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Preface
First of all, I have to say "thank you" to you, for deciding to give this little book a chance as you are about to read this preface. I hope this book will give you valuable insights, and I sincerely hope that it will contribute to successful work on PostgreSQL. I did my best to include all of the information I think is needed to make you greatly successful and efficient when it comes to your daily business.
In my 15 years as a professional PostgreSQL consultant and commercial supporter at my company, Cybertec Schönig & Schönig GmbH (www.postgresql-support.de), I have seen countless setups—big, small, medium, complex, and simple. Over the past couple of years, I have assembled the 'best of problems,' which I would like to present in this book.
The book you are looking at is unlike all other books. It has not been written in some tutorial-style way. It really focuses on common problems and their solutions. Each problem described will include some background information, why it happens, how it can be solved, and what you can do to avoid it. In this way, I hope to solve and fix your problems as quickly and efficiently as possible.
I truly hope that you find this little book useful, and that it contains all you need to make your setup work.
What this book covers
Chapter 1, Installing PostgreSQL, explains how to install PostgreSQL on various types of systems. Source as well as binary installation are discussed and common pitfalls are presented.
Chapter 2, Creating Data Structures, focuses entirely on optimizing data structures. A lot can be achieved by following some basic rules, such as ordering columns the right way and a lot more.
Chapter 3, Handling Indexes, is probably the most important chapter when it comes to troubleshooting. If indexes are not used wisely, performance problems are certain to happen, and customer satisfaction will be low. In this chapter, indexes and their impact are discussed in great detail.
Chapter 4, Reading Data Efficiently and Correctly, provides insights into how to read data efficiently. Especially when reading large amounts of data, the way data is read does make a real difference, and a lot of potential is lost if data is retrieved in a dumb way.
Chapter 5, Getting Transactions and Locking Right, focuses on common problems related to transactions. How can problematic locks be found, and how can bad locking be avoided in general? How can consistency be ensured, and how can speed be optimized? All of these questions are discussed in this chapter.
Chapter 6, Writing Proper Procedures, attacks the most common pitfalls related to stored procedures. In particular, performance-related topics are covered in detail.
Chapter 7, PostgreSQL Monitoring, is dedicated to all administrators out there who want to ensure that their systems stay up and running 24 x 7. Monitoring can be the key to success here, and therefore, an entire chapter is dedicated to this highly important topic.
Chapter 8, Fixing Backups and Replication, focuses on backups as well as advanced replication topics. This chapter discusses point-in-time recovery, asynchronous replication, as well as synchronous replication in a practical way. On top of that, normal, textual backups are explained.
Chapter 9, Handling Hardware and Software Disasters, shows you all the tools required to handle typical hardware and filesystem failures. It shows how to rescue a PostgreSQL database and restore as much data as possible.
Chapter 10, A Standard Approach to Troubleshooting, outlines a basic and standard approach that works for most cases of ad hoc diagnosis in the field of PostgreSQL. A step-by-step guide is presented, and it can easily be replicated by users to attack most common performance issues.
What you need for this book
This book has been written with Linux and Mac OS X in mind. However, 90 percent of all examples will also work with all changes on Windows platforms.
No special tools are needed to work through this book.
Who this book is for
This book has been written for and is dedicated to people who actively work with PostgreSQL and who want to avoid common pitfalls. It has been written with more than 15 years of professional PostgreSQL consulting, support, and training in mind. The goal is to really capture those hot topics and provide easy-to-understand solutions.
Conventions
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The count(bid) function returns 1, while the count(*) function will return 3."
A block of code is set as follows:
test=# INSERT INTO t_test SELECT 10, 20, 30,
'abcd', 'abcd', 'abcd'
FROM generate_series(1, 10000000);
INSERT 0 10000000
Any command-line input or output is written as follows:
SELECT * FROM website WHERE domain = 'www.cybertec.at';
Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.
Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.
Questions
If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.
Chapter 1. Installing PostgreSQL
In this chapter, we will cover what can go wrong during the installation process and what can be done to avoid those things from happening. At the end of the chapter, you should be able to avoid all of the pitfalls, traps, and dangers you might face during the setup process.
For this chapter, I have compiled some of the core problems that I have seen over the years, as follows:
At the end of the chapter, you should be able to install PostgreSQL and protect yourself against the most common issues popping up immediately after installation.
Deciding on a version number
The first thing to work on when installing PostgreSQL is to decide on the version number. In general, a PostgreSQL version number consists of three digits. Here are some examples:
The last digit is the so-called minor release. When a new minor release is issued, it generally means that some bugs have been fixed (for example, some time zone changes, crashes, and so on). There will never be new features, missing functions, or changes of that sort in a minor release. The same applies to something truly important—the storage format. It won't change with a new minor release.
These little facts have a wide range of consequences. As the binary format and the functionality are unchanged, you can simply upgrade your binaries, restart PostgreSQL, and enjoy your improved minor release.
When the digit in the middle changes, things get a bit more complex. A changing middle digit is called a major release. It usually happens around once a year and provides you with significant new functionality. If this happens, we cannot just stop or start the database anymore to replace the binaries. In this case, we face a real migration process, which will be discussed later on in this book.
If the first digit changes, something really important has happened. Examples of such important events were introductions of SQL (6.0), the Windows port (8.0), streaming replication (9.0), and so on. Technically, there is no difference between the first and the second digit—they mean the same thing to the end user. However, a migration process is needed.
The question that now arises is this: if you have a choice, which version of PostgreSQL should you use? Well, in general, it is a good idea to take the latest stable release. In PostgreSQL, every version number following the design patterns I just outlined is a stable release.
Tip
As of PostgreSQL 9.4, the PostgreSQL community provides fixes for versions as old as PostgreSQL 9.0. So, if you are running an older version of PostgreSQL, you can still enjoy bug fixes and so on.
Methods of installing PostgreSQL
Before digging into troubleshooting itself, the installation process will be outlined. The following choices are available:
Installing from source is not too hard to do. However, this chapter will focus on installing binary packages only. Nowadays, most people (not including me) like to install PostgreSQL from binary packages because it is easier and faster.
Basically, two types of binary packages are common these days: RPM (Red Hat-based) and DEB (Debian-based). In this chapter, installing these two types of packages will be discussed.
Installing RPM packages
Most Linux distributions include PostgreSQL. However, the shipped PostgreSQL version is somewhat ancient in many cases. Recently, I saw a Linux distribution that still featured PostgreSQL 8.4, a version already abandoned by the PostgreSQL community. Distributors tend to ship older versions to ensure that new bugs are not introduced into their systems. For high-performance production servers, outdated versions might not be the best idea, however.
Clearly, for many people, it is not feasible to run long-outdated versions of PostgreSQL. Therefore, it makes sense to make use of repositories provided by the community. The Yum repository shows which distributions we can use RPMs for, at http://yum.postgresql.org/repopackages.php.
Once you have found your distribution, the first thing is to install this repository information for Fedora 20 as it is shown in the next listing:
yum install http://yum.postgresql.org/9.4/fedora/fedora-20-x86_64/pgdg-fedora94-9.4-1.noarch.rpm
Once the repository has been added, we can install PostgreSQL:
yum install postgresql94-server postgresql94-contrib
/usr/pgsql-9.4/bin/postgresql94-setup initdb
systemctl enable postgresql-9.4.service
systemctl start postgresql-9.4.service
First of all, PostgreSQL 9.4 is installed. Then a so-called database instance is created (initdb). Next, the service is enabled to make sure that it is always there after a reboot, and finally, the postgresql-9.4 service is started.
Tip
The term database instance is an important concept. It basically describes an entire PostgreSQL environment (setup). A database instance is fired up when PostgreSQL is started. Databases are part of a database instance.
Installing Debian packages
Installing Debian packages is also not too hard. By the way, the process on Ubuntu as well as on some other similar distributions is the same as that on Debian, so you can directly use the knowledge gained from this section for other distributions.
A simple file called /etc/apt/sources.list.d/pgdg.list can be created, and a line for the PostgreSQL repository (all the following steps can be done as root user or using sudo) can be added:
deb http://apt.postgresql.org/pub/repos/apt/ YOUR_DEBIAN_VERSION_HERE-pgdg main
So, in the case of Debian Wheezy, the following line would be useful:
deb http://apt.postgresql.org/pub/repos/apt/ wheezy-pgdg main
Once we have added the repository, we can import the signing key:
$# wget --quiet -O - \
https://www.postgresql.org/media/keys/ACCC4CF8.asc | apt-key add -
OK
Voilà! Things are mostly done. In the next step, the repository information can be updated:
apt-get update
Once this has been done successfully, it is time to install PostgreSQL:
apt-get install "postgresql-9.4"
If no error is issued by the operating system, it means you have successfully installed PostgreSQL. The beauty here is that PostgreSQL will fire up automatically after a restart. A simple database instance has also been created for you.
If everything has worked as expected, you can give it a try and log in to the database:
root@chantal:~# su - postgres
$ psql postgres
psql (9.4.1)
Type "help" for help.
postgres=#
Memory and kernel issues
After this brief introduction to installing PostgreSQL, it is time to focus on some of the most common problems.
Fixing memory issues
Some of the most important issues are related to the kernel and memory. Up to version 9.2, PostgreSQL was using the classical system V shared memory to cache data, store locks, and so on. Since PostgreSQL 9.3, things have changed, solving most issues people had been facing during installation.
However, in PostgreSQL 9.2 or before, you might have faced the following error message:
Tip
If the request size is already small, it's possible that it is less than your kernel's SHMMIN parameter, in which case raising the request size or reconfiguring SHMMIN is called for.
The PostgreSQL documentation contains more information about shared memory configuration.
If you are facing a message like this, it means that the kernel does not provide you with enough shared memory to satisfy your needs. Where does this need for shared memory come from? Back in the old days, PostgreSQL stored a lot of stuff, such as the I/O cache (shared_buffers, locks, autovacuum-related information and a lot more), in the shared memory. Traditionally, most Linux distributions have had a tight grip on the memory, and they don't issue large shared memory segments; for example, Red Hat has long limited the maximum amount of shared memory available to applications to 32 MB. For most applications, this is not enough to run PostgreSQL in a useful way—especially not if performance does matter (and it usually does).
To fix this problem, you have to adjust kernel parameters. Managing Kernel Resources of the PostgreSQL Administrator's Guide will tell you exactly why we have to adjust kernel parameters.
For more information, check out the PostgreSQL documentation at http://www.postgresql.org/docs/9.4/static/kernel-resources.htm.
This chapter describes all the kernel parameters that are relevant to PostgreSQL. Note that every operating system needs slightly different values here (for open files, semaphores, and so on).
Since not all operating systems can be covered in this little book, only Linux and Mac OS X will be discussed here in detail.
Adjusting kernel parameters for Linux
In this section, parameters relevant to Linux will be covered. If shmget (previously mentioned) fails, two parameters must be changed:
$ sysctl -w kernel.shmmax=17179869184
$ sysctl -w kernel.shmall=4194304
In this example, shmmax and shmall have been adjusted to 16 GB. Note that shmmax is in bytes while shmall is in 4k blocks. The kernel will now provide you with a great deal of shared memory.
Also, there is more; to handle concurrency, PostgreSQL needs something called semaphores. These semaphores are also provided by the operating system. The following kernel variables are available:
Don't change these variables unless you really have to. Changes can be made with sysctl, as was shown for the shared memory.
Adjusting kernel parameters for Mac OS X
If you happen to run Mac OS X and plan to run a large system, there are also some kernel parameters that need changes. Again, /etc/sysctl.conf has to be changed. Here is an example:
kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024
Mac OS X is somewhat nasty to configure. The reason is that you have to set all five parameters to make this work. Otherwise, your changes will be silently ignored, and this can be really painful.
In addition to that, it has to be assured that SHMMAX is an exact multiple of 4096. If it is not, trouble is near.
If you want to change these parameters on the fly, recent versions of OS X provide a systcl command just like Linux. Here is how it works:
sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall
Fixing other kernel-related limitations
If you are planning to run a large-scale system, it can also be beneficial to raise the maximum number of open files allowed. To do that, /etc/security/limits.conf can be adapted, as shown in the next example:
postgres hard nofile 1024
postgres soft nofile 1024
This example says that the postgres user can have up to 1,024 open files per session.
Note that this is only important for large systems; open files won't hurt an average setup.
Adding checksums to a database instance
When PostgreSQL is installed, a so-called database instance is created. This step is performed by a program called initdb, which is a part of every PostgreSQL setup. Most binary packages will do this for you and you don't have to do this by hand.
Why should you care then? If you happen to run a highly critical system, it could be worthwhile to add checksums to the database instance. What is the purpose of checksums? In many cases, it is assumed that crashes happen instantly—something blows up and a system fails. This is not always the case. In many scenarios, the problem starts silently. RAM may start to break, or the filesystem may start to develop slight corruption. When the problem surfaces, it may be too late. Checksums have been implemented to fight this very problem. Whenever a piece of data is written or read, the checksum is checked. If this is done, a problem can be detected as it develops.
How can those checksums be enabled? All you have to do is to add -k to initdb (just change your init scripts to enable this during instance creation). Don't worry! The performance penalty of this feature can hardly be measured, so it is safe and fast to enable its functionality.
Keep in mind that this feature can really help prevent problems at fairly low costs (especially when your I/O system is lousy).
Preventing encoding-related issues
Encoding-related problems are some of the most frequent problems that occur when people start with a fresh PostgreSQL setup. In PostgreSQL, every database in your instance has a specific encoding. One database might be en_US@UTF-8, while some other database might have been created as de_AT@UTF-8 (which denotes German as it is used in Austria).
To figure out which encodings your database system is using, try to run psql -l from your Unix shell. What you will get is a list of all databases in the instance that include those encodings.
So where can we actually expect trouble? Once a database has been created, many people would want to load data into the system. Let's assume that you are loading data into the aUTF-8 database. However, the data you are loading contains some ASCII characters such as ä, ö, and so on. The ASCII code for ö is 148. Binary 148 is not a valid Unicode character. In Unicode, U+00F6 is needed. Boom! Your import will fail and PostgreSQL will error out.
If you are planning to load data into a new database, ensure that the encoding or character set of the data is the same as that of the database. Otherwise, you may face ugly surprises.
To create a database using the correct locale, check out the syntax of CREATE DATABASE:
test=# \h CREATE DATABASE
Command: CREATE DATABASE
Description: create a new database
Syntax:
CREATE DATABASE name
[ [ WITH ] [ OWNER [=] user_name ]
[ TEMPLATE [=] template ]
[ ENCODING [=] encoding ]
[ LC_COLLATE [=] lc_collate ]
[ LC_CTYPE [=] lc_ctype ]
[ TABLESPACE [=] tablespace_name ]
[ CONNECTION LIMIT [=] connlimit ] ]
ENCODING and the LC* settings are used here to define the proper encoding for your new database.
Avoiding template pollution
It is somewhat important to understand what happens during the creation of a new database in your system. The most important point is that CREATE DATABASE (unless told otherwise) clones the template1 database, which is available in all PostgreSQL setups.
This cloning has some important implications. If you have loaded a very large amount of data into template1, all of that will be copied every time you create a new database. In many cases, this is not really desirable but happens by mistake. People new to PostgreSQL sometimes put data into template1 because they don't know where else to place new tables and so on. The consequences can be disastrous.
However, you can also use this common pitfall to your advantage. You can place the functions you want in all your databases in template1 (maybe for monitoring or whatever benefits).
Killing the postmaster
After PostgreSQL has been installed and started, many people wonder how to stop it. The most simplistic way is, of course, to use your service postgresql stop or /etc/init.d/postgresql stop init scripts.
However, some administrators tend to be a bit crueler and use kill -9 to terminate PostgreSQL. In general, this is not really beneficial because it will cause some nasty side effects. Why is this so?
The PostgreSQL architecture works like this: when you start PostgreSQL you are starting a process called postmaster. Whenever a new connection comes in, this postmaster forks and creates a so-called backend process (BE). This process is in charge of handling exactly one connection. In a working system, you might see hundreds of processes serving hundreds of users. The important thing here is that all of those processes are synchronized through some common chunk of memory (traditionally, shared memory, and in the more recent versions, mapped memory), and all of them have access to this chunk. What might happen if a database connection or any other process in the PostgreSQL infrastructure is killed with kill -9? A process modifying this common chunk of memory might die while making a change. The process killed cannot defend itself against the onslaught, so who can guarantee that the shared memory is not corrupted due to the interruption?
This is exactly when the postmaster steps in. It ensures that one of these backend processes has died unexpectedly. To prevent the potential corruption from spreading, it kills every other database connection, goes into recovery mode, and fixes the database instance. Then new database connections are allowed again.
While this makes a lot of sense, it can be quite disturbing to those users who are connected to the database system. Therefore, it is highly recommended not to use kill -9. A normal kill will be fine.
Keep in mind that a kill -9 cannot corrupt your database instance, which will always start up again. However, it is pretty nasty to kick everybody out of the system just because of one process!
Summary
In this chapter, you learned how to install PostgreSQL using binary packages. Some of the most common problems and pitfalls, including encoding-related issues, checksums, and versioning were discussed.
In the next chapter, we'll deal with data structures and common issues related to them.
Chapter 2. Creating Data Structures
This chapter is dedicated to data structures and their creation. The following topics will be covered:
Grouping columns the right way
Some people might wonder what is meant by the title of this section. Does it make a difference which order columns are aligned in? This might be a bit surprising, but it does. Even if a table contains the same data, its size on the disk might vary depending on the order of columns. Here is an example:
test=# CREATE TABLE t_test ( i1 int,
i2 int,
i3 int,
v1 varchar(100),
v2 varchar(100),
v3 varchar(100)
);
CREATE TABLE
test=# INSERT INTO t_test SELECT 10, 20, 30,
'abcd', 'abcd', 'abcd'
FROM generate_series(1, 10000000);
INSERT 0 10000000
A table with three columns has been created. First of all, there are three integer columns. Then some varchar columns are added. In the second statement, 10 million rows are added. The generate_series command is a nice way to generate a list of numbers. In this example, the output of generate_series is not used. I am just utilizing the function to repeat the static data in the SELECT clause.
Now the size of the table can be checked:
test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
pg_size_pretty
----------------
574 MB
(1 row)
The pg_relation_size returns the size of a table in bytes. In the case of a large relation, this is somewhat unhandy because users may easily end up with very large, hard-to-read numbers. Therefore, the return value of pg_relation_size should be wrapped into pg_size_pretty, which makes the size a lot more useful, as data is returned in a more human-readable format.
Let's try the same example again. This time, however, the order of the columns is changed. The rest of the example stays exactly the same:
test=# CREATE TABLE t_test ( v1 varchar(100),
i1 int,
v2 varchar(100),
i2 int,
v3 varchar(100),
i3 int
);
CREATE TABLE
test=# INSERT INTO t_test SELECT 'abcd', 10, 'abcd',
20, 'abcd', 30
FROM generate_series(1, 10000000);
INSERT 0 10000000
test=# SELECT pg_size_pretty(pg_relation_size('t_test'));
pg_size_pretty
----------------
651 MB
(1 row)
The table has grown considerably, even though the data inside the table is exactly the same. The reason for this problem is called alignment and can be found deep inside the code. The theory is as follows: a CPU has a hard time if a field does not start at a multiplier of CPU word-size. Therefore, PostgreSQL will accordingly align data physically.
The most important point here is that it can make sense to group columns with similar data types next to each other. Of course, the outcome and the potential difference in size greatly depend on the content. If "abc" was used instead of "abcd" in this example, the results would not have shown any difference; both versions of the table would have had a fixed size of 498 MB.
Tip
Note that different types of CPUs (x86_32, x86_64, Sparc, ARM, and so on.) may not lead to the same results here.
Deciding on data types and structure
After this brief introduction to organizing columns, it makes sense to discuss various other issues, such as choosing the right data type and normalization. Normalization is a standard technique to organize data and it has proven to be essential over the years. The idea is to avoid redundancy to ensure that changes only have to be made in one place. To make your database project a success, deciding on proper types is essential and will help to prevent a great deal of trouble later on in the project. The goal of this chapter is to make you aware of the potentials of using the right types.
Finding the right type
Finding the right data type sounds easy. However, there is a lot to consider, and there are some issues that might actually cause problems.
varchar versus text
The first two types to be compared are varchar and text. Have you ever seen a data structure like this?
test=# CREATE TABLE t_product (
prodnr int,
name varchar(20),
description varchar(4096)
);
CREATE TABLE
A product number defined as an integer can make a lot of sense (some people use alphanumeric product names, but never mind). Keeping the name limited to 20 characters is also reasonable. There might be real limitations here. Maybe, a field on some printout is limited to 20 characters, or some label somewhere is limited to a 20-character title.
But what about the description? Does 4096 really impose a useful restriction here? I guess not. It is just an arbitrary number. What the person really meant is rather something like this:
description text
The beauty of text is that it is not limited to a certain number of characters but to 1 GB per entry. Hence, text can make life for software developers a little easier.
numeric versus floating point
While varchar versus text was more a question of convenience, numeric versus floating point is a matter of life and death because it is all about correctness.
