Table of Contents
QGIS Python Programming Cookbook
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
What this book covers
What you need for this book
Who this book is for
Sections
Getting ready
How to do it…
How it works…
There's more…
See also
Conventions
Reader feedback
Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
Introduction
Installing QGIS for development
Getting ready
How to do it
Installing PyQGIS using the Debian package manager
Installing PyQGIS using the RPM package manager
Setting the environment variables
Setting the environment variables on Windows
Setting the environment variables on Linux
How it works…
There's more…
Finding the PyQGIS path on Windows
Finding the location of the QGIS Python installation on other platforms
Using the QGIS Python console for interactive control
How to do it…
How it works…
Using the Python ScriptRunner plugin
Getting ready
How to do it…
How it works…
Setting up your QGIS IDE
Getting ready
How to do it…
Adding the QGIS Python interpreter on Windows
Adding the PyQGIS module paths to the interpreter
Adding the PyQGIS API to the IDE
Adding environment variables
How it works…
Debugging QGIS Python scripts
How to do it…
Configuring QGIS
Configuring Eclipse
Testing the debugger
How it works…
Navigating the PyQGIS API
Getting ready
How to do it…
How it works…
There's more…
Creating a QGIS plugin
Getting ready
How to do it…
How it works…
There's more…
Distributing a plugin
Getting ready
How to do it…
How it works…
Creating a standalone application
Getting ready
How to do it…
How it works…
There's more...
Storing and reading global preferences
Getting ready
How to do it…
How it works…
There's more…
Storing and reading project preferences
Getting ready
How to do it…
How it works…
There's more…
Accessing the script path from within your script
Getting ready
How to do it…
How it works…
There's more…
Introduction
Loading a vector layer from a file sample
Getting ready
How to do it...
How it works...
Loading a vector layer from a spatial database
Getting ready
How to do it...
How it works...
Examining vector layer features
Getting ready
How to do it...
How it works...
Examining vector layer attributes
Getting ready
How to do it...
How it works...
There's more...
Filtering a layer by geometry
Getting ready
How to do it...
How it works...
Filtering a layer by attributes
Getting ready
How to do it...
How it works...
Buffering a feature intermediate
Getting ready
How to do it...
How it works...
Measuring the distance between two points
Getting ready
How to do it...
How it works...
Measuring the distance along a line sample
Getting ready
How to do it...
How it works...
Calculating the area of a polygon
Getting ready
How to do it...
How it works...
Creating a spatial index
Getting ready
How to do it...
How it works...
Calculating the bearing of a line
Getting ready
How to do it...
How it works...
Loading data from a spreadsheet
Getting ready
How to do it...
How it works...
There's more...
Introduction
Creating a vector layer in memory
Getting ready
How to do it...
How it works...
There's more…
Adding a point feature to a vector layer
Getting ready
How to do it...
How it works...
Adding a line feature to a vector layer
Getting ready
How to do it...
How it works...
Adding a polygon feature to a vector layer
Getting ready
How to do it...
How it works...
Adding a set of attributes to a vector layer
Getting ready
How to do it...
How it works...
Adding a field to a vector layer
Getting ready
How to do it...
How it works...
Joining a shapefile attribute table to a CSV file
Getting ready
How to do it...
How it works...
There's more...
Moving vector layer geometry
Getting ready
How to do it...
How it works...
Changing a vector layer feature's attribute
Getting ready
How to do it...
How it works...
Deleting a vector layer feature
Getting ready
How to do it...
How it works...
Deleting a vector layer attribute
Getting ready
How to do it...
How it works...
Reprojecting a vector layer
Getting ready
How to do it...
How it works...
Converting a shapefile to KML
Getting ready
How to do it...
How it works...
Merging shapefiles
Getting ready
How to do it...
How it works...
There's more...
Splitting a shapefile
Getting ready
How to do it...
How it works...
Generalizing a vector layer
Getting ready
How to do it...
How it works...
Dissolving vector shapes
Getting ready
How to do it...
How it works...
Performing a union on vector shapes
Getting ready
How to do it...
How it works...
Rasterizing a vector layer
Getting ready
How to do it...
How it works...
Introduction
Loading a raster layer
Getting ready
How to do it...
How it works...
Getting the cell size of a raster layer
Getting ready
How to do it...
How it works...
Obtaining the width and height of a raster
Getting ready
How to do it...
How it works...
Counting raster bands
Getting ready
How to do it...
How it works...
Swapping raster bands
Getting ready
How to do it...
How it works...
There's more...
Querying the value of a raster at a specified point
Getting ready
How to do it...
How it works...
Reprojecting a raster
Getting ready
How to do it...
How it works...
There's more...
Creating an elevation hillshade
Getting ready
How to do it...
How it works...
Creating vector contours from elevation data
Getting ready
How to do it...
How it works...
Sampling a raster dataset using a regular grid
Getting ready
How to do it...
How it works...
There's more...
Adding elevation data to line vertices using a digital elevation model
Getting ready
How to do it...
How it works...
There's more...
Creating a common extent for rasters
Getting ready
How to do it...
How it works...
Resampling raster resolution
Getting ready
How to do it...
How it works...
Counting the unique values in a raster
Getting ready
How to do it...
How it works...
Mosaicing rasters
Getting ready
How to do it...
How it works...
Converting a TIFF image to a JPEG image
Getting ready
How to do it...
How it works...
Creating pyramids for a raster
Getting ready
How to do it...
How it works...
Converting a pixel location to a map coordinate
Getting ready
How to do it...
How it works...
Converting a map coordinate to a pixel location
Getting ready
How to do it...
How it works...
Creating a KML image overlay for a raster
Getting ready
How to do it...
How it works...
There's more...
Classifying a raster
Getting ready
How to do it...
How it works...
Converting a raster to a vector
Getting ready
How to do it...
How it works...
Georeferencing a raster from control points
Getting ready
How to do it...
How it works...
Clipping a raster using a shapefile
Getting ready
How to do it...
How it works...
Introduction
Accessing the map canvas
Getting ready
How to do it...
How it works...
Changing the map units
Getting ready
How to do it...
How it works...
Iterating over layers
Getting ready
How to do it...
How it works...
Symbolizing a vector layer
Getting ready
How to do it...
How it works...
Rendering a single band raster using a color ramp algorithm
Getting ready
How to do it...
How it works…
Creating a complex vector layer symbol
Getting ready
How to do it…
How it works…
Using icons as vector layer symbols
Getting ready
How to do it…
How it works…
Creating a graduated vector layer symbol renderer
Getting ready
How to do it...
How it works...
Creating a categorized vector layer symbol
Getting ready
How to do it...
How it works...
Creating a map bookmark
Getting ready
How to do it...
How it works...
Navigating to a map bookmark
Getting ready
How to do it...
How it works...
Setting scale-based visibility for a layer
Getting ready
How to do it...
How it works...
Using SVG for layer symbols
Getting ready
How to do it...
How it works...
Using pie charts for symbols
Getting ready
How to do it...
How it works...
There's more...
Using the OpenStreetMap service
Getting ready
How to do it...
How it works...
Using the Bing aerial image service
Getting ready
How to do it...
How it works...
Adding real-time weather data from OpenWeatherMap
Getting ready
How to do it...
How it works...
Labeling features
Getting ready
How to do it...
How it works...
Changing map layer transparency
Getting ready
How to do it...
How it works...
Adding standard map tools to the canvas
Getting ready
How to do it...
How it works...
Using a map tool to draw points on the canvas
Getting ready
How to do it...
How it works...
Using a map tool to draw polygons or lines on the canvas
Getting ready
How to do it...
How it works...
Building a custom selection tool
Getting ready
How to do it...
How it works...
Creating a mouse coordinate tracking tool
Getting ready
How to do it...
How it works...
Introduction
Creating the simplest map renderer
Getting ready
How to do it...
How it works...
There's more...
Using the map composer
Getting ready
How to do it...
How it works...
There's more…
Adding labels to a map for printing
Getting ready
How to do it...
How it works...
Adding a scale bar to the map
Getting ready
How to do it...
How it works...
Adding a north arrow to the map
Getting ready
How to do it...
How it works...
There's more...
Adding a logo to the map
Getting ready
How to do it...
How it works...
Adding a legend to the map
Getting ready
How to do it...
How it works...
Adding a custom shape to the map
Getting ready
How to do it...
How it works...
There's more...
Adding a grid to the map
Getting ready
How to do it...
How it works...
Adding a table to the map
Getting ready
How to do it...
How it works...
Adding a world file to a map image
Getting ready
How to do it...
How it works...
Saving a map to a project
Getting ready
How to do it...
How it works...
Loading a map from a project
Getting ready
How to do it...
How it works...
Introduction
Using log files
Getting ready
How to do it...
How it works...
Creating a simple message dialog
Getting ready
How to do it...
How it works...
There's more…
Creating a warning dialog
Getting ready
How to do it...
How it works...
Creating an error dialog
Getting ready
How to do it...
How it works...
Displaying a progress bar
Getting ready
How to do it...
How it works...
There's more…
Creating a simple text input dialog
Getting ready
How to do it...
How it works...
Creating a file input dialog
Getting ready
How to do it...
How it works...
There's more…
Creating a combobox
Getting ready
How to do it...
How it works...
Creating radio buttons
Getting ready
How to do it...
How it works...
Creating checkboxes
Getting ready
How to do it...
How it works...
Creating tabs
Getting ready
How to do it...
How it works...
Stepping the user through a wizard
Getting ready
How to do it...
How it works...
Keeping dialogs on top
Getting ready
How to do it...
How it works...
Introduction
Creating an NDVI
Getting ready
How to do it...
How it works...
Geocoding addresses
Getting ready
How to do it...
How it works...
There's more...
Creating raster footprints
Getting ready
How to do it...
How it works...
There's more...
Performing network analysis
Getting ready
How to do it...
How it works...
Routing along streets
Getting ready
How to do it...
How it works...
Tracking a GPS
Getting ready
How to do it...
How it works...
There's more...
Creating a mapbook
Getting ready
How to do it...
How it works...
Finding the least cost path
Getting ready
How to do it...
How it works...
Performing nearest neighbor analysis
Getting ready
How to do it...
How it works...
Creating a heat map
Getting ready
How to do it...
How it works...
There's more...
Creating a dot density map
Getting ready
How to do it...
How it works...
Collecting field data
Getting ready
How to do it...
How it works...
Computing road slope using elevation data
Getting ready
How to do it...
How it works...
Geolocating photos on the map
Getting ready
How to do it...
How it works...
There's more...
Image change detection
Getting ready
How to do it...
How it works...
Introduction
Creating tiles from a QGIS map
Getting ready
How to do it...
How it works...
Adding a layer to geojson.io
Getting ready
How to do it...
How it works...
There's more...
Rendering map layers based on rules
Getting ready
How to do it...
How it works...
Creating a layer style file
Getting ready
How to do it...
How it works...
Using NULL values in PyQGIS
Getting ready
How to do it...
How it works...
Using generators for layer queries
Getting ready
How to do it...
How it works...
Using alpha values to show data density
Getting ready
How to do it...
How it works...
Using the __geo_interface__ protocol
Getting ready
How to do it...
How it works...
Generating points along a line
Getting ready
How to do it...
How it works...
There's more...
Using expression-based labels
Getting ready
How to do it...
How it works...
Creating dynamic forms in QGIS
Getting ready
How to do it...
How it works...
Calculating length for all selected lines
Getting ready
How to do it...
How it works...
Using a different status bar CRS than the map
Getting ready
How to do it...
How it works...
Creating HTML labels in QGIS
Getting ready
How to do it...
How it works...
There's more...
Using OpenStreetMap's points of interest in QGIS
Getting ready
How to do it...
How it works...
Visualizing data in 3D with WebGL
Getting ready
How to do it...
How it works...
Visualizing data on a globe
Getting ready
How to do it...
How it works...
QGIS Python Programming Cookbook
QGIS Python Programming Cookbook
Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: March 2015
Production reference: 1240315
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78398-498-5
Credits
Author
Joel Lawhead
Reviewers
Joshua Arnott
Giuseppe De Marco
Jonathan Gross
Luigi Pirelli
Hiroaki Sengoku
Commissioning Editor
Pramila Balan
Acquisition Editor
Sonali Vernekar
Content Development Editor
Prachi Bisht
Technical Editor
Deepti Tuscano
Copy Editor
Dipti Kapadia
Project Coordinator
Shipra Chawhan
Proofreaders
Safis Editing
Maria Gould
Indexer
Hemangini Bari
Production Coordinator
Nitesh Thakur
Cover Work
Nitesh Thakur
About the Author
Joel Lawhead is a PMI-certified Project Management Professional (PMP) and the Chief Information Officer (CIO) of NVisionSolutions Inc., an award-winning firm that specializes in geospatial technology integration and sensor engineering.
Joel began using Python in 1997 and began combining it with geospatial software development in 2000. He is the author of Learning Geospatial Analysis with Python, Packt Publishing. His Python cookbook recipes were featured in two editions of Python Cookbook, O'Reilly Media. He is also the developer of the widely used, open source Python Shapefile Library (PyShp) and maintains the geospatial technical blog GeospatialPython.com and the Twitter feed @SpatialPython, which discuss the use of the Python programming language within the geospatial industry.
In 2011, Joel reverse engineered and published the undocumented shapefile spatial indexing format and assisted fellow geospatial Python developer, Marc Pfister, in reversing the algorithm used, allowing developers around the world to create better-integrated and more robust geospatial applications involving shapefiles.
Joel served as the lead architect, project manager, and co-developer for geospatial applications used by US government agencies, including NASA, FEMA, NOAA, the US Navy, and many other commercial and non-profit organizations. In 2002, he received the international Esri Special Achievement in GIS award for his work on the Real-Time Emergency Action Coordination Tool (REACT), for emergency management using geospatial analysis.
I would like to acknowledge my beautiful family, including my wife, Julie, and four children, Lauren, Will, Lillie, and Lainie, who allowed me to write yet another book in our limited collective free time. I would also like to acknowledge my employers and coworkers at NVisionSolutions.com, a bright team of people dedicated to working together at the exciting bleeding edge of geospatial technology.
About the Reviewers
Joshua Arnott is an environmental scientist with four years of academic and consultancy experience. His expertise lies in environmental modeling, with a focus on hydrology and geoinformatics. He has contributed to a number of GIS-related open source projects, including QGIS and Shapely. He maintains a blog about programming and GIS at snorfalorpagus.net, and he likes cats just as much as everyone else on the Internet.
Giuseppe De Marco was born in 1973 in Ferentino, Italy. He has a high school certificate in humanities and attained a bachelor's degree in agriculture from the University of Pisa. When he was a small boy, he began to use computers and learn programming languages (BASIC, Pascal, Fortran, and so on). At the university, he began to encounter open source software and the Linux OS, and he developed a deep interest in geography and GIS and other programming languages, such as C++ and Python, by first getting in touch with Esri commercial products and later with GRASS and QGIS. Since the QGIS 1.7.4 release, he's been developing plugins for this software, sometimes purely to seek knowledge and at other times for work. In 2008, he began a professional partnership with two colleagues called Pienocampo (open field), and his plugins are hosted on Pienocampo's website and on the QGIS official repository. At the moment, he lives in his hometown Ferentino and works as a freelance agriculture engineer. His work activities include studying geography, surveying, tree risk assessment, landscaping, bioengineering, and farm consulting. In 2014, he also began to teach other colleagues how to use QGIS and other open source software.
I would like to thank my wife, Fabiola; my little daughter, Anna; my mother, Angela; and my colleagues, Marco De Castris, Ettore Arcangeletti, Luca Grande, and Ivan Solinas.
Jonathan Gross is the author of the Open Source GIS blog, http://opensourcegisblog.blogspot.com/. He has a master's of public health degree in epidemiology from the University of Michigan, Ann Arbor, and a graduate certificate in geographic information systems from Johns Hopkins Advanced Academic Programs. He has done graduate coursework in Python and uses Python for programming small tasks. He is currently an epidemiologist at the Baltimore City Health Department, Maryland, where he performs spatial analysis on health and crime data.
Luigi Pirelli is a freelance software analyst and developer with a honors degree in computer science from the University of Bari.
He has worked for 15 years in satellite ground segmentation and direct ingestion systems for the European Space Agency. Since 2006, he has been involved in the GFOSS world, contributing to QGIS, GRASS, and the MapServer core, and developing and maintaining many QGIS plugins. He actively participates in QGIS Hackmeetings.
He is the founder of the OSGEO Italian local chapter GFOSS.it and now lives in Spain, where he contributes to the GFOSS community. During the past few years, he started teaching PyQGIS by organizing trainings, from basic to advanced level, supporting companies to develop their specific QGIS plugins.
He has coauthored Mastering QGIS, Packt Publishing.
He is the founder of the local hackerspace group, Bricolabs.cc that is focused on all things related to open source hardware. He likes to cycle, repair everything, and train groups on conflict resolution.
Other than this book, he has also contributed to the guide, Cycling Italy, Lonely Planet.
A special thanks to the QGIS developer community and core developers because the project is managed in an open way, allowing contribution from everyone.
I want to thank everyone I have worked with. From each one of them, I learned something and without them, I wouldn't be here, contributing to free software and this book.
A special thanks to my friends and neighbors who helped me with my son during the review of the book.
I would like to dedicate this work to my partner and especially my son, for having the patience to see me sit in front of the computer for hours without playing with him.
Hiroaki Sengoku was born in 1987 in Gifu, Japan. He did his BA in environmental information from Keio University in 2009. He completed an MA in environmental studies from the University of Tokyo in 2011 and a PhD in environmental studies from the University of Tokyo in 2014. He is the founder and CEO of Microbase Inc., which he established when he was a PhD student. He is interested in the field of microgeographic simulation and has held many workshops on this. His dream is to create a real SimCity.
Microbase Inc. is the company that creates microdemographic data in Japan. This company has created simulated urban data, such as people flow or people's lifestyles, using open data. The members of Microbase Inc. aim to create microdemographic data all over the world and a simulation platform, such as SimCity, using this data.
You can watch a demo movie at https://www.youtube.com/watch?v=kXKRU4CLJro and http://microgeodata.com/.
I couldn't have reviewed this book without the help of the members of Microbase Inc. I'd like to thank them for their help in the reviewing process. Also, I would like to thank Shipra Chawhan and Paushali Desai, who gave me the chance to review this book. I had an exciting experience and appreciate their efforts.
www.PacktPub.com
Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
https://www2.packtpub.com/books/subscription/packtlib
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.
Preface
The open source geographic information system, QGIS, at version 2.6 now rivals even the most expensive commercial GIS software in both functionality and usability. It is also a showcase of the best geospatial open source technology available. It is not just a project in itself, but the marriage of dozens of open source projects in a single, clean interface.
Geospatial technology is not just the combined application of technology to geography. It is a symphony of geography, mathematics, computer science, statistics, physics, and other fields. The underlying algorithms implemented by QGIS are so complex that only a handful of people in the world can understand all of them. Yet, QGIS packages all this complexity so well that school children, city managers, disease researchers, geologists, and many other professionals wield this powerful software with ease to make decisions that improve life on earth.
However, this book is about another feature of QGIS that makes it the best choice for geospatial work. QGIS has one of the most deeply-integrated and well-designed Python interfaces of any software, period. In the latest version, there is virtually no aspect of the program that is off limits to Python, making it the largest geospatial Python library available. Almost without exception, the Python API, called PyQGIS, is consistent and predictable.
This book exploits the best features of QGIS to demonstrate over 140 reusable recipes, which you can use to automate workflows in QGIS or to build standalone GIS applications. Most recipes are very compact, and even if you can't find the exact solution that you are looking for, you should be able to get close. This book covers a lot of ground and pulls together fragmented ideas and documentation scattered throughout the Internet as well as the results of many hours of experimenting at the edges of the PyQGIS API.
What this book covers
Chapter 1, Automating QGIS, provides a brief overview of the different ways in which you can use Python with QGIS, including the QGIS Python console, standalone applications, plugins, and the Script Runner plugin. This chapter also covers how to set and retrieve application settings and a few other Python-specific features.
Chapter 2, Querying Vector Data, covers how to extract information from vector data without changing the data using Python. The topics covered include measuring, loading data from a database, filtering data, and other related processes.
Chapter 3, Editing Vector Data, introduces the topic of creating and updating data to add new information. It also teaches you how to break datasets apart based on spatial or database attributes as well as how to combine datasets. This chapter will also teach you how to convert data into different formats, change projections, simplify data, and more.
Chapter 4, Using Raster Data, demonstrates 25 recipes to use and transform raster data in order to create derivative products. This chapter highlights the capability of QGIS as a raster processing engine and not just a vector GIS.
Chapter 5, Creating Dynamic Maps, transitions into recipes to control QGIS as a whole in order to control map, project, and application-level settings. It includes recipes to access external web services and build custom map tools.
Chapter 6, Composing Static Maps, shows you how to create printed maps using the QGIS Map Composer. You will learn how to place reference elements on a map as well as design elements such as logos.
Chapter 7, Interacting with the User, teaches you how to control QGIS GUI elements created by the underlying Qt framework in order to create interactive input widgets for scripts, plugins, or standalone applications.
Chapter 8, QGIS Workflows, contains more advanced recipes, which result in a finished product or an extended capability. These recipes target actual tasks that geospatial analysts or programmers encounter on the job.
Chapter 9, Other Tips and Tricks, contains interesting recipes that fall outside the scope of the previous chapters. Many of these recipes demonstrate multiple concepts within a single recipe, which you may find useful for a variety of tasks.
What you need for this book
You will need the following software to complete all the recipes in this book; if a specific version is not available, use the most recent version:
Who this book is for
If you are a geospatial analyst who wants to learn more about automating everyday GIS tasks or a programmer who is responsible for building GIS applications, this book is for you. Basic knowledge of Python is essential and some experience with QGIS will be an added advantage.
The short, reusable recipes make concepts easy to understand. You can build larger applications that are easy to maintain when they are put together.
Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, How it works, There's more, and See also).
To give clear instructions on how to complete a recipe, we use these sections as follows:
Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe.
How to do it…
This section contains the steps required to follow the recipe.
How it works…
This section usually consists of a detailed explanation of what happened in the previous section.
There's more…
This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.
See also
This section provides helpful links to other useful information for the recipe.
Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In the QGIS Python Console, we'll import the random module."
A block of code is set as follows:
proj = QgsProject.instance()
proj.title("My QGIS Project")
proj.title()
proj.writeEntry("MyPlugin", "splash", "Geospatial Python Rocks!")
proj.readEntry("MyPlugin", "splash", "Welcome!")[0]
Any command-line input or output is written as follows:
sudo easy_install PyPDF2
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Enter information in the form and click on the Send button."
Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from http://www.packtpub.com/sites/default/files/downloads/4985OS_ColoredImages.pdf.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Automating QGIS
In this chapter, we will cover the following recipes:
Introduction
This chapter explains how to configure QGIS for automation using Python. In addition to setting up QGIS, we will also configure the free Eclipse Integrated Development Environment (IDE) with the PyDev plugin to make writing, editing, and debugging scripts easier. We will also learn the basics of different types of QGIS automated Python scripts through the PyQGIS API. Finally, we'll examine some core QGIS plugins that significantly extend the capability of QGIS.
Installing QGIS for development
QGIS has a set of Python modules and libraries that can be accessed from the Python console within QGIS. However, they can also be accessed from outside QGIS to write standalone applications. First, you must make sure that PyQGIS is installed for your platform, and then set up some required system environment variables.
In this recipe, we will walk you through the additional steps required beyond the normal QGIS installation to prepare your system for development. The steps for each platform are provided, which also include the different styles of Linux package managers.
Getting ready
QGIS uses slightly different installation methods for Windows, GNU/Linux, and Mac OS X. The Windows installers install everything you need for Python development, including Python itself.
However, on Linux distributions and Mac OS X, you may need to manually install the Python modules for the system installation of Python. On Mac OS X, you can download installers for some of the commonly used Python modules with QGIS from http://www.kyngchaos.com/software/python.
How to do it
On Linux, you have the option to compile from the source or you can just specify the Python QGIS interface to be installed through your package manager.
Installing PyQGIS using the Debian package manager
sudo apt-get update
sudo apt-get install qgis python-qgis qgis-plugin-grass
Installing PyQGIS using the RPM package manager
sudo yum update
sudo yum install qgis qgis-python qgis-grass
Setting the environment variables
Now, we must set the PYTHONPATH to the PyQGIS directory. At the same time, append the path to this directory to the PATH variable so that you can use the PyQGIS modules with an external IDE.
Setting the environment variables on Windows
set PYTHONPATH="C:\Program Files\QGIS Brighton\bin"
set PATH="C:\Program Files\QGIS Brighton\bin";"C:\Program Files\QGIS Brighton\bin\apps\qgis\bin";%PATH%
Setting the environment variables on Linux
export PYTHONPATH=/usr/share/qgis/python
export LD_LIBRARY_PATH=/usr/share/qgis/python
How it works…
The QGIS installation process and package managers set up the Python module's configuration internal to QGIS. When you use the Python console inside QGIS, it knows where all the PyQGIS modules are. However, if you want to use the PyQGIS API outside QGIS, using a system Python installation on Windows or Linux, it is necessary to set some system variables so that Python can find the required PyQGIS modules.
There's more…
This recipe uses the default QGIS paths on each platform. If you aren't sure which PyQGIS path is for your system, you can figure this out from the Python console in QGIS.
Finding the PyQGIS path on Windows
The libraries on Windows are stored in a different location than in the case of other platforms. To locate the path, you can check the current working directory of the Python console:
import os
os.getcwd()
Finding the location of the QGIS Python installation on other platforms
Perform the following steps to find the path needed for this recipe on all the platforms besides Windows:
import sys
sys.path
Using the QGIS Python console for interactive control
The QGIS Python console allows you to interactively control QGIS. You can test out ideas or just do some quick automation. The console is the simplest way to use the QGIS Python API.
How to do it…
In the following steps, we'll open the QGIS Python console, create a vector layer in memory, and display it on the map:
layer = QgsVectorLayer('Point?crs=epsg:4326', 'MyPoint' , 'memory')
pr = layer.dataProvider()
pt = QgsFeature()
point1 = QgsPoint(20,20)
pt.setGeometry(QgsGeometry.fromPoint(point1))
pr.addFeatures([pt])
layer.updateExtents()
QgsMapLayerRegistry.instance().addMapLayers([layer])
How it works…
This example uses a memory layer to avoid interacting with any data on disk or a network to keep things simple. Notice that when we declare the layer type, we add the parameter for the Coordinate Reference System (CRS) as EPSG:4326. Without this declaration, QGIS will prompt you to choose one. There are three parts or levels of abstraction to create even a single point on the map canvas, as shown here:
The layer type is memory, meaning that you can define the geometry and the attributes inline in the code rather than in an external data source. In this recipe, we just define the geometry and skip the defining of any attributes.
Using the Python ScriptRunner plugin
The QGIS Python ScriptRunner plugin provides a middle ground for QGIS automation, between the interactive console and the overhead of plugins. It provides a script management dialog that allows you to easily load, create, edit, and run scripts for large-scale QGIS automation.
Getting ready
Install the ScriptRunner plugin using the QGIS plugin manager. Then, run the plugin from the Plugin menu to open the ScriptRunner dialog. Configure a default editor to edit scripts using the following steps:
How to do it…
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *
def run_script(iface):
layer = QgsVectorLayer('Polygon?crs=epsg:4326', 'Mississippi' , "memory")
pr = layer.dataProvider()
poly = QgsFeature()
geom = QgsGeometry.fromWkt("POLYGON ((-88.82 34.99,-88.09 34.89,-88.39 30.34,-89.57 30.18,-89.73 31,-91.63 30.99,-90.87 32.37,-91.23 33.44,-90.93 34.23,-90.30 34.99,-88.82 34.99))")
poly.setGeometry(geom)
pr.addFeatures([poly])
layer.updateExtents()
QgsMapLayerRegistry.instance().addMapLayers([layer])
How it works…
ScriptRunner is a simple but powerful idea. It allows you to build a library of automation scripts and use them from within QGIS, but without the overhead of building a plugin or a standalone application. All the Python and system path variables are set correctly and inherited from QGIS; however, you must still import the QGIS and Qt libraries.
Setting up your QGIS IDE
The Eclipse IDE with the PyDev plugin is cross-platform, has advanced debugging tools, and is free.
Note
You can refer to http://pydev.org/manual_101_install.html in order to install PyDev correctly.
This tool makes an excellent PyQGIS IDE. Eclipse allows you to have multiple Python interpreters configured for different Python environments. When you install PyDev, it automatically finds the installed system Python installations. On Windows, you must also add the Python interpreter installed with PyQGIS. On all platforms, you must tell PyDev where the PyQGIS libraries are.
Getting ready
This recipe uses Eclipse and PyDev. You can use the latest version of either package that is supported by your operating system. All platforms besides Windows rely on the system Python interpreter. So, there is an extra step in Windows to add the QGIS Python interpreter.
How to do it…
The following steps will walk you through how to add the QGIS-specific Python interpreter to Eclipse in order to support the running standalone QGIS applications or to debug QGIS plugins.
