Table of Contents
eBooks, discount offers, and more
Why Subscribe?
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
Introduction
Setting up the physical network
How to do it…
How it works…
Configuring IPv4
How to do it…
How it works…
Configuring IPv4 permanently
How to do it…
How it works…
Connecting two networks
How to do it…
How it works…
Enabling NAT to the outside
How to do it…
How it works…
Setting up DHCP
How to do it…
How it works…
Setting up a firewall with IPtables
How to do it…
How it works…
Setting up port forwarding
How to do it…
How it works…
Adding VLAN Tagging
How to do it...
How it works...
Introduction
Setting up your system to talk to a nameserver
How to do it…
How it works…
Setting up a local recursive resolver
How to do it…
How it works…
There's more…
Configuring dynamic DNS on your local network
How to do it…
How it works…
Setting up a nameserver for your public domain
How to do it...
How it works…
Setting up a slave nameserver
How to do it…
How it works…
Introduction
Setting up an IPv6 tunnel via Hurricane Electric
How to do it…
How it works…
Using ip6tables to firewall your IPv6 traffic
How to do it…
How it works…
Route an IPv6 netblock to your local network
How to do it...
How it works…
Introduction
Installing OpenSSH
How to do it…
How it works…
Using OpenSSH as a basic shell client
How to do it…
How it works…
Using OpenSSH to forward defined ports
How to do it…
How it works…
Using OpenSSH as a SOCKS proxy
How to do it…
How it works…
Using OpenVPN
How to do it…
How it works...
Introduction
Configuring Apache with TLS
How to do it…
How it works…
Improving scaling with the Worker MPM
How to do it…
How it works…
Setting up PHP using an Apache module
How to do it…
How it works…
Securing your web applications using mod_security
How to do it…
How it works…
Configuring NGINX with TLS
How to do it…
How it works...
Setting up PHP in NGINX with FastCGI
How to do it…
How it works…
Introduction
Configuring Samba as an Active Directory compatible directory service
How to do it…
How it works…
Active Directory requirements
Selecting a realm and domain name
Using Samba-tool
Bind configuration
Joining a Linux box to the domain
How to do it…
How it works…
Introduction
Serving files with SMB/CIFS through Samba
How to do it…
How it works…
Granting authenticated access
How to do it…
How it works…
Setting up an NFS server
How to do it…
How it works…
There's more…
Configuring WebDAV through Apache
How to do it…
How it works…
Apache modules
Directory directive
Authnz_external configuration
Directory definition
Authentication/Authorization:
Basic Apache directory configuration:
Enable WebDAV:
Granting write access
Introduction
Configuring Postfix to send and receive e-mail
How to do it…
How it works…
There's more…
Setting up aliases
Setting up a smarthost
Relays without authentication
Relays with Auth
Setting up DNS records for e-mail delivery
How to do it…
How it works…
Configuring IMAP
How to do it...
How it works…
Configuring authentication for outbound e-mail
How to do it…
How it works…
Configuring Postfix to support TLS
How to do it…
How it works…
Blocking spam with Greylisting
How to do it…
How it works…
Filtering spam with SpamAssassin
How to do it…
How it works…
Introduction
Installing ejabberd
How to do it...
How it works…
Configuring authentication
Configuring listening ports
C2S service
S2S service
HTTP Service
Access control
Modules
mod_muc
mod_roster
mod_announce
Configuring DNS for XMPP
How to do it…
How it works…
Configuring the Pidgin client
How to do it…
Install pidgin
Configuring your account
How it works…
Introduction
Installing Nagios
How to do it…
How it works…
Adding Nagios users
How to do it…
How it works…
Adding Nagios hosts
How to do it…
How it works…
Monitoring services
How to do it…
How it works…
Defining commands
How to do it…
How it works…
Monitoring via NRPE
How to do it…
How it works…
On the target
On the Nagios host
Monitoring via SNMP
How to do it...
How it works…
Introduction
Detecting systems on your network with NMAP
How to do it…
How it works…
Detecting Systems Using Arp-Scan
How to do it…
How it works…
Scanning TCP ports
How to do it…
TCP CONNECT scan
TCP SYN scan
How it works…
Scanning UDP ports
How to do it…
How it works…
Identifying services
How to do it…
How it works…
Identifying operating systems
How to do it...
How it works…
Introduction
Setting up centralized logging
Input methods
Output methods
How to do it…
How it works…
Installing a Snort IDS
How to do it…
How it works…
WAN Interface
LAN interface
Dedicated interface
Managing your Snort rules
How to do it...
How it works…
Managing Snort logging
How to do it...
How it works…
Ubuntu stock
Enable fast logging
Enabling Tcpdump logging
Other logging options
Linux Networking Cookbook
Linux Networking Cookbook
Copyright © 2016 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: June 2016
Production reference: 1220616
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78528-791-6
Credits
Author
Gregory Boyce
Reviewer
Jean-Pol Landrain
Acquisition Editor
Sonali Vernekar
Content Development Editor
Onkar Wani
Technical Editor
Naveenkumar Jain
Copy Editor
Sneha Singh
Project Coordinator
Ulhas K
Proofreader
Safis Editing
Indexer
Hemangini Bari
Graphics
Kirk D'Penha
Production Coordinator
Shantanu N. Zagade
Cover Work
Shantanu N. Zagade
About the Author
Gregory Boyce is a technologist with nearly 20 years of experience in using and managing Linux systems. When he's not at work or spending time with his wife and two daughters, he is playing around with new technologies.
Gregory spent the last 15 years working at Akamai Technologies, where he has worked in roles ranging from Network Operations, Internal IT, Information Security, Software Testing, and Professional Services.
Currently, he heads up the Linux OS team that manages Akamai's custom Linux operating system, which runs on their massively distributed customer facing network.
I'd like to thank my wife, Vanessa, for all the support and Akamai for surrounding me with such a wonderful assortment of intelligent and interesting people.
About the Reviewer
Jean-Pol Landrain has a BSc degree in software engineering with a focus in network, real-time, and distributed computing. He gradually became a software architect with more than 18 years of experience in object-oriented programming, in particular with C++, Java/JEE, various application servers, and related technologies.
He works for Agile Partner, an IT consulting company based in Luxembourg. From early 2006 he became dedicated to the promotion, education, and application of agile development methodologies.
He has reviewed numerous books both for Manning and Packt Publishing about Docker, Git, Spring, and message-oriented middleware.
I would like to thank my fantastic wife, Marie, and my 9 year old daughter, Phoebe, for their daily patience regarding my passion for technology and the time I dedicate to it. I would also like to thank my friends and colleagues because a life dedicated to technology would be boring without the fun they bring to it.
www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <customercare@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
https://www2.packtpub.com/books/subscription/packtlib
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why Subscribe?
Preface
Network administration is one of the main tasks of Linux system administration. By knowing how to configure system network interfaces in a reliable and optimal manner, Linux administrators can deploy and configure several network services including file, web, mail, and servers while working in large enterprise environments.
What this book covers
Chapter 1, Configuring a Router, starts by getting you to manually configure the IP address information on your system and then properly configure the system to bring up its interfaces automatically. From there, we'll move on to extending our system to act as a router for your own network, including DHCP for dynamically configuring client systems.
Chapter 2, Configuring DNS, will cover setting up your internal DNS server for both resolving external hostnames for you, as well as hosting DNS records for your own domain.
Chapter 3, Configuring IPv6, will provide a brief introduction of IPv6. We'll configure a tunnel to provide IPv6 connectivity, implement firewalling using iptables6, and provide IPv6 addresses to the rest of your network.
Chapter 4, Remote Access, will look at methods for remotely interacting with your new network using OpenSSH and OpenVPN.
Chapter 5, Web Servers, will set up web servers hosting PHP code, using both the Apache HTTPD server and NGINX.
Chapter 6, Directory Services, will tell us how to use Samba 4 to create an Active Directory-compatible directory service for your network.
Chapter 7, Setting up File Storage, will give us several options to explore for hosting your own file storage, including Samba, NFS, and WebDAV.
Chapter 8, Setting up E-mail, will tell us how to set up an e-mail server. We'll talk about how e-mail works as a service, set SMTP and IMAP mail services, and enable some spam filtering.
Chapter 9, Configuring XMPP, will tell us how to configure our own XMPP based IM service, configure it to communicate with other XMPP services, and configure Pidgin as a client to utilize the service.
Chapter 10 , Monitoring Your Network, will tell us how to start monitoring services on our network using Nagios.
Chapter 11, Mapping Your Network, will cover mapping out the network in order to discover what is actually there.
Chapter 12, Watching Your Network, will cover watching over our network through centralized logging and managing an intrusion detection system using Snort.
What you need for this book
For this book you'll need a copy of Linux, preferably Ubuntu 14.04.
You'll also want access to three computers to install Linux on. One of the servers will need to have three network cards built into it.
For this purpose, I would strongly recommend using Virtual machines (VMs). Virtual Box will allow you to do this for free and is available on Windows, Linux, or OS X. You may find that the commercial offerings from VMWare, Parallels, or Microsoft may provide better performance, however.
Who this book is for
This book is targeted at Linux system administrators who have a good basic understanding and some prior experience of how a Linux machine operates, but want to better understand how various network services function, how to set them up, and how to secure them. You should be familiar with how to set up a Linux server and how to install additional software on them.
Conventions
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Modify /etc/default/isc-dhcp-server to add the interface which you should serve requests on."
A block of code is set as follows:
auto eth0
iface eth0 inet static
address 10.0.0.1
netmask 255.255.255.0
Any command-line input or output is written as follows:
ip link set dev eth0 up
ip link show eth0
New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Under User Functions, click Create Regular Tunnel. You may create up to 5 tunnels."
Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.
Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.
Questions
If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.
Chapter 1. Configuring a Router
In this chapter, we will cover:
Introduction
This chapter introduces some of the basic networking concepts and the methods to utilize them on Linux systems. It provides us with a good base to build upon. We're going to start with two computers connected with a single network cable and work our way from there to configure a router to connect your network to the Internet.
Routers are devices that are configured to span multiple networks and forward packets between them as needed. They also perform Network Address Translation (NAT) in order to allow your private network to share a single public IPv4 address.
Setting up the physical network
Before we start configuring the networking within Linux, we need to physically connect the systems. The simplest configuration involves connecting the two computers with a single cable, although connecting them to a switch may make more sense for additional expansion. Once physically connected, we need to confirm that they are working as expected.
How to do it…
On each Linux system, use the ip command to check for a network link as shown:
ip link set dev eth0 up
ip link show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
link/ether 00:0c:29:6e:8f:ab brd ff:ff:ff:ff:ff:ff
Some people may choose to use ethtool, mii-tool, or mii-diag to perform the same action.
Make sure to run the same command on both the systems, especially if you're connecting to a switch rather than directly connecting the two systems.
How it works…
The first command brings up the network interface card (NIC). This activates the interface and allows it to start the process to check for a network link or electrical connection between the two systems.
Next, the show command gives you a bunch of information about the link. You should see a state showing UP. If it shows DOWN, then you have a link issue of some sort. This could be a disconnected/bad cable, a bad switch, or you forgot to bring up the network interface.
Configuring IPv4
Now that we've established a link between the machines, let's put some IP addresses on the systems so that we can communicate between them. For now, let's look at manually configuring IP addresses rather than auto-configuring them via DHCP.
How to do it…
We need to manually configure the IP addresses using the ip command. Let's start with server 1:
ip addr add dev eth0 10.0.0.1/24
ip addr list eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:6e:8f:ab brd ff:ff:ff:ff:ff:ff
inet 10.0.0.1/24 brd 192.168.251.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe6e:8fab/64 scope link
valid_lft forever preferred_lft forever
Now we need to perform the same action on server 2, but with 10.0.0.2/24 instead of 10.0.0.1/24.
How it works…
There are a few things in play here, so it probably makes sense to go through them one at a time.
First, let's start off by looking at the IP address that we're configuring. The 10.0.0.1 and 10.0.0.2 are a part of a series of netblocks set aside for private networks by RFC1918, IP Address Allocation for Private Internets. RFC1918 sets aside three large ranges, 10.0.0.0-10.255.255.255 (10.0.0.0/8), 172.16.0.0-172.31.255.255 (172.16.0.0/12), and 192.168.0.0-192.168.255.255 (192.168.0.0/16).
For our purpose, we're configuring 10.0.0.1/24, which is an IP range that includes 10.0.0.0-10.0.0.255. This includes 256 addresses, of which 254 are usable after setting aside 10.0.0.0 as the network address and 10.0.0.255 as the broadcast address. Both our systems get one IP in that range, which should allow them to communicate between them.
Next, we use the ip command to define an address on the eth0 device using one of the IP addresses in that range. You need to make sure that each machine in that range has a different IP address in order to prevent IP address conflicts, which would make communication between the two systems impossible and communication with different systems difficult.
Some people may be accustomed to seeing the ifconfig command rather than the ip command used here. While it will certainly do the job in most cases, net-tool (and its ifconfig command) has been deprecated by most distributions since the turn of the century, in favor of iproute2 and its ip command.
Once the commands have been run on both servers, you should be able to ping them from each other. Log in to 10.0.0.1 and run the following:
ping –c 2 –n 10.0.0.2
If everything is configured properly, you will be able to see successful ping responses at this point.
Configuring IPv4 permanently
In the previous section we configured the network interface, but this configuration is only valid while the system is up and running. A reboot will clear this configuration, unless you take steps to make sure that it is configured on each boot. This configuration will be specific to the distribution that you are running, although most distributions fall under either the Debian or Red Hat methods.
How to do it…
Let' see how it works in Debian/Ubuntu:
auto eth0
iface eth0 inet static
address 10.0.0.1
netmask 255.255.255.0
ifup eth0
Let' see how it works in Red Hat/CentOS:
DEVICE=eth0
BOOTPROTO=none
ONBOOT=yes
NETWORK=10.0.0.0
NETMASK=255.255.255.0
IPADDR=10.0.0.1
USERCTL=no
ifup eth0
How it works…
Linux distributions are configured through init systems, such as Upstart, SystemD, or SysVInit. During the initialization process, the interfaces, or ifcfg-eth0 files, are used as a configuration for the networking setup scripts. These scripts then use the same ip commands, or possibly ifconfig commands to set up and bring up the network interface.
Connecting two networks
For our next step, we're going to add a second interface to server 1. In addition to 10.0.0.1/24 being configured on eth0, we're going to configure 192.168.0.1/24 on eth1. The second interface could just as easily be 10.0.1.1/24, but let's make sure that the networks are obviously different.
The systems should be configured similar to Figure 1:
How to do it…
Let's connect two networks:
ip link set dev eth1 up
ip addr add dev eth1 192.168.0.1/24
ip addr list eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:99:ff:c1 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.1/24 scope global eth1
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe99:ffc1/64 scope link
valid_lft forever preferred_lft forever
ip link set dev eth0 up
ip addr add dev eth0 192.168.0.2/24
ip addr list eth1
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:99:ff:c2 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.2/24 scope global eth1
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe99:ffc1/64 scope link
valid_lft forever preferred_lft forever
ip route add default via 192.168.0.1
echo net.ipv4.ip_forward=1 > /etc/sysctl.conf
sysctl -p /etc/sysctl.conf
ip route add default via 10.0.0.1
How it works…
When you configure an IP address on a Linux system, you automatically have a route defined, which states that in order to access another IP address in the same subnet, you should use 0.0.0.0 as your gateway. This tells the IP stack that the system, if it exists, will be on the same layer as the two network segments, and that it should use ARP to determine the MAC address it should communicate with.
If you want to talk to a machine outside of that subnet, the system will need to know how to communicate with it. This is done by defining a route with a gateway IP address that you forward the packet to. You then depend on the gateway system to forward the packet to the correct destination.
Most commonly, you'll deal with a default route, which is the route that the system uses for any packet that is not deemed to be local. In our configuration, we tell the system that the default route is 192.168.0.1, which asks us to forward any non-local packets to an IP address configured on our server 1 box. This means that server 1 will act as our router.
You can also define more specific routes where you can explicitly define an IP address to forward packets to a specific IP address or subnet. This can be useful in a network where one router provides access to the Internet and a second router provides access to a second internal network.
At this point server 3, configured as 192.168.0.2, knows that IP addresses on 192.168.0.0/24 are local and any other packet should be sent to 192.168.0.1 in order to be forwarded. However, if you attempt to ping a system that is outside your local network (for example 10.0.0.2), it will not arrive. This is because routing on Linux systems is disabled by default and needs to be enabled on server 1 before it can forward packets. Enabling routing can be done by setting /proc/sys/net/ipv4/ip_forward to 1, or via sysctl, which is the manner in which we've chosen to set it.
Once routing is enabled, packets addressed from server 3 will be received by your router and forwarded to 10.0.0.2 (server 2) via eth0 on the router. 10.0.0.2 will receive the packet from your router and promptly attempt to respond. This response will fail, as server 2 does not have a defined route for accessing the 192.168.0.1/24 network. This is fixed by adding a default route on server 2 as well, but sending to the router's interface on the 10.0.0.0/24 network.
Now server 3 knows how to address server 2, server 2 knows how to address server 3, and server 1 routes packets between the two as needed. Congratulations, you have connected two networks.
Enabling NAT to the outside
Connecting two local networks is useful, but these days it's more common to want to connect a local network to the Internet. The basic concept works the same, but with the necessary addition of NAT. NAT rewrites your packet headers in order to make them appear as if they come from your router, thus effectively hiding your system's address from the destination.
How to do it…
Create a third NIC (eth2) on server 1 and connect it to your cable modem or ISP's router.
auto eth2
iface eth2 inet dhcp
/sbin/iptables -t nat -A POSTROUTING -o eth2 \
-j MASQUERADE
/sbin/iptables -A FORWARD -i eth2 -o eth0 -m \
state --state RELATED,ESTABLISHED -j ACCEPT
/sbin/iptables -A FORWARD -i eth0 –o eth2 -j ACCE PT
How it works…
In the last section, we discussed how in order for two systems on different networks to be able to talk to each other, they need to have routes defined which will forward packets to a router that can deliver the packet to the appropriate destination. The same is true on the Internet.
If server 2 attempts to contact an IP address on the Internet, for example Google's nameserver at 8.8.8.8, your router will pass them onto the destination. Let's give that a try:
ping -c 2 8.8.8.8
PING 8.8.8.9 (8.8.8.8) 56(84) bytes of data.
--- 8.8.8.8 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 999ms
No responses were received. So what went wrong here?
You'll recall that I said the IP addresses that we were using were defined by RFC1918 as internal IP address space. Due to this, these IP addresses are not directly usable as Internet hosts. In our example, one of the two following things will happen:
Iptables is a command-line tool in Linux for interfacing with the Linux kernel firewall, which is implemented as a part of the netfilter subsystem.
Let's break down the first command line:
Put them together and we have matching packets heading out on eth2; rewrite the source IP address and track it in the NAT table.
The second command is added in the -m command, which matches a packet property, in this case state. For the packets that came in on eth1 (from the Internet), and destined to eth0 (lan), check to see if they are related to or are a part of an established connection. If so, accept the packet and assign it to the FORWARD chain. The FORWARD chain handles any packet that is being passed through your router rather than the packets originating from the system (OUTPUT chain) or packets destined to your system (INPUT chain).
Finally, any packets that come in on eth0 (lan) and are heading out on eth2 (Internet) are just automatically accepted.
Setting up DHCP
You now have a router that provides Internet access to all systems behind it, but the systems behind it need to be manually configured with IP addresses while avoiding conflicts. You also need to configure them with DNS servers for resolving host information. To solve this, we're going to configure a DHCP server on your router to be responsible for handing out addresses.
