audio encoding used in voice
 messaging products such as Lucent Technologies's CallPerformer™, Unified
 Messenger™, and other products.

	

	
Jeff Bouis

jbouis@lucent.com

	
audio/vnd.vmx.cvsd

	
Audio encoding used in voice messaging products including
 Lucent Technologies' Overture200™, Overture 300™, and VMX 300™ product lines.

	

	
Same as above

	
audio/x-aiff

	
AIFF audio file format.

	
aif, aiff, aifc

	

	
audio/x-pn-realaudio

	
RealAudio metafile format by Real Networks (formerly
 Progressive Networks).

	
ram, rm

	

	
audio/x-pn-realaudio-plugin

	
From Apache mime.types.

	
rpm

	

	
audio/x-realaudio

	
RealAudio audio format by Real Networks (formerly
 Progressive Networks).

	
ra

	

	
audio/x-wav

	
WAV audio files.

	
wav

	

D.4.3 chemical/*

Much
of the information in Table D-5 was obtained
courtesy of the "Chemical MIME Home Page" (http://www.ch.ic.ac.uk/chemime/).

	
Table D-5. "Chemical"
 MIME types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
chemical/x-alchemy

	
Alchemy format

	
alc

	
http://www.camsoft.com

	
chemical/x-cache-csf

	

	
csf

	

	
chemical/x-cactvs-binary

	
CACTVS binary format

	
cbin

	
http://cactvs.cit.nih.gov

	
chemical/x-cactvs-ascii

	
CACTVS ASCII format

	
cascii

	
http://cactvs.cit.nih.gov

	
chemical/x-cactvs-table

	
CACTVS table format

	
ctab

	
http://cactvs.cit.nih.gov

	
chemical/x-cdx

	
ChemDraw eXchange file

	
cdx

	
http://www.camsoft.com

	
chemical/x-cerius

	
MSI Cerius II format

	
cer

	
http://www.msi.com

	
chemical/x-chemdraw

	
ChemDraw file

	
chm

	
http://www.camsoft.com

	
chemical/x-cif

	
Crystallographic Interchange Format

	
cif

	
http://www.bernstein-plus-sons.com/software/rasmol/

http://ndbserver.rutgers.edu/NDB/mmcif/examples/index.html

	
chemical/x-mmcif

	
MacroMolecular CIF

	
mcif

	
Same as above

	
chemical/x-chem3d

	
Chem3D format

	
c3d

	
http://www.camsoft.com

	
chemical/x-cmdf

	
CrystalMaker Data Format

	
cmdf

	
http://www.crystalmaker.co.uk

	
chemical/x-compass

	
Compass program of the Takahashi

	
cpa

	

	
chemical/x-crossfire

	
Crossfire file

	
bsd

	

	
chemical/x-cml

	
Chemical Markup Language

	
cml

	
http://www.xml-cml.org

	
chemical/x-csml

	
Chemical Style Markup Language

	
csml, csm

	
http://www.mdli.com

	
chemical/x-ctx

	
Gasteiger group CTX file format

	
ctx

	

	
chemical/x-cxf

	

	
cxf

	

	
chemical/x-daylight-smiles

	
Smiles format

	
smi

	
http://www.daylight.com/dayhtml/smiles/index.html

	
chemical/x-embl-dl-nucleotide

	
EMBL nucleotide format

	
emb

	
http://mercury.ebi.ac.uk

	
chemical/x-galactic-spc

	
SPC format for spectral and chromatographic data

	
spc

	
http://www.galactic.com/galactic/Data/spcvue.htm

	
chemical/x-gamess-input

	
GAMESS Input format

	
inp, gam

	
http://www.msg.ameslab.gov/GAMESS/Graphics/MacMolPlt.shtml

	
chemical/x-gaussian-input

	
Gaussian Input format

	
gau

	
http://www.mdli.com

	
chemical/x-gaussian-checkpoint

	
Gaussian Checkpoint format

	
fch, fchk

	
http://products.camsoft.com

	
chemical/x-gaussian-cube

	
Gaussian Cube (Wavefunction) format

	
cub

	
http://www.mdli.com

	
chemical/x-gcg8-sequence

	

	
gcg

	

	
chemical/x-genbank

	
ToGenBank format

	
gen

	

	
chemical/x-isostar

	
IsoStar Library of intermolecular interactions

	
istr, ist

	
http://www.ccdc.cam.ac.uk

	
chemical/x-jcamp-dx

	
JCAMP Spectroscopic Data Exchange format

	
jdx, dx

	
http://www.mdli.com

	
chemical/x-jjc-review-surface

	
Re_View3 Orbital Contour files

	
rv3

	
http://www.brunel.ac.uk/depts/chem/ch241s/re_view/rv3.htm

	
chemical/x-jjc-review-xyz

	
Re_View3 Animation files

	
xyb

	
http://www.brunel.ac.uk/depts/chem/ch241s/re_view/rv3.htm

	
chemical/x-jjc-review-vib

	
Re_View3 Vibration files

	
rv2, vib

	
http://www.brunel.ac.uk/depts/chem/ch241s/re_view/rv3.htm

	
chemical/x-kinemage

	
Kinetic (Protein Structure) Images

	
kin

	
http://www.faseb.org/protein/kinemages/MageSoftware.html

	
chemical/x-macmolecule

	
MacMolecule file format

	
mcm

	

	
chemical/x-macromodel-input

	
MacroModel Molecular Mechanics

	
mmd, mmod

	
http://www.columbia.edu/cu/chemistry/

	
chemical/x-mdl-molfile

	
MDL Molfile

	
mol

	
http://www.mdli.com

	
chemical/x-mdl-rdfile

	
Reaction data file

	
rd

	
http://www.mdli.com

	
chemical/x-mdl-rxnfile

	
MDL Reaction format

	
rxn

	
http://www.mdli.com

	
chemical/x-mdl-sdfile

	
MDL Structure data file

	
sd

	
http://www.mdli.com

	
chemical/x-mdl-tgf

	
MDL Transportable Graphics Format

	
tgf

	
http://www.mdli.com

	
chemical/x-mif

	

	
mif

	

	
chemical/x-mol2

	
Portable representation of a SYBYL molecule

	
mol2

	
http://www.tripos.com

	
chemical/x-molconn-Z

	
Molconn-Z format

	
b

	
http://www.eslc.vabiotech.com/molconn/molconnz.html

	
chemical/x-mopac-input

	
MOPAC Input format

	
mop

	
http://www.mdli.com

	
chemical/x-mopac-graph

	
MOPAC Graph format

	
gpt

	
http://products.camsoft.com

	
chemical/x-ncbi-asn1

	

	
asn (old form)

	

	
chemical/x-ncbi-asn1-binary

	

	
val

	

	
chemical/x-pdb

	
Protein DataBank pdb

	
pdb

	
http://www.mdli.com

	
chemical/x-swissprot

	
SWISS-PROT protein sequence database

	
sw

	
http://www.expasy.ch/spdbv/text/download.htm

	
chemical/x-vamas-iso14976

	
Versailles Agreement on Materials and Standards

	
vms

	
http://www.acolyte.co.uk/JISO/

	
chemical/x-vmd

	
Visual Molecular Dynamics

	
vmd

	
http://www.ks.uiuc.edu/Research/vmd/

	
chemical/x-xtel

	
Xtelplot file format

	
xtel

	
http://www.recipnet.indiana.edu/graphics/xtelplot/xtelplot.htm

	
chemical/x-xyz

	
Co-ordinate Animation format

	
xyz

	
http://www.mdli.com

D.4.4 image/*

Table D-6 summarizes some
of the image types commonly exchanged by email and HTTP.

	
Table D-6. "Image" MIME
 types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
image/bmp

	
Windows BMP image format.

	
bmp

	

	
image/cgm

	
Computer Graphics Metafile (CGM) is an International
 Standard for the portable storage and transfer of 2-D illustrations.

	

	
Alan Francis

A.H.Francis@open.ac.uk

See ISO 8632:1992, IS 8632:1992 Amendment 1 (1994), and IS
 8632:1992 Amendment 2 (1995)

	
image/g3fax

	
G3 Facsimile byte streams.

	

	
RFC 1494

	
image/gif

	
Compuserve GIF images.

	
gif

	
RFC 1341

	
image/ief

	

	
ief

	
RFC 1314

	
image/jpeg

	
JPEG images.

	
jpeg, jpg, jpe, jfif

	
JPEG Draft Standard ISO 10918-1 CD

	
image/naplps

	
North American Presentation Layer Protocol Syntax (NAPLPS)
 images.

	

	
ANSI X3.110-1983 CSA T500-1983

	
image/png

	
Portable Network Graphics (PNG) images.

	
png

	
Internet draft draft-boutell-png-spec-04.txt,
 "Png (Portable Network Graphics) Specification Version 1.0"

	
image/prs.btif

	
Format used by Nations Bank for BTIF image viewing of checks
 and other applications.

	
btif, btf

	
Arthur Rubin

arthurr@crt.com

	
image/prs.pti

	
PTI encoded images.

	
pti

	
Juern Laun

juern.laun@gmx.de

http://server.hvzgymn.wn.schule-bw.de/pti/

	
image/tiff

	
TIFF images.

	
tiff, tif

	
RFC 2302

	
image/vnd.cns.inf2

	
Supports application features available on the TRILOGUE
 Infinity network services platform from Comverse Network Systems.

	

	
Ann McLaughlin

Comverse Network Systems

amclaughlin@comversens.com

	
image/vnd.dxf

	
DXF vector CAD files.

	
dxf

	

	
image/vnd.fastbidsheet

	
A FastBid Sheet contains a raster or vector image that represents
 an engineering or architectural drawing.

	
fbs

	
Scott Becker

scottb@bxwa.com

	
image/vnd.fpx

	
Kodak FlashPix images.

	
fpx

	
Chris Wing

format_change_request@kodak.com

http://www.kodak.com

	
image/vnd.fst

	
Image format from FAST Search and Transfer.

	
fst

	
Arild Fuldseth

Arild.Fuldseth@fast.no

	
image/vnd.fujixerox.edmics-mmr

	
Fuji Xerox EDMICS MMR image format.

	
mmr

	
Masanori Onda

Masanori.Onda@fujixerox.co.jp

	
image/vnd.fujixerox.edmics-rlc

	
Fuji Xerox EDMICS RLC image format.

	
rlc

	
Same as above

	
image/vnd.mix

	
MIX files contain binary data in streams that are used to
 represent images and related information. They are used by Microsoft PhotDraw
 and PictureIt software.

	

	
Saveen Reddy2

saveenr@microsoft.com

	
image/vnd.net-fpx

	
Kodak FlashPix images.

	

	
Chris Wing

format_change_request@kodak.com

http://www.kodak.com

	
image/vnd.wap.wbmp

	
From Apache mime.types.

	
wbmp

	

	
image/vnd.xiff

	
Extended Image Format used by Pagis software.

	
xif

	
Steve Martin

smartin@xis.xerox.com

	
image/x-cmu-raster

	
From Apache mime.types.

	
ras

	

	
image/x-portable-anymap

	
PBM generic images.

	
pnm

	
Jeff Poskanzer

http://www.acme.com/software/pbmplus/

	
image/x-portable-bitmap

	
PBM bitmap images.

	
pbm

	
Same as above

	
image/x-portable-graymap

	
PBM grayscale images.

	
pgm

	
Same as above

	
image/x-portable-pixmap

	
PBM color images.

	
ppm

	
Same as above

	
image/x-rgb

	
Silicon Graphics's RGB images.

	
rgb

	

	
image/x-xbitmap

	
X-Window System bitmap images.

	
xbm

	

	
image/x-xpixmap

	
X-Window System color images.

	
xpm

	

	
image/x-xwindowdump

	
X-Window System screen capture images.

	
xwd

	

D.4.5 message/*

Messages are
composite types used to communicate data objects (through email, HTTP, or other
transport protocols). Table D-7 describes the
common MIME message types.

	
Table D-7. "Message"
 MIME types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
message/delivery-status

	

	

	

	
message/disposition-notification

	

	

	
RFC 2298

	
message/external-body

	

	

	
RFC 1341

	
message/http

	

	

	
RFC 2616

	
message/news

	
Defines a way to transmit news articles via email for human
 reading—message/rfc822 is not sufficient because news headers have semantics beyond
 those defined by RFC 822.

	

	
RFC 1036

	
message/partial

	
Permits the fragmented transmission of bodies that are
 thought to be too large to be sent directly by email.

	

	
RFC 1341

	
message/rfc822

	
A complete email message.

	

	
RFC 1341

	
message/s-http

	
Secure HTTP messages, an alternative to HTTP over SSL.

	

	
RFC 2660

D.4.6 model/*

The model MIME
type is an IETF-registered extension type. It represents mathematical models of
physical worlds, for computer-aided design, and 3-D graphics. Table D-8 describes some
of the model formats.

	
Table D-8. "Model" MIME
 types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
model/iges

	
The Initial Graphics Exchange Specification (IGES) defines a
 neutral data format that allows for the digital exchange of information
 between computer-aided design (CAD) systems.

	
igs, iges

	
RFC 2077

	
model/mesh

	

	
msh, mesh, silo

	
RFC 2077

	
model/vnd.dwf

	
DWF CAD files.

	
dwf

	
Jason Pratt

jason.pratt@autodesk.com

	
model/vnd.flatland.3dml

	
Supports 3DML models supported by Flatland products.

	
3dml, 3dm

	
Michael Powers

pow@flatland.com

http://www.flatland.com

	
model/vnd.gdl

model/vnd.gs-gdl

	
The Geometric Description Language (GDL) is a parametric
 object definition language for ArchiCAD by Graphisoft.

	
gdl, gsm, win, dor, lmp, rsm, msm, ism

	
Attila Babits

ababits@graphisoft.hu

http://www.graphisoft.com

	
model/vnd.gtw

	
Gen-Trix models.

	
gtw

	
Yutaka Ozaki

yutaka_ozaki@gen.co.jp

	
model/vnd.mts

	
MTS model format by Virtue.

	
mts

	
Boris Rabinovitch

boris@virtue3d.com

	
model/vnd.parasolid.transmit.binary

	
Binary Parasolid modeling file.

	
x_b

	
http://www.ugsolutions.com/products/parasolid/

	
model/vnd.parasolid.transmit.text

	
Text Parasolid modeling file.

	
x_t

	
http://www.ugsolutions.com/products/parasolid/

	
model/vnd.vtu

	
VTU model format by Virtue.

	
vtu

	
Boris Rabinovitch

boris@virtue3d.com

	
model/vrml

	
Virtual Reality Markup Language format files.

	
wrl, vrml

	
RFC 2077

D.4.7 multipart/*

Multipart MIME
types are composite objects that contain other objects. The subtype describes the
implementation of the multipart packaging and how to process the components.
Multipart media types are summarized in Table D-9.

	
Table D-9. "Multipart"
 MIME types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
multipart/alternative

	
The content consists of a list of alternative
 representations, each with its own Content-Type. The client can select the
 best supported component.

	

	
RFC 1341

	
multipart/appledouble

	
Apple Macintosh files contain "resource forks" and
 other desktop data that describes the actual file contents. This multipart
 content sends the Apple metadata in one part and the actual content in
 another part.

	

	
http://www.isi.edu/in-notes/iana/assignments/media-types/multipart/appledouble

	
multipart/byteranges

	
When an HTTP message includes the content of multiple
 ranges, these are transmitted in a "multipart/byteranges" object.
 This media type includes two or more parts, separated by MIME boundaries,
 each with its own Content-Type and Content-Range fields.

	

	
RFC 2068

	
multipart/digest

	
Contains a collection of individual email messages, in an
 easy-to-read form.

	

	
RFC 1341

	
multipart/encrypted

	
Uses two parts to support cryptographically encrypted
 content. The first part contains the control information necessary to decrypt
 the data in the second body part and is labeled according to the value of the
 protocol parameter. The second part contains the encrypted data in type
 application/octet-stream.

	

	
RFC 1847

	
multipart/form-data

	
Used to bundle up a set of values as the result of a user
 filling out a form.

	

	
RFC 2388

	
multipart/header-set

	
Separates user data from arbitrary descriptive metadata.

	

	
http://www.isi.edu/in-notes/iana/assignments/media-types/multipart/header-set

	
multipart/mixed

	
A collection of objects.

	

	
RFC 1341

	
multipart/parallel

	
Syntactically identical to multipart/mixed, but all of the parts
 are intended to be presented simultaneously, on systems capable of doing so.

	

	
RFC 1341

	
multipart/related

	
Intended for compound objects consisting of several
 interrelated body parts. The relationships between the body parts distinguish
 them from other object types. These relationships often are represented by
 links internal to the object's components that reference the other
 components.

	

	
RFC 2387

	
multipart/report

	
Defines a general container type for electronic mail reports
 of any kind.

	

	
RFC 1892

	
multipart/signed

	
Uses two parts to support cryptographically signed content.
 The first part is the content, including its MIME headers. The second part
 contains the information necessary to verify the digital signature.

	

	
RFC 1847

	
multipart/voice-message

	
Provides a mechanism for packaging a voice message into one
 container that is tagged as VPIM v2-compliant.

	

	
RFCs 2421 and 2423

D.4.8 text/*

Text
media types contain characters and potential formatting information. Table D-10 summarizes
text MIME types.

	
Table D-10. "Text" MIME
 types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
text/calendar

	
Supports the iCalendar calendaring and scheduling standard.

	

	
RFC 2445

	
text/css

	
Cascading Style Sheets.

	
css

	
RFC 2318

	
text/directory

	
Holds record data from a directory database, such as LDAP.

	

	
RFC 2425

	
text/enriched

	
Simple formatted text, supporting fonts, colors, and
 spacing. SGML-like tags are used to begin and end formatting.

	

	
RFC 1896

	
text/html

	
HTML file.

	
html, htm

	
RFC 2854

	
text/parityfec

	
Forward error correction for text streamed in an RTP stream.

	

	
RFC 3009

	
text/plain

	
Plain old text.

	
asc, txt

	

	
text/prs.lines.tag

	
Supports tagged forms, as used for email registration.

	
tag, dsc

	
John Lines

john@paladin.demon.co.uk

http://www.paladin.demon.co.uk/tag-types/

	
text/rfc822-headers

	
Used to bundle a set of email headers, such as when sending
 mail failure reports.

	

	
RFC 1892

	
text/richtext

	
Older form of enriched text. See text/enriched.

	
rtx

	
RFC 1341

	
text/rtf

	
The Rich Text Format (RTF) is a method of encoding formatted
 text and graphics for transfer between applications. The format is widely supported
 by word-processing applications on the MS-DOS, Windows, OS/2, and Macintosh
 platforms.

	
rtf

	

	
text/sgml

	
SGML markup files.

	
sgml, sgm

	
RFC 1874

	
text/t140

	
Supports standardized T.140 text, as used in synchronized
 RTP multimedia.

	

	
RFC 2793

	
text/tab-separated-values

	
TSV is a popular method of data interchange among databases
 and spreadsheets and word processors. It consists of a set of lines, with
 fields separated by tab characters.

	
tsv

	
http://www.isi.edu/in-notes/iana/assignments/media-types/text/tab-separated-values

	
text/uri-list

	
Simple, commented lists of URLs and URNs used by URN
 resolvers, and any other applications that need to communicate bulk URI
 lists.

	
uris, uri

	
RFC 2483

	
text/vnd.abc

	
ABC files are a human-readable format for musical scores.

	
abc

	
http://www.gre.ac.uk/~c.walshaw/abc/

http://home1.swipnet.se/~w-11382/abcbnf.htm

	
text/vnd.curl

	
Provides a set of content definition languages interpreted
 by the CURL runtime plug-in.

	
curl

	
Tim Hodge

thodge@curl.com

	
text/vnd.DMClientScript

	
CommonDM Client Script files are used as hyperlinks to
 non-http sites (such as BYOND, IRC, or telnet) accessed by the Dream Seeker
 client application.

	
dms

	
Dan Bradley

dan@dantom.com

http://www.byond.com/code/ref/

	
text/vnd.fly

	
Fly is a text preprocessor that uses a simple syntax to
 create an interface between databases and web pages.

	
fly

	
John-Mark Gurney

jmg@flyidea.com

http://www.flyidea.com

	
text/vnd.fmi.flexstor

	
For use in the SUVDAMA and UVRAPPF projects.

	
flx

	
http://www.ozone.fmi.fi/SUVDAMA/

http://www.ozone.fmi.fi/UVRAPPF/

	
text/vnd.in3d.3dml

	
For In3D Player.

	
3dml, 3dm

	
Michael Powers

powers@insideout.net

	
text/vnd.in3d.spot

	
For In3D Player.

	
spot, spo

	
Same as above

	
text/vnd.IPTC.NewsML

	
NewsML format specified by the International Press
 Telecommunications Council (IPTC).

	
xml

	
David Allen

m_director_iptc@dial.pipex.com

http://www.iptc.org

	
text/vnd.IPTC.NITF

	
NITF format specified by the IPTC.

	
xml

	
Same as above

http://www.nitf.org

	
text/vnd.latex-z

	
Supports LaTeX documents containing Z notation. Z notation
 (pronounced "zed"), is based on Zermelo-Fraenkel set theory and
 first order predicate logic, and it is useful for describing computer
 systems.