Adding the QGIS Python interpreter on Windows
The process used to add the QGIS Python interpreter to Eclipse on Windows is different from the process used on Linux. The following steps describe how to set up the interpreter on the Windows version of Eclipse:
Adding the PyQGIS module paths to the interpreter
Apart from adding the Python interpreter, you must also add the module paths needed by PyQGIS using the following steps. These steps will require you to switch back and forth between QGIS and Eclipse:
import sys
sys.path
qgis
Adding the PyQGIS API to the IDE
To take full advantage of Eclipse's features, including code completion, we will add the QGIS and Qt4 modules to the PyQGIS Eclipse interpreter preferences. The following steps will allow Eclipse to suggest the possible methods and properties of QGIS objects as you type; this feature is known as autocomplete:
Adding environment variables
You will also need to create a PATH variable, which points to the QGIS binary libraries, DLLs on Windows, and other libraries needed by QGIS at runtime on all platforms.
In the Name field, enter PATH.
C:\Program Files\QGIS Brighton;C:\Program Files\QGIS Brighton\bin;C:\Program Files\QGIS Brighton\apps\qgis\bin;C:\Program Files\QGIS Brighton\apps\Python27\DLLs
How it works…
Eclipse and PyDev use only the information you provide to run a script in the Eclipse workspace. This approach is very similar to the popular Python tool virtualenv, which provides a clean environment when writing and debugging code to ensure that you don't waste time troubleshooting issues caused by the environment.
Debugging QGIS Python scripts
In this recipe, we will configure Eclipse to debug QGIS Python scripts.
How to do it…
Both QGIS and Eclipse must be configured for debugging so that the two pieces of software can communicate. Eclipse attaches itself to QGIS in order to give you insights into the Python scripts running in QGIS. This approach allows you to run scripts in a controlled way that can pause execution while you monitor the program to catch bugs as they occur.
Configuring QGIS
The following steps will add two plugins to QGIS, which allows Eclipse to communicate with QGIS. One plugin, Plugin Reloader, allows you to reload a QGIS plugin into memory without restarting QGIS for faster testing. The second plugin, Remote Debug, connects QGIS to Eclipse.
Remote Debug is an experimental plugin, so you must ensure that experimental plugins are visible to the QGIS plugin manager in the list of available plugins.
Configuring Eclipse
Now that QGIS is configured for debugging in Eclipse, we will configure Eclipse to complete the debugging communication loop, as shown in the following steps:
Tip
You can find the location of the HelloWorld plugin from within the QGIS plugin manager.
Testing the debugger
The previous parts of this recipe configured Eclipse and QGIS to work together in order to debug QGIS plugins. In this section, we will test the configuration using the simplest possible plugin, HelloWorld, to run Eclipse using the Debug Perspective. We will set up a break point in the plugin to pause the execution and then monitor plugin execution from within Eclipse, as follows:
Debug Server at port: 5678
Python Debugging Active
How it works…
The RemoteDebug plugin acts as a client to the PyDev debug server in order to send the Python script's execution status from QGIS to Eclipse. While it has been around for several versions of QGIS now, it is still considered experimental.
The PluginReloader plugin can reset plugins that maintain state as they run. The HelloWorld plugin is so simple that reloading is not needed to test it repeatedly. However, as you debug more complex plugins, you will need to run it in order to reset it before each test. This method is far more efficient and easier to use than closing QGIS, editing the plugin code, and then restarting.
Note
You can find out more about debugging QGIS, including using other IDEs, at http://docs.qgis.org/2.6/en/docs/pyqgis_developer_cookbook/ide_debugging.html.
Navigating the PyQGIS API
The QGIS Python API, also known as PyQGIS, allows you to control virtually every aspect of QGIS. The ability to find the PyQGIS object you need in order to access a particular feature of QGIS is critical to automation.
Getting ready
The PyQGIS API is based on the QGIS C++ API. The C++ API is kept up to date online and is well-documented.
Note
The QGIS API's web page is located at http://qgis.org/api/2.6/modules.html.
Notice the version number, 2.2, in the URL. You can change this version number to the version of QGIS you are using in order to find the appropriate documentation.
The PyQGIS API documentation is not updated frequently because it is nearly identical to the structure of the C++ API. However, the QGIS project on github.com maintains a list of all the PyQGIS classes for the latest version. The PyQGIS 2.6 API is located at https://github.com/qgis/QGIS/blob/master/python/qsci_apis/Python-2.6.api.
You can locate the documented class in the main C++ API and read about it. Then, look up the corresponding Python module and class using the PyQGIS API listing. In most cases, the C++ API name for a class is identical in Python.
In this recipe, we'll locate the PyQGIS class that controls labels in QGIS.
How to do it…
We will perform the following steps to see in which PyQGIS module the QGIS Label object and QgsLabel are located in:
How it works…
The QGIS API is divided into five distinct categories, as follows:
Most of the time, it's easy to find the class that targets the functionality you need with most of QGIS being contained in the catch-all Core module. The more you use the API, the quicker you'll be able to locate the objects you need for your scripts.
There's more…
If you're having trouble locating a class containing the keyword you need, you can use the search engine on the QGIS API website.
Tip
Beware, however, that the results returned by this search engine may contain items you don't need and can even send you looking in the wrong direction because of the similar keywords in different modules.
Creating a QGIS plugin
Plugins are the best way to extend QGIS, as they can be easily updated and reused by other people.
Getting ready
The easiest approach to creating a plugin is to use the Plugin Builder plugin to jumpstart development. You can find it in the main QGIS plugin repository and install it.
How to do it…
Perform the following steps to create a simple plugin that displays a dialog box with a custom message:
C:\Documents and Settings\Joel\.qgis2\python\plugins
C:\Program Files\QGIS Brighton\apps\qgis\python\plugins
pyrcc4 –o resources_rc.py resources.qrc
Tip
If you are on Windows, it is important to use the OSGEO4W shell, which is installed along with QGIS, for the Qt compilation tools to work properly.
<widget class="QLabel" name="label">
<property name="geometry">
<rect>
<x>120</x>
<y>80</y>
<width>201</width>
<height>20</height>
</rect>
</property>
<property name="font">

<pointsize>14</pointsize>

</property>
<property name="text">
<string>Geospatial Python Rocks!</string>
</property>
</widget>
pyuic4 –o ui_myplugin.py ui_myplugin.ui
How it works…
This recipe shows you the bare bones needed to make a working plugin. Although we haven't altered it, the code for the plugin's behavior is contained in myplugin.py. You can change the icon and the GUI, and just recompile any time you want. Note that we must compile the Qt4 portion of the plugin, which creates the dialog box. The entire QGIS GUI is built on the Qt4 library, so the pyrrc4 compiler and pyuic4 is included to compile the GUI widgets.
You can download the completed plugin with both the source and compiled ui and resource files at https://geospatialpython.googlecode.com/svn/MyPlugin.zip.
Note
You can find out more about QGIS plugins, including the purpose of the other files in the directory, in the QGIS documentation at http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/plugins.html.
There's more…
We have edited the myplugin_dialog_base.ui XML file by hand to make a small change. However, there is a better way to use Qt Creator. Qt Creator is a fully-fledged, open source GUI designer for the Qt framework. It is an easy what-you-see-is-what-you-get editor for Qt Widgets, including PyQGIS plugins, which uses the included Qt Designer interface. On Windows, Qt Designer can be found in the QGIS program directory within the bin directory. It is named designer.exe. On other platforms, Qt Designer is included as part of the qt4-devel package.
Note
You can also download Qt Creator, which includes Qt Designer, from http://qt-project.org/downloads.
When you run the installer, you can uncheck all the installation options, except the Tools category to install just the IDE.
Distributing a plugin
Distributing a QGIS plugin means placing the collection of files on a server as a ZIP file, with a special configuration file, in order to allow the QGIS plugin manager to locate and install the plugin. The QGIS project has an official repository, but third-party repositories are also permitted. The official repository is very strict regarding how the plugin is uploaded. So, for this recipe, we'll set up a simple third-party repository for a sample plugin and test it with the QGIS plugin manager to avoid polluting the main QGIS repository with a test project.
Getting ready
In order to complete this recipe, you'll need a sample plugin and a web-accessible directory. You'll also need a zip tool such as the free 7-zip program (http://www.7-zip.org/download.html). You can use the MyPlugin example from the Creating a QGIS plugin recipe as the plugin to distribute. For a web directory, you can use a Google Code repository, GitHub repository, or an other online directory you can access. Code repositories work well because they are a good place to store a plugin that you are developing.
How to do it…
In the following steps, we will package our plugin, create a server configuration file for it, and place it on a server to create a QGIS plugin repository:
Myplugin.0.1.0.zip
<?xml version = '1.0' encoding = 'UTF-8'?>
<?xml-stylesheet type="text/xsl" href="" ?>
<plugins>
<pyqgis_plugin name="My Plugin" version="0.1.0" plugin_id="227">
<description>
<![CDATA[Demonstration of a QGIS Plugin]]>
</description>
<about></about>
<version>0.1.0</version>
<qgis_minimum_version>1.8.0</qgis_minimum_version>
<qgis_maximum_version>2.9.9</qgis_maximum_version>
<homepage>
<![CDATA[https://code.google.com/p/geospatialpython]]>
</homepage>
<file_name>MyPlugin.0.1.0.zip</file_name>
<icon>
http://geospatialpython.googlecode.com/svn/icon_227.png
</icon>
<author_name><![CDATA[Joel Lawhead]]></author_name>
<download_url> http://geospatialpython.googlecode.com/svn/MyPlugin.0.1.0.zip
</download_url>
<uploaded_by><![CDATA[jll]]></uploaded_by>
<create_date>2014-05-16T15:31:19.824333</create_date>
<update_date>2014-07-15T15:31:19.824333</update_date>
<experimental>True</experimental>
<deprecated>False</deprecated>
<tracker>
<![CDATA[http://code.google.com/p/geospatialpython/issues]]>
</tracker>
<repository>
<![CDATA[https://geospatialpython.googlecode.com/svn/]]>
</repository>
<tags>
<![CDATA[development,debugging,tools]]></tags>
<downloads>0</downloads>
<average_vote>0</average_vote>
<rating_votes>0</rating_votes>
</pyqgis_plugin>
</plugins>
How it works…
The QGIS repository concept is simple and effective. The plugins.xml file contains a download_url tag that points to a ZIP file plugin on the same server or on a different server. The name attribute of the pyqgis_plugin tag is what appears in the QGIS plugin manager.
Creating a standalone application
QGIS is a complete desktop GIS application. However, with PyQGIS, it can also be a comprehensive geospatial Python library to build standalone applications. In this recipe, we will build a simple standalone script that creates a map with a line on it.
Getting ready
All you need to do to get ready is ensure that you have configured Eclipse and PyDev for PyQGIS development, as described in the Setting up your QGIS IDE recipe.
How to do it…
In PyDev, create a new project called MyMap with a Python script called MyMap.py, as follows:
from qgis.core import *
from qgis.gui import *
from qgis.utils import *
from PyQt4.QtCore import *
from PyQt4.QtGui import *
app = QgsApplication([], True)
app.setPrefixPath("C:/Program Files/QGIS Brighton/apps/qgis", True)
app.initQgis()
canvas = QgsMapCanvas()
canvas.setWindowTitle("PyQGIS Standalone Application Example")
canvas.setCanvasColor(Qt.white)
layer = QgsVectorLayer('LineString?crs=epsg:4326', 'MyLine' , "memory")
pr = layer.dataProvider()
linstr = QgsFeature()
geom = QgsGeometry.fromWkt("LINESTRING (1 1, 10 15, 40 35)")
linstr.setGeometry(geom)
pr.addFeatures([linstr])
layer.updateExtents()
QgsMapLayerRegistry.instance().addMapLayer(layer)
canvas.setExtent(layer.extent())
canvas.setLayerSet([QgsMapCanvasLayer(layer)])
canvas.zoomToFullExtent()
canvas.freeze(True)
canvas.show()
canvas.refresh()
canvas.freeze(False)
canvas.repaint()
exitcode = app._exec()
QgsApplication.exitQgis()
sys.exit(exitcode)
How it works…
This recipe uses as little code as possible to create a map canvas and to draw a line in order to demonstrate the skeleton of a standalone application, which can be built up further to add more functionality.
To create the line geometry, we use Well-Known Text (WKT), which provides a simple way to define the line vertices without creating a bunch of objects. Towards the end of this code, we use a workaround for a bug in QGIS 2.2 by freezing the canvas. When the canvas is frozen, it does not respond to any events which, in the case of this bug, prevent the canvas from updating. Once we refresh the canvas, we unfreeze it and then repaint it to draw the line. This workaround will still work in QGIS 2.4 and 2.6 but is not necessary.
There's more...
The standalone application can be compiled into an executable that can be distributed without installing QGIS, using py2exe or PyInstaller:
You can find our more about py2exe at http://www.py2exe.org.
You can learn more about PyInstaller at https://github.com/pyinstaller/pyinstaller/wiki.
Storing and reading global preferences
PyQGIS allows you to store application-level preferences and retrieve them.
Getting ready
This code can be run in any type of PyQGIS application. In this example, we'll run it in the QGIS Python console for an easy demonstration. In this example, we'll change the default CRS for new projects and then read the value back from the global settings.
How to do it…
In this recipe, we will set the default projection used by QGIS for new projects using the Python console:
from PyQt4.QtCore import *
settings = QSettings(QSettings.NativeFormat, QSettings.UserScope, 'QuantumGIS', 'QGis')
settings.setValue('/Projections/projectDefaultCrs', 'EPSG:2278')
settings.value('/Projections/projectDefaultCrs')
How it works…
This API is actually the Qt API that QGIS relies on for settings. In the QSettings object, we specify the NativeFormat for storage, which is the default format for the platform. On Windows, the format is the registry; on OS X, it's the plist files; and on Unix, it's the text files. The other QSettings parameters are the organization and the application, often used as a hierarchy to store information. Note that even after changing these settings, it may be that none of the properties in the QGIS GUI change immediately. In some cases, such as Windows, the system must be restarted for registry changes to take effect. However, everything will work programmatically.
There's more…
If you want to see all the options that you can change, call the allKeys() method of QSettings; this will return a list of all the setting names.
Storing and reading project preferences
The QGIS application settings are stored using the Qt API. However, QGIS project settings have their own object. In this recipe, we'll set and read the project title and then set and read a custom preference for a plugin.
Getting ready
We are going to set a plugin preference using the sample plugin created in the previous recipe, Creating a QGIS plugin. You can substitute the name of any plugin you want, however. We will also run this recipe in the QGIS Python console for quick testing, but this code will normally be used in a plugin.
How to do it…
In this recipe, we will first write and then read the title of the current project. Then, we will create a custom value for a plugin called splash, which can be used for the plugin startup splash screen if desired.
proj = QgsProject.instance()
proj.title("My QGIS Project")
proj.title()
proj.writeEntry("MyPlugin", "splash", "Geospatial Python Rocks!")
proj.readEntry("MyPlugin", "splash", "Welcome!")[0]
How it works…
In the first two lines, we change the title of the current active project and then echo it back. In the next set of two lines, we set up and read custom settings for a plugin. Notice that the readEntry() method returns a tuple with the desired text and a boolean, acknowledging that the value is set. So, we extract the first index to get the text. The read method also allows the default text in case that property is not set (rather than throw an exception which must be handled) as well as the boolean value False to inform you that the default text was used because the property was not set. The values you set using this method are stored in the project's XML file when you save it.
There's more…
The QgsProject object has a number of methods and properties that may be useful. The QGIS API documentation details all of them at http://qgis.org/api/2.6/classQgsProject.html.
Accessing the script path from within your script
Sometimes, you need to know exactly where the current working directory is so that you can access external resources.
Getting ready
This code uses the Python built-in library and can be used in any context. We will run this recipe in the QGIS Python console.
How to do it…
In this recipe, we will get the current working directory of the Python console, which can change with configuration:
import os
os.getcwd()
How it works…
QGIS relies heavily on file system paths to run the application and to manage external data. When writing cross-platform QGIS code, you cannot assume the working directory of your script.
There's more…
On his blog, one of the QGIS developers has an excellent post about the various aspects of path variables in QGIS beyond just the execution directory; you can check it out at http://spatialgalaxy.net/2013/11/06/getting-paths-with-pyqgis/.
Chapter 2. Querying Vector Data
In this chapter, we will cover the following recipes:
Introduction
This chapter demonstrates how to work with vector data through Python in QGIS. We will first work through loading different sources of vector data. Next, we'll move on to examining the contents of the data. Then, we'll spend the remainder of the chapter performing spatial and database operations on vector data.
Loading a vector layer from a file sample
This recipe describes the most common type of data used in QGIS, a file. In most cases, you'll start a QGIS project by loading a shapefile.
Getting ready
For ease of following the examples in this book, it is recommended that you create a directory called qgis_data in your root or user directory, which provides a short pathname. This setup will help prevent the occurrence of any frustrating errors resulting from path-related issues on a given system. In this recipe and others, we'll use a point shapefile of New York City museums, which you can download from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Unzip this file and place the shapfile's contents in a directory named nyc within your qgis_data directory.
How to do it...
Now, we'll walk through the steps of loading a shapefile and adding it to the map, as follows:
layer = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "New York City Museums", "ogr")
if not layer.isValid():
print "Layer %s did not load" % layer.name()
QgsMapLayerRegistry.instance().addMapLayers([layer])
Verify that your QGIS map looks similar to the following image:
How it works...
The QgsVectorLayer object requires the location of the file, a name for the layer in QGIS, and a data provider that provides the right parser and capabilities managed for the file format. Most vector layers are covered by the ogr data provider, which attempts to guess the format from the file name extension in order to use the appropriate driver. The formats available with this data provider are listed at http://www.gdal.org/ogr_formats.html.
Once we have created the QgsVector object, we do a quick check using the layer.isValid() method to see whether the file was loaded properly. We won't use this method in every recipe to keep the code short, but this method is often very important. It's usually the only indication that something has gone wrong. If you have a typo in the filename or you try to connect to an online data source but have no network connection, you won't see any errors. Your first indication will be another method failing further into your code, which will make tracking down the root cause more difficult.
In the last line, we add the vector layer to the QgsMapLayerRegistry, which makes it available on the map. The registry keeps track of all the layers in the project. The reason why QGIS works this way is so you can load multiple layers, style them, filter them, and do other operations before exposing them to the user on the map.
Loading a vector layer from a spatial database
The PostGIS geodatabase is based on the open source Postgres database. The geodatabase provides powerful geospatial data management and operations. PyQGIS fully supports PostGIS as a data source. In this recipe, we'll add a layer from a PostGIS database.
Getting ready
Installing and configuring PostGIS is beyond the scope of this book, so we'll use a sample geospatial database interface from the excellent service www.QGISCloud.com. www.QGISCloud.com has its own Python plugin called QGIS Cloud. You can sign up for free and create your own geodatabase online by following the site's instructions, or you can use the example used in the recipe.
How to do it...
Perform the following steps to load a PostGIS layer into a QGIS map:
uri = QgsDataSourceURI()
uri.setConnection("spacialdb.com", "9999", "lzmjzm_hwpqlf", "lzmjzm_hwpqlf", "0e9fcc39")
uri.setDataSource("public", "islands", "wkb_geometry", "")
layer = QgsVectorLayer(uri.uri(), "Islands", "postgres")
if not layer.isValid():
print "Layer %s did not load" % layer.name()
QgsMapLayerRegistry.instance().addMapLayers([layer])
You can see the islands layer in the map, as shown in the following screenshot:
How it works...
PyQGIS provides an object in the API to create a PostGIS data source in QgsDataSourceURI(). The connection string parameters in the second line of code are the database server, port, database name, user, and password. In the example, the database, username, and password are randomly generated unique names. The data source parameters are the schema name, table name, geometry column, and an optional SQL WHERE to subset the layer as needed.
Examining vector layer features
Once a vector layer is loaded, you may want to investigate the data. In this recipe, we'll load a vector point layer from a shapefile and take a look at the x and y values of the first point.
Getting ready
We'll use the same New York City Museums layer from Loading a vector layer from a file recipe in this chapter. You can download the layer from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Unzip that file and place the shapefile's contents in a directory named nyc within your qgis_data directory, within your root or home directory.
How to do it...
In this recipe, we will load the layer, get the features, grab the first feature, obtain its geometry, and take a look at the values for the first point:
layer = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "New York City Museums", "ogr")
features = layer.getFeatures()
f = features.next()
g = f.geometry()
g.asPoint()
(-74.0138,40.7038)
How it works...
When you access a layer's features or geometry using the previously demonstrated methods, PyQGIS returns a Python iterator. The iterator data structure allows Python to work efficiently with very large data sets without keeping the entire dataset in memory.
Examining vector layer attributes
A true GIS layer contains both spatial geometry and database attributes. In this recipe, we'll access a vector point layer's attributes in PyQGIS. We'll use a file-based layer from a shapefile, but once a layer is loaded in QGIS, every vector layer works the same way.
Getting ready
Once again, we'll use the same New York City Museums layer from the Loading a vector layer from a file recipe in this chapter. You can download the layer from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Unzip that file and place the shapefile's contents in a directory named nyc within your qgis_data directory, within your root or home directory.
How to do it...
In the following steps, we'll load the layer, access the features iterator, grab the first feature, and then view the attributes as a Python list:
layer = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "New York City Museums", "ogr")
features = layer.getFeatures()
f = features.next()
f.attributes()
[u'Alexander Hamilton U.S. Custom House', u'(212) 514-3700', u'http://www.oldnycustomhouse.gov/', u'1 Bowling Grn', NULL, u'New York', 10004.0, -74.013756, 40.703817]
How it works...
Examining attributes is consistent with accessing the point values of a layer's geometry. Note that all string attribute values are returned as unicode strings, which is the case for all QGIS strings. Unicode allows the internationalization (that is, translation) of QGIS for other languages besides English.
There's more...
The attribute values don't mean much without the knowledge of what those values represent. You will also need to know the fields. You can get the fields as a list by accessing the fields iterator and calling the name() method for each field. This operation is easily accomplished with a Python list comprehension:
[c.name() for c in f.fields().toList()]
This example returns the following result:
[u'NAME', u'TEL', u'URL', u'ADRESS1', u'ADDRESS2', u'CITY', u'ZIP', u'XCOORD', u'YCOORD']
Filtering a layer by geometry
In this recipe, we'll perform a spatial operation to select a subset of a point layer based on the points contained in an overlapping polygon layer. We'll use shapefiles in both cases, with one being a point layer and the other a polygon. This kind of subset is one of the most common GIS operations.
Getting ready
We will need two new shapefiles that have not been used in previous recipes. You can download the point layer from https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip.
Similarly, you can download the geometry layer from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.
Unzip these shapefiles and place them in a directory named ms within your qgis_data directory, within your root or home directory.
How to do it...
In this recipe, we will perform several steps to select features in the point layer that fall within the polygon layer, as follows:
lyrPts = QgsVectorLayer("/qgis_data/ms/MSCities_Geo_Pts.shp", "MSCities_Geo_Pts", "ogr")
lyrPoly = QgsVectorLayer("/qgis_data/ms/GIS_CensusTract_poly.shp", "GIS_CensusTract_poly", "ogr")
QgsMapLayerRegistry.instance().addMapLayers([lyrPts,lyrPoly])
ftsPoly = lyrPoly.getFeatures()
for feat in ftsPoly:
geomPoly = feat.geometry()
featsPnt = lyrPts.getFeatures(QgsFeatureRequest().setFilterRect(geomPoly.boundingBox()))
for featPnt in featsPnt:
if featPnt.geometry().within(geomPoly):
print featPnt.id()
lyrPts.select(featPnt.id())
iface.setActiveLayer(lyrPoly)
iface.zoomToActiveLayer()
Verify that your map looks similar to the following image:
How it works...
While QGIS has a number of tools for spatial selection, PyQGIS doesn't have a dedicated API for these types of functions. However, there are just enough methods in the API, thanks to the underlying ogr/GEOS library, that you can easily create your own spatial filters for two layers. Step 7 isn't entirely necessary, but we gain some efficiency using the bounding box of the polygon to limit the number of point features we're examining. Calculations involving rectangles are far quicker than detailed point-in-polygon queries. So, we quickly reduce the number of points we need to iterate through for the more expensive spatial operations.
Filtering a layer by attributes
In addition to the spatial queries outlined in the previous recipe, we can also subset a layer by its attributes. This type of query resembles a more traditional relational database query and in fact uses SQL statements. In this recipe, we will filter a point shapefile-based layer by an attribute.
Getting ready
We'll use the same New York City Museums layer used in the previous recipes in this chapter. You can download the layer from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Unzip that file and place the shapefile's contents in a directory named nyc within your qgis_data directory, within your root or home directory.
How to do it...
In this recipe, we'll filter the layer by an attribute, select the filtered features, and zoom to them, as follows:
lyrPts = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "Museums", "ogr")
QgsMapLayerRegistry.instance().addMapLayers([lyrPts])
selection = lyrPts.getFeatures(QgsFeatureRequest().setFilterExpression(u'"ZIP" = 10002'))
lyrPts.setSelectedFeatures([s.id() for s in selection])
iface.mapCanvas().zoomToSelected()
Verify that the point layer has three selected features, shown in yellow.
How it works...
This recipe takes advantage of QGIS filter expressions, highlighted in step 3. These filter expressions are a subset of SQL. The QgsFeatureRequest handles the query expression as an optional argument to return an iterator with just the features you want. These queries also allow some basic geometry manipulation. This recipe also introduces the mapCanvas().zoomToSelected() method, which is a convenient way to set the map's extent to the features of interest.
Buffering a feature intermediate
Buffering a feature creates a polygon around a feature as a selection geometry or just a simple visualization. In this recipe, we'll buffer a point in a point feature and add the returned polygon geometry to the map.
Getting ready
Once again, we'll use the same New York City Museums layer. You can download the layer from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Unzip that file and place the shapefile's contents in a directory named nyc within your qgis_data directory, within your root or home directory.
How to do it...
This recipe involves both a spatial operation and multiple visualizations. To do this, perform the following steps:
lyr = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "Museums", "ogr")
QgsMapLayerRegistry.instance().addMapLayers([lyr])
fts = lyr.getFeatures()
ft = fts.next()
lyr.setSelectedFeatures([ft.id()])
buff = ft.geometry().buffer(.2,8)
buffLyr = QgsVectorLayer('Polygon?crs=EPSG:4326', 'Buffer' , 'memory')
pr = buffLyr.dataProvider()
b = QgsFeature()
b.setGeometry(buff)
pr.addFeatures([b])
buffLyr.updateExtents()
buffLyr.setLayerTransparency(70)
QgsMapLayerRegistry.instance().addMapLayers([buffLyr])
Verify that your map looks similar to this screenshot:
How it works...
The interesting portion of this recipe starts with Step 6, which creates the buffer geometry. The parameters for the buffer() method are the distance in map units for the buffer followed by the number of straight line segments used to approximate curves. The more segments you specify, the more the buffer appears like a circle. However, more segments equals greater geometric complexity and therefore slower rendering, as well as slower geometry calculations. The other interesting feature of this recipe is Step 13, in which we set the transparency of the layer to 70 percent. We also introduce the way to create a new layer, which is done in memory. Later chapters will go more in depth on creating data.
Measuring the distance between two points
In the QgsDistanceArea object, PyQGIS has excellent capabilities for measuring the distance. We'll use this object for several recipes, starting with measuring the distance between two points.
Getting ready
If you don't already have the New York City Museums layer used in the previous recipes in this chapter, download the layer from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Unzip that file and place the shapefile's contents in a directory named nyc within your qgis_data directory, within your root or home directory.
How to do it...
In the following steps, we'll extract the first and last points in the layer's point order and measure their distance:
from qgis.core import QGis
lyr = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "Museums", "ogr")
fts = lyr.getFeatures()
first = fts.next()
last = fts.next()
for f in fts:
last = f
d = QgsDistanceArea()
m = d.measureLine(first.geometry().asPoint(), last.geometry().asPoint())
d.convertMeasurement(m, 2, 0, False)
(4401.1622240174165, 0)
How it works...
The QgsDistanceArea object accepts different types of geometry as input. In this case, we use two points. The map units for this layer are in decimal degrees, which isn't meaningful for a distance measurement. So, we use the QgsDistanceArea.convertMeasurement() method to covert the output to meters. The parameters for the method are the measurement output, the input units (in decimal degrees), the output units (meters), and a boolean to denote whether this conversion is an area calculation verses a linear measurement.
The returned tuple is the measurement value and the units. The value 0 tells us that the output is in meters.
Measuring the distance along a line sample
In this recipe, we'll measure the distance along a line with multiple vertices.
Getting ready
For this recipe, we'll use a line shapefile with two features. You can download the shapefile as a .ZIP file from https://geospatialpython.googlecode.com/svn/paths.zip
Unzip the shapefile into a directory named qgis_data/shapes within your root or home directory.
How to do it...
The steps for this recipe are fairly straightforward. We'll extract the geometry from the first line feature and pass it to the measurement object, as shown here:
from qgis.core import QGis
lyr = QgsVectorLayer("/qgis_data/shapes/paths.shp", "Route", "ogr")
fts = lyr.getFeatures()
route = fts.next()
d = QgsDistanceArea()
d.setEllipsoidalMode(True)
m = d.measureLine(route.geometry().asPolyline())
d.convertMeasurement(m, QGis.Meters, QGis.NauticalMiles, False)
Ensure that your output looks similar to the following:
(2314126.583384674, 7)
How it works...