Dynamic Host Configuration Protocol (DHCP) allows you to centralize your IP address management. Machines which are added to a network will issue a DHCP request asking any available DHCP server to provide it with configuration information including IP address, subnet mask, gateway, DNS server, and so on.
How to do it…
Let's set up DHCP in Debian/Ubuntu:
sudo apt-get install isc-dhcp-server
sudo sed –i "s/^INTERFACES.*/INTERFACES="eth0"\
/etc/default/isc-dhcp-server
ddns-update-style none;
option domain-name "example.org";
option domain-name-servers 8.8.8.8, 8.8.4.4;
default-lease-time 600;
max-lease-time 7200;
authoritative;
subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.10 10.0.0.100;
option routers 10.0.0.1;
}
Let's set up DHCP in Red Hat/CentOS
sudo yum install dhcp
ddns-update-style none;
option domain-name "example.org";
option domain-name-servers 8.8.8.8, 8.8.4.4;
default-lease-time 600;
max-lease-time 7200;
authoritative;
subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.10 10.0.0.100;
option routers 10.0.0.1;
}
How it works…
The first thing you might notice about the difference between Debian-and Red Hat-based systems is that in Debian-based systems, you need to explicitly define the interfaces to listen on, while this is not needed on Red Hat systems. This is because Red Hat has chosen to trust ISC DHCP's built-in restriction to only listen on interfaces that have an IP address in the same subnet as DHCP leases were set up for.
Let's look at the configuration for the DHCP server itself.
The first section defines the global configuration parameters:
The second section is the subnet declaration. Your DHCP server must know about all the subnets configured on the interface that it has been told to serve DHCP addresses on. For the subnets on which it should serve addresses, you should define the range of IPs to hand out and you most likely want to define your network gateway as well. If your machine has multiple IP addresses on the interface and you only want to serve IPs to one of them, you should still define the subnet, but leave out the range and gateway information from within the brackets. For example:
subnet 10.0.0.0 netmask 255.255.255.0 {
}
Now that your DHCP server is configured, it will automatically hand out the IP addresses to all machines that connect to the network which are configured to request addresses via the DHCP protocol, which is often the default. It will keep track of these leases in a human-readable format in /var/lib/dhcpd/dhcpd.leases, in order to avoid having multiple machines receive the same address.
Setting up a firewall with IPtables
We touched upon iptables a little while discussing NAT, but now we're going to go a bit deeper into configuring a secure firewall for your network.
How to do it…
A properly configured firewall should be configured in a default deny configuration with specific allows (Whitelist) for what you want to accept:
iptables -A INPUT -i lo -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT
iptables -A FORWARD -i eth0 -j ACCEPT
iptables -t nat -A POSTROUTING -o eth2 \
-j MASQUERADE
iptables -A FORWARD -i eth2 -o eth0 -m \
state --state RELATED,ESTABLISHED -j ACCEPT
iptables -A FORWARD -i eth0 -j ACCEPT
How it works…
We start off by setting an ACCEPT policy on traffic destined to the local system on the localhost adapter (-i lo). A lot of software expects to be able to communicate over the localhost adapter, so we want to make sure we don't inadvertently filter it.
Next, we set an ACCEPT policy for any packet that matches a state (-m state) of ESTABLISHED, RELATED. This command accepts packets which are a part of, or related to, an established connection. ESTABLISHED should be pretty straightforward. RELATED packets are special cases that the connection tracking module needs to have a prior knowledge of. An example of this is the FTP protocol operating in active mode. The FTP client in active mode connects to the server on port 21. Data transfers however, operate on a second connection originating from the ftp server from port 20. During the operation of the connection, the port 21 packets are ESTABLISHED, while the port 20 packets are RELATED.
The third command accepts any TCP connection (-p tcp) destined for port 22 (--dport 22) that is destined for your system. This rule allows you to SSH into the machine.
Next, we will define the default policies. By default, we drop packets on the INPUT and FORWARD chains and accept packets on the OUTPUT chain.
The last three lines you'll recognize from the NAT section, which tells the firewall to allow any packets starting on the internal network and heading out to the Internet.
Additional ACCEPT rules based upon destination ports can be opened as needed as INPUT lines, like the port 22 one.
Setting up port forwarding
In the previous section, we configured iptables to accept connections to port 22 in order to allow people to SSH into the host. Sometimes, you want to forward a port to a system behind the firewall instead of having the service run on the firewall itself. For example, you may have a web server running on port 8080 on an internal box that you want to expose to the Internet via port 80 on the firewall.
How to do it…
iptables -t nat -A PREROUTING -p tcp -i eth2 --dport 80 \
-j DNAT --to-destination 192.168.0.200:8080
iptables -A FORWARD -p tcp -d 192.168.0.200 \
--dport 8080 -m state --state NEW,ESTABLISHED,RELATED \
-j ACCEPT
How it works…
This example is a lot simpler since it builds upon concepts we've already learned. We just have two simple commands:
Adding VLAN Tagging
Right now we have a rather simple network configuration. We have a single router with a public-facing IP address on one interface and a private IP address on the second interface. But what if we want to have multiple private networks behind the route?
Our first option in this scenario would be to add additional IP addresses to the internal interface. The ip command allows you to assign multiple IPs to a single interface, with optional interface aliases like eth0:0. This will allow you to assign IP addresses to systems behind the firewall within one of the few ranges and have them all route appropriately.
The downside of this approach is that all the internal IPs exist within the same collision domain of the network. This has a few implications, including the ability to move systems between those IP ranges and potentially bypassing access control rules, as well as problems assigning addresses via DHCP due to confusion about what address range to hand out.
The second option would be to put a third network card in the router and then either plug the additional card into a dedicated switch or separate out the existing switch into multiple VLANs and plugging the new network card into a port on a dedicated VLAN for that network. The downside here is the additional cost of the NIC (assuming you have space to add it) and then either the usage of an extra switch port or an extra switch.
The third option is to configure the switch into dedicated VLANs and plug the LAN side of your router into a port configured as a trunk. From there, Linux can be configured to use VLAN tagging to split your single physical interface into a pair of virtual interfaces and tag packets, as appropriate, so that the switch automatically adds them to the appropriate VLAN.
How to do it...
There are two steps required in order to use VLAN tagging on your Linux server:
ip link add link eth0 name eth0.1 type vlan id 1
ip link add link eth0 name eth0.2 type vlan id 2
Now that they exist, you can treat them like normal network interfaces and configure them as we did in the section on adding a second network.
Note
Note that eth0.1 is a naming convention, not a requirement at this point. You could instead choose to name the interfaces names wireless and wired if you wanted to.
Making this change permanent can be rather distribution specific and may depend on the use of the vconfig command, which is distributed through the VLAN package on Debian/Ubuntu. Debian-based distributions will automatically create VLAN interfaces if you specify an interface in /etc/network/interfaces which is named as a physical interface, followed by a period, and then a VLAN ID, as eth0.1 is our example.
How it works...
VLAN tagging, as defined by the 802.1Q standard, functions at the Ethernet layer level. A standard Ethernet frame contains 4 fields, the destination MAC address, the source MAC address, the EtherType or length field (depending on the type of frame), the data (the IP packet), and a frame check sequence (FCS). 802.1Q works by adding a VLAN tag between the source MAC address and then the EtherType/length field.
A switch that supports 802.1Q may have one or more network ports that are configured to act as a Trunk. Trunk ports will accept VLAN tagged packets and will pass them along as appropriate. They will detect the specified VLAN tag, determine the appropriate VLAN the packet is destined to, and will deliver the packet to any switch ports that are on that VLAN. Tagged packets can even pass between multiple switches as long as they are properly configured. If a packet is received without a tag on it, it will have a tag added automatically, based upon the VLAN associated with the switch port it was received on.
Chapter 2. Configuring DNS
In this chapter, we will cover:
Introduction
This chapter introduces the Domain Name System (DNS). You'll learn what DNS is, how it works, and how to configure it to work according to your requirements. We'll start by configuring your machines to be able to resolve hostnames, such as www.google.com and we'll work toward learning to configure your own domain.
Setting up your system to talk to a nameserver
In the previous chapter, we did some basic testing of your network connection by pinging other hosts by IP address directly. However, I'm sure you'd rather not visit web pages by requesting them by IP address, rather than by the domain name. This problem is solved using a recursive DNS server to resolve the hostnames into IP addresses, which your computer can then connect to.
How to do it…
Let's set up a DNS server to resolve the hostnames into IP addresses:
nameserver 8.8.8.8
If your system uses DHCP for receiving its IP address, then the content of this file can be managed through the configuration of the DHCP server. This makes easier management of nameserver IPs and domains on your network possible.
How it works…
The nameserver line in /etc/resolv.conf provides the IP address of a nameserver that your system is allowed to query against. In this particular example, we're using 8.8.8.8, which is a publicly available recursive DNS server owned and operated by Google. You may also want to consider using a nameserver provided by OpenDNS or one provided by your ISP. A properly configured recursive nameserver is restricted to only allow queries from the intended users, so you'll want to make sure that you're either using one intended for the general public or one intended specifically for you.
When your system attempts to contact a site, such as www.example.org, the browser will attempt to see if the matching IP address already exists in the browser's hostname cache.
If it does not, it issues a gethostbyname request to the local C library, which then checks its local configuration in /etc/nsswitch.conf to determine how lookups should be performed. You may find something similar to hosts: files dns in that file, which indicates that for finding host information, you should first look at local files, such as /etc/hosts, and you should check DNS if that fails.
Assuming that you didn't have a matching entry in /etc/hosts, your C library's stub DNS resolver will look in /etc/resolv.conf for the IP address of your DNS server and will then send a DNS query with recursion enabled over UDP port 53 to the listed DNS server. The server will check its local cache for an answer and will issue queries to the various authoritative nameservers, starting with the nameservers of the DNS root (.), followed by org, and then finally, example. The nameservers, for example, will pass back the IP address associated with www.example.org to your recursive nameserver, which will then pass it back to you.
Setting up a local recursive resolver
Since all attempts to access a website require that you look up the hostname, the responsiveness of your nameserver can have a large impact on the loading of a webpage. A slow nameserver can delay the initial loading of the webpage as well as the loading of the various embedded images, video, and JavaScript, which might have been pulled third-party sites.
In this section, we'll be looking at setting up our own recursive nameserver, which will help cut down on the round trips between you and your resolver. We will additionally configure it to forward uncached queries to a public recursive nameserver in order to take advantage of their caching.
How to do it…
Let's set up the local recursive resolver:
allow-recursion {
192.168.1.0/24;
"localhost;"
};
listen-on {
192.168.1.1;
};
forwarders {
8.8.8.8;
8.8.4.4;
};
How it works…
While your mileage may vary from distribution to distribution, bind9 is often distributed with a default configuration that acts as a recursive nameserver with no restrictions on who can issue queries against it. This sort of configuration can be abused by people looking to perform a DNS-based amplified denial of service attack by sending you a spoofed UDP packet containing a request, which results in a large response. This causes you and a large number of other servers to send the large responses to the DoS target.
The allow-recursion setting that we've provided tells bind9 to only answer to recursive queries from your local network and the special localhost variable that includes all IP addresses configured on the server itself. Once this setting is in place, the server will respond to these queries with a short refused response rather than a potentially large data response.
listen-on takes restrictions one step further by allowing you to tell the server to not bind to particular network interfaces at all. If you're running on a router with multiple interfaces, you can choose to have bind9 to only listen on the internal interface. Depending on your firewall configuration, this means that someone sending a request on an external interface will either get an ICMP destination port unreachable message or no response at all.
Finally, the forwarders' setting configures a list of DNS servers that you can go to in the event that it does not already have an entry cached. In this case, we're using the two public Google servers again, but you can choose to use your ISP's nameservers instead.
There's more…
There's one additional piece of information that is very useful to know if you are planning on running your own DNS server. As previously noted, the DNS protocol typically operates over UDP port 53. This is due to the low overhead nature of the UDP protocol, which does not require any sort of handshake to create and then tear down the connections. Over UDP, DNS is able to issue a single packet for a request and mostly receive a single packet as a response.
You may note that I said typically. Due to a limit on the maximum size of a UDP DNS request or response packet, the protocol can switch to TCP instead. The maximum size of a DNS request/response is 512 bytes unless EDNS0 is being used to increase the size to 4096 bytes. Any packet larger than those sizes will trigger a switch from UDP to TCP by the server sending a partial packet with the truncated bit set.
While a majority of DNS traffic that you'll see will be UDP, keep in mind that during troubleshooting and firewall rule writing, you may see TCP as well.
Configuring dynamic DNS on your local network
Right now you get your IP address configured automatically via DHCP and you're able to resolve DNS records from the internet via your DNS server. With the use of Dynamic DNS, you can also leverage your DNS server to address your local systems by name as well.
How to do it…
Let's configure dynamic DNS on your local network:
zone "example.org" {
type master;
notify no;
file "/var/lib/bind/example.org.db";
}
zone "0.168.192.in-addr.arpa" {
type master;
notify no;
file "/var/lib/bind/rev.1.168.192.in-addr.arpa";
};
example.org. IN SOA router.example.org. admin.example.org. (
2015081401
28800
3600
604800
38400
)
example.org. IN NS ns1.example.org.
router IN A 192.168.1.1
@ IN SOA ns1.example.org. admin.example.org. (
2006081401
28800
604800
604800
86400
)
IN NS ns1.example.org.
1 IN PTR router.example.org.
key DDNS {
algorithm HMAC-SHA512;
secret "<key>";
};
install -o root -g bind -m 0640 ddns.key \
/etc/bind/ddns.key
install -o root -g root -m 0640 ddns.key \
/etc/dhcp/ddns.key
include "/etc/bind/ddns.key";
zone "example.org" {
type master;
notify no;
file "/var/lib/bind/example.org.db";
allow-update { key DDNS; };
}
option domain-name "example.org";
option domain-name-servers 192.168.1.1;
default-lease-time 600;
max-lease-time 7200;
authoritative;
ddns-updates on;
ddns-update-style interim;
ignore client-updates;
update-static-leases on;
include "/etc/dhcp/ddns.key";
subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.10 10.0.0.100;
option routers 10.0.0.1;
}
zone EXAMPLE.ORG. {
primary 127.0.0.1;
key DDNS;
}
zone 2.168.192.in-addr.arpa. {
primary 127.0.0.1;
key DDNS;
}
How it works…
Bind/named supports the ability to dynamically update DNS records through the use of clients, which are configured to sign the update messages using HMAC. The server is able to validate the authenticity of the messages by performing the same hashing operation that the client had performed with the same shared key. If the hash value sent by the client with the message matches the hash value calculated locally by the server, then we know that the client and server both have the same shared key.
This dynamic update feature can be leveraged to create/modify DNS records on the fly using the nsupdate command. In our case, we're going to have ISC DHCPD send the update commands directly, as new hosts are found.
As a system requests an IP address through the DHCP protocol, the client includes its hostname as a part of the initial discovery request. This hostname is recorded as a part of the lease. When ISC DHCP is set up for DDNS, it issues a DNS update request to the configured DNS server. Now your system is resolvable by other clients, at least until its lease expires.
Setting up a nameserver for your public domain
Setting up a nameserver for a public domain works the same way as setting up a DNS server for an internal hostname, just with a few additional parts that we'll want to make sure are in a good state.
How to do it...
Let's set up a nameserver for a public domain:
example.org. IN SOA ns1.example.org. admin.example.org. (
2015081401
28800
3600
604800
38400
)
Ns1 IN A 192.168.1.1
$ORIGIN example.org
IN NS ns1.example.org.
Ns1 IN A 192.168.1.1
How it works…
The first step is to configure the start of authority (SOA) for your domain. The SOA provides basic information about the zone itself. It contains a number of fields, including:
The next two items define the same information in two separate places. NS records point to the A record for the DNS server, which is authoritative for the zone. For example, ns1.example.org is authoritative for the example.org zone. That, however, leaves a bootstrapping problem in which the A record for ns1.example.org is defined within the example.org zone file.
The solution for this bootstrapping issue is to use glue records. Glue records are stub records that exist at the point of delegation and define NS records for a zone as well as their matching A records. These values will be overridden by the records provided by the zone itself.
A good example of glue records comes when you register a domain. In our example domain, example.org is delegated by the .org DNS infrastructure. Your domain registrar should provide you with a mechanism to add NS records and their matching A records on the .org servers.
Since the glue records are managed outside of your zone, they're very easy to neglect when updating your DNS infrastructure. If your name servers are changing, you'll want to change them in the zone as well as in the glue records.
Setting up a slave nameserver
The nameserver infrastructure that we've configured so far is sufficient to get the domain to function, but it is currently a single point of failure. In order to deal with your existing nameserver being unreachable for some reason, we're going to want to add at least one additional nameserver for your network.
Now, maybe your initial thought would be to configure the nameservers identically and create some method to synchronize the zone files across the systems. Luckily, this isn't needed. Rather, bind/named can handle the synchronization internally, through the use of zone transfer (AXFR) requests or incremental zone transfer (IXFR) requests secured with the same type of HMAC keys utilized by the DHCP server to send updates to the DNS server. Rather than making changes to a single record though, zone transfers send the entire zone file, including all records.
How to do it…
dnssec-keygen -a HMAC-SHA512 -b 512 -n HOST -r /dev/urandom tsigkey
key TRANSFER {
algorithm HMAC-SHA512;
secret "<key>";
};
include "/etc/bind/transfer.key";
zone "example.org" {
type master;
notify yes;
file "/var/lib/bind/example.org.db";
also-notify { 192.168.1.254; }; // Slave server IP
allow-transfer { key TRANSFER; };
allow-update { key DDNS; };
}
zone "example.org" {
type slave;
masters { 192.168.1.1; };
file "/var/lib/bind/example.org.db";
};
server 192.168.1.1 {
keys { TRANSFER; };
};
How it works…
Zone transfers use the same HMAC-based communication method (TSIG) that is used for updating zones by the DNS server. In order to implement the least privilege, we do want to use a different key set, though. There is no reason for a slave server to have write access to the master in our use case. Additionally, we may not want the DHCP server to be able to download the complete zone file.
The rest of the configuration has to make do with telling the master to notify the slave in the event of a change and having the slave know how to trigger a transfer as well as serve DNS requests.
Chapter 3. Configuring IPv6
In this chapter, we will cover configuring IPv6 on your network. Specifically:
Introduction
The IPv4 protocol used on the Internet today was first deployed on ARPANET in 1983. It uses 32 bit addresses, which limits the number of IP addresses to 4,294,967,296. While this may seem like a lot, that number is being rapidly depleted, even with the boost that NAT provided us.
The replacement, IPv6, improves on IPv4 by switching to 128 bit addressing, which should provide enough IP address space for the foreseeable future. It also makes a number of other improvements including auto-configuration of addresses, simplified processing for routers due to more standardized sizes for packet headers, and additional areas as well.
Even with those improvements, and the impending IPv4 exhaustion, IPv6 has had an extremely slow rollout. The initial design was completed in 1998 but as of the end of 2009 the percentage of users who visited Google with IPv6 connectivity was below 0.25%. Since 2009, adoption has accelerated, with the user saturation increasing from less than 3% to more than 5% in 2014 alone. In mid-2015, the rate was above 8%.
Part of the issue is the incompatibility between the two protocols. You can consider IPv6 a completely separate protocol, which may operate in parallel with IPv4. In order to cope with this reality, networks typically roll it out in a dual stack configuration where systems have IPv4 and IPv6 addresses and provide a preference to one or the other depending on needs.