	

	
http://www.comlab.ox.ac.uk/archive/z/

	
text/vnd.motorola.reflex

	
Provides a common method for submitting simple text messages
 from ReFLEX™ wireless devices.

	

	
Mark Patton

fmp014@email.mot.com

Part of the FLEXsuite™ of Enabling Protocols specification
 available from Motorola under the licensing agreement

	
text/vnd.ms-mediapackage

	
This type is intended to be handled by the Microsoft
 application programs MStore.exe and 7 storDB.exe.

	
mpf

	
Jan Nelson

jann@microsoft.com

	
text/vnd.wap.si

	
Service Indication (SI) objects contain a message describing
 an event and a URI describing where to load the corresponding service.

	
si, xml

	
WAP Forum Ltd

http://www.wapforum.org

	
text/vnd.wap.sl

	
The Service Loading (SL) content type provides a means to
 convey a URI to a user agent in a mobile client. The client itself
 automatically loads the content indicated by that URI and executes it in the
 addressed user agent without user intervention when appropriate.

	
sl, xml

	
Same as above

	
text/vnd.wap.wml

	
Wireless Markup Language (WML) is a markup language, based
 on XML, that defines content and user interface for narrow-band devices,
 including cellular phones and pagers.

	
wml

	
Same as above

	
text/vnd.wap.wmlscript

	
WMLScript is an evolution of JavaScript for wireless
 devices.

	
wmls

	
Same as above

	
text/x-setext

	
From Apache mime.types.

	
etx

	

	
text/xml

	
Extensible Markup Language format file (use application/xml
 if you want the browser to save to file when downloaded).

	
xml

	
RFC 2376

D.4.9 video/*

Table D-11 lists some popular video movie
formats. Note that some video formats are classified as application types.

	
Table D-11. "Video" MIME
 types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
video/MP4V-ES

	
MPEG-4 video payload, as carried by RTP.

	

	
RFC 3016

	
video/mpeg

	
Video encoded per the ISO 11172 CD MPEG standard.

	
mpeg, mpg, mpe

	
RFC 1341

	
video/parityfec

	
Forward error correcting video format for data carried
 through RTP streams.

	

	
RFC 3009

	
video/pointer

	
Transporting pointer position information for presentations.

	

	
RFC 2862

	
video/quicktime

	
Apple Quicktime video format.

	
qt, mov

	
http://www.apple.com

	
video/vnd.fvt

	
Video format from FAST Search &
 Transfer.

	
fvt

	
Arild Fuldseth

Arild.Fuldseth@fast.no

	
video/vnd.motorola.videovideo/vnd.motorola.videop

	
Proprietary formats used by products from
 Motorola ISG.

	

	
Tom McGinty

Motorola ISG

tmcginty@dma.isg.mot

	
video/vnd.mpegurl

	
This media type consists of a series of
 URLs of MPEG Video files.

	
mxu

	
Heiko Recktenwald

uzs106@uni-bonn.de

"Power and Responsibility:
 Conversations with Contributors," Guy van Belle, et al., LMJ 9 (1999),
 127-133, 129 (MIT Press)

	
video/vnd.nokia.interleaved-multimedia

	
Used in Nokia 9210 Communicator video
 player and related tools.

	
nim

	
Petteri Kangaslampi

petteri.kangaslampi@nokia.com

	
video/x-msvideo

	
Microsoft AVI movies.

	
avi

	
http://www.microsoft.com

	
video/x-sgi-movie

	
Silicon Graphics's movie format.

	
movie

	
http://www.sgi.com

D.4.10 Experimental Types

The
set of primary types supports most content types. Table D-12 lists one experimental type, for conferencing software, that is
configured in some web servers.

	
Table D-12. Extension
 MIME types

	
MIME type

	
Description

	
Extension

	
Contact and
 reference

	
x-conference/x-cooltalk

	
Collaboration tool from Netscape

	
ice

	

Appendix E.
Base-64 Encoding

Base-64
encoding is used by HTTP, for basic and digest authentication, and by several
HTTP extensions. This appendix explains base-64 encoding and provides
conversion tables and pointers to Perl software to help you correctly use
base-64 encoding in HTTP software.

E.1 Base-64
Encoding Makes Binary Data Safe

The base-64 encoding
converts a series of arbitrary bytes into a longer sequence of common text
characters that are all legal header field values. Base-64 encoding lets us
take user input or binary data, pack it into a safe format, and ship it as HTTP
header field values without fear of them containing colons, newlines, or binary
values that would break HTTP parsers.

Base-64 encoding was developed as part of the
MIME multimedia electronic mail standard, so MIME could transport rich text and
arbitrary binary data between different legacy email gateways.[1]
Base-64 encoding is similar in spirit, but more efficient in space, to the
uuencode and BinHex standards for textifying binary data. Section 6.8 of MIME
RFC 2045 details the base-64 algorithm.

[1] Some mail gateways would silently strip many
"non-printing" characters with ASCII values between 0 and 31. Other
programs would interpret some bytes as flow control characters or other special
control characters, or convert carriage returns to line feeds and the like. Some
programs would experience fatal errors upon receiving international characters
with a value above 127 because the software was not "8-bit clean."

E.2 Eight Bits to Six Bits

Base-64 encoding
takes a sequence of 8-bit bytes, breaks the sequence into 6-bit pieces, and
assigns each 6-bit piece to one of 64 characters comprising the base-64 alphabet.
The 64 possible output characters are common and safe to place in HTTP header
fields. The 64 characters include upper- and lowercase letters, numbers, +, and
/. The special character = also is used. The base-64 alphabet is shown in Table E-1.

Note that because the base-64 encoding
uses 8-bit characters to represent 6 bits of information, base 64-encoded
strings are about 33% larger than the original values.

	
Table E-1. Base-64 alphabet

	
0

	
A

	
8

	
I

	
16

	
Q

	
24

	
Y

	
32

	
g

	
40

	
o

	
48

	
w

	
56

	
4

	
1

	
B

	
9

	
J

	
17

	
R

	
25

	
Z

	
33

	
h

	
41

	
p

	
49

	
x

	
57

	
5

	
2

	
C

	
10

	
K

	
18

	
S

	
26

	
a

	
34

	
i

	
42

	
q

	
50

	
y

	
58

	
6

	
3

	
D

	
11

	
L

	
19

	
T

	
27

	
b

	
35

	
j

	
43

	
r

	
51

	
z

	
59

	
7

	
4

	
E

	
12

	
M

	
20

	
U

	
28

	
c

	
36

	
k

	
44

	
s

	
52

	
0

	
60

	
8

	
5

	
F

	
13

	
N

	
21

	
V

	
29

	
d

	
37

	
l

	
45

	
t

	
53

	
1

	
61

	
9

	
6

	
G

	
14

	
O

	
22

	
W

	
30

	
e

	
38

	
m

	
46

	
u

	
54

	
2

	
62

	
+

	
7

	
H

	
15

	
P

	
23

	
X

	
31

	
f

	
39

	
n

	
47

	
v

	
55

	
3

	
63

	
/

Figure E-1 shows a simple example of base-64
encoding. Here, the three-character input value "Ow!" is base
64-encoded, resulting in the four-character base 64-encoded value
"T3ch". It works like this:

1. The
string "Ow!" is broken into 3 8-bit bytes (0x4F, 0x77, 0x21).

2. The
3 bytes create the 24-bit binary value 010011110111011100100001.

3. These
bits are segmented into the 6-bit sequences 010011, 110111, 01110, 100001.

4. Each
of these 6-bit values represents a number from 0 to 63, corresponding to one of
64 characters in the base-64 alphabet. The resulting base 64-encoded string is
the 4-character string "T3ch", which can then be sent across the wire
as "safe" 8-bit characters, because only the most portable characters
are used (letters, numbers, etc.).

Figure E-1. Base-64 encoding example

[image: figs/http_ae01.gif]

E.3 Base-64
Padding

Base-64 encoding takes
a sequence of 8-bit bytes and segments the bit stream into 6-bit chunks. It is
unlikely that the sequence of bits will divide evenly into 6-bit pieces. When
the bit sequence does not divide evenly into 6-bit pieces, the bit sequence is
padded with zero bits at the end to make the length of the bit sequence a
multiple of 24 (the least common multiple of 6 and 8 bits).

When encoding the padded bit string, any
group of 6 bits that is completely padding (containing no bits from the
original data) is represented by a special 65th symbol: "=". If a
group of 6 bits is partially padded, the padding bits are set to zero.

Table E-2 shows
examples of padding. The initial input string "a:a" is 3 bytes long,
or 24 bits. 24 is a multiple of 6 and 8, so no padding is required. The
resulting base 64-encoded string is "YTph".

	
Table E-2. Base-64
 padding examples

	
Input data

	
Binary sequence
 (padding noted as "x")

	
Encoded data

	a:a

	011000 010011 101001 100001

	YTph

	a:aa

	011000 010011 101001 100001 011000 01xxxx xxxxxx xxxxxx

	YTphYQ==

	a:aaa

	011000 010011 101001 100001 011000 010110 0001xx xxxxxx

	YTphYWE=

	a:aaaa

	011000 010011 101001 100001 011000 010110 000101 100001

	YTphYWFh

However, when another character is added, the input string
grows to 32 bits long. The next smallest multiple of 6 and 8 is 48 bits, so 16 bits
of padding are added. The first 4 bits of padding are mixed with data bits. The
resulting 6-bit group, 01xxxx, is treated as 010000, 16 decimal, or base-64
encoding Q. The remaining two 6-bit groups are all padding and are represented
by "=".

E.4 Perl
Implementation

MIME::Base64
is a Perl module for base-64 encoding and decoding. You can read about this
module at http://www.perldoc.com/perl5.6.1/lib/MIME/Base64.html.

You can encode and decode strings using the
MIME::Base64 encode_base64 and decode_base64 methods:

use MIME::Base64;

$encoded = encode_base64('Aladdin:open sesame');
$decoded = decode_base64($encoded);

E.5 For More
Information

For more information on base-64 encoding,
see:

http://www.ietf.org/rfc/rfc2045.txt

Section 6.8 of RFC
2045, "MIME Part 1: Format of Internet Message Bodies," provides an
official specification of base-64 encoding.

http://www.perldoc.com/perl5.6.1/lib/MIME/Base64.html

This web site
contains documentation for the MIME::Base64 Perl module that provides encoding
and decoding of base-64 strings.

Appendix F.
Digest Authentication

This
appendix contains supporting data and source code for implementing HTTP digest
authentication facilities.

F.1 Digest
WWW-Authenticate Directives

WWW-Authenticate directives are described in Table F-1, paraphrased from the descriptions
in RFC 2617. As always, refer to the official specifications for the most
up-to-date details.

	
Table F-1. Digest WWW-Authenticate
 header directives (from RFC 2617)

	
Directive

	
Description

	
realm

	
A string to be displayed to users so they know which
 username and password to use. This string should contain at least the name of
 the host performing the authentication and might additionally indicate the
 collection of users who might have access. An example might be
 "registered_users@gotham.news.com".

	
nonce

	
A server-specified data string that should be uniquely
 generated each time a 401 response is made. It is recommended that this
 string be base-64 or hexadecimal data. Specifically, because the string is
 passed in the header lines as a quoted string, the double-quote character is
 not allowed.

The contents of the nonce are implementation-dependent. The
 quality of the implementation depends on a good choice. A nonce might, for
 example, be constructed as the base-64 encoding of:

time-stamp H(time-stamp ":" ETag ":" private-key)

where time-stamp is a
 server-generated time or other nonrepeating value, ETag
 is the value of the HTTP ETag header associated with the requested entity,
 and private-key is data known only to the
 server. With a nonce of this form, a server would recalculate the hash
 portion after receiving the client Authentication header and reject the
 request if it did not match the nonce from that header or if the time-stamp
 value is not recent enough. In this way, the server can limit the time of the
 nonce's validity. The inclusion of the ETag prevents a replay request for an
 updated version of the resource. (Note: including the IP address of the
 client in the nonce appears to offer the server the ability to limit the
 reuse of the nonce to the same client that originally got it. However, that
 would break proxy farms, where requests from a single user often go through
 different proxies in the farm. Also, IP address spoofing is not that hard.)

An implementation might choose not to accept a previously
 used nonce or a previously used digest, to protect against replay attacks, or
 it might choose to use one-time nonces or digests for POST or PUT requests
 and time-stamps for GET requests.

	
domain

	
A quoted, space-separated list of URIs (as specified in RFC
 2396, "Uniform Resource Identifiers: Generic Syntax") that define
 the protection space. If a URI is an abs_path, it is relative to the
 canonical root URL of the server being accessed. An absolute URI in this list
 may refer to a different server than the one being accessed.

The client can use this list to determine the set of URIs
 for which the same authentication information may be sent: any URI that has a
 URI in this list as a prefix (after both have been made absolute) may be
 assumed to be in the same protection space.

If this directive is omitted or its value is empty, the
 client should assume that the protection space consists of all URIs on the
 responding server.

This directive is not meaningful in Proxy-Authenticate
 headers, for which the protection space is always the entire proxy; if
 present, it should be ignored.

	
opaque

	
A string of data, specified by the server,
 that should be returned by the client unchanged in the Authorization header
 of subsequent requests with URIs in the same protection space. It is
 recommended that this string be base-64 or hexadecimal data.

	
stale

	
A flag indicating that the previous request
 from the client was rejected because the nonce value was stale. If stale is
 TRUE (case-insensitive), the client may want to retry the request with a new
 encrypted response, without reprompting the user for a new username and
 password. The server should set stale to TRUE only if it receives a request
 for which the nonce is invalid but has a valid digest (indicating that the
 client knows the correct username/password). If stale is FALSE, or anything
 other than TRUE, or the stale directive is not present, the username and/or
 password are invalid, and new values must be obtained.

	
algorithm

	
A string indicating a pair of algorithms
 used to produce the digest and a checksum. If this is not present, it is
 assumed to be "MD5". If the algorithm is not understood, the
 challenge should be ignored (and a different one used, if there is more than
 one).

In this document, the string obtained by applying the digest
 algorithm to the data "data" with secret "secret" will be
 denoted by "KD(secret, data)", and the string obtained by applying
 the checksum algorithm to the data "data" will be denoted
 "H(data)". The notation "unq(X)" means the value of the
 quoted string "X" without the surrounding quotes.

For the MD5 and MD5-sess algorithms:

H(data) = MD5(data)
HD(secret, data) = H(concat(secret, ":", data))

I.e., the digest is the MD5 of the secret concatenated with
 a colon concatenated with the data. The MD5-sess algorithm is intended to
 allow efficient third-party authentication servers.

	
qop

	
This directive is optional but is made so only for backward
 compatibility with RFC 2069 [6]; it should be used by all implementations
 compliant with this version of the digest scheme.

If present, it is a quoted string of one or more tokens
 indicating the "quality of protection" values supported by the
 server. The value "auth" indicates authentication; the value
 "auth-int" indicates authentication with integrity protection.
 Unrecognized options must be ignored.

	
<extension>

	
This directive allows for future extensions. Any
 unrecognized directives must be ignored.

F.2 Digest Authorization
Directives

Each
of the Authorization directives is described in Table F-2, paraphrased from the descriptions
in RFC 2617. Refer to the official specifications for the most up-to-date
details.

	
Table F-2. Digest Authorization
 header directives (from RFC 2617)

	
Directive

	
Description

	
username

	
The user's name in the specified realm.

	
realm

	
The realm passed to the client in the
 WWW-Authenticate header.

	
nonce

	
The same nonce passed to the client in the
 WWW-Authenticate header.

	
uri

	
The URI from the request URI of the request
 line; duplicated because proxies are allowed to change the request line in
 transit, and we may need the original URI for proper digest verification
 calculations.

	
response

	
This is the actual digest—the whole point
 of digest authentication! The response is a string of 32 hexadecimal digits,
 computed by a negotiated digest algorithm, which proves that the user knows
 the password.

	
algorithm

	
A string indicating a pair of algorithms used to produce the
 digest and a checksum. If this is not present, it is assumed to be
 "MD5".

	
opaque

	
A string of data, specified by the server in a
 WWW-Authenticate header, that should be returned by the client unchanged in
 the Authorization header of subsequent requests with URIs in the same
 protection space.

	
cnonce

	
This must be specified if a qop directive is sent and must
 not be specified if the server did not send a qop directive in the
 WWW-Authenticate header field.

The cnonce value is an opaque quoted string value provided
 by the client and used by both client and server to avoid chosen plaintext
 attacks, to provide mutual authentication, and to provide some
 message-integrity protection.

See the descriptions of the response-digest and
 request-digest calculations later in this appendix.

	
qop

	
Indicates what "quality of protection" the client
 has applied to the message. If present, its value must be one of the
 alternatives the server indicated it supports in the WWW-Authenticate header.
 These values affect the computation of the request digest.

This is a single token, not a quoted list of alternatives,
 as in WWW-Authenticate.

This directive is optional, to preserve backward
 compatibility with a minimal implementation of RFC 2069, but it should be
 used if the server indicated that qop is supported by providing a qop
 directive in the WWW-Authenticate header field.

	
nc

	
This must be specified if a qop directive is sent and must
 not be specified if the server did not send a qop directive in the
 WWW-Authenticate header field.

The value is the hexadecimal count of the number of requests
 (including the current request) that the client has sent with the nonce value
 in this request. For example, in the first request sent in response to a
 given nonce value, the client sends nc="00000001".

The purpose of this directive is to allow the server to
 detect request replays by maintaining its own copy of this count—if the same
 nc value is seen twice, the request is a replay.

	
<extension>

	
This directive allows for future extensions. Any
 unrecognized directive must be ignored.

F.3 Digest
Authentication-Info Directives

Each of the Authentication-Info directives is described in Table F-3,
paraphrased from the descriptions in RFC 2617. Refer to the official
specifications for the most up-to-date details.

	
Table F-3. Digest
 Authentication-Info header directives (from RFC 2617)

	
Directive

	
Description

	
nextnonce

	
The value of the nextnonce directive is the
 nonce the server wants the client to use for a future authentication
 response. The server may send the Authentication-Info header with a nextnonce
 field as a means of implementing one-time or otherwise changing nonces. If
 the nextnonce field is present the client should use it when constructing the
 Authorization header for its next request. Failure of the client to do so may
 result in a reauthentication request from the server with
 "stale=TRUE".

Server implementations should carefully
 consider the performance implications of the use of this mechanism; pipelined
 requests will not be possible if every response includes a nextnonce
 directive that must be used on the next request received by the server. Consideration
 should be given to the performance versus security trade-offs of allowing an
 old nonce value to be used for a limited time to permit request pipelining.
 Use of the nonce count can retain most of the security advantages of a new
 server nonce without the deleterious effects on pipelining.

	
qop

	
Indicates the "quality of protection" options
 applied to the response by the server. The value "auth" indicates
 authentication; the value "auth-int" indicates authentication with
 integrity protection. The server should use the same value for the qop
 directive in the response as was sent by the client in the corresponding
 request.

	
rspauth

	
The optional response digest in the "response
 auth" directive supports mutual authentication—the server proves that it
 knows the user's secret, and, with qop="auth-int", it also provides
 limited integrity protection of the response. The "response-digest"
 value is calculated as for the "request-digest" in the Authorization
 header, except that if qop="auth" or qop is not specified in the
 Authorization header for the request, A2 is:

A2 = ":" digest-uri-value

and if qop="auth-int", A2 is:

A2 = ":" digest-uri-value ":" H(entity-body)

where digest-uri-value is
 the value of the uri directive on the Authorization header in the request.
 The cnonce and nc values must be the same as the ones in the client request
 to which this message is a response. The rspauth directive must be present if
 qop="auth" or qop="auth-int" is specified.

	
cnonce

	
The cnonce value must be the same as the one in the client
 request to which this message is a response. The cnonce directive must be
 present if qop="auth" or qop="auth-int" is specified.

	
nc

	
The nc value must be the same as the one in the client
 request to which this message is a response. The nc directive must be present
 if qop="auth" or qop="auth-int" is specified.

	
<extension>

	
This directive allows for future extensions. Any
 unrecognized directive must be ignored.

F.4 Reference
Code

The following code
implements the calculations of H(A1), H(A2), request-digest, and
response-digest, from RFC 2617. It uses the MD5 implementation from RFC 1321.