The QgsDistanceArea object can perform any type of measurement, based on the method you call. When you convert the measurement from meters (represented by 0) to miles (identified by the number 7), you will get a tuple with the measurement in miles and the unit identifier. The QGIS API documentation shows the values for all the unit constants
(http://qgis.org/api/classQGis.html).
Calculating the area of a polygon
This recipe simply measures the area of a polygon.
Getting ready
For this recipe, we'll use a single-feature polygon shapefile, which you can download from https://geospatialpython.googlecode.com/files/Mississippi.zip
Unzip the shapefile and put it in a directory named qgis_data/ms within your root or home directory.
How to do it...
Perform the following steps to measure the area of a large polygon:
from qgis.core import QGis
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
fts = lyr.getFeatures()
boundary = fts.next()
d = QgsDistanceArea()
m = d.measurePolygon(boundary.geometry().asPolygon()[0])
d.convertMeasurement(m, QGis.Degrees, QGis.NauticalMiles, True)
(42955.47889640281, 7)
How it works...
PyQIS has no measureArea() method, but it has a measurePolygon() method in the QgsDistanceArea object. The method accepts a list of points. In this case, when we convert the measurement output from decimal degrees to miles, we also specify True in the convertMeasurement() method so that QGIS knows that it is an area calculation. Note that when we get the boundary geometry as a polygon, we use an index of 0, suggesting that there is more than one polygon. A polygon geometry can have inner rings, which are specified as additional polygons. The outermost ring, in this case the only ring, is the first polygon.
Creating a spatial index
Until now, the recipes in this book used the raw geometry for each layer of operations. In this recipe, we'll take a different approach and create a spatial index for a layer before we run operations on it. A spatial index optimizes a layer for spatial queries by creating additional, simpler geometries that can be used to narrow down the field of possibilities within the complex geometry.
Getting ready
If you don't already have the New York City Museums layer used in the previous recipes in this chapter, download the layer from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Unzip that file and place the shapefile's contents in a directory named nyc within your qgis_data directory, within your root or home directory.
How to do it...
In this recipe, we'll create a spatial index for a point layer and then we'll use it to perform a spatial query, as follows:
lyr = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "Museums", "ogr")
fts = lyr.getFeatures()
first = fts.next()
index = QgsSpatialIndex()
index.insertFeature(first)
for f in fts:
index.insertFeature(f)
hood = index.nearestNeighbor(first.geometry().asPoint(), 4)
How it works...
The index speeds up spatial operations. However, you must add each feature one by one. Also, note that the nearestNeighbor() method returns the ID of the starting point as part of the output. So, if you want 4 points, you must specify 5.
Calculating the bearing of a line
Sometimes, you need to know the compass bearing of a line to create specialized symbology or use as input in a spatial calculation. Even though its name only mentions distance and area, the versatile QgsDistanceArea object includes this function as well. In this recipe, we'll calculate the bearing of the end points of a line. However, this recipe will work with any two points.
Getting ready
We'll use the line shapefile used in a previous recipe. You can download the shapefile as a .ZIP file from https://geospatialpython.googlecode.com/svn/paths.zip
Unzip the shapefile into a directory named qgis_data/shapes within your root or home directory.
How to do it...
The steps to be performed are as simple as getting the two points we need and running them through the bearing function, converting from radians to degrees, and then converting to a positive compass bearing:
import math
lyr = QgsVectorLayer("/qgis_data/shapes/paths.shp", "Route", "ogr")
fts = lyr.getFeatures()
route = fts.next()
d = QgsDistanceArea()
d.setEllipsoidalMode(True)
points = route.geometry().asPolyline()
first = points[0]
last = points[-1]
r = d.bearing(first, last)
b = math.degrees(r)
if b < 0: b += 360
print b
Verify that the bearing is close to the following number:
320.3356091875395
How it works...
The default output of the bearing calculation is in radians. However, the Python math module makes conversion a snap of the fingers. If the conversion of degrees results in a negative number, most of the time we will want to add that number to 360 in order to get a compass bearing, as we did here.
Loading data from a spreadsheet
Spreadsheets are one of the most common methods used to collect and store simple geographic data. QGIS can work with text files called CSV or comma-separated values files. Any spreadsheet can be converted to a CSV using the spreadsheet program. As long as the CSV data has a column representing x values, one column representing y values, and other columns representing data with the first row containing field names, QGIS can import it. Many organizations distribute geographic information as a CSV, so sooner or later you will find yourself importing a CSV. Moreover, PyQGIS let's you do it programmatically. Note that a CSV can be delimited by any character as long as it is consistent. Also, the file extension of the CSV file doesn't matter as long as you specify the file type for QGIS.
Getting ready
We'll use a sample CSV file with point features representing points of interest in a region. You can download this sample from https://geospatialpython.googlecode.com/svn/MS_Features.txt.
Save this to your qgis_data/ms directory in your root or home directory.
How to do it...
We will build a URI string to load the CSV as a vector layer. All of the parameters used to describe the structure of the CSV are included in the URI, as follows:
uri="""file:///qgis_data/ms/MS_Features.txt?"""
uri += """type=csv&"""
uri += """delimiter=%7C&"""
uri += """trimFields=Yes&"""
uri += """xField=PRIM_LONG_DEC&"""
uri += """yField=PRIM_LAT_DEC&"""
uri += """spatialIndex=no&"""
uri += """subsetIndex=no&"""
uri += """watchFile=no&"""
uri += """crs=epsg:4326"""
layer=QgsVectorLayer(uri,"MS Features","delimitedtext")
QgsMapLayerRegistry.instance().addMapLayers([layer])
Verify that your map looks similar to the map shown in the following screenshot:
How it works...
The URI is quite extensive, but necessary to give QGIS enough information to properly load the layer. We used strings in this simple example, but using the QUrl object is safer, as it handles the encoding for you. The documentation for the QUrl class is in the Qt documentation at http://qt-project.org/doc/qt-4.8/qurl.html.
Note that in the URI, we tell QGIS that the type is CSV, but when we load the layer, the type is delimitedtext. QGIS will ignore empty fields as long as all of the columns are balanced.
There's more...
If you're having trouble loading a layer, you can use the QGIS Add Delimited Text Layer… dialog under the Layer menu to figure out the correct parameters. Once the layer is loaded, you can take a look at its metadata to see the URI QGIS constructed to load it. You can also get the correct parameters from a loaded, delimited text layer using the layer.source() method programmatically. And, of course, both of these methods work with any type of layer, not just delimited text. Unlike other layer types, however, you cannot edit delimited text layers in QGIS.
Chapter 3. Editing Vector Data
In this chapter, we will cover the following recipes:
Introduction
This chapter details how to edit QGIS vector data using the Python API. The QgsVectorLayer object contains the basics of adding, editing, and deleting features. All other geospatial operations are accessed through the Processing Toolbox or even through custom scripts.
Creating a vector layer in memory
Sometimes, you need to create a temporary data set for quick output or as an intermediate step in a more complex operation without the overhead of actually writing a file to disk. PyQGIS employs memory layers that allow you to create a complete vector data set, including the geometry, fields, and attributes, virtually. Once the memory layer is created, you can work with it in the same way you would work with a vector layer loaded from disk.
Getting ready
This recipe entirely runs inside the PyQGIS console, so no preparation or external resources are required.
How to do it...
We will create a Point vector layer, named Layer 1 with a few fields and then validate it:
vectorLyr = QgsVectorLayer('Point?crs=epsg:4326&field=city:string(25)&field=population:nt', 'Layer 1' , "memory")
vectorLyr.isValid()
How it works...
The QgsVectorLayer requires three arguments. The last argument specifies the type, which in this case is memory. The second argument specifies the layer name. Normally, the first argument is the path to the file on disk, which is used to create the layer. In the case of the memory layer, the first argument becomes the construction string for the layer. The format uses query parameters that follow the convention key = value. We first specify the coordinate reference system and then specify the fields we want. In this case, we specify the first field, a string for city names, and then an integer field for population.
There's more…
You can easily see how describing a layer's attribute table structure in a string can become unwieldy. You can also use a Python-ordered dictionary to build the string dynamically, as shown in the following steps.
from collections import OrderedDict
fields = OrderedDict([('city','str(25)'),('population','int')])
path = '&'.join(['field={}:{}'.format(k,v) for k,v in fields.items()])
vectorLyr = QgsVectorLayer('Point?crs=epsg:4326&' + path, 'Layer 1' , "memory")
Adding a point feature to a vector layer
This recipe performs the simplest possible edit to a vector layer instantiated from a shapefile. We will add a point to an existing point layer.
Getting ready
For this recipe, download the zipped shapefile from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Extract the .shp, .shx, and .dbf files to the /qgis_data/nyc directory.
How to do it...
We will load the vector layer from the shapefile, create a new geometry object as a point, create a new feature, set the geometry, and add it to the layer's data provider. Finally, we will update the extent of the layer to make sure that the bounding box of the layer encapsulates the new point:
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums' , "ogr")
vpr = vectorLyr.dataProvider()
pnt = QgsGeometry.fromPoint(QgsPoint(-74.80,40.549))
f = QgsFeature()
f.setGeometry(pnt)
vpr.addFeatures([f])
vectorLyr.updateExtents()
How it works...
PyQGIS abstracts the points within a layer into four levels. At the lowest level is the QgsPoint object, which contains nothing more than the coordinates of the point. This object is added to an abstract QgsGeometry object. This object becomes the geometric part of a QgsFeature object, which also has the ability to store and manage attributes. All the features are managed by the QgsDataProvider object. The data provider manages the geospatial aspect of a layer to separate that aspect from styling and other presentation-related portions. QGIS has another editing approach in Python, which is called an editing buffer. When you use an editing buffer, the changes can be displayed, but they are not permanent until you commit them. The most common use case for this editing method is in GUI applications where the user may decide to roll back the changes by cancelling the editing session. The PyQGIS Developer Cookbook has an example of using and editing buffers in Python, and is available at http://docs.qgis.org/2.6/en/docs/pyqgis_developer_cookbook/vector.html.
Adding a line feature to a vector layer
Adding a line to a vector layer in QGIS is identical to adding a single point, but here you just have to add more points to the QgsGeometry object.
Getting ready
For this recipe, you will need to download a zipped line shapefile that contains two line features from https://geospatialpython.googlecode.com/svn/paths.zip.
Extract the ZIP file to a directory named paths in your /qgis_data directory.
How to do it...
In this recipe, we will load the line layer from the shapefile, build a list of points, create a new geometry object, and add the points as a line. We will also create a new feature, set the geometry, and add it to the layer's data provider. Finally, we will update the extent of the layer to make sure that the bounding box of the layer encapsulates the new feature:
vectorLyr = QgsVectorLayer('/qgis_data/paths/paths.shp', 'Paths' , "ogr")
vectorLyr.isValid()
vpr = vectorLyr.dataProvider()
points = []
points.append(QgsPoint(430841,5589485))
points.append(QgsPoint(432438,5575114))
points.append(QgsPoint(447252,5567663))
line = QgsGeometry.fromPolyline(points)
f = QgsFeature()
f.setGeometry(line)
vpr.addFeatures([f])
vectorLyr.updateExtents()
How it works...
As with all the geometry in QGIS, we use the four-step process of building points, geometry, feature, and data provider to add the line. Interestingly, the QgsGeometry object accepts Python lists for the collection of points instead of creating a formal object, as is done with the QgsPoint object.
Adding a polygon feature to a vector layer
In this recipe, we'll add a polygon to a layer. A polygon is the most complex kind of geometry. However, in QGIS, the API is very similar to a line.
Getting ready
For this recipe, we'll use a simple polygon shapefile, which you can download as a ZIP file from https://geospatialpython.googlecode.com/files/polygon.zip.
Extract this shapefile to a folder called polygon in your /qgis_data directory.
How to do it...
This recipe will follow the standard PyQGIS process of loading a layer, building a feature, and adding it to the layer's data provider, as follows:
vectorLyr = QgsVectorLayer('/qgis_data/polygon/polygon.shp', 'Polygon' , "ogr")
vectorLyr.isValid()
vpr = vectorLyr.dataProvider()
points = []
points.append(QgsPoint(-123.26,49.06))
points.append(QgsPoint(-127.19,43.07))
points.append(QgsPoint(-120.70,35.21))
points.append(QgsPoint(-115.89,40.02))
points.append(QgsPoint(-113.04,48.47))
points.append(QgsPoint(-123.26,49.06))
poly = QgsGeometry.fromPolygon([points])
f = QgsFeature()
f.setGeometry(poly)
vpr.addFeatures([f])
How it works...
Adding a polygon is very similar to adding a line, with one key difference that is a common pitfall. The last point must be identical to the first point in order to close the polygon. If you don't repeat the first point, you won't receive any errors, but the polygon will not be displayed in QGIS, which can be difficult to troubleshoot.
Adding a set of attributes to a vector layer
Each QGIS feature has two parts, the geometry and the attributes. In this recipe, we'll add an attribute for a layer from an existing dataset.
Getting ready
We will use a point shapefile with museum data for New York City, which you can download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Extract this shapefile to the /qgis_data/nyc directory.
How to do it...
A feature must have geometry, but it does not require attributes. So, we will create a new feature, add some attributes, and then add everything to the layer, as follows:
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums' , "ogr")
vectorLyr.isValid()
vpr = vectorLyr.dataProvider()
pnt = QgsGeometry.fromPoint(QgsPoint(-74.13401,40.62148))
fields = vpr.fields()
f = QgsFeature(fields)
f.setGeometry(pnt)
f['NAME'] = 'Python Museum'
vpr.addFeatures([f])
vectorLyr.updateExtents()
How it works...
PyQGIS attributes are defined as an ordered array. The syntax for referencing a field is similar to the syntax for a Python dictionary. We use the layer's data provider object to perform the actual editing. When we use this approach, no signals are triggered at the layer object level. If we are just trying to edit data on the filesystem, that's okay, but if the layer is going to be added to the map canvas for display or user interaction, then you should use the editing buffer in the QgsVectorLayer object. This editing buffer allows you to commit or roll back changes and also keeps track of the state of the layer when things are changed.
Adding a field to a vector layer
This recipe demonstrates how to add a new field to a layer. Each field represents a new column in a dataset for which each feature has a new attribute. When you add a new attribute, all the features are set to NULL for that field index.
Getting ready
We will use the New York City museums' shapefile used in other recipes, which you can download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Extract this shapefile to /qgis_data/nyc.
How to do it...
All the data management for a layer is handled through the layer's data provider and the fields are no different. We will load the layer, access the data provider, define the new field, and finalize the change, as follows:
from PyQt4.QtCore import QVariant
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums' , "ogr")
vectorLyr.isValid()
vpr = vectorLyr.dataProvider()
vpr.addAttributes([QgsField("Admission", QVariant.Double)])
vectorLyr.updateFields()
How it works...
The nomenclature used for the fields and attributes in QGIS is a little inconsistent and can be confusing if you've used other GIS packages. In QGIS, a column is a field that has a name and a type. The attribute table holds a value for each field column and each feature row. However, in the QgsVectorDataProvider object, you use the addAttributes() method to add a new field column. Also, in other GIS software, you may see the use of the word field and attribute reversed.
Joining a shapefile attribute table to a CSV file
Joining attribute tables to other database tables allows you to use a spatial dataset in order to reference a dataset without any geometry, using a common key between the data tables. A very common use case for this is to join a vector dataset of census attributes to a more detailed census attribute dataset. The use case we will demonstrate here links a US census track file to a detailed CSV file that contains more in-depth information.
Getting ready
For this recipe, you will need a census tract shapefile and a CSV file containing the appropriate census data for the shapefile. You can download the sample data set from https://geospatialpython.googlecode.com/svn/census.zip.
Extract this data to a directory named /qgis_data/census.
How to do it...
The join operation is quite involved. We'll perform this operation and save the layer as a new shapefile with the joined attributes. Then we'll load the new layer and compare the field count to the original layer to ensure that the join occurred. We'll use the terms target layer and join layer. The target layer will be the shapefile, and the join layer will be a CSV with some additional fields we want to add to the shapefile. To do this, perform the following steps:
vectorLyr = QgsVectorLayer('/qgis_data/census/hancock_tracts.shp', 'Hancock' , "ogr")
vectorLyr.isValid()
infoLyr = QgsVectorLayer('/qgis_data/census/ACS_12_5YR_S1901_with_ann.csv', 'Census' , "ogr")
infoLyr.isValid()
QgsMapLayerRegistry.instance().addMapLayers([vectorLyr,infoLyr], False)
info = QgsVectorJoinInfo()
info.joinLayerId = infoLyr.id()
info.joinFieldName = "GEOid2"
info.targetFieldName = "GEOID"
info.memoryCache = True
vectorLyr.addJoin(info)
QgsVectorFileWriter.writeAsVectorFormat(vectorLyr, "/qgis_data/census/joined.shp", "CP120", None, "ESRI Shapefile")
joinedLyr = QgsVectorLayer('/qgis_data/census/joined.shp', 'Joined' , "ogr")
vectorLyr.dataProvider().fields().count()
joinedLyr.dataProvider().fields().count()
How it works...
This recipe reaches out to the very edge of the PyQGIS API, forcing you to use some workarounds. Most recipes for data manipulation can be performed programmatically without writing data to disk or loading layers onto the map, but joins are different. Because the QgsVectorJoinInfo object needs the layer ID of the CSV layer, we must add both the layers to the map layer registry. Fortunately, we can do this without making them visible, if we are just trying to write a data manipulation script. A join is designed to be a temporary operation to query a dataset. Oddly, PyQGIS lets you create the join, but you cannot query it. This limitation is the reason why if you want to work with the joined data, you must write it to a new shapefile and reload it. Fortunately, PyQGIS allows you to do that.
There's more...
You can find an alternate method that works around the PyQGIS limitation in a Processing Toolbox script, which manually matches the joined data in Python, at https://github.com/rldhont/Quantum-GIS/blob/master/python/plugins/processing/algs/qgis/JoinAttributes.py.
Moving vector layer geometry
Sometimes, you need to change the location of a feature. You can do this by deleting and re-adding the feature, but PyQGIS provides a simple way to change the geometry.
Getting ready
You will need the New York City museums' shapefile, which you can download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Extract this shapefile to /qgis_data/nyc.
How to do it...
We will load the shapefile as a vector layer, validate it, define the feature ID we want to change, create the new geometry, and change the feature in the layer. To do this, perform the following steps:
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums' , "ogr")
vectorLyr.isValid()
feat_id = 22
geom = QgsGeometry.fromPoint(QgsPoint(-74.20378,40.89642))
vectorLyr.dataProvider().changeGeometryValues({feat_id : geom})
How it works...
The changeGeometryValues() method makes editing a snap of the fingers. If we had to delete and then re-add the feature, we would have to go through the trouble of reading the attributes, preserving them, and then re-adding them with the new feature. You must, of course, know the feature ID of the feature you want to change. How you determine this ID depends on your application. Typically, you will query the attributes to find a specific value, or you can do a spatial operation of some sort.
Changing a vector layer feature's attribute
The process to change an attribute in a feature is straightforward and well-supported by the PyQGIS API. In this recipe, we'll change a single attribute, but you can change as many attributes of a feature as desired at once.
Getting ready
You will need the New York City museums' shapefile used in other recipes, which you can download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Extract this shapefile to /qgis_data/nyc.
How to do it...
We will load the shapefile as a vector layer, validate it, define the feature IDs of the fields we want to change, get the index of the field names that we will change, define the new attribute value as an attribute index and value, and change the feature in the layer. To do this, we need to perform the following steps:
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums' , "ogr")
vectorLyr.isValid()
fid1 = 22
fid2 = 23
tel = vectorLyr.fieldNameIndex("TEL")
city = vectorLyr.fieldNameIndex("CITY")
attr1 = {tel:"(555) 555-1111", city:"NYC"}
attr2 = {tel:"(555) 555-2222", city:"NYC"}
vectorLyr.dataProvider().changeAttributeValues({fid1:attr1, fid2:attr2})
How it works...
Changing attributes is very similar to changing the geometry within a feature. We explicitly name the feature IDs in this example, but in a real-world program, you would collect these IDs as a part of some other process output, such as a spatial selection. An example of this type of spatial selection is available in the Filtering a layer by Geometry recipe, in Chapter 2, Querying Vector Data.
Deleting a vector layer feature
In this recipe, we'll completely remove a feature, including the geometry and attributes, from a layer.
Getting ready
You will need the New York City museums' shapefile used in other recipes, which you can download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Extract this shapefile to /qgis_data/nyc.
How to do it...
All we need to do is load the layer and then delete the desired features by ID, using the layer's data provider:
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums' , "ogr")
vectorLyr.isValid()
vectorLyr.dataProvider().deleteFeatures([22, 95])
How it works...
This operation cannot be simpler or better designed. There are a number of ways in which we can programmatically fill a Python list with feature IDs. For example, we can use the Chapter 2, Filtering a Layer by Attributes in this recipe. Then, we just pass this list to the layer's data provider and we are done.
Deleting a vector layer attribute
In this recipe, we'll wipe out an entire attribute and all the feature fields for a vector layer.
Getting ready
You will need the New York City museums' shapefile used in other recipes, which you can download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.
Extract this shapefile to /qgis_data/nyc.
How to do it...
This operation is straight forward. We'll load and validate the layer, use the layer's data provider to delete the attribute by index, and finally, we will update all the fields to remove the orphaned values. To do this, we need to perform the following steps:
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums' , "ogr")
vectorLyr.isValid()
vectorLyr.dataProvider().deleteAttributes([1])
vectorLyr.updateFields()
How it works...
Because we are changing the actual structure of the layer data, we must call the updateFields() method of the layer to remove the field values which no longer have an attribute.
Reprojecting a vector layer
We will use the Processing Toolbox in QGIS to reproject a layer to a different coordinate system.
Getting ready
For this recipe, we'll need the Mississippi cities' shapefile in the Mississippi Trans Mercator projection (EPSG 3814), which can be downloaded as a ZIP file from https://geospatialpython.googlecode.com/files/MSCities_MSTM.zip.
Extract the zipped shapefile to a directory named /qgis_data/ms.
How to do it...
To reproject the layer, we'll simply call the qgis:reprojectlayer processing algorithm, specifying the input shapefile, the new projection, and the output file name. To do this, perform the following steps:
import processing
processing.runalg("qgis:reprojectlayer", "/qgis_data/ms/MSCities_MSTM.shp", "epsg:4326", "/qgis_data/ms/MSCities_MSTM_4326.shp")
How it works...
The source data starts out in EPSG 3814, but we want to project it to WGS 84 Geographic, which is commonly used to deal with global datasets and is usually the default coordinate reference system for GPS devices. The target EPSG code is 4326. Dealing with map projections can be quite complex. This QGIS tutorial has some more examples and explains more about map projections at http://manual.linfiniti.com/en/vector_analysis/reproject_transform.html.
Converting a shapefile to KML
In this recipe, we'll convert a layer to KML. KML is an Open Geospatial Consortium (OGC) standard and is supported by the underlying OGR library used by QGIS.
Getting ready
For this recipe, download the following zipped shapefile and extract it to a directory named /qgis_data/hancock:
https://geospatialpython.googlecode.com/files/hancock.zip
How to do it...
To convert a shapefile to the KML XML format, we'll load the layer and then use the QgsVectorFileWriter object to save it as KML:
vectorLyr = QgsVectorLayer('/qgis_data/hancock/hancock.shp', 'Hancock' , "ogr")
vectorLyr.isValid()
dest_crs = QgsCoordinateReferenceSystem(4326)
QgsVectorFileWriter.writeAsVectorFormat(vectorLyr, "/qgis_data/hancock/hancock.kml", "utf-8", dest_crs, "KML")
How it works...
You will end up with a KML file in the directory next to your shapefile. KML supports styling information. QGIS uses some default styling information that you can change, either by hand using a text editor, or programmatically using an XML library such as Python's ElementTree. KML is one of many standard vector formats you can export using this method.
Merging shapefiles
Merging shapefiles with matching projections and attribute structures is a very common operation. In QGIS, the best way to merge vector datasets is to use another GIS system included with QGIS on Windows and OSX called SAGA. On other platforms, you must install SAGA separately and activate it in the Processing Toolbox configuration. In PyQGIS, you can access SAGA functions through the Processing Toolbox. SAGA is yet another open source GIS that is similar to QGIS. However, both packages have strengths and weaknesses. By using SAGA through the Processing Toolbox, you can have the best of both systems.
Getting ready
In this recipe, we'll merge some building footprint shapefiles from adjoining areas into a single shapefile. You can download the sample dataset from https://geospatialpython.googlecode.com/files/tiled_footprints.zip.
Extract the zipped shapefiles to a directory named /qgis_data/tiled_footprints.
How to do it...
We will locate all the .shp files in the data directory and hand them to the saga:mergeshapeslayers object in order to merge them.
import glob
import processing
pth = "/qgis_data/tiled_footprints/"
files = glob.glob(pth + "*.shp")
out = pth + "merged.shp"
processing.runandload("saga:mergeshapeslayers",files.pop(0),";".join(files),out)
How it works...
The algorithm accepts a base file and then a semicolon-separated list of additional files to be merged, and it finally accepts the output filename. The glob module creates a list of the files. To get the base file, we use the list pop() method to get the first filename. Then, we use the Python string's join() method to make the required delimited list for the rest.
There's more...
QGIS has its own merge method available through the processing module called qgis:mergevectorlayers, but it is limited because it only merges two files. The SAGA method allows any number of files to be merged.
Splitting a shapefile
Sometimes, you need to split a shapefile in order to break a larger dataset into more manageable sizes or to isolate a specific area of interest. There is a script in the Processing Toolbox that splits a shapefile by attribute. It is very useful, even though it is provided as an example of how to write processing scripts.
Getting ready
We will split a census tract shapefile by county. You can download the sample zipped shapefile from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.
https://geospatialpython.googlecode.com/svn/Split_vector_layer_by_attribute.py
The stage is set now. Perform the steps in the next section to split the shapefile.
How to do it...
This recipe is as simple as running the algorithm and specifying the filename and data attribute. Perform the following steps:
import processing
pth = "/qgis_data/census/"
processing.runalg("script:splitvectorlayerbyattribute",pth + "GIS_CensusTract_poly.shp","COUNTY_8",pth + "split")
How it works...
The algorithm will dump the split files in the data directory, numbered sequentially.
Generalizing a vector layer
Generalizing the geometry, also known as simplifying, removes points from a vector layer to reduce the space required to store the data on disk, the bandwidth needed to move it over a network, and the processing power required to perform analysis with it or display it in QGIS. In many cases, the geometry of a layer contains redundant points along with straight lines that can be removed without changing the spatial properties of a layer, with the exception of topology constraints.
Getting ready
For this recipe, we will use a boundary file for the state of Mississippi, which you can download from https://geospatialpython.googlecode.com/files/Mississippi.zip.
Extract the zipped shapefile to a directory named /qgis_data/ms.
How to do it...
Generalizing is native to QGIS, but we will access it in PyQGIS through the Processing Toolbox using the qgis:simplifygeometries algorithm, as follows:
import processing
processing.runandload("qgis:simplifygeometries","/qgis_data/ms/mississippi.shp",0.3,"/qgis_data/ms/generalize.shp")
How it works...
The simplicity of the simplifygeometries command makes the operation look simple. However, the simplification is itself quite complex. The same settings rarely produce desirable results across multiple datasets.
The shapefile in this recipe starts out quite complex with hundreds of points, as seen in the following visualization:
The simplified version has only 10 points, as seen in the following image:
Dissolving vector shapes
Dissolving shapes can take two different forms. You can combine a group of adjoining shapes by the outermost boundary of the entire dataset, or you can also group the adjoining shapes with the same attribute value.
Getting ready
Download the GIS census tract shapefile, which contains tracts for several counties from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.
Extract it to your /qgis_data directory, in a directory called census.
How to do it...
We will use the Processing Toolbox for this recipe and specifically a native QGIS algorithm called dissolve, as follows:
import processing
processing.runandload("qgis:dissolve","/qgis_data/census/GIS_CensusTract_poly.shp",False,"COUNTY_8","/qgis_data/census/dissovle.shp")
How it works...
By only changing the boolean in the statement to True, we can dissolve all adjoining shapes into one. It is also important to note that QGIS will assign the fields of the first shape it encounters in each group to the final shape. In most cases, this will make the attributes virtually useless. This operation is primarily a spatial task.
You can see that each county boundary has a number of census tracts in the original layer, as shown in the following image:
Once the shapes are dissolved, you are left with only the county boundaries, as shown in this image:
Performing a union on vector shapes
A union turns two overlapping shapes into one. This task can be easily accomplished with the Processing Toolbox. In this recipe, we'll merge the outline of a covered building with the footprint of the main building.
Getting ready
You can download the building files from https://geospatialpython.googlecode.com/svn/union.zip and extract them to a directory named /qgis_data/union.
How to do it...
All we need to do is run the qgis:union algorithm, as follows:
import processing
processing.runandload("qgis:union","/qgis_data/union/building.shp","/qgis_data/union/walkway.shp","/qgis_data/union/union.shp")
How it works...