Depending on your ISP, you may find that you already have a dual protocol network stack enabled. We're going to start off by assuming that this is not already in place, and we will set up IPv6 networks using one of the existing public tunnel providers which provide IPv6 connectivity tunneled over IPv4. You can think of it as being similar to a VPN.
Setting up an IPv6 tunnel via Hurricane Electric
Hurricane Electric is a major backbone and colocation provider based in the US. In addition to their hosting/transit services, they also host http://tunnelbroker.net, another free IPv6 tunnel provider, and http://ipv6.he.net/certification, a training and certificate site for learning about IPv6 networking.
Unlike AYIYA tunnels from SixXS, IPv6 tunnels from Hurricane Electric operate over IP protocol 41, which is defined by the IPv6 Encapsulation protocol (RFC2473). This is a separate protocol from ICMP, TCP and UDP.
The downside of this approach is that it does not operate over NAT firewalls natively. This may be an issue if your new firewall device is operating behind an ISP firewall with its own NAT. The ability to forward protocol 41 traffic to a machine behind the NAT is device specific and does not work on all firewalls.
How to do it…
auto he-ipv6
iface he-ipv6 inet6 v4tunnel
address CLIENTIPv6
netmask 64
endpoint SERVERIPv4
local CLIENTIPv4
ttl 255
gateway SERVERIPv6
modprobe ipv6
ip tunnel add he-ipv6 mode sit remote SERVERIPv4 local LOCALIPV4 ttl 255
ip link set he-ipv6 up
ip addr add LOCALIPv6 dev he-ipv6
ip route add ::/0 dev he-ipv6
ip -f inet6 addr
How it works…
Hurricane Electric IPv6 tunnels use the standard 6in4 Tunnel Protocol (RFC4213) that's built automatically into both net-tools (ifconfig) and iproute2 (ip command). Additionally, Debian and Ubuntu have support for 6in4 built directly into their network initialization scripts, which allow for simplified configuration.
Using ip6tables to firewall your IPv6 traffic
Firewalling IPv6 traffic on Linux is handled by the ip6tables command. This tool is the IPv6 version of the iptables command we've already used, and it operates in almost exactly the same manner. The big difference is that with IPv6 the use of NAT is highly discouraged.
How to do it…
Let's run the command to establish.
ip6tables -6 -A INPUT -i lo -j ACCEPT
ip6tables -6 -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
ip6tables -6 -A INPUT -p tcp --dport 22 -j ACCEPT
ip6tables -6 -P INPUT DROP
ip6tables -6 -P FORWARD DROP
ip6tables -6 -P OUTPUT ACCEPT
ip6tables -6 -A FORWARD -i eth0 -j ACCEPT
ip6tables -6 -A FORWARD -i eth1 -o eth0 -m \
state --state RELATED,ESTABLISHED -j ACCEPT
ip6tables -6 -A FORWARD -i eth0 -j ACCEPT
How it works…
The ip6table rules here are identical to the iptables rules in Chapter 1, Configuring a Router with a few exceptions:
NAT was initially created to deal with the problem of a limited supply of IPv4 addresses. Over time, people began to think of NAT as a security control, which was not its intended purpose. The use of NAT additionally introduces a number of protocol specific problems, and a variety of IP range conflicts when connecting multiple internal networks which may use overlapping RFC1918 address ranges.
With IPv6 we have plenty of IP addresses to be allocated, so the best practice is to instead depend on host and network firewalling as well as secure configuration of services rather than depending on the use of NAT to obscure access to systems.
The -6 option does not do anything in ip6tables. In iptables however, the -6 option tells the command to ignore the option. Similarly, there is a -4 option in iptables which does not have any effect, but will tell ip6tables to ignore the command.
The beauty of this configuration is that you can then have a single rules file that can be processed by both iptables and ip6tables and each command will only take action against the rules that it should pay attention to.
Route an IPv6 netblock to your local network
So far, all we've done is allocate a single IPv6 address to your machine that is hosting the tunnel. One of the nice things about IPv6 however, is the ability to obtain a large number of public IP addresses for your local networks rather than using NAT. In fact, Hurricane Electric and SixXS both offer complementary /48 networks to use with your tunnel. A /48 includes 2^80 IP addresses, or 1,208,925,819,614,629,174,706,176. Much better than the one IPv4 address you typically get from a consumer IP address. To utilize them, you just need to advertise their availability.
How to do it...
Install radvd via your package management system:
interface eth1
{
AdvSendAdvert on;
prefix 2001:DB8:1:1::/64
{
};
};
How it works…
Rather than requiring DHCP for IP address allocation (although DHCPv6 is available if desired), IPv6 implements the Neighbor Discovery Protocol (NDP) as defined by RFC 2461. NDP uses multicast on the link layer to discover neighbors and routers on the local network and can allow client systems to auto configure addresses for themselves based upon what address ranges local routers are advertising.
The Router Advertisement Daemon, or radvd, is an open source implementation of the Neighbor Discovery Protocol. The simple configuration that we provide here advertises the 2001:DB8:1:1::/64 network on eth1. 2001:DB8:1:1::/64 is part of a larger /32 network which is made available for documentation purposes. You should instead replace this value with the /64 network that you obtained from SixXS, Hurricane Electric, or your ISP.
Chapter 4. Remote Access
In this chapter, we will cover the following points:
Introduction
One of the nice things about having a Linux network is the ability to access it remotely in a secure manner. Best of all, you have a number of options available to you depending on your needs.
Installing OpenSSH
Our first option for remote access is the simplest, assuming that you just need to be able to remotely access a shell on your Linux system. All Linux distributions offer the ability to install a Secure Shell (SSH) server. The most common SSH server available is OpenSSH, which is distributed by the OpenBSD team. A lighter weight option called Dropbear is also available and is often found in embedded Linux platforms, such as OpenWRT.
How to do it…
Installing OpenSSH on a Linux system is very easy but the specifics on how to do it will depend on the Linux distribution that you are using.
Let's install SSH server in Debian/Ubuntu through the following command:
sudo apt-get install ssh
For Fedora, CentOS, and other RedHat derivatives, it would be sudo yum install openssh-server.
Now, once OpenSSH is installed, anyone with network access to tcp port 22 on your system may attempt to log in to your system. If this machine is your firewall or if you forward port 22 from your firewall to this box, it could potentially mean anyone on the Internet. In fact, if this is the case, you can expect to see the attempt to log in to your system using common usernames and passwords within hours of installing the package. There are a few common steps that you should take in order to avoid being the next victim to have their system attempting to brute force the world. The steps are:
How it works…
Once installed, OpenSSH listens on TCP port 22 and allows authenticated SSH clients to connect and perform a number of actions including the following:
The server provides a public cryptographic key upon login that can be used to validate that the server is what you expect it to be. While there is no public CA infrastructure like you'd have with TLS in order to validate the authenticity of the server, you can either choose to trust the server certificate on first login and inspect for changes to the key or you may share the public key via an external secure channel prior to your login.
For login authentication purposes, the sshd daemon either requires read access to /etc/passwd and /etc/shadow or more commonly ties into your system's PAM (Pluggable Authentication Modules) system, which provides a layer of abstraction between services and the actual authentication system under the covers.
As mentioned in the preceding section, you may also choose to use SSH keys, which leverage PAM for user account information but will require the user to have a private key that matches a public key specified in ~/.ssh/authorized_keys. You can read more about the use of public key cryptography with SSH by running man ssh-keygen.
Using OpenSSH as a basic shell client
You have a number of client options if you're looking to access a shell on a system running an SSH daemon.
How to do it…
If you are connecting from another *nix system, such as Linux or Mac OS X, you can launch a terminal and use the SSH command-line tool from OpenSSH:
How it works…
The OpenSSH client available on the terminal from systems similar to *nix is the simplest approach. Simply launch Terminal.app on your Mac or an xterm on your Linux system and run ssh username@host. If the username@ is omitted, then the ssh client will attempt to log in using your local username. The host may be a valid DNS record or an IP address. You may optionally supply a port with –p PORT in the event that you have your SSH daemon running on a non-standard port.
PuTTY, on the other hand, provides a graphical manner to supply the host information:
Upon login, you will be prompted for the username and password. Alternatively, the username may be supplied in advance under the Connection | Data section of the menu.
Using OpenSSH to forward defined ports
One extremely useful piece of functionality is the ability to forward ports from the remote system to your local system or vice versa.
How to do it…
How it works…
The –L option allows you to make a remote port available locally. The arguments are [bind_address:]port:host:hostport.
In our example, we're logging into a remote system and then forwarding port 80 on 192.168.1.123 of your local system. This means that if you connect your web browser to localhost port 8000, you will actually be hitting the server on 192.168.1.123. This is useful for accessing resources behind a firewall or just changing the network your connection is established from. Note that if you're specifically using this for a web server, you may need to play tricks with your host files or ports in use in order to work around web applications that expect the correct Host header or attempt to redirect your connection to a specific port. You'll also want to note that binding to local ports under 1024 require that you run as root, which is why we've forwarded port 80 to port 8000 locally. If you need to make it available on port 80 instead, you will need to run as root using sudo.
The -R option works the same way with the same arguments, but makes a local network port accessible on the remote side instead. In our example, we're taking localhost port 22 and making it available on port 5000 on the remote system. This would allow users of the remote system to log into your local system by specifying port 5000 to their SSH client.
The default behavior for both of these commands is to bind to a localhost so that only local users may have access to connect to the remote resource. This may be changed with the –g option, which tells the ssh client to bind to all addresses instead, making the forwarded port available to anyone who is able to establish a connection to it. Be sure that you fully understand the security implications of this option before you use it.
Using OpenSSH as a SOCKS proxy
If you're looking to access webpages through an SSH proxy, you may find that the –L option is a bit too limiting, since you need to specify each individual web server that you're forwarding and give each one its own local port.
If your remote network contains an HTTP proxy like Squid or Apache's mod_proxy, then you may choose to forward the port of that proxy server. If you don't have one available, then consider using OpenSSH's built in SOCKS proxy functionality.
How to do it…
Enabling the socks proxy is trivial. Just specify –D 8000 where 8000 is the local port that you want to configure the clients to use. Then just configure your client to use that port as a SOCKS proxy. For some clients, you'll need to explicitly tell them to use remote DNS if you're connecting to resources which are not remotely resolvable.
The following screenshot will show you how to configure this in a modern version of Firefox. The actual configuration of a SOCKS proxy will vary based on the software.
How it works…
Once you have a port set up as a SOCKS proxy, it listens for valid SOCKS proxy requests. Once received, the SSH client forwards the request on to the SSH daemon, which then establishes a connection to the remote system. The SSH client and daemon then work together to forward the requests and responses back and forth between the client and server.
This functionality can be incredibly useful if you are on an untrusted network and want to be able to browse the internet without concerns about traffic sniffing on the local network.
Using OpenVPN
OpenVPN is a full SSL VPN solution that allows you to connect two networks at layer 2 or 3 via a TCP or UDP tunnel. It is available on https://openvpn.net/ or via your distributions package repositories.
OpenVPN offers a number of options for authentication. We're going to set up a simple configuration, which will get you up and running. From there, there are multiple options, which you may want to consider for your needs.
How to do it…
openvpn --genkey --secret /etc/openvpn/static.key
proto udp
user nobody
secret /etc/openvpn/static.key
ifconfig 10.8.0.1 10.8.0.2
comp-lzo
verb 3
remote wanaddress
proto udp
dev tun
secret /path/to/static.key
ifconfig 10.8.0.2 10.8.0.1
route 192.168.1.0 255.255.255.0
comp-lzo
verb 3
sudo openvpn --config client.conf
How it works...
For authentication purposes, OpenVPN offers the ability to use TLS certificates for both the client and server or optionally use a single static key. In this case, we're using the static key approach for a fast and easy configuration. This method requires that we share a single key generated by OpenVPN's genkey command on both ends of the connection.
Let's look at the server configuration:
proto udp
user nobody
secret /etc/openvpn/static.key
ifconfig 10.8.0.1 10.8.0.2
comp-lzo
verb 3
To start with, we're specifying that we'll run over the UDP protocol. OpenVPN supports tunneling over both TCP and UDP, but UDP is recommended and is the default. The reason for this is because UDP does not include any re-transmission functionality. When transmitting TCP or UDP over a tunnel, an additional layer of fault tolerance below it can cause unnecessary overhead in the event of packet loss where both TCP layers attempt to solve the problem.
Next we will specify the user that the openvpn daemon should run as. This is a security precaution which makes sure that in the event of a compromise of the daemon, the user will get access to an unprivileged account rather than root.
Next we specify the secret file. You'll want to provide the complete path to where the file may be found. In my example, I've used the openvpn configuration directory used on Ubuntu systems.
The ifconfig command is used to specify the tunnel end points. The first IP address is the address on the local system that will provide a connection to the second IP, which is the client tunnel endpoint.
comp-lzo is an optional configuration option that provides lzo compression for the connection. This utilizes more CPU power in order to compress the network traffic, which may substantially increase your throughput in the event that you're sending highly compressible content like text. If your traffic is mostly already encrypted/compressed or binary, you may see less improvement. In this event you may decide to disable the option.
Finally, verb 3 defines the verbosity level for logging purposes. Verb 3 is considered medium output and is useful for normal operation. When troubleshooting a problem, you may want to use 9 instead, which is the verbose level.
Ok, now we'll look at the client configuration:
remote wanaddress
proto udp
dev tun
secret /path/to/static.key
user nobody
ifconfig 10.8.0.2 10.8.0.1
route 192.168.1.0 255.255.255.0
comp-lzo
verb 3
You'll see that the configuration here is very similar. The big differences are that you're specifying a host to connect to via the remote variable. This may be the hostname or IP address of your public IP address.
The options to ifconfig are also reversed since we're creating the opposite side of the tunnel so the local versus remote variables changed.
We also add a new route variable that will define the IP ranges which are tunneled. Traffic from the client in this case will be routed over the internet as normal unless the recipient traffic is in the 192.168.1.0/24 range, in which case openvpn will tunnel the traffic.
Now that the configuration files exists, we can launch the openvpn client by running sudo openvpn --client openvpn.conf. The sudo is required here, as setting up tunnels requires root privileges. Once the daemon is running, it will drop privileges to the user that you specified in the user variable.
Chapter 5. Web Servers
In this chapter we will cover:
Introduction
One of the powerful things that Linux on servers allows you to do is to create scalable web applications with little to no software costs. We're going to discuss setting up web applications on Linux using Apache HTTPD and NGINX (pronounced Engine-X), securing those servers and look at some of the limitations for scaling.
Apache HTTPD, commonly referred to as just Apache, is the number one web server software in the world. As of November 2015, it is estimated to host roughly half of all websites live on the Internet. It was initially created as a set of patches to the NCSA HTTPD server in 1995. In fact, the name Apache was a play on the fact that it was a patchy server. These days Apache HTTPD is a very robust, flexible, and feature packed web server option.
NGINX is a newer offering, with the initial release having come out in October of 2004. While less feature filled than Apache, it can often handle a larger load while utilizing less memory than Apache does. It can also be used as a load balancer or reverse proxy frontend for language specific application servers, such as Mongrel from the Ruby on Rails project.
Configuring Apache with TLS
These days, installing Apache with TLS is easier than ever, although the specific process can vary from distribution to distribution due to differences in configuration layout. Let's look at two of the current major examples.
How to do it…
Let's start installing and configuring on Ubuntu 14.04:
sudo apt-get install apache2
sudo a2enmod ssl
sudo a2ensite default-ssl
service apache2 restart
Let's start installing and configuring on CentOS 7:
sudo yum install httpd mod_ssl
sudo systemctl enable httpd.service
service httpd start
How it works…
In order to serve SSL/TLS traffic, you need to have Apache installed, as well as a module for Apache which supports the protocol. In this case, we're using mod_ssl, which enables OpenSSL support for Apache. Another option would be to use mod_gnutls, which uses GnuTLS.
In the Ubuntu case, mod_ssl is included automatically in the apache2 package. You just need to enable it using a2enmod (Apache 2 Enable Module) and a2enableconf (Apache 2 Enable Configuration). Ubuntu will automatically launch the Apache process on boot up.
For CentOS, you need to install the additional mod_ssl package instead, but once installed it is enabled automatically. CentOS does require an additional step in order to enable the daemon on boot up however, which is handled via systemctl, part of the system package.
Improving scaling with the Worker MPM
Apache2 offers a variety of Multi-Processing Modules (MPM) for defining how the daemon will handle scaling. The default is typically prefork, which is a simple MPM which uses separate processes for handling each request. Scaling can be improved by using the Worker MPM or the newer Event MPM, which utilize threading in addition to processes in order to improve performance.
How to do it…
Configuring the worker MPM on Ubuntu 14.04.
Ubuntu 14.04 uses the multi-threaded Event MPM by default, but it may be disabled automatically if any non-threadsafe modules such as mod_php are enabled.
To determine which MPM is in use, execute a2query –M in order to determine what is configured.
You may then swap out the existing MPM with:
a2dismod mpm_$(a2query –M)
a2enmod mpm_worker
service apache2 restart
Note
Note:
That the preceding action will fail if you have any non-thread safe modules enabled.
Configuring the Worker MPM on CentOS 7
CentOS 7 uses the prefork MPM by default since it is the more compatible offering, but it does ship a variety of MPMs in the package. The definition of which MPM is to be used can be found in /etc/httpd/conf.modules.d/00-mpm.conf. Just comment out the existing MPM and uncomment the desired one before restarting with service httpd restart.
How it works…
In order for Apache to scale to handle large numbers of simultaneous connections, it uses a potentially large number of processes. Each process that runs uses up a fixed amount of memory, meaning that the more connections you are using at a given time, the more memory you are consuming on your system.
Loaded modules such as mod_php add to the memory utilization for each process, increasing memory consumption further. Additionally, if your web application code interacts with databases, then each Apache process that is running code which interacts with the database will require its own database connection. This can cause additional resource strains as you increase the number of connections that your database needs to deal with.
In order to give people the flexibility for how they handle connections, Apache is very configurable. There are directives which define the number of processes to run at startup (StartServers), as well as a minimum and maximum number of spare/idle servers which should be running (MinSpareServers, MaxSpareServers).
For workloads that require the ability to handle many more connections, you need to look into Apache's options for Multi-Processing Modules (MPM). The two main MPMs you should look at for Unix-like systems are the pre-fork MPM, which is the default, and the worker MPM.
The pre-fork MPM allows for a single connection per process. So if you want to be able to handle 500 simultaneous connections, then you'll need to start 500 processes, utilizing 500 times the resources of a single process.
The worker MPM is a hybrid approach that uses a combination of processes and threads to increase capacity without increasing memory utilization as much. This MPM module adds an additional directive called ThreadsPerChild that defines the number of threads each process will run. With a default of 25 threads, this means that you can handle 500 connections using just 20 processes, thus dramatically decreasing your required memory.
The event MPM is similar to worker, but attempts to handle request processing more cleanly by handing off connections which are idle but being kept open by a browser to separate threads which can easily just sit and wait until additional processes are brought in.
Now, there is a very good reason why the pre-fork MPM is the default rather than worker or event. Any code which executes within the Apache webserver, like mod_php, will be running multi-threaded with multi-threaded MPMs. If a module is not thread safe, then you may experience crashes or other problems.
Setting up PHP using an Apache module
PHP is a very common programming language to use on Apache webserver, largely due to its ease of use. Luckily this also equates to being very easy to install on most distributions as well.