What is the difference anyway? Here is an example using float:
test=# SELECT '1000.1'::float - '1000' AS float;
float
-------------------
0.100000000000023
(1 row)
What you see here is that the example is close, but not necessarily absolutely correct. The reason is the way floating-point numbers work.
Tip
The inner working of the floating point standard is defined in IEEE 754, which is described at:
http://en.wikipedia.org/wiki/IEEE_floating_point.
The main issue is that depending on the magnitude of the number, precision will go down. This might be fine if you are dealing with some sort of sensor data. However, it is totally impossible if you happen to work with money. The price of a stamp is the same, no matter whether you are living in a slum or you happen to be a billionaire. The number is always a static number. With floating point, it would be merely impossible to achieve that.
To get around the chip's FPU (short for floating-point unit), developers and designers alike can turn to numeric. The beauty of numeric is that it relies entirely on the working of the CPU's integer unit. It offers fixed, predefined, and standard behavior to handle numbers of arbitrary precision. It is perfect for numbers, as the following example shows:
test=# SELECT '1000.1'::numeric - '1000';
?column?
----------
0.1
(1 row)
The numeric option should be used for financial data and all other applications requiring precision.
Note
The numeric is a lot faster than floating-point-based data types. However, it's not about speed; it's about the correctness of your results. A correct result is usually a lot more important than a fast result.
boolean fields versus bit fields
In the past, I have seen countless situations in which people have used a massive number of boolean columns in a table. This is not especially harmful, but it might not be the best thing either. A table in PostgreSQL can hold up to 1600 columns. However, keeping 100 boolean columns for a certain scenario is not too handy.
In PostgreSQL, you can consider the following way out: two data types called bit and varbit are offered to reduce the number of columns and simplify things. Here is an example:
test=# CREATE TABLE t_test (x bit(10));
CREATE TABLE
test=# INSERT INTO t_test VALUES ('0110000101');
INSERT 0 1
test=# SELECT * FROM t_test;
x
------------
0110000101
(1 row)
In this example, a bit(10) column has been created. The meaning of bit(10) is that a field with 10 bits is created.
If you want to retrieve the data, it is possible to simply select the entire column or to retrieve a single bit inside the field (get_bit). Of course, bits can also be modified (set_bit). Here is an example:
test=# SELECT get_bit(x, 5), set_bit(x, 5, 1), x::int FROM t_test;
get_bit | set_bit | x
---------+------------+-----
0 | 0110010101 | 389
(1 row)
If you are not sure how many bits you will need, there is a data type called varbit. Basically, it works just like varchar. Here is an example:
test=# ALTER TABLE t_test ADD COLUMN y varbit(20);
ALTER TABLE
A column that can hold up to 20 bits, is added to t_test.
As mentioned before, bit and varbit are just options. It is not necessary to use this kind of stuff, but they can help to improve your data structures in a way to prevent trouble.
text versus cidr/inet/circle/point
One common mistake made by many people is to choose a generic data type instead of a specific, optimized data type. Of course, everything can be stored as text somehow, but in most cases, it makes a lot more sense to use the proper data type.
Some of those specialized, optimized types are dealt with in this section.
Let's focus on IP addresses first. To represent an IP address, you have two choices: inet and cidr. Here is an example:
test=# SELECT '192.168.0.34/32'::cidr, '192.168.0.34/32'::inet;
cidr | inet
-----------------+--------------
192.168.0.34/32 | 192.168.0.34
(1 row)
The cidr option represents an IP address that includes a netmask. The inet option will only store an IP address without a netmask.
By the way, both data types will also work for IPv6:
test=# SELECT '::1'::cidr, '::1'::inet;
cidr | inet
---------+------
::1/128 | ::1
(1 row)
The beauty here is that you have a special set of operators for those types, and you can even do the math, as the following example shows:
test=# SELECT '::1'::cidr + 43242342;
?column?
-----------------
::2.147.211.103
(1 row)
Besides data types related to IPs, there are a couple of types related to geometric objects. A common mistake is that people store geographical positions in two columns:
test=# CREATE TABLE t_location (
loc text,
x numeric,
y numeric
);
CREATE TABLE
Of course, you can always use two fields, but querying this kind of data structure is a really nasty task. Just imagine searching an object within 50 kilometers. With two columns, this is clearly a complicated, nasty-to-do task.
The standard distribution of PostgreSQL (even without PostGIS, which is a popular GIS extension installed) offers some geometric data types such as points, circles, rectangles, paths, and so on. To make the previous table more efficient, the following can be done:
test=# CREATE TABLE t_test (loc text, coord point);
CREATE TABLE
Points can be used easily. Here is an example:
test=# SELECT '(10, 30)'::point;
point
---------
(10,30)
(1 row)
The really nice thing here is that there is quite a lot of useful functionality around. If you want to determine the distance between two points, you can make use of the ↔ (distance) operator:
test=# SELECT '(10, 30)'::point <-> '(20, 20)'::point;
?column?
-----------------
14.142135623731
(1 row)
You could've done that with a simple formula, but why? PostgreSQL already has all the functionality for you. Therefore, using an optimized, predefined data type is highly beneficial.
Deciding on normalization
When starting with databases, one of the first things people learn is data normalization. Normalization makes a lot of sense because it helps to reduce redundancy and it ensures that data is structured in a professional and nice way.
However, in some cases, normalization is taken way too far.
The 7th normal form
As mentioned in many cases, normalization can be easily exaggerated. In such a case, performance will suffer and things will be really complex. Here is an example of normalization taken too far: a few years ago, a professor at a local university confronted me with an interesting example when I was talking to students. He told me that he uses the following example to explain to students that normalization can easily be taken too far. He invented the 7th normal form (which, of course, does not exist in professional database literature).
Here is an example:
test=# CREATE TABLE t_test (name text);
CREATE TABLE
test=# INSERT INTO t_test VALUES ('sealevel');
INSERT 0 1
There is still some redundancy in sealevel. Some letters show up twice, so we can normalize that:
test=# CREATE TABLE t_char (id int, char char(1));
CREATE TABLE
test=# INSERT INTO t_char VALUES
(1, 's'), (2, 'e'), (3, 'a'), (4, 'l'), (5, 'v');
INSERT 0 5
In this table, one entry is made for each letter. In addition to this, a second table can be created to finally form the word:
test=# CREATE TABLE t_word (order_id int, char_id int);
CREATE TABLE
The sealevel can, therefore, be represented as the following table:
test=# INSERT INTO t_word VALUES
(1, 1), (2, 2), (3, 3), (4, 4), (5, 2),
(6, 5), (7, 2), (8, 4);
INSERT 0 8
Joining entries together will reveal the word:
test=# SELECT order_id, char
FROM t_word AS a, t_char AS b
WHERE a.char_id = b.id
ORDER BY order_id;
order_id | char
----------+------
1 | s
2 | e
3 | a
4 | l
5 | e
6 | v
7 | e
8 | l
(8 rows)
What is the point of all this? The point is that you can normalize your data beyond recognition. But does it really make sense? In the example just outlined, everybody will agree that this is clearly useless and way beyond what is justified. Therefore, it is highly recommended if it is really worth introducing new relations, even if there is no chance of ever making changes to them.
Arrays versus normalizations
To avoid excessive normalization, you can turn your attention to arrays. Arrays are a simple, and in many cases, a good way to reduce the number of relations, especially when you don't need hard integrity.
What is the main benefit of an array and of avoiding joins? Keep in mind that when using a join, you have to read data from two tables. This often means additional I/O, and most importantly, you have to join the data, which leads to sorting, hashing, merging, and so on.
If data is stored inline in an array, there is no need to read from two tables and join, merge, and so on. You may be able to enjoy the simplicity of a sequential scan or the speed of a single-index lookup to retrieve the data needed.
Tip
Note that arrays are no Holy Grail! They are just a tool used to speed things up and a good option to improve data structures to prevent I/O problems.
To show how arrays can be used to reduce normalization, the following example may be beneficial to you. The goal is to come up with a data structure for storing which people have been to which countries:
test=# CREATE TABLE t_country (
id int,
country_code char(2)
);
CREATE TABLE
Then some data can be added to the table:
test=# INSERT INTO t_country VALUES
(1, 'DE'), (2, 'AT'), (3, 'BE'), (4, 'NL');
INSERT 0 4
In the next step, a table linking people and countries together is created:
test=# CREATE TABLE t_travel (
person text,
country_id int);
CREATE TABLE
Basically, this is the standard way of describing a relation like that. Take a look at this example:
test=# CREATE TABLE t_travel (
person text,
country_list char(2)[]
);
CREATE TABLE
It is very unlikely that the name of a country will change, and even if it does, you may not care too much. Imagine that somebody has been to the Soviet Union. Even after its breakup, you would still not change the name of the country you have visited in retrospect. Therefore, integrity is really not an issue here.
The beauty is that you can save on all the expenses that might be caused by the join. In fact, in large-scale systems, random I/O can be a major bottleneck, which should be avoided. By keeping data close together, you can avoid a ton of problems.
In fact, too many joins on too much data can be a real source of trouble in a productive system because as soon as your server hits a random I/O limitation imposed on you by your disk, performance will drop dramatically.
Summary
In this chapter, you learned how to optimize data structures by avoiding some basic pitfalls. Of course, a discussion of how to write data structures properly can never be exhaustive, and around 10 pages are never enough. However, the idea of this chapter was to introduce some of the lesser-known aspects of these topics that you might be able to use to fix your applications.
The next chapter is all about troubleshooting in the sphere of indexing.
Chapter 3. Handling Indexes
In this chapter, one of the most important topics in the area of database work will be covered—indexing. In many cases, missing or wrong indexes are the main source of trouble, leading to bad performance, unexpected behavior, and a great deal of frustration. To avoid these issues, this chapter will present all the information that you need to make your life as easy as possible.
The following issues will be covered:
Understanding indexes in PostgreSQL
In this section, you will learn the fundamental concept of indexing. As already mentioned, indexes are highly important and their importance can hardly be overestimated. Therefore, it is important for you to understand what indexes are good for and how they can be used efficiently without harming performance. To illustrate indexes, the first thing to do is to introduce the concept of so-called execution plans.
Execution plans are a component vital to understanding PostgreSQL's performance as a whole. They are your window to the inner workings of the database system. It is important to understand execution plans and indexes.
Using a simple index
The basic idea of SQL is that you can write a query and the database will decide on the best strategy to execute the request. Deciding on the best strategy is the task of the so-called optimizer. The idea behind the optimizer is to figure out which query is expected to impose the lowest costs on the system, and go for that strategy. Consider the following example:
test=# CREATE TABLE t_test (id int4);
CREATE TABLE
A table with only one column has been created. Now 10 million rows are added:
test=# INSERT INTO t_test
SELECT * FROM generate_series(1, 10000000);
INSERT 0 10000000
Once the data has been added, a simple query looking for a single row can be issued. The point here is that the query is prefixed with the explain keyword:
test=# explain SELECT * FROM t_test WHERE id = 423425;
QUERY PLAN
-------------------------------------------------------
Seq Scan on t_test (cost=0.00..169247.71
rows=1 width=4)
Filter: (id = 423425)
Planning time: 0.143 ms
(3 rows)
As a result, PostgreSQL returns the so-called execution plan. It tells you how the system plans to execute the query. What is an execution plan? Basically, PostgreSQL will execute SQL in four stages:
The execution plan is exactly what has been created here. It tells us how PostgreSQL plans to execute the query. What we see is a so-called sequential scan. It means that the entire table is read and PostgreSQL checks every row to see whether it matches the condition or not. As our table is really long here, it takes quite a while to execute the query.
To receive some more detailed information, explain analyze can be used:
test=# explain analyze SELECT *
FROM t_test
WHERE id = 423425;
QUERY PLAN
------------------------------------------------------
Seq Scan on t_test (cost=0.00..169247.71
rows=1 width=4)
(actual time=60.842..1168.681 rows=1 loops=1)
Filter: (id = 423425)
Rows Removed by Filter: 9999999
Planning time: 0.050 ms
Execution time: 1168.706 ms
(5 rows)
The total runtime of explain analyze is 1.1 seconds—quite a lot for a small query. Of course, if the query was executed without explain analyze, it would have been a little faster. However, it is still close to a second. Close to a second is certainly not what end users should expect from a modern database.
This is where an index can help. Here is how we create an index:
test=# CREATE INDEX idx_id ON t_test (id);
CREATE INDEX
Creating the index will solve all problems in a miraculous way. Now the query executes in a fraction of a millisecond, thousands of times faster than before:
test=# explain analyze SELECT *
FROM t_test
WHERE id = 423425;
QUERY PLAN
-------------------------------------------------------
Index Only Scan using idx_id on t_test
(cost=0.43..8.45 rows=1 width=4)
(actual time=0.013..0.014 rows=1 loops=1)
Index Cond: (id = 423425)
Heap Fetches: 1
Planning time: 0.059 ms
Execution time: 0.034 ms
(5 rows)
The important point here is that the optimizer has found out that the index is a lot more beneficial. How did it happen? Internally, PostgreSQL performs a so-called cost-based optimization. This means that an index is not simply taken when it is around. PostgreSQL carefully calculates costs (just some number) and takes the cheapest plan promising the best execution times. In the preceding example, the total cost of the plan using the index is just 8.45. The sequential scan comes up with a stunning estimate of 169247.71 penalty points. Logically, the index is taken because it promises (and provides) far better return times. It is also important to see that there are two times returned by PostgreSQL: the time needed to plan the query and the time to do the actual execution. In the case of short queries, planning time starts becoming relevant.
How an index works
So far, only a simple B-tree has been created. How does a B-tree work internally? In PostgreSQL, Lehman-Yao trees are used. These are binary trees, which have some very nice features. First of all, a B-tree has logarithmic runtime behavior. This means that if the tree grows, the time needed to query the tree won't increase proportionally. One million times more data might result in probably 20 times slower index lookup times (this depends on factors such as distribution of values, amount of RAM available, clock speed, and so on).
To find out more about binary trees, check out http://en.wikipedia.org/wiki/Binary_tree.
There is more—B-trees in PostgreSQL have some more positive features such as Lehman-Yao trees (the trees used in a PostgreSQL B-tree implementation) can be modified by many people at the same time. Therefore, they are a wonderful data structure for scaling up operations. The power of doing things concurrently is important in modern systems and not just for databases.
Avoiding trouble with indexes
Indexes are not always a solution to the problem; they can also be the problem by themselves. The following example outlines a common pitfall. It should be avoided at all costs:
test=# CREATE TABLE t_test (id int, x text);
CREATE TABLE
test=# INSERT INTO t_test SELECT x, 'house'
FROM generate_series(1, 10000000) AS x;
INSERT 0 10000000
test=# CREATE INDEX idx_x ON t_test (x);
CREATE INDEX
Before taking a look at the way the index is used, it makes sense to inspect the size of the table as well as the size of the indexes:
test=# SELECT
pg_size_pretty(pg_relation_size('t_test')),
pg_size_pretty(pg_relation_size('idx_x'));
pg_size_pretty | pg_size_pretty
----------------+----------------
422 MB | 214 MB
(1 row)
The table created in this example is 422 MB large (only the table). On top of that, there is 214 MB taken up by the index. So, overall the size of the table with the index is larger than 600 MB.
The problem is that the index is of no use in this example:
test=# explain SELECT * FROM t_test WHERE x = 'house';
QUERY PLAN
-------------------------------------------------------
Seq Scan on t_test (cost=0.00..179054.03 rows=10000000
width=10)
Filter: (x = 'house'::text)
(2 rows)
Despite the index, PostgreSQL will still use a sequential scan. The reason for that is simple: all values in the table are the same, the table is not selective enough, and therefore, the index is more or less useless. Why doesn't PostgreSQL use the index at all? Let's think about it for a moment. The goal of the index is to reduce I/O. If we expect to utilize all rows in the table, we'll have to read the entire table anyway, but if we use the index, it would be necessary to read all index entries on top of the table. Reading the index and the entire table is a lot more expensive than just reading the table. Therefore, PostgreSQL decides on the cheaper strategy.
Note
Keep in mind that PostgreSQL only has to read those parts of the index that are relevant to the query. This example is really a special case designed to require the entire table and the entire index.
However, the index is not always useless:
test=# explain SELECT * FROM t_test WHERE x = 'y';
QUERY PLAN
-------------------------------------------------------
Index Scan using idx_x on t_test (cost=0.43..4.45
rows=1 width=10)
Index Cond: (x = 'y'::text)
Planning time: 0.096 ms
(3 rows)
In this example, we choose to select a value that is not present in the table (or is expected to be pretty rare). In this case, the index is chosen. In other words, selectivity is the key to the usefulness of an index. If a field is not selective, an index will be pointless.
Detecting missing indexes
In this chapter, the importance of indexing has already been demonstrated. However, what is the best way to figure out whether indexes are missing or not? The pg_stat_user_tables view is a system view containing all the relevant information. Here is a query that will definitely be beneficial to you:
SELECT schemaname, relname, seq_scan, seq_tup_read,
idx_scan, seq_tup_read / seq_scan
FROM pg_stat_user_tables
WHERE seq_scan > 0
ORDER BY seq_tup_read DESC;
The query provides us with schemaname and relname to identify the table inside the database. The seq_scan field will return the number of times the table has been read sequentially. During those sequential scans, the database had to read seq_tup_read rows. The idx_scan field informs us about the number of index scans, and finally, the average number of rows needed by seq_scan is displayed.
The beauty of this query is that those tables that may need an index will show up on top. How do you know? A table that is read sequentially over and over again and that contains a large number of rows is definitely a candidate.
It obviously makes sense to go through the top candidates and check each table. Keep in mind that PostgreSQL can tell you which tables may be a problem, but it won't tell you which columns have to be indexed. Some basic knowledge about the application is needed. Otherwise, you will end up doing guesswork. It is really necessary to figure out which columns your application filters on. At this point, there is no automatic algorithm to check that.
Tip
Make sure that you are not falling into the trap of simply indexing everything. Creating too many indexes won't do any good, as shown in the next section.
Removing useless indexes
Some of you might wonder why too many indexes are bad. While reading data, indexes are no problem at all in 99 percent of all cases (unless the planner makes a bad decision or some caches are too small). However, when it comes to insertion, indexes are a major performance bottleneck.
To compare things, a simple test can be created. One million rows should be added to an empty table as well as to an indexed table. To compare runtimes, \timing is used:
test=# \timing
Timing is on.
The beauty of \timing is that the time needed to execute a query is displayed right at the end of the command. First, 1 million rows are added:
test=# INSERT INTO t_test SELECT *
FROM generate_series(1, 1000000);
INSERT 0 1000000
Time: 6346.756 ms
It takes around 6 seconds to do this. What if data is added to an empty table?
test=# CREATE TABLE t_fast (id int, x text);
CREATE TABLE
Time: 92.034 ms
test=# INSERT INTO t_fast SELECT *
FROM generate_series(1, 1000000);
INSERT 0 1000000
Time: 2078.413 ms
Doing the same thing without an index is around three times faster. Keep in mind that the main bottleneck in this example is actually the creation of the data itself. If generate_series was free, the difference would have been a lot larger. You have to keep in mind that every index that does not yield any benefit will be a destructive index because it needs space on the disk, and more importantly, it will slow down writes dramatically. If your application is write-bound, additional indexes can be a killer. However, in my professional career, I have seen that write-bound applications are really a minority. Therefore, overindexing can be as dangerous as underindexing. However, underindexing is the more obvious problem because you will instantly see that certain queries are slow. If there are too many indexes, performance problems are usually a bit more subtle.
To prevent problems related to too many indexes, it takes time to check for useless indexes periodically. PostgreSQL has all the onboard means to do that. The best place to start is a system view called pg_stat_user_indexes. It tells you which indexes are used and how often:
test=# \d pg_stat_user_indexes
View "pg_catalog.pg_stat_user_indexes"
Column | Type | Modifiers
---------------+--------+-----------
relid | oid |
indexrelid | oid |
schemaname | name |
relname | name |
indexrelname | name |
idx_scan | bigint |
idx_tup_read | bigint |
idx_tup_fetch | bigint |
The relevant field here is called idx_scan. It tells us how often a certain index has been utilized. If this index is rarely used, it might make sense to drop it.
Note
Keep in mind that dropping an index on a very small table (maybe on a lookup table) or on a table that is supposed to grow anyway might not be a good idea. It really makes sense to focus on big tables and their indexes.
Dropping indexes can free up a lot of space, reduce I/O, and boost writes.
Solving common problems
After this brief introduction to indexes, the focus of this chapter will shift to troubleshooting. The most common challenges related to indexing and troubleshooting will be described in this section.
Managing foreign keys
One of the most important issues causing trouble and confusion when it comes to indexing has to do with foreign keys. Consider the following example:
test=# CREATE TABLE t_person (id int PRIMARY KEY,
name text);
CREATE TABLE
test=# CREATE TABLE t_car (car_id int,
person_id int REFERENCES t_person (id),
info text);
CREATE TABLE
It is necessary to have a unique index irrespective of a primary key on the t_person table. However, we often forget to index the other side of the foreign key (in our case, the t_car table). Just imagine looking up all cars owned by a certain person. You would definitely want an index scan on the t_car table to speed up this query.