As you can tell from the structure of the command, this tool can only combine two shapes at once. It finds where the two shapes meet and then removes the overlap, joining them at the meeting point.
In the original data, the shapefile starts out as two distinct shapes, as shown in this image:
Once the union is complete, the shapes are now one shapefile, with the overlap being a separate feature, as shown in this image:
Rasterizing a vector layer
Sometimes, a raster dataset is the most efficient way to display a complex vector that is merely a backdrop in a map. In these cases, you can rasterize a vector layer to turn it into an image.
Getting ready
We will demonstrate how to rasterize a vector layer using the following contour shapefile, which you can download from https://geospatialpython.googlecode.com/svn/contour.zip.
Extract it to your /qgis_data/rasters directory.
How to do it...
We will run the gdalogr:rasterize algorithm to convert this vector data to a raster, as follows:
import processing
processing.runalg("gdalogr:rasterize","/qgis_data/rasters/contour.shp","ELEV",0,1000,1000,"/qgis_data/rasters/contour.tif")
How it works...
If you want to specify the output dimensions in map units, use 1 instead of 0. Note that the symbology of the layer becomes frozen once you convert it to a raster. The raster is also no longer dynamically scalable.
The following image shows the rasterized output of the elevation contour shapefile:
Chapter 4. Using Raster Data
In this chapter, we will cover the following recipes:
Introduction
This chapter shows you how to bring raster data into a GIS and create derivative raster products using QGIS and Python. QGIS is equally adept at working with raster data as with vector data, by incorporating leading-edge open source libraries and algorithms, including GDAL, SAGA, and the Orfeo Toolbox. QGIS provides a consistent interface to for large array of remote sensing tools. We will switch back and forth between visually working with raster data and using QGIS as a processing engine via the Processing Toolbox, to completely automating remote sensing workflows.
Raster data consists of rows and columns of cells or pixels, with each cell representing a single value. The easiest way to think of raster data is as images, which is how they are typically represented by software. However, raster datasets are not necessarily stored as images. They can also be ASCII text files or binary large objects (BLOBs) in databases.
Another difference between geospatial raster data and regular digital images is their resolution. Digital images express resolution as dots-per-inch, if they are printed in full size. Resolution can also be expressed as the total number of pixels in the image, defined as megapixels. However, geospatial raster data uses the ground distance that each cell represents. For example, a raster dataset with a two-feet resolution means that a single cell represents two feet on the ground. This also means that only objects larger than two feet can be identified visually in the dataset.
Raster datasets may contain multiple bands, meaning that different wavelengths of light can be collected at the same time over the same area. Often, this range is from 3 to 7 bands wide, but it can be several hundred bands wide in hyperspectral systems. These bands are viewed individually or swapped in and out as the RGB bands of an image. They can also be recombined using mathematics into a derived single band image and then recolored using a set number of classes, representing similar values within the dataset.
Loading a raster layer
The QGSRasterLayer API provides a convenient, high-level interface to raster data. To use this interface, we must load a layer into QGIS. The API allows you to work with a layer without adding it to the map. In this way, we'll load layer and then add it to the map.
Getting ready
As with the other recipes in this book, you need to create a directory called qgis_data in our root or user directory, which provides a short pathname without spaces. This setup will help prevent any frustrating errors that result from path-related issues on a given system. In this recipe, and the others, we'll use a Landsat satellite image of the Mississippi Gulf Coast, which you can download from https://geospatialpython.googlecode.com/files/SatImage.zip.
Unzip the SatImage.tif and SatImage.tfw files and place them in a directory named rasters within your qgis_data directory.
How to do it...
Now, we'll go through how to load a raster layer and then step by step add it to the map
rasterLyr = QgsRasterLayer("/qgis_data/rasters/SatImage.tif", "Gulf Coast")
rasterLyr.isValid()
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])
QGIS zooms to the extent of the raster layer when it is loaded as shown in this example of a Landsat satellite image of the Mississippi Gulf Coast
How it works...
The QgsRasterLayer object requires the location of the file and a name for the layer in QGIS. The underlying GDAL library determines the appropriate method of loading the layer. This approach contrasts with the QgsVectorLayer() method, which requires you to specify a data provider. Raster layers also have a data provider, but unlike vector layers, all raster layers are managed through GDAL. One of the best features of QGIS is that it combines the best of breed open source geospatial tools into one package. GDAL can be used as a library as we are using it here from Python or as a command-line tool.
Once we have created the QgsRasterLayer object, we do a quick check using the rasterLayer.isValid() method to see whether the file was loaded properly. This method will return True if the layer is valid. We won't use this method in every recipe; however, it is a best practice, especially when building dynamic applications that accept user input. Because most of the PyQGIS API is built around C libraries, many methods do not throw exceptions if an operation fails. You must use specialized methods to verify the output.
Finally, we add the layer to the map layer registry, which makes it available on the map and in the legend. The registry keeps track of all the loaded layers by separating, loading, and visualizing the layers. QGIS allows you to work behind the scenes in order to perform unlimited intermediate processes on a layer before adding the final product to the map.
Getting the cell size of a raster layer
The first key element of a geospatial raster is the width and height, in pixels. The second key element is the ground distance of each pixel, also called the pixel size. Once you know the cell size and a coordinate somewhere on the image (usually the upper-left corner), you can begin using remote sensing tools on the image. In this recipe, we'll query the cell size of a raster.
Getting ready
Once again, we will use the SatImage raster available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
We will load the raster as a layer and then use the QgsRasterLayer API to get the cell size for the x and y axis. To do this, we need to perform the following steps:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif", "Sat Image")
rasterLyr.isValid()
rasterLyr.rasterUnitsPerPixelX()
rasterLyr.rasterUnitsPerPixelY()
How it works...
GDAL provides this information, which is passed through to the layer API. Note that while the x and y values are essentially the same in this case, it is entirely possible for the x and y distances to be different—especially if an image is projected or warped in some way.
Obtaining the width and height of a raster
All raster layers have a width and height in pixels. Because remote sensing data can be considered an image as well as an array or matrix, you will often see different terms used, including columns and rows or pixels and lines. These different terms surface many times within the QGIS API.
Getting ready
We will use the SatImage raster again, which is available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif", "satimage")
rasterLyr.isValid()
Check the name of SatImage after unzipping.
rasterLyr.width()
rasterLyr.height()
How it works...
The width and height of a raster are critical pieces of information for many algorithms, including calculating the map units that the raster occupies.
Counting raster bands
A raster might have one or more bands. Bands represent layers of information within a raster. Each band has the same number of columns and rows.
Getting ready
We will again use the SatImage raster available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
We will load the layer and then print the band count to the console. To do this, we need to perform the following steps:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif", "Sat Image")
rasterLyr.isValid()
rasterLyr.bandCount()
How it works...
It is important to note that raster bands are not zero-based indexes. When you want to access the first band, you reference it as 1 instead of 0. Most sequences within a programming context start with 0.
Swapping raster bands
Computer displays render images in the visible spectrum of red, green, and blue light (RGB). However, raster images may contain bands outside the visible spectrum. These types of rasters make poor visualizations, so you will often want to recombine the bands to change the RGB values.
Getting ready
For this recipe, we will use a false-color image, which you can download from https://geospatialpython.googlecode.com/files/FalseColor.zip.
Unzip this tif file and place it in your /qgis_data/rasters directory.
How to do it...
We will load this raster and swap the order of the first and second bands. Then, we will add it to the map. To do this, we need to perform the following steps:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/FalseColor.tif", "Band Swap")
rasterLyr.isValid()
ren = rasterLyr.renderer()
ren.setRedBand(2)
ren.setGreenBand(1)
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])
How it works...
Load the source image into QGIS as well to compare the results. In the false-color image, vegetation appears red, while in the band-swapped image, trees appear a more natural green and the water is blue. QGIS uses the RGB order to allow you to continue to reference the bands by number. Even though band 2 is displayed first, it is still referenced as band 2. Also, notice that the band order is controlled by a QgsMultiBandColorRenderer object instantiated by the layer rather than the layer itself. The type of renderer that is needed is determined at load time by the data type and number of bands.
There's more...
The QgsMultiBandColorRenderer() method has other methods to control contrast enhancement for each band, such as setRedContrastEnhancement(). You can learn more about raster renderers for different types of data in the QGIS API documentation at http://qgis.org/api/classQgsRasterRenderer.html.
Querying the value of a raster at a specified point
A common remote sensing operation is to get the raster data value at a specified coordinate. In this recipe, we'll query the data value in the center of the image. It so happens that the raster layer will calculate the center coordinate of its extent for you.
Getting ready
As with many recipes in this chapter, we will again use the SatImage raster, which is available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
We will load the layer, get the center coordinate, and then query the value. To do this, we need to perform the following steps:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif", "Sat Image")
rasterLyr.isValid()
c = rasterLyr.extent().center()
qry = rasterLyr.dataProvider().identify(c, QgsRaster.IdentifyFormatValue)
qry.isValid()
qry.results()
{1: 17.0, 2: 66.0, 3: 56.0}
How it works...
This recipe is short compared to others, however, we have touched upon several portions of the PyQGIS raster API. First start with a raster layer and get the extents; we then calculate the center and create a point at the center coordinates, and lastly we query the raster at that point. If we were to perform this same, seemingly simple operation using the Python API of the underlying GDAL library, which does the work, this example would have be approximately seven times longer.
Reprojecting a raster
A core requirement for all geospatial analysis is the ability to change the map projection of data in order to allow different layers to be open on the same map. Reprojection can be challenging, but QGIS makes it a snap of the fingers. Starting with this recipe, we will begin using the powerful QGIS Processing Toolbox. The Processing Toolbox wraps over 600 algorithms into a highly consistent API, available to Python and also as interactive tools. This toolbox was originally a third-party plugin named SEXTANTE, but is now a standard plugin distributed with QGIS.
Getting ready
As with many recipes in this chapter, we will use the SatImage raster available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
In this recipe, we will use the gdal warp algorithm of the processing module to reproject our image from EPSG 4326 to 3722. To do this, we need to perform the following steps:
import processing
rasterLyr = QgsRasterLayer("/qgis_data/rasters/SatImage.tif", "Reproject")
rasterLyr.isValid()
processing.runalg("gdalogr:warpreproject", rasterLyr, "EPSG:4326", "EPSG:3722", None, 0, None, "/0, qgis_data/rasters/warped.tif")
How it works...
The Processing Toolbox is essentially a wrapper for command-line tools. However, unlike the tools it accesses, the toolbox provides a consistent and mostly predictable API. Users familiar with Esri's ArcGIS ArcToolbox will find this approach familiar. Besides consistency, the toolbox adds additional validation of parameters and logging, making these tools more user friendly. It is important to remember that you must explicitly import the processing module. PyQGIS automatically loads the QGIS API, but this module is not yet included. Remember that it was a third-party plugin until fairly recently.
There's more...
The runalg() method, short for the run algorithm, is the most common way to run processing commands. There are other processing methods that you can use though. If you want to load the output of your command straight into QGIS, you can swap runalg() for the runandload() method. All arguments to the method remain the same. You can also get a list of processing algorithms with descriptions by running processing.alglist(). For any given algorithm, you can run the alghelp() command to see the types of input it requires, such as processing.alghelp("gdalogr:warpproject"). You can also write your own processing scripts based on combinations of algorithms and add them to the processing toolbox. There is also a visual modeler for chaining processing commands together.
Creating an elevation hillshade
A hillshade, or shaded relief, is a technique to visualize elevation data in order to make it photorealistic for presentation as a map. This capability is part of GDAL and is available in QGIS in two different ways. It is a tool in the Terrain Analysis menu under the Raster menu and it is also an algorithm in the Processing Toolbox.
Getting ready
You will need to download a DEM from https://geospatialpython.googlecode.com/files/dem.zip.
Unzip the file named dem.asc and place it in your /qgis_data/rasters directory.
How to do it...
In this recipe, we will load the DEM layer and run the Hillshade processing algorithm against it. To do this, we need to perform the following steps:
import processing
rasterLyr = QgsRasterLayer("/qgis_data/rasters/dem.asc", "Hillshade")
rasterLyr.isValid()
processing.runandload("gdalogr:hillshade", rasterLyr, 1, False, False, 1.0, 1.0, 315.0, 45.0, "/qgis_data/rasters/hillshade.tif")
How it works...
The Hillshade algorithm simulates a light source over an elevation dataset to make it more visually appealing. Most of the time, the only variables in the algorithm you need to alter are the z-factor, azimuth, and altitude to get different effects. However, if the resulting image doesn't look right, you may need to alter the scale. According to the GDAL documentation, if your DEM is in degrees, you should set a scale of 111120, and if it is in meters, you should set a scale of 370400. This dataset covers a small area such that a scale of 1 is sufficient. For more information on these values, see the gdaldem documentation at http://www.gdal.org/gdaldem.html.
Creating vector contours from elevation data
Contours provides an effective visualization of terrain data by tracing a line along the same elevation to form a loop at set intervals in the dataset. Similar to the hillshade capability in QGIS, the Contour tool is provided by GDAL both as a menu option under the Raster menu in the Extraction category as well as a Processing Toolbox algorithm.
Getting ready
This recipe uses the DEM from https://geospatialpython.googlecode.com/files/dem.zip, which is used in the other recipes as well.
Unzip the file named dem.asc and place it in your /qgis_data/rasters directory.
How to do it...
In this recipe, we will load and validate the DEM layer, add it to the map, and then produce and load the contour vector as a layer. To do this, we need to perform the following steps:
import processing
rasterLyr = QgsRasterLayer("/qgis_data/rasters/dem.asc", "DEM")
rasterLyr.isValid()
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])
processing.runandload("gdalogr:contour", rasterLyr, 50.0, "Elv", None, "/qgis_data/rasters/contours.shp")
This recipe overlays the resulting elevation contours over the DEM as a way to convert elevation data into a vector data set.
How it works...
The contour algorithm creates a vector dataset, that is a shapefile. The layer attribute table contains the elevation values for each line. Depending on the resolution of the elevation dataset, you may need to change the contour interval to stop the contours from becoming too crowded or too sparse at your desired map resolution. Usually, autogenerated contours like this are a starting point, and you must manually edit the result to make it visually appealing. You may want to smoothen lines or remove unnecessary small loops.
Sampling a raster dataset using a regular grid
Sometimes, you need to sample a raster dataset at regular intervals in order to provide summary statistics or for quality assurance purposes on the raster data. A common way to accomplish this regular sampling is to create a point grid over the dataset, query the grid at each point, and assign the results as attributes to those points. In this recipe, we will perform this type of sampling over a satellite image. QGIS has a tool to perform this operation called regular points, which is in the Vector menu under Research Tools. However, there is no tool in the QGIS API to perform this operation programmatically. However, we can implement this algorithm directly using Python's numpy module.
Getting ready
In this recipe, we will use the previously used SatImage raster, available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
The order of operation for this recipe is to load the raster layer, create a vector layer in memory, add points at regular intervals, sample the raster layer at these points, and then add the sampling data as attributes for each point. To do this, we need to perform the following steps:
import numpy
from PyQt4.QtCore import *
spacing = .1
inset = .04
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif", "Sat Image")
rasterLyr.isValid()
rpr = rasterLyr.dataProvider()
epsg = rasterLyr.crs().postgisSrid()
ext = rasterLyr.extent()
vectorLyr = QgsVectorLayer('Point?crs=epsg:%s' % epsg, 'Grid' , "memory")
vpr = vectorLyr.dataProvider()
qd = QVariant.Double
vpr.addAttributes([QgsField("Red", qd), QgsField("Green", qd), QgsField("Blue", qd)])
vectorLyr.updateFields()
xmin = ext.xMinimum() + inset
xmax = ext.xMaximum()
ymin = ext.yMinimum() + inset
ymax = ext.yMaximum() – inset
pts = [(x,y) for x in (i for i in numpy.arange(xmin, xmax, spacing)) for y in (j for j in numpy.arange(ymin, ymax, spacing))]
feats = []
for x,y in pts:
f = QgsFeature()
f.initAttributes(3)
p = QgsPoint(x,y)
qry = rasterLyr.dataProvider().identify(p, QgsRaster.IdentifyFormatValue)
r = qry.results()
f.setAttribute(0, r[1])
f.setAttribute(1, r[2])
f.setAttribute(2, r[3])
f.setGeometry(QgsGeometry.fromPoint(p))
feats.append(f)
vpr.addFeatures(feats)
vectorLyr.updateExtents()
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr,vectoryr])
canvas = iface.mapCanvas()
canvas.setExtent(rasterLyr.extent())
canvas.refresh()
How it works...
The following screenshot shows the end result, with one of the points in the grid identified using the Identify Features map tool. The results dialog shows the raster values of the selected point:
When you use the QGIS Identification Tool to click on one of the points, the results dialog shows the extracted Red, Green, and Blue values from the image.
Using memory layers in QGIS is an easy way to perform quick, one-off operations without the overhead of creating files on disk. Memory layers also tend to be fast if your machine has the resources to spare.
There's more...
In this example, we used a regular grid, but we could have just as easily modified the numpy-based algorithm to create a random points grid, which in some cases is more useful. However, the Processing Toolbox also has a simple algorithm for random points called grass:v.random.
Adding elevation data to line vertices using a digital elevation model
If you have a transportation route through some terrain, it is useful to know the elevation profile of that route. This operation can be accomplished using the points that make up the line along the route to query a DEM and to assign elevation values to that point. In this recipe, we'll do exactly that.
Getting ready
You will need an elevation grid and a route. You can download this dataset from https://geospatialpython.googlecode.com/svn/path.zip.
Unzip the path directory containing a shapefile and the elevation grid. Place the whole path directory in your qgis_data/rasters directory.
How to do it...
We will need two processing algorithms to complete this recipe. We will load the raster and vector layers, convert the line feature to points, and then use these points to query the raster. The resulting point dataset will serve as the elevation profile for the route. To do this, we need to perform the following steps:
import processing
pth = "/qgis_data/rasters/path/"
rasterPth = pth + "elevation.asc"
vectorPth = pth + "path.shp"
pointsPth = pth + "points.shp"
elvPointsPth = pth + "elvPoints.shp"
rasterLyr = QgsRasterLayer(rasterPth, "Elevation")
rasterLyr.isValid()
vectorLyr = QgsVectorLayer(vectorPth, "Path", "ogr")
vectorLyr.isValid()
QgsMapLayerRegistry.instance().addMapLayers([vectorLyr, rasterLyr])
processing.runalg("saga:convertlinestopoints", vectorLyr, False, 1, pointsPth)
processing.runandload("saga:addgridvaluestopoints", pointsPth, rasterPth, 0, elvPointsPth)
How it works...
The following image saved from QGIS shows the DEM, route line, and elevation points with elevation labels, all displayed on the map, with some styling:
It is necessary to convert the lines to points because a line feature can only have one set of attributes. You can perform the same operation with a polygon as well.
There's more...
Instead of running two algorithms, we can build a processing script that combines these two algorithms into one interface and then added it to the toolbox. In the Processing Toolbox, there is a category called Scripts, which has a tool called Create new script. Double-clicking on this tool will bring up an editor that lets you build your own processing scripts. Depending on your platform, you may need to install or configure SAGA to use this algorithm. You can find binary packages for Linux at http://sourceforge.net/p/saga-gis/wiki/Binary%20Packages/.
Also, on Linux, you may need to change the following option:
Creating a common extent for rasters
If you are trying to compare two raster images, it is important that they have the same extent and resolution. Most software packages won't even allow you to attempt to compare images if they don't have the same extent. Sometimes, you have images that overlap but do not share a common extent and/or are of different resolutions. The following illustration is an example of this scenario:
In this recipe, we'll take two overlapping images and give them the same extents.
Getting ready
You can download two overlapping images from https://geospatialpython.googlecode.com/svn/overlap.zip.
Unzip the images and place them in your /qgis_data/rasters directory.
You will also need to download the following processing script from:
https://geospatialpython.googlecode.com/svn/unify_extents.zip
Unzip the contents and place the scripts in your \.qgis2\processing\scripts directory, found within your user directory. For example, on a Windows 64-bit machine, the directory will be C:\Users\<username>\.qgis2\processing\scripts, replacing <username> with your username.
Make sure you restart QGIS. This script is a modified version of the one created by Yury Ryabov on his blog at http://ssrebelious.blogspot.com/2014/01/unifying-extent-and-resolution-of.html.
The original script used a confirmation dialog that required user interaction. The modified script adheres to the Processing Toolbox programming conventions and allows you to use it programmatically as well.
How to do it...
The only step in QGIS is to run the newly created processing command. To do this, we need to perform the following steps:
import processing
processing.runalg("script:unifyextentandresolution","/qgis_data/rasters/Image2.tif;/qgis_data/rasters/Image1.tif",-9999,"/qgis_data/rasters",True)
Image1_unified.tif
Image2_unfied.tif
How it works...
The following screenshot shows the common extent for the rasters, by setting the transparency of Image1_unified.tif to the pixel 0,0,0:
If you don't use the transparency setting, you will see that both images fill the non-overlapping areas with no data within the minimum bounding box of both extents. The no data values, specified as -9999, will be ignored by other processing algorithms.
Resampling raster resolution
Resampling an image allows you to change the current resolution of an image to a different resolution. Resampling to a lower resolution, also known as downsampling, requires you to remove pixels from the image while maintaining the geospatial referencing integrity of the dataset. In the QGIS Processing Toolbox, the gdalogr:warpproject algorithm is used, which is the same as the algorithm used for reprojection.
Getting ready
We will again use the SatImage raster available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
There's an extra step in this process, where we will get the current pixel resolution of the raster as a reference to calculate the new resolution and pass it to the algorithm. To do this, we need to perform the following steps:
import processing
rasterLyr = QgsRasterLayer("/qgis_data/rasters/SatImage.tif", "Resample")
rasterLyr.isValid()
epsg = rasterLyr.crs().postgisSrid()
srs = "EPSG:%s" % epsg
res = rasterLyr.rasterUnitsPerPixelX() * 2
processing.runalg("gdalogr:warpreproject", rasterLyr, srs, srs, res, 0, None, 0, "/qgis_data/rasters/resampled.tif")
How it works...
It is counterintuitive at first to reduce the resolution by multiplying it. However, by increasing the spatial coverage of each pixel, it takes less pixels to cover the extent of the raster. You can easily compare the difference between the two in QGIS visually by loading both the images and zooming to an area with buildings or other detailed structures and then turning one layer off or on.
Counting the unique values in a raster
Remotely-sensed images are not just pictures; they are data. The value of the pixels has meaning that can be automatically analyzed by a computer. The ability to run statistical algorithms on a dataset is key to remote sensing. This recipe counts the number of unique combinations of pixels across multiple bands. A use case for this recipe will be to assess the results of image classification, which is a recipe that we'll cover later in this chapter. This recipe is in contrast to the typical histogram function, which totals the unique values and the frequency of each value per band.
Getting ready
We will use the SatImage raster available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
This algorithm relies completely on the numpy module, which is included with PyQGIS. Numpy can be accessed through the GDAL package's gdalnumeric module. To do this, we need to perform the following steps:
import gdalnumeric
a = gdalnumeric.LoadFile("/qgis_data/rasters/satimage.tif")
b = a.T.ravel()
c=b.reshape((b.size/3,3))
order = gdalnumeric.numpy.lexsort(c.T)
c = c[order]
diff = gdalnumeric.numpy.diff(c, axis=0)
ui = gdalnumeric.numpy.ones(len(c), 'bool')
ui[1:] = (diff != 0).any(axis=1)
u = c[ui]
u.size
Lastly, verify that the result is 16085631.
How it works...
The numpy module is an open source equivalent of the commercial package Matlab. You can learn more about Numpy at: http://Numpy.org.
When you load an image using Numpy, it is loaded as a multidimensional array of numbers. Numpy allows you to do an array math on the entire array using operators and specialized functions, in the same way you would on variables containing a single numeric value.
Mosaicing rasters
Mosaicing rasters is the process of fusing multiple geospatial images with the same resolution and map projection into one raster. In this recipe, we'll combine two overlapping satellite images into a single dataset.
Getting ready
You will need to download the overlapping dataset from https://geospatialpython.googlecode.com/svn/overlap.zip if you haven't downloaded it from a previous recipe.
Place the two images in your /qgis_data/rasters/ directory.
How to do it...
This process is relatively straightforward and has a dedicated algorithm within the Processing Toolbox. Perform the following steps:
processing.runalg("gdalogr:merge","C:/qgis_data/rasters/Image2.tif;C:/qgis_data/rasters/Image1.tif",False,False,"/qgis_data/rasters/merged.tif")
How it works...
The merge processing algorithm is a simplified version of the actual gdal_merge command-line utility. This algorithm is limited to the GDAL output and aggregates the extent of input rasters. It can only merge two rasters at a time. The gdal_merge tool has far more options, including additional output formats, the ability to merge more than two rasters at once, the ability to control the extent, and more. You can also use the GDAL API directly to take advantage of these features, but it will take far more code than what is used in this simple example.
Converting a TIFF image to a JPEG image
Image format conversion is a part of nearly every geospatial project. Rasters come in dozens of different specialized formats, making conversion to a more common format a necessity. The GDAL utilities include a tool called gdal_translate specifically for format conversion. Unfortunately, the algorithm in the Processing Toolbox is limited in functionality. For format conversion, it is easier to use the core GDAL API.
Getting ready
We will use the SatImage raster available at https://geospatialpython.googlecode.com/files/SatImage.zip.
Place this raster in your /qgis_data/rasters directory.
How to do it...
In this recipe, we'll open a TIFFimage using GDAL and copy it to a new dataset as a JPEG2000 image, which allows you to use the common JPEG format while maintaining geospatial information. To do this, we need to perform the following steps:
from osgeo import gdal
drv = gdal.GetDriverByName("JP2OpenJPEG")
src = gdal.Open("/qgis_data/rasters/satimage.tif")
tgt = drv.CreateCopy("/qgis_data/rasters/satimage.jp2", src)
How it works...
For the straight format conversion of an image format, the core GDAL library is extremely fast and simple. GDAL supports the creation of over 60 raster formats and the reading of over 130 raster formats.
Creating pyramids for a raster
Pyramids, or overview images, sacrifice the disk space for map rendering speed by storing resampled, lower-resolution versions of images in the file alongside the full resolution image. Once you have finalized a raster, building pyramid overviews is a good idea.
Getting ready
For this recipe, we will use a false-color image, that you can download from https://geospatialpython.googlecode.com/files/FalseColor.zip.
Unzip this TIF file and place it in your /qgis_data/rasters directory.
How to do it...
The Processing Toolbox has a dedicated algorithm for building pyramid images. Perform the following steps to create pyramids for a raster
import processing
processing.runalg("gdalogr:overviews","/qgis_data/rasters/FalseColor.tif","2 4 8 16",True,0,1)
How it works...
The concept of overview images is quite simple. You resample the images several times, and then a viewer chooses the most appropriate, smallest file to load on the map, depending on scale. The overviews can be stored in the header of the file for certain formats or as an external file format. The level of overviews needed depends largely on the file size and resolution of your current image, but is really arbitrary. In this example, we double the scale by a factor of 2, which a is common practice. Most of the zoom tools in the applications will double the scale when you click to zoom in. The factor of 2 gives you enough zoom levels, so that you usually won't zoom to a level where there is no pyramid image. There is a point of diminishing returns if you create too many levels because pyramids take up additional disk space. Usually 4 to 5 levels is effective.
Converting a pixel location to a map coordinate
The ability to view rasters in a geospatial context relies on the conversion of pixel locations to coordinates on the ground. Sooner or later when you use Python to write geospatial programs, you'll have to perform this conversion yourself.
Getting ready
We will use the SatImage raster available at:
https://geospatialpython.googlecode.com/files/SatImage.zip
Place this raster in your /qgis_data/rasters directory.
How to do it...
We will use GDAL to extract the information needed to convert pixels to coordinates and then use pure Python to perform the calculation. We'll use the center pixel of the image as the location to convert.
from osgeo import gdal
def Pixel2world(geoMatrix, x, y):
ulX = geoMatrix[0]
ulY = geoMatrix[3]
xDist = geoMatrix[1]
yDist = geoMatrix[5]
coorX = (ulX + (x * xDist))
coorY = (ulY + (y * yDist))
return (coorX, coorY)
src = gdal.Open("/qgis_data/rasters/Satimage.tif")
geoTrans = src.GetGeoTransform()
centerX = src.RasterXSize/2
centerY = src.RasterYSize/2
Pixel2world(geoTrans, centerX, centerY)
(-89.59486002580364, 30.510227817850406)
How it works...
Pixel conversion is just a scaling ratio between two planes, the image coordinate system and the Earth coordinate system. When dealing with large areas, this conversion can become a more complex projection because the curvature of the Earth comes into play. The GDAL website has a nice tutorial about the geotransform object at the following URL: http://www.gdal.org/gdal_tutorial.html
Converting a map coordinate to a pixel location
When you receive a map coordinate as user input or from some other source, you must be able to convert it back to the appropriate pixel location on a raster.
Getting ready
We will use the SatImage raster available at:
https://geospatialpython.googlecode.com/files/SatImage.zip
Place this raster in your /qgis_data/rasters directory.
How to do it...