How to do it…
Setting up PHP on Ubuntu 14.04:
sudo apt-get install libapache2-mod-php5
Setting up PHP on CentOS 7:
sudo yum install php
How it works…
The PHP module gets linked into the Apache application during startup, adding the capability to detect PHP web application code and process it automatically. This loading is handled dynamically based upon the webserver configuration file.
Securing your web applications using mod_security
Now that you're able to execute the PHP code, you're also ready for people to attempt to exploit your PHP code. While PHP code can certainly be secure, it often appeals to new developers who have not yet learned secure coding practices. In a situation like this, it can be helpful to have some additional protection in the form of a Web Application Firewall.
Mod_Security is an open source Web Application Firewall (WAF) for Apache. It is able to interpret full HTTP requests and responses in order to detect and block attempts at performing various HTTP attacks like SQL injection, cross site scripting and others.
How to do it…
The first thing you need to do is to install and enable the module in detection mode:
Installing on Ubuntu 14.04:
sudo apt-get install libapache2-mod-security2
sudo cp /etc/modsecurity/modsecurity.conf-recommended /etc/modsecurity/modsecurity.conf
Sudo service apache2 restart
Installing on CentOS 7:
sudo yum install mod_security
sudo yum install mod_security_crs
sudo sed -i 's/SecRuleEngine On/SecRuleEngine DetectionOnly/g' /etc/httpd/conf.d/mod_security.conf
sudo service httpd restart
Once it is installed in detection mode, you should start seeing possible exploitation attempts in /var/log/apache2/modsec_audit.log on Ubuntu or /var/log/httpd/modsec_audit.log on CentOS. You'll want to evaluate any detection exploitation attempts in order to confirm that there are no false positives with your application before enabling it in blocking mode.
Once you're comfortable that the rules are behaving as expected, they can be switched to blocking mode by setting SecRuleEngine to on in /etc/modsecurity/modsecurity.conf (Ubuntu) or /etc/httpd/conf.d/mod_security.conf (CentOS).
How it works…
Mod_security works by watching incoming HTTP requests and outgoing HTTP responses and looking for specific patterns that indicate known malicious request types. By default, it is configured with their Core Rules Set (CRS), but additional rules may be written with a bit of knowledge of the format of the rules. For now, sticking with the core rules or other rules written by experienced users is your best bet.
Rules are defined on the system in /usr/share/modsecurity-crs/ on Ubuntu or /usr/lib/modsecurity.d/ for CentOS.
Configuring NGINX with TLS
While we've covered Apache's HTTPD server so far in this chapter, there are other options available for use on Linux platforms as well. One popular offering is nginx (pronounced engine-x), which works well as a lightweight, fast, multithreaded offering.
We're going to look at how to set it up as a TLS webserver.
How to do it…
Installing on Ubuntu 14.04:
sudo apt-get install nginx
sudo service nginx restart
Installing on CentOS 7:
sudo yum install epel-release
yum install nginx
server {
listen 443 ssl;
server_name localhost;
ssl_certificate /etc/pki/tls/certs/certw.crt;
ssl_certificate_key /etc/pki/tls/private/cert.key;
ssl_session_cache shared:SSL:1m;
ssl_session_timeout 5m;
ssl_ciphers HIGH:!aNULL:!MD5;
ssl_prefer_server_ciphers on;
location / {
root html;
index index.html index.htm;
}
}
systemctl enable nginx
Service nginx restart
How it works...
For the most part, the configuration of nginx is very straightforward. The only complicated part is the enabling of the EPEL repository on CentOS systems. This is required as nginx is not supported by Red Hat as a part of the core Red Hat Enterprise distribution, which CentOS is part of.
Setting up PHP in NGINX with FastCGI
As we mentioned is an earlier chapter, linking modules into a multi-threaded HTTP server requires that the code in the module be thread safe. Nginx works around this by utilizing the fastcgi protocol to interact with interpreters rather than linking them directly into the process. This does not have quite the performance of the more native approach, but you can limit what content runs through the processor.
How to do it…
Configuring on Ubuntu 14.04:
sudo apt-get install php5-fpm
sed 's/.*cgi.fix_pathinfo=.*/cgi.fix_pathinfo=0/g' /etc/php5/fpm/php.ini
service php5-fpm restart
location ~ \.php$ {
try_files $uri =404;
fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME \
$document_root$fastcgi_script_name;
include fastcgi_params;
}
service nginx restart
Configuring on CentOS 7:
sudo apt-get install php-fpm
systemctl enable php-fpm
sed 's/.*cgi.fix_pathinfo=.*/cgi.fix_pathinfo=0/g' /etc /php.ini
service php-fpm restart
location ~ \.php$ {
root html;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME \
$document_root/$fastcgi_script_name;
include fastcgi_params;
}
service nginx restart
How it works…
The php5-fpm/php-fpm packages on Ubuntu/CentOS install a daemon which listens on a Unix socket or TCP port and accepts PHP code for processing. This allows us to handle the PHP code without having the php library linked into the web server but without requiring the overhead of starting a CGI application for each request.
Now that we have a service which handles PHP interpretation, nginx can concentrate on serving up normal html, JavaScript and image content and can essentially proxy any PHP requests directly to php5-fpm directly. It then passes the responses back to nginx for the server to serve up to users.
The same approach may be leveraged on Apache boxes as well, which should allow you to use a multi-threaded MPM and still process PHP without worrying about threading issues in the interpreter.
Chapter 6. Directory Services
In this chapter, we will cover:
Introduction
If you have worked in corporate environments, then you are probably familiar with a directory service such as Active Directory. What you may not realize is that Samba, originally created to be an open source implementation of Windows file sharing (SMB/CIFS), can now operate as an Active Directory compatible directory service. It can even act as a Backup Domain Controller (BDC) in an Active Directory domain. In this chapter, we will configure Samba to centralize authentication for your network services. We will also configure a Linux client to leverage it for authentication and set up a RADIUS server, which uses the directory server for authentication.
Configuring Samba as an Active Directory compatible directory service
As of Samba 4.0, Samba has the ability to act as a primary domain controller (PDC) in a manner that is compatible with Active Directory.
How to do it…
Installing on Ubuntu 14.04:
sudo apt-get install ntp
sudo bash -c 'echo "manual" > /etc/init/nmbd.override'
sudo bash –c 'echo "manual" > /etc/init/smbd.override'
sudo apt-get install samba smbclient
sudo rm /etc/samba/smb.conf
sudo samba-tool domain provision --realm ad.example.org --domain example --use-rfc2307 --option="interfaces=lo eth1" --option="bind interfaces only=yes" --dns-backend BIND9_DLZ
sudo ln -sf /var/lib/samba/private/krb5.conf /etc/krb5.conf
dlz "AD DNS Zone" {
For BIND 9.9.0
database "dlopen /usr/lib/x86_64-linux-gnu/samba/bind9/dlz_bind9_9.so";
};
tkey-gssapi-keytab "/var/lib/samba/private/dns.keytab";
zone "example.org" {
type master;
notify no;
file "/var/lib/bind/example.org.db";
update-policy {
grant AD.EXAMPLE.ORG ms-self * A AAAA;
grant Administrator@AD.EXAMPLE.ORG wildcard * A AAAA SRV CNAME;
grant SERVER$@ad.EXAMPLE.ORG wildcard * A AAAA SRV CNAME;
grant DDNS wildcard * A AAAA SRV CNAME;
};
};
/var/lib/samba/private/dns/** rw,
/var/lib/samba/private/named.conf r,
/var/lib/samba/private/named.conf.update r,
/var/lib/samba/private/dns.keytab rk,
/var/lib/samba/private/krb5.conf r,
/var/tmp/* rw,
/dev/urandom rw,
sudo service apparmor restart
sudo service bind9 restart
sudo service samba-ad-dc restart
Installing on CentOS 7:
Unfortunately, setting up a domain controller on CentOS 7 is not possible using the default packages provided by the distribution. This is due to Samba utilizing the Heimdal implementation of Kerberos while Red Hat, CentOS, and Fedora using the MIT Kerberos 5 implementation.
How it works…
The process for provisioning Samba to act as an Active Directory compatible domain is deceptively easy given all that is happening on the backend. Let us look at some of the expectations and see how we are going to meet them as well as what is happening behind the scenes.
Active Directory requirements
Successfully running an Active Directory Forest has a number of requirements that need to be in place:
Selecting a realm and domain name
The Samba team has published some very useful information regarding the proper naming of your realm and your domain along with a link to Microsoft's best practices on the subject. It may be found on: https://wiki.samba.org/index.php/Active_Directory_Naming_FAQ.
The short version is that your domain should be globally unique while the realm should be unique within the layer 2 broadcast domain of your network.
Preferably, the domain should be a subdomain of a registered domain owned by you. This ensures that you can buy SSL certificates if necessary and you will not experience conflicts with outside resources.
Samba-tool will default to using the first part of the domain you specified as the realm, ad from ad.example.org. The Samba group instead recommends using the second part, example in our case, as it is more likely to be locally unique.
Using a subdomain of your purchased domain rather than a domain itself makes life easier when splitting internal DNS records, which are managed by your AD instance from the more publicly accessible external names.
Using Samba-tool
Samba-tool can work in an automated fashion with command line options, or it can operate in interactive mode. We are going to specify the options that we want to use on the command line:
sudo samba-tool domain provision --realm ad.example.org --domain example --use-rfc2307 --option="interfaces=lo eth1" --option="bind interfaces only=yes" --dns-backend BIND9_DLZ
The realm and domain options here specify the name for your domain as described above.
Since we are going to be supporting Linux systems, we are going to want the AD schema to support RFC2307 settings, which allow definitions for UID, GID, shell, home directory, and other settings, which Unix systems will require.
The pair of options specified on our command-line is used for restricting what interfaces Samba will bind to. While not strictly required, it is a good practice to keep your Samba services bound to the internal interfaces.
Finally, Samba wants to be able to manage your DNS in order to add systems to the zone automatically. This is handled by a variety of available DNS backends. These include:
Bind configuration
Now that Samba is set up to support BIND9_DLZ, we need to configure named to leverage it. There are a few pieces to this support:
Joining a Linux box to the domain
In order to participate in an AD style domain, you must have the machine joined to the domain using Administrator credentials. This will create the machine's account within the database, and provide credentials to the system for querying the ldap server.
How to do it…
sudo apt-get install winbind
[global]
workgroup = EXAMPLE
realm = ad.example.org
security = ads
idmap uid = 10000-20000
idmap gid = 10000-20000
winbind enum users = yes
winbind enum groups = yes
template homedir = /home/%U
template shell = /bin/bash
winbind use default domain = yes
sudo net ads join -U Administrator
passwd: compat winbind
group: compat winbind
How it works…
Joining a Linux box to an AD domain, you need to utilize winbind that provides a PAM interface for interacting with Windows RPC calls for user authentication. Winbind requires that you set up your smb.conf file, and then join the domain before it functions. Nsswitch.conf controls how glibc attempts to look up particular types of information. In our case, we are modifying them to talk to winbind for user and group information.
Most of the actual logic is in the smb.conf file itself, so let us look:
workgroup = EXAMPLE
realm = ad.example.org
security = ads
idmap uid = 10000-20000
idmap gid = 10000-20000
winbind enum users = yes
winbind enum groups = yes
template homedir = /home/%U
template shell = /bin/bash
winbind use default domain = yes
Chapter 7. Setting up File Storage
In this chapter, we are going to cover:
Introduction
Once you have a network with multiple devices, it is useful to be able to share files easily between them and between users. Building a centralized file server achieves this goal as well as provides a central point for backing up your data. In this chapter, we will explore several available protocols for storing files. We will start with the SMB/CIFS protocols, commonly used by Windows systems, and work our way to services specifically designed for synchronizing mobile clients.
Serving files with SMB/CIFS through Samba
We are going to start by setting up a simple read-only file server using Samba, and then we will expand on it from there. If you are not familiar with SMB/CIFS, you may know it by another name, Windows File Sharing. This is the protocol, which Microsoft uses for its built-in file sharing, but re-implemented by the Samba project.
How to do it…
sudo apt-get install samba
[global]
server role = standalone server
map to guest = Bad User
syslog = 0
log file = /var/log/samba/log.%m
max log size = 1000
dns proxy = No
usershare allow guests = Yes
panic action = /usr/share/samba/panic-action %d
idmap config * : backend = tdb
[myshare]
path = /home/share
guest ok = yes
read only = yes
sudo service smbd restart
How it works…
The Global section of the above configuration is a slimmed-down version of the Ubuntu default Samba configuration. The specifics of our configuration live in the [share] definition.
The [share] defines the name of the file share. You could instead choose to call it [files] or most any other name you would like to use. At a minimum, the name global is reserved and cannot be used for a share.
path: This defines the path that you're looking to share out.
guest ok: This defines if a password is required to access the service or not. If guest ok = yes, then unauthenticated guest logins are allowed. There is also an option for guest only, which disallows password login if it's set to yes.
The read-only option defines if users should be able to write to the share or not. It defaults to no, but if set to yes then you are only allowed to read the share's content, not change it in any way.
Granting authenticated access
Samba supports granting authenticated access to shares in addition to making them available as public shares.
How to do it…
sudo useradd testuser
sudo smbpasswd –a testuser
[myshare]
path = /home/share
guest ok = yes
read only = yes
valid users = testuser
How it works…
As mentioned in the preceding, Samba users must be backed by a system user account that is known to PAM. This could mean a user in /etc/passwd, or it could mean a user account coming from some sort of directory service. In this case, we are going to create a dedicated user account.
Authentication however is handled separately from the password defined in /etc/shadow. You need to have a Samba-specific password, which might be defined by smbpasswd.
Finally, you use the valid users definition to restrict access to the share.
Setting up an NFS server
NFS, or Network File System, was initially created by Sun Microsystems to allow clients to access remote file shares on Unix systems back in the 80s. NFS is trivial to set up and is typically rather fast, but it can introduce some interesting security issues if it is not done correctly.
How to do it…
sudo apt-get install nfs-kernel-server
/directory/to/share client(options)
sudo apt-get install nfs-common
mount -t nfs4 server:/directory/to/share /mountpoint
How it works…
The nice thing about NFS is how trivial it is to set up. You simply install the NFS server, configure /etc/exports and go. The only real details to learn and understand are some of the options available and their implications:
The client side also has a number of mount options available, which can be specified with a –o to the mount command or in options specified in /etc/fstab. The client has even more options available than the server, but we will just look at some of the common ones again.
There's more…
Unlike many other file services, most NFS servers do not provide any sort of strong authentication/authorization. Instead, NFS exposes standard Unix file permissions and file ownership via UIDs. The client system is responsible for enforcing access control at that point. This means that it is possible for a malicious client to access any files or directories it would like to, regardless of file ownership.
The biggest examples of this problem are the UID collisions. Let us say that you have a file server that contains /home/alice, which is owned by Alice's account with UID 1000. /home is exported via NFS and made available to other client systems on the network. Now let's say that Bob owns a desktop machine which uses UID 1000 for his user account as well. If Bob mounts /home from the NFS share, his system will show that /home/alice and all of its contents are owned by Bob, and will grant access to all of the files.
A common solution to the collision problem is to have all client systems of the NFS share a centralized directory service such as NIS or LDAP. This will protect you against accidental collisions from trusted client systems but not from malicious systems.
The newer solution that should protect against malicious clients as well is the use of Kerberized NFS. This refers to protecting your NFS share with a Kerberos system such as MIT's Kerberos 5 implementation or a system like Active Directory.
Configuring WebDAV through Apache
WebDAV was initially created as a protocol for managing web server content over http/https. In other words, it grants you the ability to add, remove, or edit HTML and support web content remotely.
From there, the usage expanded to provide access to general file services as well. For example, Apple's iDisk service (part of iTools/.Mac/MobileMe) supported accessing your files through any WebDAV client. This support unfortunately ended when iDisk was retired with the transition to iCloud.
WebDAV clients are built into Mac OS X and Windows as well as the file managers for Gnome, KDE and many other Linux desktop environments. You can even find Linux console tools, which support the protocol or mount it directly on your filesystem using the davfs2 filesystem driver.
How to do it…
We are going to start by assuming that you already have Apache running. If you do not, then please read the chapter on Apache configuration prior to starting. You will also want to ensure that you have SSL/TLS configured on your webserver, since WebDAV requires you to authenticate and you do not want to send credentials in the clear.
sudo apt-get install libapache2-mod-authnz-external
sudo apt-get install libapache2-mod-authz-unixgroup
sudo a2enmod dav
sudo a2enmod dav_fs
sudo a2enmod authnz-external
sudo a2enmod authz-unixgroup
sudo service apache2 restart
<Directory /home/user/test>
AllowOverride None
Require all granted
</Directory>
<IfModule mod_authnz_external.c>
AddExternalAuth pwauth /usr/sbin/pwauth
SetExternalAuthMethod pwauth pipe
</IfModule>
Alias "/test" "/home/user/test/"
<Location "/test/">
Dav on
AuthType Basic
AuthName "Restricted Files"
AuthBasicProvider external
AuthExternal pwauth
require unix-group groupname
Order allow,deny
Allow from all
Options Indexes
</Location>
sudo a2ensite webdav
sudo service apache2 reload
sudo chgrp www-data /home/user/test
How it works…
There are a few things at play here, so we are going to tackle them one at a time.
Apache modules
First, we enable the dav and dav_fs Apache modules. The dav module provides Apache with the information on how to speak the WebDAV protocol. The dav_fs module provides Apache with the information on how to translate the WebDAV requests into filesystem operations. This allows you to actually interface with your local filesystems.
The reason dav and dav_fs are separate is because it is possible to utilize additional DAV providers that interface with other systems instead of your local filesystem. One common example is the dav_svn module, which allows you to interface with a Subversion version control system over the WebDAV protocol.
Next, we enable authnz-external. The authnz-external module supports mod_auth_basic in authenticating users. The auth_basic module handles HTTP Basic Auth between the web browser and the web server. The authnz-external provider assists Apache in actually validating the user's password once it has been provided. Like all authnz modules, it provides Authentication (represented by the N) and Authorization (represented by the Z). In this case, it handles these through an external application which we must define.
Finally, we enable authz_unixgroup, which provides Authorization (there is that Z again) based upon looking up the user within a defined user group on the system, defined in /etc/groups.
Directory directive
The default Ubuntu Apache configuration in /etc/apache2/apache2.conf includes a Directory directive for / that denies access for all users:
<Directory />
Options FollowSymLinks
AllowOverride None
Require all denied
</Directory>
Access to specific directories, such as the webroot are then explicitly granted via more specific Directory directives:
<Directory /var/www/>
Options Indexes FollowSymLinks
AllowOverride None
Require all granted
</Directory>
In our example, we want to serve traffic from space in /home/user, so we need to make sure that there is a matching Directory directive to grant access to that path. We do it in the above configuration using:
<Directory /home/user/test>
AllowOverride None
Require all granted
</Directory>
On versions of Linux where SELinux or other Mandatory Access Control (MAC) systems are in place, additional steps may be required to grant access via the MAC system as well.
Authnz_external configuration
Next, we configure the authnx_external module in order to ensure that it knows what external tool to use for validating the user supplied username and passwords:
<IfModule mod_authnz_external.c>
AddExternalAuth pwauth /usr/sbin/pwauth
SetExternalAuthMethod pwauth pipe
</IfModule>
Here we tell the module to use pwauth for testing the credentials. This tool is a simple setuid binary, which is installed as a dependency for libapache2-mod-authnz-external. It accepts a username and password via standard in (STDIN) and then issues a return code of 0 for success or any other return code for failure. AddExternalAuth defines available methods while SetExternalAuthMethod tells Apache how to interact with the method. In this case, we are going to use a Unix pipe.