F.4.1 File "digcalc.h"

#define HASHLEN 16
typedef char HASH[HASHLEN];
#define HASHHEXLEN 32
typedef char HASHHEX[HASHHEXLEN+1];
#define IN
#define OUT
/* calculate H(A1) as per HTTP Digest spec */
void DigestCalcHA1(
 IN char * pszAlg,
 IN char * pszUserName,
 IN char * pszRealm,
 IN char * pszPassword,
 IN char * pszNonce,
 IN char * pszCNonce,
 OUT HASHHEX SessionKey
);

/* calculate request-digest/response-digest as per HTTP Digest spec */
void DigestCalcResponse(
 IN HASHHEX HA1, /* H(A1) */
 IN char * pszNonce, /* nonce from server */
 IN char * pszNonceCount, /* 8 hex digits */
 IN char * pszCNonce, /* client nonce */
 IN char * pszQop, /* qop-value: "", "auth", "auth-int" */
 IN char * pszMethod, /* method from the request */
 IN char * pszDigestUri, /* requested URL */
 IN HASHHEX HEntity, /* H(entity body) if qop="auth-int" */
 OUT HASHHEX Response /* request-digest or response-digest */
);

F.4.2 File "digcalc.c"

#include <global.h>
#include <md5.h>
#include <string.h>
#include "digcalc.h"

void CvtHex(
 IN HASH Bin,
 OUT HASHHEX Hex
)
{
 unsigned short i;
 unsigned char j;
 for (i = 0; i < HASHLEN; i++) {
 j = (Bin[i] >> 4) & 0xf;
 if (j <= 9)
 Hex[i*2] = (j + '0');
 else
 Hex[i*2] = (j + 'a' - 10);
 j = Bin[i] & 0xf;
 if (j <= 9)
 Hex[i*2+1] = (j + '0');
 else
 Hex[i*2+1] = (j + 'a' - 10);
 };
 Hex[HASHHEXLEN] = '\0';
};

/* calculate H(A1) as per spec */
void DigestCalcHA1(
 IN char * pszAlg,
 IN char * pszUserName,
 IN char * pszRealm,
 IN char * pszPassword,
 IN char * pszNonce,
 IN char * pszCNonce,
 OUT HASHHEX SessionKey
)
{
 MD5_CTX Md5Ctx;
 HASH HA1;
 MD5Init(&Md5Ctx);
 MD5Update(&Md5Ctx, pszUserName, strlen(pszUserName));
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszRealm, strlen(pszRealm));
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszPassword, strlen(pszPassword));
 MD5Final(HA1, &Md5Ctx);
 if (stricmp(pszAlg, "md5-sess") == 0) {
 MD5Init(&Md5Ctx);
 MD5Update(&Md5Ctx, HA1, HASHLEN);
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszNonce, strlen(pszNonce));
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszCNonce, strlen(pszCNonce));
 MD5Final(HA1, &Md5Ctx);
 };
 CvtHex(HA1, SessionKey);
};
/* calculate request-digest/response-digest as per HTTP Digest spec */
void DigestCalcResponse(
 IN HASHHEX HA1, /* H(A1) */
 IN char * pszNonce, /* nonce from server */
 IN char * pszNonceCount, /* 8 hex digits */
 IN char * pszCNonce, /* client nonce */
 IN char * pszQop, /* qop-value: "", "auth", "auth-int" */
 IN char * pszMethod, /* method from the request */
 IN char * pszDigestUri, /* requested URL */
 IN HASHHEX HEntity, /* H(entity body) if qop="auth-int" */
 OUT HASHHEX Response /* request-digest or response-digest */
)
{
 MD5_CTX Md5Ctx;
 HASH HA2;
 HASH RespHash;
 HASHHEX HA2Hex;
 // calculate H(A2)
 MD5Init(&Md5Ctx);
 MD5Update(&Md5Ctx, pszMethod, strlen(pszMethod));
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszDigestUri, strlen(pszDigestUri));
 if (stricmp(pszQop, "auth-int") == 0) {
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, HEntity, HASHHEXLEN);
 };
 MD5Final(HA2, &Md5Ctx);
 CvtHex(HA2, HA2Hex);
 // calculate response
 MD5Init(&Md5Ctx);
 MD5Update(&Md5Ctx, HA1, HASHHEXLEN);
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszNonce, strlen(pszNonce));
 MD5Update(&Md5Ctx, ":", 1);
 if (*pszQop) {
 MD5Update(&Md5Ctx, pszNonceCount, strlen(pszNonceCount));
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszCNonce, strlen(pszCNonce));
 MD5Update(&Md5Ctx, ":", 1);
 MD5Update(&Md5Ctx, pszQop, strlen(pszQop));
 MD5Update(&Md5Ctx, ":", 1);
 };
 MD5Update(&Md5Ctx, HA2Hex, HASHHEXLEN);
 MD5Final(RespHash, &Md5Ctx);
 CvtHex(RespHash, Response);
};

F.4.3 File "digtest.c"

#include <stdio.h>
#include "digcalc.h"

void main(int argc, char ** argv) {
 char * pszNonce = "dcd98b7102dd2f0e8b11d0f600bfb0c093";
 char * pszCNonce = "0a4f113b";
 char * pszUser = "Mufasa";
 char * pszRealm = "testrealm@host.com";
 char * pszPass = "Circle Of Life";
 char * pszAlg = "md5";
 char szNonceCount[9] = "00000001";
 char * pszMethod = "GET";
 char * pszQop = "auth";
 char * pszURI = "/dir/index.html";
 HASHHEX HA1;
 HASHHEX HA2 = "";
 HASHHEX Response;
 DigestCalcHA1(pszAlg, pszUser, pszRealm, pszPass,
 pszNonce, pszCNonce, HA1);
 DigestCalcResponse(HA1, pszNonce, szNonceCount, pszCNonce, pszQop,
 pszMethod, pszURI, HA2, Response);
 printf("Response = %s\n", Response);
};

Appendix G.
Language Tags

Language
tags are short, standardized strings that name spoken languages—for example,
"fr" (French) and "en-GB" (Great Britain English). Each tag
has one or more parts, separated by hyphens, called subtags.
Language tags were described in detail in Section 16.4.

This appendix summarizes the rules,
standardized tags, and registration information for language tags. It
contains the following reference material:

·
Rules for the first (primary) subtag are
summarized in Section G.1.

·
Rules for the second subtag are summarized in Section G.2.

·
IANA-registered language tags are shown in Table G-1.

·
ISO 639 language codes are shown in Table G-2.

·
ISO 3166 country codes are shown in Table G-3.

G.1 First
Subtag Rules

If the first subtag is:

·
Two characters long, it's a language code from
the ISO 639[1]
and 639-1 standards

[1] See ISO standard 639,
"Codes for the representation of names of languages."

·
Three characters long, it's a language code
listed in the ISO 639-2[2] standard

[2] See ISO 639-2, "Codes for the representation of names of
languages—Part 2: Alpha-3 code."

·
The letter "i," the language tag is
explicitly IANA-registered

·
The letter "x," the language tag is a
private, nonstandard, extension subtag

The ISO 639 and 639-2 names are summarized in
Table G-2.

G.2 Second
Subtag Rules

If the second subtag
is:

·
Two characters long, it's a country/region
defined by ISO 3166[3]

[3] The country codes AA, QM-QZ,
XA-XZ and ZZ are reserved by ISO 3166 as user-assigned codes. These must
not be used to form language tags.

·
Three to eight characters long, it may be
registered with the IANA

·
One character long, it is illegal

The ISO 3166 country codes are summarized in Table G-3.

G.3 IANA-Registered
Language Tags

	
Table G-1. Language tags

	
IANA language tag

	
Description

	
i-bnn

	
Bunun

	
i-default

	
Default language context

	
i-hak

	
Hakka

	
i-klingon

	
Klingon

	
i-lux

	
Luxembourgish

	
i-mingo

	
Mingo

	
i-navajo

	
Navajo

	
i-pwn

	
Paiwan

	
i-tao

	
Tao

	
i-tay

	
Tayal

	
i-tsu

	
Tsou

	
no-bok

	
Norwegian "Book language"

	
no-nyn

	
Norwegian "New Norwegian"

	
zh-gan

	
Kan or Gan

	
zh-guoyu

	
Mandarin or Standard Chinese

	
zh-hakka

	
Hakka

	
zh-min

	
Min, Fuzhou, Hokkien, Amoy, or Taiwanese

	
zh-wuu

	
Shanghaiese or Wu

	
zh-xiang

	
Xiang or Hunanese

	
zh-yue

	
Cantonese

G.4 ISO 639 Language Codes

	
Table G-2. ISO 639 and
 639-2 language codes

	
Language

	
ISO 639

	
ISO 639-2

	
Abkhazian

	
ab

	
abk

	
Achinese

	

	
ace

	
Acoli

	

	
ach

	
Adangme

	

	
ada

	
Afar

	
aa

	
aar

	
Afrihili

	

	
afh

	
Afrikaans

	
af

	
afr

	
Afro-Asiatic (Other)

	

	
afa

	
Akan

	

	
aka

	
Akkadian

	

	
akk

	
Albanian

	
sq

	
alb/sqi

	
Aleut

	

	
ale

	
Algonquian languages

	

	
alg

	
Altaic (Other)

	

	
tut

	
Amharic

	
am

	
amh

	
Apache languages

	

	
apa

	
Arabic

	
ar

	
ara

	
Aramaic

	

	
arc

	
Arapaho

	

	
arp

	
Araucanian

	

	
arn

	
Arawak

	

	
arw

	
Armenian

	
hy

	
arm/hye

	
Artificial (Other)

	

	
art

	
Assamese

	
as

	
asm

	
Athapascan languages

	

	
ath

	
Austronesian (Other)

	

	
map

	
Avaric

	

	
ava

	
Avestan

	

	
ave

	
Awadhi

	

	
awa

	
Aymara

	
ay

	
aym

	
Azerbaijani

	
az

	
aze

	
Aztec

	

	
nah

	
Balinese

	

	
ban

	
Baltic (Other)

	

	
bat

	
Baluchi

	

	
bal

	
Bambara

	

	
bam

	
Bamileke languages

	

	
bai

	
Banda

	

	
bad

	
Bantu (Other)

	

	
bnt

	
Basa

	

	
bas

	
Bashkir

	
ba

	
bak

	
Basque

	
eu

	
baq/eus

	
Beja

	

	
bej

	
Bemba

	

	
bem

	
Bengali

	
bn

	
ben

	
Berber (Other)

	

	
ber

	
Bhojpuri

	

	
bho

	
Bihari

	
bh

	
bih

	
Bikol

	

	
bik

	
Bini

	

	
bin

	
Bislama

	
bi

	
bis

	
Braj

	

	
bra

	
Breton

	
be

	
bre

	
Buginese

	

	
bug

	
Bulgarian

	
bg

	
bul

	
Buriat

	

	
bua

	
Burmese

	
my

	
bur/mya

	
Byelorussian

	
be

	
bel

	
Caddo

	

	
cad

	
Carib

	

	
car

	
Catalan

	
ca

	
cat

	
Caucasian (Other)

	

	
cau

	
Cebuano

	

	
ceb

	
Celtic (Other)

	

	
cel

	
Central American Indian (Other)

	

	
cai

	
Chagatai

	

	
chg

	
Chamorro

	

	
cha

	
Chechen

	

	
che

	
Cherokee

	

	
chr

	
Cheyenne

	

	
chy

	
Chibcha

	

	
chb

	
Chinese

	
zh

	
chi/zho

	
Chinook jargon

	

	
chn

	
Choctaw

	

	
cho

	
Church Slavic

	

	
chu

	
Chuvash

	

	
chv

	
Coptic

	

	
cop

	
Cornish

	

	
cor

	
Corsican

	
co

	
cos

	
Cree

	

	
cre

	
Creek

	

	
mus

	
Creoles and Pidgins (Other)

	

	
crp

	
Creoles and Pidgins, English-based (Other)

	

	
cpe

	
Creoles and Pidgins, French-based (Other)

	

	
cpf

	
Creoles and Pidgins, Portuguese-based
 (Other)

	

	
cpp

	
Cushitic (Other)

	

	
cus

	
Croatian

	
hr

	

	
Czech

	
cs

	
ces/cze

	
Dakota

	

	
dak

	
Danish

	
da

	
dan

	
Delaware

	

	
del

	
Dinka

	

	
din

	
Divehi

	

	
div

	
Dogri

	

	
doi

	
Dravidian (Other)

	

	
dra

	
Duala

	

	
dua

	
Dutch

	
nl

	
dut/nla

	
Dutch, Middle (ca. 1050-1350)

	

	
dum

	
Dyula

	

	
dyu

	
Dzongkha

	
dz

	
dzo

	
Efik

	

	
efi

	
Egyptian (Ancient)

	

	
egy

	
Ekajuk

	

	
eka

	
Elamite

	

	
elx

	
English

	
en

	
eng

	
English, Middle (ca. 1100-1500)

	

	
enm

	
English, Old (ca. 450-1100)

	

	
ang

	
Eskimo (Other)

	

	
esk

	
Esperanto

	
eo

	
epo

	
Estonian

	
et

	
est

	
Ewe

	

	
ewe

	
Ewondo

	

	
ewo

	
Fang

	

	
fan

	
Fanti

	

	
fat

	
Faroese

	
fo

	
fao

	
Fijian

	
fj

	
fij

	
Finnish

	
fi

	
fin

	
Finno-Ugrian (Other)

	

	
fiu

	
Fon

	

	
fon

	
French

	
fr

	
fra/fre

	
French, Middle (ca. 1400-1600)

	

	
frm

	
French, Old (842- ca. 1400)

	

	
fro

	
Frisian

	
fy

	
fry

	
Fulah

	

	
ful

	
Ga

	

	
gaa

	
Gaelic (Scots)

	

	
gae/gdh

	
Gallegan

	
gl

	
glg

	
Ganda

	

	
lug

	
Gayo

	

	
gay

	
Geez

	

	
gez

	
Georgian

	
ka

	
geo/kat

	
German

	
de

	
deu/ger

	
German, Middle High (ca. 1050-1500)

	

	
gmh

	
German, Old High (ca. 750-1050)

	

	
goh

	
Germanic (Other)

	

	
gem

	
Gilbertese

	

	
gil

	
Gondi

	

	
gon

	
Gothic

	

	
got

	
Grebo

	

	
grb

	
Greek, Ancient (to 1453)

	

	
grc

	
Greek, Modern (1453-)

	
el

	
ell/gre

	
Greenlandic

	
kl

	
kal

	
Guarani

	
gn

	
grn

	
Gujarati

	
gu

	
guj

	
Haida

	

	
hai

	
Hausa

	
ha

	
hau

	
Hawaiian

	

	
haw

	
Hebrew

	
he

	
heb

	
Herero

	

	
her

	
Hiligaynon

	

	
hil

	
Himachali

	

	
him

	
Hindi

	
hi

	
hin

	
Hiri Motu

	

	
hmo

	
Hungarian

	
hu

	
hun

	
Hupa

	

	
hup

	
Iban

	

	
iba

	
Icelandic

	
is

	
ice/isl

	
Igbo

	

	
ibo

	
Ijo

	

	
ijo

	
Iloko

	

	
ilo

	
Indic (Other)

	

	
inc

	
Indo-European (Other)

	

	
ine

	
Indonesian

	
id

	
ind

	
Interlingua (IALA)

	
ia

	
ina

	
Interlingue

	
ie

	
ine

	
Inuktitut

	
iu

	
iku

	
Inupiak

	
ik

	
ipk

	
Iranian (Other)

	

	
ira

	
Irish

	
ga

	
gai/iri

	
Irish, Old (to 900)

	

	
sga

	
Irish, Middle (900 - 1200)

	

	
mga

	
Iroquoian languages

	

	
iro

	
Italian

	
it

	
ita

	
Japanese

	
ja

	
jpn

	
Javanese

	
jv/jw

	
jav/jaw

	
Judeo-Arabic

	

	
jrb

	
Judeo-Persian

	

	
jpr

	
Kabyle

	

	
kab

	
Kachin

	

	
kac

	
Kamba

	

	
kam

	
Kannada

	
kn

	
kan

	
Kanuri

	

	
kau

	
Kara-Kalpak

	

	
kaa

	
Karen

	

	
kar

	
Kashmiri

	
ks

	
kas

	
Kawi

	

	
kaw

	
Kazakh

	
kk

	
kaz

	
Khasi

	

	
kha

	
Khmer

	
km

	
khm

	
Khoisan (Other)

	

	
khi

	
Khotanese

	

	
kho

	
Kikuyu

	

	
kik

	
Kinyarwanda

	
rw

	
kin

	
Kirghiz

	
ky

	
kir

	
Komi

	

	
kom

	
Kongo

	

	
kon

	
Konkani

	

	
kok

	
Korean

	
ko

	
kor

	
Kpelle

	

	
kpe

	
Kru

	

	
kro

	
Kuanyama

	

	
kua

	
Kumyk

	

	
kum

	
Kurdish

	
ku

	
kur

	
Kurukh

	

	
kru

	
Kusaie

	

	
kus

	
Kutenai

	

	
kut

	
Ladino

	

	
lad

	
Lahnda

	

	
lah

	
Lamba

	

	
lam

	
Langue d'Oc (post-1500)

	
oc

	
oci

	
Lao

	
lo

	
lao

	
Latin

	
la

	
lat

	
Latvian

	
lv

	
lav

	
Letzeburgesch

	

	
ltz

	
Lezghian

	

	
lez

	
Lingala

	
ln

	
lin

	
Lithuanian

	
lt

	
lit

	
Lozi

	

	
loz

	
Luba-Katanga

	

	
lub

	
Luiseno

	

	
lui

	
Lunda

	

	
lun

	
Luo (Kenya and Tanzania)

	

	
luo

	
Macedonian

	
mk

	
mac/mak

	
Madurese

	

	
mad

	
Magahi

	

	
mag

	
Maithili

	

	
mai

	
Makasar

	

	
mak

	
Malagasy

	
mg

	
mlg

	
Malay

	
ms

	
may/msa

	
Malayalam

	

	
mal

	
Maltese

	
ml

	
mlt

	
Mandingo

	

	
man

	
Manipuri

	

	
mni

	
Manobo languages

	

	
mno

	
Manx

	

	
max

	
Maori

	
mi

	
mao/mri

	
Marathi

	
mr

	
mar

	
Mari

	

	
chm

	
Marshall

	

	
mah

	
Marwari

	

	
mwr

	
Masai

	

	
mas

	
Mayan languages

	

	
myn

	
Mende

	

	
men

	
Micmac

	

	
mic

	
Minangkabau

	

	
min

	
Miscellaneous (Other)

	

	
mis

	
Mohawk

	

	
moh

	
Moldavian

	
mo

	
mol

	
Mon-Kmer (Other)

	

	
mkh

	
Mongo

	

	
lol

	
Mongolian

	
mn

	
mon

	
Mossi

	

	
mos

	
Multiple languages

	

	
mul

	
Munda languages

	

	
mun

	
Nauru

	
na

	
nau

	
Navajo

	

	
nav

	
Ndebele, North

	

	
nde

	
Ndebele, South

	

	
nbl

	
Ndongo

	

	
ndo

	
Nepali

	
ne

	
nep

	
Newari

	

	
new

	
Niger-Kordofanian (Other)

	

	
nic

	
Nilo-Saharan (Other)

	

	
ssa

	
Niuean

	

	
niu

	
Norse, Old

	

	
non

	
North American Indian (Other)

	

	
nai

	
Norwegian

	
no

	
nor

	
Norwegian (Nynorsk)

	

	
nno

	
Nubian languages

	

	
nub

	
Nyamwezi

	

	
nym

	
Nyanja

	

	
nya

	
Nyankole

	

	
nyn

	
Nyoro

	

	
nyo

	
Nzima

	

	
nzi

	
Ojibwa

	

	
oji

	
Oriya

	
or

	
ori

	
Oromo

	
om

	
orm

	
Osage

	

	
osa

	
Ossetic

	

	
oss

	
Otomian languages

	

	
oto

	
Pahlavi

	

	
pal

	
Palauan

	

	
pau

	
Pali

	

	
pli

	
Pampanga

	

	
pam

	
Pangasinan

	

	
pag

	
Panjabi

	
pa

	
pan

	
Papiamento

	

	
pap

	
Papuan-Australian (Other)

	

	
paa

	
Persian

	
fa

	
fas/per

	
Persian, Old (ca 600 - 400 B.C.)