Note
Keep in mind that PostgreSQL does not create an automatic index here. It is your task to make this work.
It is highly recommended to ensure that both sides of the equation are indexed.
Indexing geometric data using GiST
Indexing geometric data leads many people into a simple trap—they try to store geometric objects in a traditional way. I have already pointed out this trap in one of the previous chapters.
But how can things be done properly now? The PostGIS project (http://postgis.net/) has all that it takes to properly index geometric data. PostGIS is built on the so-called GiST index, which is a part of PostgreSQL. What is a GiST? The idea of GiST is to offer an indexing structure that provides alternative algorithms that a normal B-tree is not capable of providing (for example, operations such as contains).
The technical details outlining how GiST works internally would definitely be way beyond the scope of this book. Therefore I advise you to check out http://postgis.net/docs/manual-2.1/using_postgis_dbmanagement.html#idp7246368 for further information on GiST and indexing geometric data.
Handling LIKE queries
LIKE is a widely used component of the SQL language that allows the user to perform fuzzy searches. Sometimes, you have an idea about what you are looking for but you are not exactly sure what it is. In these situations, a wildcard search can come in handy and improve user experience dramatically. Just think of the following example: you are reading a fax that has just dropped in. On a poor-quality fax, can you really distinguish a B from an 8 all the time? I guess not. LIKE will fix that by allowing you to put placeholders in a query.
To demonstrate the power of LIKE and the problems arising along with it, I have compiled a small example. The goal is to look for names of cities and villages. Here is the required data:
test=# CREATE TABLE t_location (name text);
CREATE TABLE
test=# COPY t_location FROM PROGRAM
'curl www.cybertec.at/secret/orte.txt';
COPY 2354
The CREATE TABLE part is pretty straightforward and easy to understand. To feed data to the system, you can rely on COPY. In this example, sample data can be found on the author's website. The data is read efficiently using a pipe (COPY PROGRAM) fed by a command-line program called curl.
Note
The curl is a command-line tool used to transfer data from or to a server using one of the supported protocols (HTTP, HTTPS, FTP, FTPS, SCP, SFTP, TFTP, DICT, TELNET, LDAP or FILE). The command is designed to work without user interaction.
The file on the server has only one column, so this works out pretty neatly. If COPY is successful, 2354 rows should be in your table.
Simple LIKE queries
Let's focus our attention on a simple query now. All rows starting with Wiener should be retrieved:
test=# SELECT * FROM t_location
WHERE name LIKE 'Wiener%';
name
-----------------
Wiener Neustadt
Wiener Neudorf
Wienerwald
(3 rows)
The query works like a charm. However, the execution plan of the query uncovers a real performance problem:
test=# explain SELECT * FROM t_location
WHERE name LIKE 'Wiener%';
QUERY PLAN
---------------------------------------------------
Seq Scan on t_location (cost=0.00..43.42
rows=1 width=13)
Filter: (name ~~ 'Wiener%'::text)
Planning time: 0.078 ms
(3 rows)
The table will be read sequentially. To fix this problem, a special index is needed:
test=# CREATE INDEX idx_name
ON t_location (name text_pattern_ops);
CREATE INDEX
You cannot just deploy a normal index on the columns. To make LIKE work, a special operator class is needed in most cases. For text, this operator class is called text_pattern_ops (for varchar, it would be varchar_pattern_ops).
What is an operator class? It is basically a strategy used by the index. Just imagine a simple B-tree. Small values will go to the left edge, and large values to the right edge of the tree. In simple terms, an operator class will know what is considered to be small and what is considered to be a large value. Operator classes are a way to teach your index how to behave.
In this example, the special operator class for the index is necessary in order to enable an index scan in the first place. Here is how it works:
test=# explain SELECT * FROM t_location
WHERE name LIKE 'Wiener%';
QUERY PLAN
-------------------------------------------------------
Index Only Scan using idx_name on t_location
(cost=0.28..8.30 rows=1 width=13)
Index Cond: ((name ~>=~ 'Wiener'::text)
AND (name ~<~ 'Wienes'::text))
Filter: (name ~~ 'Wiener%'::text)
Planning time: 0.197 ms
(4 rows)
Just relax for a second and take a look at the way PostgreSQL uses the index. Basically, it says that wiener% means larger than wiener and smaller than wienes. In other words, PostgreSQL uses a clever rewrite to solve the problem.
Note that the percent sign has to be at the end of the query string. Given the indexing strategy, this sign is not allowed somewhere in the middle or at the beginning.
Keep in mind that those small numbers can vary. In the case of small tables, there is quite some noise in your performance data. So if one of your queries takes a millisecond more or less, don't panic! This is normal.
More advanced LIKE queries
In many cases, it is really necessary to have a percent sign on both sides of the search string:
test=# explain SELECT * FROM t_location
WHERE name LIKE '%Wiener%';
QUERY PLAN
-------------------------------------------------------
Seq Scan on t_location (cost=0.00..43.42 rows=1 width=13)
Filter: (name ~~ '%Wiener%'::text)
Planning time: 0.120 ms
(3 rows)
As you can see, we end up with a sequential scan again. Clearly, a sequential scan is not an option on large tables.
To fix this problem, you can turn to PostgreSQL extensions. Extensions are a nice feature of PostgreSQL that allow users to easily integrate additional functionality with the server. To solve the problem of indexing LIKE, an extension called pg_trgm is needed. This special extension provides access to so-called Trigrams, a concept especially useful when it comes to fuzzy searching:
test=# CREATE EXTENSION pg_trgm;
CREATE EXTENSION
CREATE EXTENSION enables the extension so that an index capable of handling trigrams can be created:
test=# CREATE INDEX idx_special ON t_location
USING gist(name gist_trgm_ops);
CREATE INDEX
This time, a GiST index has to be created. The gist_trgm_ops can serve as the operator class to handle our little problem.
Don't worry about the precise inner working of this index type. It will nicely solve the problem of fuzzy searching, as shown in this example:
test=# explain SELECT * FROM t_location
WHERE name LIKE '%Wiener%';
QUERY PLAN
-------------------------------------------------------
Index Scan using idx_special on t_location
(cost=0.14..8.16 rows=1 width=13)
Index Cond: (name ~~ '%Wiener%'::text)
Planning time: 0.232 ms
(3 rows)
The index will be able serve our request.
Note
Keep in mind that trigram-based indexes are a highly important feature, as many applications tend to suffer from indexing problems related to fuzzy searches. GiST and trigrams can really help to stop these problems from causing major performance bottlenecks.
Finding good matches
The queries shown so far are not the only queries that can cause issues. Just imagine searching for a name. Maybe, you are not aware of how to spell it precisely. You issue a query and the result is just an empty list. Empty lists can be pretty frustrating for end users. Frustration has to be avoided at any cost, so a solution is needed.
The solution comes in the form of the so-called distance operator (<->). It works like this:
test=# SELECT 'PostgreSQL' <-> 'PostgresSQL';
?column?
----------
0.230769
(1 row)
The distance between PostgreSQL and PostgresSQL is 0.23, so it is quite close. The distance can be between 0 (meaning identical) and 1 (totally different).
However, the question is not so much about the actual distance between two words but more about what is closest. Let's imagine we are looking for a village called Gramatneusiedl. Now an application designer cannot expect that somebody is able to spell this tricky name. So maybe, an end user might go and ask for Kramatneusiedel. A precise match would not return even a single row, which is somewhat frustrating to the end users.
Nearest neighbor search (KNN) can come to the rescue and return those four villages that are closest to our search string:
test=# SELECT *, name <-> 'Kramatneusiedel'
FROM t_location
ORDER BY name <-> 'Kramatneusiedel'
LIMIT 4;
name | ?column?
----------------+----------
Gramatneusiedl | 0.52381
Klein-Neusiedl | 0.76
Potzneusiedl | 0.791667
Kramsach | 0.809524
(4 rows)
The results are pretty good. Most importantly, the village the end user has really looked for is also among those results.
Just imagine an application trying to solve this without the ability to use KNN. Performance would go down the drain instantly.
KNN works also for numbers and the like. To use this functionality with numeric values, it is necessary to install the btree_gist extension.
Fixing full-text search
After focusing on some highly important and common problems related to indexing, it is time to discuss the most important pitfalls in the area of full-text indexing.
Not using full-text search at all
One of the most common mistakes made is not to use full-text search at all. Many people tend to use LIKE instead of proper, PostgreSQL-style full-text searching. Doing that can open a Pandora's box and result in various performance issues.
To demonstrate the point, some sample text can be loaded. In this case, Shakespeare's Hamlet has been selected, which can be downloaded freely from www.gutenberg.org (an archive of free books). To load the data, end users can turn to curl, just as was shown before in the previous example. PostgreSQL will read the data from the pipe:
test=# CREATE TABLE t_text (payload text);
CREATE TABLE
test=# COPY t_text FROM PROGRAM 'curl http://www.gutenberg.org/cache/epub/2265/pg2265.txt';
COPY 5302
In this example, 5302 lines of text have been loaded. The goal is to look for all lines that contain company and find. Here is what you should not do:
test=# SELECT * FROM t_text
WHERE payload ILIKE '%company%'
AND payload ILIKE '%find%';
payload
--------------------------------------------
What company, at what expense: and finding
(1 row)
One line has been returned. This does not look like a problem but it is. Let's assume you are not sure whether you are looking for company or companies. If you google for car, you would be happy with cars as well, wouldn't you? The same applies here. So, instead of asking PostgreSQL for a fixed string, it makes sense to process the data in the table before indexing it. The technical term here is stemming. Here is how it can be done:
test=# SELECT to_tsvector('english',
'What company, at what expense: and finding');
to_tsvector
---------------------------------
'compani':2 'expens':5 'find':7
(1 row)
English language rules are used to stem the text just returned. What comes out is a set of three tokens. Note that some words are missing, as they are simple stop words. There is no semantic payload in what, at, or and, so those words can safely be skipped.
The next important observation is that words are stemmed. Stemming is a process that treats words such that they are reduced to some sort of root (not really the root of the word but usually pretty similar to it). The following listing shows an example of stemming:
test=# SELECT to_tsvector('english',
'company, companies, find, finding');
to_tsvector
--------------------------
'compani':1,2 'find':3,4
(1 row)
As you can see, company and companies are both reduced to compani, which is not a real word but a good representation of the actual meaning. The same applies to find and finding. The important part now is that this vector of stemmed words is indexed; the word showing up in the text isn't. The beauty here is that if you are searching for car, you will also end up finding cars—a nice, little improvement!
There is one more observation; mind the numbers showing up behind the stemmed word. Those numbers represent the position of the word in the stemmed string.
Note
Keep in mind that stemming is a highly language-dependent process. Therefore, the language must be passed to the call.
To ensure good performance, it is necessary to create an index. For full-text searches, GIN indexes have proven to be the most beneficial index. Here is how it works for our copy of Hamlet:
test=# CREATE INDEX idx_gin ON t_text
USING gin (to_tsvector('english', payload));
CREATE INDEX
test=# SELECT *
FROM t_text
WHERE to_tsvector('english', payload)
@@ to_tsquery('english', 'find & company');
payload
--------------------------------------------
What company, at what expense: and finding
(1 row)
Once the index has been created, it can be used. The important part here is that the tsvector function created by the stemming process is compared to our search string. The goal is to find all lines containing find and company. Exactly one line is returned here. Notice that company shows up before finding in the sentence. The search string is stemmed as well, so this result is possible.
To prove the preceding point, the following list contains the execution plan showing the index scan:
test=# explain SELECT *
FROM t_text
WHERE to_tsvector('english', payload)
@@ to_tsquery('english', 'find & company');
QUERY PLAN
-------------------------------------------------------
Bitmap Heap Scan on t_text
(cost=20.00..24.02 rows=1 width=33)
Recheck Cond: (to_tsvector('english'::regconfig,
payload) @@ '''find'' & ''compani'''::tsquery)
-> Bitmap Index Scan on idx_gin
(cost=0.00..20.00 rows=1 width=0)
Index Cond: (to_tsvector('english'::regconfig,
payload) @@ '''find'' &
''compani'''::tsquery)
Planning time: 0.096 ms
(5 rows)
PostgreSQL's full-text indexing provides a lot more functionality than is actually described here. However, given the scope of this book, it is not possible to cover all of this wonderful functionality.
Full-text search and sorting
Full-text search is powerful. However, there are also some corner cases you should be aware of. Consider the following type of query:
SELECT * FROM product WHERE "fti_query" ORDER BY price;
The use case for such a query can be simple: find all books containing certain words in the title, and sort them by price; or find all restaurants containing pizza in their description and sort them by postal code (in most countries, a number).
The way a GIN index is organized is perfect for full-text search. The problem is that inside GIN, the item pointers pointing to the row in the table are sorted by position, not by some criteria such as price.
So let's assume the following query:
SELECT *
FROM products
WHERE field @@ to_tsquery('english', 'book')
ORDER BY price;
During my career as a PostgreSQL consultant, I came across a database that contained 4 million product descriptions with the word book. What will happen here is that PostgreSQL will have to find all of these books and sort them by price. Fetching 4 million rows from an index and having to sort 4 million rows is actually a death sentence to the performance of the query.
People might argue now, "Why not narrow down the price window?" In this case, it won't help because a price range of 20 to 50 euros would still include, say, 3 million products.
As of PostgreSQL 9.4, it is very hard to fix this type of query. Therefore, developers have to be very careful and aware of the fact that a GIN index does not necessarily provide sorted output. Therefore, the amount of data returned from this type of query is directly proportional to the runtime of the SQL request.
Future versions of PostgreSQL may solve this problem once and for all. In the meantime, however, people have to live with the fact that you cannot expect an infinite number of rows to be sorted in no time.
Summary
This chapter covered the important aspects of PostgreSQL indexing. The focus was on common queries causing common indexing-related problems faced by many people. Some aspects of full-text searching were covered as well.
In the next chapter, you will learn how to read data efficiently.
Chapter 4. Reading Data Efficiently and Correctly
Originally, this chapter was called "Reading Data Efficiently." Thinking about it for a while actually convinced me that "and Correctly" should be appended to the title. The reason is that this chapter is not just about speed; it is also about getting things right and ensuring that the result can be generated fast. What good is a fast result if it happens to be just plain wrong?
The following issues will be covered:
Understanding the power of NULL
Some of you might wonder why a section about NULL is included in this book. Remember that it is all about troubleshooting, and trust me, NULL can be a real source of trouble if its pitfalls are not understood properly. NULL is actually a pretty old thing. E. F. Codd (the father of relational databases) mentioned the concept of NULL in a 1975 paper. The idea of NULL is therefore central to the world of relational systems.
However, NULL has not always been widely understood and accepted among SQL developers. Many people have experienced troubles in the face of NULL. In this section, we will shed some light on this mysterious thing and solve the riddle of NULL.
The first and most important thing to know is that NULL does not mean empty string; it means unknown. Not knowing is not the same as empty. For example, if you know that your wallet is empty, then it means you know that there is nothing in it. Not knowing what is in your wallet is a totally different situation. It is important to keep this in mind. The golden rule is that NULL means undefined.
Seeing NULL in action
After this bit of theoretical introduction, it is time to dive into some real action to see how NULL really behaves. The first important observation is that NULL is not the same as an empty string:
test=# SELECT NULL = '';
?column?
----------
(1 row)
Many people expect this query to return false. In fact, the return value is NULL. Why? Imagine you are holding nothing in your left hand. We don't know what is in your right hand. Do both hands contain the same thing? We don't know. The second hand might be empty as well but we don't know for certain. Therefore, the answer to this question is unknown.
To check whether a certain value is NULL or not, IS NULL has to be used. In this case, the answer will be definitely false:
test=# SELECT '' IS NULL;
?column?
----------
f
(1 row)
The same logic applies to the next example:
test=# SELECT NULL = NULL;
?column?
----------
(1 row)
test=# SELECT NULL IS NULL;
?column?
----------
t
(1 row)
Again, the first query returns NULL, as we don't know if both sides are the same. Remember that the unknown item in your left hand may not be the same as the unknown item in your right hand.
NULL and storage
The good news is that NULL does not need space in the disk. In PostgreSQL, every row contains a so-called NULL bitmap. It indicates whether a field happens to be NULL or not. Therefore, an individual NULL value does not need any additional space in the disk.
This is not quite true for an empty string. A varchar string will need a fair amount of space even if it is empty because it is a perfectly defined value.
Fixing disastrous joins
NULL is not the only thing crying out for disaster. Joins are also a good source of trouble if not used properly. If you have the feeling that you know everything about joins and that this section can be skipped, give it a chance. Things might not be as easy as expected.
Create demo data for joins
To show what can go wrong during a join, the best thing to do is to create a simplistic example. In this case, two tables are created:
test=# CREATE TABLE a (aid int);
CREATE TABLE
test=# CREATE TABLE b (bid int);
CREATE TABLE
Then some rows can be added:
test=# INSERT INTO a VALUES (1), (2), (3);
INSERT 0 3
test=# INSERT INTO b VALUES (2), (3), (4);
INSERT 0 3
Note that the tables are quite similar but not identical.
For the sake of completeness, here is how common values can be found:
test=# SELECT * FROM a, b WHERE aid = bid;
aid | bid
-----+-----
2 | 2
3 | 3
(2 rows)
Understanding outer joins
A simple inner join is not what we are most interested in when talking about joins and problems in general. A lot more trouble comes from the so-called outer joins.
Let's look for all values on the left-hand side and match those that are present on the right-hand side:
test=# SELECT *
FROM a LEFT JOIN b
ON (aid = bid);
aid | bid
-----+-----
1 |
2 | 2
3 | 3
(3 rows)
The query is pretty simple and actually quite risk free as well, but what happens if an AND clause is added to the ON clause? Many people tend to do that to filter the data and reduce the result:
test=# SELECT *
FROM a LEFT JOIN b
ON (aid = bid AND bid = 2);
aid | bid
-----+-----
1 |
2 | 2
3 |
(3 rows)
Most people don't expect this result. Keep in mind that the ON clause is here to tell PostgreSQL what to join. In a LEFT JOIN keyword, the left side is always taken completely. The ON clause merely indicates what fits the left-hand side. The scary part here is that the number of rows returned by the query is not reduced at all. It has to be that way.
Somebody might argue that this is an easy problem to fix. Why not just move the filter to the WHERE clause, as shown here?
test=# SELECT *
FROM a LEFT JOIN b
ON (aid = bid)
WHERE bid = 2;
aid | bid
-----+-----
2 | 2
(1 row)
Only one row is returned now. Then what is the point of using a LEFT JOIN keyword here? The outer join is totally useless in this case because the filter strips all the rows created by the outer join.
The trouble with outer joins is that a wrong outer join will hit our support desk and will be nicely covered up as a performance problem. Here is why:
test=# SELECT avg(aid), avg(bid)
FROM a LEFT JOIN b
ON (aid = bid AND bid = 2);
avg | avg
--------------------+--------------------
2.0000000000000000 | 2.0000000000000000
(1 row)
The results look correct at first glance. However, the customer expects that bid = 2 actually reduces the amount of data processed. People wonder why indexes are not used and complain about bad performance. In reality, this is not a performance problem but a logical problem because the query is most likely not what was originally intended by the developer.
A second problem with outer joins has to do with NULL values:
test=# SELECT count(aid), count(bid), count(*)
FROM a LEFT JOIN b
ON (aid = bid AND bid = 2);
count | count | count
-------+-------+-------
3 | 1 | 3
(1 row)
The count(bid) function returns 1 while count(*) function will return 3. Keep in mind that count(*) will count rows regardless of their contents. However, count(column) will count all values that don't happen to be NULL. As there is just one number, the correct answer is 1 here. The count(*) function and outer joins, if not used wisely, can result in a deadly mixture—ready to explode!
Before writing an aggregate, always try to fix the outer join first and then think twice. Where shall NULL values be expected? What kind of count is really needed? Is the AND operator inside the ON clause really doing what you think it is doing? Whenever there is AND in the ON clause, be attentive and check twice. The same applies to count(*) versus count(column). An error along these lines can affect you in a brutal way.
Let's focus our attention on FULL JOIN now:
test=# SELECT *
FROM a FULL JOIN b
ON (aid = bid);
aid | bid
-----+-----
1 |
2 | 2
3 | 3
| 4
(4 rows)
The idea of a FULL JOIN keyword is to find everything on the left and match it with everything on the right. All values from each of the sides will be shown in the result.
After all that you have learned, do you expect the following result?
test=# SELECT *
FROM a FULL JOIN b
ON (aid = bid AND aid = 2);
aid | bid
-----+-----
1 |
2 | 2
3 |
| 4
| 3
(5 rows)
Again, the AND clause will only tell the system what goes together; it does not reduce data—quite the opposite. In this example, the amount of data returned is even increased by one row.