Directory definition
Now we define the actual rules for accessing the new directory. Here is where we actually enable authentication and authorization as well as enabling WebDAV:
Alias "/test" "/home/user/test/"
<Location "/test/">
Dav on
AuthType Basic
AuthName "Restricted Files"
AuthBasicProvider external
AuthExternal pwauth
require unix-group groupname
Order allow,deny
Allow from all
Options Indexes
</Location>
Most of this is straightforward Apache configuration. Aliases map web server directories to filesystem directories (http://server/test pulls content from /home/user/test), while the location directive defines the rules for accessing content from /test.
The configuration directives within the location section break down into a few basic groups:
Authentication/Authorization:
Basic Apache directory configuration:
Enable WebDAV:
Dav on: The Dav directive defines if WebDAV should be enabled or not. It defaults to Off, but can also take the WebDAV provider name as an argument as well. On exists as an alias to the filesystem provider which dav_fs provides for us.
Granting write access
At this point, we have provided WebDAV access to the directory space, but you may find that any attempts to actually change the content of that space fail. This is because even though you have authentication to Apache as your own user, Apache is actually operating as the unprivileged www-data user. If we want write operations to succeed, then Apache will need to have write access to that space.
There are a few ways in which we can handle this:
chmod –R 777 /home/user/test
chown –R www-data /home/user/test
chgrp –R www-data /home/user/test
chmod g+rw /home/user/test
sudo usermod -a -G existingroup www-data
The method to use will depend a lot on your use case but, in general, you should use the method, which limits your exposure as much as possible. You want to make sure that you do not grant access to your files beyond the users who need it and you need to make sure that you do not grant more access to the web server process than you need to.
Chapter 8. Setting up E-mail
In this chapter, we will cover:
Introduction
E-mail, specifically the Simple Mail Transport Protocol (SMTP), is one of the oldest protocols on the Internet. Even after all this time, it is still heavily utilized by most businesses out there. While these days hosted e-mail infrastructure like hosted Exchange or Google apps is quite common, but it's still a good idea to understand what is occurring under the cover. In this chapter, you'll set up your own e-mail infrastructure, which is able to send and receive mail over the public internet. We'll also learn some basic methods for dealing with the problem of unsolicited commercial e-mail (spam).
There are a few core pieces to e-mail infrastructure:
In this chapter, we're going to work on setting up an SMTP server to handle inbound and outbound e-mail and an IMAP server to handle making the mail available to your e-mail client. We'll also look at some of the capabilities that a Unix mail server gives you, such as complex mail filtering using procmail.
Configuring Postfix to send and receive e-mail
The most important part of any e-mail system is the MTA. This system is responsible for handling delivery of e-mail messages, both outbound and inbound. It can also be the downfall of your mail system if it is improperly configured, which could result in your system being used for sending SPAM mail to other destinations.
One of the original and most well known MTAs is Sendmail, which dates back to 1983. It is a very powerful tool, and unfortunately very easy to get wrong. In fact, the configuration language for Sendmail is so obtuse that there is actually a macro language called m4, which is commonly used for generating Sendmail configurations. M4 makes configuring Sendmail much simpler, but there are other options available which natively use a sane configuration language like Postfix.
The great thing about Postfix as opposed to a number of other SMTP servers is that it is built with a set of sane, safe defaults. Additionally, any setting, which is not defined within your configuration file uses that default. This allows for very stripped down configuration files, although you are certainly free to define all the defaults within your configuration file if you want. In fact, Postfix makes that easy to do as well with the include of the postconf tool.
How to do it…
sudo apt-get install postfix mailutils
mydomain = domain.com
mydestination = $mydomain $myhostname
mynetworks = 127.0.0.0/8
postfix reload
How it works…
The great thing about Postfix as opposed to a number of other SMTP servers is that it is built with a set of sane, safe defaults. Additionally, any setting, which is not defined within your configuration file uses that default. This allows for very stripped-down configuration files, although you are certainly free to define all the defaults within your configuration file if you want. In fact, Postfix makes that easy to do as well with the inclusion of the postconf tool.
The postconf tool is a simple mechanism for interacting with your Postfix server configuration. If you run postconf on its own, it will dump out all configuration options and their current value. You could choose to redirect this output to your main.cf file in order to specify the values for all available configuration options explicitly. While not likely to occur, this could potentially protect you against the default value changing after an update in a way which you were not expecting.
You may also choose to run postconf with a specific variable name in order to limit output to just that one variable. postconf –d can be used in order to print out the default value of a setting rather than the one configured on your specific system. You may also use postconf –e in order to edit the settings in /etc/postfix/main.cf. This can be helpful for scripting set up of Postfix.
There are three specific items that we chose to override in the preceding configuration:
There's more…
There are a few things you should know if you're going to operate your own mail server. RFC2142 defines a number of mail addresses that all internet sites should accept e-mail for and should be reviewed:
There are others as well, but these are the ones for the most commonly used services.
Setting up aliases
No one is going to want to set up e-mail accounts for each of the above addresses. While it is doable, it may result in the messages being reviewed less frequently than they should be. An alternative is to set up mail aliases. Aliases are e-mail addresses that just forward messages to another defined email address.
Mail aliases are defined within /etc/aliases and are of the format of aliasaddress: destinationaddress. The destination may be the local part of another user account, or it could be a fully qualified e-mail address. For example, you may choose to point abuse to the root user with an alias of abuse: root. One common approach is to point host master, postmaster and abuse to the root user, and then optionally forward the root user to your own account on the box or on a remote e-mail system.
To add aliases, just edit /etc/aliases to make your change and then run the newaliases command.
Setting up a smarthost
When broadband internet was first starting to be deployed within the US, one common thing that a new Linux user would do would be to create and run their own mail system. This typically just required setting up software like Postfix, and properly configuring it to send and receive e-mail.
These days things are a bit trickier. In an effort to curtail spamming, more and more broadband providers are starting to block outbound port 25 traffic from user networks which do not go through mail relays that the ISP owns and operates. This has made a significant reduction in spam, but it does make operating your own mail server more difficult.
Often the only step you need to take is to set up a smart host. A smart host is a mail server that acts as a relay for other servers. Your machine may be able to send its own outbound e-mail as long as it forwards the messages on to your ISP's smart host for delivery rather than trying to deliver the messages itself. IP ranges may restrict this smart host, or it could be set up to require authentication.
Relays without authentication
To set up Postfix to use a smart host without authentication, simply set the relayhost variable to [ispserver]. For a example, you could set relayhost = [smtp.domain.com].
The purpose of the [] characters around the hostname is to tell Postfix to not look up MX records and instead use the CNAME/A records. It does not matter in this case, but in some cases, it may mean the difference between sending messages to the correct relay host and sending messages to a machine that may reject the mail.
If you need to specify a non-standard port, add:PORT after the brackets. For example: [smtp.domain.com]:587
Relays with Auth
If your smarthost requires you to log in with your username and password, then that can be done by enabling SASL auth, and specifying a SASL password map.
relayhost = [smtp.gmail.com]:587
smtp_sasl_auth_enable = yes
smtp_sasl_password_maps = hash:/etc/postfix/relay_password
smtp_sasl_security_options = noanonymous
default_destination_concurrency_limit = 4
soft_bounce = yes
smtp_tls_security_level = may
The above example uses a Gmail account for outbound mail delivery. /etc/postfix/relay_password should contain:
smtp.gmail.com user@gmail.com:password
Due to the sensitivity of the data, make sure to chmod 600 the file. You must then run postmap /etc/postfix/relay_password, which will then create the Berkeley DB file which Postfix actually reads.
Setting up DNS records for e-mail delivery
When configuring a properly set up mail server, there are a number of DNS records you need to set up in order to ensure that the system functions as expected. Some of these are defined in RFC974, which covers mail routing and the DNS system.
The main piece you need to understand is Mail Exchanger (MX) records. These records define how e-mail destined to a given domain should be handled. Without an MX record being defined, e-mail addressed to user@domain.com would be sent to the domain.com A record, which is often an HTTP server. For some smaller sites, this may be reasonable if their HTTP server is also an SMTP server, but that is not always the case.
Rather than depending on the A record, you can instead use one or more MX records with defined priorities that point to A records which may be in or out of the domain you're configuring. For example, your e-mail could go to smtp.domain.com. Alternatively, if Google Apps handles your e-mail, you may have multiple MX records within the Google.com domain instead.
How to do it…
Assuming you've already gone through the process of setting up your DNS infrastructure, or you're at least using your DNS registrar's infrastructure, then setting up the MX records themselves is pretty straightforward. The format of the records is:
DOMAIN TTL IN MX PRIORITY MAILSERVER
As a shortcut, you can use @ as an alias for the zone you're using. For example, in the domain.com zone file, @ would symbolize domain.com. You may also choose to create MX records for subdomains, for example test.domain.com, which would then be able to receive its own e-mail to a separate server. Here are some examples of what those MX records may look like:
@ 600 IN MX 10 smtp.domain.com.
@ 600 IN MX 20 backup.domain.com.
test 600 IN MX 10 test.domain.com.
You'll need to make sure that each of the targets of the MX records have matching A records (or CNAMEs). For example:
smtp 600 IN A 192.168.1.1
backup 600 IN A 192.168.1.2
test 600 IN A 192.168.1.3
How it works…
For a good example, you can look at the MX records for www.google.com:
$ dig -t mx google.com
; <<>> DiG 9.8.3-P1 <<>> -t mx google.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 58348
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 2
;; QUESTION SECTION:
;google.com. IN MX
;; ANSWER SECTION:
google.com. 600 IN MX 50 alt4.aspmx.l.google.com.
google.com. 600 IN MX 20 alt1.aspmx.l.google.com.
google.com. 600 IN MX 30 alt2.aspmx.l.google.com.
google.com. 600 IN MX 10 aspmx.l.google.com.
google.com. 600 IN MX 40 alt3.aspmx.l.google.com.
;; ADDITIONAL SECTION:
alt1.aspmx.l.google.com. 274 IN A 74.125.141.27
alt2.aspmx.l.google.com. 109 IN A 64.233.186.26
;; Query time: 43 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jan 29 20:51:02 2016
;; MSG SIZE rcvd: 168
In this example, you can see that e-mail destined for the google.com domain can go to one of 5 hostnames specified in the MX records. The priority field right before the hostname defines what order they will be tried in, from lowest to highest. Multiple records at the same priority would essentially be tried round robin.
Configuring IMAP
Now that you're able to get e-mail delivered, you can read e-mail from the local mail spool by using the mail command. In general, it is more useful to be able to retrieve your e-mail from off the box however, which typically means webmail, pop3 or IMAP. In this recipe, we're going to look at setting up a Dovecot e-mail server.
How to do it...
sudo apt-get install dovecot-imap
sed 's|^ssl_cert .*|ssl_cert = </path/to/cert|g' /etc/dovecot/conf.d/10-ssl.conf
sed 's|^ssl_key .*|ssl_key = </path/to/key|g' /etc/dovecot/conf.d/10-ssl.conf
service dovecot restart
How it works…
Ubuntu provides a number of different packages for Dovecot, which provide a number of different services like imap, pop3 and manage sieve (simplified e-mail filtering).
Ubuntu ships these with a sane set of defaults, which largely handle a lot of the configuration that we would have had to do. The configuration is split into multiple files, which are then included by the main /etc/dovecot/dovecot.conf. The split configuration files are provided in /etc/dovecot/conf.d and are a mix of numbered files which end in .conf (like 10-ssl.conf) and files like auth-passwdfile.conf.ext which are included from 10-auth.conf.
The pre-selected configuration automatically authenticates from the local system, and automatically enables TLS with a self-signed certificate. The commands that we run above swap out the self-signed cert for a publicly signed cert that you specify the path to.
Additionally, we want to disable non-TLS IMAP in order to avoid having clients sending their credentials in plaintext. You could also choose to disable plaintext auth for imap if it's not under TLS, but that method is not compatible with the PAM authentication that we're going to be using.
Configuring authentication for outbound e-mail
With our current mail server setup, we can retrieve e-mail remotely and we can send mail from the local box, but we cannot send mail from remote systems. In order to enable this functionality, we need to configure Postfix to require auth for sending outbound mail from remote users. Typically, this requires setting up a SASL server of some variety like Cyrus saslauthd. In our case, we're going to use Dovecot's built in SASL server.
How to do it…
service auth {
…
unix_listener /var/spool/postfix/private/auth {
group = postfix
mode = 0660
user = postfix
}
…
}
submission inet n - n - - smtpd
-o smtpd_tls_security_level=encrypt
-o smtpd_sasl_auth_enable=yes
-o smtpd_sasl_type=dovecot
-o smtpd_sasl_path=private/auth
-o smtpd_sasl_security_options=noanonymous
-o smtpd_sasl_local_domain=$myhostname
-o smtpd_client_restrictions=permit_sasl_authenticated,reject
-o smtpd_recipient_restrictions=reject_non_fqdn_recipient,reject_unknown_recipient_domain,reject
Service postfix restart
How it works…
Authentication for SMTP works by exposing a SASL interface for Postfix to use, and configuring it to talk via that interface. In our case, we have Dovecot expose its authentication via the Unix socket located in /var/spool/postfix/private/auth which is restricted to the Postfix user.
Next we configure the submission port in master.cf of Postfix. Submission is a secondary SMTP port which typically has authentication forced and is set aside for user interaction rather than server-to-server passing of messages. This allows you to require authentication for the port that users use, and allows you to implement port 25 filtering on non-mail server machines without impacting the user's ability to talk to their e-mail provider.
We set a number of options for the submission port, including:
Configuring Postfix to support TLS
Postfix can utilize TLS for securing communication in a few ways. We're going to look at each of them.
How to do it…
This is already handled in our existing configuration through the smtpd_tls_security_level=encrypt option for the submission port.
$ sudo postconf –e smtpd_tls_security_level=may
$ sudo postconf –e smtpd_tls_cert_file=/path/to/server.crt
$ sudo postconf –e smtpd_tls_key_file=/path/to/server.key
How it works…
The most important thing we want to do here is ensure that passwords are not sent in plaintext. This means requiring authentication on the submission port, which the user interacts with.
Unfortunately, when it comes to SMTP delivery, large swaths of the internet still do not allow SMTP over TLS, so forcing TLS may very well result in undeliverable e-mail. Instead we use the may keyword to tell Postfix to use TLS if it can, but still allow delivery if it cannot. This is largely reasonable due to the lack of any real authentication in server-to-server SMTP traffic.
Blocking spam with Greylisting
As anyone who has been on the internet for a while knows, e-mail has a big problem with Unsolicited Commercial E-mail (UCE), also known colloquially as spam. Most of this problem boils down to the fact that the SMTP protocol does not do any validation message senders. While properly configured mail servers will validate their users prior to allowing them to send e-mail from their account, the protocol itself does not prevent random machines on the internet from sending mail from arbitrary users and domains. This allows spammers to send forged e-mails through misconfigured mail systems or simply send the messages themselves directly to the recipient mail server from VMs at hosting providers as well as compromised desktops and servers.
Luckily, there are steps that can be taken in order to detect or limit the spam directed to your system. A few common approaches are:
Let's start by looking at how we would implement greylisting on our existing Postfix mail server.
How to do it…
$ sudo apt-get install postgrey
$ sudo postconf -e smtpd_recipient_restrictions="check_policy_service inet:127.0.0.1:10023, permit"
$ sudo postfix reload
How it works…
Postgrey integrates with Postfix by setting it as a check_policy_service within the smtpd_recipient_restrictions section of the configuration. When Postfix receives an SMTP connection providing a message recipient via a RCPT TO command, it will pass the collected information about the connection to the check_policy_service in order to decide if the message should be accepted or rejected.
Postgrey takes that information and creates a tuple of the mail server IP address, the provided sender e-mail address and the recipient e-mail address. This tuple is looked up in a local Berkeley DB file containing those three fields as well as timestamps for the connection.
The first time a given tuple is seen, the message will be temporarily rejected (as opposed to a failure). Attempts to deliver will continue to be rejected until 5 minutes have passed, after which the message will be successfully delivered. Once the message is accepted, it will be accepted immediately within the next 35 days.
Spammers tend not to retry after the initial attempt, so each recipient it attempts to deliver to will be given the temporary failure and you will never see them again. Legitimate mail servers should retry, so the messages will be delivered. Do note that some badly configured mail servers may not retry for a long period, so you may find that some e-mail arrives much later than it should have the first time you receive a message from that sender.
For domains which you know do not deal well with greylisting, you can choose to whitelist sending domains in /etc/postgrey/whitelist_clients or whitelist specific destination addresses in /etc/postgrey/whitelist_recipients. The default copy of whitelist_recipients for Ubuntu includes postmaster@ and abuse@, which is a good practice in order to allow people to report problems with your configuration.
Filtering spam with SpamAssassin
SpamAssassin is a very popular tool, which uses a number of methodologies to identify spam messages and then either filter, tag or drop them. A few of the methods it uses includes Bayesian detection and the use of RBLs.
SpamAssassin can be configured globally by integrating directly with your mail server, or can be implemented on a per client basis through Procmail or integration with your mail client. Thunderbird from the Mozilla project, for example, integrates with SpamAssassin.
How to do it…
Let's look at how to integrate SpamAssassin directly in with Postfix.
$ sudo apt-get install spamassassin
$ sudo sed -i 's/^ENABLED=.*/ENABLED=1/g' /etc/default/spamassassin
sudo service spamassassin start
$ sudo cp /usr/share/doc/spamassassin/examples/filter.sh /usr/local/bin/spamfilter
smtp inet n - - - - smtpd -o content_filter=spamfilter
spamfilter
unix - n n - - pipe
flags=Rq user=spamd argv=/usr/local/bin/spamfilter \
-oi -f ${sender} ${recipient}
$ sudo postfix reload
How it works…
SpamAssassin itself works by using a combination of a daemon called spamd and a client called spamc. The spamc client receives e-mail messages via standard input and passes it to the spamd daemon for processing.
The filter script, which we put into place, accepts e-mail messages from STDIN, passes them through spamc for processing purposes, and then redelivers the processed message back to the mailer daemon via the sendmail binary. The processed messages will be flagged with a header that indicates it is likely spam, which may then be used for filtering in procmail or your mail client.
Chapter 9. Configuring XMPP
In this chapter we will cover:
Introduction
The Extensible Messaging and Presence Protocol (XMPP) is a widely implemented open protocol for passing XML messages. It was initially created as an instant messaging platform, but it has since been used by TiVo for communication between their set-top devices and their online scheduler, implemented by Google as Google Talk (since replaced by the non-XMPP Hangouts) and as an interface for Facebook's chat.
In this chapter, we'll learn to set up the ejabberd IM platform for use as your own IM service. We'll leverage XMPP's server-to-server federation to be able to exchange messages with other public XMPP systems and secure the traffic with TLS.
Installing ejabberd
Currently there are a number of Open Source XMPP/Jabber server projects available with their own individual strengths and weaknesses. For this chapter, we're going to look at ejabberd, which is an extremely powerful and flexible option that has great online documentation. The code for ejabberd is written in Erlang, which is a language created for writing distributed, fault tolerant code. While we will not be taking advantage of the native clustering of ejabberd, it does exist for future expansion.
How to do it...
sudo apt-get install ejabberd
sudo chown root:ejabberd /usr/lib/ejabberd/priv/bin/epam
sudo chmod 4750 /usr/lib/ejabberd/priv/bin/epam
cat <<< '#%PAM-1.0
auth sufficient pam_unix.so likeauth nullok nodelay
account sufficient pam_unix.so' > /etc/pam.d/ejabberd
{loglevel, 3}.