Similar to the previous recipe, we will define a function, extract the GDAL GeoTransform object from our raster, and use it for the conversion.
from osgeo import gdal
def world2Pixel(geoMatrix, x, y):
ulX = geoMatrix[0]
ulY = geoMatrix[3]
xDist = geoMatrix[1]
yDist = geoMatrix[5]
rtnX = geoMatrix[2]
rtnY = geoMatrix[4]
pixel = int((x - ulX) / xDist)
line = int((y - ulY) / yDist)
return (pixel, line)
src = gdal.Open("/qgis_data/rasters/satimage.tif")
geoTrans = src.GetGeoTransform()
world2Pixel(geoTrans, -89.59486002580364, 30.510227817850406)
(1296, 1346)
How it works...
This conversion is very reliable over small areas, but as the area of interest expands you must account for elevation as well, which requires a far more complex transformation depending on how an image was generated.
Note
The following presentation from the University of Massachusetts does an excellent job of explain the challenges of georeferencing data:
http://courses.umass.edu/nrc592g-cschweik/pdfs/Class_3_Georeferencing_concepts.pdf
Creating a KML image overlay for a raster
GoogleEarth is one of the most widely available geospatial viewers in existence. The XML data format used by GoogleEarth for geospatial data is called KML. The Open Geospatial Consortium adopted KML as a data standard. Converting rasters into a KML overlay compressed in a KMZ archive file is a very popular way to make data available to end users who know how to use GoogleEarth.
Getting ready
We will use the SatImage raster again available at the following URL if you haven't downloaded it from previous recipes:
https://geospatialpython.googlecode.com/files/SatImage.zip
Place this raster in your /qgis_data/rasters directory.
How to do it...
In this recipe, we'll create a KML document describing our image. Then we'll convert the image to a JPEG in memory using GDAL's specialized virtual file system and write all of the contents directly to a KMZ file using Python's zipfile module.
from osgeo import gdal
import zipfile
srcf = "/qgis_data/rasters/Satimage.tif"
vfn = "/vsimem/satimage.jpg"
drv = gdal.GetDriverByName('JPEG')
src = gdal.Open(srcf)
tgt = drv.CreateCopy(vfn, src)
rasterLyr = QgsRasterLayer(srcf, "SatImage")
e = rasterLyr.extent()
kml = """<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>QGIS KML Example</name>
<GroundOverlay>
<name>SatImage</name>
<drawOrder>30</drawOrder>
<Icon>
<href>SatImage.jpg</href>
</Icon>
<LatLonBox>
<north>%s</north>
<south>%s</south>
<east>%s</east>
<west>%s</west>
</LatLonBox>
</GroundOverlay>
</Document>
</kml>""" %(e.yMaximum(), e.yMinimum(), e.xMaximum(), e.xMinimum())
vsifile = gdal.VSIFOpenL(vfn,'r')
gdal.VSIFSeekL(vsifile, 0, 2)
vsileng = gdal.VSIFTellL(vsifile)
gdal.VSIFSeekL(vsifile, 0, 0)
z = zipfile.ZipFile("/qgis_data/rasters/satimage.kmz", "w", zipfile.ZIP_DEFLATED)
z.writestr("doc.kml", kml)
z.writestr("SatImage.jpg", gdal.VSIFReadL(1, vsileng, vsifile))
z.close()
How it works...
KML is a straightforward XML format. There are entire libraries in Python dedicated to reading and writing it, but for a simple export to share an image or two, the PyQGIS console is more than adequate. While we run this script in the QGIS Python interpreter, it could be run outside of QGIS using just GDAL.
There's more...
The Orfeo Toolbox has a processing algorithm called otb:imagetokmzexport which has a much more sophisticated KMZ export tool for images.
Classifying a raster
Image classification is one of the most complex aspects of remote sensing. While QGIS is able to color pixels based on values for visualization, it stops short of doing much classification. It does provide a Raster Calculator tool where you can perform arbitrary math formulas on an image, however it does not attempt to implement any common algorithms. The Orfeo Toolbox is dedicated purely to remote sensing and includes an automated classification algorithm called K-means clustering, which groups pixels into an arbitrary number of similar classes to create a new image. We can do a nice demonstration of image classification using this algorithm.
Getting ready
For this recipe, we will use a false color image which you can download here:
https://geospatialpython.googlecode.com/files/FalseColor.zip
Unzip this TIFF file and place it in your /qgis_data/rasters directory.
How to do it...
All we need to do is run the algorithm on our input image. The important parameters are the second, third, sixth, and tenth parameters. They define the input image name, the amount of RAM to dedicate to the task, the number of classes, and the output name respectively.
import processing
processing.runandload("otb:unsupervisedkmeansimageclassification","/qgis_data/rasters/FalseColor.tif",768,None,10000,3,1000,0.95,"/qgis_data/rasters/classify.tif",None)
How it works...
Keeping the class number low allows the automated classification algorithm to focus on the major features in the image and helps when us to achieve a very high level of accuracy determining overall land use. Additional automated classification would require supervised analysis with training data sets and more in-depth preparation. But the overall concept would remain the same. QGIS has a nice plugin for semi-automatic classification. You can learn more about it at the following URL:
https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/
Converting a raster to a vector
Raster datasets represent real-world features efficiently but can have limited usage for geospatial analysis. Once you have classified an image into a manageable data set, you can convert those raster classes into a vector data set for more sophisticated GIS analysis. GDAL has a function for this operation called polygonize.
Getting ready
You will need to download the following classified raster and place it in your /qgis_data/rasters directory:
https://geospatialpython.googlecode.com/svn/landuse_bay.zip
How to do it...
Normally, you would save the output of this recipe as a shapefile. We won't specify an output file name. The Processing Toolbox will assign it a temporary filename and return that filename. We'll simply load the temporary file into QGIS. The algorithm allows you to write to a shapefile by specifying it as the last parameter.
import processing
processing.runalg("gdalogr:polygonize","C:/qgis_data/rasters/landuse_bay.tif","DN",None)
How it works...
GDAL looks for clusters of pixels and creates polygons around them. It is important to have as few classes as possible. If there is too much variation in the pixels, then GDAL will create a polygon around each pixel in the image. You turn this recipe into a true analysis product by using the recipe in Chapter 1, Calculating the Area of a Polygon to quantify each class of land use.
Georeferencing a raster from control points
Sometimes a raster that represents features on the earth is just an image with no georeferencing information. That is certainly the case with historical scanned maps. However, you can use a referenced data set of the same area to create tie points, or ground control points, and then use an algorithm to warp the image to fit the model of the earth. It is common for data collection systems to just store the ground control points (GCP) along with the raster to keep the image in as raw a format as possible. Each change to an image holds the possibility of losing data. So georeferencing an image on demand is often the best approach.
In this recipe, we'll georeference a historical survey map of the Louisiana and Mississippi Gulf Coast from 1853. The control points were manually created with the QGIS Georeferencer plugin and saved to a standardized control point file.
Getting ready
Download the following zip file, unzip the contents, and put the georef directory in /qgis_data/rasters:
https://geospatialpython.googlecode.com/svn/georef.zip
How to do it...
We will use a low-level module of the processing API to access some specialized GDAL utility functions.
from processing.algs.gdal.GdalUtils import GdalUtils
src = "/qgis_data/rasters/georef/1853survey.jpg"
points = "/qgis_data/rasters/georef/1853Survey.points"
trans = "/qgis_data/rasters/georef/1835survey_trans.tif"
final = "/qgis_data/rasters/georef/1835survey_georef.tif"
gcp = open(points, "rb")
hdr = gcp.readline()
command = ["gdal_translate"]
for line in gcp:
x,y,col,row,e = line.split(",")
command.append("-gcp")
command.append("%s" % col)
command.append("%s" % abs(float(row)))
command.append("%s" % x)
command.append("%s" % y)
command.append(src)
command.append(trans)
GdalUtils.runGdal(command, None)
command = ["gdalwarp"]
command.extend(["-r", "near", "-order", "3", "-co", "COMPRESS=NONE", "-dstalpha"])
command.append(trans)
command.append(final)
GdalUtils.runGdal(command, None)
How it works...
The GdalUtils API exposes the underlying tools used by the Processing Toolbox algorithm, yet provides a robust cross-platform approach that is better than other traditional methods of accessing external programs from Python. If you pull the output image into QGIS and compare it to the USGS coastline shapefile, you can see the results are fairly accurate and could be improved with additional control points and referenced data. The number of GCPs required for a given image is a matter of trial and error. Adding more GCPs won't necessarily lead to better results. You can find out more about creating GCPs in the QGIS documentation:
http://docs.qgis.org/2.6/en/docs/user_manual/plugins/plugins_georeferencer.html
Clipping a raster using a shapefile
Sometimes you need to use a subset of an image which covers an area of interest for a project. In fact, areas of an image outside your area of interest can distract your audience from the idea you are trying to convey. Clipping a raster to a vector boundary allows you to only use the portions of the raster you need. It can also save processing time by eliminating areas outside your area of interest.
Getting ready
We will use the SatImage raster again available at the following URL if you haven't downloaded it from previous recipes:
https://geospatialpython.googlecode.com/files/SatImage.zip
Place this raster in your /qgis_data/rasters directory.
How to do it...
Clipping is a common operation and GDAL is well suited for it.
import processing
processing.runandload("gdalogr:cliprasterbymasklayer","/qgis_data/rasters/SatImage.tif","/qgis_data/hancock/hancock.shp","none",False,False,"","/qgis_data/rasters/clipped.tif")
How it works...
GDAL creates a no data mask outside the shapefile boundary. To the extent of the original image remains the same, however you no longer visualize it and processing algorithms will ignore the no data values.
Chapter 5. Creating Dynamic Maps
In this chapter, we will cover the following recipes:
Introduction
In this chapter, we'll programmatically create dynamic maps using Python to control every aspect of the QGIS map canvas. We'll learn how to use custom symbology, labels, map bookmarks, and even real-time data. We'll also go beyond the canvas to create custom map tools. You will see that every aspect of QGIS is up for grabs with Python, to write your own application. Sometimes, the PyQGIS API may not directly support your application goal, but there is nearly always a way to accomplish what you set out to do with QGIS.
Accessing the map canvas
Maps in QGIS are controlled through the map canvas. In this recipe, we'll access the canvas and then check one of its properties to ensure that we have control over the object.
Getting ready
The only thing you need to do for this recipe is to open QGIS and select Python Console from the Plugins menu.
How to do it...
We will assign the map canvas to a variable named canvas. Then, we'll check the size property of the canvas to get its size in pixels. To do this, perform the following steps:
canvas = qgis.utils.iface.mapCanvas()
canvas.size()
PyQt4.QtCore.QSize(698, 138)
How it works...
Everything in QGIS centers on the canvas. The canvas is part of the QGIS interface or iface API. Anything you see on the screen when using QGIS is generated through the iface API. Note that the iface object is only available to scripts and plugins. When you are building a standalone application, you must initialize your own QgsMapCanvas object.
Changing the map units
Changing the units of measurement on a map, or map units, is a very common operation, depending on the purpose of your map or the standards of your organization or country. In this recipe, we'll read the map units used by QGIS and then change them for your project.
Getting ready
The only preparation you need for this recipe is to open QGIS and select Python Console from the Plugins menu.
How to do it...
In the following steps, we'll access the map canvas, check the map unit type, and then alter it to a different setting.
canvas = iface.mapCanvas()
canvas.mapUnits()
canvas.setMapUnits(QGis.Meters)
How it works...
QGIS has seven different map units, which are enumerated in the following order:
0 Meters
1 Feet
2 Degrees
3 UnknownUnit
4 DecimalDegrees
5 DegreesMinutesSeconds
6 DegreesDecimalMinutes
7 NauticalMiles
It is important to note that changing the map units just changes the unit of measurement for the measurement tool and the display in the status bar; it does not change the underlying map projection. You'll notice this difference if you try to run an operation in the Processing Toolbox, which depends on projected data in meters, if the data is unprojected. The most common use case for changing map units is to switch between imperial and metric units, depending on the user's preference.
Iterating over layers
For many GIS operations, you need to loop through the map layers to look for specific information or to apply a change to all the layers. In this recipe, we'll loop through the layers and get information about them.
Getting ready
We'll need two layers in the same map projection to perform this recipe. You can download the first layer as a ZIP file from https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip.
You can download the second zipped layer from https://geospatialpython.googlecode.com/files/Mississippi.zip.
Unzip both of these layers into a directory named ms within your qgis_data directory.
How to do it...
We will add the layers to the map through the map registry. Then, we will iterate through the map layers and print each layer's title. To do this, perform the following steps:
lyr_1 = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
lyr_2 = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/MSCities_Geo_Pts.shp", "Cities", "ogr")
registry = QgsMapLayerRegistry.instance()
registry.addMapLayers([lyr_2, lyr_1])
layers = registry.mapLayers()
for l in layers:
printl.title()
Cities20140904160234792
Mississippi20140904160234635
How it works...
Layers in QGIS are independent of the map canvas until you add them to the map layer registry. They have an ID as soon as they are created. When added to the map, they become part of the canvas, where they pick up titles, symbols, and many other attributes. In this case, you can use the map layer registry to iterate through them and access them to change the way they look or to add and extract data.
Symbolizing a vector layer
The appearance of the layers on a QGIS map is controlled by its symbology. A layer's symbology includes the renderer and one or more symbols. The renderer provides rules dictating the appearance of symbols. The symbols describe properties, including color, shape, size, and linewidth. In this recipe, we'll load a vector layer, change its symbology, and refresh the map.
Getting ready
Download the following zipped shapefile and extract it to your qgis_data directory into a folder named ms from https://geospatialpython.googlecode.com/files/Mississippi.zip.
How to do it...
We will load a layer, add it to the map layer registry, change the layer's color, and then refresh the map. To do this, perform the following steps:
from PyQt4.QtGui import *
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
QgsMapLayerRegistry.instance().addMapLayer(lyr)
symbols = lyr.rendererV2().symbols()
sym = symbols[0]
sym.setColor(QColor.fromRgb(255,0,0))
lyr.triggerRepaint()
How it works...
Changing the color of a layer sounds simple, but remember that in QGIS, anything you see must be altered through the canvas API. Therefore, we add the layer to the map and access the layer's symbology through its renderer. The map canvas is rendered as a raster image. The renderer is responsible for turning the layer data into a bitmap image, so the presentation information for a layer is stored with its renderer.
Rendering a single band raster using a color ramp algorithm
A color ramp allows you to render a raster using just a few colors to represent different ranges of cell values that have similar meaning, in order to group them. The approach that will be used in this recipe is the most common way to render elevation data.
Getting ready
You can download a sample DEM from https://geospatialpython.googlecode.com/files/dem.zip, which you can unzip in a directory named rasters in your qgis_data directory.
How to do it...
In the following steps, we will set up objects to color a raster, create a list establishing the color ramp ranges, apply the ramp to the layer renderer, and finally add the layer to the map. To do this, we need to perform the following steps:
from PyQt4 import QtGui
lyr = QgsRasterLayer("/Users/joellawhead/qgis_data/rasters/dem.asc", "DEM")
s = QgsRasterShader()
c = QgsColorRampShader()
c.setColorRampType(QgsColorRampShader.INTERPOLATED)
i = []
i.append(QgsColorRampShader.ColorRampItem(400, QtGui.QColor('#d7191c'), '400'))
i.append(QgsColorRampShader.ColorRampItem(900, QtGui.QColor('#fdae61'), '900'))
i.append(QgsColorRampShader.ColorRampItem(1500, QtGui.QColor('#ffffbf'), '1500'))
i.append(QgsColorRampShader.ColorRampItem(2000, QtGui.QColor('#abdda4'), '2000'))
i.append(QgsColorRampShader.ColorRampItem(2500, QtGui.QColor('#2b83ba'), '2500'))
c.setColorRampItemList(i)
s.setRasterShaderFunction(c)
ps = QgsSingleBandPseudoColorRenderer(lyr.dataProvider(), 1, s)
lyr.setRenderer(ps)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works…
While it takes a stack of four objects to create a color ramp, this recipe demonstrates how flexible the PyQGIS API is. Typically, the more objects it takes to accomplish an operation in QGIS, the richer the API is, giving you the flexibility to make complex maps.
Notice that in each ColorRampItem object, you specify a starting elevation value, the color, and a label as the string. The range for the color ramp ends at any value less than the following item. So, in this case, the first color will be assigned to the cells with a value between 400 and 899. The following screenshot shows the applied color ramp.
Creating a complex vector layer symbol
The true power of QGIS symbology lies in its ability to stack multiple symbols in order to create a single complex symbol. This ability makes it possible to create virtually any type of map symbol you can imagine. In this recipe, we'll merge two symbols to create a single symbol and begin unlocking the potential of complex symbols.
Getting ready
For this recipe, we will need a line shapefile, which you can download and extract from https://geospatialpython.googlecode.com/svn/paths.zip.
Add this shapefile to a directory named shapes in your qgis_data directory.
How to do it…
Using the QGISPythonConsole,we will create a classic railroad line symbol by placing a series of short, rotated line markers along a regular line symbol. To do this, we need to perform the following steps:
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/shapes/paths.shp", "Route", "ogr")
symbolList = lyr.rendererV2().symbols()
symbol = symbolList[0]
symLyrReg = QgsSymbolLayerV2Registry
lineStyle = {'width':'0.26', 'color':'0,0,0'}
symLyr1Meta = symLyrReg.instance().symbolLayerMetadata("SimpleLine")
symLyr1 = symLyr1Meta.createSymbolLayer(lineStyle)
symbol.appendSymbolLayer(symLyr1)
markerStyle = {}
markerStyle['width'] = '0.26'
markerStyle['color'] = '0,0,0'
markerStyle['interval'] = '3'
markerStyle['interval_unit'] = 'MM'
markerStyle['placement'] = 'interval'
markerStyle['rotate'] = '1'
symLyr2Meta = symLyrReg.instance().symbolLayerMetadata("MarkerLine")
symLyr2 = symLyr2Meta.createSymbolLayer(markerStyle)
sybSym = symLyr2.subSymbol()
sybSym.deleteSymbolLayer(0)
railStyle = {'size':'2', 'color':'0,0,0', 'name':'line', 'angle':'0'}
railMeta = symLyrReg.instance().symbolLayerMetadata("SimpleMarker")
rail = railMeta.createSymbolLayer(railStyle)
sybSym.appendSymbolLayer(rail)
symbol.appendSymbolLayer(symLyr2)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works…
First, we must create a simple line symbol. The marker line by itself will render correctly, but the underlying simple line will be a randomly chosen color. We must also change the subsymbol of the marker line because the default subsymbol is a simple circle.
Using icons as vector layer symbols
In addition to the default symbol types available in QGIS, you can also use TrueType fonts as map symbols. TrueType fonts are scalable vector graphics that can be used as point markers. In this recipe, we'll create this type of symbol.
Getting ready
You can download the point shapefile used in this recipe from https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip.
Extract it to your qgis_data directory in a folder named nyc.
How to do it…
We will load a point shapefile as a layer and then use the character G in a freely-available font called Webdings, which is probably already on your system, to render a building icon on each point in the layer. To do this, we need to perform the following steps:
src = "/qgis_data/nyc/NYC_MUSEUMS_GEO.shp"
lyr = QgsVectorLayer(src, "Museums", "ogr")
fontStyle = {}
fontStyle['color'] = '#000000'
fontStyle['font'] = 'Webdings'
fontStyle['chr'] = 'G'
fontStyle['size'] = '6'
symLyr1 = QgsFontMarkerSymbolLayerV2.create(fontStyle)
lyr.rendererV2().symbols()[0].changeSymbolLayer(0, symLyr1)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works…
The font marker symbol layer is just another type of marker layer; however, the range of possibilities with vector fonts is far broader than the built-in fonts in QGIS. Many industries define standard cartographic symbols using customized fonts as markers.
Creating a graduated vector layer symbol renderer
A graduated vector layer symbol renderer is the vector equivalent of a raster color ramp. You can group features into similar ranges and use a limited set of colors to visually identify these ranges. In this recipe, we'll render a graduated symbol using a polygon shapefile.
Getting ready
You can download a shapefile containing a set of urban area polygons from https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip.
Extract this file to a directory named ms in your qgis_data directory.
How to do it...
We will classify each urban area by population size using a graduated symbol, as follows:
from PyQt4.QtGui import QColor
lyr = QgsVectorLayer("/qgis_data/ms/MS_UrbanAnC10.shp", "Urban Areas", "ogr")
population = (
("Village", 0.0, 3159.0, "cyan"),
("Small town", 3160.0, 4388.0, "blue"),
("Town", 43889.0, 6105.0, "green"),
("City", 6106.0, 10481.0, "yellow"),
("Large City", 10482.0, 27165, "orange"),
("Metropolis", 27165.0, 1060061.0, "red"))
ranges = []
for label, lower, upper, color in population:
sym = QgsSymbolV2.defaultSymbol(lyr.geometryType())
sym.setColor(QColor(color))
rng = QgsRendererRangeV2(lower, upper, sym, label)
ranges.append(rng)
field = "POP"
renderer = QgsGraduatedSymbolRendererV2(field, ranges)
lyr.setRendererV2(renderer)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
The approach to using a graduated symbol for a vector layer is very similar to the color ramp shader for a raster layer. You can have as many ranges as you'd like by extending the Python tuple that is used to build the ranges. Of course, you can also build your own algorithms by programmatically examining the data fields first and then dividing up the values in equal intervals or some other scheme.
Creating a categorized vector layer symbol
A categorized vector layer symbol allows you to create distinct categories with colors and labels for unique features. This approach is typically used for datasets with a limited number of unique types of features. In this recipe, we'll categorize a vector layer into three different categories.
Getting ready
For this recipe, we'll use a land use shapefile, which you can download from https://geospatialpython.googlecode.com/svn/landuse_shp.zip.
Extract it to a directory named hancock in your qgis_data directory.
How to do it...
We will load the vector layer, create three categories of land use, and render them as categorized symbols. To do this, we need to perform the following steps:
from PyQt4.QtGui import QColor
lyr = QgsVectorLayer("Users/joellawhead/qgis_data/hancock/landuse.shp", "Land Use", "ogr")
landuse = {
"0":("yellow", "Developed"),
"1":("darkcyan", "Water"),
"2":("green", "Land")}
categories = []
for terrain, (color, label) in landuse.items():
sym = QgsSymbolV2.defaultSymbol(lyr.geometryType())
sym.setColor(QColor(color))
category = QgsRendererCategoryV2(terrain, sym, label)
categories.append(category)
field = "DN"
renderer = QgsCategorizedSymbolRendererV2(field, categories)
lyr.setRendererV2(renderer)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
There are only slight differences in the configurations of the various types of renderers in QGIS. Setting them up by first defining the properties of the renderer using native Python objects makes your code easier to read and ultimately manage. The following map image illustrates the categorized symbol in this recipe:
Creating a map bookmark
Map bookmarks allow you to save a location on a map in QGIS, so you can quickly jump to the points you need to view repeatedly without manually panning and zooming the map. PyQGIS does not contain API commands to read, write, and zoom to bookmarks. Fortunately, QGIS stores the bookmarks in an SQLite database. Python has a built-in SQLite library that we can use to manipulate bookmarks using the database API.
Getting ready
You can download a census tract polygon shapefile to use with this recipe from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.
Extract it to your qgis_data directory. We are going to create a bookmark that uses an area of interest within this shapefile, so you can manually load the bookmark in order to test it out.
How to do it...
We will access the QGIS configuration variables to get the path of the user database, which stores the bookmarks. Then, we'll connect to this database and execute a SQL query that inserts a bookmark. Finally, we'll commit the changes to the database, as follows:
import sqlite3
dbPath = QgsApplication.qgisUserDbFilePath()
db = sqlite3.connect(dbPath)
cursor = db.cursor()
cursor.execute("""INSERT INTO tbl_bookmarks(
bookmark_id, name, project_name,
xmin, ymin, xmax, ymax,
projection_srid)
VALUES(NULL, "BSL", NULL,
-89.51715550010032,
30.233838337125075,
-89.27257255649518,
30.381717490617945,
4269)""")
db.commit()
How it works...
Even when QGIS doesn't provide a high-level API, you can almost always use Python to dig deeper and access the information you want. QGIS is built on open source software, therefore no part of the program is truly off-limits.
Navigating to a map bookmark
Map bookmarks store important locations on a map, so you can quickly find them later. You can programmatically navigate to bookmarks using the Python sqlite3 library in order to access the bookmarks database table in the QGIS user database and then use the PyQGIS canvas API.
Getting ready
We will use a census tract layer to test out the bookmark navigation. You can download the zipped shapefile from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.
Manually load this layer into QGIS after extracting it from the ZIP file. Also, make sure that you have completed the previous recipe, Creating a map bookmark. You will need a bookmark named BSL for an area of interest in this shapefile.
How to do it...
We will retrieve a bookmark from the QGIS user database and then set the map's extents to this bookmark. To do this, perform the following steps:
import sqlite3
dbPath = QgsApplication.qgisUserDbFilePath()
db = sqlite3.connect(dbPath)
cursor = db.cursor()
cursor.execute("""SELECT * FROM tbl_bookmarks WHERE name='BSL'""")
row = cursor.fetchone()
id,mark_name,project,xmin,ymin,xmax,ymax,srid = row
rect = QgsRectangle(xmin, ymin, xmax, ymax)
canvas = qgis.utils.iface.mapCanvas()
canvas.setExtent(rect)
canvas.refresh()
How it works...
Reading and writing bookmarks with SQLite is straightforward even though its not a part of the main PyQGIS API. Notice that bookmarks have a placeholder for a project name, which you can use to filter bookmarks by project if needed.
Setting scale-based visibility for a layer
Sometimes, a GIS layer only makes sense when it is displayed at a certain scale, for example, a complex road network. PyQGIS supports scale-based visibility to programmatically set the scale range, in which a layer is displayed. In this recipe, we'll investigate scale-dependent layers.
Getting ready
You will need the sample census tract shapefile available as a ZIP file from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.
Extract the zipped layer to a directory named census in your qgis_data directory.
How to do it...
We will load the vector layer, toggle scale-based visibility, set the visibility range, and then add the layer to the map. To do this, perform the following steps:
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/census/GIS_CensusTract_poly.shp", "Census", "ogr")
lyr.toggleScaleBasedVisibility(True)
lyr.setMinimumScale(22945.0)
lyr.setMaximumScale(1000000.0)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
The map scale is a ratio of map units to physical map size, expressed as a floating-point number. You must remember to toggle scale-dependent visibility so that QGIS knows that it needs to check the range each time the map scale changes.
Using SVG for layer symbols
Scalable Vector Graphics (SVG) are an XML standard that defines vector graphics that can be scaled at any resolution. QGIS can use SVG files as markers for points. In this recipe, we'll use Python to apply one of the SVG symbols included with QGIS to a point layer.
Getting ready
For this recipe, download the following zipped point shapefile layer from https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip.
Extract it to your qgis_data directory.
How to do it...
In the following steps, we'll load the vector layer, build a symbol layer and renderer, and add it to the layer, as follows:
src = "/Users/joellawhead/qgis_data/NYC_MUSEUMS_GEO/NYC_MUSEUMS_GEO.shp"
lyr = QgsVectorLayer(src, "Museums", "ogr")
svgStyle = {}
svgStyle['fill'] = '#0000ff'
svgStyle['name'] = 'landmark/tourism=museum.svg'
svgStyle['outline'] = '#000000'
svgStyle['outline-width'] = '6.8'
svgStyle['size'] = '6'
symLyr1 = QgsSvgMarkerSymbolLayerV2.create(svgStyle)
lyr.rendererV2().symbols()[0].changeSymbolLayer(0, symLyr1)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
The default SVG layers are stored in the QGIS application directory. There are numerous graphics available that cover many common uses. You can also add your own graphics as well. The following map image shows the recipe's output:
Using pie charts for symbols
QGIS has the ability to use dynamic pie charts as symbols describing the statistics in a given region. In this recipe, we'll use pie chart symbols on a polygon layer in QGIS.
Getting ready
For this recipe, download the following zipped shapefile and extract it to a directory named ms in your qgis_data directory from https://geospatialpython.googlecode.com/svn/County10PopnHou.zip.
How to do it...