Reading large amounts of data
Some applications require large amounts of data that have to be read by the database. Usually, two major cases can be distinguished:
In this section, both the cases will be covered because they have slightly different requirements.
Making use of cursors
Cursors are a fundamental concept provided by all reasonable relational databases. However, cursors are often ignored and not used the way they should be, which leads to problems all along the way.
Why would anybody want to use a cursor, and what is it all about anyway? Consider the following example:
SELECT * FROM very_large_table;
For PostgreSQL, this is no problem at all. It will calculate the result and send it to the client server. However, the client may instantly crash because it will try to store all of the data in the memory. If the table is really large, the client may just not cope with all of the data coming from the server. The client will consume a lot of memory or even die. The biggest problem is that whether your client will survive or not will depend on the amount of data in the table—a sure recipe for disaster, which is also difficult to identify.
In general, your applications should be designed in a way such that they will always work, regardless of the amount of data and regardless of the result sets coming back from the server. A cursor is here to fix this very problem. The idea behind a cursor is to allow the client to keep only as much data around as will be needed at a specific time.
To make use of cursors, the DECLARE command has to be used:
test=# \h DECLARE
Command: DECLARE
Description: define a cursor
Syntax:
DECLARE name [ BINARY ] [ INSENSITIVE ] [ [ NO ] SCROLL ]
CURSOR [ { WITH | WITHOUT } HOLD ] FOR query
In our example, the goal is to read 10 rows without having to keep all 10 rows in the memory at once. Demo data can be created easily:
test=# CREATE TABLE t_test AS
SELECT * FROM generate_series(1, 10) AS x;
SELECT 10
In the next step, the data should be read by the application. The most important thing to do here is to wrap the operation inside a transaction (in this book, transactions will also be covered in detail in one of the later chapters). The cursor can then be easily defined:
test=# BEGIN;
BEGIN
test=# DECLARE mycur CURSOR FOR SELECT * FROM t_test;
DECLARE CURSOR
Note that creating the cursor does not do anything at this point. It merely means that PostgreSQL is now prepared to send a lot of data to you. The real work is done as soon as FETCH is called:
test=# FETCH NEXT FROM mycur;
x
---
1
(1 row)
FETCH NEXT will yield one row from the result set. It is not possible to call FETCH NEXT for every row in the result. The trouble with FETCH NEXT is that it is really really slow. If you fetch 1 million rows one by one, it means a lot of network overhead. Therefore, it is highly recommended to fetch data in larger buckets. In general, buckets of several hundred to several thousand rows make perfect sense, as memory consumption and network overhead would be in perfect balance. However, don't take this as a fixed guideline. Things depend on your type of application, your data, your network, and so on. It can make sense to experiment.
Here is how more than one row can be fetched at a time:
test=# FETCH 3 FROM mycur;
x
---
2
3
4
(3 rows)
It is now possible to loop through the entire result as needed.
To finish the operation, it is enough to commit the transaction. All cursors will be closed automatically:
test=# COMMIT;
COMMIT
It is important to note that after a COMMIT statement, the cursor is not there anymore:
test=# FETCH NEXT FROM mycur;
ERROR: cursor "mycur" does not exist
By default, a cursor is only visible inside a transaction, and therefore, very long cursor-related operations can also cause issues such as replication conflicts and so on. If you really want a cursor to survive a transaction, you have to create a so-called WITH HOLD cursor. In this case, however, you have to take care of cleaning up the cursor again by calling CLOSE:
test=# \h CLOSE
Command: CLOSE
Description: close a cursor
Syntax:
CLOSE { name | ALL }
WITH HOLD cursors should be handled with care. The most important observation is that a WITH HOLD cursor has to materialize its result, which can have a lot of impact on the amount of storage required on the database server.
Synchronized scanning
Sometimes, reading is not about shipping data to the client but all about processing data server side. This is exactly when synchronized seq scans come into play.
Let's imagine the following scenario: a 10 TB table contains some old reporting data. It is stored on a server containing a couple of traditional mechanical disks. Let's consider the following query:
SELECT error_type, count(*) FROM big_table GROUP BY 1;
Assuming that error_type has just a couple of different values, PostgreSQL will turn to a seq scan and process the query. The I/O system might deliver data at the rate of 500 MB per second. All disks will be spinning nicely.
Let's assume now that the query shown here has already processed 2 TB of data. Then somebody comes along and fires up a second, similar query. Even if the data has already been read by the previous job, it has definitely fallen out of the cache by now. Therefore, it has to be read once again. But things are even worse; those spinning disks will start jumping between the first and the second query. The more the queries added, the more random the disk behavior. After about 10 queries, the total throughput may drop to approximately 60 MB per second, which means 6 MB per database connection. Clearly, this is not a desirable performance level and is unacceptable.
Synchronized seq scans come to the rescue. Let's assume the first query has already processed 2 TB of the table at the full speed of 500 MB per second. When the second (and similar) query kicks off on the same table, PostgreSQL will make it start reading at around 2 TB. The second query will continue from there. The advantage of synchronizing these scans is that one can benefit from the cache entries generated by the other one. Reading from the disk once can, under good conditions, feed both (or even more) of the scans with data. Thus, performance is not 500 MB per second divided by two minus additional random access per scan, but ideally 500 MB per second multiplied by the number of scans. Running scans in parallel can improve speed dramatically by drastically reducing the I/O bottleneck and turning it slowly into a CPU bottleneck, which is a lot easier to scale.
The important thing is that synchronized sequential scans are on by default, and in general, it is a good idea to ensure that this setting is really set to on:
test=# SHOW synchronize_seqscans ;
synchronize_seqscans
----------------------
on
(1 row)
You can enjoy their full potential on the default configuration.
In many cases, it makes more sense to execute things in parallel than in sequence because many analytical jobs may share the same I/O.
Note
Keep in mind that this works only for sequential scans.
Understanding prepared queries
This section is all about prepared queries. What is a prepared query? Consider the following example:
SELECT * FROM website WHERE domain = 'www.cybertec.at';
PostgreSQL will parse the query to check for syntax errors and so on. Then it will go through the rewrite system and hit the PostgreSQL optimizer, which then comes up with a good plan. Finally, the executor will perform all the steps selected by the query planner. If this type of query is executed over and over again for different domains, the parsing and planning process will also have to run over and over again, which is very time consuming.
Prepared queries try to solve exactly that problem. The idea is that the backend process will cache the plan and reuse it just in case it is needed again. The beauty is that sending the parameters instead of the complete query can be enough. Usually, prepared statements are happening behind the scenes when desired (this is usually done through the driver if the driver is prepared for it). However, you can also prepare queries manually:
test=# \h PREPARE
Command: PREPARE
Description: prepare a statement for execution
Syntax:
PREPARE name [ ( data_type [, ...] ) ] AS statement
As mentioned already, something similar is done by the driver. However, it also works manually:
test=# PREPARE myplan(int) AS SELECT $1;
PREPARE
test=# EXECUTE myplan(10);
?column?
----------
10
(1 row)
In this example, a plan called myplan that accepts one parameter is created. Parameters passed to a prepared query are numbers such as $1, $2, $3, and so on. To run a plan, EXECUTE is used here.
Of course, there is some protocol-level support for optimizing this process, and it is highly recommended to make use of this functionality.
However, in some cases, there can be problems. If a client application creates thousands or even millions of prepared plans, the memory consumption of the backend may grow. To figure out whether your active database connection has created too many prepared statements, a system view can be consulted:
test=# \d pg_prepared_statements
View "pg_catalog.pg_prepared_statements"
Column | Type | Modifiers
-----------------+--------------------------+-----------
name | text |
statement | text |
prepare_time | timestamp with time zone |
parameter_types | regtype[] |
from_sql | boolean |
The pg_prepared_statements view tells us which statements have been prepared in our database connection.
If you want to remove a statement from a backend, you can use the DEALLOCATE command:
test=# \h DEALLOCATE
Command: DEALLOCATE
Description: deallocate a prepared statement
Syntax:
DEALLOCATE [ PREPARE ] { name | ALL }
Another important point is that prepared queries are not only about speed but also about SQL injections. A prepared query is a good way to avoid security loopholes altogether.
Summary
This chapter was all about reading data efficiently. It covered aspects such as cursors as well as synchronized seq scans and prepared plans. Of course, a chapter like this can never be complete, as the field of reading data is simply an infinite one.
The next chapter will cover transactions and locking—two important topics relevant to any relational database system.
Chapter 5. Getting Transactions and Locking Right
Transactions are a core technique of every professional relational database system. In fact, it is pretty hard to imagine a world without transactions these days. Atomic deletions, proper locking, and all the functionalities provided by a modern relational system are simple and expected from a modern system, and many applications rely on them. Therefore, this chapter is all about transactions and locking.
The following topics will be covered:
The PostgreSQL transaction model
The PostgreSQL transaction model differs quite a lot from other systems. In many cases, these differences are a root source of trouble. In this section, some basic examples have been included to make you aware of the way PostgreSQL works.
The first thing to take into account is that a transaction block has to be started with BEGIN statement and finished with a simple COMMIT statement All statements inside the transaction block have to be correct:
test=# BEGIN;
BEGIN
test=# SELECT now();
now
-------------------------------
2014-09-22 13:27:24.952578+02
(1 row)
test=# SELECT now();
now
-------------------------------
2014-09-22 13:27:24.952578+02
(1 row)
test=# COMMIT;
COMMIT
Note that now() will return the transaction time. Therefore it is always the same, regardless of how often it is used. Many people like to use DEFAULT now() in their column definitions. Always keep in mind that DEFAULT now() sets the column to transaction time, and it stays constant even in a long transaction. This is a handy way to determine whether all rows have been written in the same transaction.
The second important thing to note is that a transaction must be free of mistakes:
test=# BEGIN;
BEGIN
test=# SELECT 1;
?column?
----------
1
(1 row)
test=# SELECT 1 / 0;
ERROR: division by zero
test=# SELECT 1;
ERROR: current transaction is aborted, commands
ignored until end of transaction block
test=# SELECT 1;
ERROR: current transaction is aborted, commands
ignored until end of transaction block
test=# COMMIT;
ROLLBACK
In this example, an error occurs after a successful start of the transaction. The main issue here is that the transaction will never recover, even if properly working statements are issued after the mistake! Remember that a transaction has to be correct from the beginning to the end. Otherwise, all commands after the error will be ignored by the system.
Understanding savepoints
If the conditions we just mentioned cannot be achieved, it is wise to consider using savepoints. Basically, a savepoint is a mechanism used to jump back inside a transaction. It can be used effectively to avoid errors and to ensure success. The following example shows how it works:
test=# BEGIN;
BEGIN
test=# SELECT 1;
?column?
----------
1
(1 row)
test=# SAVEPOINT s1;
SAVEPOINT
test=# SELECT 1 / 0;
ERROR: division by zero
test=# ROLLBACK TO SAVEPOINT s1;
ROLLBACK
test=# COMMIT;
COMMIT
After the initial SELECT statement, a savepoint is created. Note that the savepoint, as the name suggests, is used later on to identify the spot to return to. After an error occurs, it is still possible to jump to a specific savepoint. The main advantage is that the transaction can be committed nicely in this case.
Tip
Keep in mind that a savepoint is only valid inside a transaction. It does not exist after a transaction has committed or rolled back.
Understanding basic locking and deadlocks
Now that you have learned about the basic PostgreSQL model followed by the PostgreSQL system, it is time to dig into locking. In many cases, locking turns out to be a bottleneck. So, it is definitely worth inspecting things.
To get started, a simple demo table can be created like this:
test=# CREATE TABLE t_test AS SELECT 1 AS id;
SELECT 1
The table contains only one row, which is enough to demonstrate some basic concepts of locking. In the first example, the goal is to demonstrate what happens when two users try to increment the value in the table at the same time:
User 1 | User 2 |
---|---|
BEGIN;
| |
BEGIN;
| |
UPDATE t_test SET id = id +1
| |
UPDATE t_test SET id = id +1
| |
wait ... | |
COMMIT;
| wait ... |
COMMIT;
|
The goal is to allow two users to increment the value in the table at the same time. The important thing to observe is that the second UPDATE statement has to wait until the first UPDATE statement has committed. It is important to mention that we are talking about a row level lock and not a table lock here. PostgreSQL only locks those rows affected by the UPDATE statement, ensuring that other people are not facing serious bottlenecks.
The second important observation is the result; it is ensured that the outcome at the end of the example is always 3. As soon as the first transaction commits, the second UPDATE rereads the now-committed row and increments it. While this may seem like a logical issue, it is not widely known to many people in spite of its wide implications.
Let's expand the example a little:
test=# INSERT INTO t_test VALUES (5);
INSERT 0 1
test=# SELECT * FROM t_test;
id
----
3
5
(2 rows)
Let's perform two updates now:
User 1: | User 2: |
---|---|
BEGIN;
|
BEGIN;
|
UPDATE t_test SET id = 4
|
UPDATE t_test SET id = 6
|
UPDATE t_test SET id = 4
| |
UPDATE t_test SET id = 6
| |
… deadlock detected ... | |
COMMIT;
|
The first UPDATE statement of both the users works as expected. The second UPDATE statement of User 2 has to wait for User 1 because the same row is changed. The important part, however, is the final UPDATE. Both users wait on each other, so nobody can win this game. Therefore, PostgreSQL steps in and resolves the hopeless situation. The exact error message is as follows:
test=# UPDATE t_test SET id = 6 WHERE id = 5;
ERROR: deadlock detected
DETAIL: Process 27988 waits for ShareLock on
transaction 1131992; blocked by process 28084.
Process 28084 waits for ShareLock on transaction
1131990; blocked by process 27988.
HINT: See server log for query details.
CONTEXT: while updating tuple (0,5) in relation
"t_test"
The deadlock is resolved automatically. All that the user has to do is to catch the error and try again.
Tip
Many users think that a deadlock is something nasty, horribly dangerous, and disastrous. Actually, this is not the case. A deadlock is a totally natural thing, and it simply happens once in a while. Don't panic! Instead, think logically about the reasons for it.
How can deadlocks be avoided? Actually, there is no general rule. Personally, I found it useful to try to update data in a sorted order. In many cases, this works well and cures the reasons for a deadlock (which is out of order changes). Besides this, there is not much that can be done to get around this issue.
When talking about deadlocks, many people instantly ask about a PostgreSQL parameter called deadlock_timeout:
test=# SHOW deadlock_timeout;
deadlock_timeout
------------------
1s
(1 row)
There is a general misconception regarding this parameter in the heads of many. The parameter actually tells us how long the system waits before checking for a deadlock. Deadlock detection is fairly expensive, and therefore, PostgreSQL waits for one second before it initializes the check.
Locking in FOR UPDATE mode
In this section you will be introduced to a problem that has bugged generations of database developers—wrong or missing locking.
Let's assume you are reading some data and you definitely intend to change it later on, once you have read it. But what if the data was already gone by the time you were performing your UPDATE? I assume it would not do you any good.
In PostgreSQL, reading can occur concurrently, and many people can read the same piece of data at the same time without interfering with each other. Therefore, reading does not provide sufficient protection against other folk who are planning to modify data as well. The result can be nasty. Consider the following example:
BEGIN;
SELECT * FROM tab WHERE foo = bar;
UPDATE tab SET foo = "value made in the application";
COMMIT;
A transaction like what is shown here is not safe. The reason is simple: What if people execute the same thing concurrently? It may happen that they overwrite each other's changes instantly. Clearly, this would cause major issues.
To prevent this from happening, SELECT … FOR UPDATE comes to the rescue.
Consider the following example:
User 1: | User 2: |
---|---|
BEGIN;
|
BEGIN;
|
SELECT * FROM t_test
| |
… do some work ... |
SELECT * FROM t_test
|
… do some work ... | wait ... |
COMMIT;
| |
… returns latest data ... | |
… do some work and commit ... |
In this example, SELECT … FOR UPDATE locks the rows returned by the query, just like UPDATE would've locked those rows. The beauty here is that the second transaction has to wait until the first transaction either issues a COMMIT statement or exits. The advantage here is that the second transaction can already build on the changes of the first query, ensuring that nothing is lost.
Avoiding performance bottlenecks
However, if used carelessly, SELECT … FOR UPDATE can cause serious performance issues. Consider the following example:
SELECT … FROM a, b, c, d, e, f, g WHERE … FOR UPDATE;
Let's assume all you want to do is to modify a. The rest of the tables are just used as lookup tables. PostgreSQL has no way to figure out that you are planning to modify just one table. Therefore, it has to lock all rows returned by the query, in all tables. While this is a necessary thing for PostgreSQL to do, it is likely to cause nasty contentions involving lookup tables.
Tip
Contention means you may witness any of the following: comparatively low CPU usage, little disk wait, bad performance, and so on. If the CPU is not working at its top speed and if nothing is moving forward, you are most likely facing contentions caused by locking somewhere.
There are two approaches to fix this problem. The first is to use SELECT … FOR UPDATE NOWAIT. This will make a query stop if a lock cannot be obtained. It can come in handy if you want to avoid waiting indefinitely. The second option is even more sophisticated. Consider the following example:
SELECT … FROM a, b, c, d, e, f, g WHERE …
FOR UPDATE OF a, b;
In this case, PostgreSQL knows that only two tables will most likely be updated in the next couple of steps, which will improve locking substantially.
Avoiding table locks
In some cases, SELECT … FOR UPDATE is not enough, and locking an entire table is necessary. To create a table lock, PostgreSQL provides a simple command:
test=# \h LOCK
Command: LOCK
Description: lock a table
Syntax:
LOCK [ TABLE ] [ ONLY ] name [ * ] [, ...] [ IN lockmode MODE ] [ NOWAIT ]
where lockmode is one of:
ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE
| SHARE UPDATE EXCLUSIVE | SHARE
| SHARE ROW EXCLUSIVE | EXCLUSIVE
| ACCESS EXCLUSIVE
Note that PostgreSQL has eight lock levels here, ranging from ACCESS SHARE all the way up to ACCESS EXCLUSIVE. These allow you to define locking in a very fine-grained way. Suppose you want to make sure that you are the only person allowed to read and write a table. Then the lock mode needed is ACCESS EXCLUSIVE. It perfectly ensures that nobody else can even look at that table. If nobody is supposed to modify a table but reading is perfectly fine, EXCLUSIVE is the option of choice.
On the other end of the spectrum, there is a lock held by a simple read called ACCESS SHARE. It can nicely coexist with other reads and does not harm others. It only conflicts with ACCESS EXCLUSIVE, which is needed by DROP TABLE and similar commands at http://www.postgresql.org/docs/9.4/static.
Locking a table is sometimes necessary, but it should never be done in a careless way because it can have nasty side effects and block other transactions.
Tip
More information about locking and a detailed overview of all potential conflicts can be found at:
http://www.postgresql.org/docs/9.4/static/explicit-locking.html.
Transaction isolation
In this section, you will be introduced to an important topic called transaction isolation. In my long career as a PostgreSQL database consultant, I have seen countless scenarios in which transaction isolation has caused enormous problems. Sometimes, people even desperately replaced their hardware to get around issues that were definitely not related to hardware.
Demonstrating read committed mode
So, what is transaction isolation? The idea behind transaction isolation is to give users a tool to control what they see inside a transaction. A report might have different requirements than a simple OLTP application, but let's not get lost in plan theory. Instead, let's look at a real example with some data:
test=# CREATE TABLE t_test (id int);
CREATE TABLE
test=# INSERT INTO t_test VALUES (4), (5);
INSERT 0 2
We've got two rows. Now let's see what happens if two transactions battle for the data at the same time:
User 1: | User 2: |
---|---|
BEGIN;
| |
SELECT sum(id) FROM t_test;
| |
INSERT INTO t_test VALUES (9);
| |
SELECT sum(id) FROM t_test;
| |
COMMIT;
|
The first SELECT statement returns 9, which is the expected value. While the first transaction is still active, some other user adds some more data. Most people now expect the first transaction to return 9, but this is not the case. Just because user 1 is in a transaction, it does not imply that its view of the data never changes. By default, PostgreSQL uses something called read committed mode. This means that a transaction will see changes committed by somebody else every time a new statement is started.
Tip
Note that running statements never change their view of the world just because somebody else makes a change. In read committed mode, a snapshot is taken at the beginning of a statement. Once it is running, it stays as it is.
The fact that the result changes due to some other commit can have serious implications. If a report consists of more than just one query, it can mean that data shown on page 5 does not reflect what it says on page 29 of the report. Of course, such discrepancies don't show up all the time but only sometimes—when somebody happens to commit a change in some other session at the same time.
The support requests reaching us here—at Cybertec Schönig & Schönig GmbH—sound something like this, "Sometimes, PostgreSQL returns the wrong result. We have already updated the database, but sometimes there are still mistakes. Interestingly, this only happens on the live system. We have tested things on the development system and it seems to work just fine. We have even replaced the hardware of our production system because this really feels like a broken RAM. The bug still exists but it seems less likely."