{hosts, ["example.com"]}.
%% Use Pam auth
{auth_method, pam}.
{pam_service, "ejabberd"}.
{listen,
[
{5222, ejabberd_c2s, [
{certfile,
"/etc/ejabberd/ejabberd.pem"},
starttls_required,
{access, c2s},
{shaper, c2s_shaper},
{max_stanza_size, 65536}
]},
{5269, ejabberd_s2s_in, [
{shaper, s2s_shaper},
{max_stanza_size, 131072}
]},
{5280, ejabberd_http, [
captcha,
http_bind,
http_poll,
web_admin
]}
]}.
%% Traffic Shapers
{shaper, normal, {maxrate, 1000}}.
{shaper, fast, {maxrate, 50000}}.
{max_fsm_queue, 1000}.
%% Traffic Shaping
{access, s2s_shaper, [{fast, all}]}.
{access, c2s_shaper, [{none, admin},
{normal, all}]}.
%% Access Limits
{access, max_user_sessions, [{10, all}]}.
{access, max_user_offline_messages, [{5000, admin},
{100, all}]}.
{access, local, [{allow, local}]}.
{access, c2s, [{deny, blocked},
{allow, all}]}.
{access, announce, [{allow, admin}]}.
{access, configure, [{allow, admin}]}.
{acl, admin, {user, "admin", "example.com"}}.
%% Multi-User Chat Settings
{access, muc_admin, [{allow, admin}]}.
{access, muc_create, [{allow, local}]}.
{access, muc, [{allow, all}]}.
{access, pubsub_createnode, [{allow, local}]}.
{language, "en"}.
%% Modules
{modules,
[
{mod_adhoc, []},
{mod_announce, [{access, announce}]},
{mod_blocking,[]},
{mod_caps, []},
{mod_configure,[]},
{mod_disco, []},
{mod_http_bind, []},
{mod_last, []},
{mod_muc, [
{host, "conference.@HOST@"},
{access, muc},
{access_create, muc_create},
{access_persistent, muc_create},
{access_admin, muc_admin}
]},
{mod_offline, [{access_max_user_messages,
max_user_offline_messages}]},
{mod_ping, []},
{mod_privacy, []},
{mod_private, []},
{mod_pubsub, [
{access_createnode, pubsub_createnode},
{ignore_pep_from_offline, true},
{last_item_cache, false},
{plugins, ["flat", "hometree", "pep"]}
]},
{mod_roster, []},
{mod_shared_roster,[]},
{mod_stats, []},
{mod_time, []},
{mod_vcard, []},
{mod_version, []}
]}.
Service ejabberd restart
How it works…
The Ubuntu package for ejabberd provides a reasonable start for a configuration which is well commented and provides some reasonable defaults. Rather than attempt to massage their configuration to meet our needs, we create a new configuration from scratch.
While we will be discussing the options which we are configuring, you may find it helpful to also read through the stock configuration in order to learn about some of the additional options that ejabberd can provide for you.
Configuring authentication
Ejabberd has the ability to tie into multiple authentication sources, including its own built-in user management service leveraging its local database. In our case, we're going to tie ejabberd into our existing system accounts by leveraging the service's PAM authentication options.
In order to leverage PAM, there are a few steps that we need to take. The first is to restrict access to the epam helper script that actually performs the authentication attempts. This script is located in /var/lib/ejabberd/priv/bin/epam in the stock source-based install, but it has been moved to /usr/lib/ejabberd/priv/bin/epam instead in Ubuntu. We need to make sure it is setuid and restricted to just the root user and the ejabberd group.
The next step is to make sure that we have a PAM configuration for the ejabberd service by populating /etc/pam.d/ejabberd. We have included an example PAM configuration, but you can write more complex rules for PAM as well.
Finally, we tell ejabberd itself in ejabberd.cfg to use PAM authentication by setting:
%% Use Pam auth
{auth_method, pam}.
{pam_service, "ejabberd"}.
Configuring listening ports
The configuration also has a section labeled listen, which defines the network ports the ejabberd service should listen on. The three services that we have listed have unique uses. You can choose the services you'd like to enable, based upon your use case.
C2S service
This section defines the C2S, or client to server, service. This is the network port that allows users to connect to your XMPP service. You'll need to make sure that this port is accessible from outside of your network if you want to be able to connect while you're remote:
{5222, ejabberd_c2s, [
`
"/etc/ejabberd/ejabberd.pem"},
starttls_required,
{access, c2s},
{shaper, c2s_shaper},
{max_stanza_size, 65536}
]},
We've configured the service to require starttls and using the TLS cert and key stored in /etc/ejabberd/ejabberd.pem. One item of note here is that ejabberd requires that your key, cert, and intermediates all be stored within the same file rather than split into separate files.
The configuration also states {access, c2s}, which means that the c2s access control method should be applied to the service. That access control method is defined as:
{access, c2s, [{deny, blocked},
{allow, all}]}.
This access control segment directs us to deny access to anyone who is on the admin maintained block list and allow access to everyone else.
Similarly, {shaper, c2s_shaper} directs to use the c2s_shaper rule, which is defined as:
{access, c2s_shaper, [{none, admin},
{normal, all}]}.
This rule allows admin users to send traffic at an unlimited rate, while restricting users to the "normal" rate, which is defined as 1000 bytes per second:
{shaper, normal, {maxrate, 1000}}.
And finally, we define the max_stanza_size, which is the maximum size in bytes of an XML stanza sent by the client. This simply limits the size of the messages that you're allowed to send.
S2S service
S2S uses a dialback method for communication, meaning that your server connects to the remote server's S2S service on port 5269, which in turn triggers the remote server to connect to port 5269 on your system. The usage of two distinct TCP connections for sending and receiving messages provides additional protections against message spoofing by requiring that both sides initiate their own connection to the published DNS record for the other services:
{5269, ejabberd_s2s_in, [
{shaper, s2s_shaper},
{max_stanza_size, 131072}
]},
Here we define the S2S, or Server to Server inbound message service. This service handles receiving messages from other XMPP domains. It allows users on your server to communicate with users of a different XMPP server.
The configuration for the S2S inbound service is a lot simpler since, there's no real user settings of any sort. There's just a shaper defined and a larger max_stanza_size. The shaper in use for the S2S service is the s2s_shaper that maps to the "fast" shaper with a rate of 50000 bytes per second:
{shaper, fast, {maxrate, 50000}}.
The reason for the faster limit here is that it keeps track of all server to server communication. This means a higher overhead per message as well as the potential for multiple people communicating if the two servers are popular and have a number of people talking to each other.
Port 5269 for the S2S server will definitely need to be accessible externally. If you do not allow the port to be accessed externally, no server to server messages will function.
HTTP Service
Port 5280 contains the HTTP service, which provides a number of pieces of functionality:
{5280, ejabberd_http, [
http_bind,
http_poll,
web_admin
]}
With the exception of the Web admin interface, the http server component of ejabberd is used as a method to access the XMPP service over the HTTP protocol rather than serving content like a traditional web server. Specifically, it implements APIs that may be used by fully web-based XMPP clients.
Opening port 5280 to the world is optional, based upon if you want to leverage any of the preceding features from outside of your network.
Access control
The biggest item to look at in the access control section is the definition of the admin user. Here is where we define one or more users to be site admins. This allows them to do things like send out broadcast messages, control chat rooms, and other things:
{access, announce, [{allow, admin}]}.
{access, configure, [{allow, admin}]}.
{acl, admin, {user, "admin", "example.com"}}.
Note that it does not define the user itself, rather it just allows any user defined by that Jabber ID (JID) to be part of the admin group. The user itself in our case is defined by its existence as a local user account, so you'll want to make sure that your admin user is an actual system user as well.
We also restrict access to the configuration and announce services to just the admin group in order to prevent other users from reconfiguring the service or sending broadcast messages.
Modules
The last major piece is the modules load list, which defines what optional pieces of functionality we want to enable:
{modules,
[
{mod_adhoc, []},
{mod_announce, [{access, announce}]},
{mod_blocking,[]},
{mod_caps, []},
{mod_configure,[]},
{mod_disco, []},
{mod_http_bind, []},
{mod_last, []},
{mod_muc, [
{host, "conference.@HOST@"},
{access, muc},
{access_create, muc_create},
{access_persistent, muc_create},
{access_admin, muc_admin}
]},
{mod_offline, [{access_max_user_messages,
max_user_offline_messages}]},
{mod_ping, []},
{mod_privacy, []},
{mod_private, []},
{mod_pubsub, [
{access_createnode, pubsub_createnode},
{ignore_pep_from_offline, true},
{last_item_cache, false},
{plugins, ["flat", "hometree", "pep"]}
]},
{mod_roster, []},
{mod_shared_roster,[]},
{mod_stats, []},
{mod_time, []},
{mod_vcard, []},
{mod_version, []}
]}.
We are only going to look at a couple of the bigger modules here, but the rest are defined within the ejabberd installation and operations guide: https://www.ejabberd.im/files/doc/guide.html.
mod_muc
mod_muc implements the Multi-User Chat functionality defined by XEP-0045, although you may know them as chat rooms. We define a virtual hostname for the MUC service, which in this case would be conference.example.com (defined as conference.@HOST@ in order to support servers hosting multiple domains.
We also define which access control group is able to create (muc_create), manage (muc_admin), or join chat rooms (muc). The access control settings limit to local users, admin users, and all users, respectively:
{access, muc_admin, [{allow, admin}]}.
{access, muc_create, [{allow, local}]}.
{access, muc, [{allow, all}]}.
mod_roster
mod_roster enables the creation of buddy groups within your chat client. This is necessary if you're building a chat system, but perhaps less important if you're just using ejabberd as a general XML message passing system.
mod_announce
mod_announce allows users on the correct access control group (admin in our example) to send broadcast messages to all logged-in users. This may be a useful feature for a small server full of trusted users, or it is a potential for abuse for larger servers if it is available to more than just admins.
Configuring DNS for XMPP
Much like an e-mail server, there are special DNS records which you can optionally add to your zone file in order to change how the XMPP service operates.
How to do it…
_xmpp-client._tcp 28800 IN SRV 20 0 5222 xmpp.example.com.
_xmpp-server._tcp 28800 IN SRV 20 0 5269 xmpp.example.com.
How it works…
Similar to an e-mail, XMPP can use normal A records (or CNAMEs) for a given domain to handle message delivery if the messages are going to be defined to the IP for the root of the domain. In other words, if user@example.com will be hosted on a server which example.com points to directly, then it will work fine.
Also similar to an e-mail, it often makes sense to have the traffic served by a different machine. Rather than MX records which are mail-specific, XMPP uses SRV records, which are a more general approach to looking up a service.
The SRV records are in the format of:
Configuring the Pidgin client
While using XMPP as an XML message passing system is becoming more and more common, the original use was using it for user-to-user chatting. With this use case, you'll want to use client software for accessing the service.
One common open source XMPP client is Pidgin. Pidgin was initially created as the GTK+ AIM client, or GAIM. Over time, gaim gained the ability to implement additional protocols via a plugin architecture. In 2007, gaim was renamed pidgin in response to the legal pressures from America Online, who owned a trademark on the name AIM.
Pidgin plugins can also implement other pieces of functionality including an implementation of the Off the Record (OTR) protocol, which allows for end-to-end encryption of chat messages layered over the underlying protocol.
In addition to making protocols available as plugins, Pidgin split its core chat functionality into a separate library called libpurple, which was then adopted by other client implementations as well.
Pidgin is available on Windows, most Linux distributions, BSDs, and on Mac OS X. On OS X, you might prefer to look at Adium instead, which is a native OS X application using Pidgin's libpurple library for protocol support.
Lets take a look at how to use Pidgin to connect to our XMPP server.
How to do it…
The install process here is going to be a bit different since we're going to be installing Pidgin on what is essentially a client system rather than the server that we've been working on setting up. The client system itself may be Windows, Mac or another Linux system though, so we'll talk briefly about installing on each platform.
Install pidgin
If you are using Pidgin on an Ubuntu desktop, you can install it with sudo apt-get install pidgin. For Windows systems, you'll want to download and run the Windows installer from http://www.pidgin.im. For Mac OS X, it may be installed via source or through the MacPorts or Homebrew projects.
Configuring your account
Upon first launch, Pidgin will prompt you to add an account:
After selecting Add, you'll see a screen that allows you to select the protocol and various configuration options:
Setting the username and domain should be enough in our case. Pidgin will use the SRV records that we previously configured to locate and connect to your XMPP server instance.
If the XMPP SRV records were not in place, then Pidgin would attempt to connect to the A record for example.org, which may or may not be the right system. If example.org is not the correct system to connect to, then you can override the server to connect to by setting the Connect Server under the Advanced tab:
Once connected, you will be able to chat with any other user on the system, or use various built-in server functionalities, such as the Multi-User Chat (MUC) rooms. Additionally, if you previously configured XMPP S2S connections, you can exchange messages with users on other public XMPP servers.
How it works…
Once the account is configured, Pidgin will attempt to determine how to connect to the specified domain. It will start by attempting to look up the SRV record for_xmpp-client._tcp.example.org. If that DNS record does not exist, it will attempt to find the A record for example.org and direct connect to the returned address.
In the default configuration, Pidgin will attempt to connect via port 5222 while requiring TLS support via STARTTLS. If you did not configure your server with TLS certificates, you'll need to change the settings for Connection Security and potentially check Allow plaintext auth over unencrypted streams if you are not using a form of challenge response authentication.
Assuming TLS support is in use, the certificate provided by the server will be validated to confirm that it is properly signed by a trusted authority and that the common name of the certificate is valid for its usage.
The common name for the certificate will need to match example.org in our default configuration, which uses SRV records. If instead you are specifying the Connect Server in the advanced tab, then the server certificate must match the hostname specified in that field. Often, XMPP servers are configured with TLS certificates, which specify Subject Alternate Names (SAN) in order to support both the XMPP realm (example.org) and the server name itself.
Once the connection is established, the client and server will negotiate an authentication protocol that they have in common. Typically, they will prefer a challenge/response SASL mechanism, such as GSSAPI or CRAM-MD5, but it can fall back to just sending the password itself over the connection.
Chapter 10. Monitoring Your Network
In this chapter, we will cover:
Introduction
While a bit less common for home networks, monitoring is one of the key responsibilities of a systems administrator in the business world. A good sysadmin should be aware of failures in the systems that they're responsible for before the end user notices the problems. In fact, they are often aware of issues before they occur, due to monitoring resources to detect bottlenecks before they trigger any service degradation.
Monitoring can fall into a number of categories, including graphing, alerting, and in some cases, automated fixes.
Installing Nagios
Nagios is an industry standard for open source monitoring and reporting. It is incredibly flexible and extendable, for better or worse. Getting it set up and running is not too difficult, but additional thought and understanding both Nagios and the systems which you would like to monitor will be necessary in order to create a configuration which is easy to understand and maintain.
How to do it…
sudo apt-get install nagios3
How it works…
Debian and Ubuntu have done most of the hard work of determining how to configure Nagios for you. Once you install the nagios3 meta package and all of its dependencies, you automatically get a configured Nagios system which is functional and already configured to monitor the local system.
Adding Nagios users
Nagios automatically creates the nagiosadmin user with full access rights to the system, but if you're operating in a larger environment, you will likely want to provide additional user accounts for other users to connect to. This will allow you to use a finer grained access control as well as making your life easier, as employees come and go in the company.
How to do it…
htpasswd /etc/nagios3/htpasswd.users user
<IfModule mod_authnz_external.c>
AddExternalAuth pwauth /usr/sbin/pwauth
SetExternalAuthMethod pwauth pipe
</IfModule>
<DirectoryMatch (/usr/share/nagios3/htdocs|/usr/lib/cgi-bin/nagios3|/etc/nagios3/stylesheets)>
Options FollowSymLinks
DirectoryIndex index.php index.html
AllowOverride AuthConfig
Order Allow,Deny
Allow From All
AuthName "Nagios Access"
AuthType Basic
AuthBasicProvider external
AuthExternal pwauth
require valid-user
</DirectoryMatch>
/etc/nagios3/conf.d/contacts_nagios2.cfg.
sudo service nagios3 restart
How it works…
There are two pieces to this configuration:
There are several ways to grant access to a given user:
Adding Nagios hosts
Monitoring the local system is different than monitoring remote systems. A big part of this is that while monitoring your local system, you have full access to information regarding number of processes, amount of memory, CPU usage, and so on. When you're looking at remote systems, you're limited to accessing remotely accessible information like if a remote port is listening, ping ability, and so on. If you require the ability to collect more in depth information, you'll need to configure something to make the additional information available.
How to do it…
You can configure additional hosts to be monitored by Nagios by creating additional host entry in a .cfg file within /etc/nagios3/conf.d/.
The content should be:
define host {
use generic-host
host_name testbox
hostgroups http-servers,ssh-servers
}
While multiple machines may be defined within the same .cfg file, separate files per machine may make more sense for future manageability. You can also choose to put the files within a subdirectory of conf.d that Nagios will automatically detect. I like to put my hosts into /etc/nagios3/conf.d/hosts.
How it works…
The host definition works using generic-host as a template for the host and then overriding values from that template as needed. The generic-host template is defined within /etc/nagios3/conf.d/generic-host_nagios2.cfg. These templates work by just existing as a defined host, but with register set as 0 so that Nagios does not attempt to monitor them directly.
Next, we define a host_name for the host. This setting is used in a variety of ways, including acting as a unique identifier for the host within Nagios configurations, as the name displayed within Nagios (unless overridden by a display_name setting), and as the hostname to attempt to collect data from (unless overridden by an address setting).
Finally, we have an optional hostgroups definition, which defines some groups which the machine is a member of for easier service configuration. If desired, you can also add the host to a hostgroup through the hostgroup definition itself. You'll want to consider what makes more sense for longer term manageability.
Monitoring services
A service in nagios defines a particular test which should be run. At a minimum you need to define a name for the service and the command to run in order to monitor it.
Similar to hosts, it is defined within .cfg files in /etc/nagios3/conf.d or a subdirectory. At a technical level, there is no difference between a .cfg file that defines a host versus one that defines a service. They are split in Ubuntu's default configuration just for ease of management. If you wanted to, you could have a single flat .cfg that defines all hosts, services, and users.
How to do it…
Again I like to split my services into a subdirectory, so let's look at defining a service to monitor HP Jetdirect printers by creating /etc/nagios3/conf.d/services/printer.cfg containing:
define hostgroup {
hostgroup_name printers
}
define service {
hostgroup_name printers
service_description jetdirect
check_command check_hpjd
use generic-service
notification_interval 0
}
How it works…
Here we've defined a new hostgroup with a name of printers in order to be able to more easily add additional printers in the future. This hostgroup configuration could also exist in hostgroups_nagios2.cfg, but for our purposes it makes sense to co-exist with the service itself.
Next, we define the service itself, basing it upon the generic-service template defined in generic-service_nagios2.cfg. We then give it a service description, which must be unique for a given server. You may have multiple services with the same name as long as they do not apply to the same systems, but you may want to avoid this in order to avoid confusion.
Next, we define the check_command, which is the command that we're going to run in order to collect the data on a given service. Our example is the check_hpjd command, which uses the HP Jetdirect protocol to collect information about a remote printer. Hewlett-Packard created the protocol for their printers, but a number of other printer vendors implement the protocol as well.
Some commands accept arguments, which are defined by separating them by ! characters. For example, check_users checks a warning threshold for the first argument and a critical threshold for a second argument. These are passed in your check_command definition by writing check_users!20!50.