	

	
peo

	
Phoenician

	

	
phn

	
Polish

	
pl

	
pol

	
Ponape

	

	
pon

	
Portuguese

	
pt

	
por

	
Prakrit languages

	

	
pra

	
Provencal, Old (to 1500)

	

	
pro

	
Pushto

	
ps

	
pus

	
Quechua

	
qu

	
que

	
Rhaeto-Romance

	
rm

	
roh

	
Rajasthani

	

	
raj

	
Rarotongan

	

	
rar

	
Romance (Other)

	

	
roa

	
Romanian

	
ro

	
ron/rum

	
Romany

	

	
rom

	
Rundi

	
rn

	
run

	
Russian

	
ru

	
rus

	
Salishan languages

	

	
sal

	
Samaritan Aramaic

	

	
sam

	
Sami languages

	

	
smi

	
Samoan

	
sm

	
smo

	
Sandawe

	

	
sad

	
Sango

	
sg

	
sag

	
Sanskrit

	
sa

	
san

	
Sardinian

	

	
srd

	
Scots

	

	
sco

	
Selkup

	

	
sel

	
Semitic (Other)

	

	
sem

	
Serbian

	
sr

	

	
Serbo-Croatian

	
sh

	
scr

	
Serer

	

	
srr

	
Shan

	

	
shn

	
Shona

	
sn

	
sna

	
Sidamo

	

	
sid

	
Siksika

	

	
bla

	
Sindhi

	
sd

	
snd

	
Singhalese

	
si

	
sin

	
Sino-Tibetan (Other)

	

	
sit

	
Siouan languages

	

	
sio

	
Slavic (Other)

	

	
sla

	
Siswant

	
ss

	
ssw

	
Slovak

	
sk

	
slk/slo

	
Slovenian

	
sl

	
slv

	
Sogdian

	

	
sog

	
Somali

	
so

	
som

	
Songhai

	

	
son

	
Sorbian languages

	

	
wen

	
Sotho, Northern

	

	
nso

	
Sotho, Southern

	
st

	
sot

	
South American Indian (Other)

	

	
sai

	
Spanish

	
es

	
esl/spa

	
Sukuma

	

	
suk

	
Sumerian

	

	
sux

	
Sudanese

	
su

	
sun

	
Susu

	

	
sus

	
Swahili

	
sw

	
swa

	
Swazi

	

	
ssw

	
Swedish

	
sv

	
sve/swe

	
Syriac

	

	
syr

	
Tagalog

	
tl

	
tgl

	
Tahitian

	

	
tah

	
Tajik

	
tg

	
tgk

	
Tamashek

	

	
tmh

	
Tamil

	
ta

	
tam

	
Tatar

	
tt

	
tat

	
Telugu

	
te

	
tel

	
Tereno

	

	
ter

	
Thai

	
th

	
tha

	
Tibetan

	
bo

	
bod/tib

	
Tigre

	

	
tig

	
Tigrinya

	
ti

	
tir

	
Timne

	

	
tem

	
Tivi

	

	
tiv

	
Tlingit

	

	
tli

	
Tonga (Nyasa)

	
to

	
tog

	
Tonga (Tonga Islands)

	

	
ton

	
Truk

	

	
tru

	
Tsimshian

	

	
tsi

	
Tsonga

	
ts

	
tso

	
Tswana

	
tn

	
tsn

	
Tumbuka

	

	
tum

	
Turkish

	
tr

	
tur

	
Turkish, Ottoman (1500-1928)

	

	
ota

	
Turkmen

	
tk

	
tuk

	
Tuvinian

	

	
tyv

	
Twi

	
tw

	
twi

	
Ugaritic

	

	
uga

	
Uighur

	
ug

	
uig

	
Ukrainian

	
uk

	
ukr

	
Umbundu

	

	
umb

	
Undetermined

	

	
und

	
Urdu

	
ur

	
urd

	
Uzbek

	
uz

	
uzb

	
Vai

	

	
vai

	
Venda

	

	
ven

	
Vietnamese

	
vi

	
vie

	
Volapük

	
vo

	
vol

	
Votic

	

	
vot

	
Wakashan languages

	

	
wak

	
Walamo

	

	
wal

	
Waray

	

	
war

	
Washo

	

	
was

	
Welsh

	
cy

	
cym/wel

	
Wolof

	
wo

	
wol

	
Xhosa

	
xh

	
xho

	
Yakut

	

	
sah

	
Yao

	

	
yao

	
Yap

	

	
yap

	
Yiddish

	
yi

	
yid

	
Yoruba

	
yo

	
yor

	
Zapotec

	

	
zap

	
Zenaga

	

	
zen

	
Zhuang

	
za

	
zha

	
Zulu

	
zu

	
zul

	
Zuni

	

	
zun

G.5 ISO 3166 Country Codes

	
Table G-3. ISO 3166 country codes

	
Country

	
Code

	
Afghanistan

	
AF

	
Albania

	
AL

	
Algeria

	
DZ

	
American Samoa

	
AS

	
Andorra

	
AD

	
Angola

	
AO

	
Anguilla

	
AI

	
Antarctica

	
AQ

	
Antigua and Barbuda

	
AG

	
Argentina

	
AR

	
Armenia

	
AM

	
Aruba

	
AW

	
Australia

	
AU

	
Austria

	
AT

	
Azerbaijan

	
AZ

	
Bahamas

	
BS

	
Bahrain

	
BH

	
Bangladesh

	
BD

	
Barbados

	
BB

	
Belarus

	
BY

	
Belgium

	
BE

	
Belize

	
BZ

	
Benin

	
BJ

	
Bermuda

	
BM

	
Bhutan

	
BT

	
Bolivia

	
BO

	
Bosnia and Herzegovina

	
BA

	
Botswana

	
BW

	
Bouvet Island

	
BV

	
Brazil

	
BR

	
British Indian Ocean Territory

	
IO

	
Brunei Darussalam

	
BN

	
Bulgaria

	
BG

	
Burkina Faso

	
BF

	
Burundi

	
BI

	
Cambodia

	
KH

	
Cameroon

	
CM

	
Canada

	
CA

	
Cape Verde

	
CV

	
Cayman Islands

	
KY

	
Central African Republic

	
CF

	
Chad

	
TD

	
Chile

	
CL

	
China

	
CN

	
Christmas Island

	
CX

	
Cocos (Keeling) Islands

	
CC

	
Colombia

	
CO

	
Comoros

	
KM

	
Congo

	
CG

	
Congo (Democratic Republic of the)

	
CD

	
Cook Islands

	
CK

	
Costa Rica

	
CR

	
Cote D'Ivoire

	
CI

	
Croatia

	
HR

	
Cuba

	
CU

	
Cyprus

	
CY

	
Czech Republic

	
CZ

	
Denmark

	
DK

	
Djibouti

	
DJ

	
Dominica

	
DM

	
Dominican Republic

	
DO

	
East Timor

	
TP

	
Ecuador

	
EC

	
Egypt

	
EG

	
El Salvador

	
SV

	
Equatorial Guinea

	
GQ

	
Eritrea

	
ER

	
Estonia

	
EE

	
Ethiopia

	
ET

	
Falkland Islands (Malvinas)

	
FK

	
Faroe Islands

	
FO

	
Fiji

	
FJ

	
Finland

	
FI

	
France

	
FR

	
French Guiana

	
GF

	
French Polynesia

	
PF

	
French Southern Territories

	
TF

	
Gabon

	
GA

	
Gambia

	
GM

	
Georgia

	
GE

	
Germany

	
DE

	
Ghana

	
GH

	
Gibraltar

	
GI

	
Greece

	
GR

	
Greenland

	
GL

	
Grenada

	
GD

	
Guadeloupe

	
GP

	
Guam

	
GU

	
Guatemala

	
GT

	
Guinea

	
GN

	
Guinea-Bissau

	
GW

	
Guyana

	
GY

	
Haiti

	
HT

	
Heard Island and Mcdonald Islands

	
HM

	
Holy See (Vatican City State)

	
VA

	
Honduras

	
HN

	
Hong Kong

	
HK

	
Hungary

	
HU

	
Iceland

	
IS

	
India

	
IN

	
Indonesia

	
ID

	
Iran (Islamic Republic of)

	
IR

	
Iraq

	
IQ

	
Ireland

	
IE

	
Israel

	
IL

	
Italy

	
IT

	
Jamaica

	
JM

	
Japan

	
JP

	
Jordan

	
JO

	
Kazakstan

	
KZ

	
Kenya

	
KE

	
Kiribati

	
KI

	
Korea (Democratic People's Republic of)

	
KP

	
Korea (Republic of)

	
KR

	
Kuwait

	
KW

	
Kyrgyzstan

	
KG

	
Lao People's Democratic Republic

	
LA

	
Latvia

	
LV

	
Lebanon

	
LB

	
Lesotho

	
LS

	
Liberia

	
LR

	
Libyan Arab Jamahiriya

	
LY

	
Liechtenstein

	
LI

	
Lithuania

	
LT

	
Luxembourg

	
LU

	
Macau

	
MO

	
Macedonia (The Former Yugoslav Republic of)

	
MK

	
Madagascar

	
MG

	
Malawi

	
MW

	
Malaysia

	
MY

	
Maldives

	
MV

	
Mali

	
ML

	
Malta

	
MT

	
Marshall Islands

	
MH

	
Martinique

	
MQ

	
Mauritania

	
MR

	
Mauritius

	
MU

	
Mayotte

	
YT

	
Mexico

	
MX

	
Micronesia (Federated States of)

	
FM

	
Moldova (Republic of)

	
MD

	
Monaco

	
MC

	
Mongolia

	
MN

	
Montserrat

	
MS

	
Morocco

	
MA

	
Mozambique

	
MZ

	
Myanmar

	
MM

	
Namibia

	
NA

	
Nauru

	
NR

	
Nepal

	
NP

	
Netherlands

	
NL

	
Netherlands Antilles

	
AN

	
New Caledonia

	
NC

	
New Zealand

	
NZ

	
Nicaragua

	
NI

	
Niger

	
NE

	
Nigeria

	
NG

	
Niue

	
NU

	
Norfolk Island

	
NF

	
Northern Mariana Islands

	
MP

	
Norway

	
NO

	
Oman

	
OM

	
Pakistan

	
PK

	
Palau

	
PW

	
Palestinian Territory (Occupied)

	
PS

	
Panama

	
PA

	
Papua New Guinea

	
PG

	
Paraguay

	
PY

	
Peru

	
PE

	
Philippines

	
PH

	
Pitcairn

	
PN

	
Poland

	
PL

	
Portugal

	
PT

	
Puerto Rico

	
PR

	
Qatar

	
QA

	
Reunion

	
RE

	
Romania

	
RO

	
Russian Federation

	
RU

	
Rwanda

	
RW

	
Saint Helena

	
SH

	
Saint Kitts and Nevis

	
KN

	
Saint Lucia

	
LC

	
Saint Pierre and Miquelon

	
PM

	
Saint Vincent and the Grenadines

	
VC

	
Samoa

	
WS

	
San Marino

	
SM

	
Sao Tome and Principe

	
ST

	
Saudi Arabia

	
SA

	
Senegal

	
SN

	
Seychelles

	
SC

	
Sierra Leone

	
SL

	
Singapore

	
SG

	
Slovakia

	
SK

	
Slovenia

	
SI

	
Solomon Islands

	
SB

	
Somalia

	
SO

	
South Africa

	
ZA

	
South Georgia and the South Sandwich Islands

	
GS

	
Spain

	
ES

	
Sri Lanka

	
LK

	
Sudan

	
SD

	
Suriname

	
SR

	
Svalbard and Jan Mayen

	
SJ

	
Swaziland

	
SZ

	
Sweden

	
SE

	
Switzerland

	
CH

	
Syrian Arab Republic

	
SY

	
Taiwan, Province of China

	
TW

	
Tajikistan

	
TJ

	
Tanzania (United Republic of)

	
TZ

	
Thailand

	
TH

	
Togo

	
TG

	
Tokelau

	
TK

	
Tonga

	
TO

	
Trinidad and Tobago

	
TT

	
Tunisia

	
TN

	
Turkey

	
TR

	
Turkmenistan

	
TM

	
Turks and Caicos Islands

	
TC

	
Tuvalu

	
TV

	
Uganda

	
UG

	
Ukraine

	
UA

	
United Arab Emirates

	
AE

	
United Kingdom

	
GB

	
United States

	
US

	
United States Minor Outlying Islands

	
UM

	
Uruguay

	
UY

	
Uzbekistan

	
UZ

	
Vanuatu

	
VU

	
Venezuela

	
VE

	
Viet NAM

	
VN

	
Virgin Islands (British)

	
VG

	
Virgin ISLANDS (U.S.)

	
VI

	
Wallis and Futuna

	
WF

	
Western Sahara

	
EH

	
Yemen

	
YE

	
Yugoslavia

	
YU

	
Zambia

	
ZM

G.6 Language
Administrative Organizations

ISO 639 defines a
maintenance agency for additions to and changes in the list of languages in ISO
639. This agency is:

International Information Centre for
Terminology (Infoterm)

P.O. Box 130

A-1021 Wien

Austria

Phone: +43 1 26 75 35 Ext. 312

Fax: +43 1 216 32 72

ISO 639-2 defines a maintenance agency for
additions to and changes in the list of languages in ISO 639-2. This agency is:

Library of Congress

Network Development and MARC Standards
Office

Washington, D.C. 20540

USA

Phone: +1 202 707 6237

Fax: +1 202 707 0115

URL: http://www.loc.gov/standards/iso639-2/

The maintenance agency for ISO 3166 (country
codes) is:

ISO 3166 Maintenance Agency Secretariat

c/o DIN Deutsches Institut fuer Normung

Burggrafenstrasse 6

Postfach 1107

D-10787 Berlin

Germany

Phone: +49 30 26 01 320

Fax: +49 30 26 01 231

URL: http://www.din.de/gremien/nas/nabd/iso3166ma/

Appendix H.
MIME Charset Registry

This appendix describes the MIME
charset registry maintained by the Internet Assigned Numbers Authority (IANA). A
formatted table of charsets from the registry is provided in Table H-1.

H.1 MIME
Charset Registry

MIME charset tags are registered with the
IANA (http://www.iana.org/numbers.htm). The charset registry is a flat-file text database of records. Each
record contains a charset name, reference citations, a unique MIB number, a
source description, and a list of aliases. A name or alias may be flagged
"preferred MIME name."

Here is the record for US-ASCII:

Name: ANSI_X3.4-1968 [RFC1345, KXS2]^
MIBenum: 3
Source: ECMA registry
Alias: iso-ir-6
Alias: ANSI_X3.4-1986
Alias: ISO_646.irv:1991
Alias: ASCII
Alias: ISO646-US
Alias: US-ASCII (preferred MIME name)
Alias: us
Alias: IBM367
Alias: cp367
Alias: csASCII

The procedure for registering a charset with the IANA is
documented in RFC 2978 (http://www.ietf.org/rfc/rfc2978.txt).

H.2 Preferred
MIME Names

Of the 235 charsets
registered at the time of this writing, only 20 include "preferred MIME
names"—common charsets used by email and web applications. These
are:

	
Big5

	
EUC-JP

	
EUC-KR

	
GB2312

	
ISO-2022-JP

	
ISO-2022-JP-2

	
ISO-2022-KR

	
ISO-8859-1

	
ISO-8859-2

	
ISO-8859-3

	
ISO-8859-4

	
ISO-8859-5

	
ISO-8859-6

	
ISO-8859-7

	
ISO-8859-8

	
ISO-8859-9

	
ISO-8859-10

	
KOI8-R

	
Shift-JIS

	
US-ASCII

	

H.3 Registered Charsets

Table H-1 lists the
contents of the charset registry as of March 2001. Refer directly to http://www.iana.org for more information about
the contents of this table.

	
Table H-1. IANA MIME charset tags

	
Charset tag

	
Aliases

	
Description

	
References

	
US-ASCII

	
ANSI_X3.4-1968, iso-ir-6, ANSI_X3.4-1986, ISO_646.irv:1991,
 ASCII, ISO646-US, us, IBM367, cp367, csASCII

	
ECMA registry

	
RFC1345, KXS2

	
ISO-10646-UTF-1

	
csISO10646UTF1

	
Universal Transfer Format (1)—this is the multibyte encoding
 that subsets ASCII-7; it does not have byte-ordering issues

	

	
ISO_646.basic:1983

	
ref, csISO646basic1983

	
ECMA registry

	
RFC1345, KXS2

	
INVARIANT

	
csINVARIANT

	

	
RFC1345, KXS2

	
ISO_646.irv:1983

	
iso-ir-2, irv, csISO2IntlRefVersion

	
ECMA registry

	
RFC1345, KXS2

	
BS_4730

	
iso-ir-4, ISO646-GB, gb, uk, csISO4UnitedKingdom

	
ECMA registry

	
RFC1345, KXS2

	
NATS-SEFI

	
iso-ir-8-1, csNATSSEFI

	
ECMA registry

	
RFC1345, KXS2

	
NATS-SEFI-ADD

	
iso-ir-8-2, csNATSSEFIADD

	
ECMA registry

	
RFC1345, KXS2

	
NATS-DANO

	
iso-ir-9-1, csNATSDANO

	
ECMA registry

	
RFC1345, KXS2

	
NATS-DANO-ADD

	
iso-ir-9-2, csNATSDANOADD

	
ECMA registry

	
RFC1345, KXS2

	
SEN_850200_B

	
iso-ir-10, FI, ISO646-FI, ISO646-SE, se, csISO10Swedish

	
ECMA registry

	
RFC1345, KXS2

	
SEN_850200_C

	
iso-ir-11, ISO646-SE2, se2, csISO11SwedishForNames

	
ECMA registry

	
RFC1345, KXS2

	
KS_C_5601-1987

	
iso-ir-149, KS_C_5601-1989, KSC_5601, korean, csKSC56011987

	
ECMA registry

	
RFC1345, KXS2

	
ISO-2022-KR

	
csISO2022KR

	
RFC 1557 (see also KS_C_5601-1987)

	
RFC1557, Choi

	
EUC-KR

	
csEUCKR

	
RFC 1557 (see also KS_C_5861-1992)

	
RFC1557, Choi

	
ISO-2022-JP

	
csISO2022JP

	
RFC 1468 (see also RFC 2237)

	
RFC1468, Murai

	
ISO-2022-JP-2

	
csISO2022JP2

	
RFC 1554

	
RFC1554, Ohta

	
ISO-2022-CN

	

	
RFC 1922

	
RFC1922

	
ISO-2022-CN-EXT

	