There are a couple of observations to be made from this little (fake) support request: Yes, the "problem" never shows up in the lab. The reason is that there are not as many people in the lab as there are on production. Thus, nobody changes data while you are testing. Upgrading the database certainly does not help because PostgreSQL behaves in the desired way. Upgrading hardware won't change things either, but it makes sense in saying that "the problem" will be less likely because new hardware is usually faster. The faster your hardware, the less likely it is that two transactions run at the same time, thus reducing the odds of causing a problem in the first place.
Using repeatable read
To ensure that a transaction does not change its view of the world, REPEATABLE READ mode can be used. Here is a table showing how it works:
User 1: | User 2: |
---|---|
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
| |
SELECT sum(id) FROM t_test;
| |
DELETE FROM t_test;
| |
SELECT sum(id) FROM t_test;
| |
COMMIT;
|
In this case, the transaction sticks to the data it sees. The concurrent DELETE statement, which removes all data from the table, does not harm the report. In other words, side effects can be avoided by turning to the repeatable read mode.
Tip
People often ask if repeatable read has a performance penalty compared to read committed mode; it doesn't. Both isolation levels offer the same throughput. There is no performance bottleneck.
As mentioned before, repeatable read is perfect for all kinds of reports. However, it is not the golden solution for everything. Normal OLTP operations are still best done in the read committed mode to ensure that data is as up to date as possible.
Beyond repeatable read
There is more than just read committed and repeatable read. The highest transaction isolation level supported by PostgreSQL is serializable. The original idea behind the serializable transaction isolation level back in the early days was to totally serialize transactions to avoid all kinds of interaction.
However, executing transactions in a sequential way is clearly not what you would expect from a modern relational database such as PostgreSQL. The problem with sequential execution is scalability. There is no way to scale out if a system executes one thing after another on a single CPU because everything else is just locked. In PostgreSQL, serializable mode is way more sophisticated. In fact, it pretends to do sequential execution, but internally, it executes things as parallel as possible.
What is the purpose of a serializable transaction? Sometimes, freezing your snapshot is not enough. Consider the following example:
CREATE TABLE t_prison (guard text);
Let's assume that you want to ensure that there is always exactly one guard around (for the sake of the example, no primary key is allowed). Now a transaction may look like this:
BEGIN;
SELECT count(*) FROM t_prison;
if count > 1
delete a guard
COMMIT;
What happens if two folks execute this at the same time? Both would see that two people are in the table. Each of them would decide to delete one. If we are unlucky, one would remove "Bob" while the other one would remove "Alice". Voilà! All doors to the prison would be wide open. It does not matter whether repeatable read or read committed is used. Two people can check for the content at the same time, and therefore, see the same data, leading to the same conclusion.
The solution to this problem is serializable mode. It will ensure that only transactions that are independent of each other can run in parallel. Transactions that involve the same data (or same predicates) will conflict with each other.
The beauty of this is that you can basically get around a table lock, thus improving scalability. However, you will need a retry loop in case transactions are aborted due to conflicts.
Inspecting locks
In many cases, locks are a major issue for most system administrators. If a transaction blocks some other operations, it is usually a problem. End users will complain that "something hangs." However, you can rely on the fact that PostgreSQL never hangs without a reason. Usually, it is simple and all about locking.
In this section you will learn how to detect locks and how to figure out who is locking which transaction.
Let's do a simple example considering the following data:
test=# CREATE TABLE t_test AS SELECT *
FROM generate_series(1, 10) AS id;
SELECT 10
The goal is to have two concurrent SELECT FOR UPDATE operations reading slightly different data. Those two operations will lock each other, and then the goal will be to figure out which operation is blocking which transaction.
The first SELECT FOR UPDATE command selects everything larger than 9:
test=# BEGIN;
BEGIN
test=# SELECT * FROM t_test WHERE id > 9 FOR UPDATE;
id
----
10
(1 rows)
The second transaction locks everything larger than 8:
test=# BEGIN;
BEGIN
test=# SELECT * FROM t_test WHERE id > 8 FOR UPDATE;
Logically, this transaction has to wait for the first transaction. In this case, it is obvious what is going on, but how can it be checked if you don't know?
The first thing to check is always pg_stat_activity. It will reveal what is going on and which operations are active:
test=# \x
Expanded display is on.
test=# SELECT pid, query, waiting
FROM pg_stat_activity;[ RECORD1 ]--------------------------------------------
pid | 4635
query | SELECT * FROM t_test WHERE id > 9 FOR UPDATE;
waiting | f
[ RECORD2 ]--------------------------------------------
pid | 4637
query | SELECT * FROM t_test WHERE id > 8 FOR UPDATE;
waiting | t
[ RECORD3 ]--------------------------------------------
pid | 4654
query | SELECT pid, query, waiting
FROM pg_stat_activity;
waiting | f
In this example, pid 4637 indicates that the transaction is waiting on something. The waiting=true is a reliable indicator of potential trouble. It means that a transaction is stuck. The next thing to do is to check an additional system view called pg_locks view. This view tells us which locks have been granted and which locks haven't been.
The following query detects locks that have not been granted:
test=# SELECT locktype, granted, transactionid,
mode
FROM pg_locks WHERE granted = 'f';
locktype | granted | transactionid | mode
---------------+---------+---------------+-----------
transactionid | f | 1812 | ShareLock
(1 row)
It seems that somebody is waiting on transactionid 1812. This is an important observation. In the next step, information about transaction 1812 can be retrieved:
test=# SELECT granted, transactionid, mode, pid
FROM pg_locks
WHERE transactionid = 1812;
granted | transactionid | mode | pid
---------+---------------+---------------+------
t | 1812 | ExclusiveLock | 4635
f | 1812 | ShareLock | 4637
(2 rows)
There are two processes that have something to do with transactionid 1812. One of them has the lock and the other does not. Obviously, pid 4635 is blocking pid 4637. To solve this problem, the database connection that is causing issues can be terminated:
SELECT pg_terminate_backend(4635);
But don't do that yet. There is more to be found out.
Whenever a lock is held on a conflicting row, there is an entry made in pg_locks:
test=# SELECT pid, relation, page, tuple
FROM pg_locks
WHERE page IS NOT NULL;
pid | relation | page | tuple
------+----------+------+-------
4637 | 16385 | 0 | 10
(1 row)
Obviously, there is a lock on the tenth tuple in the first (0) page in relation 16385. The pid indicates that the waiting transaction is waiting on this row.
In many cases, it is even possible to see the row that is causing issues. The so-called ctid is an identifier pointing to a row in the storage system. By querying the row, we have good chances (no guarantee) of seeing the row that is causing issues:
test=# SELECT ctid, * FROM t_test
WHERE ctid = '(0, 10)';
ctid | id
--------+----
(0,10) | 10
(1 row)
The problem is caused by row number 10, which is the very row locked by our first SELECT FOR UPDATE command. Inspecting the row that is causing issues can give you vital insights into what is really going on in the system. Before killing a database connection, it is always wise to check out which kind of data is really causing trouble. Sometimes, this can reveal problems in the underlying application.
Summary
In this chapter, you were introduced to locking and transactions. As pointed out, locking is a central issue affecting both scalability as well as correctness of your data. It is important to keep an eye on locking. Especially, transaction isolation is an important issue, but is often forgotten by many developers, which in turn can lead to buggy applications. In addition to that, harsh locking can lead to scalability issues as well as to timeouts.
In addition to what you have seen, locks can be reverse engineered to find out who is waiting for whom.
Chapter 6. Writing Proper Procedures
After understanding transactions and locking, it is time to focus on writing proper procedures to avoid widespread problems and known issues. The goal is to cover issues that bug many people around the globe. This chapter will introduce some of the most common pitfalls when it comes to writing procedures for PostgreSQL.
The following topics are on our agenda:
All of these topics will help you to make sure that your procedures offer high performance at low risk.
Choosing the right language
One of the cool features of PostgreSQL is the privilege for you to write your stored procedures in almost any language you want. Some languages such as SQL, PL/pgSQL, PL/Perl, PL/Python, and PL/Tcl are shipped along with the core of the system. You can also add other languages such as PL/sh, PL/v8, and many more to PostgreSQL to make sure that you always have the language of your choice at hand when you want to write a procedure.
Tip
The listing at https://wiki.postgresql.org/wiki/PL_Matrix contains an overview of all procedural languages available.
To enable a procedural language, you can call CREATE LANGUAGE.
test=# \h CREATE LANGUAGE
Command: CREATE LANGUAGE
Description: define a new procedural language
Syntax:
CREATE [ OR REPLACE ] [ PROCEDURAL ] LANGUAGE name
CREATE [ OR REPLACE ] [ TRUSTED ] [ PROCEDURAL ] LANGUAGE name
HANDLER call_handler [ INLINE inline_handler ] [ VALIDATOR valfunction ]
To enable PL/Perl, just call this command:
CREATE LANGUAGE plperl;
If PL/Perl is installed, this will work, and you can write procedures in Perl from now on.
If you decide to add a language, it definitely makes sense to check out the documentation of the language that should be installed and act accordingly.
Trusted versus untrusted
When deciding on a procedural language, you should keep one thing in mind: you have to decide whether to use a trusted or an untrusted language. What does this actually mean? If you load, for example, Perl in untrusted mode (plperlu), the external language is allowed to do anything. This poses a real security threat because a user writing a procedure can actually delete files, send e-mails, or do any other nasty stuff. Of course, in a secure environment, this is not desirable at all. Therefore, it is better to restrict Perl to the so-called taint mode, which does not provide system calls. It offers only the basics of the language and bans any interaction with the outside world. For procedural languages embedded inside PostgreSQL, this is definitely the way to go. Untrusted Perl should only be used in rare, exceptional cases.
Not all programming languages provide you with such a choice. Languages such as PL/sh and the like are available only in untrusted mode, making them unsuitable for ordinary users who do not have superuser permissions.
Managing procedures and transactions
Once you have decided on a procedural language, it is time to get started with real work. The first important fact you have to keep in mind is that PostgreSQL relies heavily on an object-oriented feature called function overloading. This term means that various functions can have the same name but accept different input parameters.
One function may be called func(int, int), while some other function may be called func(text, text). Always keep in mind that the entire signature of the function is what counts:
test=# CREATE FUNCTION mysum(int, int)
RETURNS int AS ' SELECT $1 + $2 '
LANGUAGE 'sql';
CREATE FUNCTION
test=# CREATE FUNCTION mysum(text, text)
RETURNS text AS ' SELECT $1 || $2 '
LANGUAGE 'sql';
CREATE FUNCTION
In this case, two functions have been defined. The first will take two integers, and the second takes two text values. Depending on how the function is called, different portions of code will be executed:
test=# SELECT mysum(10, 20);
mysum
-------
30
(1 row)
The behavior of the function changes as the input data types change:
test=# SELECT mysum('10', '20');
mysum
-------
1020
(1 row)
You are advised to be very careful here.
Using transactions to avoid trouble
Let's discuss a very common problem many people all over the world face. Experience has shown that many people commit their code way too early. Consider the following flow:
This is not a theoretical edge case. It happens all the time all over the world. A mistake like this can cost people dearly.
One way to reduce the odds of such a mistake is the use of transactions. Remember that in PostgreSQL, transactions can even be used along with DDLs (CREATE FUNCTION, ALTER TABLE, and so on). By (simply) not committing a change while you are working on the code, you can prevent side effects, such as leftovers, and this helps to avoid the problem of cleaning up things during and after development. Writing database code is not like writing code in a programming language. If you remove a function from the code, it is gone. In a database, removing a function from a text file somewhere does not necessarily remove the function from the database system. BEGIN, COMMIT, or ROLLBACK can help to reduce the pain.
Tip
Here is my personal tip on how to do it:
[hs@jacqueline deploy]$ cat START.sql
BEGIN;
\i module_1.sql
\i module_2.sql
The module_1.sql and module_2.sql files contain all of the code. Note that there is no COMMIT statement. It is only added after all the modules are somewhat ready for the rest of the world. The \i function is a very convenient tool used to include modules and load them as parts of one transaction. To those of you who are using the normal Linux command line to develop software, this might be very helpful.
Understanding transactions and procedures
So far, you have seen how transactions and function creation work, but there are other aspects here as well. One important thing is that inside a function, the programmer cannot start or end transactions; this makes sense. Consider the following command:
SELECT * FROM func();
Let's assume func() returns 1 million rows. There is no way to open a transaction after returning 200,000 rows or so. The same applies to commit. You cannot just commit at any place you want inside an operation.
The golden rule is that a function is always a part of a transaction. It never starts or ends transactions. A function always operates within the scope of the statement running it.
However, there is one thing you can take advantage of: a PL/pgSQL function can use so-called exceptions. Practically, an exception can help you to achieve the same thing as with a savepoint. Here is an example:
CREATE FUNCTION failure(int) RETURNS int AS $$
DECLARE
v_one ALIAS FOR $1;
BEGIN
RETURN v_one / 0;
EXCEPTION WHEN division_by_zero THEN
RETURN 0;
END;
$$ LANGUAGE 'plpgsql';
This procedure will definitely cause an error. As you have seen in the previous chapters, an error actually leads to a failing transaction. However, the exception helps us catch the error and ensures that the transaction can be recovered.
Procedures and indexing
In this section, you will learn the basic pitfalls of indexing and procedures. One of the most common issues is that people forget to define their procedures. In PostgreSQL, there are four types of procedures:
A volatile procedure may return different outputs for the same input parameters within the same transaction:
test=# SELECT random(), random();
random | random
-------------------+-------------------
0.906597905792296 | 0.368819046299905
(1 row)
The random() function is supposed to return different values all the time. This is the core purpose of a random generator. Logically, this has implications when it comes to indexing:
SELECT * FROM tab WHERE field = random();
Can PostgreSQL use an index here? The answer is no, because what will the engine look up in the B-tree? The value is supposed to change by definition for each row. Therefore, indexes are forbidden here. All existing indexes on the column will simply be ignored.
Tip
VOLATILE is a major source of performance problems because people are left wondering why no indexes are used.
STABLE tells PostgreSQL that this function is providing a more deterministic output than a VOLATILE function:
test=# BEGIN;
BEGIN
test=# SELECT now();
now
-------------------------------
2014-10-15 11:04:51.555648+02
(1 row)
test=# SELECT now();
now
-------------------------------
2014-10-15 11:04:51.555648+02
(1 row)
test=# COMMIT;
COMMIT
Within the same transaction, the function will always return the same output, given the same input. The now() function is a classic candidate here because within the same transaction, it will always return the same time (transaction time).
Tip
The clock_timestamp() function is the volatile counterpart of now() because it returns the real time.
IMMUTABLE is the most stable level a function can reach. It basically means that the result is always the same, regardless of the transaction:
test=# SELECT cos(10);
cos
--------------------
-0.839071529076452
(1 row)
The cosine of 10 is always -0.839, regardless of transactional content, age of the programmer, mood of the customer, or the database system in use. It is a law of nature—a fact.
STABLE and IMMUTABLE functions can be indexed, like this:
SELECT * FROM tab WHERE field = now()
The previously mentioned query is a perfect candidate for using an index on a field. Because now()stays constant throughout the transaction, PostgreSQL actually knows what to look up in the index and will therefore consider indexes as an optimization. The same would apply to pi(), sin(), cos(), and so on.
Always define a function properly (if possible) to avoid performance-related problems:
test=# CREATE FUNCTION dummy(int) RETURNS int AS
$$
SELECT $1;
$$ LANGUAGE 'sql' IMMUTABLE;
CREATE FUNCTION
LEAKPROOF versus NOT LEAKPROOF
LEAKPROOF is, unfortunately, a bit more complicated than the other three volatility types. However, it is as important as they are.
To understand LEAKPROOF, it is important to dig a little deeper into the working of the planner. Consider the following statement:
SELECT * FROM tab WHERE a = 10 AND b = 20;
Should the system filter on a or on b first? Well, it depends. If b promises a greater reduction in the amount of data returned, it is better to filter on b first to ensure that there is not much data left when the second filter on a is applied.
In other words, PostgreSQL is allowed to reorder those quals (restrictions) and decide on the best way to execute those conditions. Why is this relevant? Well, here is an example:
CREATE FUNCTION slow_func(int4) RETURNS int4 AS $$
BEGIN
EXECUTE 'SELECT pg_sleep(1)';
RAISE NOTICE 'slow_func: %', $1;
RETURN $1;
END;
$$ LANGUAGE 'plpgsql' IMMUTABLE
COST 10;
CREATE FUNCTION fast_func(int4) RETURNS int4 AS $$
BEGIN
RAISE NOTICE 'fast_func: %', $1;
RETURN $1;
END;
$$ LANGUAGE 'plpgsql' IMMUTABLE
COST 100;
We have two functions; one is fast and the other is slow. To prove my point, I assigned more penalty points (costs) to the faster function. All that the two functions do is wait for some time to pass. Here is the demo data:
CREATE TABLE t_test (id int4);
INSERT INTO t_test SELECT * FROM generate_series(1, 20);
Now a view is created. All it does is return even numbers and call the faster function to see whether it returns zero:
CREATE VIEW v AS
SELECT *
FROM t_test
WHERE id % 2 = 0
AND fast_func(id) = 0;
In the next step, the view is used and a filter is applied on top of the view:
SELECT * FROM v WHERE slow_func(id) = 0;
PostgreSQL is facing a couple of choices now: Which function should be called first, the fast one or the slow one? And in which order should the filters be applied?
Here is what happens:
\timing
SELECT * FROM v WHERE slow_func(id) = 0;
NOTICE: slow_func: 2
NOTICE: slow_func: 4
*snip*
NOTICE: slow_func: 20
id
----
(0 rows)
Time: 10012.580 ms
PostgreSQL will go for the slow function first because it promises to be faster due to lower costs.
Now the trouble is as follows: imagine you are not allowed to see the complete content of t_test. For some security reasons, you are allowed to see only even numbers. PostgreSQL is allowed to reorder those filters. Who says that id%2 and fast_func are executed first? What if PostgreSQL would decide on calling slow_func first? A simple RAISE NOTICE function would reveal the data that you are actually not allowed to see. In our case, PostgreSQL figures out that %2 should be the first operation, but if this was not there, there would be a major security problem.
This is exactly when LEAKPROOF comes into play. It actually tells the planner whether a function can be pushed through a so-called security barrier or not.
The next listing shows how a security barrier can be created:
CREATE VIEW v WITH (security_barrier) AS
SELECT *
FROM t_test
WHERE id % 2 = 0
AND fast_func(id) = 0;
Just add WITH (security_barrier) to the definition of the view, and PostgreSQL won't be allowed anymore to push NOT LEAKPROOF functions to the view to reorder things. LEAKPROOF functions can be reordered freely.
If you are dealing with security-critical data or many different users and procedures, it is definitely important to think about LEAKPROOF as against NOT LEAKPROOF to avoid nasty surprises.
Understanding memory
When a procedure is written, it makes sense to think for a moment about memory consumption. There are three important issues here:
In this section, you will be guided through all of these topics.
Procedures and cursors
The first thing to be discussed is the way large result sets should be handled inside a procedure. In normal programming, the general rule is that in the case of large amounts of data, a cursor is needed. The idea behind a cursor is that only small portions of data are fetched and processed at a time.
Languages such as PL/pgSQL provide functionality to open, close, and fetch data from cursors. However, in most cases, you don't actually need to rely on this functionality. The beauty of a procedural language is that internally, everything is a cursor! Here is an example:
CREATE FUNCTION process() RETURNS int AS
$$
DECLARE
v_rec RECORD;
BEGIN
FOR v_rec IN SELECT * FROM large_table
LOOP
-- do something
END LOOP;
RETURN 0;
END;
$$ LANGUAGE 'plpgsql';
In this example, the procedure loops through a large result set. PL/pgSQL will automatically use an implicit cursor. You don't have to worry about memory at all because internally, data is processed smoothly without ever materializing completely in the memory.
In short, there is no need to fool around with cursor handling and explicit, manual cursor management.
Handling set-returning functions
While loops are processed nicely by the system, there are functions that do need some attention. I am talking about the so-called set-returning functions. These are functions that actually return more than a row. The set-returning function that is most widely used in this book is generate_series:
SELECT * FROM generate_series(1, 10) AS x;
The main issue here is that PostgreSQL has to calculate the entire function, store its output somewhere, and continue from there. This means that if you call generate_series (or a similar function) with a large range, everything has to be kept in the memory as long as things are needed. Dealing with two thousand rows or so is definitely not a problem here, as modern hardware is easily able to handle that. However, if you want to return hundreds of millions of rows, you need to switch to a different technique. You should not return such large result sets with a set-returning function.
In many cases, returning a cursor can help.
Assigning memory parameters to functions
Tuning PostgreSQL also involves modifying memory parameters in postgresql.conf. In many cases, setting things globally is quite sufficient. Most applications seen in the field these days are perfectly fine with global settings. However, in some cases, passing config parameters directly to a function can make sense.
Consider the following example:
CREATE FUNCTION func() RETURNS int AS
$$
DECLARE
BEGIN
-- some code
RETURN 0;
END;
$$ LANGUAGE 'plpgsql' SET work_mem = '1 GB';
SELECT func();
The most important issue is the SET statement at the end of the CREATE FUNCTION statement. It tells the system that inside this function, 1 GB of work_mem integer should be available. Outside the function, other values can be used.