As with other renderers, we will build a symbol layer, add it to a renderer, and display the layer on the map. The pie chart diagram renderers are more complex than other renderers but have many more options. Perform the following steps to create a pie chart map:
from PyQt4.QtGui import *
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/County10PopnHou.shp", "Population", "ogr")
categories = [u'PCT_WHT', u'PCT_BLK', u'PCT_AMIND', u'PCT_ASIAN', u'PCT_HAW', u'PCT_ORA', u'PCT_MR', u'PCT_HISP']
colors = ['#3727fa','#01daae','#f849a6','#268605','#6810ff','#453990','#630f2f','#07dd45']
qcolors = []
for c in colors:
qcolors.append(QColor(c))
canvas = iface.mapCanvas()
diagram = QgsPieDiagram()
ds = QgsDiagramSettings()
ds.font = QFont("Helvetica", 12)
ds.transparency = 0
ds.categoryColors = qcolors
ds.categoryAttributes = categories
ds.size = QSizeF(100.0, 100.0)
ds.sizeType = 0
ds.labelPlacementMethod = 1
ds.scaleByArea = True
ds.minimumSize = 0
ds.BackgroundColor = QColor(255,255,255,0)
ds.PenColor = QColor("black")
ds.penWidth = 0
dr = QgsLinearlyInterpolatedDiagramRenderer()
dr.setLowerValue(0.0)
dr.setLowerSize(QSizeF(0.0, 0.0))
dr.setUpperValue(2000000)
dr.setUpperSize(QSizeF(40,40))
dr.setClassificationAttribute(6)
dr.setDiagram(diagram)
lyr.setDiagramRenderer(dr)
dls = QgsDiagramLayerSettings()
dls.dist = 0
dls.priority = 0
dls.xPosColumn = -1
dls.yPosColumn = -1
dls.placement = 0
lyr.setDiagramLayerSettings(dls)
label = QgsPalLayerSettings()
label.readFromLayer(lyr)
label.enabled = True
label.writeToLayer(lyr)
if hasattr(lyr, "setCacheImage"):
lyr.setCacheImage(None)
lyr.triggerRepaint()
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
The basics of pie chart diagram symbols are straightforward and work in a similar way to other types of symbols and renderers. However, it gets a little confusing as we need to apply settings at three different levels – the diagram level, the render level, and the layer level. It turns out they are actually quite complex. Most of the settings are poorly documented, if at all. Fortunately, most of them are self-explanatory. The following screenshot shows an example of the completed pie chart diagram map:
There's more...
To learn more about what is possible with pie chart diagram symbols, you can experiment with this recipe in the Script Runner plugin, where you can change or remove settings and quickly re-render the map. You can also manually change the settings using the QGIS dialogs and then export the style to an XML file and see what settings are used. Most of them map to the Python API well.
Using the OpenStreetMap service
Cloud-based technology is moving more and more data to the Internet, and GIS is no exception. QGIS can load web-based data using Open GIS Consortium standards, such as Web Map Service (WMS). The easiest way to add WMS layers is using the Geospatial Data Abstraction Library (GDAL) and its virtual filesystem feature to load a tiled layer.
Getting ready
You don't need to do any preparation for this recipe, other than opening the Python console plugin within QGIS.
How to do it...
We will create an XML template that describes the tiled web service from OpenStreetMap we want to import. Then, we'll turn it into a GDAL virtual file and load it as a QGIS raster layer. To do this, we need to perform the following steps:
from osgeo import gdal
xml = """<GDAL_WMS>
<Service name="TMS">
<ServerUrl>http://tile.openstreetmap.org/${z}/${x}/${y}.png</ServerUrl>
</Service>
<DataWindow>
<UpperLeftX>-20037508.34</UpperLeftX>
<UpperLeftY>20037508.34</UpperLeftY>
<LowerRightX>20037508.34</LowerRightX>
<LowerRightY>-20037508.34</LowerRightY>
<TileLevel>18</TileLevel>
<TileCountX>1</TileCountX>
<TileCountY>1</TileCountY>
<YOrigin>top</YOrigin>
</DataWindow>
<Projection>EPSG:900913</Projection>
<BlockSizeX>256</BlockSizeX>
<BlockSizeY>256</BlockSizeY>
<BandsCount>3</BandsCount>
<Cache />
</GDAL_WMS>"""
vfn = "/vsimem/osm.xml"
gdal.FileFromMemBuffer(vfn, xml)
rasterLyr = QgsRasterLayer(vfn, "OSM")
rasterLyr.isValid()
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])
How it works...
There are other ways to load tiled map services such as OpenStreetMap into QGIS programmatically, but GDAL is by far the most robust. The prefix vsimem tells GDAL to use a virtual file in order to manage the tiles. This approach frees you from the need to manage downloaded tiles on disk directly and allows you to focus on your application's functionality.
Using the Bing aerial image service
While there are many services that provide street map tiles, there are far fewer services that provide imagery services. One excellent free service for both maps and, more importantly, imagery is Microsoft's Bing map services. We can access Bing imagery programmatically in QGIS using GDAL's WMS capability coupled with virtual files.
Getting ready
You don't need to do any preparation for this recipe other than opening the Python console plugin within QGIS.
How to do it...
Similar to the approach used for the previous Using the OpenStreetMap service recipe, we will create an XML file as a string to describe the service, turn it into a GDAL virtual file, and load it as a raster in QGIS. To do this, we need to perform the following steps:
from osgeo import gdal
xml = """<GDAL_WMS>
<Service name="VirtualEarth">
<ServerUrl>
http://a${server_num}.ortho.tiles.virtualearth.net/tiles/a${quadkey}.jpeg?g=90
</ServerUrl>
</Service>
<MaxConnections>4</MaxConnections>
<Cache/>
</GDAL_WMS>"""
vfn = "/vsimem/bing.xml"
gdal.FileFromMemBuffer(vfn, xml)
rasterLyr = QgsRasterLayer(vfn, "BING")
rasterLyr.isValid()
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])
How it works...
GDAL has drivers for various map services. The service name for Bing is VirtualEarth. The ${} clauses in the server URL provide placeholders, which will be replaced with instance-specific data when GDAL downloads styles. When using this data, you should be aware that it has copyright restrictions. Be sure to read the Bing usage agreement online.
Adding real-time weather data from OpenWeatherMap
Real-time data is one of the most exciting data types you can add to a modern map. Most data producers make data available through Open GIS Consortium standards. One such example is OpenWeatherMap, which offers an OGC Web Map Service (WMS) for different real-time weather data layers. In this recipe, we'll access this service to access a real-time weather data layer.
Getting ready
To prepare for this recipe, you just need to open the QGIS Python Console by clicking on the Plugins menu and selecting Python Console.
How to do it...
We will add a WMS weather data layer for precipitation to a QGIS map, as follows:
service = 'crs=EPSG:900913&dpiMode=7&featureCount=10&format=image/png&layers=precipitation&styles=&url=http://wms.openweathermap.org/service'
rlayer = QgsRasterLayer(service, "precip", "wms")
QgsMapLayerRegistry.instance().addMapLayers([rlayer])
How it works...
A WMS request is typically an HTTP GET request with all of the parameters as part of the URL. In PyQGIS, you use a URL-encoded format and specify the parameters separately from the URL.
The following map image shows the output of the precipitation layer in QGIS:
Labeling features
Once your map layers are styled, the next step to creating a complete map is labeling features. We'll explore the basics of labeling in this recipe.
Getting ready
Download the following zipped shapefile from https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip.
Extract the shapefile to a directory named ms in your qgis_data shapefile.
How to do it...
We will load the point shapefile layer, create a label object, set its properties, apply it to the layer, and then add the layer to the map. To do this, we need to perform the following steps:
src = "/Users/joellawhead/qgis_data/ms/MSCities_Geo_Pts.shp"
lyr = QgsVectorLayer(src, "Museums", "ogr")
label = QgsPalLayerSettings()
label.readFromLayer(lyr)
label.enabled = True
label.fieldName = 'NAME10'
label.placement= QgsPalLayerSettings.AroundPoint
label.setDataDefinedProperty(QgsPalLayerSettings.Size,True,True,'8','')
label.writeToLayer(lyr)
QgsMapLayerRegistry.instance().addMapLayers([lyr])
How it works...
An interesting part of labeling is the round-trip read and write process to access the layer data and the assignment of the labeling properties. Labeling can be quite complex, but this recipe covers the basics needed to get started.
Changing map layer transparency
Map layer transparency allows you to change the opacity of a layer, so the items behind it are visible to some degree. A common technique is to make a vector layer polygon partially transparent in order to allow the underlying imagery or elevation data to add texture to the data.
Getting ready
In a directory called ms, in your qgis_data directory, download and extract the following shapefile from
https://geospatialpython.googlecode.com/files/Mississippi.zip.
How to do it...
The process is extremely simple. Transparency is just a method:
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
lyr.setLayerTransparency(50)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
If you set the transparency to 100 percent, the layer is completely opaque. If you set it to 0, the layer becomes completely invisible.
Adding standard map tools to the canvas
In this recipe, you'll learn how to add standard map navigation tools to a standalone map canvas. Creating the simplest possible interactive application provides a framework to begin building specialized geospatial applications using QGIS as a library.
Getting ready
Download the following zipped shapefile and extract it to your qgis_data directory into a folder named ms from https://geospatialpython.googlecode.com/files/Mississippi.zip.
How to do it...
We will walk through the steps required to create a map canvas, add a layer to it, and then add some tools to zoom and pan the map, as follows:
from qgis.gui import *
from qgis.core import *
from PyQt4.QtGui import *
from PyQt4.QtCore import SIGNAL, Qt
import sys, os
OSX:
QgsApplication.setPrefixPath("/Applications/QGIS.app/Contents/MacOS/", True)
Windows:
app.setPrefixPath("C:/Program Files/QGIS Valmiera/apps/qgis", True)
class MyWnd(QMainWindow):
def __init__(self):
QMainWindow.__init__(self)
QgsApplication.setPrefixPath("/Applications/QGIS.app/Contents/MacOS/", True)
QgsApplication.initQgis()
self.canvas = QgsMapCanvas()
self.canvas.setCanvasColor(Qt.white)
self.lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
QgsMapLayerRegistry.instance().addMapLayer(self.lyr)
self.canvas.setExtent(self.lyr.extent())
self.canvas.setLayerSet([QgsMapCanvasLayer(self.lyr)])
self.setCentralWidget(self.canvas)
actionZoomIn = QAction("Zoom in", self)
actionZoomOut = QAction("Zoom out", self)
actionPan = QAction("Pan", self)
actionZoomIn.setCheckable(True)
actionZoomOut.setCheckable(True)
actionPan.setCheckable(True)
actionZoomIn.triggered.connect(self.zoomIn)
actionZoomOut.triggered.connect(self.zoomOut)
actionPan.triggered.connect(self.pan)
self.toolbar = self.addToolBar("Canvas actions")
(actionZoomIn)
self.toolbar.addAction(actionZoomOut)
self.toolbar.addAction(actionPan)
self.toolPan = QgsMapToolPan(self.canvas)
self.toolPan.setAction(actionPan)
self.toolZoomIn = QgsMapToolZoom(self.canvas, False) # false = in
self.toolZoomIn.setAction(actionZoomIn)
self.toolZoomOut = QgsMapToolZoom(self.canvas, True) # true = out
self.toolZoomOut.setAction(actionZoomOut)
self.pan()
defzoomIn(self):
self.canvas.setMapTool(self.toolZoomIn)
defzoomOut(self):
self.canvas.setMapTool(self.toolZoomOut)
def pan(self):
self.canvas.setMapTool(self.toolPan)
class MainApp(QApplication):
def __init__(self):
QApplication.__init__(self,[],True)
wdg = MyWnd()
wdg.show()
self.exec_()
if __name__ == "__main__":
import sys
app = MainApp()
How it works...
An application is a continuously running program loop that ends only when we quit the application. QGIS is based on the Qt windowing library, so our application class inherits from the main window class that provides the canvas and the ability to create toolbars and dialogs.This is a lot of setup, even for an extremely simple application, but once the framework for an application is complete, it becomes much easier to extend it.
Using a map tool to draw points on the canvas
QGIS contains a built-in functionality to zoom and pan the map in custom applications. It also contains the basic hooks to build your own interactive tools. In this recipe, we'll create an interactive point tool that lets you mark locations on the map by clicking on a point.
Getting ready
We will use the application framework from the previous Adding standard map tools to the canvas recipe, so complete that recipe first. We will extend that application with a new tool. The complete version of this application is available in the code samples provided with this book.
How to do it...
We will set up the button, signal trigger, and actions as we do with all map tools. However, because we are building a new tool, we must also define a class to define exactly what the tool does. To do this, we need to perform the following actions:
actionPoint = QAction("Point", self)
actionPoint.setCheckable(True)
self.connect(actionPoint, SIGNAL("triggered()"), self.point)
self.toolbar.addAction(actionPoint)
self.toolPoint = PointMapTool(self.canvas)
self.toolPoint.setAction(actionPoint)
self.point()
def point(self):
self.canvas.setMapTool(self.toolPoint)
classPointMapTool(QgsMapToolEmitPoint):
def __init__(self, canvas):
self.canvas = canvas
QgsMapToolEmitPoint.__init__(self, self.canvas)
self.point = None
defcanvasPressEvent(self, e):
self.point = self.toMapCoordinates(e.pos())
printself.point.x(), self.point.y()
m = QgsVertexMarker(self.canvas)
m.setCenter(self.point)
m.setColor(QColor(0,255,0))
m.setIconSize(5)
m.setIconType(QgsVertexMarker.ICON_BOX) # or ICON_CROSS, ICON_X
m.setPenWidth(3)
How it works...
For custom tools, PyQGIS provides a set of generic tools for the common functions that you can extend and piece together. In this case, the EmitPoint tool handles the details of the events and map functionality when you click on a location on the map.
Using a map tool to draw polygons or lines on the canvas
In this recipe, we'll create a tool to draw polygons on the canvas. This tool is an important tool because it opens the doors to even more advanced tools. Once you have a polygon on the canvas, you can do all sorts of operations that involve querying and geometry.
Getting ready
We will use the application framework from the Adding standard map tools to the canvas recipe, so complete that recipe. We will extend that application with a new tool. The complete version of this application is available in the code samples provided with this book.
How to do it...
We will add a new tool to the toolbar and also create a class that describes our polygon tool, as follows:
actionPoly = QAction("Polygon", self)
actionPoly.setCheckable(True)
self.connect(actionPoly, SIGNAL("triggered()"), self.poly)
self.toolbar.addAction(actionPoly)
self.toolPoly = PolyMapTool(self.canvas)
self.toolPoly.setAction(actionPoly)
self.poly()
def poly(self):
self.canvas.setMapTool(self.toolPoly)
Now, we create a class that describes the type of tool we have and the output it provides. The output is a point on the canvas defined in the canvasPressEvent method, which receives the button-click event and the showPoly method. We will inherit from a generic tool in order to create points called the QgsMapToolEmitPoint; we will also use an object called QgsRubberBand for handling polygons:
classPolyMapTool(QgsMapToolEmitPoint):
def __init__(self, canvas):
self.canvas = canvas
QgsMapToolEmitPoint.__init__(self, self.canvas)
self.rubberband = QgsRubberBand(self.canvas, QGis.Polygon)
self.rubberband.setColor(Qt.red)
self.rubberband.setWidth(1)
self.point = None
self.points = []
defcanvasPressEvent(self, e):
self.point = self.toMapCoordinates(e.pos())
m = QgsVertexMarker(self.canvas)
m.setCenter(self.point)
m.setColor(QColor(0,255,0))
m.setIconSize(5)
m.setIconType(QgsVertexMarker.ICON_BOX)
m.setPenWidth(3)
self.points.append(self.point)
self.isEmittingPoint = True
self.showPoly()
defshowPoly(self):
self.rubberband.reset(QGis.Polygon)
for point in self.points[:-1]:
self.rubberband.addPoint(point, False)
self.rubberband.addPoint(self.points[-1], True)
self.rubberband.show()
How it works...
All the settings for the polygon are contained in the custom class. There is a key property, called EmittingPoint, which we use to detect whether we are still adding points to the polygon. This value starts out as false. If this is the case, we reset our polygon object and begin drawing a new one. The following screenshot shows a polygon drawn with this tool on a map:
Building a custom selection tool
In this recipe, we will build a custom tool that both draws a shape on the map and interacts with other features on the map. These two basic functions are the basis for almost any map tool you would want to build, either in a standalone QGIS application like this one, or by extending the QGIS desktop application with a plugin.
Getting ready
We will use the application framework from the Adding standard map tools to the canvas recipe, so complete that recipe first. We will extend that application with a new tool. The complete version of this application is available in the code samples provided with this book. It will also be beneficial to study the other two tool-related recipes, A map tool to draw polygons or lines on the canvas and A map tool to draw points on the canvas, as this recipe builds on them as well.
You will also need the following zipped shapefile from https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip.
Download and extract it to your qgis_data directory.
How to do it...
We will add a new tool to the toolbar and also create a class describing our selection tool, including how to draw the selection polygon and how to select the features. To do this, we need to perform the following steps:
actionSelect = QAction("Select", self)
actionSelect.setCheckable(True)
self.connect(actionSelect, SIGNAL("triggered()"), self.select)
self.toolbar.addAction(actionSelect)
self.toolSelect = SelectMapTool(self.canvas, self.lyr)
self.toolSelect.setAction(actionSelect)
self.select()
def select(self):
self.canvas.setMapTool(self.toolSelect)
classSelectMapTool(QgsMapToolEmitPoint):
def __init__(self, canvas, lyr):
self.canvas = canvas
self.lyr = lyr
QgsMapToolEmitPoint.__init__(self, self.canvas)
self.rubberband = QgsRubberBand(self.canvas, QGis.Polygon)
self.rubberband.setColor(QColor(255,255,0,50))
self.rubberband.setWidth(1)
self.point = None
self.points = []
defcanvasPressEvent(self, e):
self.point = self.toMapCoordinates(e.pos())
m = QgsVertexMarker(self.canvas)
m.setCenter(self.point)
m.setColor(QColor(0,255,0))
m.setIconSize(5)
m.setIconType(QgsVertexMarker.ICON_BOX)
m.setPenWidth(3)
self.points.append(self.point)
self.isEmittingPoint = True
self.selectPoly()
defselectPoly(self):
self.rubberband.reset(QGis.Polygon)
for point in self.points[:-1]:
self.rubberband.addPoint(point, False)
self.rubberband.addPoint(self.points[-1], True)
self.rubberband.show()
iflen(self.points) > 2:
g = self.rubberband.asGeometry()
featsPnt = self.lyr.getFeatures(QgsFeatureRequest().setFilterRect(g.boundingBox()))
forfeatPnt in featsPnt:
iffeatPnt.geometry().within(g):
self.lyr.select(featPnt.id())
How it works...
QGIS has a generic tool for highlighting features, but in this case, we can use the standard selection functionality, which simplifies our code. With the exception of a dialog to load new layers and the ability to show attributes, we have a very basic but nearly complete standalone GIS application.The following screenshot shows the selection tool in action:
Creating a mouse coordinate tracking tool
In this recipe, we'll build a tool that tracks and displays the mouse coordinates in real time. This tool will also demonstrate how to interact with the status bar of a QGIS application.
Getting ready
We will use the application framework from the Adding standard map tools to the canvas recipe, so complete that recipe first. We will extend that application with the coordinate tracking tool. A complete version of this application is available in the code samples provided with this book. It will also be beneficial to study the other two tool-related recipes in this chapter, A map tool to draw polygons or lines on the canvas and A map tool to draw points on the canvas, as this recipe builds on them as well.
How to do it...
We will add an event filter to the basic standalone QGIS application and use it to grab the current mouse coordinates as well as update the status bar. To do this, we need to perform the following steps:
self.statusBar().showMessage(u"x: --, y: --")
defeventFilter(self, source, event):
ifevent.type() == QEvent.MouseMove:
ifevent.buttons() == Qt.NoButton:
pos = event.pos()
x = pos.x()
y = pos.y()
p = self.canvas.getCoordinateTransform().toMapCoordinates(x, y)
self.statusBar().showMessage(u"x: %s, y: %s" % (p.x(), p.y()))
else:
pass
returnQMainWindow.eventFilter(self, source, event)
self.installEventFilter(wdg)
How it works...
In the Qt framework, in order to watch out for mouse events, we must insert an event filter that allows us to monitor all the events in the application. Within the default event filter method, we can then process any event we want. In this case, we watch for any movements of the mouse.
Chapter 6. Composing Static Maps
In this chapter, we will cover the following recipes:
Introduction
In this chapter, we'll create maps using PyQGIS, Qt image objects, and QGIS Map Composer to create map layouts that can be exported as documents or images. The QGIS Map Composer is designed to create static map layouts with decorative and reference elements, for printing or inclusion in another document.
Creating the simplest map renderer
In order to turn a dynamic GIS map into a static map image or document, you must create a renderer to freeze the map view and create a graphic version of it. In this recipe, we'll render a map to a JPEG image and save it.
Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data directory, to a subdirectory named hancock:
https://geospatialpython.googlecode.com/svn/hancock.zip
You will also need to open the Python Console under the Plugins menu in QGIS. You can run these lines of code inside the console.
How to do it...
In this recipe, we will load our shapefile, add it to the map, create a blank image, set up the map view, render the map image, and save it. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
lyr = QgsVectorLayer("/qgis_data/hancock/hancock.shp", "Hancock", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
i = QImage(QSize(600,600), QImage.Format_ARGB32_Premultiplied)
c = QColor("white")
i.fill(c.rgb())
p = QPainter()
p.begin(i)
r = QgsMapRenderer()
lyrs = reg.mapLayers().keys()
r.setLayerSet(lyrs)
rect = QgsRectangle(r.fullExtent())
rect.scale(1.1)
r.setExtent(rect)
r.setOutputSize(i.size(), i.logicalDpiX())
r.render(p)
p.end()
i.save("/qgis_data/map.jpg","jpg")
How it works...
QGIS uses the underlying Qt GUI library to create common image types. We haven't used any of the QGIS composer objects to render the image; however, this rendering technique is used to save maps created with the QGIS composer.
There's more...
The QImage object supports other image formats as well. To save a map image to a PNG, replace the last step in the How to do it… section with the following code:
i.save("/qgis_data/map.png","png")
Using the map composer
The QGIS Map Composer allows you to combine a map with nonspatial elements that help enhance our understanding of the map. In this recipe, we'll create a basic map composition. A composition requires you to define the physical paper size and output format. Even a simple composition example such as this has over 20 lines of configuration options.
Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data directory, to a subdirectory named hancock:
https://geospatialpython.googlecode.com/svn/hancock.zip
You will also need to open the Python Console under the Plugins menu in QGIS. You can run this recipe in the console or wrap it in a script for the Script Runner plugin, using the template provided with the plugin.
How to do it...
In this recipe, the major steps are to load the shapefile into a map, build the map composition, and render it to an image, described as follows:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
lyr = QgsVectorLayer("/qgis_data/hancock/hancock.shp", "Hancock", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
i = QImage(QSize(600,600), QImage.Format_ARGB32_Premultiplied)
c = QColor("white")
i.fill(c.rgb())
p = QPainter()
p.begin(i)
lyrs = reg.mapLayers().keys()
mr = iface.mapCanvas().mapRenderer()
mr.setLayerSet(lyrs)
rect = QgsRectangle(lyr.extent())
rect.scale(1.2)
mr.setExtent(rect)
c = QgsComposition(mr)
c.setPlotStyle(QgsComposition.Print)
c.setPaperSize(215.9, 279.4)
w, h = c.paperWidth() * .50, c.paperHeight() * .50
x = (c.paperWidth() - w) / 2
y = ((c.paperHeight() - h)) / 2
composerMap = QgsComposerMap(c,x,y,w,h)
composerMap.setNewExtent(rect)
composerMap.setFrameEnabled(True)
c.addItem(composerMap)
dpi = c.printResolution()
c.setPrintResolution(dpi)
mm_in_inch = 25.4
dpmm = dpi / mm_in_inch
width = int(dpmm * c.paperWidth())
height = int(dpmm * c.paperHeight())
image = QImage(QSize(width, height), QImage.Format_ARGB32)
image.setDotsPerMeterX(dpmm * 1000)
image.setDotsPerMeterY(dpmm * 1000)
image.fill(0)
imagePainter = QPainter(image)
sourceArea = QRectF(0, 0, c.paperWidth(), c.paperHeight())
targetArea = QRectF(0, 0, width, height)
c.render(imagePainter, targetArea, sourceArea)
imagePainter.end()
image.save("/Users/joellawhead/qgis_data/map.jpg", "jpg")
Verify that the output image resembles the following sample image:
How it works...
Map compositions are very powerful, but they can also be quite complex. You are managing the composition that represents a virtual sheet of paper. On that composition, you place objects, such as the map. Then, you must also manage the rendering of the composition as an image. All these items are independently configurable, which can sometimes lead to unexpected results with the sizing or visibility of items.
There's more…
In the upcoming versions of QGIS, the map composer class may be renamed as the print layout class. You can find out more information about this proposed change at https://github.com/qgis/QGIS-Enhancement-Proposals/pull/9
Adding labels to a map for printing
The QgsComposition object allows you to place arbitrary text anywhere in the composition. In this recipe, we'll demonstrate how to add a label to a map composition.
Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data directory, to a subdirectory named hancock:
https://geospatialpython.googlecode.com/svn/hancock.zip
In addition to the shapefile, you will also need the MapComposer class. This class encapsulates the boilerplate composer code in a reusable way to make adding other elements easier. You can download it from https://geospatialpython.googlecode.com/svn/MapComposer.py.
This file must be accessible from the QGIS Python console by ensuring that it is in the Python path directory. Place the file in the .qgis2/python directory within your home directory.
How to do it...
To add a label to a composition, we'll first build the map composition, create a label, and then save the composition as an image. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
import MapComposer
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/hancock/hancock.shp", "Hancock", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
qc.label = QgsComposerLabel(qc.c)
qc.label.setText("Hancock County")
qc.label.adjustSizeToText()
qc.label.setFrameEnabled(True)
qc.label.setItemPosition(qc.x,qc.y-10)
qc.c.addItem(qc.label)
qc.output("/Users/joellawhead/qgis_data/map.jpg", "jpg")
How it works...
In this case, we created a very simple label based on defaults. However, labels can be customized to change the font, size, color, and style for print-quality compositions. Also, note that the x,y values used to place items in a composition start in the upper-left corner of the page. As you move an item down the page, the y value increases.
Adding a scale bar to the map
A scale bar is one of the most important elements of a map composition, as it defines the scale of the map to determine the ground distance on the map. QGIS composer allows you to create several different types of scale bars from a simple text scale ratio to a graphical, double scale bar with two measurement systems. In this recipe, we'll create a scale bar that measures in kilometres.
Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data directory, to a subdirectory named ms:
https://geospatialpython.googlecode.com/svn/mississippi.zip
In addition to the shapefile, you will also need the MapComposer class. This class encapsulates the boilerplate composer code in a reusable way to make adding other elements easier. You can download it from https://geospatialpython.googlecode.com/svn/MapComposer.py.
This file must be accessible from the QGIS Python console; ensure that it is in the Python path directory. Place the file in the .qgis2/python directory within your home directory.
For the scale bar to display correctly, you must ensure that QGIS is set to automatically reproject data on the fly. In QGIS, go to the Settings menu and select Options. In the Options dialog, select the CRS panel. In the Default CRS for new projects section, check the Enable 'on the fly' reprojection by default radio button. Click on the OK button to confirm the setting.
How to do it...
First, we will generate the map, then we'll generate the composition, and finally we'll create the scale bar and place it in the lower-right corner of the map. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mmississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
qc.scalebar = QgsComposerScaleBar(qc.c)
qc.scalebar.setStyle('Single Box')
qc.scalebar.setComposerMap(qc.composerMap)
qc.scalebar.applyDefaultSize()
sbw = qc.scalebar.rect().width()
sbh = qc.scalebar.rect().height()
mcw = qc.composerMap.rect().width()
mch = qc.composerMap.rect().height()
sbx = qc.x + (mcw - sbw)
sby = qc.y + mch
qc.scalebar.setItemPosition(sbx, sby)
qc.c.addItem(qc.scalebar)
qc.output("/Users/joellawhead/qgis_data/map.jpg", "jpg")
How it works...
The scale bar will display in kilometres if the map projection is set correctly, which is why it is important to have automatic reprojection enabled in the QGIS settings. The location of the scale bar within the composition is not important, as long as the composerMap object is applied to it.
Adding a north arrow to the map
North arrows are another common cartographic element found even in ancient maps, which show the orientation of the map relative to either true, gird, or magnetic north. Sometimes, these symbols can be quite elaborate. However, QGIS provides a basic line arrow element that we will use in combination with a map label to make a basic north arrow.
Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data directory, to a subdirectory named ms:
https://geospatialpython.googlecode.com/svn/Mississippi.zip
In addition to the shapefile, you will also need the MapComposer class to simplify the code needed to add this one element. If you haven't already used it in a previous recipe, you can download it from https://geospatialpython.googlecode.com/svn/MapComposer.py.
This file must be accessible from the QGIS Python Console; for this, you need to ensure that it is in the Python path directory. Place the file in the .qgis2/python directory within your home directory.
How to do it...
In this recipe, we will create a map composition, draw an arrow to the right of the map, and then place a label with a capital letter N below the arrow. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
mcw = qc.composerMap.rect().width()
mch = qc.composerMap.rect().height()
ax = qc.x + mcw + 10
ay = (qc.y + mch) - 10
afy = ay - 20
qc.arrow = QgsComposerArrow(QPointF(ax, ay), QPointF(ax,afy), qc.c)
qc.c.addItem(qc.arrow)
f = QFont()
f.setBold(True)
f.setFamily("Times New Roman")
f.setPointSize(30)
qc.labelNorth = QgsComposerLabel(qc.c)
qc.labelNorth.setText("N")
qc.labelNorth.setFont(f)
qc.labelNorth.adjustSizeToText()
qc.labelNorth.setFrameEnabled(False)
qc.labelNorth.setItemPosition(ax - 5, ay)
qc.c.addItem(qc.labelNorth)
qc.output("/qgis_data/map.jpg", "jpg")
Verify that your output image looks similar to the following:
How it works...