	
RFC 1922

	
RFC1922

	
JIS_C6220-1969-jp

	
JIS_C6220-1969, iso-ir-13, katakana, x0201-7,
 csISO13JISC6220jp

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6220-1969-ro

	
iso-ir-14, jp, ISO646-JP, csISO14JISC6220ro

	
ECMA registry

	
RFC1345, KXS2

	
IT

	
iso-ir-15, ISO646-IT, csISO15Italian

	
ECMA registry

	
RFC1345, KXS2

	
PT

	
iso-ir-16, ISO646-PT, csISO16Portuguese

	
ECMA registry

	
RFC1345, KXS2

	
ES

	
iso-ir-17, ISO646-ES, csISO17Spanish

	
ECMA registry

	
RFC1345, KXS2

	
greek7-old

	
iso-ir-18, csISO18Greek7Old

	
ECMA registry

	
RFC1345, KXS2

	
latin-greek

	
iso-ir-19, csISO19LatinGreek

	
ECMA registry

	
RFC1345, KXS2

	
DIN_66003

	
iso-ir-21, de, ISO646-DE, csISO21German

	
ECMA registry

	
RFC1345, KXS2

	
NF_Z_62-010_(1973)

	
iso-ir-25, ISO646-FR1, csISO25French

	
ECMA registry

	
RFC1345, KXS2

	
Latin-greek-1

	
iso-ir-27, csISO27LatinGreek1

	
ECMA registry

	
RFC1345, KXS2

	
ISO_5427

	
iso-ir-37, csISO5427Cyrillic

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6226-1978

	
iso-ir-42, csISO42JISC62261978

	
ECMA registry

	
RFC1345, KXS2

	
BS_viewdata

	
iso-ir-47, csISO47BSViewdata

	
ECMA registry

	
RFC1345, KXS2

	
INIS

	
iso-ir-49, csISO49INIS

	
ECMA registry

	
RFC1345, KXS2

	
INIS-8

	
iso-ir-50, csISO50INIS8

	
ECMA registry

	
RFC1345, KXS2

	
INIS-cyrillic

	
iso-ir-51, csISO51INISCyrillic

	
ECMA registry

	
RFC1345, KXS2

	
ISO_5427:1981

	
iso-ir-54, ISO5427Cyrillic1981

	
ECMA registry

	
RFC1345, KXS2

	
ISO_5428:1980

	
iso-ir-55, csISO5428Greek

	
ECMA registry

	
RFC1345, KXS2

	
GB_1988-80

	
iso-ir-57, cn, ISO646-CN, csISO57GB1988

	
ECMA registry

	
RFC1345, K5, KXS2

	
GB_2312-80

	
iso-ir-58, chinese, csISO58GB231280

	
ECMA registry

	
RFC1345, KXS2

	
NS_4551-1

	
iso-ir-60, ISO646-NO, no, csISO60DanishNorwegian,
 csISO60Norwegian1

	
ECMA registry

	
RFC1345, KXS2

	
NS_4551-2

	
ISO646-NO2, iso-ir-61, no2, csISO61Norwegian2

	
ECMA registry

	
RFC1345, KXS2

	
NF_Z_62-010

	
iso-ir-69, ISO646-FR, fr, csISO69French

	
ECMA registry

	
RFC1345, KXS2

	
videotex-suppl

	
iso-ir-70, csISO70VideotexSupp1

	
ECMA registry

	
RFC1345, KXS2

	
PT2

	
iso-ir-84, ISO646-PT2, csISO84Portuguese2

	
ECMA registry

	
RFC1345, KXS2

	
ES2

	
iso-ir-85, ISO646-ES2, csISO85Spanish2

	
ECMA registry

	
RFC1345, KXS2

	
MSZ_7795.3

	
iso-ir-86, ISO646-HU, hu, csISO86Hungarian

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6226-1983

	
iso-ir-87, x0208,JIS_X0208-1983, csISO87JISX0208

	
ECMA registry

	
RFC1345, KXS2

	
greek7

	
iso-ir-88, csISO88Greek7

	
ECMA registry

	
RFC1345, KXS2

	
ASMO_449

	
ISO_9036, arabic7, iso-ir-89, csISO89ASMO449

	
ECMA registry

	
RFC1345, KXS2

	
iso-ir-90

	
csISO90

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6229-1984-a

	
iso-ir-91, jp-ocr-a, csISO91JISC62291984a

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6229-1984-b

	
iso-ir-92, ISO646-JP-OCR-B, jp-ocr-b, csISO92JISC62991984b

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6229-1984-b-add

	
iso-ir-93, jp-ocr-b-add, csISO93JIS62291984badd

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6229-1984-hand

	
iso-ir-94, jp-ocr-hand, csISO94JIS62291984hand

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6229-1984-hand-add

	
iso-ir-95, jp-ocr-hand-add, csISO95JIS62291984handadd

	
ECMA registry

	
RFC1345, KXS2

	
JIS_C6229-1984-kana

	
iso-ir-96, csISO96JISC62291984kana

	
ECMA registry

	
RFC1345, KXS2

	
ISO_2033-1983

	
iso-ir-98, e13b, csISO2033

	
ECMA registry

	
RFC1345, KXS2

	
ANSI_X3.110-1983

	
iso-ir-99, CSA_T500-1983, NAPLPS, csISO99NAPLPS

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-1

	
ISO_8859-1:1987, iso-ir-100, ISO_8859-1, latin1, l1, IBM819,
 CP819, csISOLatin1

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-2

	
ISO_8859-2:1987, iso-ir-101, ISO_8859-2, latin2, l2,
 csISOLatin2

	
ECMA registry

	
RFC1345, KXS2

	
T.61-7bit

	
iso-ir-102, csISO102T617bit

	
ECMA registry

	
RFC1345, KXS2

	
T.61-8bit

	
T.61, iso-ir-103, csISO103T618bit

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-3

	
ISO_8859-3:1988, iso-ir-109, ISO_8859-3, latin3, l3,
 csISOLatin3

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-4

	
ISO_8859-4:1988, iso-ir-110, ISO_8859-4, latin4, l4,
 csISOLatin4

	
ECMA registry

	
RFC1345, KXS2

	
ECMA-cyrillic

	
iso-ir-111, csISO111ECMACyrillic

	
ECMA registry

	
RFC1345, KXS2

	
CSA_Z243.4-1985-1

	
iso-ir-121, ISO646-CA, csa7-1, ca, csISO121Canadian1

	
ECMA registry

	
RFC1345, KXS2

	
CSA_Z243.4-1985-2

	
iso-ir-122, ISO646-CA2, csa7-2, csISO122Canadian2

	
ECMA registry

	
RFC1345, KXS2

	
CSA_Z243.4-1985-gr

	
iso-ir-123, csISO123CSAZ24341985gr

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-6

	
ISO_8859-6:1987, iso-ir-127, ISO_8859-6, ECMA-114, ASMO-708,
 arabic, csISOLatinArabic

	
ECMA registry

	
RFC1345, KXS2

	
ISO_8859-6-E

	
csISO88596E

	
RFC 1556

	
RFC1556, IANA

	
ISO_8859-6-I

	
csISO88596I

	
RFC 1556

	
RFC1556, IANA

	
ISO-8859-7

	
ISO_8859-7:1987, iso-ir-126, ISO_8859-7, ELOT_928, ECMA-118,
 greek, greek8, csISOLatinGreek

	
ECMA registry

	
RFC1947,RFC1345, KXS2

	
T.101-G2

	
iso-ir-128, csISO128T101G2

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-8

	
ISO_8859-8:1988, iso-ir-138, ISO_8859-8, hebrew,
 csISOLatinHebrew

	
ECMA registry

	
RFC1345, KXS2

	
ISO_8859-8-E

	
csISO88598E

	
RFC 1556

	
RFC1556,Nussbacher

	
ISO_8859-8-I

	
csISO88598I

	
RFC 1556

	
RFC1556,Nussbacher

	
CSN_369103

	
iso-ir-139, csISO139CSN369103

	
ECMA registry

	
RFC1345, KXS2

	
JUS_I.B1.002

	
iso-ir-141, ISO646-YU, js, yu, csISO141JUSIB1002

	
ECMA registry

	
RFC1345, KXS2

	
ISO_6937-2-add

	
iso-ir-142, csISOTextComm

	
ECMA registry and ISO 6937-2:1983

	
RFC1345, KXS2

	
IEC_P27-1

	
iso-ir-143, csISO143IECP271

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-5

	
ISO_8859-5:1988, iso-ir-144, ISO_8859-5, cyrillic, csISOLatinCyrillic

	
ECMA registry

	
RFC1345, KXS2

	
JUS_I.B1.003-serb

	
iso-ir-146, serbian, csISO146Serbian

	
ECMA registry

	
RFC1345, KXS2

	
JUS_I.B1.003-mac

	
macedonian, iso-ir-147, csISO147Macedonian

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-9

	
ISO_8859-9:1989, iso-ir-148, ISO_8859-9, latin5, l5,
 csISOLatin5

	
ECMA registry

	
RFC1345, KXS2

	
greek-ccitt

	
iso-ir-150, csISO150, csISO150GreekCCITT

	
ECMA registry

	
RFC1345, KXS2

	
NC_NC00-10:81

	
cuba, iso-ir-151, ISO646-CU, csISO151Cuba

	
ECMA registry

	
RFC1345, KXS2

	
ISO_6937-2-25

	
iso-ir-152, csISO6937Add

	
ECMA registry

	
RFC1345, KXS2

	
GOST_19768-74

	
ST_SEV_358-88, iso-ir-153, csISO153GOST1976874

	
ECMA registry

	
RFC1345, KXS2

	
ISO_8859-supp

	
iso-ir-154, latin1-2-5, csISO8859Supp

	
ECMA registry

	
RFC1345, KXS2

	
ISO_10367-box

	
iso-ir-155, csISO10367Box

	
ECMA registry

	
RFC1345, KXS2

	
ISO-8859-10

	
iso-ir-157, l6,ISO_8859-10:1992, csISOLatin6, latin6

	
ECMA registry

	
RFC1345, KXS2

	
latin-lap

	
lap, iso-ir-158, csISO158Lap

	
ECMA registry

	
RFC1345, KXS2

	
JIS_X0212-1990

	
x0212, iso-ir-159, csISO159JISX02121990

	
ECMA registry

	
RFC1345, KXS2

	
DS_2089

	
DS2089, ISO646-DK, dk, csISO646Danish

	
Danish Standard, DS 2089, February 1974

	
RFC1345, KXS2

	
us-dk

	
csUSDK

	

	
RFC1345, KXS2

	
dk-us

	
csDKUS

	

	
RFC1345, KXS2

	
JIS_X0201

	
X0201, csHalfWidthKatakana

	
JIS X 0201-1976—1 byte only; this is equivalent to JIS/Roman
 (similar to ASCII) plus 8-bit half-width katakana

	
RFC1345, KXS2

	
KSC5636

	
ISO646-KR, csKSC5636

	

	
RFC1345, KXS2

	
ISO-10646-UCS-2

	
csUnicode

	
The 2-octet Basic Multilingual Plane, a.k.a. Unicode—this
 needs to specify network byte order; the standard does not specify it (it is
 a 16-bit integer space)

	

	
ISO-10646-UCS-4

	
csUCS4

	
The full code space (same comment about byte order; these
 are 31-bit numbers)

	

	
DEC-MCS

	
dec, csDECMCS

	
VAX/VMS User's Manual, Order Number: AI-Y517A-TE, April 1986

	
RFC1345, KXS2

	
hp-roman8

	
roman8, r8, csHPRoman8

	
LaserJet IIP Printer User's Manual, HP part no 33471-90901,
 Hewlett-Packard, June 1989

	
HP-PCL5,RFC1345, KXS2

	
macintosh

	
mac, csMacintosh

	
The Unicode Standard v1.0, ISBN 0201567881, Oct 1991

	
RFC1345, KXS2

	
IBM037

	
cp037, ebcdic-cp-us, ebcdic-cp-ca, ebcdic-cp-wt,
 ebcdic-cp-nl, csIBM037

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM038

	
EBCDIC-INT, cp038, csIBM038

	
IBM 3174 Character Set Ref, GA27-3831-02, March 1990

	
RFC1345, KXS2

	
IBM273

	
CP273, csIBM273

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM274

	
EBCDIC-BE, CP274, csIBM274

	
IBM 3174 Character Set Ref, GA27-3831-02, March 1990

	
RFC1345, KXS2

	
IBM275

	
EBCDIC-BR, cp275, csIBM275

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM277

	
EBCDIC-CP-DK, EBCDIC-CP-NO, csIBM277

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM278

	
CP278, ebcdic-cp-fi, ebcdic-cp-se, csIBM278

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM280

	
CP280, ebcdic-cp-it, csIBM280

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM281

	
EBCDIC-JP-E, cp281, csIBM281

	
IBM 3174 Character Set Ref, GA27-3831-02, March 1990

	
RFC1345, KXS2

	
IBM284

	
CP284, ebcdic-cp-es, csIBM284

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM285

	
CP285, ebcdic-cp-gb, csIBM285

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM290

	
cp290, EBCDIC-JP-kana, csIBM290

	
IBM 3174 Character Set Ref, GA27-3831-02, March 1990

	
RFC1345, KXS2

	
IBM297

	
cp297, ebcdic-cp-fr, csIBM297

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM420

	
cp420, ebcdic-cp-ar1, csIBM420

	
IBM NLS RM Vol2 SE09-8002-01, March 1990, IBM NLS RM p 11-11

	
RFC1345, KXS2

	
IBM423

	
cp423, ebcdic-cp-gr, csIBM423

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM424

	
cp424, ebcdic-cp-he, csIBM424

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM437

	
cp437, 437, csPC8CodePage437

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM500

	
CP500, ebcdic-cp-be, ebcdic-cp-ch, csIBM500

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM775

	
cp775, csPC775Baltic

	
HP PCL 5 Comparison Guide (P/N 5021-0329) pp B-13, 1996

	
HP-PCL5

	
IBM850

	
cp850, 850, csPC850Multilingual

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM851

	
cp851, 851, csIBM851

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM852

	
cp852, 852, csPCp852

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM855

	
cp855, 855, csIBM855

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM857

	
cp857, 857, csIBM857

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM860

	
cp860, 860, csIBM860

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM861

	
cp861, 861, cp-is, csIBM861

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM862

	
cp862, 862, csPC862LatinHebrew

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM863

	
cp863, 863, csIBM863

	
IBM keyboard layouts and code pages, PN 07G4586, June 1991

	
RFC1345, KXS2

	
IBM864

	
cp864, csIBM864

	
IBM keyboard layouts and code pages, PN 07G4586, June 1991

	
RFC1345, KXS2

	
IBM865

	
cp865, 865, csIBM865

	
IBM DOS 3.3 Ref (Abridged), 94X9575, Feb 1987

	
RFC1345, KXS2

	
IBM866

	
cp866, 866, csIBM866

	
IBM NLDG Vol2 SE09-8002-03, August 1994

	
Pond

	
IBM868

	
CP868, cp-ar, csIBM868

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM869

	
cp869, 869, cp-gr, csIBM869

	
IBM keyboard layouts and code pages, PN 07G4586, June 1991

	
RFC1345, KXS2

	
IBM870

	
CP870, ebcdic-cp-roece, ebcdic-cp-yu, csIBM870

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM871

	
CP871, ebcdic-cp-is, csIBM871

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM880

	
cp880, EBCDIC-Cyrillic, csIBM880

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM891

	
cp891, csIBM891

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM903

	
cp903, csIBM903

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM904

	
cp904, 904, csIBBM904

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM905

	
CP905, ebcdic-cp-tr, csIBM905

	
IBM 3174 Character Set Ref, GA27-3831-02, March 1990

	
RFC1345, KXS2

	
IBM918

	
CP918, ebcdic-cp-ar2, csIBM918

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
IBM1026

	
CP1026, csIBM1026

	
IBM NLS RM Vol2 SE09-8002-01, March 1990

	
RFC1345, KXS2

	
EBCDIC-AT-DE

	
csIBMEBCDICATDE

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-AT-DE-A

	
csEBCDICATDEA

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-CA-FR

	
csEBCDICCAFR

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-DK-NO

	
csEBCDICDKNO

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-DK-NO-A

	
csEBCDICDKNOA

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-FI-SE

	
csEBCDICFISE

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-FI-SE-A

	
csEBCDICFISEA

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-FR

	
csEBCDICFR

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-IT

	
csEBCDICIT

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-PT

	

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-ES

	
csEBCDICES

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-ES-A

	
csEBCDICESA

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-ES-S

	
csEBCDICESS

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-UK

	
csEBCDICUK

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
EBCDIC-US

	
csEBCDICUS

	
IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

	
RFC1345, KXS2

	
UNKNOWN-8BIT

	
csUnknown8BiT

	

	
RFC1428

	
MNEMONIC

	
csMnemonic

	
RFC 1345, also known as "mnemonic+ascii+38"

	
RFC1345, KXS2

	
MNEM

	
csMnem

	
RFC 1345, also known as "mnemonic+ascii+8200"

	
RFC1345, KXS2

	
VISCII

	
csVISCII

	
RFC 1456

	
RFC1456

	
VIQR

	
csVIQR

	
RFC 1456

	
RFC1456

	
KOI8-R

	
csKOI8R

	
RFC 1489, based on GOST-19768-74, ISO-6937/8, INIS-Cyrillic,
 ISO-5427

	
RFC1489

	
KOI8-U

	

	
RFC 2319

	
RFC2319

	
IBM00858

	
CCSID00858, CP00858, PC-Multilingual-850+euro

	
IBM (see .../assignments/character-set-info/IBM00858)
 [Mahdi]

	

	
IBM00924

	
CCSID00924, CP00924, ebcdic-Latin9—euro

	
IBM (see .../assignments/character-set-info/IBM00924)
 [Mahdi]

	

	
IBM01140

	
CCSID01140, CP01140, ebcdic-us-37+euro

	
IBM (see .../assignments/character-set-info/IBM01140)
 [Mahdi]

	

	
IBM01141

	
CCSID01141, CP01141, ebcdic-de-273+euro

	
IBM (see .../assignments/character-set-info/IBM01141)
 [Mahdi]

	

	
IBM01142

	
CCSID01142, CP01142, ebcdic-dk-277+euro, ebcdic-no-277+euro

	
IBM (see .../assignments/character-set-info/IBM01142)
 [Mahdi]

	

	
IBM01143

	
CCSID01143, CP01143, ebcdic-fi-278+euro, ebcdic-se-278+euro

	
IBM (see .../assignments/character-set-info/IBM01143)
 [Mahdi]

	

	
IBM01144

	
CCSID01144, CP01144, ebcdic-it-280+euro

	
IBM (see .../assignments/character-set-info/IBM01144) [Mahdi]

	

	
IBM01145

	
CCSID01145, CP01145, ebcdic-es-284+euro

	
IBM (see .../assignments/character-set-info/IBM01145)
 [Mahdi]

	

	
IBM01146

	
CCSID01146, CP01146, ebcdic-gb-285+euro

	
IBM (see .../assignments/character-set-info/IBM01146)
 [Mahdi]

	

	
IBM01147

	
CCSID01147, CP01147, ebcdic-fr-297+euro

	
IBM (see .../assignments/character-set-info/IBM01147)
 [Mahdi]

	

	
IBM01148

	
CCSID01148, CP01148, ebcdic-international-500+euro

	
IBM (see .../assignments/character-set-info/IBM01148)
 [Mahdi]

	

	
IBM01149

	
CCSID01149, CP01149, ebcdic-is-871+euro

	
IBM (see .../assignments/character-set-info/IBM01149)
 [Mahdi]

	

	
Big5-HKSCS

	
None

	
See (.../assignments/character-set-info/Big5-HKSCS) [Yick]

	

	
UNICODE-1-1

	
csUnicode11

	
RFC 1641

	
RFC1641

	
SCSU

	
None

	
SCSU (see .../assignments/character-set-info/SCSU) [Scherer]

	

	
UTF-7

	
None

	
RFC 2152

	
RFC2152

	
UTF-16BE

	
None

	
RFC 2781

	
RFC2781

	
UTF-16LE

	
None

	
RFC 2781

	
RFC2781

	
UTF-16

	
None

	
RFC 2781

	
RFC2781

	
UNICODE-1-1-UTF-7

	
csUnicode11UTF7

	
RFC 1642

	
RFC1642

	
UTF-8

	

	
RFC 2279

	
RFC2279

	
iso-8859-13

	

	
ISO (see
 ...assignments/character-set-info/iso-8859-13)[Tumasonis]

	

	
iso-8859-14

	
iso-ir-199, ISO_8859-14:1998, ISO_8859-14, latin8,
 iso-celtic, l8

	
ISO (see ...assignments/character-set-info/iso-8859-14)
 [Simonsen]

	

	
ISO-8859-15

	
ISO_8859-15

	
ISO

	

	
JIS_Encoding

	
csJISEncoding

	
JIS X 0202-1991; uses ISO 2022 escape sequences to shift
 code sets, as documented in JIS X 0202-1991

	

	
Shift_JIS

	
MS_Kanji, csShiftJIS

	
This charset is an extension of csHalfWidthKatakana—it adds
 graphic characters in JIS X 0208. The CCSs areJIS X0201:1997 and JIS
 X0208:1997. The complete definition is shown in Appendix 1 of JISX0208:1997.
 This charset can be used for the top-level media type "text".

	

	
EUC-JP

	
Extended_UNIX_Code_Packed_Format_for_Japanese,
 csEUCPkdFmtJapanese

	
Standardized by OSF, UNIX International, and UNIX Systems
 Laboratories Pacific. Uses ISO 2022 rules to select code set. code set 0:
 US-ASCII (a single 7-bit byte set); code set 1: JIS X0208-1990 (a double
 8-bit byte set) restricted to A0-FF in both bytes; code set 2: half-width
 katakana (a single 7-bit byte set) requiring SS2 as the character prefix;
 code set 3: JIS X0212-1990 (a double 7-bit byte set) restricted to A0-FF in
 both bytes requiring SS3 as the character prefix.

	

	
Extended_UNIX_Code_Fixed_Width_for_Japanese

	
csEUCFixWidJapanese

	
Used in Japan. Each character is 2 octets. code set 0:
 US-ASCII (a single 7-bit byte set), 1st byte = 00, 2nd byte = 20-7E; code set
 1: JIS X0208-1990 (a double 7-bit byte set) restricted to A0-FF in both
 bytes; code set 2: half-width katakana (a single 7-bit byte set), 1st byte =
 00, 2nd byte = A0-FF; code set 3: JIS X0212-1990 (a double 7-bit byte set)
 restricted to A0-FF in the first byte and 21-7E in the second byte.

	

	
ISO-10646-UCS-Basic

	
csUnicodeASCII

	
ASCII subset of Unicode. Basic Latin = collection 1. See ISO
 10646, Appendix A.

	

	
ISO-10646-Unicode-Latin1

	
csUnicodeLatin1, ISO-10646

	
ISO Latin-1 subset of Unicode. Basic Latin and Latin-1.
 Supplement = collections 1 and 2. See ISO 10646, Appendix A, and RFC 1815.

	

	
ISO-10646-J-1

	

	
ISO 10646 Japanese. See RFC 1815.

	

	
ISO-Unicode-IBM-1261

	
csUnicodeIBM1261

	
IBM Latin-2, -3, -5, Extended Presentation Set, GCSGID: 1261

	

	
ISO-Unicode-IBM-1268

	
csUnidoceIBM1268

	
IBM Latin-4 Extended Presentation Set, GCSGID: 1268

	

	
ISO-Unicode-IBM-1276

	
csUnicodeIBM1276

	
IBM Cyrillic Greek Extended Presentation Set, GCSGID: 1276

	

	
ISO-Unicode-IBM-1264

	
csUnicodeIBM1264

	
IBM Arabic Presentation Set, GCSGID: 1264

	

	
ISO-Unicode-IBM-1265

	
csUnicodeIBM1265

	
IBM Hebrew Presentation Set, GCSGID: 1265

	

	
ISO-8859-1-Windows-3.0-Latin-1

	
csWindows30Latin1

	
Extended ISO 8859-1 Latin-1 for Windows 3.0. PCL Symbol Set
 ID: 9U.