You can specify any of the runtime-alterable settings within the function definition. One example is of time zones. Maybe, you want to run your function according to UTC time. No problem! Just tell the function to do so.
Of course, you can change those settings later on with ALTER FUNCTION if it turns out that a change is needed.
Summary
In this chapter, you learned about procedures. The goal was to cover the most common pitfalls when it comes to procedures in a short, compact chapter. Things such as function volatility, trusted and untrusted languages, and memory parameters were discussed.
The next chapter will be all about monitoring PostgreSQL. You will also learn how to detect bottlenecks in the system.
Chapter 7. PostgreSQL Monitoring
Troubleshooting is virtually impossible if you don't have the information you need to actually track down a problem. For carrying out troubleshooting, data is everything. Without data and without the ability to see what is going on, the situation is practically hopeless.
In this chapter, you will be guided through the following topics:
Those topics will help you keep an eye on your system.
Checking the overall database behavior
The first thing to do when approaching a system is to check the overall health and see what is currently going on in the system. Is the system using too much CPU? Or maybe, too much memory? Is the disk I/O fine?
Checking pg_stat_activity
The best place to start is pg_stat_activity, a system view listing open database connections. Since PostgreSQL 9.2, pg_stat_statement has been extended a little, and a lot more information such as the state of a database connection can be seen:
test=# \d pg_stat_activity
View "pg_catalog.pg_stat_activity"
Column | Type | Modifiers
------------------+-------------------------------------
datid | oid |
datname | name |
pid | integer |
usesysid | oid |
usename | name |
application_name | text |
client_addr | inet |
client_hostname | text |
client_port | integer |
backend_start | timestamp with time zone |
xact_start | timestamp with time zone |
query_start | timestamp with time zone |
state_change | timestamp with time zone |
waiting | boolean |
state | text |
backend_xid | xid |
backend_xmin | xid |
query | text |
Let's go through those columns. The first two columns tell us which database a person is connected to. The first column contains the object ID of the database, and the second column contains the name of the database in plain text. Then information about the user connected is displayed. Again, two fields are used: one with the object ID, and another with the name of the user in plain text.
Then comes the application_name field. The application_name field can be set freely by the end user (or the application). It is very helpful to debug applications because, if used wisely, it can tell you where a request is generated inside your application. Consider the following example:
test=# SET application_name TO 'script.pl:456';
SET
test=# SHOW application_name;
application_name
------------------
script.pl:456
(1 row)
As you can see, it is just a plain text name, which can contain anything.
The next three columns (client_*) will tell you where a connection originates from. You can detect the hostname, the port, and so on. In case of trouble, it allows you to solve the problem on the box causing the issue.
The backend_start and xact_start fields tell you when a database connection or the transaction was started.
Tip
Keep an eye on very old and long-running transactions. They can have a serious impact on your VACUUM policy. Remember that a row can only be cleaned out when it cannot be seen by a single transaction anymore. Long-running transactions can therefore have undesirable side effects.
The next important fields are query_start, state, state_change, and query. These four fields have to be seen in combination, and not one by one. The query_start column indicates when the last query has started. When the state is set to active, the query is still active at that point of time. When the state stays idle, the query is not active anymore and was terminated when state_change was set. Therefore, the difference between query_start and state_change is the runtime of the previous query in this case. Of course, query is the query we are talking about.
After the waiting column, which was discussed in the previous chapter, there are backend_xid and backend_xmin. These two columns give you an insight into the transactional behavior of the system (transaction IDs and so on).
To avoid trouble, the following points can be checked:
Given those valuable insights, you can fix a couple of quite frequent issues.
Checking database-level information
Once you are done with pg_stat_activity, you might want to turn your attention to pg_stat_database. The idea of pg_stat_database is to have one row per database:
test=# \d pg_stat_database
View "pg_catalog.pg_stat_database"
Column | Type | Modifiers
----------------+--------------------------+-----------
datid | oid |
datname | name |
numbackends | integer |
xact_commit | bigint |
xact_rollback | bigint |
blks_read | bigint |
blks_hit | bigint |
tup_returned | bigint |
tup_fetched | bigint |
tup_inserted | bigint |
tup_updated | bigint |
tup_deleted | bigint |
conflicts | bigint |
temp_files | bigint |
temp_bytes | bigint |
deadlocks | bigint |
blk_read_time | double precision |
blk_write_time | double precision |
stats_reset | timestamp with time zone |
There are a couple of important fields here. First of all, there are the object ID and the name of the database. Then the view reveals the number of currently open database connections (numbackends). However, there is some more subtle information here that does not seem to be widely used: xact_commit and xact_rollback. The xact_commit and xact_rollback fields contain the number of successful and aborted transactions since the start of time, respectively. Why are these fields so important? In a typical application, the ratio of COMMIT to ROLLBACK tends to stay pretty constant over time. An application may face 5 percent ROLLBACK commands over a long period of time. What does it mean if this value is suddenly jumping to 35 percent or more? Most likely, some software update must have introduced some syntax error somewhere. That bug might have been undetected so far. However, if used properly, pg_stat_database might give clues that something might be wrong.
The next few fields tell us how much data was read, added, updated, deleted, and so on. This might be interesting to see, but usually, it does not reveal deeply hidden problems. These fields are more of a general guideline, telling you how much is going on in your system.
The next field is all about conflicts. More information about conflicts can be found in the next section of this chapter, Checking for conflicts.
The temp_files and temp_bytes fields are two highly important fields. They will tell us whether the database has done extensive I/O through temporary files. When does this happen? Temporary files are written if a lot of data is sorted and so on; for example, ORDER BY clauses, CREATE INDEX, or some OVER clauses lead to heavy sorting. If work_mem or maintenance_work_mem is not properly set, it can manifest in high I/O activity when it comes to temporary files. Another reason for high temporary I/O is simply bad SQL statements (for example, too much data returned).
There are two more fields that can give you a clue about I/O: blk_write_time and blk_read_time. The purpose of these two fields is to measure the time spent on writing and reading data to and from the operating system respectively. However, these two fields are not active by default:
test=# SHOW track_io_timing;
track_io_timing
-----------------
off
(1 row)
Unless track_io_timing has been activated in postgresql.conf, there is no data available. If you are fighting with I/O problems and disk wait, it is definitely recommended to turn this setting on to detect the database that is causing some or all of the I/O trouble.
Tip
Note that in some rare cases, timing can decrease performance by a small amount. In most cases, however, this overhead is not relevant.
Finally, stats_reset tells us when the statistics has been reset.
Detecting I/O bottlenecks
The track_io_timing command can give you clues about the database that is causing most of the load. However, there is more; pg_stat_bgwriter contains a lot of information about the system's I/O behavior:
test=# \d pg_stat_bgwriter
View "pg_catalog.pg_stat_bgwriter"
Column | Type |
-----------------------+--------------------------+
checkpoints_timed | bigint |
checkpoints_req | bigint |
checkpoint_write_time | double precision |
checkpoint_sync_time | double precision |
buffers_checkpoint | bigint |
buffers_clean | bigint |
maxwritten_clean | bigint |
buffers_backend | bigint |
buffers_backend_fsync | bigint |
buffers_alloc | bigint |
stats_reset | timestamp with time zone |
Understanding what is going on in the I/O system can be vital. This understanding also includes checkpoints. In PostgreSQL, there are two reasons for a checkpoint: either the system has run out of WAL segments (a requested checkpoint) or the system has exceeded checkpoint_timeout (a timed checkpoint). The pg_stat_bgwriter table will tell you what has caused a checkpoint to take place. If all your checkpoints are timed, it means that there is no point in increasing checkpoint_segments. If all your checkpoints are requested, raising checkpoint_segments and checkpoint_timeout might be a good idea to solve a potential performance bottleneck.
Then there are checkpoint_write_time and checkpoint_sync_time. The checkpoint_write_time field is all about the total amount of time that has been spent in the portion of checkpoint processing where files are written to the disk. The checkpoint_sync_time field represents the amount of time spent on flushing to the disk during a checkpoint.
The buffers_checkpoint field tells people about the number of blocks written during a checkpoint. The buffers_clean field tells people how many blocks are written by the background writer.
When the background writer writes blocks from the shared buffers area to the operating system, it does so in rounds. When it stops because it has already written too many blocks per round, we can see that in maxwritten_clean. If the background writer cannot keep up with the write load, backends (database connections) are also allowed to perform I/O. The number of blocks written by backend is counted in buffers_backend. Sometimes, a backend even has to call fsync to flush to the disk. Those flush calls are counted in buffers_backend_fsync. Finally, there is buffers_alloc, which tells us about the number of buffers allocated.
The key to use pg_stat_bgwriter is to figure out which component is doing I/O. In general, the bgwriter is supposed to do most of the I/O itself. However, under heavy load, it might be necessary for normal database connections to do some of the work on their own. In PostgreSQL 9.2, a checkpointer process has been added to take away some work from the regular background writer process. Both checkpointer and writer processes write to the same files. However, the checkpointer writes all of the data that was dirty at a certain time (the start of the checkpoint), regardless of how often it was used since dirtied. On the other hand, the background writer writes data that hasn't been used recently, regardless of when it was first dirtied. Neither of the two knows or cares whether the data being written was committed or rolled back or is still in progress.
Checking for conflicts
Once the I/O system has been properly inspected, it makes sense to stop for a minute and see whether there are major conflicts going on in the system:
test=# \d pg_stat_database_conflicts
View "pg_catalog.pg_stat_database_conflicts"
Column | Type | Modifiers
------------------+--------+-----------
datid | oid |
datname | name |
confl_tablespace | bigint |
confl_lock | bigint |
confl_snapshot | bigint |
confl_bufferpin | bigint |
confl_deadlock | bigint |
The pg_stat_database_conflicts view informs us about conflicts happening in the system. The view actually lists quite a number of different conflicts. However, not all of them are actually relevant. The most important of them are locking conflicts, snapshot conflicts, and deadlocks. A locking conflict happens if one transaction is waiting for another transaction to complete. A snapshot conflict can happen when a transaction is relying on a snapshot that is way too old (this happens in high isolation levels).
Finally there are deadlocks, which have already been covered extensively in this book.
Chasing down slow queries
After inspecting active queries, checking for I/O problems, and locking, it might be interesting to see which queries are actually causing most of the trouble. Without knowing the actual time-consuming queries, it is pretty hard to improve things in the long run. Fortunately, PostgreSQL provides a module called pg_stat_statements that is capable of tracking queries and providing administrators with statistical information about those queries.
To use this module, it has to be enabled:
test=# CREATE EXTENSION pg_stat_statements;
CREATE EXTENSION
Note that the module has to be enabled inside a database. The system views created by this module will only live in this database for now.
However, we are not done yet:
test=# SELECT * FROM pg_stat_statements;
ERROR: pg_stat_statements must be loaded via
shared_preload_libraries
The module is actually loaded when the postmaster starts up. It cannot be loaded on the fly because the information created must survive the disconnection.
To load the module at startup, change shared_preload_libraries in postgresql.conf to this:
shared_preload_libraries = 'pg_stat_statements'
Then the database has to be restarted. Now the system will automatically collect all of the information and present it in a system view:
test=# \d pg_stat_statements
View "public.pg_stat_statements"
Column | Type | Modifiers
---------------------+------------------+-----------
userid | oid |
dbid | oid |
queryid | bigint |
query | text |
calls | bigint |
total_time | double precision |
rows | bigint |
shared_blks_hit | bigint |
shared_blks_read | bigint |
shared_blks_dirtied | bigint |
shared_blks_written | bigint |
local_blks_hit | bigint |
local_blks_read | bigint |
local_blks_dirtied | bigint |
local_blks_written | bigint |
temp_blks_read | bigint |
temp_blks_written | bigint |
blk_read_time | double precision |
blk_write_time | double precision |
For each database (dbid), we will see the query and the number of times it was called (calls). In addition to that, there is the total time used up by each query, and also the total number of rows returned (rows). In many cases, this information is enough:
SELECT query, total_time, calls
FROM pg_stat_statements
ORDER BY 2 DESC;
This simple query will reveal the most expensive queries and their total runtime, but there is more. The next couple of columns will tell us about the I/O behavior of the query that is about to be inspected. It is possible to detect issues related to shared buffers as well as the behavior when it comes to local buffers allocated by the backend itself.
Then there are temp_blks_read and temp_blks_written. These two fields will tell us whether temporary data has to be written to disk or not.
Finally, there is information about I/O timing. Again, track_io_timing has to be turned on to gather this information. It is possible to check for each query how much time it has spent on input as well as output.
Notes about overhead
Many people ask about the overhead of this module. It has turned out that this is hard to measure. It is virtually zero. There is no need to be afraid of serious performance degradations when the module is used.
In general, it is useful to always enable pg_stat_statements to track slow queries. This gives you a valuable insight into what is happening on your server.
Resetting data
To reset the data collected by pg_stat_statements, you can call pg_stat_statements_reset():
SELECT pg_stat_statements_reset();
PostgreSQL will reset statistics related to pg_stat_statements. The rest of the statistics will be unchanged.
Inspecting internal information
Once the basics (locking, slow queries, and so on) are done, our attention can be turned to more sophisticated inspections.
Looking inside a table
As already described in this book, PostgreSQL uses a mechanism called Multi-Version Concurrency Control (MVCC). The beauty of this system is that more than one version of a row can exist at the same time, which is the perfect way to scale up the system. However, this also means that space on the disk might be wasted if too many versions of too many rows exist. This problem is generally called table bloat. If tables grow too large and inefficient, performance problems are likely to arise.
The pgstattuple module has been created to detect those problems. Before the module can be used, it has to be loaded:
test=# CREATE EXTENSION pgstattuple;
CREATE EXTENSION
Basically, pgstattuple is easy to use. All you have to do is call the pgstattuple function and pass a table name as a parameter. No columns are returned:
test=# \x
Expanded display is on.
test=# SELECT * FROM pgstattuple('pg_class');
-[ RECORD 1 ]------+------
table_len | 65536
tuple_count | 305
tuple_len | 56032
tuple_percent | 85.5
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
free_space | 5508
free_percent | 8.4
What we see here is that pgstattuple returns the total size of the table, the number of rows inside the table, as well as their size. Then come two blocks; the dead_* columns provide us with information about the number and size of dead rows in the table. Dead rows can easily be turned into free space by running VACUUM.
The main challenge when using pgstattuple is to run it for many tables at the same time. It is always possible to run things for each table at a time, but this might be too time consuming. Running it for all tables at once is definitely more convenient.
To achieve that, we can turn to composite types. The pgstattuple is actually overloaded and not only can it be called with the name of a table, but it also works with object IDs. The main challenge now is to fetch the list of tables. A system table called pg_class can be used here. All tables are identified as r (relations) in the relkind column. However, the most important part is the decomposition of the data type returned by pgstattuple. Simple use of parentheses and an asterisk will work here:
test=# SELECT relname, (pgstattuple(oid)).*
FROM pg_class
WHERE relkind = 'r'
ORDER BY table_len DESC;
-[ RECORD 1 ]------+--------
relname | pg_proc
table_len | 557056
tuple_count | 2697
tuple_len | 525319
tuple_percent | 94.3
dead_tuple_count | 7
dead_tuple_len | 1553
dead_tuple_percent | 0.28
free_space | 8540
free_percent | 1.53
...
A long list for each table in the system will be displayed.
The pgstattuple module is the perfect tool for detecting table bloat. However, use it with care. It has to read tables entirely. Therefore, using it too often is not a good idea because it causes heavy I/O (similar to a backup).
Inspecting the I/O cache
In addition to looking inside a table, it is also possible to inspect the PostgreSQL I/O cache (shared buffers area) to see what is cached and what is not. In many cases, knowing about the content of the I/O cache can reveal problems related to poor performance caused by too much disk activity.
The pg_buffercache view can be activated to inspect the cache:
test=# CREATE EXTENSION pg_buffercache;
CREATE EXTENSION
Just as was done before, the module has to be activated in order to provide us with information. Again, a system view is provided. It contains all of the information needed:
test=# \d pg_buffercache
View "public.pg_buffercache"
Column | Type | Modifiers
----------------+----------+-----------
bufferid | integer |
relfilenode | oid |
reltablespace | oid |
reldatabase | oid |
relforknumber | smallint |
relblocknumber | bigint |
isdirty | boolean |
usagecount | smallint |
The main challenge with this special view is that it is a bit hard to read. Most fields are represented in a way that makes it pretty hard for normal users to comprehend what is actually shown. The following list outlines how those fields can be translated into something more readable:
With these SELECT statements, it will be possible to turn those numbers into readable names.
The next column is relforknumber (it is a cached block for the data file, Visibility Map, or Free Space Map), and finally, there is the number of the block in the cached table. This field allows you to see which areas of the table are in RAM and which are not.
The last two columns tell us whether the block is dirty and how often it is pinned. Given all of these fields, you can yourself create an analysis returning exactly the data that you need.
There are many more useful modules floating around on the web. However, the modules in this chapter are, according to my judgment, the most important modules. They are also shipped along with the PostgreSQL core distribution.
Integrating with external tools
When thinking about monitoring in general, most people instantly think of some monitoring tool such as Nagios, Zabbix, or the like. While monitoring tools are an important thing, I hope this chapter has proven that there is more to monitoring than just monitoring tools and pretty graphs.
Still, in this section, the goal is to guide you through some modules commonly used for monitoring with the help of tools. This is not meant to be an introduction to Nagios and other tools but a guideline to what can be used along with which tool.
Using Nagios plugins
The most widely used plugin that can be used in combination with Nagios is the plugin provided by the developers of the Burcado project at:
http://bucardo.org/wiki/Check_postgres
It is also possible to use those plugins with Shinken and Tanto.
It offers a variety of checks suitable for monitoring different types of instances. The beauty of this plugin is that it can produce not only monitoring data for Nagios but also the output needed for MRTG (The Multi Router Traffic Grapher: http://oss.oetiker.ch/mrtg/doc/mrtg.en.html.) as well as Cacti (http://www.cacti.net/). Cacti is a nice and simple graphical tool people can use to display what is going on in the system. If you are not willing to dive into Nagios, Cacti is a nice alternative, providing you with what you need in a simple way.
Which checks are provided by the Nagios plugins depends a little on the type of server you are running. Here are some of my favorite checks, which can be applied to pretty much any type of setup:
Of course, depending on your application, different or additional checks might be necessary. However, this selection is a good foundation to get started with.
Alternative tools
If you prefer other tools over Nagios or Cacti, there are also proper plugins around. Depending on which tools you like, you might even have to come up with your own plugins to do your setup work as intended.
Zabbix plugins
The Zabbix plugin is called pg_monz. More information about this plugin can be found at http://pg-monz.github.io/pg_monz/index-en.html. It basically provides everything you need to integrate Zabbix with PostgreSQL and fetch all of the important information.
pganalyze-collector
The pganalyze-collector is a command-line tool that collects information about Postgres databases as well as queries executed on them. All of the data is converted to JSON (JavaScript Object Notation) and can be used by a tool of your choice for processing.
The module creates information about CPU, memory, RAM, tables, schemas, databases, queries, and so on.
This module can be downloaded from:
https://github.com/pganalyze/pganalyze-collector.
pg_view – a simple alternative
The pg_view is another tool that can be used to monitor PostreSQL. The pg_view was developed by a major German retail company called Zalando, and it can be used free of charge. It is essentially a command-line tool, showing nicely condensed information on a simple command-line-based GUI.
More information on this tool can be found at https://github.com/zalando/pg_view.
Summary
In this chapter, monitoring was introduced. Some onboard tools, such as pgstattuple, pg_buffercache, and pg_stat_activity were presented. In addition to that, some external tools and plugins that can be used along with PostgreSQL were covered.
The next chapter is all about backups and replication. Major pitfalls in this area will be covered.
Chapter 8. Fixing Backups and Replication
In this chapter, you will be guided through replication and learn about simple, basic backups. The following topics will be covered:
This chapter provides a practical, straightforward introduction to backups and replication. The focus is on simple guidelines.
Using pg_dump
The pg_dump command is one of the most important commands in PostgreSQL. It can be used to create textual as well as binary backups. Every system administrator will get in touch with this command once in a while. Here is how it works.
Creating textual dumps
Creating a textual dump is how most administrators digging into PostgreSQL get started. This is an essential, yet easy-to-manage, task.
The idea behind pg_dump is simple; it connects to the database that should be saved and transforms the content to a text format. Here is an example of its use:
pg_dump test > /backup/dump.sql
The simplest form of a backup is to send the SQL output created by pg_dump directly to a plain text file.
It is important to mention that a dump is always consistent. Internally, the dump is a large transaction in isolation level repeatable read. A dump represents a snapshot of data, which means that if you start a dump and it takes an hour to complete, then the changes in that one hour will not be included in the dump. This is because it takes a snapshot of data when you start and takes the backup from that.
In the next example, the dump is restored in a database called new_test:
psql new_test < /backup/dump.sql
Note
Keep in mind that all you are doing is replaying text.