The QGIS composer doesn't have a dedicated north arrow or compass rose object. However, it is quite simple to construct one, as demonstrated in the preceding section. The arrow is just a graphic. The direction of the arrow is controlled by the location of the start point and the end point listed, respectively, when you create the QgsComposerArrow object.
There's more...
You can extend this example to have an arrow point in multiple compass directions. You can also use an image of a more elaborate compass rose added to the composition. We'll demonstrate how to add images in the next recipe. Note that the arrow element can also be used to point to items on the map with an associated label.
Adding a logo to the map
An important part of customizing a map is to add your logo or other graphics to the composition. In this recipe, we'll add a simple logo to the map.
Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data directory, to a subdirectory named ms:
https://geospatialpython.googlecode.com/svn/Mississippi.zip
You will also need a logo image, which you can download from https://geospatialpython.googlecode.com/svn/trunk/logo.png.
Place the image in your qgis_data/rasters directory.
If you haven't already done so in the previous recipe, download the MapComposer library from https://geospatialpython.googlecode.com/svn/MapComposer.py, to simplify the creation of the map composition.
Place the file in the .qgis2/python directory within your home directory.
How to do it...
In this recipe, we will create the map composition, add the logo image, and save the map as an image. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
qc.logo = QgsComposerPicture(qc.c)
qc.logo.setPictureFile("/qgis_data/rasters/logo.png")
qc.logo.setSceneRect(QRectF(0,0,50,70))
lx = qc.x + 50
ly = qc.y – 120
mcw = qc.composerMap.rect().width()
mch = qc.composerMap.rect().height()
lx = qc.x
ly = qc.y - 20
qc.output("/qgis_data/map.jpg", "jpg")
How it works...
This recipe is very straight forward, as the QgsComposerPicture is an extremely simple object. You can use JPG, PNG, or SVG images. This technique can be used to add custom north arrows or other cartographic elements as well.
Adding a legend to the map
A map legend decodes the symbology used in a thematic GIS map for the reader. Legends are tightly integrated into QGIS, and in this recipe, we'll add the default legend from the map to the print composition.
Getting ready
Download the shapefile for this map from https://geospatialpython.googlecode.com/svn/Mississippi.zip and extract it to your qgis_data directory in a subdirectory named ms.
As with the previous recipes in this chapter, we will use the MapComposer library from https://geospatialpython.googlecode.com/svn/MapComposer.py to simplify the creation of the map composition.
Place the file in the .qgis2/python directory within your home directory.
How to do it...
This recipe is as simple as creating the map, adding the automatically generated legend, and saving the output to an image. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
qc.legend = QgsComposerLegend(qc.c)
qc.legend.model().setLayerSet(qc.qmr.layerSet())
qc.legend.setItemPosition(5, qc.y)
qc.c.addItem(qc.legend)
qc.output("/qgis_data/map.jpg", "jpg")
How it works...
Adding a legend is quite simple. QGIS will carry over the styling that is autogenerated when the layer is loaded or manually set by the user. Of course, you can also save layer styling, which is loaded with the layer and used by the legend. However, if you're generating a composition in the background such as in a standalone application, for example, every aspect of the legend is customizable through the PyQGIS API.
Adding a custom shape to the map
The QGIS composer has an object for drawing and styling nonspatial shapes, including rectangles, ellipses, and triangles. In this recipe, we'll add some rectangles filled with different colors, which will resemble a simple bar chart, as an example of using shapes.
Getting ready
Download the zipped shapefile for this map from https://geospatialpython.googlecode.com/svn/Mississippi.zip and extract it to your qgis_data directory, to in a subdirectory named ms.
We will also use the MapComposer library from https://geospatialpython.googlecode.com/svn/MapComposer.py to simplify the creation of the map composition.
Place the file in the .qgis2/python directory within your home directory.
How to do it...
First, we will create a simple map composition with the shapefile. Then, we will define the style properties for our rectangles. Next, we will draw the rectangles, apply the symbols, and render the composition. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
red = {'color':'255,0,0,255','color_border':'0,0,0,255'}
redsym = QgsFillSymbolV2.createSimple(red)
blue = {'color':'0,0,255,255','color_border':'0,0,0,255'}
bluesym = QgsFillSymbolV2.createSimple(blue)
yellow = {'color':'255,255,0,255','color_border':'0,0,0,255'}
yellowsym = QgsFillSymbolV2.createSimple(yellow)
mch = qc.composerMap.rect().height()
sy = qc.y + mch
qc.shape1 = QgsComposerShape(10,sy-25,10,25,qc.c)
qc.shape1.setShapeType(1)
qc.shape1.setUseSymbolV2(True)
qc.shape1.setShapeStyleSymbol(redsym)
qc.c.addItem(qc.shape1)
qc.shape2 = QgsComposerShape(22,sy-18,10,18,qc.c)
qc.shape2.setShapeType(1)
qc.shape2.setUseSymbolV2(True)
qc.shape2.setShapeStyleSymbol(bluesym)
qc.c.addItem(qc.shape2)
qc.shape3 = QgsComposerShape(34,sy-12,10,12,qc.c)
qc.shape3.setShapeType(1)
qc.shape3.setUseSymbolV2(True)
qc.shape3.setShapeStyleSymbol(yellowsym)
qc.c.addItem(qc.shape3)
qc.output("/qgis_data/map.jpg", "jpg")
Verify that your output image looks similar to the following:
How it works...
This simple graphical output is nearly 40 lines of code. While there may be some limited uses for dealing with these shapes, in most cases, the simpler route will be to just import images. However, it provides a good foundation for a richer graphics API, as QGIS continues to evolve.
There's more...
If you are using fill symbols within a Python plugin in a QGIS version less than 2.6, you must ensure that the symbols are defined in the global scope, or QGIS will crash due to a bug. The easiest way to include the variables in the global scope is to define them immediately after the import statements. It also affects scripts that are run in the Script Runner plugin. This bug was fixed in version 2.6 and subsequent versions.
Adding a grid to the map
An annotated reference grid is useful for map products used to locate features. This recipe teaches you how to add both reference lines on a map and annotations for the lines around the edges of the map.
Getting ready
You will need a shapefile for this map from https://geospatialpython.googlecode.com/svn/Mississippi.zip, and you need to extract it to your qgis_data directory, to a subdirectory named ms.
As with the previous recipes in this chapter, we will use the MapComposer library from https://geospatialpython.googlecode.com/svn/MapComposer.py to simplify the creation of the map composition.
Place the file in the .qgis2/python directory within your home directory.
How to do it...
In this recipe, the general steps are to create the map composition, establish the overall grid parameters, define the grid line placement, and then style the grid and annotations. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/qgis_data/ms/mmississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
setGridAnnoPos = qc.composerMap.setGridAnnotationPosition
setGridAnnoDir = qc.composerMap.setGridAnnotationDirection
qcm = QgsComposerMap
qc.composerMap.setGridEnabled(True)
qc.composerMap.setGridIntervalX(.75)
qc.composerMap.setGridIntervalY(.75)
qc.composerMap.setGridStyle(qcm.Solid)
qc.composerMap.setShowGridAnnotation(True)
qc.composerMap.setGridAnnotationPrecision(0)
setGridAnnoPos(qcm.OutsideMapFrame, qcm.Top)
setGridAnnoDir(qcm.Horizontal, qcm.Top)
setGridAnnoPos(qcm.OutsideMapFrame, qcm.Bottom)
setGridAnnoDir(qcm.Horizontal, qcm.Bottom)
setGridAnnoPos(qcm.OutsideMapFrame, qcm.Left)
setGridAnnoDir(qcm.Vertical, qcm.Left)
setGridAnnoPos(qcm.OutsideMapFrame, qcm.Right)
setGridAnnoDir(qcm.Vertical, qcm.Right)
qc.composerMap.setAnnotationFrameDistance(1)
qc.composerMap.setGridPenWidth(.2)
qc.composerMap.setGridPenColor(QColor(0, 0, 0))
qc.composerMap.setAnnotationFontColor(QColor(0, 0, 0))
qc.c.addComposerMap(qc.composerMap)
qc.output("/qgis_data/map.jpg", "jpg")
Verify that your output image looks similar to the following:
How it works...
This recipe has a lot of steps because the grids are customizable. The order of operations is important as well. Notice that we do not add the map to the composition until the very end. Often, you will make what seem to be minor changes and the grid may not render. Hence, modify this recipe carefully.
Adding a table to the map
QGIS composer provides an object to add a table to a composition, representing either the attributes of a vector layer or an arbitrary text table you create. In this recipe, we'll add a table to the composition with the attributes of our map layer shapefile.
Getting ready
Download the shapefile for this map from https://geospatialpython.googlecode.com/svn/Mississippi.zip and extract it to your qgis_data directory, to a subdirectory named ms.
As with the previous recipes in this chapter, we will use the MapComposer library from https://geospatialpython.googlecode.com/svn/MapComposer.py to simplify the creation of the map composition.
Place the file in the .qgis2/python directory within your home directory.
How to do it...
The following steps will create a map composition, add the table, and output the composition to an image:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgisfromqgis.core import *
from qgisfromqgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
qc.table = QgsComposerAttributeTable(qc.c)
qc.table.setComposerMap(qc.composerMap)
qc.table.setVectorLayer(lyr)
mch = qc.composerMap.rect().height()
qc.table.setItemPosition(qc.x, qc.y + mch + 20)
qc.c.addItem(qc.table)
qc.output("/qgis_data/map.jpg", "jpg")
How it works...
The table object is very straight forward. Using the attributes of a vector layer is automatic. You can also build the table cell by cell if you want to display customized information.
Adding a world file to a map image
Exporting a map as an image removes all of its spatial information. However, you can create an external text file called a world file, which provides the georeferencing information for the raster image, so that it can be used by GIS software, including QGIS, as a raster layer. In this recipe, we'll export a map composition as an image and create a world file with it.
Getting ready
You will need to download the zipped shapefile from https://geospatialpython.googlecode.com/svn/Mississippi.zip and extract it to your qgis_data directory, to a subdirectory named ms.
In addition to the shapefile, you will also need the MapComposer class to simplify the code needed to add this one element. If you have not already used it in a previous recipe, you can download it from https://geospatialpython.googlecode.com/svn/MapComposer.py.
This file must be accessible from the QGIS Python console; for this, you need to ensure that it is in the python path directory. Place the file in the .qgis2/python directory within your home directory.
How to do it...
First, we'll create the map composition, then we'll save it as an image, and finally we'll generate the world file. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgisfromqgis.core import *
from qgisfromqgis.gui import *
import MapComposer
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
mr = iface.mapCanvas().mapRenderer()
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)
output = "/qgis_data/map"
qc.output(output + ".jpg", "jpg")
qc.c.setWorldFileMap(qc.composerMap)
qc.c.setGenerateWorldFile(True)
wf = qc.c.computeWorldFileParameters()
with open(output + ".jgw", "w") as f:
f.write("%s\n" % wf[0])
f.write("%s\n" % wf[1])
f.write("%s\n" % wf[3])
f.write("%s\n" % wf[4])
f.write("%s\n" % wf[2])
f.write("%s\n" % wf[5])
How it works...
The world file contains the ground distance per pixel and the upper-left coordinate of the map image. The QGIS composer automatically generates this information based on the referenced map. The world file's name must be the same as the image with an extension that uses the first and last letter of the image file extension plus the letter w. For example, a .TIFF image file will have a world file with the extension .TFW. You can learn more about what the world file variables in each line mean at http://en.wikipedia.org/wiki/World_file.
Saving a map to a project
Saving a project automatically can be useful for autosave features or as part of a process to autogenerate projects from dynamically updated data. In this recipe, we'll save a QGIS project to a .qgs project file.
Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data directory, to a subdirectory named ms:
https://geospatialpython.googlecode.com/svn/Mississippi.zip
How to do it...
We will create a simple QGIS project by loading a shapefile layer, then we'll access the project object, and save the map project to a file, as follows:
from PyQt4.QtCore import *
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.shp", "Mississippi", "ogr")
reg = QgsMapLayerRegistry.instance()
reg.addMapLayer(lyr)
f = QFileInfo("/Users/joellawhead/qgis_data/myProject.qgs")
p = QgsProject.instance()
p.write(f)
How it works...
QGIS simply creates and XML document with all the project settings and GIS map settings. You can read and even modify the XML output by hand.
Loading a map from a project
This recipe demonstrates how to load a project from a .qgs XML file. Loading a project will set up the map and project settings for a previously saved project within QGIS.
Getting ready
You will need to complete the previous recipe, Saving a map to a project, so that you have a project named myProject.qgs in your qgis_data folder.
How to do it...
For this recipe, you need to set up a file object, set a resource path, and then read the file object that references the project file. To do this, you need to perform the following steps:
from PyQt4.QtCore import *
f = QFileInfo("/Users/joellawhead/qgis_data/myProject.qgs")
p = QgsProject.instance()
p.readPath("/Users/joellawhead/qgis_data/")
p.read(f)
How it works...
QGIS has a setting to save references to data and other files either as relative paths, which are relative to the project file, or absolute paths, which contain the full path. If the saved paths are absolute, PyQGIS will be unable to locate data sources. Setting the read path to the full system path of the project file ensures that QGIS can find all the referenced files in the project file, if they are saved as relative paths.
Chapter 7. Interacting with the User
In this chapter, we will cover the following recipes:
Introduction
QGIS has been built using the comprehensive graphical user interface framework called Qt. Both QGIS and Qt have Python APIs. In this chapter, we'll learn how to interact with the user in order to collect and display information outside the default QGIS interface. Qt has excellent documentation of its own, and since QGIS is built on top of Qt, all of this documentation applies to QGIS. You can find the Qt documentation at http://qt-project.org.
Using log files
Log files provide a way to track exactly what is going on in a Python plugin or script, by creating messages that are available even if the script or QGIS crashes. These log messages make troubleshooting easier. In this recipe, we'll demonstrate two methods used for logging. One method is using actual log files on the filesystem, and the other is using the QGIS Log Messages window, which is available by clicking on the yellow triangle with an exclamation point at the bottom-right corner of the QGIS application window, or by selecting View menu, then clicking on Panels, and then checking Log Messages.
Getting ready
To use log files, we must configure the QGIS_LOG_FILE environment variable by performing the following steps so that QGIS knows where to write log messages:
How to do it...
We will write a message to our custom log file configured in the previous section, and then write a message to the tabbed QGIS Log Messages window. To do this, we need to perform the following steps:
QgsLogger.logMessageToFile("This is a message to a log file.")
QgsMessageLog.logMessage("This is a message from the Python Console", "Python Console")
How it works...
The traditional log file provides a simple and portable way to record information from QGIS using Python. The Log Messages window is a more structured way to view information from many different sources, with a tabbed interface and a convenient timestamp on each message. In most cases, you'll probably want to use the Log Messages window because QGIS users are familiar with it. However, use it sparingly. It's OK to log lots of messages when testing code, but restrict logging for plugins or applications to serious errors only. Heavy logging — for example, logging messages while looping over every feature in a layer — can slow down QGIS or even cause it to crash.
Creating a simple message dialog
Message dialogs pop up to grab the user's attention and to display important information. In this recipe, we'll create a simple information dialog.
Getting ready
Open the QGIS Python Console by going to the Plugins menu and selecting Python Console.
How to do it...
We will create a message dialog and display some text in it, as follows:
from PyQt4.QtGui import *
msg = QMessageBox()
msg.setText("This is a simple information message.")
msg.show()
How it works...
Note that we are directly using the underlying Qt framework from which QGIS is built. QGIS API's objects begin with Qgs, while Qt objects begin with just the letter Q.
There's more…
A message dialog box should also be used sparingly because it is a popup that can become annoying to the user or can get lost in the array of open windows and dialogs on a user's desktop. The preferred method for a QGIS information message is to use the QgsMessageBar() method, which is well-documented in the PyQGIS Developer Cookbook found at http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/communicating.html
Creating a warning dialog
Sometimes, you need to notify a user when an issue is detected, which might lead to problems if the user continues. This situation calls for a warning dialog, which we will demonstrate in this recipe.
Getting ready
Open the QGIS Python Console by going to the Plugins menu and selecting Python Console.
How to do it...
In this recipe, we will create a dialog, set the warning message and a warning icon, and display the dialog, as follows:
from PyQt4.QtGui import *
msg = QMessageBox()
msg.setText("This is a warning...")
msg.setIcon(QMessageBox.Warning)
msg.show()
How it works...
Message dialogs should be used sparingly because they interrupt the user experience and can easily become annoying. However, sometimes it is important to prevent a user from taking an action that may cause data corruption or a program to crash.
Creating an error dialog
You can issue an error dialog box when you need to end a process due to a serious error. In this recipe, we'll create an example of an error dialog.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
In this recipe, we will create a dialog, assign an error message, set an error icon, and display the dialog, as follows:
from PyQt4.QtGui import *
msg = QMessageBox()
msg.setText("This is an error!")
msg.setIcon(QMessageBox.Critical)
msg.show()
How it works...
An important feature of modal windows is that they always stay on top of the application, regardless of whether the user changes the window's focus. This feature ensures that the user addresses the dialog before they proceed.
Displaying a progress bar
A progress bar is a dynamic dialog that displays the percentage complete bar for a running process that the user must wait for before continuing. A progress bar is more advanced than a simple dialog because it needs to be updated continuously. In this recipe, we'll create a simple progress dialog based on a timer.
Getting ready
No groundwork is required for this recipe.
How to do it...
The steps for this recipe include creating a custom class based on the QProgressBar, initializing the dialog and setting its size and title, creating a timer, connecting the progress bar to the timer, starting the time, and displaying the progress. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
class Bar(QProgressBar):
value = 0
def increaseValue(self):
self.setValue(self.value)
self.value = self.value+1
bar = Bar()
bar.resize(300,40)
bar.setWindowTitle('Working...')
timer = QTimer()
timer.timeout.connect(bar.increaseValue)
timer.start(500)
bar.show()
How it works...
The progress bar will stop when its value reaches 100, but our timer will continue to run until the stop() method is called. In a more realistic implementation, you will need a way to determine whether the monitored process is complete. The indicator might be the creation of a file, or even better, a signal. The Qt framework uses the concept of signals and slots to connect GUI elements. A GUI is event-based, with multiple events occurring at different times, including user actions and other triggers. The signal/slot system allows you to define reactions to events when they occur, without writing code to continuously monitor changes. In this recipe, we use the predefined signal from the timer and create our own slot. A slot is just a method identified as a slot by passing it to a signal's connect() method. The following screenshot shows an example of the progress bar:
There's more…
In a complex GUI application such as QGIS, you will end up with multiple signals that trigger multiple slots simultaneously. You must take care that a rapidly updating element such as a progress bar doesn't slow down the application. Using a thread to only update the progress bar when something has truly changed is more efficient. For an example of this technique, take a look at http://snorf.net/blog/2013/12/07/multithreading-in-qgis-python-plugins/.
Using the QgsMessageBar object is preferred to display informative messages, but it can also accept widgets such as the progress bar. The PyQGIS Developer Cookbook has an example that shows how to place the progress bar in the QgsMessageBar object (http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/communicating.html)
Creating a simple text input dialog
In this recipe, we'll demonstrate one of the simplest methods used for accepting input from a user, a text input dialog.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
In this recipe, we will initialize the dialog and then configure its title and label. We'll set the editing mode and the default text. When you click on the OK button, the text will be printed to the Python Console. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
qid = QInputDialog()
title = "Enter Your Name"
label = "Name: "
mode = QLineEdit.Normal
default = "<your name here>"
text, ok = QInputDialog.getText(qid, title, label, mode, default)
print text
How it works...
The editing mode differentiates between normal, which we used here, and password, to obscure typed passwords. Although we haven't used it in this example, the return code is a Boolean, which can be used to verify that the user input occurred.
Creating a file input dialog
The best way to get a filename from the user is to have them browse to the file using a dialog. You can have the user type in a filename using the text input dialog, but this method is prone to errors. In this recipe, we'll create a file dialog and print the chosen filename to the console.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
In this recipe, we will create and configure the dialog, browse to a file, and print the chosen filename, as follows:
from PyQt4.QtGui import *
qfd = QFileDialog()
title = 'Open File'
path = "/Users/joellawhead/qgis_data"
f = QFileDialog.getOpenFileName(qfd, title, path)
print f
How it works...
The file dialog simply provides a filename. After the user selects the file, you must open it or perform some other operation on it. If the user cancels the file dialog, the file variable is just an empty string. You can use the QFileInfo object to get the path of the selected file:
from PyQt4.QtCore import *path = QFileInfo(f).path()
Then, you can save this path in the project settings, as demonstrated in Chapter 1, Automating QGIS. This way, next time when you open a file dialog, you will start in the same directory location as the previous file, which is usually more convenient.
There's more…
You can also use the QFileDialog() method to get the filenames to be saved. You can use the FileMode enumeration to restrict the user to selecting directories as well.
Creating a combobox
A combobox provides a drop-down list to limit the user's selection to a defined set of choices. In this recipe, we'll create a simple combobox.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
In this recipe, we will initialize the combobox widget, add choices to it, resize it, display it, and then capture the user input in a variable for printing to the console. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
cb = QComboBox()
cb.addItems(["North", "South", "West", "East"])
cb.resize(200,35)
cb.show()
text = cb.currentText()
print text
How it works...
Items added to the combobox are a Python list. This feature makes it easy to dynamically generate choices using Python as the result of a database query or other dynamic data. You may also want the index of the object in the list, which you can access with the currentIndex property.
Creating radio buttons
Radio buttons are good for user input when you want the user to select an exclusive choice from a list of options, as opposed to checkboxes, which let a user select many or all of the options available. For longer lists of choices, a combobox is a better option. Once a radio button is selected, you can unselect it only by choosing another radio button.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
Radio buttons are easier to manage as part of a class, so we'll create a custom class that also includes a textbox to view which radio button is selected. To do this, perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
class RadioButton(QWidget):
def __init__(self, parent=None):
QWidget.__init__(self, parent)
self.layout = QVBoxLayout()
self.rb1 = QRadioButton('Option 1')
self.rb2 = QRadioButton('Option 2')
self.rb3 = QRadioButton('Option 3')
self.textbox = QLineEdit()
self.rb1.toggled.connect(self.rb1_active)
self.rb2.toggled.connect(self.rb2_active)
self.rb3.toggled.connect(self.rb3_active)
self.layout.addWidget(self.rb1)
self.layout.addWidget(self.rb2)
self.layout.addWidget(self.rb3)
self.layout.addWidget(self.textbox)
self.setLayout(self.layout)
def rb1_active(self, on):
if on:
self.textbox.setText('Option 1 selected')
def rb2_active(self, on):
if on:
self.textbox.setText('Option 2 selected')
def rb3_active(self, on):
if on:
self.textbox.setText('Option 3 selected')
buttons = RadioButton()
buttons.show()
How it works...
Radio buttons are almost always grouped together as a single object because they are related options. Many GUI frameworks expose them as a single object in the API; however, Qt keeps them as separate objects for maximum control.
Creating checkboxes
Checkboxes are closely related to radio buttons, in that they offer options around a single theme. However, unlike radio buttons, checkboxes can be selected or unselected. You can also select more than one checkbox at a time. In this recipe, we'll create a dialog with checkboxes and some textboxes to programmatically track which checkboxes are selected.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
In this recipe, we'll use a class to manage the checkboxes and the textbox widgets, as follows:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
class CheckBox(QWidget):
def __init__(self, parent=None):
QWidget.__init__(self, parent)
self.layout = QVBoxLayout()
self.cb1 = QCheckBox('Option 1')
self.cb2 = QCheckBox('Option 2')
self.cb3 = QCheckBox('Option 3')
self.textbox1 = QLineEdit()
self.textbox2 = QLineEdit()
self.textbox3 = QLineEdit()
self.cb1.toggled.connect(self.cb1_active)
self.cb2.toggled.connect(self.cb2_active)
self.cb3.toggled.connect(self.cb3_active)
self.layout.addWidget(self.cb1)
self.layout.addWidget(self.cb2)
self.layout.addWidget(self.cb3)
self.layout.addWidget(self.textbox1)
self.layout.addWidget(self.textbox2)
self.layout.addWidget(self.textbox3)
self.setLayout(self.layout)
First checkbox
def cb1_active(self, on):
if on:
self.textbox1.setText('Option 1 selected')
else: self.textbox1.setText('')
Second checkbox
def cb2_active(self, on):
if on:
self.textbox2.setText('Option 2 selected')
else: self.textbox2.setText('')
Third checkbox
def cb3_active(self, on):
if on:
self.textbox3.setText('Option 3 selected')
else: self.textbox3.setText('')
buttons = CheckBox()
buttons.show()
How it works...
Textboxes allow you to verify that you are programmatically catching the signal from the checkboxes as they are toggled. You can also use a single checkbox as a Boolean for an option with only two choices. When you run this recipe, the result should look similar to the following screenshot:
Creating tabs
Tabs allow you to condense the information from several screens into a relatively small place. Tabs provide titles at the top of the window, which present an individual widget layout for each title when clicked. In this recipe, we'll create a simple tabbed interface.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
We will create an overarching tab widget. Then, we'll create three generic widgets to represent our tabs. We'll set up layouts with three different GUI widgets and assign each layout to our tab widgets. Finally, we'll add our tabs to the tab widget and display it. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
qtw = QTabWidget()
qtw.setWindowTitle("PyQGIS Tab Example")
qtw.resize(400,300)
tab1 = QWidget()
tab2 = QWidget()
tab3 = QWidget()
layout1 = QVBoxLayout()
layout1.addWidget(QTextEdit("Type text here"))
tab1.setLayout(layout1)
layout2 = QVBoxLayout()
layout2.addWidget(QPushButton("Button"))
tab2.setLayout(layout2)
layout3 = QVBoxLayout()
layout3.addWidget(QLabel("Label text example"))
tab3.setLayout(layout3)
qtw.addTab(tab1, "First Tab")
qtw.addTab(tab2, "Second Tab")
qtw.addTab(tab3, "Third Tab")
qtw.show()
How it works...
The key to this recipe is the QTabWidget().method. Everything else is just arbitrary layouts and widgets, which are ultimately contained in the tab widget.
Note
The general rule of thumb for tabs is to keep the information in them independently.
There is no way to predict how the user will interact with a tabbed interface, and if the information across tabs is dependent, problems will arise.
Stepping the user through a wizard
A wizard is a series of dialogs that lead the user through a sequence of steps. The information on each page of a wizard might relate in some way to the information on other pages. In this recipe, we'll create a simple three-page wizard to collect some information from the user and display it back to them.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
We will create three classes, each representing a page of our wizard. The first two pages will collect information and the third page will display it back to the user. We will create a QWizard object to tie the page classes together. We will also use the concept of wizard fields to pass information among the pages.
To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
class Page1(QWizardPage):
def __init__(self, parent=None):
super(Page1, self).__init__(parent)
self.setTitle("What's Your Name?")
self.setSubTitle("Please enter your name.")
self.label = QLabel("Name:")
self.uname = QLineEdit("<enter your name>")
self.registerField("uname", self.uname)
layout = QVBoxLayout()
layout.addWidget(self.label)
layout.addWidget(self.uname)
self.setLayout(layout)
class Page2(QWizardPage):
def __init__(self, parent=None):
super(Page2, self).__init__(parent)
self.setTitle("When's Your Birthday?")
self.setSubTitle("Select Your Birthday.")
self.cal = QCalendarWidget()
self.registerField("cal", self.cal, "selectedDate")
layout = QVBoxLayout()
layout.addWidget(self.cal)
self.setLayout(layout)
class Page3(QWizardPage):
def __init__(self, parent=None):
super(Page3, self).__init__(parent)
self.setTitle("About You")
self.setSubTitle("Here is Your Information:")
self.name_lbl = QLabel()
self.date_lbl = QLabel()
layout = QVBoxLayout()
layout.addWidget(self.name_lbl)
layout.addWidget(self.date_lbl)
self.setLayout(layout)
def initializePage(self):
uname = self.field("uname")
date = self.field("cal").toString()
self.name_lbl.setText("Your name is %s" % uname)
self.date_lbl.setText("Your birthday is %s" % date)
wiz = QWizard()
wiz.addPage(Page1())
wiz.addPage(Page2())
wiz.addPage(Page3())
wiz.show()
How it works...
The wizard interface shares many traits with the tab widget, with some important differences. The wizard only allows the user to move back and forth in a linear progression based on the page order. It can share information among pages if the information is registered as fields, which then makes the pages global to the scope of the wizard. However, the field() method is a protected method, so your pages must be defined as classes inherited from the QWizardPage object for the registered fields to work as expected. The following screenshot shows the calendar screen of the wizard:
Keeping dialogs on top
It's easy to lose track of windows that pop up in front of QGIS. As soon as the user changes focus to move the main QGIS application window, your dialog can disappear behind it, forcing the user to rearrange their whole desktop to find the smaller window again. Fortunately, Qt has a window setting called hint, which allows you to force a window to stay on top. This type of dialog is called a modal dialog. In this recipe, we'll create a message dialog using hint.
Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on Python Console.
How to do it...
In this recipe, we will create a simple message dialog and set it to stay on top, as follows:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
msg = " This window will always stay on top."
lbl = QLabel(msg, None, Qt.WindowStaysOnTopHint)
lbl.resize(400,400)
lbl.show()
How it works...