	
HP-PCL5

	
ISO-8859-1-Windows-3.1-Latin-1

	
csWindows31Latin1

	
Extended ISO 8859-1 Latin-1 for Windows 3.1. PCL Symbol Set
 ID: 19U.

	
HP-PCL5

	
ISO-8859-2-Windows-Latin-2

	
csWindows31Latin2

	
Extended ISO 8859-2. Latin-2 for Windows 3.1. PCL Symbol Set
 ID: 9E.

	
HP-PCL5

	
ISO-8859-9-Windows-Latin-5

	
csWindows31Latin5

	
Extended ISO 8859-9. Latin-5 for Windows 3.1. PCL Symbol Set
 ID: 5T.

	
HP-PCL5

	
Adobe-Standard-Encoding

	
csAdobeStandardEncoding

	
PostScript Language Reference Manual. PCL Symbol Set ID:
 10J.

	
Adobe

	
Ventura-US

	
csVenturaUS

	
Ventura US-ASCII plus characters typically used in
 publishing, such as pilcrow, copyright, registered, trademark, section,
 dagger, and double dagger in the range A0 (hex) to FF (hex). PCL Symbol Set
 ID: 14J.

	
HP-PCL5

	
Ventura-International

	
csVenturaInternational

	
Ventura International. ASCII plus coded characters similar
 to Roman8. PCL Symbol Set ID: 13J.

	
HP-PCL5

	
PC8-Danish-Norwegian

	
csPC8DanishNorwegian

	
PC Danish Norwegian 8-bit PC set for Danish Norwegian. PCL
 Symbol Set ID: 11U.

	
HP-PCL5

	
PC8-Turkish

	
csPC8Turkish

	
PC Latin Turkish. PCL Symbol Set ID: 9T.

	
HP-PCL5

	
IBM-Symbols

	
csIBMSymbols

	
Presentation Set, CPGID: 259

	
IBM-CIDT

	
IBM-Thai

	
csIBMThai

	
Presentation Set, CPGID: 838

	
IBM-CIDT

	
HP-Legal

	
csHPLegal

	
PCL 5 Comparison Guide, Hewlett-Packard, HP part number
 5961-0510, October 1992. PCL Symbol Set ID: 1U.

	
HP-PCL5

	
HP-Pi-font

	
csHPPiFont

	
PCL 5 Comparison Guide, Hewlett-Packard, HP part number
 5961-0510, October 1992. PCL Symbol Set ID: 15U.

	
HP-PCL5

	
HP-Math8

	
csHPMath8

	
PCL 5 Comparison Guide, Hewlett-Packard, HP part number
 5961-0510, October 1992. PCL Symbol Set ID: 8M.

	
HP-PCL5

	
Adobe-Symbol-Encoding

	
csHPPSMath

	
PostScript Language Reference Manual. PCL Symbol Set ID: 5M.

	
Adobe

	
HP-DeskTop

	
csHPDesktop

	
PCL 5 Comparison Guide, Hewlett-Packard, HP part number
 5961-0510, October 1992. PCL Symbol Set ID: 7J.

	
HP-PCL5

	
Ventura-Math

	
csVenturaMath

	
PCL 5 Comparison Guide, Hewlett-Packard, HP part number
 5961-0510, October 1992. PCL Symbol Set ID: 6M.

	
HP-PCL5

	
Microsoft-Publishing

	
csMicrosoftPublishing

	
PCL 5 Comparison Guide, Hewlett-Packard, HP part number 5961-0510,
 October 1992. PCL Symbol Set ID: 6J.

	
HP-PCL5

	
Windows-31J

	
csWindows31J

	
Windows Japanese. A further extension of Shift_JIS to
 include NEC special characters (Row 13), NEC selection of IBM extensions
 (Rows 89 to 92), and IBM extensions (Rows 115 to 119). The CCSs are JIS
 X0201:1997, JIS X0208:1997, and these extensions. This charset can be used
 for the top-level media type "text", but it is of limited or
 specialized use (see RFC 2278). PCL Symbol Set ID: 19K.

	

	
GB2312

	
csGB2312

	
Chinese for People's Republic of China
 (PRC) mixed 1-byte, 2-byte set: 20-7E = 1-byte ASCII; A1-FE = 2-byte PRC
 Kanji. See GB 2312-80. PCL Symbol Set ID: 18C.

	

	
Big5

	
csBig5

	
Chinese for Taiwan Multibyte set. PCL
 Symbol Set id: 18T.

	

	
windows-1250

	

	
Microsoft (see
 .../character-set-info/windows-1250) [Lazhintseva]

	

	
windows-1251

	

	
Microsoft (see
 .../character-set-info/windows-1251) [Lazhintseva]

	

	
windows-1252

	

	
Microsoft (see
 .../character-set-info/windows-1252) [Wendt]

	

	
windows-1253

	

	
Microsoft (see .../character-set-info/windows-1253)
 [Lazhintseva]

	

	
windows-1254

	

	
Microsoft (see .../character-set-info/windows-1254)
 [Lazhintseva]

	

	
windows-1255

	

	
Microsoft (see .../character-set-info/windows-1255)
 [Lazhintseva]

	

	
windows-1256

	

	
Microsoft (see .../character-set-info/windows-1256)
 [Lazhintseva]

	

	
windows-1257

	

	
Microsoft (see .../character-set-info/windows-1257)
 [Lazhintseva]

	

	
windows-1258

	

	
Microsoft (see .../character-set-info/windows-1258)
 [Lazhintseva]

	

	
TIS-620

	

	
Thai Industrial Standards Institute (TISI)

	
[Tantsetthi]

	
HZ-GB-2312

	

	
RFC 1842, RFC 1843 [RFC1842, RFC1843]

	

Colophon

Our look is the result of reader comments,
our own experimentation, and feedback from distribution channels. Distinctive
covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of HTTP: The
Definitive Guide is a thirteen-lined ground squirrel (Spermophilus tridecemlineatus), common to central
North America. True to its name, the thirteen-lined ground squirrel has thirteen
stripes with rows of light spots that run the length of its back. Its color
pattern blends into its surroundings, protecting it from predators. Thirteen-lined
ground squirrels are members of the squirrel family, which includes chipmunks,
ground squirrels, tree squirrels, prairie dogs, and woodchucks. They are
similar in size to the eastern chipmunk but smaller than the common gray
squirrel, averaging about 11 inches in length (including a 5-6 inch tail).

Thirteen-lined ground squirrels go into
hibernation in October and emerge in late March or early April. Each female
usually produces one litter of 7-10 young each May. The young leave the burrows
at four to five weeks of age and are fully grown at six weeks. Ground squirrels
prefer open areas with short grass and well-drained sandy or loamy soils for
burrows, and they avoid wooded areas-mowed lawns, golf courses, and parks are
common habitats.

Ground squirrels can cause problems when they
create burrows, dig up newly planted seeds, and damage vegetable gardens. However,
they are important prey to several predators, including badgers, coyotes,
hawks, weasels, and various snakes, and they benefit humans directly by feeding
on many harmful weeds, weed seeds, and insects.

Rachel Wheeler was the production editor and
copyeditor for HTTP: The Definitive Guide. Leanne Soylemez, Sarah
Sherman, and Mary Anne Weeks Mayo provided quality control, and Derek Di Matteo
and Brian Sawyer provided production assistance. John Bickelhaupt wrote the
index.

Ellie Volckhausen designed the cover of this book, based on a
series design by Edie Freedman. The cover image is an original illustration
created by Lorrie LeJeune. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato and Melanie Wang designed the interior layout,
based on a series design by David Futato. Joe Wizda prepared the files for
production in FrameMaker 5.5.6. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
This colophon was written by Rachel Wheeler.

The online edition of this book was created by the Safari
production group (John Chodacki, Becki Maisch, and Madeleine Newell) using a
set of Frame-to-XML conversion and cleanup tools written and maintained by Erik
Ray, Benn Salter, John Chodacki, and Jeff Liggett.

image0013.gif
() Request message: b Response message

GET /test/i-there.txt HTTP/1.0 || Statine [HTTP/1.0 200 O

text/plain

Accept: text/” Headers | Content-typ
19

Accept-Language: en, fx Content.-Lengt)

Body [Hil D'n 2 sessagel

image0022.gif
euesstartive (onmand) 4 GET Jtools. htal 4TTo/1

Aequethesdos 4 AcCept Text/ninl, inage i, inage/fpeg

Noreuesttody

gient

Reporsestrtine
i)

\ fepose et

Aoty

{a) Request message

R i NG
ot o o st o

Recept Languager én

() Responsem

H178/1,0 200 0C

o joes hardar com

Date: Sun, o1 0ct 7000 75735717 O
Server adie/t2 11 B2t SULSE (unb)
Last-noditied: Tie, 04 Jul 2000 03746:21 G
Content Length: 403

Content-type: text/ntal

e
CHEADSTITLE 0e"s Toalse/TITLES</HEAD>
<Boor>

b Tools Pagecrins

prn——

<PJoe’s Harduare Online has the Lazgest selection of
Rianecs on the eazth. /5>

cH2sch WAME=deS1e></hoDrsLlsc >

<Padoe’s Hardyare nas a conplete Line of cordless
S0 Corded dril1s, 35 vell g5 the latest in
SHutoniun povezedatonlc drills, for those big
Sxoing the hosse Jobe. /<P

<rao0r>

<

image0012.gif
HTTP request message contans
hecommansnd e

i

Host! ui Jous- harduare. com

Intemet

GET /specials/sau-blade. gif HTTP/1.0 % .

WAL g
Contenttype: Snage/i
Content L2ngth: 372"

e joeshardvarecom

HiPrepumenesagecnons
ek e o

image0021.gif

image002.gif
{Contenttype: indge/
Cortent fengeh: 1901

image003.gif
1 2 3
e TP pto Gt o drecom G el ot
http://ww. joes-hardware. con/specials/saw-blade. gif -

ot T

image0011.gif

image00215.gif
G

GET /index.htnl HTTP/1.0
Host! towr Joes-hasduare..con
fon Keep-alive

WITP/.0 200 0K
Content“type: text/hts
Content_length: 3104
Conneetiont ke Aldve

Servr

image0044.gif
Gt

G

e server does nat recoqnize the Frox-Cannection header, and ignores .
oy omecion BTN ”

a1 Comecton e Aive b1y Comecon eep A

(@ i bester Dumb proxy (AN Comecntende

Adumbpray orwatthe ry macionhsde hich tesener e,

T ezt o Connecionbeatr g ol
G) s

g b oo weh hesemer

(61Prey et oAb 0 omecionep A

7

) Gmnecton oAb St poxy (9 Gt Ko

Asmatpoyundestos e ry-Gecion ot oy snds
0 omnedtin Keep-Allve header o heserve.

server

image0035.gif
(b Server won't dose connection
Whndone becse bl s

(o) et hep e b Gmectones-Ave bensied ospeaklecp e

|

@ et e i Dumb iory

[l —
helecpaivecmecion s
s bt e o v
pRocis

QComecion e e
Servr

(@ vl rmnection
e grorng nyrew
reqestsan the e

image00120.gif
{a) esial connections.

% Tonaciont ansacin2 Tonacion3 Tarsacins.

Opesstetomecion

Tonacton 1 Tonsacion?. Tonachn 3. Tanscind

One

Ome

image0014.gif
"

Netwnkspecclnk terface

Physical network hardare

Tangatioer
Neworigr
ekl

Pl

image0023.gif
Userypesin AL

g

P
http: /. Joes- harduare .con:80/tools . htnl H

.
() Get the hostname
h. Joes-hardware.con server
.
D)'DNS {e)Send an HITP GET request
H e %
e
v
Rt TP e
g e %
Gt I
v
@ seteameon

Dang

image0053.gif
@ b o
FonyGectonfeephive Po-Gmeclonfeep e Gnnector: Keep-Aie

G server

Adumtproywtingyaetses e Ave 1 browses andsar v

] w o
Fony Gnctomeep Al omecton eep Al Comectonfeep e

7

S —
0 s W) [
et S G et Sumb Gt ey e

i server

A dmb pavy unwitingly advetise keep-Ale 1o smart pravy andsener.

image00117.gif
The Connection header says the Meter heddey
skl b fraried eyt
i<t - opton e o e
pestnt aecion e sed when s

o o "
NI/ /i

Py
Clent

HTTP/1.1 200 OK
Cache-control: max-age
Comnection: meter, close, bill-ny-credit-card
Weter: nax-uses=3, sax-refuses=6, dont-report

image00212.gif
Servr

Gient

i
et

P71 304 ot o]

Comecion vt ey

Ty

<

Bme

image00118.gif

image00213.gif
Tensacion |

Servr

Gient

F 4

g

.
L
;
o3

Trarsaction &

image00119.gif
{a) Serial connections

Tonscton | Tarscion2 Tonsctin 3
. 3

ient

)pesstentomecion
Tonacton | Tamacion? Tawacion3 Tansxin &
e e e

Servr

v Y wiooy U

“Clent

Tarsaions

Bime

Bne

image00214.gif
Transaction2,3, 4

Tanaciun 1 gaiomeion)

sever
'amea-7 B
dient byorrif]

- Tt
Uty sty
Detween each connection)

image00125.gif
@) Mary estabiishes new HITP connection
HTTP connection)
seversnds s
b)5erer st e omecion

ident connection -0

3550 USAD D)

@) Chentretumms et response

image00124.gif
Userspace.

T seerstvare prcss
P
)t rsons
@) @
e e . e moute
i Mg
ha
ek :
e B
i
M setupamcion
e
[E— Onecsonge

e @sendrepone
Cient Operatingsystem

image00217.gif
Pasdencang et messge
nethod: 1
version Lo
uri: .
header court: 2
headers: @
body: N

)

Request message.

GET /specials/sau-blade.gif HTTP/1.0CRLE
Accept” inage/gITCRLE

Host? ot Joes hazdhare. conCRLE

Gir

3

of specials/san-blade.gif

oo oes-hardare.con

e

[

e et

[aee @

image00126.gif
Request message being read from netinurk

GET /specials/sae-blade. g5 HITP/L.OGRLE
Sccept® inage/giHCRLF
Host . 4

ntemet

LF CR LF CR moc.erawdrah-seo

image00127.gif
Requestmessage Internet

GET /specials/sau-blade. gif HTTP/1,0
Host! i Joes- axduare. con

TR
[Webserver
Request UL /specals/saw-blade gif Severresource: uselocalhtpd les/specals/saw blade gif

image0037.gif
L3
@ |cometni

@&

Theatprocess

a1l hreaded UDarcecre

’P,‘

Comecion

L0 0. 0, 0,

(5 Mutteaced 1 e

mtplenr

(0 Msltiglexed 10 achitecture

() Molplered,mutithreaded /0 achitecture

image00216.gif
(a) Server full close.

e

Servr

) ereoutat e (e s

R

ient

[%

image00121.gif
g:a—:%

image00122.gif

image0036.gif

image00123.gif
TP request message

T foo/bar/blan. et HITP/1
et

Bt tangusge: sncus
Recept-enchif: crip, deflate
ety

oSt Ront oS haxdusic. comsgoso
Comection Yeip-slive

TP rpusemesoge

WITe/3.0 200 o€
Commection:
CEnten By

Wi therel

etrptatn

sono
S g on ot et
CRequest Fron “home-48-027 extranet. inktoni.con' 53>
oo nian ot HTTE

ua

Setept’
R arguges enn
Ui R Rog Tk
HoSE: o ardhae. com:8080
Comnictiort Reep-ative

<cctype secponse followed by *.'22>
oS B 4
Comciion: clse.

Content-type; toxt-plain

b theret

-

image00129.gif
Pronbes act ke SERVERS to web clients, Prosles act ke CLIENTS to web servers,
g g g sindg ebregus mesage nc.
g b pose s

g s s

Rt
Repe

Server

image00130.gif
Sl

image00219.gif
(@ HTIRHTTE poy

e
— =
d A
- A]
e

image0039.gif
M s §jmm

image00220.gif
i1

Gemz

Gients

/\

Wit
e ol dal

—

s
e

Serverh

server

Gl

image0054.gif

image0046.gif
Gents

Gient1

image0038.gif
i

Request message A
GET /~bob/index.htnl HTTP/1.0

Intemet

GET /~betty/index.htal HTTP/1.0

Toquest message B

omeotipbic
omefanypuic bl

nwjoeshardwaream
rysanigesom

image00218.gif
Request message 4

GET /indextal WTTP/L.0
Host! vt Joes-harduare. com

[

PO
et ol oy

Clent GET /index.tal HITP/1.0 s arbwarecom
Host! Jam.patys-antiques.con o mrys auesom

Requestmessage

image00128.gif
HTTP request message contais
tecommandond e

GET_/specials/san-blade.gif HITP/1.0

Host! tht. joes- hazduaze. con
ntemet
. HITP/1.0 200 0C
fent Contentype: Tasge/gi¢
ontent Léngih: 8572
Content-length: 8572), et
application/moword s
GG et s pe
i fteess et QY
o i 2
i Sees s Joe
= il £
b al i
il N
Vgt e RS
Viden avides EA
evordrievint i v

image0045.gif

image00221.gif

image00131.gif
Gent

85 aces ey

Lot

Gient

Gent

(@

L

Gient

Gent

(@Netwrkxtinge oy

oe=

Clent

image0047.gif
(a) Ghent configured to use proky (b) Network ntercepts and redirecs rafficto proky.

L E o=-F§

Clent Server

T S——— JrT————
Ll | LE B
Gt (sl s seer

"o

image00310.gif
Webservesaround
thegiobe.

image00133.gif
@see st CGET /index.htal HITP/1.0

=) SLAR IR =

et oignsener

() ity st | GET PEtp g torys-ant s con/ndex bl WTP/1.0

Gient P emlctycnted)

(@Soragae eesepron) eque | GET /inder hgal WTTPr 10

e agent: Spersromsés vi.y

oot {Seeostae it o hesuragt o)

(@ neeping o et

G Findex. il WTTP/0
e sgert: Sipersremser v1.3

.| e

Clent Orginserver

image00132.gif

image00311.gif
Galpy s exptyorgund,
S b s
iy e g D

Qs G pmyseve
W
DHserver

(s tyes o,
vr oy o

551,18

WPy apartalsane
e e e e e

Gt
(52 hebrower o -,
convertng relly”nto “wveorelycon”

ot spand.
o) bowervistaneopoy

poscmemmemine

(4a) Bowsersends HTTPrequest i

Py

image00222.gif
2a) Browser looks up hast "orily”via ONS.

)it st nkoown

7 3b)Browser ook up ot ey om” a0,
(30 Sces e Paireses bk

s serer

(s tyes o,
vr oy i

) oo i o connect 1P s one byov v comet s

= i 'Jlb] Success; connection established
@mmmmm
bs £ 150 Bower e T esponse

Gt “imorelyom
(52 hebrower o -,
convertng relly”nto “wveorelycon”

image0071.gif
Ployers deterane
o
G
Spanish- | 0 Mo W
et) £ T e
| e TT
e ML, |0 sursecange
e e
S
fity Py
.

mobile phone

image0062.gif
‘Senver A paid to have content distributed
o o e .

The ottt st el o
e o o g e for B e

s
[m S

s

5t et e ey v b
A A Serverk

image008.gif
GET /sonething/file.htal HTTP/1.0
Bote: "Sim ar0ct 330 23¢25:1 OOt
Bhes agint ozt 1137075 (oot 0)

e e St vt ol
ot s
e hrachet 3ot 45

iy ey
oo

£

Giexagent Hoai1370.75

Snomisdnesaedstantr e
g

omatinhesier:

a2¥0ct 00 3

G fsgmething/file benl WTPrL0
Bat

st

.