In general, a dump is a non-blocking operation. However, DDLs might conflict with some reads. In general, it is a good idea to be careful with DDLs and dumps, as they might exclude each other.
Taking care of blobs
Blobs are not automatically included in a dump. In some cases, this leads to trouble. Therefore, it is recommended to always use the -b (--blobs) option. If -b is activated, pg_dump will include those blobs in textual formats and ensure that your dump is complete in every aspect.
Handling passwords
In the following example, we have assumed that a connection has been set to trust. No passwords have been used so far. However, this is far from reality. In a real setup, there is always some sort of security mechanism.
In many cases, a file called .pgpass, located in the user's home directory, can be used. Alternatively, the .pgpass file can also be referenced by setting the PGPASSFILE environment variable.
This file should contain lines of the following format:
hostname:port:database:username:password
Just create the desired entries. No password prompt will be shown anymore.
Why doesn't PostgreSQL just provide some sort of --put-password-here parameter? The reason is that any password passed to a program, such as pg_dump or psql, will automatically show up in the process table. This has to be avoided at any cost.
Creating custom format dumps
In many cases, a plain textual dump is not what you would really want to use. The main problems with textual dumps are:
A custom format dump is exactly what comes to the rescue here. It is basically a compressed dump that includes a table of contents (TOC). The beauty of a custom format dump is that it is easily possible to extract just a subset of tables, a single index, or maybe a single procedure. In addition to that, it allows the replay process to be scaled out to more than one CPU.
Here is how a custom format dump can be created:
$ pg_dump test -Fc > /tmp/dump.fc
The -Fc option is the only option that has to be added to create a custom format dump.
Once the dump has been created, it is possible to take a look at the content of the dump file:
$ pg_restore --list /tmp/dump.fc
*snip*
175; 1259 16447 TABLE public a hs
176; 1259 16450 TABLE public b hs
174; 1259 16445 SEQUENCE public seq_a hs
172; 1259 16436 TABLE public t_test hs
173; 1259 16442 TABLE public x hs
*snip*
The --list option will return the list of objects in the dump. It is now possible to selectively restore data, instead of replacing the entire database.
Here is how a single table can be extracted from the dump again:
pg_restore -t t_test /tmp/dump.fc
The SQL representation of the data will be displayed on screen. To load the data into a database once again, a simple pipe or -d can be used:
$ pg_restore -t t_test /tmp/dump.fc | psql xy
$ pg_restore -t t_test /tmp/dump.fc -d xy
Making use of many CPUs
So far, only one CPU has been used to replay the dump. This is true for the text dump as well as the custom format dump. However—especially in the case of large databases—it is hard to replay stuff within a reasonable amount of time. Building indexes is expensive and takes a long time during the replay process.
The -j option allows custom format dumps to be replayed using more than one CPU. Here is how it works:
$ pg_restore -j 4 /tmp/dump.fc -d xy
This example assumes that data will be replayed into a database called xy. In this case, PostgreSQL should try to use up to four CPU cores concurrently to perform the dump.
Note
Note that many cores are not possible when there is just a single table. It will only work in the case of more than one table.
Managing point-in-time recovery
The pg_dump utility is more of a traditional form of creating a backup. It makes sense for a small amount of data, but it tends to have its limitations as soon as the amount of data grows beyond a certain limit. Don't get me wrong; pg_dump works perfectly even with terabytes of data. However, let's assume you've got a dump of a 10 TB beast! Does it really make sense to replay a 10 TB database from a dump? Just consider all the indexes that have to be built, and consider the insane amount of time it will take to do that. It definitely makes sense to use a different method. This method is called point-in-time recovery (PITR), or simply xlog archiving. In this section, you will learn about PITR in detail.
How PITR works
The idea behind PITR is to take a snapshot of the data and archive the transaction log created by PostgreSQL from then on. In case of a crash, it is then possible to restore any given point in time after the initial backup (base backup) has finished. The beauty of this concept is that end users won't lose too much data in case of a crash.
In case the system crashes, administrators can return to their last base backup and replay as much data as necessary.
Preparing PostgreSQL for PITR
To configure PostgreSQL for point-in-time recovery, only three settings, which can be found in postgresql.conf, are important: wal_level, archive_mode, and archive_command. The wal_level setting tells the system to produce enough of a transaction log for recovery based on xlog. By default, PostgreSQL only produces enough xlog to repair itself in case of a crash. This is not enough.
The archive_mode setting tells the system to archive its transaction log in a safe place. The archive_command setting will tell the system how to do that.
For getting started with transaction log archiving, the first thing to do is to actually create an archive (ideally on a remote box). For the sake of simplicity, xlog will be archived to /archive in this example:
mkdir /archive
Then postgresql.conf can be changed:
wal_level = archive
archive_mode = on
archive_command = 'cp %p /archive/%f '
Now the database can be restarted to activate those settings.
Once those settings are active, the transaction log will gradually accumulate in /archive directly. Whenever a 16 MB segment has been filled up by the system, it will be sent to the archive using archive_command. As changes come in, our /archive directory might begin to look like this:
$ ls -l
total 131072
-rw------- 1 hs wheel 16777216 Dec 8 12:24 000000010000000000000001
-rw------- 1 hs wheel 16777216 Dec 8 12:26 000000010000000000000002
-rw------- 1 hs wheel 16777216 Dec 8 12:26 000000010000000000000003
-rw------- 1 hs wheel 16777216 Dec 8 12:26 000000010000000000000004
By now, the transaction log is already archived properly.
Taking base backups
Once those xlog files are sent to the archive, it is possible to take a simple base backup. There are basically two ways of doing this:
In this chapter, both methods will be described. In the case of PITR, the traditional way will be used.
Here is how it works. First of all a simple SQL command has to be called as the superuser:
test=# SELECT pg_start_backup('some label');
pg_start_backup
-----------------
0/7000028
(1 row)
If this takes a while for you, don't worry. Behind the scenes, the system will wait for a checkpoint to happen and then return a transaction log position. Actually, nothing fancy happens behind the scenes. All it does is to tell the system where to restart replaying xlog.
Once this function has completed, it is possible to copy the entire database instance to a safe place. Keep in mind that this can be done during production, and it is not necessary to shut down the system during this operation.
Also, don't worry too much that files might vanish or appear during the backup process. This is a natural thing. Keep in mind that no change in xlog ever happens that cannot be found.
Consider the following example:
mkdir /base
cd $PGDATA
cp -Rv * /base/
You can use a simple copy, rsync, ftp, or any other means. Just ensure that the entire directory has been backed up nicely.
Once this is done, the backup process can be stopped again:
test=# SELECT pg_stop_backup();
NOTICE: pg_stop_backup complete, all required WAL
segments have been archived
pg_stop_backup
----------------
0/70000B8
(1 row)
Remember that all of those operations can happen while the system is still active. No downtime is needed.
After the backup, a .backup file will show up in the /archive directory. It contains some important information:
$ cat 000000010000000000000007.00000028.backup
START WAL LOCATION: 0/7000028
(file 000000010000000000000007)
STOP WAL LOCATION: 0/70000B8
(file 000000010000000000000007)
CHECKPOINT LOCATION: 0/7000028
BACKUP METHOD: pg_start_backup
BACKUP FROM: master
START TIME: 2014-12-08 12:33:50 CET
LABEL: some label
STOP TIME: 2014-12-08 12:39:46 CET
The .backup file shows when the backup has been created. It will also tell us the oldest xlog file needed to perform the replay process. In this case, it is the 000000010000000000000007 file. Everything older than this file can be safely deleted from the server.
Replaying xlog
If the system is actively used, more transaction log will accumulate over time in /archive:
-rw------- 1 hs wheel 294 Dec 8 12:39 000000010000000000000007.00000028.backup
-rw------- 1 hs wheel 16777216 Dec 8 12:45 000000010000000000000008
-rw------- 1 hs wheel 16777216 Dec 8 12:45 000000010000000000000009
-rw------- 1 hs wheel 16777216 Dec 8 12:45 00000001000000000000000A
Let's assume now that the server we want to protect has died and the base backup needs to be recovered using PITR.
To make this work, the first thing to do is to come up with a file called recovery.conf:
$ cat recovery.conf
restore_command = 'cp /archive/%f %p'
recovery_target_time = '2025-04-05 14:32'
Basically, just one command is needed here. The restore_command function will copy the desired files from the archive to the location needed by PostgreSQL (%p). PostgreSQL will call restore_command for one file after the other until it runs out of xlog or until the desired recovery_target_time is reached. Actually, the recovery_target_time command is redundant. If it is not there, PostgreSQL will recover as far as possible, and not stop at the desired point in time.
Once the recovery.conf file is in place, administrators have to ensure that the directory containing the base backup is set to 700:
chmod 700 /base
Then the server can be fired up (in this example, the log is configured to show up on the screen):
$ pg_ctl -D /tmp/base/ start
server starting
$ LOG: database system was interrupted; last known up
at 2014-12-08 12:33:50 CET
LOG: starting point-in-time recovery to
2025-04-05 14:32:00+02
The server mentions that it was interrupted and will tell us the point in time the system is intended to roll forward to.
Then one file after the other is copied from the archive and replayed:
LOG: restored log file "000000010000000000000007" from archive
LOG: redo starts at 0/7000090
LOG: consistent recovery state reached at 0/70000B8
LOG: restored log file "000000010000000000000008" from archive
LOG: restored log file "000000010000000000000009" from archive
LOG: restored log file "00000001000000000000000A" from archive
LOG: restored log file "00000001000000000000000B" from archive
At some point, PostgreSQL will throw an error because it cannot copy the next file. This makes sense because this chapter has been written in late 2014, and therefore, 2025 cannot be reached easily with the existing xlog. But don't worry! PostgreSQL will figure out that there is no more xlog and just go live. If a date between the base backup and the last xlog file is selected, PostgreSQL will go live without issuing any error:
cp: /tmp/archive/00000001000000000000000C: No such file or directory
LOG: redo done at 0/BD3C218
LOG: last completed transaction was at log time 2014-12-08 12:46:11.755618+01
LOG: restored log file "00000001000000000000000B" from archive
cp: /tmp/archive/00000002.history: No such file or directory
LOG: selected new timeline ID: 2
cp: /tmp/archive/00000001.history: No such file or directory
LOG: archive recovery complete
LOG: autovacuum launcher started
LOG: database system is ready to accept connections
The recovery process has finished nicely, and the database instance is ready for action. Note that at the end of the process, recovery.conf is renamed to recovery.done.
Making use of asynchronous replication
While point-in-time recovery is nice, it might not be enough. In many cases, people want an up-to-date standby server that can also serve as a read-only slave. A feature called streaming replication is exactly what is needed in this case.
Setting up streaming replication is easy and can be performed in a handful of steps:
To set up postgresql.conf, the following settings are needed:
wal_level = hot_standby
max_wal_senders = 5
hot_standby = on
The first two settings are mandatory on the master. The wal_level field tells the server to create enough xlog to allow streaming replication, and max_wal_senders will indicate the number of streams the master is allowed to keep open.
Tip
If you are planning to run one slave, consider setting max_wal_senders to 3 or higher. During streaming, only one wal-sender process will be used, but during the initial copy, up to two connections are required. Setting this too tight can cause unnecessary database restarts.
The third setting changed here is hot_standby. Basically, this is a slave setting, and the master will ignore it. The reason it has been set is that in the next step (base backup), the entire instance, including the configuration, will be sent to the standby servers. If this variable has already been set on the master, there is no need to change it later on the slave (which is somewhat convenient).
Once postgresql.conf has been changed, it is time to attack pg_hba.conf. The important point here is that you have to precisely tell PostgreSQL who is allowed to stream the transaction log and who is not. IPs allowed must be listed in pg_hba.conf, like this:
host replication all 192.168.0.34/32 trust
In this case, a slave running on 192.168.0.34 is allowed to fetch the transaction log from the master without having to send a password. For the sake of our example, this is fine.
If you want to test replication on the same box as the master, the following configuration may be useful to you:
local replication all trust
host replication all 127.0.0.1/32 trust
host replication all ::1/128 trust
Once postgresql.conf and pg_hba.conf have been changed, the server can be restarted.
Working with pg_basebackup
In the next step, it is possible to fetch an initial copy of the database instance. Remember that in the previous section, this very step was performed using pg_start_backup and pg_stop_backup. In this section, the second method, pg_basebackup, will be used.
To prepare the slave for replication, these steps will be necessary:
mkdir /slave
chown postgres.postgres slave
chmod 700 slave
This example assumes that the server will be running as postgres and that the target directory is /slave.
To create the initial backup, the following command can be executed on the slave:
pg_basebackup -D /slave \
-h master.server.com --checkpoint=fast \
--xlog-method=stream -R
Ensure that those host names are replaced by your server names or IP.
Here are the meanings of those command-line flags:
The default configuration file created by -R will contain two lines:
standby_mode = 'on'
primary_conninfo = '…'
The standby_mode = on setting means that the server should keep streaming even if no xlog is around anymore (it should just wait for more).
The primary_conninfo setting points to the master and contains the connection string to the desired master server. These two settings are enough to make streaming work.
Firing up replication
Once the base backup has been created, the server can be started. If, for testing purposes, your master and your slave are in the same box, you can start PostgreSQL on a different port without having to modify the configuration. It works as shown in the next listing:
$ pg_ctl -D /slave/ -o "--port=5433" start
If your slave has been configured properly, some information will show up in the log:
server starting
LOG: database system was interrupted; last known up at
2014-12-08 15:07:39 CET
LOG: creating missing WAL directory
"pg_xlog/archive_status"
LOG: entering standby mode
To the server, the entire endeavor looks like a crash. It tells us when it feels that it stopped working (that is, at the time of the base backup).
Once PostgreSQL enters standby mode, you are on the right path. PostgreSQL will start replaying stuff, and eventually reach a consistent state:
LOG: redo starts at 0/D000028
LOG: consistent recovery state reached at 0/D0000F0
Always check whether a consistent state has been reached or not. If you have no consistent state, it means there is trouble ahead.
LOG: database system is ready to accept read only
connections
LOG: started streaming WAL from primary at 0/E000000
on timeline 1
Also, make sure that you have entered streaming mode.
Voilà! The server is up and running now. To check whether replication is working safely, you can rely on a system view called pg_stat_replication. It will contain one line per slave:
test=# \d pg_stat_replication
View "pg_catalog.pg_stat_replication"
Column | Type | Modifiers
------------------+--------------------------+----------
pid | integer |
usesysid | oid |
usename | name |
application_name | text |
client_addr | inet |
client_hostname | text |
client_port | integer |
backend_start | timestamp with time zone |
backend_xmin | xid |
state | text |
sent_location | pg_lsn |
write_location | pg_lsn |
flush_location | pg_lsn |
replay_location | pg_lsn |
sync_priority | integer |
sync_state | text |
These fields are highly important, and it is worth explaining them in more detail.
The first field contains the process ID of the process serving the slave on the master. Then come the usesysid field and the name of the user connected to the system. This is the user the client is connected as. Then there is an application_name field. The purpose of the application_name field is to give a connection a real name. This is important for debugging (for normal applications) and, as you will see in the next section, for synchronous replication.
Then there are a couple of fields showing where a connection comes from (client_*). Those fields will tell you which slave the entire line is about. The backend_start field tells us when the slave started to stream.
After the backend_xmin field comes the state the connection is in. If everything is normal, it should be set to streaming. Then there are four location fields. They will tell the administrator how far the slave has already consumed respectively replayed xlog.
Finally there is the sync_state field. It tells us whether the server is in synchronous or asynchronous replication mode.
For a short, step-by-step guide about streaming replication, refer to http://www.cybertec.at/wp-content/uploads/PostgreSQL_5_min_streaming_replication.pdf.
Promoting slaves to masters
Promoting a slave to a master is an easy task. The following command will do it:
pg_ctl -D /slave promote
The slave will receive the signal and turn itself into a master. The cool thing here is that even existing read-only connections will automatically be turned into read/write connections. There is not even any need to reconnect; PostgreSQL will do all of this for you.
Now the new master is totally independent of the old master. Those two boxes won't synchronize anymore.
Note
Note that a master cannot be transformed back into a slave easily. A complete resync should be performed to turn the broken, old master into a new slave replica.
Making replication safer
So far a simple replication setup has been shown. But what happens when a user takes a base backup and does not connect the slave to the master instantly? Nothing prevents the master from recycling its replication log. If the slave comes late, the transaction log needed is not there anymore. The same can happen in the case of slow connections. A user might load data into the master at 200 MB per second but the network can only handle 100 MB per second. The slave falls behind, and again, nothing prevents the master from recycling its xlog. To solve this kind of problem, a simple mechanism is there—wal_keep_segments.
If wal_keep_segments is set to, say, 100 in postgresql.conf, it means that the master will keep 100 * 16 MB more of transaction log around than it would need to repair itself in case of a crash. This little buffer gives the slave some room to breathe, and it defines the maximum amount of data by which the slave is allowed to fall behind the master without losing sight of the master. My personal recommendation is to always set wal_keep_segments to a reasonable value to ensure that the slave can always keep up with the master in the event of excessively slow connections, reboots on the slave side, and so on.
One more issue that can be observed in many cases is the appearance of conflicts. In PostgreSQL, the slave can be used to serve read-only transactions. It can happen from time to time that the slave does something that conflicts with the intentions of the master. As an example, let's assume that the slave is running a long SELECT statement. In the meantime, somebody on the master performs a DELETE statement and instantly fires a VACUUM command to clean up those rows. The SELECT statement on the slave might still need this data for its purposes. However, the xlog tells the system to clean up those rows. Thus, a conflict has happened. The slave will now wait for max_standby_streaming_delay = 30s before it simply kills the connection on the slave, if the transaction in doubt does not finish earlier.
To prevent most conflicts, it is possible to set hot_standby_feedback = on. This will make the slave send its oldest transaction ID (xmin) to the master. The master will then know that there is still a query running on the slave observing certain data. Therefore, VACUUM will be delayed until the conflict cannot happen anymore.
Switching to synchronous replication
While asynchronous replication is sufficient in 90 percent of cases, many people ask for synchronous replication. The idea behind synchronous replication is that a transaction is only valid if it has been accepted by at least two servers. Sounds easy? It is! To configure PostgreSQL for synchronous replication, only two settings are necessary.
The first thing to configure is the slave side. All that has to be done is to add an application_name field to primary_conninfo in recovery.conf.
A configuration setting might look like this:
primary_conninfo = 'host=master.server.com user=postgres
port=5432 application_name=some_name'
The slave will now register itself on the master as some_name. The master will now check its synchronous_standby_names field. The first entry matching in synchronous_standby_names will be considered synchronous; the rest will be considered asynchronous.
So, in short, here's what you have to do:
However, synchronous replication comes with two issues. The first issue is obvious; performance of short transactions will drop because network latency can be a problem.
The second issue is related to availability. The golden rule is that synchronous replication should never be done with only two servers. Remember that PostgreSQL ensures that a transaction is considered to be safe only if it has been approved by at least two servers. If you got two servers and one is lost, PostgreSQL cannot live up to its promise. The result is that PostgreSQL will not accept writes anymore until a second server is provided, which can take the data and make the system happy!
It is highly recommended to use at least three servers that are redundantly connected to each other.
Handling timelines
If you've got only two servers, timelines are really not an issue. However, if a setup grows larger, understanding timelines can be vital to success. What is this all about? When a server is promoted from a slave to a master, it increments its timeline. This is done to ensure that in a large setup, the right xlog is consumed by each server.
In the case of two servers, this is not an issue. If everything is fine, both servers will start in timeline 1. In case the master dies, the remaining server will switch to timeline 2, and everything will be fine.
But what about a setup consisting of three servers? In case the master crashes, one of those remaining servers will be the next master. But who should be the next master? That is for you to decide. You cannot just take a random server. It is important to check which server has received how much transaction log, and decide on the most advanced server. This is how you can figure it out:
SELECT pg_last_xlog_replay_location();
But don't promote the most advanced slave instantly. That will make the server jump to the next timeline. What about the remaining boxes? They will sit idle in timeline 1, and the replication will be broken.
So, before a server is promoted, reconnect all slaves to the new desired master (by changing primary_conninfo and signaling the server), and promote the new master after that. It will ensure that the new master will jump to timeline 2 and replicate this change to all slaves so that those slaves can easily jump to timeline 2 along with the master.
Summary
In this chapter, PITR and streaming replication were covered in brief. All the basic concepts related to those techniques were outlined, and a practical introduction to those topics was presented.
In the next chapter, you will see problems related to hardware disasters and hardware failure.
Chapter 9. Handling Hardware and Software Disasters
In this chapter, you will be introduced to issues related to hardware and software failure. Even expensive hardware is far from perfect, and it may fail from time to time. Troubles could occur in the form of failing memory, broken hard drives, or damaged filesystems, kernel-related issues and so on. In this chapter, some of the most common troubles will be covered.