Defining commands
The commands that you may use for a given service need to be defined as well. The commands are defined within /etc/nagios-plugins/config, which is also included by /etc/nagios3/nagios.cfg.
This is a useful place to look if you want to see how an existing command is defined, or if you want to define your own custom command.
How to do it…
Let's create a custom command that uses an existing plugin to monitor a new service. Plex media servers are configured by default to use a web server configured on port 32400. So let's define a check_plex service that uses check_http on port 32400.
To do this, we're going to create /etc/nagios-plugins/config/plex.cfg:
define command{
command_name check_plex
command_line /usr/lib/nagios/plugins/check_http -H '$HOSTADDRESS$' -I '$HOSTADDRESS$' -p 32400 '$ARG1$'
}
How it works…
Command definitions are simple. You provide a command name and then the command you're going to execute on the local box in order to collect data.
There are a number of macros that are available to put into the configuration, including the $HOSTADDRESS$ and $ARG1$ settings we used previously. $HOSTADDRESS$ is populated by the host_name or address variables within the host definition. $ARG1$ is populated by the first argument specified in the call to check_plex (if defined). We can then pass any macros we want to the check_http command, which the nagios daemon will call.
Monitoring via NRPE
As I mentioned earlier, a number of plugins, such as check_memory, collect information from the system itself, which means that they cannot be directly used for monitoring remote systems. As these are often critical things to monitor, there are ways available to indirectly collect that information from remote systems using the Nagios Remote Plugin Executer (NRPE).
NRPE runs on the machine that you'd like to monitor and executes the same commands/plugins which Nagios itself would have. Nagios is then configured to collect data from NRPE rather than collecting data directly.
How to do it…
sudo apt-get install nagios-nrpe-server
sed -i 's|allowed_hosts=.*|allowed_hosts=192.168.1.0/24|g' /etc/nagios/nrpe.cfg
command[check_raid]=/usr/lib/nagios/plugins/check_raid
define hostgroup {
hostgroup_name linux-servers
}
define service {
hostgroup_name linux-servers
service_description Check Users
check_command check_nrpe_1arg!check_users
use generic-service
notification_interval 0
}
How it works…
There are two major parts to using NRPE: configuring the NRPE services in your remote machine and configuring Nagios to use NRPE for collecting data.
On the target
There are two major parts to using NRPE: configuring the NRPE services in your remote machine and configuring Nagios to use NRPE for collecting data.
When configuring NRPE itself on the remote hosts, you'll want to ensure that your allowed_hosts definition is as restrictive as possible, while still allowing all your monitoring systems to talk to it in order to avoid allowing random people to collect data about your systems. Additional protections, such as firewall rules, may not be a bad idea as well.
When it comes to the commands which nrpe will execute, configuration is a lot simpler than it is with Nagios, but less flexible. Your service definition specifies the name of the command (check_raid) and the command which will be executed, including any arguments.
Since any macros defined on your Nagios server would need to be passed to NRPE over the network, support for command line arguments to commands is discouraged. This is to avoid allowing attackers to execute arbitrary commands remotely. Instead, the commands will be configured in a manner that is either specified to the host, or generic enough to have the desired behavior on any system.
On the Nagios host
Monitoring on the Nagios server side is handled just like it would be for any other service. The only difference is that the command being executed is check_nrpe_1arg, and its first argument is the command to execute on the remote host.
If you need to pass arguments to the remote NRPE daemon, they can be passed by using check_nrpe instead and passing it as an additional argument. For example, check_nrpe!check_custom!-a arguments.
Monitoring via SNMP
In addition to using NRPE to collect data, Nagios can also collect data via SNMP (Simple Network Management Protocol). This is especially useful for monitoring network equipment like routers and switches, which often have SNMP agents built into them.
How to do it...
sudo apt-get install nagios-snmp-plugins
define hostgroup {
hostgroup_name snmp-hosts
}
define service {
hostgroup_name snmp-hosts
service_description Load Average
check_command \ check_snmp_load_v2!netsc!30!40!!public
use generic-service
notification_interval 0
}
define service {
hostgroup_name snmp-hosts
service_description Interface Status
check_command \ check_snmp_int_v2!!!public
use generic-service
notification_interval 0
}
define service {
hostgroup_name snmp-hosts
service_description Memory Usage
check_command \ check_snmp_mem_v2!!90,20!95,30!!public
use generic-service
notification_interval 0
}
How it works…
Our example here assumes that you're monitoring a network device that already has SNMP enabled. Additionally, it must use the community string of public. If you wish to use a different community string, then you'll need to replace public with the correct value in the preceding example.
Each of the check_snmp_* commands that we use here are defined in /usr/share/nagios-snmp-plugins/pluginconfig/snmp_*.cfg and use scripts installed by the nagios-snmp-plugins package. You can look at the .cfg file in order to determine the correct order of arguments.
Unused arguments can be left blank. For example, Memory Usage uses check_snmp_mem_v2, which is defined by /usr/share/nagios-snmp-plugins/pluginconfig/snmp_mem.cfg as:
define command {
command_name check_snmp_mem_v2
command_line $USER1$/check_snmp_mem.pl -H $HOSTADDRESS$ -C $ARG5$ -2 $ARG1$ -w $ARG2$ -c $ARG3$ $ARG4$
}
Reading the preceding setting, you can see that the first argument is used right after -2 (use snmpv2), which itself doesn't take any arguments. $ARG1$ instead can be used for passing arbitrary options. $ARG2$ defines the warning threshold (-w). $ARG3$ defines the community string (-c). Finally, $ARG4$ may also be used for specifying arbitrary options at the end of the command line.
Chapter 11. Mapping Your Network
In this chapter, we are going to cover:
Introduction
Modern home and small business networks are not the simple things they once were with only a handful of devices on them. Between the Internet of Things (IoT), streaming video devices, microcomputers such as the Raspberry Pi, and phones/tablets, you can expect your network to contain dozens of utilized IP addresses.
If you want to have a good security posture on your network, having a good understanding of what exists is critical. If you do not understand what exists, then you cannot understand what should not be there. This could mean an unpatched system that you forgot about, or it could mean an intruder on your network.
In this chapter, we will be talking about some of the various steps you can take in order to better inventory your network and what tools you should use in order to do it.
Detecting systems on your network with NMAP
If you have heard of nmap before, it was likely as a hacker tool. These days it is most commonly used as a port scanner, but it actually started its life as a network-mapping tool for discovering hosts. In fact, nmap stands for Network Mapper. It can utilize ICMP, UDP, and TCP.
Let us look at how to utilize it to discover what systems exist on your network.
How to do it…
First, we need to make sure that we have nmap installed. Luckily, it is a common enough tool to be available in the package repository for your selected distribution, and it will be accessible either by running sudo apt-get install nmap or sudo yum install nmap.
Next, we will do a simple ICMP sweep of the network to see who responds:
nmap -sP 10.0.0.0/24
Starting Nmap 6.40 (http://nmap.org) at 2016-05-03 15:43 EDT
Nmap scan report for 10.0.0.1
Host is up (0.00053s latency).
MAC Address: 52:54:00:65:7D:0A (QEMU Virtual NIC)
Nmap scan report for 10.0.0.10
Host is up.
Nmap done: 256 IP addresses (2 hosts up) scanned in 2.06 seconds
Overall, it is a bit boring, since all our network contains is our router and the single client system. Things get a bit interesting when we scan a larger network:
nmap -n -sP 192.168.1.0/24
Starting Nmap 6.40 (http://nmap.org) at 2016-05-03 15:49 EDT
Nmap scan report for 192.168.1.1
Host is up (0.00041s latency).
MAC Address: E8:DE:27:BA:D0:BE (Tp-link Technologies Co.)
Nmap scan report for 192.168.1.105
Host is up (-0.100s latency).
MAC Address: 00:17:88:14:44:7D (Philips Lighting BV)
Nmap scan report for 192.168.1.115
Host is up (0.25s latency).
MAC Address: 00:04:20:F1:4D:1D (Slim Devices)
Nmap scan report for 192.168.1.117
Host is up (0.010s latency).
MAC Address: C8:E0:EB:16:EE:93 (Apple)
...
Nmap scan report for 192.168.1.254
Host is up (0.00034s latency).
MAC Address: 60:E3:27:49:1C:5E (Unknown)
Nmap scan report for 192.168.1.237
Host is up.
Nmap done: 256 IP addresses (32 hosts up) scanned in 4.23 seconds
How it works…
Nmap allows you to scan IP addresses by specifying an IP Address, a CIDR block, or a range (for example, 192.168.1.10-20). You can even specify multiples of each on the command line in order to increase the number of targets of your scan.
The –s argument allows you to specify the scan type. We are using –sP, which tells nmap to do a ping scan. Also supported are SYN scans, TCP Connect scans, UDP scans, and so on.
During a ping scan of a remote network, nmap sends ICMP echo requests to all of the target hosts, listening for ICMP echo responses from the target. For each host that responds from within the specified ranges, the latency is provided.
If you are scanning a local network then the ICMP echo requests are replaced by ARP requests. This has the benefit of being able to find systems that are configured to ignore ICMP packets. If you are running a local scan as the root user, then you will get the MAC address of the responding systems in the scan results as well, as shown by our preceding output.
The vendor identification works as a function of the MAC address. The first half of a given MAC address is a unique vendor identifier assigned by The Institute of Electrical and Electronics Engineers, or IEEE. The mapping of MAC address prefix to vendor is made available online for free by the organization, and various tools may be found online for looking up the manufacturer of a given MAC.
Detecting Systems Using Arp-Scan
Some systems choose to block the ICMP traffic, which can result in them not appearing in a ping scan. Any system on your local network, however, must respond to ARP requests if they are going to communicate with additional machines on the network. This gives you an additional option for system enumeration when you are on the local network segment.
How to do it…
First, you install a tool, which will allow you to issue arbitrary arp requests. There are many tools like this, but we are going to use arp-scan, since it allows you to specify entire netblocks rather than just individual IP addresses:
$ sudo apt-get install arp-scan
Now you can actually use the tool to scan your local network segment:
$ sudo arp-scan 192.168.1.0/24
Interface: eth0, datalink type: EN10MB (Ethernet)
Starting arp-scan 1.8.1 with 256 hosts (http://www.nta-monitor.com/tools/arp-scan/)
192.168.1.1 44:d9:e7:9b:a2:9d (Unknown)
192.168.1.2 40:8d:5c:4b:85:d9 (Unknown)
192.168.1.105 00:17:88:14:44:7d Philips Lighting BV
192.168.1.129 00:1f:bc:11:99:13 EVGA Corporation
192.168.1.164 40:8d:5c:59:d6:50 (Unknown)
192.168.1.156 74:75:48:29:b1:fa (Unknown)
192.168.1.178 00:d9:d1:26:3a:ea (Unknown)
192.168.1.191 d0:52:a8:53:f3:07 (Unknown)
192.168.1.193 d8:cb:8a:1b:8a:b1 (Unknown)
192.168.1.116 00:04:20:f3:d0:7a Slim Devices, Inc.
192.168.1.125 74:75:48:15:b9:95 (Unknown)
192.168.1.216 fc:aa:14:d9:ef:c0 (Unknown)
192.168.1.224 80:2a:a8:13:15:93 (Unknown)
192.168.1.207 c8:e0:eb:16:ee:93 (Unknown)
192.168.1.205 74:da:ea:f3:ff:07 (Unknown)
192.168.1.227 8c:e2:da:f0:52:22 (Unknown)
192.168.1.229 a4:1f:72:ff:0e:77 (Unknown)
192.168.1.233 52:54:00:34:21:f6 QEMU
192.168.1.236 08:00:27:f5:28:d1 CADMUS COMPUTER SYSTEMS
192.168.1.239 70:56:81:a3:d4:43 (Unknown)
192.168.1.188 80:1f:02:7e:73:0e Edimax Technology Co. Ltd.
192.168.1.243 0c:4d:e9:ce:fc:0b (Unknown)
192.168.1.117 00:04:20:f1:4d:1d Slim Devices, Inc.
192.168.1.141 00:01:36:43:4f:a9 CyberTAN Technology, Inc.
192.168.1.192 d0:e7:82:7c:88:ef (Unknown)
192.168.1.159 b8:3e:59:15:78:65 (Unknown)
192.168.1.254 60:e3:27:49:1c:5e (Unknown)
192.168.1.131 84:a4:66:34:d2:63 (Unknown)
192.168.1.206 64:bc:0c:46:bf:c1 (Unknown)
192.168.1.208 00:80:92:b0:d4:f2 Silex Technology, Inc.
192.168.1.154 78:4b:87:70:37:56 (Unknown)
192.168.1.210 74:75:48:8b:01:3e (Unknown)
192.168.1.211 64:bc:0c:2e:4f:55 (Unknown)
192.168.1.165 00:11:d9:a2:c6:7e TiVo
36 packets received by filter, 0 packets dropped by kernel
Ending arp-scan 1.8.1: 256 hosts scanned in 1.216 seconds (210.53 hosts/sec). 34 responded
How it works…
ARP scans are very simple. The utility simply has to send a broadcast ARP request packet which asks who has a particular IP address. Any listening system configured for that IP address will send a broadcast ARP response that provides the MAC address that owns that IP address. If multiple systems believe that they own the IP (for example in an IP conflict), then they will both respond to the request.
An upside to this scan approach is that it is simple/quick to use, allowing you to scan large local networks in a fast manner. It is also more effective than a ping scan, since it will detect systems that are blocking ICMP traffic.
The downside is that this approach only works on the local layer 2 network. Since ARP packets are never routed, the scan cannot be used to scan a network which you are not physically connected to.
Scanning TCP ports
Now that we have identified which systems exist, we can look at what services exist on those hosts. We will start with TCP services, since they are much easier to understand the results for.
There are a number of different types of TCP scans, but we are going to look at the two most common ones, the Connect scan and the SYN scan.
How to do it…
The two most common types of scans used for detecting open TCP ports are TCP Connect Scans, and SYN scans. SYN scans are the stealthier and potentially safer option, but require root privileges to run. Let's look at both and see how they differ.
TCP CONNECT scan
Let's start the TCP connect scan:
$ nmap -sT 10.0.0.10
Starting Nmap 6.40 (http://nmap.org) at 2016-05-06 15:14 EDT
Nmap scan report for 10.0.0.10
Host is up (0.0016s latency).
Not shown: 994 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
Nmap done: 1 IP address (1 host up) scanned in 0.14 seconds
TCP SYN scan
Let's start the TCP SYN scan:
$ sudo nmap -sS 10.0.0.10
Starting Nmap 6.40 (http://nmap.org) at 2016-05-06 15:15 EDT
Nmap scan report for 10.0.0.10
Host is up (0.000069s latency).
Not shown: 994 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 52:54:00:A7:A4:19 (QEMU Virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 1.66 seconds
How it works…
The TCP Connect scans are the default type of scan if you are running as a non-root user. Much like any other application attempting to connect to a TCP port, it issues a connect request that tells the operating system to do a normal 3-way TCP handshake, closing the connection if it is accepted.
SYN scans are a stealthier scan, opting to complete only steps 1 and 2 of the TCP handshake before sending a reset packet in order to abort the attempt. This means that the application, which is bound to the port, does not ever see an established connection, so it will not log the connection attempt. It is also potentially safer, since historically, some applications have not dealt well with connections being opened and then closed by a port scan.
Since SYN scans do not perform the full TCP handshake, like the Linux kernel would do by default, they require access to RAW sockets, which is typically restricted to root. RAW sockets allow an application to craft and send their own custom packets, which allows you the ability to skirt various rules of network traffic. Once you are a root user for the scan, nmap will select SYN scans by default.
Additional TCP scans are available, for example, the FIN scan, Null scan, or the X-Mas scan. These scan types tend to be less generally useful; however, you may find interest in reading more about them later.
Scanning UDP ports
It is very easy to read the results of a TCP scan due to its stateful nature. A SYN packet will always be answered with a FIN if the port is closed or a SYN/ACK if the port is opened. The lack of a response means that either the request or its response was filtered.
UDP is not so easy, due to it being stateless. A UDP packet to a closed port will result in an ICMP Destination Port Unreachable message. A filtered UDP packet will result in no response. The tricky part is that the behavior when something is listening to the port is application specific. Since there is no initial handshake, the application simply receives the data and then either responds or not depending on the application's requirements. If the application does not respond, it will look just like a filtered port.
How to do it…
Similar to SYN scans, UDP scans require root privileges. Simply use –sU in order to specify UDP for the scan type.
Before we run the scan, let's add UDP filtering on port 22 in order to see how it looks in the results:
$ sudo iptables -A INPUT -p udp -m udp --sport 22 -j DROP
Now, let's perform the scan:
$ sudo nmap -sU -p 1-100 10.0.0.10
Starting Nmap 6.40 (http://nmap.org) at 2016-05-08 14:40 EDT
Nmap scan report for 10.0.0.10
Host is up (0.00067s latency).
Not shown: 97 closed ports
PORT STATE SERVICE
22/udp open|filtered ssh
53/udp open domain
68/udp open|filtered dhcpc
MAC Address: 52:54:00:A7:A4:19 (QEMU Virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 107.49 seconds
How it works…
The preceding UDP scan shows all four potential scenarios in its result.
The majority of the UDP ports on this system do not have applications listening on them. You can see this in the line which says Not Shown: 97 Closed Ports. Results from an nmap scan will automatically consolidate the answer, which occurs most often in order to cut down on the size of the output.
UDP port 22 in the preceding results shows a state of open|filtered. This means that the UDP packet did not result in an ICMP Port Unreachable error, which means that the packet was either accepted or dropped by a firewall. In our case, it was filtered in our iptables rule.
UDP port 53 in the preceding results shows as Open. This is due to bind9 currently being installed/running on that IP address. The UDP packet sent by nmap results in the bind9 server responding with NOTIMP, or Not Implemented. This means that the request type in the packet was not recognized, which makes sense, since it was not actually a DNS packet.
Finally, port 68 also shows open|filtered, just like port 22. In this case, it is due to port 68 being used by our DHCP client. The client does not bother responding to the packet, since it is a valid DHCP packet. You can determine what is listening with on a given UDP port using the lsof command:
lsof -i udp:68
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
dhclient 1215 root 6u IPv4 9362 0t0 UDP *:bootpc
Identifying services
Another useful piece of functionality that nmap provides is the ability to identify services by attempting to grab application banners or issue various types of known requests and determine the service based upon how it responds.
How to do it…
Use –sV to probe for service/version information:
$ nmap 10.0.0.10 -sV
Starting Nmap 6.40 (http://nmap.org) at 2016-05-08 16:15 EDT
Nmap scan report for 10.0.0.10
Host is up (0.0016s latency).
Not shown: 995 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh (protocol 2.0)
25/tcp open smtp Postfix smtpd
53/tcp open domain
80/tcp open http Apache httpd 2.4.7 ((Ubuntu))
111/tcp open rpcbind 2-4 (RPC #100000)
1 service unrecognized despite returning data. If you know the service/version, please submit the following fingerprint at http://www.insecure.org/cgi-bin/servicefp-submit.cgi :
SF-Port22-TCP:V=6.40%I=7%D=5/8%Time=572F9E4A%P=x86_64-pc-linux-gnu%r(NULL,
SF:2B,"SSH-2\.0-OpenSSH_6\.6\.1p1\x20Ubuntu-2ubuntu2\.6\r\n");
Service Info: Host: client
Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 11.23 seconds
How it works…
A version scan starts like a normal TCP connect scan, except established connections are used to look for banner strings (such as the SSH banner or the Postfix one). From there, nmap will look for banner strings and will send various types of requests (http, ftp, SSL handshakes, and so on) and try to identify services by the way that it responds. Either the result of this scan will identify the service, similar to Apache, or it will provide some details about the scan results, which may be submitted to Nmap's site for future identification.