Anonymiing
Gt proxy

image001.gif
e,
fikts

Grcment alld el

e,
Dby it s AL ot and 3150 i o

image0015.gif

image00327.gif
(a)Without iligature (b With Filigature () Without LA igature (d)With LA ligature.

file file |} N

image00249.gif
(o Standalone (b)Finalpusktion () Medial poskion () kil postion

t.’..ﬁ

(Thesedffeent gy epesent thesamecharcte ARABICLETTER AN

image00180.gif

image0059.gif

image00250.gif
sg'L-ths”iK"/i}A
i

Ftaboy Santbrag T
nnguage) (e (osachsets
regional varar

image00181.gif
hesgi e conyonveconds com/ v/ S34 w0
WITP/1.1 200 0€
Content-type: audio/x-wav
Content Length: 289772
Content-Language: 1-navajo

S L] b S

image00110.gif
Get it o oy ardware/
STEP 1: sk the e sl wh e
e e 5 . ecnefam e ntemet
e e e oo e s,
fent purladcorg
Al s bt

STEP 2: et teactal Lo hersure Gt harreco

g
Gient

joes hardare com

image00510.gif
PIAYY

Gt

WITP/2.1 200 0K
Content-type: text/htal; charss
Content Lengt: 4198
ContentLaniage: Jp

so-2002-3p

[oo00r01310100100101003001 113201 |

aniyboty

[

o e

image0019.gif

image00417.gif
USASQlcoded chovacter set

=
]
£
H

68

5
H

image0031.gif

image0024.gif

image00182.gif
Conceptual characters Rl code bytes. Unescaped ASCH code byte

Py i1
z o] o
Jo€ =] F
3\9%\“‘ ios o5
pird .-

[A—— o
‘ ‘ o] -
: us

sxmitn Wt enerondsend Whatupocs
(el vy S o) ity o SO 1 ol

image005.gif

image00328.gif

image004.gif

image0017.gif
http:/Anai. Joes-hardeare.con/ Inventory-check.cgi?itensi2y3thcolor=bluelisize=large

. T

image0016.gif
7 http://ww. joes-harduare. con/seasonal /index-fall. htnl
i T T

image0018.gif
Base URL: Relative URL:

It] [

v v v
http:/ /. joes-harduare. com/hammers. hitnl
ew absokte URL

image0025.gif
http://uw. Joes-hardware. con/ tools. htnl#drills

) serselcs ik s e oo s

(Fragmentis T senttothesever)

) Bowser maes g oo b o

H [o joeshardvarecom
s - Qs e ML pge
3 S P A B

Bowsersolsdom st
atnomed i agnent

@ s L ogestring i
ploiu il)

image0026.gif
Parsed bt URL
fidene-io

b e
Eimeeser e

M
e,

[T —
s
s —

e b -
B ez et

[—

[re—
e gy vt

et Ly
Pt

' ! '

C [———

image0033.gif
BT Jprodct List bt HTTPILL
ot Soas R duere. con
Gntent Sipe: et /piain
e iehgin: 3

Updated product 1ist coning oot =
semes owoes brdware o S s s

e et e
WITH/2.1 208 Crested o

Eocetiin: “hiep 7o, foes-haxdhare. con/prodct-List et
Content Types et piain
Contene-LLhgen: 3

Retp:/ s oos-haxdware. con/product-1st.txt

image0051.gif
Gt

Request message

TRACE /product-List txt ITP/1.1
feeept "
e L

TRACE /product it Ext HITP/1.1
HoSE: i Jocs-hardvare. con
Bt

VESETL pronys.company.con

Regorsemessge

W o
Comeent ilhgin: 5 ©
VT PR3 Zoapany.con

TRACE fproduce-List txt HITP/LL
Hosk: W Jocs-hardvere. com

e o
Coneent Llhgin: 55

TRACE /profuct-ise.tet HTP/4.1
Hoskt e e on
ettty

L prowys comany.con

UL prowys.comany.con

v e nty e ot ansethat s equest s pgade ol Vs 1.1
“Along with the upgrade camea few additonal requestheaders.

image0042.gif
[

ndmesage

feqstmesoge

POST /nventory check-cgl HTTP/L1
oot e Jocs iz con
Content e textp1

Eoncent-Lgin:
cemtis s |

Agonemesge

BR G Yo
Eoner hgin: 37"

The bandsow madel. 2647 s in stock!

By sics dtainenty

N

k3
nejoes hardware com

o=t 2607

N

Gl program
Imenrycec

image0027.gif
Proy3

image00111.gif
e .

GET /index.htal HTTP/L.0

oyt meyz

WITP/L.0 200 0K
Content-type: text/htal

Ot o5 agen)

image0028.gif
HTTP request message contans
hecrmandand e URL

i

GET /specials/sau-blade. gif HTTP/1.0

Host! ui Jous- harduare. com

Intemet

WA g
Content Type: Snage/i
Content-Lingth: 872"

HiPrepuenesagecnans
ek e o

image00112.gif
HTTP/1.0 200 O

Content-type: text/plain
Content-Length: 15

Wil T a messagel

image0041.gif
GET /specials/sau-blade.gif

Hovesnurser

image0032.gif
(@) Request message

(b Respanse message.

GET /test/hi-there. txt HTTP/L.1 || Strtine [HTTP/L.0 200 0K
Accept: text/ Content-type: text/plain
Host: . Joes-harduare. con Content-ength: 19

Bty

HIl I a sessagel

image0029.gif
i

Request message

HERD /scasoral/index_falL bl RTTP/1.1
Hose: o maravare.con
B

[—

AT/ 200 0C
it Tyne: fext/eal
e Lengen: 837

anjos ardware com

moentitybody

image00113.gif
G

Request message

GET fscasonal/ipdecFal1Lbeal WTTP/11
Fone! i Jose Parautre-om

Heaept™

Soporsemesage

HITP/31 200 0

Gontert-Type: text/tnl
sl

s

HERD)TITLE Joe's Specia Offers «/TITLES

image0052.gif
waas
13004
A B

w4 s

s

0913234 0913235 13380

image0043.gif
et

e
i | M | o g

aeSereme o | rogneain e

T [ram—

S Paess

Destatn s

Soepan Destrsion o

T@seqencenunber

[eTS—

o s 22 2252 Wadowsie

T dedsm Ugencponer

GET /index;htnl HTTP/1.1¢CRo<LF>
Host! o Joes-haxduare

image00116.gif
Servr

| VAN
Client o Fea ™

image0061.gif
]

o Servr

()t rewsoce st
S2)bindsackt 0 o 0 i)
() pensadet omecton isten)
41 omectn acept)

()3 Patdespon
(@) s rew st ke
(@) s o comec)..

45 applcrion atfied of omection

(st -
(G5) send HTTP request write}- il
(St T e s

R ——
(s e T ——

(8 o convcioncose) 59)dose et s

image007.gif
Request message

BELETE /product. List tat WTTP/1.1
Fost! s gose-haravar

Beponsemsage

o AT e s
Content-Type: tm/umn remopedfum
S -
e ERES

s deeted

image006.gif
Gt

Request message

apTIONS = wrTera
Hor b s Soee e con

Peosemesage

WL 200 0
Ao Gl o5, o, oprions
Contexe Lergth: 6

S et i
analesates st
el g

o ardvarecom

image00210.gif
Clienthas previously requested copy of:
s st ot

Fegmstresage
GET fscasonalidexfall_beal WTTP/11
Gt | st e oot Rardare.con

At
8Bl ried-since: e, 0ct 3 1997 a2:26:00 011

Regorsemesage
WITP/AL2 300 Mot odiFied

e

Bowsr gl ol cap s e
has not changed since we st

image00114.gif
Requestmessage
GET et products. et HITPALL
ol oo Rarare.con
Redape™

feenenesai

' LSRR PR gt e roonin.cont
et lengih: 5 e
fetista S AN

Please g to o partoes site,

et le groming.con

Pegstrsage

LD

ot gl gronin.«
Asgonemesge
e

et o
Eonten 1t

image00211.gif
ntemet

Qe
=

Server

image00115.gif
ttp://ww. joes-hardware. con:80/poner-tools.htnl
(b eracs eosoame o, Joes -harduare. con

(2 Thebowsr sk the P ares For s hosame OKS) 202..43.78.3

(3 Tebrowsr gsthe ot ubr 8]

(e bcmsr ks T onnectionta 20243783520 gq

Server
e
uymwm.nmmwmmmmng o
Server
(6T brouser s e HTPrespsemesag o thesrer. ~———
orsemesg g =
Servr

() erowsr dses e omectan g
temet

“Cient. Server

image0034.gif
Apasonr

‘;

TsLorssL

I

|

Netwokintraces

@HTP

Tangatioer
Neworigr

ekl

19

Networkinterfaces

)HTTPS.

Aoptonloer
Seatylyer
Tt
Nt

Dumntiner

cover.jpeg
Understanding Web Internals

> Brian Totty
ishu Aggarual

O'REILLY* s Marfois Sa3er S Redy &

image00251.gif
Frenchspesking
wer

Fenchspekin
e

GET / HITP/1.1 Ineedto end e arenchdocument.
Host: wow ois -harduare con S shehossuh o ovs -
User-agentl spify multinedia brouser | [senieamdoschominet
Accept-language: {r30-1.0 epare

onjus B

w0 o
Content Language: fr
Vary: User sgent

Foptbta-rich content)

GET / HTTP/LL
Host! o, Joos-hadare .con
User-ager

Accept-Language: 1150-1:0

impy wireloss device

Hevartsafechcpyof e doament
andhaeitinny e e
tsed o s i,
cedapywos sy o i

v
Bonjour

Borjour

e

T,
ety

HITP/1.1 200 0K
Content -Language: fr
Vary: Usex-agent

Bonjour
(7" Sinple text content]

image00183.gif
Frenchspeaking

Spanishspeaking

GET / HITP/1.1
fost: e Jois hardare. con
ex agent <p1

Accept-languages

Ti0-1.0

‘ultinedia brouser

Wil velcome to
Joe'S Harduare
Store.

Bonjour

Hola! Bienvenido
2 30's Haxihare
Store.

Iy

Senfout
Bttt o sos-s
g store

GET / HTTP/LL
Host! o, Joss-hardhare .con
User ager

Accept-Tanguage: 4s5a11-0

Spifty multinedia brouser

Bienvenido

e

Holal Bienvenido
320" Haxiaze
Store.

image00252.gif
A gesting hetpc//wwejoes-hardware convindex ml)

GET /indes.htal HTTP/1.0
User agent : SuperBrowser v1.3

ity ofgov
s athyareon

T
Gen -
)
(o

GET /index.htal WTTP/1,0
User agent; Nebsurfer 2000

{8 gtting htp/wwnemary-aiques camndex

nnwink}m{mx i sane noraion s
T
il i oy

image00186.gif
Gient

et

image00185.gif
Gient

image00184.gif
GET / HTTP/1.1
Host! . Jobs-haxdare. con
User-agent? wispy wizeless device
Accept-language’” f134+1.0

L,

§o R
G

sngofip| | i

o

Webserver
[Jommogite

T

e

S bt
donetiwowieesdec,
Tt e aomed

i ateasise
meckeont €l

WITP/L1 200 0K
Content-language: fr.
Varys Usex.sgent

Bonjour.
Sisple text content]

image00253.gif
E

Giagotia) Nework
Nasirongasener Repaorgnsere

B E

i s
ppeRock g

image00187.gif

image00418.gif
(A gesting htpc//wwejoes-hardwae.convindex hml)

GET /indes.htal HTTP/1.1

oS- B joss rardumre-con
~ —
[e
~ -
et

GET /index.htal HTTP/1.1
ser agent Websurfer 000
Host: arys-antiques. con

(B getting htp://mwnemarys-antiques.camndex]

it ol
oo am

g
o

Imary
o

e
a

The HITPHostheade s eostrame fmatio ool
el s st lown e s
et st

image00329.gif
g i gov= 20572342
s bariwre o= 20972343
iy e om= 203172344

ent

Giems

2
P

[estipadaress ivecto]

w2 g
o o
momses imary

image00191.gif
et

e
Fenesmione Picsner
I

v

[EE T — o
e ithein e g

function FindProxyFortRL(url host)

PR —
ast
Teturn "PRORY proxys. oss-coche conrigo; DIRECT"s

netscape.con”)

P e—p— GontepmmiTEme
", Sty e iy e
e et

Intemet g
" originserver
P 7/

sentopryt et

image00313.gif
Bevdbdete equest wih F Modied-See

T Jannounce el HITP/L0.
TR Since: St 23 un 2002, 14

T2 04 ot i
UK
Gttt
o
e R8s 200, o000 0

Slfes mponse

image00224.gif
(@) Revaldate it (slow hit)

Severatjectsameas e oy

—

o, e
T)
object] object|
- B o

Coched apyis outf date.

image009.gif
FromClent: From:NATdevice:

11 Poses g neworkatés 3333

@ Tooes Ser; St (W e o ToProy
2222 4444
»)

image00140.gif
(a) Cache bt

image0081.gif
sessernr

et

image0072.gif
Ttmene

image00257.gif
Sibing

St .%
‘Caching provy

Parent

ﬂ‘ww

Browser

Hash cton st e

hirshingpro) e
e

image00410.gif
Orginserser orginserer orgingerver

Widearea Widearea Widearea

network network etk
Leve 2cche Leve2adhe LeveZcche
Regionalnetwork Regionalnetwork Regionalnetwork

miE 0 s [
00 Qoofon Dooooo

(@) Leveh 1 cachehit b veL2cahe it (@ vt 2 e miss

image00193.gif
ik

e

image00314.gif
| il B B Bl
I3 Ok Ol 106 O Cil

image00192.gif
ToProxy: ProtoGRE

n3
E
Fmcin:
i fons
»" rter & TocJoes Server:
» TocJoe's Server: Psses through WCCP Tolos
222

»
B

image00225.gif

image00141.gif

image00256.gif
%{m e

PACserver

(e
ey

(Qhcsssemes
g oy

image00226.gif
S

s

Revaidate withsever

s

Updatefehness
ofachd docment

I

image00142.gif
i

ey

GET /uwan joes-harduare. con/ index. henl HITP/1.1
Supeibronir 2.0
sk "B joes rdvare-con

(U= r—

(5endreporse

e @ mesage Q) ctel

() rterspone s
W S| yes [Saner
e[+ [s
by | [y bty

e

I L

W71 200 o

G

e

Gontent 1engen: 2140
Gontert g st
ol W sgenansoo

HERDSTITLERYoe’s Wb Hore Pagec/ TITLES C/HERDS
B criovctew to J0crs Horthareaio s

image00195.gif
fegesimobin adedand
e ot s s

T/ WP
Host! Jani Jobs-harduare. con
Heter: Wil teport-and Linit
Connection: Heter

o joeshardwarecom

Repomsemesage

Conne

[85)]

WITP/2.1 200 0K
Date: F11, 0 Dec 1906 1
Content Lingih; 3132

Content-type: text/ntal L

29 it | | heter:

WTTP/1.
Bate: faf, 06 Dec 1996 18
Content- Léngt)

Gontert-type fextihtal

1200 0

eter

do'teport

Lt tecerenioes e
repuseandatesameqine
e htaunt

0
Proxy

)

GET / HTTP/LL
Host: . oos-harduare. con
Meter: 1273

Tf-None Hatch: *v1.27"
Comnection: feter

‘o joeshardwarecom

HITP/L.1 304 Not Hodified
[

image00194.gif
g ergh
Vervesien | Miwrveson Daa g
Opote | Resprseade Reenes__[FI[AR
T
patetin
hethiengh Sime
Sgtne Sepre
Sgemie eymane
Keyrame
S

image0056.gif
[

Originserver

Asacaspont

. Onganization

image00254.gif
HTTP request message ot
ecimmdond e

T /_ytl_int. o
DR agant: oo (compstinles Frontpage 4.0)
e ey (TS e
Becepe: e

Conttné-Jength: 0

ntemet.

C——

image00188.gif
HTTP request message coutiks
hecommandand e L

W

g -

Fonage e
g
o e et

image00330.gif
ntermetandlos
ol orginseves

image00331.gif
S

o

— = EEE

(DSl 20225716 msns s wasng

e SRR 2514

s Ry,

Dsserver

image00255.gif
Wwwjoes-handvare.com

e [er———

o
Seerl

s an

0002
Senrt

image00190.gif
1615522845 1615822845 161582680
o joes hardwarecom
e A

s EEE

) e et et T 82285 Tssals iganis 1158

image00189.gif

image0065.gif
) el

image00511.gif
Wwwjoes hardware.om

e |
-y 1010101
=T
T = .
Y A

o1
Senwr1

oo
Semer3

image00419.gif
(o ewp e 1072571 x%

- monitar canservers

e
= v : :

NS (0725718) (Q07.25.00)

image00323.gif
@ Aainiext

e perierer
e
o o
o1 (= b
FalinE=oy () i
=t
-
P
B
o o
-2 e
pelnroNfs el
=t
C] Plaintert
e et
B
o
g
S dwpigai

image00241.gif
= s

Q- B ReieD
Lo foad
[[

(@ smmeticleycyptagapty () Publctey appograpty

image00168.gif
Pt

+

Lt

image00167.gif
LG — i o
el

image00414.gif
Plaintet P

o b

ErodorE

(=ERe) Tey=e
&

image00171.gif

image00242.gif
Coricate format vrson number

Cerfteseainanber

Cnfotesgmurealpin

Cefare e
ithvive

lypeiod
Sbjcs e

St pubicey

Oerexrson rnaion

Ogialsgaure

image00170.gif
Certfcteformatversion number

Cerfteseainanber

Cnfotesgmurealpin
ettt e J[—
aldyperd o
Sbjcs e
Stjcspubicey

Oerexesonfarnaion

gl sigatire

image00169.gif
od

e Voo

A o0 I £ WG

§

image00243.gif
(QHTPS orer TP el

.q—'*o\/

HS el

image00238.gif
]

Gien sever
) senergnetes e
atense)
a8 o
PR st
0o aortimfor et o
s it Author
o e
gt 91 §)semeveies et
o) {5t gt)
et rorc
o)

e
PR
S—— et

image00163.gif
gt g

=3
) Chtesge g_
.
sk semaneand vt
digestOwt)=A3FS
.
(A Nhorztion g
et

[

et

otemet

=\

Servr

Y %
B

Server

Pesseghe metelnenal sl ot

Tourepesedasecetfrancldmen
Pl meyour seraneand
flemping

Pesseghe metpelgenal sl ot
el
Wy digesed pswor s 15

gestOute 355N/

A

r!é

Server

oDy oee
oty e p e s
W

image00162.gif
(o romp e and pasord

L ——

(@Bsest et

(@ sendastioraaton

‘brian-totty

oul

brian-totty ~.
brian-totty:0a
0l .

BASEGAENC (brian-totty:0ul)—--» Y JpYNAACO0MHKSTICh

Ll

Jrite il

E

WrTP/L0
YnJptatdosodksT3ch >

image00321.gif
oy,
comprrateindexntnl family

prgss Fnmcials Jeffl3pgbrian.dpg

praftal pralhtal | sales-forecsst.xls

ot s i

image00239.gif

image00165.gif
OSSO o

B o T £]
S 200 4 i e S S STTE
e | IR EER

Welcome to
Joe's Hardware
Store i

(wwww joes-hardware. com)

Joe's Hardware is a hypothetical online hardware store.

The website is a live test case for the O'Reilly and
Associates reference book 'HTTP. The Definitive Guide

) O
et

securyicon

image00164.gif
]

Gent_

 Normal request/chalenge

Reyusy
cutos

Ca—

ot
[

s

oot
L

pre

Servr

() Preemptive authorization

]

[

-
o
Sttty

e
CR—
o
gy

pres

E

image00322.gif
Basic authentication

(acvry g

T /cgi-bin/checkautTcart=118s4 HITP/3.1

y|

et sever
; WITP/1.1 40 nutrorized
Gent o e Base resti-shoppig cort” | Semer
Shoping G
] B
G cgi-b i hedut et TP
Gient | Rithorrations Besic vadprastdCs0mGTsch Server
e L =
Wibas 200 00
et sever
Digest authentication
i |
GET gt/ creckant Tcart 7854 TIP3
e LB et et TR Servr
(O tene ﬂ‘ %
. KTTP/1.1 401 Unauthorized
R e Sener
oot
et Sabcassesnniayyronsicon
(@ hsporse: ‘g .%.
GET gL o/ checkaut Tcart 7854 ITP/13
Gient | Fithor Server

Lation: Bigest
on: Dig

YestaShopping cart"
aClEr okTchasesoossron
L binhetko e AT

o

onces CHRSIOT10EAIOEREIOF 1 20P 6001160073
e onses EAR OO SCALDIOATOALIDIOFE 1

s g

Gt

WP/ 200 08
ithaifatfan-Enfo: nextronce=
Rezt

are

Ehauthegrsascsrapmaracumaocesysazno:

it rarocise”

FRSAOA02EALoEASLOPFL120Foo1110073"

|

image00240.gif
Gpher

Pt

Gphertext

ABCDEFGHIJKLMNOPQRSTUVWXYZ
I e
ABCOEFGHTIKLANOPQRS TUVHXYZABC
MEET NE AT THE AT PTER AT MIDNIGHT
PHHW PH DW WKH DN SLHU D PLGOLIKW

image00166.gif
Plairtext) Opertext ———py Pt

e il et
g (o D | [79| et et

Ercoder “Decoder

image00325.gif
Content.-type: text/htal

Content.-type: text/htal
Content-encoding: ¢21p

Content:-type: text/htal
Content._encoding: £2i
Teansfer encoding: chinked

SersTen
26700

Cnencang

Ser2Ten
267000

Tonser g
(thning

o

image00247.gif
Chunk#1

Chunki2

Chunk#s

Lastchunk

HTTP/1.1 200 OKeCRy<LF>
Content-type: text/plaincCRycLF>
Transfer-encoding: chunked<CRscLE>
Trailer: Content-HOSCCR><LF>
<RoelFs

Heradecinaldhunk ize (27 her=> 39 hracers)

2<Ralp
We_hold these truths to be self-evident CR><LF>

e
 that all nen are created equal, thatcCR>cLF>

| Uiberty and the pursuit of Kappiness. cCR><LF>’

Bl
“they are endowed by theix Creator with certain
unalienable Rights, that anong these are Life,

Rl

Content 05:g4e 5426 Lsg3pAut jgriS3cCh>cL>
“Optionl-only pesntfhee s aTer eaderinthe mesageheader.

image00175.gif
Comtont-saceded respouse
HTTP/1.0 200 OK

Content-encoding: gzip e sick
Content-type: text/htnl

[encoded nessage] ey
Tantrencoddrepor

HTTP/1.1 200 OK

Transfer-encoding: chunked
10

abcdefghijk fnatedbids
1

a

ACnentencoed mssag st ncotes ety
Secion e mesage ity s ot
esagsthe ncd safunconsiheentre
esageclangg e Srcttef he mesage el

image00179.gif
HTTP/1.1 200 0K
Content-type: text/htl; charsetsiso-8859-6
Content Tength: 18572
Content Language: ar

Gosooioizomo0t0oIGI0R 11101

fmtybuy

T T —

085534 decodng.
olase
i
el 229

[

ot

Caracter

image00178.gif
Gt recies s epaseand
cares b oy o et
ek
s s e oy o
s s
g e it cpyinet
st chliesma
syt s
wiogietocestace,

T
oSl vean o e -
pge g e st v

i o heint s s s

fepstnesoge
GET /bigfile.htal HITP/1.1
Date: Hon, o1 Feb 2001 12:03:00 GHT

Regasemesage -

WITP/2.1 200 0K
Conteni-type: text/htal
Expixes: Mon, o1 Feb 2001 12:00:00 G
Etdg: abedefghioosTon:

Do et mesage

GET /bigfile htal HTTP.1.1
T-None-tiatch: abedefghioss7or
AT Gifle

Date: Tue, 02 Feb 2001 03:03:00 GHT

osto

ot
o it

el weiones
e
oo

oo
F2 B0l 0305 0

sc.
Chisels.