Here are some of the important topics we will cover:
Checksums – preventing silent corruption
When reading books about high availability and fault tolerance, in general, I always get the impression that most systems work on the assumption that crashes are atomic. What do I mean by that? Let's imagine there are two servers; one server has crashed and the other takes over. Unfortunately, crashes are not like this in many cases. In the real world, crashes are often far from atomic. Trouble is likely to build up gradually until things go really wrong. Consider memory corruption; when the memory goes wrong, it might not lead to an instant crash, and even when it does, the system might restart again without problems before troubles return. In many cases, a problem that accumulates silently is way more dangerous than a simple crash. The main danger in the case of silent corruption is that problems could gradually spread in the system without anybody noticing.
To prevent problems related to silent corruption caused by memory consumption, PostgreSQL provides block-level checksums. By default, data is written as it is—one block at a time. However, with block checksums enabled, PostgreSQL will check each 8k block on I/O to see whether it is still fine or not.
To enable data checksums, it is possible to run initdb using the -k option. This will set the configuration variable for the entire instance.
To check whether a database instance has data checksums enabled, you can run the following command (assuming that the database instance is living in /data):
$ pg_controldata /data | grep -i checks
The command will return 0 or 1, depending on whether the setting has been turned on or off.
At this point, there is no possibility to turn checksums on after initdb. There is no way to change the configuration in production.
Zeroing out damaged pages
Once in a while, things do go wrong even if all precautions have been taken. A filesystem might lose some blocks here and there or a disk might simply lose a couple of sectors. The following might happen on the PostgreSQL side in this case:
test=# SELECT count(*) FROM t_test;
ERROR: invalid page in block 535 of relation
base/16384/16436
If a block (or a couple of blocks) has fallen victim to a problem in the filesystem, PostgreSQL will error out and tell the end user that the query cannot be completed anymore.
In the scenario outlined here, you can be certain of one thing: some data has been lost in the storage system. It is important to point out that loss of data is virtually never caused by PostgreSQL itself. In most cases, we are talking about broken hardware, broken filesystems, or some other memory-related problem that has spread its blessings to your data files.
If storage-related problems arise, the general rule is, "don't touch stuff; back up stuff!" Before anything is done that might make the problem even worse, try to create a filesystem snapshot, a tar archive, or any kind of backup. In many cases, the good old "dd" can do a good job, and it can definitely be worthwhile to attempt to create a clone of the underlying device on your system.
Once everything has been rescued on the system, the next step can be performed. PostgreSQL provides a feature that allows you to zero out blocks that are not faulty. In the preceding example, the query could not have been completed because the file contained some bad data. By setting zero_damaged_pages To on, it is possible to tell PostgreSQL to zero out all broken blocks. Of course, this does not rescue lost data, but it at least helps us retrieve something from the system:
test=# SET zero_damaged_pages TO on;
SET
Once the value has been set, the query can be executed again:
test=# SELECT count(*) FROM t_test;
WARNING: invalid page in block 535 of relation
base/16384/16436; zeroing out page
count
-----------
42342
(1 row)
This time, warnings will pop up for each broken block. Luckily, just one block is broken in this case. It is quickly replaced by some binary zeroes, and the query moves on to the next (proper) blocks.
Of course, zero_damaged_pages is dangerous because it eliminates bad data. So what choice do you have? When something is so broken, it is important to rescue at least what is there.
Dealing with index corruption
Once in a while, an index may blow up. In most cases, broken indexes are caused by hardware failures. Once again, the most suspicious thing in the case of index corruption is the RAM. So, always check your system memory in case an index has blown up.
In general, the same rules apply: take a snapshot first, and then simply recreate those broken indexes. REINDEX can help in this case:
test=# \h REINDEX
Command: REINDEX
Description: rebuild indexes
Syntax:
REINDEX { INDEX | TABLE | DATABASE | SYSTEM }
name [ FORCE ]
Keep in mind that REINDEX needs a SHARE lock, which ensures that no writes can happen. In some setups, this could turn out to be a problem. To avoid locking, it makes sense to turn to CREATE INDEX CONCURRENTLY. A concurrent index build takes longer than a normal build. However, it avoids a nasty table lock that blocks writes. It can be very beneficial to many applications.
In general, an index-related problem is usually not as bad as a bad block inside a table. Remember, however, that the index itself does not contain data and data cannot be recreated easily.
Dumping individual pages
Advanced users who really want to inspect their broken systems in detail can focus their attention on pageinspect. It allows them to inspect a single data or index page on the disk. This requires a fair amount of knowledge about the inner working of PostgreSQL, but it can give valuable insights into what might have gone wrong in a system.
To make use of the module, first it has to be installed. It works like this:
test=# CREATE EXTENSION pageinspect;
CREATE EXTENSION
Once the module is in place, a table can be inspected. To do so, a couple of functions are available. The most important function is get_raw_page. It will be needed for subsequent inspections:
get_raw_page(relname text, fork text, blkno int)
returns bytea
The get_raw_page function returns a bytea field containing the content of the page. The first parameter tells us the relation name we want to inspect. The second parameter needs the so-called relation fork. In PostgreSQL, a table does not only consist of data files. In all, there are three types of files belonging to a table: main (the table itself), fsm (information about free space in the so-called Free Space Map), and vm (the so-called Visibility Map). Depending on the branch of the table you want to inspect, this second parameter has to be set to the proper value. Finally, there is the last parameter. It tells PostgreSQL which block to dump.
If you want to extract the first page of pg_class (a system table), try the following:
test=# SELECT * FROM get_raw_page('pg_class',
'main', 0);
Of course, the output of this function is too long to list. It is an 8k block after all!
Extracting the page header
Once the page has been extracted, the page header can be inspected. To do so, just call page_header:
test=# \x
Expanded display (expanded) is on.
test=# SELECT * FROM page_header(get_raw_page('pg_class', 'main', 0));
-[ RECORD 1 ]--------
lsn | 0/E6604D8
checksum | 0
flags | 1
lower | 340
upper | 904
special | 8192
pagesize | 8192
version | 4
prune_xid | 0
What is the meaning of those fields? The following listing contains an overview:
Note
Keep in mind that not all of this information is there for every type of object; for example pg_special does not give anything useful for a normal data file because there is no special space there.
If those numbers show something odd, it is a good indicator that something has gone wrong.
In the next step, individual tuples (rows) can be inspected. To do this, heap_page_items is available:
test=# SELECT *
FROM heap_page_items(
get_raw_page('pg_class', 'main', 0)
);
-[ RECORD1 ]------------------------------------
lp | 1
lp_off | 7992
lp_flags | 1
lp_len | 197
t_xmin | 931
t_xmax | 0
t_field3 | 5
t_ctid | (0,1)
t_infomask2 | 29
t_infomask | 11019
t_hoff | 32
t_bits | 11111 … 0000
t_oid | 2619
In this example, a couple of rows are returned.
Resetting the transaction log
In this section, resetting the transaction log will be covered. Before we get started, I want to personally issue a warning: don't take this lightly. Resetting the transaction log is a harsh thing to do. It almost always leads to some data loss, and it does not guarantee that your data will still be fully consistent. Resetting xlog is the last thing to consider when things go south.
The same rules as we covered before apply here: always take a snapshot of the filesystem or shut down the database, and create a binary copy of the data directory before using pg_resetxlog. Let me stress my point. In my 15-year long career as a PostgreSQL consultant, I have had to do this only a handful of times. Usually, this can be resolved in some other way.
However, if PostgreSQL does not start up anymore because the xlog is broken, pg_resetxlog can come to your rescue. Here is how the syntax works:
$ pg_resetxlog --help
pg_resetxlog resets the PostgreSQL transaction log.
Usage:
pg_resetxlog [OPTION]... DATADIR
Options:
-e XIDEPOCH set next transaction ID epoch
-f force update to be done
-l XLOGFILE force minimum WAL starting location
for new transaction log
-m MXID,MXID set next and oldest multitransaction
ID
-n no update, just show what would
be done (for testing)
-o OID set next OID
-O OFFSET set next multitransaction offset
-V, --version output version information, then exit
-x XID set next transaction ID
-?, --help show this help, then exit
There are a couple of settings here. The most important ones are -o, -x, -e, -m, -O, and -l. These settings allow you to go to a certain transaction ID, set an OID, and so on.
In some cases, it might happen that pg_resetxlog complains that the pg_control file is not valid. The control file is vital because it contains information about block sizes, checkpoints, toast sizes, and so on. To see which data is in the control, try the following snippet:
pg_controldata $PGDATA # or replace $PGDATA with
# your PostgreSQL data
# directory
The pg_controldata file will write a lot of information to the screen. If pg_resetxlog cannot find a valid control file, it is necessary to use -f. Then it tries to fix things even if the control file is long gone or is corrupted.
Once pg_resetxlog has been executed, it is usually possible to start the database again (unless it is really doomed). Ensure that a backup is taken instantly and that data is checked for sanity. This includes verifying that all foreign keys are okay and that data can be dumped, or restored, nicely.
Power-out-related issues
Hardware is not always a problem. It might easily happen that you face something as simple as a power out. In general, PostgreSQL can easily survive power outs. The transaction log takes care of all failure-related issues, and with the help of xlog, it is always possible to bring the database back to a consistent state. It is safely possible to pull the plug and rely on the quality of PostgreSQL.
However, there are some nasty cases that can lead to even nastier troubles. On commit, PostgreSQL relies on the fact that data can be flushed to the disk. A system call, fsync, is used to ensure that everything relevant is forced to the disk. However, what happens if fsync cannot do its job? What if data cannot be (or data is not) flushed to the disk? If your system is up and running, everything is fine. The data will make it to the disk at some point, and life is good! However, what if a crash happens? The situation is grimmer. In short, anything can happen. If PostgreSQL does not know anymore what has been safely written to disk and what is not, any kind of corruption may occur.
Why would fsync fail? Things can always go south if hardware fails. However, there is a more common issue here—virtualization. Not all pieces of virtualization software will flush data to the disk by default. For performance reasons, some systems such as VirtualBox will default to optimizing fsync by just writing in a more lazy way. The results are likely to be disastrous, not only for PostgreSQL but also for the entire virtual machine.
The importance of fsync cannot be stressed enough. If flushing to the disk is somewhat broken, the entire database instance is at the mercy of your electricity company. Surely, not flushing to the disk is a lot faster, but it can also mean that your data will be lost much faster.
In case data is lost in a virtualized setup, always try to figure out whether fsync is really doing what it is supposed to do on the underlying hardware component.
Summary
In this chapter, the basic and most common problems were discussed. This includes hardware failure as well as problems related to broken indexes, broken xlog, and a lot more.
In the next chapter, everything you learned in this book will be summed up and presented in one extensive example.
Chapter 10. A Standard Approach to Troubleshooting
In this chapter, the goal is to sum up some of the approaches you have seen in this book and combine them into one overall approach for typical everyday scenarios. Customers may come up with any or all of the following statements:
The goal here is to provide you with a systematic approach to the problem and point to solutions. Note that the example outlined in this chapter is a typical case faced by clients around the globe.
Getting an overview of the problem
Before getting started, the most important thing is to get an overview of the problem. Assuming that there is no corruption around, the first thing to do is to take a detailed look at the content of pg_stat_activity. As already outlined in this book, pg_stat_activity contains a list of all open database connections. There are a couple of things to look out for here:
Many middleware components open an insane number of database connections. Remember that each useless connection takes away a bit of memory, which could have been used for something more productive, such as caching. However, the number of database connections alone does not usually impose a dramatic overhead. The number of active snapshots is way more dangerous because active snapshots directly translate into a decrease in speed. An active snapshot causes some internal overhead. The benchmark at http://www.cybertec.at/max_connections-performance-impacts/ will prove this point.
Once the number of connections has been checked, it makes sense to see how many of those are idling. Open transactions that have been idling for quite some time can be a danger. Why? The VACUUM command can only clean up dead rows if there is no transaction around anymore that is capable of seeing the data. Old, idle transactions can delay the cleanup of rows, and bad performance is likely to be the consequence. Even if the VACUUM command is executed on a regular basis, things are likely to stay slow because VACUUM is simply not able to do its job. Therefore, it can make sense to keep an eye on unreasonably long transactions.
But there is more; if the same query shows up again and again in pg_stat_activity, it is already worth taking a look at this query and ensuring that it performs nicely. The same applies to queries that are already showing high execution times and show up in the listing.
Attacking low performance
After this basic inspection, it is time to get rid of a very common problem: wrong and missing indexes.
Reviewing indexes
At this point, most of you may say, "indexing? Come on! What is the point? We know that; let's work on real stuff!" From experience, I can tell you with absolute certainty that broken indexing is the single most common cause of bad performance in the world. So, before focusing on anything else in the system, it always makes sense to carry out a safety check to ensure that indexing is definitely okay.
What is the best way to check for missing indexes? In my daily life as a consultant, I use this query:
test=# SELECT relname, seq_scan, seq_tup_read,
idx_scan AS idx,
seq_tup_read / seq_scan AS ratio
FROM pg_stat_user_tables
WHERE seq_scan > 0
ORDER BY seq_tup_read DESC
LIMIT 10;
relname | seq_scan | seq_tup_read | idx | ratio
---------+----------+----------------+-----+----------
t_user | 4564324 | 18563909843245 | 2 | 4067176
...
(10 rows)
The output of the query shows the following fields: the name of the table, the number of sequential scans that have occurred on the table, the number of rows found in those sequential scans, the number of index scans used, and the average number of rows read during a sequential scan.
Given the listing here, the next question is, why would anybody want to read 4 million rows 4.5 million times? There is no sane case that justifies that such a large table should be read millions of times. Just imagine what it means for the overall load of your system if a table containing 4 million rows is read over and over again. It is like reading the entire phone book to find a single number.
In most cases, the missing index is already obvious when looking at the table structure. In this example, the user table might be used for authentication, but the e-mail address used by people to sign in might not be indexed.
Note
Keep in mind that sequential scans are not always bad and they can never be avoided completely. It is just important to avoid a large number of expensive and pointless sequential scans.
Experience has shown that in most systems showing bad performance, indexes are missing. It is very likely that a simple review of your indexing strategy will solve most of your problems.
On the other hand, it is also possible that too many indexes cause performance problems. An index is not always a solution to a problem—it can also do harm. Such performance problems are not as obvious as missing indexes. In addition to that, the use of too many indexes can usually be tolerated much longer than missing indexes (depending on the type of application, of course).
Fixing UPDATE commands
Once indexes have been fixed, a second and very common problem can be attacked. Many people forget about a thing called FILLFACTOR. Missing FILLFACTOR settings can cause performance problems in the case of update-intensive workloads.
How can those problems be detected? Here is a query showing how it works:
SELECT schemaname, relname, n_tup_ins,
n_tup_upd, n_tup_hot_upd, n_tup_del
FROM pg_stat_user_tables
ORDER BY n_tup_upd DESC;
This query returns those tables that are facing most of the UPDATE commands in the system. Now the important ratio is the ratio of n_tup_upd to n_tup_hot_upd. Let's assume a row is updated. If the page containing the row is full, the row has to be copied to some other block. Additional, expensive I/O is the logical consequence. If a proper FILLFACTOR setting (for example, FILLFACTOR = 70 for 70 percent) has been chosen, a so-called HOT-UPDATE command will be performed. In short, the copy of the row can be put in the same block as the original row. A HOT-UPDATE command is way cheaper than a traditional, normal UPDATE command. Therefore, tables facing many UPDATE commands need a reasonably low FILLFACTOR option to speed up things and to reduce I/O.
The query shown in this section helps identify those tables that need special attention. It makes sense to work through the list top down and set FILLFACTOR on indexes and tables.
Note
Keep in mind that the perfect FILLFACTOR option can never be calculated. However, you can make an educated guess and come up with a reasonably good setting. If the FILLFACTOR has to be lowered, 75 percent can be a good start.
To change the FILLFACTOR to 70 percent, the following command can be used:
ALTER TABLE foo SET (FILLFACTOR=70);
If you want to change the FILLFACTOR of an index, use this:
ALTER INDEX foo_index SET (FILLFACTOR=70);
Note
Keep in mind that this setting does not have an immediate effect on the physical layout of the table; it is merely a hint. However, the system will try to reach the desired state over time.
Once indexes and FILLFACTORs have been defined, the majority of problems should have been fixed.
Detecting slow queries
Next, an important step can be performed—finding slow queries. Some people prefer to check for slow queries first. However, I personally prefer to do some basic checks such as the ones shown up to here because those checks don't require restarts. Activating pg_stat_statements needs a restart, and therefore, it makes sense to activate it after picking the low-hanging fruit.
When activating pg_stat_statements in postgresql.conf, as outlined earlier in the book, it makes a lot of sense to set track_io_timing to true. Enabling track_io_timing will provide users with detailed information about which query has performed which kind of I/O.
To figure out what is going on in the system, the following queries may be useful.
Find the most time-consuming queries, like this:
SELECT (SELECT datname
FROM pg_database
WHERE dbid = oid),
query, calls, total_time
FROM pg_stat_statements AS x
ORDER BY total_time DESC;
The most time-consuming queries will show up at the top of the listing and can be fixed one at a time. However, in some cases, total execution time is not your problem. What if I/O is the main limiting factor? In this case, the following fields need special attention:
temp_blks_read | bigint |
temp_blks_written | bigint |
blk_read_time | double precision |
blk_write_time | double precision |
If the work_mem settings are too low, it can happen that many temporary files are written to disk, resulting in expensive disk writes, which can easily be avoided. Those temp_* are a good indicator of the query that causes disk wait.
The blk_* settings will give insight into how much I/O is needed by a query and how much time is spent in I/O.
Working through the most expensive queries is essential to track down those last bottlenecks remaining on your systems. If postgresql.conf is configured in the same way, going through the basic steps outlined in this chapter will remove a great portion of the most common performance problems.
The problems remaining usually need a more detailed look and maybe changes inside the application. Everything covered so far can be fixed using PostgreSQL's onboard means.
Fixing common replication issues
Given the goals set for this chapter, the last topic to be done is the customer's complaint about replication, which tends to break from time to time. In PostgreSQL, replication never breaks for technical reasons; only misconfiguration can lead to unexpected behavior. Here are the most common issues:
Let's attack one problem at a time.
Fixing stopped replication
One of the most common problems is that at some point, replication just stops. The slave will start to fall behind, and the result coming back from a slave will be old and outdated. There are a couple of reasons for this kind of behavior:
In many cases, bandwidth is a serious issue. If two servers are connected using a 100 MB interconnect, it can easily happen that the slave falls behind and eventually dies if the write load is constantly higher than 10 MB per second. Keep in mind that the master only keeps a couple of xlog files around, which are needed to recover in case of a crash of the master. In the default configuration, it does not queue transaction logs forever just to handle problems on the slaves. If the load is too high on a systematic basis, this would not help anyway.
In PostgreSQL, the slave requests the transaction log it needs from the master. If the master does not have the desired xlog file any more, the slave cannot continue. To many users, this looks like a replication failure, which it really is not. It is clearly desired behavior. To reduce the problem straight away, two options are available:
In general, it is always recommended to use wal_keep_segments, unless replication slots are used. Otherwise, it is too risky and a slave is likely to fall much behind its master. When configuring wal_keep_segments, be gracious and don't use settings that are too low. A nice xlog retention pool can really pay off.
Note
Keep in mind that if you are constantly using more bandwidth than is available, wal_keep_segments won't help.
Replication slots are a nice alternative to wal_keep_segments. In the case of a normal setup using wal_keep_segments, a master will keep as much xlog as configured by the administrator. But how can the administrator know this? Usually, there is no way to know.
A replication slot can help because it keeps xlog around as long as it is needed. Here is how it works:
postgres=# SELECT * FROM pg_create_physical_replication_slot('rep_slot');
slot_name | xlog_position
-------------+---------------
rep_slot |
It is easy to check for existing replication slots:
postgres=# SELECT slot_name, slot_type FROM pg_replication_slots;
slot_name | slot_type
-------------+-----------
rep_slot | physical
(1 row)
In the replica, the name of the replication slot has to be added to recovery.conf:
primary_slot_name = 'rep_slot'
Note
Keep in mind that if the slave goes down, the master might fill up. Therefore, it is essential to monitor this kind of setup.
Fixing failed queries
Another important issue is related to failed queries. It can happen that queries are cancelled on the slave due to replication conflicts. If you are working on a system that constantly kicks queries, it can be very helpful to check out hot_standby_feedback.
The idea is to let the slave report its oldest transaction ID from time to time. The master can then react and ensure that conflicts are prevented by delaying VACUUM on itself. In reality, setting hot_standby_feedback on the slave leaves us with the same behavior as if the query had actually run on the master (not performance-wise, of course).
If the people working on those slave systems can be trusted, it usually makes sense to turn hot_standby_feedback on. If users on the slave are not considered to be competent enough, it is safer to stick to the default value—off.
Summary
In this chapter, a typical customer request was outlined and discussed step by step. The goal was to systematically outline the steps to approach an existing system that faces typical everyday problems.
Note
Keep in mind that my personal strategy is not suitable for every purpose but it helps to tackle a typical troubled system anywhere in the world.
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