Identifying operating systems
In addition to identifying services running on servers, nmap can additionally attempt to identify the Operating System running on a particular system. This type of scan typically requires at least one open and one closed port to be reached.
How to do it...
Use nmap –O to do OS fingerprinting:
$ sudo nmap -n -O 192.168.1.205 -p 22,80
Starting Nmap 6.40 (http://nmap.org) at 2016-05-20 17:57 EDT
Nmap scan report for 192.168.1.205
Host is up (0.013s latency).
PORT STATE SERVICE
22/tcp closed ssh
80/tcp open http
MAC Address: 74:DA:EA:F3:FF:07 (Unknown)
Device type: general purpose
Running: Linux 2.6.X|3.X
OS CPE: cpe:/o:linux:linux_kernel:2.6 cpe:/o:linux:linux_kernel:3
OS details: Linux 2.6.32 - 3.2
Network Distance: 1 hop
OS detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 2.63 seconds
How it works…
Nmap's OS detection code works by issuing various packet types to services and looking at how the system responds. The proper response for a SYN packet is either a FIN or a SYN/ACK, but what is the proper response for a packet that makes no sense, like a TCP packet with no flags set? Since the behavior is not defined by the RFCs, it tends to vary based upon choices made by the developer. By observing the responses of a number of these unusual packet choices, nmap is able to narrow down which operating system is responding to the packets.
Some of the issued probes run to be done against open ports, while others run against closed ports. Due to this, you will find that the OS scan works best if the system has at least one open and one closed port available. A system that filters any closed ports will likely get much less reliable scan results.
Another problem to watch out for is scanning a system that is doing TCP port filtering to another system. If you are scanning a Linux router, which has port 80 forwarded to a Windows box, nmap will find the scan results rather confusing.
Chapter 12. Watching Your Network
In this chapter, we are going to cover:
Introduction
Any network connected to the Internet can expect to see malicious traffic. Now, this could range anywhere from something like compromise of your system or an intruder connected to your network, or it could be something as simple as browsing the wrong website that attempts to use the latest Flash or Java exploit.
If your network is hosting anything of value, it may make sense for you to monitor this sort of traffic. It will allow you to notice the laptop infected with Malware that is probing your other systems.
Alternatively, maybe you just want to watch your network traffic in order to detect misconfigurations. Perhaps one of your systems is misconfigured, resulting in it hammering away at your server. IDS systems can be flexible enough to catch any sort of traffic that you would like to look for.
Setting up centralized logging
Linux servers are typically configured to use a syslog based logging system for handling events. There is a wide collection of syslog implementations, each with their own little take on log handling. By default, Ubuntu servers are configured with rsyslog, which is a fast and feature-full syslog implementation.
The configuration for rsyslog is defined in /etc/rsyslog.conf, as well as in any *.conf files included in /etc/rsyslog.d/. If you look in /etc/rsyslog.d/50-default.conf, you will see configuration entries, such as:
auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
The left-hand side shows the facility/severity of the syslog events. You can specify more than one of them using a comma separating the values. For example, auth, authpriv.* specified preceding logs both the auth and authpriv facilities at all severities to /var/log/auth. The syslog protocol allows for 24 different facilities (0-23), including ones dedicated for kernel messages, mail messages, user messages, and a variety of locally defined message types. The severity ranges from Emergency at severity 0, to Debug at severity 7.
The right-hand side shows the destination of the message. In both of these examples, the messages are being logged to a file. The first example logs messages to /var/log/auth.log. After each line is completed, the service calls sync in order to ensure that the messages are written to disk. The second example includes a – before /var/log/syslog in order to signify that the sync calls should be omitted. Logging with the sync calls omitted operates faster, but at the expense of potentially losing log entries during a system crash.
Input methods
The stock Ubuntu configuration only uses Unix Sockets and Kernel messages for receiving syslog data. Rsyslog itself is additionally have to read messages via TCP or UDP ports, through reading plaintext log files, or directly from system.
Output methods
Rsyslogd has more output options than it has input options. In addition to logging to plaintext files, rsyslog can log to a variety of databases, the systemd logger, pipes, SNMP, or to other syslog servers over TCP or UDP.
By setting a specific server to accept syslog messages via TCP or UDP, you can choose to forward copies of messages from all of your servers to a central logging location.
How to do it…
Configure your central server to accept messages via UDP by uncommenting the following lines in /etc/rsyslog.conf:
$ModLoad imudp
$UDPServerRun 514
Configure your other systems to forward their messages on to that system via UDP by adding the following to a file in /etc/rsyslogd.d/:
. @10.0.0.1
How it works…
$ModLoad tells rsyslog to load a particular module. In this case, we're loading the UDP input module (imudp). In order for rsyslog to actually start listening though, you must define the port to listen on by setting $UDPServerRun. The UDP port assigned from the the Internet Assigned Numbers Authority (IANA) is 514, so we are going to use that for the value.
On the logger side of the equation, things are much simpler. Just define the FACILITY.SEVERITY that you want to log remotely, and specify @TARGET. The target name can be a hostname or an IP address. In this case, I am forwarding messages to our router. It could very well make sense to have the log server be a dedicated box that even the router can send its messages to.
If you want to use TCP rather than UDP, you simply need to $ModLoad imtcp instead and define $InputTCPServerRun, and then specify your logging target as @@10.0.0.1 instead of @10.0.0.1. The choice between TCP and UDP will depend on your needs.
UDP is fast and does not require an established TCP connection, which could potentially be a limited resource on your system. More devices also very well support it since it, tends to be the default choice. As a downside however, it is trivial to spoof the source of, which could potentially lead to someone giving you false logs. It is also impossible to notice if you have dropped messages.
Using TCP instead provides you the additional reliability of a connection based protocol and the added spoof protection of the TCP three-way handshake. It can also be tunneled through proxies or wrapped in TLS to provide authentication of the server and client.
Installing a Snort IDS
To start monitoring our network for irregular traffic, we are going to start by installing a Snort IDS. Snort is one of the oldest and most feature packed Open Source Network Intrusion Detection Systems (NIDS). It is free for use, and there is a wide collection of rules freely available for it, as well as information and support on designing your own custom checks.
How to do it…
sudo apt-get install snort
How it works…
The network range(s) that you defined as local in the third step are used to populate the $HOME_NET setting within Snort. $HOME_NET and $EXTERNAL_NET are used within snort rules to allow you to specify the direction of the flow of packets which you care about.
Snort also wants to know what network interface it should put in promiscuous mode and listen on. Which interface you want to use has some rather interesting implications as to what you can see and how it will look.
WAN Interface
Your first instinct may be to monitor on your WAN interface, since it is externally facing. This is also very useful as it will allow you to detect attacks against any public facing services that you placed on the router box itself rather than forwarding to an internal server.
This approach will work, but it has some limitations. The main limitation is that even though monitoring from the WAN interface will show you any malicious traffic between a remote server and a computer behind your router, the traffic will always show the connection as being between the remote server and your router. This is because Snort is monitoring the external interface; it is seeing the packets before they are rewritten by the kernel. Therefore, you may discover that you have a compromised system on your network, but you will be unsure of which system it is without further investigation.
Another limitation of monitoring via the WAN interface is that your log will be very noisy. Any system connected to the Internet is under a constant barrage of malicious traffic from bots. There are systems out there infected with known viruses, worms, and rootkits, that may attempt to spread themselves automatically via automated SSH scans or attempts to exploit old vulnerabilities in software that you may or may not be running. Your IDS system will detect and log each of these attempts when they occur, and you may miss issues that you care about in the noise.
LAN interface
Monitoring the LAN interface allows you to see the internal IP address associated with a malicious request, but will miss any packets destined to the router itself from the Internet. It will, however, allow you to detect certain additional types of host-to-host communication on the internal network, such as ARP, DHCP, and other forms of broadcast traffic.
Dedicated interface
One limitation to using either the WAN or the LAN ports is that you will only detect traffic that passes through the router in some manner. If a machine on your network is compromised and is attacking the Internet, either approach will detect the traffic. However, if a compromised system on your network is attacking the other client systems on the network, that traffic will go unnoticed as long as they do not attack the router IP.
So, how do we see client-to-client traffic? Long ago, this was trivial on smaller networks, as the systems were often connected via hubs, which essentially turned all network traffic into broadcast traffic. Since the change to switched networks, the traffic became more isolated. Generally, this is a very good thing, but it does make our case here more complicated.
The best solution to this problem is Port Mirroring, which is a feature that is available in some better-managed switches. Port Mirroring, also called Switched Port Analyzer (SPAN) on Cisco gear, allows you to send a copy of all traffic on a given network port or VLAN to a specific network port. This allows you to plug a dedicated network interface on your system running Snort into it and then receive all the network traffic you want to see.
Note that port mirroring can potentially cause problems on high-traffic networks. If you are mirroring a VLAN containing 8 100Mb/s ports via a single 100Mb/s port, you can easily overwhelm the interface under load. Additionally, all of the traffic needs to pass through the switch's backplane and get processed by the switches CPU.
Another good point for using a dedicated network interface on your Snort box for monitoring is that it allows you to configure the network interface to be brought up without being configured with an IP address. By not providing an IP address on the monitoring port, you prevent people from addressing the device directly. In the case of a dedicated snort box, which is monitoring outside of your firewall, this could prevent someone from exploiting Snort and using the system to gain access to your internal network.
Managing your Snort rules
Your ability to monitor new threats is only as as good as your rules. When the latest Flash zero day starts being exploited actively, you will want to ensure that you get a new rule in place to detect it.
Luckily, Snort has a large user community and a support organization that writes rules and makes them available online. Their rules are broken into three sets: Community, Registered, and Subscription.
As the name implies, the Community set is created by the community and is hosted by http://Snort.org free. The registered and subscription sets are managed, tested, and improved by the company behind Snort. The paid Subscription set gives you access to rule updates 30 days earlier than the registered set, but otherwise the contents are identical.
Having a place to download rules from is great, but having a way to keep them up to date in an automated manner is even better. With Snort, this can be done by the PulledPork tool, which automates the downloads, installation, and management of the rule sets. Once you have registered for your account, you get access to a free Oinkcode, which is essentially an authorization key for downloading the rule sets. It is accessible when viewing your profile on http://www.snort.org.
How to do it...
$ sudo apt-get install git
$ sudo apt-get install libcrypt-ssleay-perl
$ git clone https://github.com/shirkdog/pulledpork.git
rule_url=https://snort.org/downloads/community/|community-rules.tar.gz|Community
ignore=deleted.rules,experimental.rules,local.rules
temp_path=/tmp
rule_path=/etc/snort/rules/snort.rules
local_rules=/etc/snort/rules/local.rules
sid_msg=/etc/snort/sid-msg.map
sid_msg_version=1
sid_changelog=/var/log/sid_changes.log
snort_path=/usr/sbin/snort
config_path=/etc/snort/snort.conf
pid_path=/var/run/snort_eth0.pid
version=0.7.2
$ sudo ./pulledpork.pl -T -H -c pulledpork.conf
Rules tarball download of community-rules.tar.gz....
Prepping rules from community-rules.tar.gz for work....
Done!
Reading rules...
Setting Flowbit State....
Done
Writing /etc/snort/rules/snort.rules....
Done
Generating sid-msg.map....
Done
Writing v1 /etc/snort/sid-msg.map....
Done
HangUP Time....
Done!
Writing /var/log/sid_changes.log....
Done
Rule Stats...
New:-------3415
Deleted:---0
Enabled Rules:----815
Dropped Rules:----0
Disabled Rules:---2600
Total Rules:------3415
No IP Blacklist Changes
Done
Please review /var/log/sid_changes.log for additional details
Fly Piggy Fly!
How it works…
The pulledpork configuration, which we have defined here, tells it to download the community set of rules from snort.org and put them in place in /etc/snort/rules. We additionally pass in –T, which tells it to process text based rules, not .so based rules. We also pass –H, which tells pulledpork to automatically send a HUP signal to the snort process based upon the snort pid file which we provided via the pid_path variable.
Once the tarball is downloaded from the rule_url location, it is extracted, and the rules are placed in /etc/snort/rules/snort.rules. You may additionally specify config files with –b to disable specific rules, -e to enable non-default rules, or –M to modify the content of rules. These modifications may be triggered off the Snort ID (SID) of the rule, or through regular expression matching. You can look at examples of the configurations within pulledpork/etc/.
Within the pulledpork.conf file, you can also pull from the Registered/Subscription sets by specifying additional rule_url definitions that include your Oinkcode. For example:
rule_url=https://www.snort.org/reg-rules/|snortrules-snapshot.tar.gz|<oinkcode>
Unfortunately, this is less useful on our Ubuntu 14.04 install due to the shipped version of Snort being no longer supported for new rules at snort.org. If you want to have the latest and greatest rules, consider building your own copy of Snort or installing a newer version of Ubuntu.
Managing Snort logging
The default Snort configuration causes it to log any triggered alerts in unified2 format to /var/log/snort/snort.log. This causes the alert instances and the relevant packet data to be logged in a binary format, which requires special tools to understand. One simple tool for reading unified2 format is u2spewfoo. Alternatively, u2boat can be used to convert the logs into pcap files, which may be read, by tcpdump or wireshark.
A useful option from the console without any non-Ubuntu provided tools would be to log alerts in plaintext to disk. These alert logs would allow you to easily read the messages from within /var/log/snort as plain text. You may also choose to have snort log packet captures directly in pcap format.
How to do it...
output unified2: filename snort.log, limit 128, nostamp, mpls_event_types, vlan_event_types
output alert_fast: alerts.log
output log_tcpdump: tcpdump.log
How it works…
Let's look at how Ubuntu configures logging, and then we'll make some additional adjustments in order to get more experience with some of the logging options.
Ubuntu stock
output unified2: filename snort.log, limit 128, nostamp, mpls_event_types, vlan_event_types
Let's take a look at what those mean:
Enable fast logging
This logging method accepts a filename to log to and an optional file size limit to override the default of 128MB. Once filled, a log rotation is triggered and a new logfile is created with the current timestamp appended. The log format is simple, only including alert id, alert name, classification, and protocol, along with some basic IP/Port information from the connection.
Enabling Tcpdump logging
Much like fast logging, Tcpdump logging only accepts a filename and an optional file size limit. Rather than logging a text alert however, the IP packets relevant to the alert are logged in pcap format, which can easily be read by tcpdump or wireshark.
Other logging options
Some other options that Snort has for logging are:
Index
A
B
C
D
E
F
G
H
I
J
L
M
N
O
P
R
S
T
U
V
W
X
Table of Contents
Table of Contents
Linux Networking Cookbook
Credits
About the Author
About the Reviewer
www.PacktPub.com
eBooks, discount offers, and more
Why Subscribe?
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
1. Configuring a Router
Introduction
Setting up the physical network
How to do it…
How it works…
Configuring IPv4
How to do it…
How it works…
Configuring IPv4 permanently
How to do it…
How it works…
Connecting two networks
How to do it…
How it works…
Enabling NAT to the outside
How to do it…
How it works…
Setting up DHCP
How to do it…
How it works…
Setting up a firewall with IPtables
How to do it…
How it works…
Setting up port forwarding
How to do it…
How it works…
Adding VLAN Tagging
How to do it...
How it works...
2. Configuring DNS
Introduction
Setting up your system to talk to a nameserver
How to do it…
How it works…
Setting up a local recursive resolver
How to do it…
How it works…
There's more…
Configuring dynamic DNS on your local network
How to do it…
How it works…
Setting up a nameserver for your public domain
How to do it...
How it works…
Setting up a slave nameserver
How to do it…
How it works…
3. Configuring IPv6
Introduction
Setting up an IPv6 tunnel via Hurricane Electric
How to do it…
How it works…
Using ip6tables to firewall your IPv6 traffic
How to do it…
How it works…
Route an IPv6 netblock to your local network
How to do it...
How it works…
4. Remote Access
Introduction
Installing OpenSSH
How to do it…
How it works…
Using OpenSSH as a basic shell client
How to do it…
How it works…
Using OpenSSH to forward defined ports
How to do it…
How it works…
Using OpenSSH as a SOCKS proxy
How to do it…
How it works…
Using OpenVPN
How to do it…
How it works...
5. Web Servers
Introduction
Configuring Apache with TLS
How to do it…
How it works…
Improving scaling with the Worker MPM
How to do it…
How it works…
Setting up PHP using an Apache module
How to do it…
How it works…
Securing your web applications using mod_security
How to do it…
How it works…
Configuring NGINX with TLS
How to do it…
How it works...
Setting up PHP in NGINX with FastCGI
How to do it…
How it works…
6. Directory Services
Introduction
Configuring Samba as an Active Directory compatible directory service
How to do it…
How it works…
Active Directory requirements
Selecting a realm and domain name
Using Samba-tool
Bind configuration
Joining a Linux box to the domain
How to do it…
How it works…
7. Setting up File Storage
Introduction
Serving files with SMB/CIFS through Samba
How to do it…
How it works…
Granting authenticated access
How to do it…
How it works…
Setting up an NFS server
How to do it…
How it works…
There's more…
Configuring WebDAV through Apache
How to do it…
How it works…
Apache modules
Directory directive
Authnz_external configuration
Directory definition
Authentication/Authorization:
Basic Apache directory configuration:
Enable WebDAV:
Granting write access
8. Setting up E-mail
Introduction
Configuring Postfix to send and receive e-mail
How to do it…
How it works…
There's more…
Setting up aliases
Setting up a smarthost
Relays without authentication
Relays with Auth
Setting up DNS records for e-mail delivery
How to do it…
How it works…
Configuring IMAP
How to do it...
How it works…
Configuring authentication for outbound e-mail
How to do it…
How it works…
Configuring Postfix to support TLS
How to do it…
How it works…
Blocking spam with Greylisting
How to do it…
How it works…
Filtering spam with SpamAssassin
How to do it…
How it works…
9. Configuring XMPP
Introduction
Installing ejabberd
How to do it...
How it works…
Configuring authentication
Configuring listening ports
C2S service
S2S service
HTTP Service
Access control
Modules
mod_muc
mod_roster
mod_announce
Configuring DNS for XMPP
How to do it…
How it works…
Configuring the Pidgin client
How to do it…
Install pidgin
Configuring your account
How it works…
10. Monitoring Your Network
Introduction
Installing Nagios
How to do it…
How it works…
Adding Nagios users
How to do it…
How it works…
Adding Nagios hosts
How to do it…
How it works…
Monitoring services
How to do it…
How it works…
Defining commands
How to do it…
How it works…
Monitoring via NRPE
How to do it…
How it works…
On the target
On the Nagios host
Monitoring via SNMP
How to do it...
How it works…
11. Mapping Your Network
Introduction
Detecting systems on your network with NMAP
How to do it…
How it works…
Detecting Systems Using Arp-Scan
How to do it…
How it works…
Scanning TCP ports
How to do it…
TCP CONNECT scan
TCP SYN scan
How it works…
Scanning UDP ports
How to do it…
How it works…
Identifying services
How to do it…
How it works…
Identifying operating systems
How to do it...
How it works…
12. Watching Your Network
Introduction
Setting up centralized logging
Input methods
Output methods
How to do it…
How it works…
Installing a Snort IDS
How to do it…
How it works…
WAN Interface
LAN interface
Dedicated interface
Managing your Snort rules
How to do it...
How it works…
Managing Snort logging
How to do it...
How it works…
Ubuntu stock
Enable fast logging
Enabling Tcpdump logging
Other logging options
Index