Vel wlcnets
st e

o n

Dot epursemesoge

WITP/1.1 226 T4 Used
I ditfe

£iog! yctoviz3as66G
SeTE D e hoosons

g 1 of e Vo e g,

L

el wekare o
nés waesie.

oy s
K

Do e

image00177.gif
Reqstresoge
G (bigfiletal TP/

Clent

fegensemesage

WITP/2.1 200 0K
Content-type: text/htal
Content-Lengtn: 65537
e

110007
111011
010011 | oo et
QL0111 et

e

Gty
imont | 1e0)
Range response message

B L S
orthepartofthe mesagetat | ACCEPt-Tanges: bytes
e

image00176.gif
Tine

gﬁﬂﬂ

0 i ;

o s e
g tam. EM
=1 f =) =9 Vmuml

image00416.gif

image00326.gif

image00248.gif
(o-8855-6 coded
i)

3

CINGETALLETERR

3

LINGETALLETERE

o

HRABCAWEL

s

ARABCLETTERER

s

ARBCLETTR QA

7]

ARABCIETTER I

Databis e Tl aph

%}t 225

mios9s50)

‘g:) E WRABIC LETTER FEH" g:) E g}

excdngcene
(gl 85565 o)

POV RO, S —

tode g odegcme v e i ¢ 6 e

Gaacuss omatngsotwre

ME hses g descies e coinatonaf e
eoing schame and coded haractr s apoin.

image00415.gif
[Intemet Server
) et sens b chices s reques cerfiation

Intemet Server

o I

et Intemet Sere
) et senssecet et and sever o bys

[Intemet Server

image00324.gif
(a) Unencrypted HITP transaction

s

ot

[r——)

Gt

HTTP esporseses o (P

Gent

TP connection dose

(b) Encrypted HTTPS ransaction

Fog-a™.

Server Cient
R r—]

@Q—TM' —E

ot Sarver

sty pranetes nistuke

o+

Servr Cient Server

HIT requstsent e Sencyped et st v 12

For |

Server Cient Senver

HITP esporsesentoreSencyped sporssnt v P

@Q‘—CA —

et Senver

E—

=}

Server Cient

TP connection dose

image00244.gif
]

ey
diat17mycompanycom proymyenpanyom o gifs com

STy St ol et el
R e b

image00172.gif
i
1

image0064.gif
CT—
£ Iz,

CAJUN-SHOP.COM

¥ Govpeet coon et suon

(e ot s UL (g shocom)
oot mach e el h e becsethe
Steisitilybseh,nd e et s made ut
eseston.

61 dlogbowrmstheser e cerireis
vl e and s el ahorty e e
e e the et o ot ach s
esestednheURL

Qo getrmoe g heser s he Ve e
Do, ndsesht hecertite s i certfate
a1~ e o Wih s fmation e e
andeddewhthrto gt o decine thecerfate.

0 caping the i s e pge hh et
AP prtaa,

Toamdtisind s e his s recsall
HITPS Tafic o he hosrane ales o shpseareses o,
TSVl hostame maches e onhe e
pred by thelPasartf thes e padage.

image0058.gif
L=

Gim [

Gt seralnumber | 35DEFACE

Gt expiation dote | Wed,Sep 17,2003

Stesorganizationname | Joes Farvar Online

SHeS DN hoshame | wvoes harbvare.om

Stk publc ey S

Gt sverrame | RS Data ety

Cetficate suer S0t | Jown Dac

image00246.gif
Reguestmess

GET /logo.gif HTTP/1.1
e

e —
et o 0
td - iad

s mprsses e mge ith st sl leover e
s o bt el e e e b
e e o et eVl o e T o e
e Wl BV Sy ne dethmprecig e g onc e e ELEe,

image00174.gif
Original content Content-encoded content Originel content

Content-type: text/htal Content-type: text/htal Content-type: text/htal
Content- Length: 1280 Content-length: 3907 Content- Length: 12180
.. Content-encoding? gzip
mrinn— [raoror e
[r1000101 B
T @partent

eoder p

image00245.gif
(a Text/plaim entity in HTTP response message

HITP/1.0 200 O &
Content-type: text/plain | ¢
Content-Lengin: 18 =
Wil T'n a messagel o

ats k= 5>)

(B magelgeney n TP esprse mesae

et N
Content-Lengtn: 3i6e) | 27

o5
(00h= <l5>)

satofcament 0=)

a4t 4

msE

sertoramen | Wigh W
Tt ooz

j=51) (02002518

et

PR

image00173.gif
HTTP/1.0 200 OK
Server: Netscape-Enterprise/3.6

ontent-type: text/plain
ontent-length: 18

image00223.gif
Cient

Bogquestmessage (as recaved by server)

GET findex. el WTTP/1.0
Sttt textihal

Bost? o Rardare.con

V21T Ry 2 renes-Tipet, 1.0 cache.Joes-hardware.con

—

prouy Qe pnet cachejoeshardvarecom
TR WP wnejoes-handwre.com

image0049.gif
HITP request message sent o proy

GET ey /http-guide.confpub/e Lcome. ¢ WTTP/1.0

L

Cient

Frrewes

promrencispaet
(it i,

Htpsemes

WG do0 6C
o S T B s o)
Lottt tiedt St 15 o shen 21 05ren G

Gontentityper et lsin

Wi there. This s an FTP server.

image00312.gif
Rponelioteots
1 IIBLIA

RequestViaheader
WTIALIEIC

image0063.gif
TRACE request.

TRACE /index enl TP/
st e s nardire. o | o far=1_ Narfova=0
hecept et /\ /\
Q . — .
cieg Pyt P2 prois
(o) (r7ate) (ejorsioaran)
\ N\,

net, 1.1 prosy.frenes-ispunet

s e
s
sy
e
i

ol P71 [Peciedemet

Rerdare.con v
e sp.net, 5.1 pri.att.res
niy! ek ey P
B Trtnehs 159, California”
ER

A mponse

E

e

image0055.gif
TRACE request

e (e
Hosks 3o harawsre-con
et mumv

it Py Pyt 5 sever

\ \, N

o
Comtene e
VTR T G563 hrdhare.com, 1. p1az.att.net, 1.1 prowy.frenes-ispnet

TRACE /index el WITP/S v
Honts Mot harare:con v
ittty

JETE s gt 10 ittt 3.3 oo .o
Comle” Sccess- b Trene's 9, California®

LR

A mponse

Proy
oy ip) GITaN (e goean) (ommpeaean)

image00136.gif
OPTIONS * HITP/1.1

s 200 o
Allow: GET,UT,P0ST, HEAD, TRACE, PTIONS

image00316.gif
T tgi/ 7Tt Las gov/pb/on-nex. 8 WTF/1.0
LSS ageni: Sumtaromser .2

w

HIP dient

USER ananymous.
2SS Jou "
i3

e

BT 00- e txt
RSy

RETR oo-indes. txt

il

T FTPinbound | -—-data..
mersongitewsy

foz1

Fipserver

image00135.gif
WITP/120 407 Prony Authorization sequired
Prony Autbert €ate: Bavie eadoSedure St

T netp7server con/secret.jog M0
Prony Aothorisstion Bocic idpbmtur

@ o mon
g ot bl

image00138.gif
san
frandso

Los geles

Gicago

Fasharomd
Aanta

image00137.gif
SanFrandacobranchoffice

L s

[Gae
Tstamaciony e Sow Wil comertontserer
(iohsecethane) et

s

image00134.gif
Sumogate ache bank

mmmmm

image00230.gif
‘Serverintemal view

Servrproces
— Spawes rensy prces 1
Requs
et Spaed ey rces 2
et Spaned ey prcess 0.

Servrsystem
Respnse
Repome
Respse |-

Tespomse 4

image00149.gif

image0048.gif

image0057.gif
Protected internal LAN

adsnetT34tog /0019201005
Tedstucauadbal 0-col ook, b o
UleyorsTaobacsrast. Ui agent: Siperbrowser 4.2

L=y~
=

HITPSHTTPsecurity . com
acelrator gaewsy

GET_nitp:/Iwt.con.con/ HITP/1.0

image00411.gif
GET http://waw..con.con/ KTTP/1.0 adenrtTstgid potsioLu

e e
LR o
g W»«mmmﬂm&
]
<&
e . e

‘security gateway erver

image00412.gif
g et goestwen dent ad gtensy "

dant Gteway ondrs e hardwareom
(IO st Lol

CONECT orders. Joss harduare.coniaés HITP/1.0
Gier-agents Sparbronser 3.2

Ot loge et

HITP/A.0 407 Prosy autherticatiog required
Provy sutherticats: Savic resinsworiholst

(T e it et

CONECT orders. fos-harduare.conraés HTP/1-0
GRer sgents Sptrbrovier 4.

Prosy Sothor 25tions Bot1¢ YIpTistAGoOARETsch

O et ey messetanes >
HITP/1.0 200 Comction estanlished

image00317.gif
st
Q B = =
- —

(31 5Lhnagh HTP el

na=-m j%

w
L
Wit o it 4,

v B ol - v [

image00231.gif
(@) S5l rejectad by firewall

st
(e

(BT cotssLacceped byl

5
=

i

= -
Fterng fireing
e e Servr

Frellprony

g
e

Frewallprovy

image00150.gif
g et goestwen dent ad gtensy .

dant Gteway ondrs e hardwareom
(IO st]

CONECT orders. Joss hardvare-conraés HITP/1.0
User-agents Superbromert 4.7

.

P ety mesgeretures
W,

et
200 Comection estaplished i 0

st e il it
st o

sty N/pn@lpwts

e s
Bt g

s
ot sats

e
|

tondegd |

image00151.gif
@il
@ ety Aive
G
N AN
LN

Genssntrqusontetespaive
ot s s bctse erey et
processesit

(BhServer won'tdose connection wher done becasse
s b ke ek koap e

) Garncto: e Ave

i
“ (e Comnection: Keep-live
=

(el vais forcannectons dseorng
anyneweguess onthemecion

image00196.gif
sarcances () w !
ssiietmisina) $4F $77 [$21
sowaveonar) 010011110111011100100001
soteaina) 19 55 28 33
— 3 c h

image00144.gif
20% of time betwieen fetch

i mtmodatn
=02 Gisdap st Newopiaiontin
Wi e

—_—t——————ay

b P

image00139.gif

image00315.gif
Conditional request

GET /announc
T None-Hatc

e sl WITP/L.0

0

s

e

HITP/1.0 304 Mot todified
d, 03 Jul 2002, 19:18:23 G

2
71, 05 Jul 2002, 05:00:00 GNT

Tepae

0

g s

Servr

image00227.gif
Conditional request

GET /announce. htal HITP/1.0
TF-odified:since: Sat, 23 Jun 2002, 14:30:00 GAT

Gent

ndtonalequest

HITP/1.0 304 Not flodified
Date: lied, 03 Jul 2002, 19:18:23 G
Expires: Fri, 05 Jul 2602, 1:30:00 GAT

O edsoeswastimaidion

GET /announce. htwl HTTP/1.0
Tf-odified-Since: Sat, 25 Jun 2002, 14:30:00 GAT

Clent

HITP/1.0 200 0K
Date: Fri, 05 Jul 2002, 17:54:40 GAT
Content-type: text/plain

ContentLength: 122

Expires: Nor, 09 sep 2002, 05:00:00 GT

411 exterior house paint on sale through
Labox Doy Just anobher cesson For you
Yo shop This'summer st Joe s Harduare

T
(b) -Modfed-Since faled revaidtion

image00143.gif
Bt 4o o0, sassoon
Content Lthgin: 67 ©
Expires: Fif, bs°Ju1 2002, 05200100 GAT

Independence Day sale ot Joe's Kaxdwore
Conc"Shop Wieh b "foday

Bt 4503 Sn 200, sasso0 cm
Contenitrgen: 57"
fastiton ik

Independence Day sl ot Joc's Harbeare
ConeT o with b Today!

o) Explres header

(8] Coche-Contol maz-age header

image00197.gif

image00228.gif
(@) HTTP/FTP server-side FIP gateway
[=
[Je=py =g
-

[=
el At =
L

e

HITP dient

image00147.gif
Chent s
[—————

plosmy
iy e
B

5

e [WTTP/1.0 200 06

=g *

New product 1ist:

image00146.gif
Age of axched document

Semerprcesing Sevrpocsng | Repones |
| etk ey |

e e

ient

image00145.gif
SomeHITsares b ofured o ps L s o s
NETAHITP EQUN> ags e mesadt s n e HIA doumen)
dsrbeHTT heaers e author v o be recved by e,

Unfrunatey ot weseers ot s HTFQUIVags ndeven
fer s Ths sl aces o e -t cmmans
hat oy achesdoatahassee.

APt

sy

%0 to 2 Tadustries,
yfcaerg/by 1n echniedl driling
o for 30'years. Do ven Lineoof
1568 Sstomtcd nnutacturing fools scts
e s or G S 3 sl
R

GET /xyz.htal HTTP/1.0

o WITP/2.0 200 0K

Content-Léngth: 124
oot ki e
ConteniChype: e

A
e

CONTENT.“max- 35

couren

00>
Welcame to XYZ Industries

Datet Fri, 07 fpr 2002, 19:21:13 GT

GHETA TP EQUIV="Cache-control”
00"

GHETA TP EQUIS Content -ty
ext/ntal; charset

in sechanical drilling sachines fore..

Server

atrs

3 Bleaderc/s>

e

.

Somesarvers wilnsant HT2-EQU e hesdrs o
he esponse eades fo poes tosee Othersserves willnot.

image00229.gif
CET, Hetp:/ . con. con/HTTP/ 1.0
Uaer agents Supersrowser 4.2

e

HITP dent
e

G g7 T oV /o0 e o TP/
et ageni. SiBearomser 4.2

FIPserver
{wisgon

image00148.gif
i [
 ——
—————

|
(a) MSIE manal proxy sttings

() Navigator mansal proxy setings.

image00157.gif
Mesiged +——)

st +—

MesageC

MesageD

image00156.gif
Lyers Web appiation funcions

PG| L2 Remotepeatonmocation By W ool

tymt Messag tansport [

image00319.gif
o |

el ot HTML s o
i G scon T o
ks b s Submit

GET fscarch- Rl queryedrills KTTP/L

o Joos natare-con

[

anjos ardwarecom searchgateway
e

WP 200 0
T
Content:1Ehgin: 1657

amy
MTTLESearch gesultsc/TITLES
R etk Srscn

image00236.gif
o

Grpen I aaisin
et v progan

[

SISt o e same ction s e ahdojcs

e
e o 559256707
| —-—

ropiean ot
i

£ch il s
s forapariatr
stethe okt
nteine meaterthe
ae

image00160.gif
@ fcer sindex.htal WTTP/1.0
ot oot ot re-con

gl'ﬂ-_%

Gient

i
N SRR Eosgaor donsinoes e con
fondirhssa

SR

i =

@ G Sinden m‘n:m;.;' o
gty Goate

0= o= %

ient Server

image00159.gif
@

GET /indexhtnl HITP/1.0
Hore! s jocs-hordari con

glm-%

o

WP/ 101 Login Required
ik auihenticatts Sacie Teslus"Plunbirg and Fixtures”

-

-
o

jmy o

- -

s o
il

Cient Server

image00158.gif
e see Servr

w9356 Cltip 200723456
forwarded.For 205.172.34.56

image00237.gif
Gt Server
T ffanily/ e 3y WP |Gl >

WITPrL 0 dor Authorization Required
)| Lo Aithenticate: Basie seataianily”

G ffanily/ e o8 W0
Sutnorizselon: 35206 YndpwistecsodheTicn

e
hisge Bt i

image00161.gif
alis! - ,Emmmwmw

=
e e
[- 2) E,{mm
vt
Autherization L ‘Please give me the intemal sales forecast.
[m! — B e
-

o) 0o s s
[m] e % B

Gent

image00320.gif
Ll E

[owamaon om
Fere! e nazoncon |8 -

.) ¥ 302 Founa
Lodation: heap oo anazen. con 0/ exec s subst fhone e sect el

GET Jence/cbidos/sutst/one/edirect. el HITPIL |, .
ore! e seasom. con

WP/ 502 Faund
G S S s o G
. Sionkld SessTon: =003 1145265 8016038; pathe/; damai
0ot Suniay, - 2001 0bs00c00 t '
se Kol Moo et ooE s, e doi
pesciunday, Bo-bec-2001 08:00:00 chT

T e o/ . 0015265 T/
ook Seition-16:002- 1145265 8016838; sesson-1d-tines1car8dason

TP/ 302 Faund
Bote! St 62 Dac 2001 03:45:40 0AT
SEE Gk, Chid anesio-Eaitoss Gassaoe; pat
Sxptraclursday "ol st ohoeto O
LocaRiont N5 ot snston. conoxe bios/subst/bone/hone L /002-1145265-8016838
ool eI R et s o
B

Sy o

T ettt e e, a8 S5 TP

okl S on- aasaes- e, session-id-timessoorstasoo (9 -
R e e e

5 donai.amszon. con;

- ®

image00232.gif
Tl

L

—

abotechs e, v,
frinty

i

<
)bl nkand e pae

L
e

(Qobotfalous Ikand sback oA

image00152.gif
e

i— [

S
K

image00233.gif

image00153.gif
ot ctesto st -
oo st doss 6t

ndea ot e,
. e onfred tosereboth
Webrbot et B B by ek
e mesage
T vl o ,E
&
nejos ardware com
fegmemesge ‘wefoocom

e oo

bl
{ietcon o s prberemes

image00413.gif
Roguest messepe
T finden- Al el WTTP/ L

ot et Joss Narhari con .
[p— |
[o— it joes e com
? WP/, 200 08
Gonteni's
Gonten
< cons
R ndex falz benlstrickerio |
Webratot et
oo
GET finden- oIl htal TP 1
Host: e eull-Soes hardhare con .
Beepts
esgent: shopsot

e ot joes e com

P L

s aon
HHREE nden- Fall.penlstricke/mo |

Webrobotcent

Aenses ittt et malosgteay aplctons whos sl pupose s 0 3p
Unsspecing oot it Bgus ntentn s xanple, h ateay ranicaly
generates a infnte number o fake web pages, each pointing t the next

image00318.gif
index_htnl subdir indexhtal subdix

index’htal logo.gif

(b sy (Bsiblsanspuarsmsolio

image00235.gif
Word Documents
T Als
et npG;}
by

il no)
E——— =
bl E
e aren b —
[=
R
-z f
i) TR
e Py
the jnn
.
n el e
e o
e
o
.

image00155.gif
i - A - - m

e i
=
o

image00234.gif

image00154.gif
Webrobotdient wjos hardware com

T frobots 1y

obo e e ot e and

et 15 loved 0 .55

hetyere e il

KPS G s
Rl o)