This simple technique can help to ensure that a user addresses an important dialog before moving on.
Chapter 8. QGIS Workflows
In this chapter, we will cover the following recipes:
Introduction
In this chapter, we'll use Python to perform a variety of common geospatial tasks in QGIS, which may be complete workflows in themselves or key pieces of larger workflows.
Creating an NDVI
A Normalized Difference Vegetation Index (NDVI) is one of the oldest remote sensing algorithms used to detect green vegetation in an area of interest, using the red and near-infrared bands of an image. The chlorophyll in plants absorbs visible light, including the red band, while the cell structures of plants reflect near-infrared light. The NDVI formula provides a ratio of near-infrared light to the total incoming radiation, which serves as an indicator of vegetation density. This recipe will use Python to control the QGIS raster calculator in order to create an NDVI using a multispectral image of a farm field.
Getting ready
Download the image from https://geospatialpython.googlecode.com/svn/farm-field.tif and place it in your qgis_data to a directory named rasters.
How to do it...
We will load the raster as a QGIS raster layer, perform the NDVI algorithm, and finally apply a color ramp to the raster so that we can easily visualize the green vegetation in the image. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
from qgis.analysis import *
rasterName = "farm"
raster = QgsRasterLayer("/Users/joellawhead/qgis_data/\
rasters/farm-field.tif", rasterName)
ir = QgsRasterCalculatorEntry()
r = QgsRasterCalculatorEntry()
ir.raster = raster
r.raster = raster
ir.bandNumber = 2
r.bandNumber = 1
ir.ref = rasterName + "@2"
r.ref = rasterName + "@1"
references = (ir.ref, r.ref, ir.ref, r.ref)
exp = "1.0 * (%s - %s) / 1.0 + (%s + %s)" % references
output = "/Users/joellawhead/qgis_data/rasters/ndvi.tif"
e = raster.extent()
w = raster.width()
h = raster.height()
entries = [ir,r]
ndvi = QgsRasterCalculator(exp, output, "GTiff", e, w, h, entries)
ndvi.processCalculation()
lyr = QgsRasterLayer(output, "NDVI")
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum
limits = QgsRaster.ContrastEnhancementMinMax
lyr.setContrastEnhancement(algorithm, limits)
s = QgsRasterShader()
c = QgsColorRampShader()
c.setColorRampType(QgsColorRampShader.INTERPOLATED)
i = []
qri = QgsColorRampShader.ColorRampItem
i.append(qri(0, QColor(0,0,0,0), 'NODATA'))
i.append(qri(214, QColor(120,69,25,255), 'Lowest Biomass'))
i.append(qri(236, QColor(255,178,74,255), 'Lower Biomass'))
i.append(qri(258, QColor(255,237,166,255), 'Low Biomass'))
i.append(qri(280, QColor(173,232,94,255), 'Moderate Biomass'))
i.append(qri(303, QColor(135,181,64,255), 'High Biomass'))
i.append(qri(325, QColor(3,156,0,255), 'Higher Biomass'))
i.append(qri(400, QColor(1,100,0,255), 'Highest Biomass'))
c.setColorRampItemList(i)
s.setRasterShaderFunction(c)
ps = QgsSingleBandPseudoColorRenderer(lyr.dataProvider(), 1, s)
lyr.setRenderer(ps)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
The QGIS raster calculator is exactly what its name implies. It allows you to perform array math on images. Both the QGIS raster menu and the Processing Toolbox have several raster processing tools, but the raster calculator can perform custom analysis that can be defined in a single mathematical equation. The NDVI algorithm is the infrared band minus the red band divided by the infrared band plus the red band, or (IR-R)/(IR+R). In our calculator expression, we multiply each side of the equation by 1.0 to avoid division-by-zero errors. Your output should look similar to the following image if you load the result into QGIS. In this screenshot, NODATA values are represented as black; however, your QGIS installation may default to using white:
Geocoding addresses
Geocoding is the process of turning an address into earth coordinates. Geocoding requires a comprehensive dataset that ties zip codes, cities, streets, and street numbers (or street number ranges) to the coordinates. In order to have a geocoder that works for any address in the world with reasonable accuracy, you need to use a cloud service because geocoding datasets are very dense and can be quite large. Creating a geocoding dataset for any area beyond a few square miles requires a significant amount of resources. There are several services available, including Google and MapQuest. In QGIS, the easiest way to access these services is through the QGIS Python GeoCoding plugin. In this recipe, we'll use this plugin to programmatically geocode an address.
Getting ready
You will need to install the QGIS Python GeoCoding plugin by Alessandro Pasotti for this exercise, as follows:
How to do it...
In this recipe, we will access the GeoCoding plugin methods using Python, feed the plugin an address, and print the resulting coordinates. To do this, we need to perform the following steps:
from GeoCoding.geopy.geocoders import Nominatim
geocoder = Nominatim()
location = geocoder.geocode("The Ugly Pirate, Bay Saint Louis, MS 39520")
print location
(u'The Ugly Pirate, 144, Demontluzin Street, Bay St. Louis, Hancock County, Mississippi, 39520, United States of America', (30.3124059, -89.3281418))
How it works...
The GeoCoding plugin is designed to be used with the QGIS GUI interface. However, like most QGIS plugins, it is written in Python and we can access it through the Python console.
Tip
This trick doesn't work with every plugin. Sometimes, the user interface is too intertwined with the plugin's GUI that you can't programmatically use the plugin's methods without triggering the GUI.
However, in most cases, you can use the plugins to not only extend QGIS but also for its powerful Python API. If you write a plugin yourself, consider making it accessible to the QGIS Python console in order to make it even more useful.
There's more...
The GeoCoding plugin also provides the Google geocoding engine as a service. Note that the Google mapping API, including geocoding, comes with some limitations that can be found at https://developers.google.com/maps-engine/documentation/limits.
Creating raster footprints
A common way to catalog raster datasets that consist of a large number of files is by creating a vector dataset with polygon footprints of the extent of each raster file. The vector footprint files can be easily loaded in QGIS or served over the Web. This recipe demonstrates a method to create a footprint vector from a directory full of raster files. We will build this program as a Processing Toolbox script, which is easier to build than a QGIS plugin and provides both a GUI and a clean programming API.
Getting ready
Download the sample raster image scenes from https://geospatialpython.googlecode.com/svn/scenes.zip. Unzip the scenes directory into a directory named rasters in your qgis_data directory.
For this recipe, we will create a new Processing Toolbox script using the following steps:
How to do it...
First, we will use the Processing Toolbox header naming conventions ,which will simultaneously define our GUI and the input and output variables. Then, we'll create the logic, which processes a raster directory and calculates the image extents, and finally we'll create the vector file. To do this, we need to perform the following steps:
##Vector=group
##Input_Raster_Directory=folder
##Output_Footprints_Vector=output vector
import os
from qgis.core import *
files = os.listdir(Input_Raster_Directory)
footprints = []
crs = ""
for f in files:
try:
fn = os.path.join(Input_Raster_Directory, f)
lyr = QgsRasterLayer(fn, "Input Raster")
crs = lyr.crs()
e = lyr.extent()
ulx = e.xMinimum()
uly = e.yMaximum()
lrx = e.xMaximum()
lry = e.yMinimum()
ul = (ulx, uly)
ur = (lrx, uly)
lr = (lrx, lry)
ll = (ulx, lry)
fp = {}
points = []
points.append(QgsPoint(*ul))
points.append(QgsPoint(*ur))
points.append(QgsPoint(*lr))
points.append(QgsPoint(*ll))
points.append(QgsPoint(*ul))
fp["points"] = points
fp["raster"] = fn
footprints.append(fp)
except:
progress.setInfo("Warning: The file %s does not appear to be a \
valid raster file." % f)
vectorLyr = QgsVectorLayer("Polygon?crs=%s&field=raster:string(100)" \
% crs, "Footprints" , "memory")
vpr = vectorLyr.dataProvider()
features = []
for fp in footprints:
poly = QgsGeometry.fromPolygon([fp["points"]])
f = QgsFeature()
f.setGeometry(poly)
f.setAttributes([fp["raster"]])
features.append(f)
vpr.addFeatures(features)
vectorLyr.updateExtents()
driver = "Esri Shapefile"
epsg = crs.postgisSrid()
srs = "EPSG:%s" % epsg
error = QgsVectorFileWriter.writeAsVectorFormat\ (vectorLyr, Output_Footprints_Vector, \"utf-8", srs, driver)
if error == QgsVectorFileWriter.NoError:
pass
else:
progress.setInfo("Unable to output footprints.")
How it works...
It is important to remember that a Processing Toolbox script can be run in several different contexts: as a GUI process such as a plugin, as a programmatic script from the Python console, a Python plugin, or the Graphical Modeler framework. Therefore, it is important to follow the documented Processing Toolbox API so that it can work as expected in all of these contexts. This includes defining clear inputs and outputs and using the progress object. The progress object is the proper way to provide feedback to the user for both progress bars and messages. Although the API allows you to define outputs that let the user select different OGR and GDAL outputs, only shapefiles and GeoTiffs seem to be supported currently.
There's more...
The Graphical Modeler tool within the Processing Toolbox lets you visually chain different processing algorithms together to create complex workflows. Another interesting plugin is the Processing Workflows plugin, which not only allows you to chain algorithms together but also provides a nice tabbed interface with instructions for the end user to help beginners through complicated geospatial workflows.
The following screenshot shows the raster footprints over an OpenStreetMap basemap:
Performing network analysis
Network analysis allows you to find the most efficient route between two points along a defined network of connected lines. These lines might represent streets, pipes in a water system, the Internet, or any number of connected systems. Network analysis abstracts this common problem so that the same techniques and algorithms can be applied across a wide variety of applications. In this recipe, we'll use a generic line network to perform analysis using the Dijkstra algorithm, which is one of the oldest algorithms used to find the shortest path. QGIS has all of this functionality built in.
Getting ready
First, download the vector dataset from the following link, which includes two shapefiles, and unzip it to a directory named shapes in your qgis_data directory:
https://geospatialpython.googlecode.com/svn/network.zip
How to do it...
We will create a network graph by defining the beginning and end of our network of lines, and then use this graph to determine the shortest route along the line network between our two points. To do this, we need to perform the following steps:
from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *
from PyQt4.QtCore import *
network = QgsVectorLayer("/Users/joellawhead/qgis_data/shapes/\Network.shp", "Network Layer", "ogr")
waypoints = QgsVectorLayer("/Users/joellawhead/qgis_data/shapes/\ NetworkPoints.shp", "Waypoints", "ogr")
director = QgsLineVectorLayerDirector(network, -1, '', '', '', 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = network.crs()
builder = QgsGraphBuilder(crs)
ptStart = QgsPoint(-0.8095638694, -0.1578175511)
ptStop = QgsPoint(0.8907435677, 0.4430834924)
tiePoints = director.makeGraph(builder, [ptStart, ptStop])
graph = builder.graph()
tStart = tiePoints[0]
tStop = tiePoints[1]
idStart = graph.findVertex(tStart)
idStop = graph.findVertex(tStop)
(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)
p = []
curPos = idStop
while curPos != idStart:
p.append(graph.vertex(graph.arc(tree[curPos]).inVertex()).point())
curPos = graph.arc(tree[curPos]).outVertex()
p.append(tStart)
QgsMapLayerRegistry.instance().addMapLayers([network,waypoints])
rb = QgsRubberBand(iface.mapCanvas())
rb.setColor(Qt.red)
for pnt in p:
rb.addPoint(pnt)
How it works...
This recipe is an extremely simple example to be used as a starting point for the investigation of a very complex and powerful tool. The line network shapefiles can have a field defining each line as one-way in a certain direction or bi-directional. The point shapefile provides waypoints along the network, as well as resistance values, which might represent elevation, traffic density, or other factors that will make a route less desirable. The output will look similar to the following image:
More information and examples of the network analysis tool are available in the QGIS documentation at http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/network_analysis.html.
Routing along streets
Sometimes, you may want to find the best driving route between two addresses. Street routing has now become so commonplace that we take it for granted. However, if you explore the recipes on geocoding and network analysis in this book, you will begin to see what a complex challenge street routing truly is. To perform routing operations in QGIS, we'll use the QGIS GeoSearch plugin, which is written in Python, so that we can access it from the console.
Getting ready
You will need to install the QGIS Python GeoSearch plugin for this exercise in order to do the routing, as well as the QGIS OpenLayers Plugin to overlay the result on a Google map, as follows:
How to do it...
We will invoke the GeoSearch plugin's routing function, which uses Google's routing engine, and display the result over a Google map from the OpenLayers plugin. To do this, we need to perform the following steps:
import qgis.utils
from GeoSearch import geosearchdialog, GoogleMapsApi
openLyrs = qgis.utils.plugins['openlayers_plugin']
g = geosearchdialog.GeoSearchDialog(iface)
g.SearchRoute([])
d = GoogleMapsApi.directions.Directions()
origin = "Boston, MA"
dest = "2517 Main Rd, Dedham, ME 04429"
route = d.GetDirections(origin, dest, mode = "driving", \ waypoints=None, avoid=None, units="imperial")
layerType = openLyrs._olLayerTypeRegistry.getById(4)
openLyrs.addLayer(layerType)
g.CreateVectorLayerGeoSearch_Route(route)
How it works...
Even though they are built in Python, neither the GeoSearch nor OpenLayers plugins are designed to be used with Python by a programmer. However, we are still able to use the tools in a script without much trouble. To take advantage of some of the routing options available with the GeoSearch plugin, you can use its GUI to see what is available and then add those options to your script. Beware that most plugins don't have a true API, so a slight change to the plugin in a future version can break your script.
Tracking a GPS
QGIS has the ability to connect to a GPS that uses the NMEA standard. QGIS can use a serial connection to the GPS or communicate with it through the open source software called gpsd using the QGIS GPS information panel. The location information from the GPS can be displayed on the QGIS map, and QGIS can even automatically pan the map to follow the GPS point. In this recipe, we'll use the QGIS API to process NMEA sentences and update a point on a global map. The information needed to connect to different GPS units can vary widely, so we'll use an online NMEA sentence generator to get some simulated GPS information.
Getting ready
This recipe doesn't require any preparation.
How to do it...
We'll grab a batch of NMEA GPS sentences from a free online generator, create a worldwide basemap using online geojson data, create a vector point layer to represent the GPS, and finally loop through the sentences and make our track point move around the map.
To do this, we need to perform the following steps:
import urllib
import urllib2
import time
url = 'http://freenmea.net/api/emitnmea'
values = {'types' : 'default'}
data = urllib.urlencode(values)
req = urllib2.Request(url, data)
response = urllib2.urlopen(req)
results = response.read().split("\n")
wb = "https://raw.githubusercontent.com/johan/world.geo.json/master/countries.geo.json"
basemap = QgsVectorLayer(wb, "Countries", "ogr")
qmr = QgsMapLayerRegistry.instance()
qmr.addMapLayer(basemap)
vectorLyr = QgsVectorLayer('Point?crs=epsg:4326', \'GPS Point' , "memory")
vpr = vectorLyr.dataProvider()
cLat = None
cLon = None
canvas = iface.mapCanvas()
c = QgsNMEAConnection(None)
firstPt = True
for r in results:
l = len(r)
if "GGA" in r:
c.processGGASentence(r,l)
elif "RMC" in r:
c.processRMCSentence(r,l)
elif "GSV" in r:
c.processGSVSentence(r,l)
elif "VTG" in r:
c.processVTGSentence(r,l)
elif "GSA" in r:
c.processGSASentence(r,l)
i=c.currentGPSInformation()
if i.latitude and i.longitude:
lat = i.latitude
lon = i.longitude
if lat==cLat and lon==cLon:
continue
cLat = lat
cLon = lon
pnt = QgsGeometry.fromPoint(QgsPoint(lon,lat))
if firstPt:
firstPt = False
f = QgsFeature()
f.setGeometry(pnt)
vpr.addFeatures([f])
qmr.addMapLayer(vectorLyr)
else:
print lon, lat
vectorLyr.startEditing()
vectorLyr.changeGeometry(1,pnt)
vectorLyr.commitChanges()
vectorLyr.setCacheImage(None)
vectorLyr.updateExtents()
vectorLyr.triggerRepaint()
time.sleep(1)
How it works...
A live GPS will move in a linear, incremental path across the map. In this recipe, we used randomly-generated points that leap around the world, but the concept is the same. To connect a live GPS, you will need to use QGIS's GPS information GUI first to establish a connection, or at least get the correct connection information, and then use Python to automate things from there. Once you have the location information, you can easily manipulate the QGIS map using Python.
There's more...
The NMEA standard is old and widely used, but it is a poorly-designed protocol by modern standards. Nearly every smartphone has a GPS now, but they do not use the NMEA protocol. There are, however, several apps available for nearly every smartphone platform that will output the phone's GPS as NMEA sentences, which can be used by QGIS. Later in this chapter, in the Collecting field data recipe, we'll demonstrate another method for tracking a cell phone, GPS, or even estimated locations for digital devices, which is much simpler and much more modern.
Creating a mapbook
A mapbook is an automatically-generated document, which can also be called an atlas. A mapbook takes a dataset and breaks it down into smaller, detailed maps based on a coverage layer that zooms the larger map to each feature in the coverage in order to make a page of the mapbook. The coverage layer may or may not be the same as the map layer featured on each page of the mapbook. In this recipe, we'll create a mapbook that features all the countries in the world.
Getting ready
For this recipe, you need to download the world countries dataset from https://geospatialpython.googlecode.com/svn/countries.zip and put it in a directory named shapes within your qgis_data directory.
Next, you'll need to install the PyPDF2 library. On Linux or OS X, just open a console and run the following command:
sudo easy_install PyPDF2
On Windows, open the OSGEO4W console from your start menu and run this:
easy_install PyPDF2
Finally, in your qgis_data directory, create a folder called atlas to store the mapbook's output.
How to do it...
We will build a QGIS composition and set it to atlas mode. Then, we'll add a composer map, where each country will be featured, and an overview map. Next, we'll run the atlas process to produce each page of the mapbook as separate PDF files. Finally, we'll combine the individual PDFs into a single PDF file. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
import PyPDF2
import os
filenames = []
mapbook = "/Users/joellawhead/qgis_data/atlas/mapbook.pdf"
coverage = "/Users/joellawhead/qgis_data/shapes/countries.shp"
atlasPattern = "/Users/joellawhead/qgis_data/atlas/output_"
vlyr = QgsVectorLayer(coverage, "Countries", "ogr")
QgsMapLayerRegistry.instance().addMapLayer(vlyr)
mr = QgsMapRenderer()
mr.setLayerSet([vlyr.id()])
mr.setProjectionsEnabled(True)
mr.setMapUnits(QGis.DecimalDegrees)
crs = QgsCoordinateReferenceSystem()
crs.createFromSrid(4326)
mr.setDestinationCrs(crs)
c = QgsComposition(mr)
c.setPaperSize(297, 210)
gray = {"color": "155,155,155"}
mapSym = QgsFillSymbolV2.createSimple(gray)
renderer = QgsSingleSymbolRendererV2(mapSym)
vlyr.setRendererV2(renderer)
atlasMap = QgsComposerMap(c, 20, 20, 130, 130)
atlasMap.setFrameEnabled(True)
c.addComposerMap(atlasMap)
atlas = c.atlasComposition()
atlas.setCoverageLayer(vlyr)
atlas.setHideCoverage(False)
atlas.setEnabled(True)
c.setAtlasMode(QgsComposition.ExportAtlas)
ov = QgsComposerMap(c, 180, 20, 50, 50)
ov.setFrameEnabled(True)
ov.setOverviewFrameMap(atlasMap.id())
c.addComposerMap(ov)
rect = QgsRectangle(vlyr.extent())
ov.setNewExtent(rect)
yellow = {"color": "255,255,0,255"}
ovSym = QgsFillSymbolV2.createSimple(yellow)
ov.setOverviewFrameMapSymbol(ovSym)
lbl = QgsComposerLabel(c)
c.addComposerLabel(lbl)
lbl.setText('[% "CNTRY_NAME" %]')
lbl.setFont(QgsFontUtils.getStandardTestFont())
lbl.adjustSizeToText()
lbl.setSceneRect(QRectF(150, 5, 60, 15))
atlasMap.setAtlasDriven(True)
atlasMap.setAtlasScalingMode(QgsComposerMap.Auto)
atlasMap.setAtlasMargin(0.10)
atlas.setFilenamePattern("'%s' || $feature" % atlasPattern)
atlas.beginRender()
for i in range(0, atlas.numFeatures()):
atlas.prepareForFeature(i)
filename = atlas.currentFilename() + ".pdf"
print "Writing file %s" % filename
filenames.append(filename)
c.exportAsPDF(filename)
atlas.endRender()
output = PyPDF2.PdfFileWriter()
for f in filenames:
pdf = open(f, "rb")
page = PyPDF2.PdfFileReader(pdf)
output.addPage(page.getPage(0))
os.remove(f)
print "Writing final mapbook..."
book = open(mapbook, "wb")
output.write(book)
with open(mapbook, 'wb') as book:
output.write(book)
How it works...
You can customize the template that creates the individual pages as much as you want. The GUI atlas tool can export the atlas to a single file, but this functionality is not available in PyQIS, so we use the pure Python PyPDF2 library. You can also create a template in the GUI, save it, and load it with Python, but it is often easier to make changes if you have the layout available in the code. You should also know that the PDF pages are just images. The maps are exported as rasters, so the mapbook will not be searchable and the file size can be large.
Finding the least cost path
Least cost path (LCP) analysis is the raster equivalent of network analysis, which is used to find the optimal path between two points in a raster. In this recipe, we'll perform LCP analysis on a digital elevation model (DEM).
Getting ready
You need to download the following DEM and extract the ZIP file to your qgis_data/rasters directory: https://geospatialpython.googlecode.com/svn/lcp.zip
How to do it...
We will load our DEM and two shapefiles consisting of start and end points. Then, we'll use GRASS through the Processing Toolbox to create a cumulative cost layer that assigns a cost to each cell in a raster based on its elevation, the value of the other cells around it, and its distance to and from the end points.
Then, we'll use a SAGA processing algorithm to find the least cost path between two points. Finally, we'll load the output onto the map. To do this, we need to perform the following steps:
import processing
path = "/Users/joellawhead/qgis_data/rasters"/"
dem = path + "dem.asc"
start = path + "start-point.shp"
finish = path + "end-point.shp"
demLyr = QgsRasterLayer(dem, "DEM")
ext = demLyr.extent()
xmin = ext.xMinimum()
ymin = ext.yMinimum()
xmax = ext.xMaximum()
ymax = ext.xMaximum()
box = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)
a = QgsVectorLayer(start, "Start", "ogr")
b = QgsVectorLayer(finish, "End", "ogr")
tmpCost = processing.runalg("grass:r.cost",dem,a,b,\
False,False,box,0,-1,0.0001,None)
cost = tmpCost["output"]
tmpMerge = processing.runalg("saga:mergeshapeslayers",\start,finish,None)
merge = tmpMerge["OUT"]
vLyr = QgsVectorLayer(merge, "Destination Points", "ogr")
rLyr = QgsRasterLayer(cost, "Accumulated Cost")
line = path + "path.shp"
results = processing.runalg("saga:leastcostpaths",\lyr,rLyr,demLyr,None,line)
path = QgsVectorLayer(line, "Least Cost Path", "ogr")
QgsMapLayerRegistry.instance().addMapLayers([demLyr, \ vLyr, path])
How it works...
GRASS has an LCP algorithm too, but the SAGA algorithm is easier to use. GRASS does a great job of creating the cost grid. Processing Toolbox algorithms allow you to create temporary files that are deleted when QGIS closes. So, we use temporary files for the intermediate products, including the cost grid and the merged shapefile.
Performing nearest neighbor analysis
Nearest neighbor analysis relates one point to the nearest point in one or more datasets. In this recipe, we'll relate one set of points to the closest point from another dataset. In this case, we'll find the closest major city for each entry in a catalog of unidentified flying object (UFO) sightings from the National UFO reporting center. This analysis will tell you which major cities have the most UFO activity. The UFO catalog data just contains latitude and longitude points, so we'll use nearest neighbor analysis to assign names to places.
Getting ready
Download the following ZIP file and extract it to a directory named ufo in your qgis_data directory:
https://geospatialpython.googlecode.com/svn/ufo.zip
You will also need the MMQGIS plugin:
How to do it...
This recipe is simple. Here, we will load the layers and run the nearest neighbor algorithm within the MMQGIS plugin, as follows:
from mmqgis import mmqgis_library as mmqgis
srcPath = "/qgis_data/ufo/ufo-sightings.shp"
dstPath = "/qgis_data/ufo/major-cities.shp"
usPth = "/qgis_data/ufo/continental-us.shp"
output = "/qgis_data/ufo/alien_invasion.shp"
srcName = "UFO Sightings"
dstName = "Major Cities"
usName = "Continental US"
source = QgsVector(srcPath, srcName, "ogr")
dest = QgsVector(dstPath, dstName, "ogr")
us = QgsVector(usPath, usName, "ogr")
mmqgis.mmqgis_hub_distance(iface, srcName, dstName, \"NAME", "Miles", True, output, True)
How it works...
There are a couple of different nearest neighbor algorithms in QGIS, but the MMQGIS version is an excellent implementation and has the best visualization. Like the other recipes in this chapter, the plugin doesn't have an intentional Python API, so a good way to explore its functionality is to use the GUI interface before taking a look at the Python code. The following image shows the output, with UFO sightings represented by smaller points and hub lines leading to the cities, which are represented by larger, darker points.
Creating a heat map
A heat map is used to show the geographic clustering of data using a raster image that shows density. The clustering can also be weighed using a field in the data to not only show geographic density but also an intensity factor. In this recipe, we'll use earthquake point data to create a heat map of the impact of an earthquake and weigh the clustering by the earthquake's magnitude.
Getting ready
This recipe requires no preparation.
How to do it...
We will build a map with a worldwide base layer of countries and earthquake locations, both in GeoJSON. Next, we'll run the SAGA kernel density estimation algorithm to produce the heat map image. We'll create a layer from the output, add a color shader to it, and add it to the map.
To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import processing
countries = "https://raw.githubusercontent.com/johan/\world.geo.json/master/countries.geo.json"
quakes = "https://geospatialpython.googlecode.com/\svn/quakes2014.geojson"
output = "/Users/joellawhead/qgis_data/rasters/heat.tif"
basemap = QgsVectorLayer(countries, "World", "ogr")
quakeLyr = QgsVectorLayer(quakes, "Earthquakes", "ogr")
QgsMapLayerRegistry.instance().addMapLayers([quakeLyr, basemap])
ext = quakeLyr.extent()
xmin = ext.xMinimum()
ymin = ext.yMinimum()
xmax = ext.xMaximum()
ymax = ext.xMaximum()
box = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)
processing.runalg("saga:kerneldensityestimation",quakeLyr,"mag",10,0,0,box,1,output)
heat = QgsRasterLayer(output, "Earthquake Heatmap")
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum
limits = QgsRaster.ContrastEnhancementMinMax
heat.setContrastEnhancement(algorithm, limits)
s = QgsRasterShader()
c = QgsColorRampShader()
c.setColorRampType(QgsColorRampShader.INTERPOLATED)
i = []
qri = QgsColorRampShader.ColorRampItem
i.append(qri(0, QColor(255,255,178,255), \
'Lowest Earthquake Impact'))
i.append(qri(0.106023, QColor(254,204,92,255), \
'Lower Earthquake Impact'))
i.append(qri(0.212045, QColor(253,141,60,255), \
'Moderate Earthquake Impact'))
i.append(qri(0.318068, QColor(240,59,32,255), \
'Higher Earthquake Impact'))
i.append(qri(0.42409, QColor(189,0,38,255), \
'Highest Earthquake Impact'))
c.setColorRampItemList(i)
s.setRasterShaderFunction(c)
ps = QgsSingleBandPseudoColorRenderer(heat.dataProvider(),\ 1, s)
heat.setRenderer(ps)
QgsMapLayerRegistry.instance().addMapLayers([heat])
How it works...
The kernel density estimation algorithm looks at the point dataset and forms clusters. The higher the value, the denser is the cluster. The algorithm then increases values based on the weighting factor, which is the earthquake's magnitude. The output image is, of course, a grayscale geotiff, but we use the color ramp shader to make the visualization easier to understand. The following screenshot shows the expected output:
There's more...
QGIS has a fantastic plugin available, called heat map, that works well on a wide variety of data automatically. However, it is written in C++ and does not have a Python API.
Creating a dot density map
A dot density map uses point density to illustrate a field value within a polygon. We'll use this technique to illustrate population density in some US census bureau tracts.
Getting ready
You will need to download the census tract layer and extract it to a directory named census in your qgis_data directory from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.
How to do it...
We will load the census layer, create a memory layer, loop through the features in the census layer, calculate a random point within the feature for every 100 people, and finally add the point to the memory layer. To do this, we need to perform the following steps:
import random
src = "/Users/joellawhead/qgis_data/census/\
GIS_CensusTract_poly.shp"
tractLyr = QgsVectorLayer(src, "Census Tracts", "ogr")
popLyr = QgsVectorLayer('Point?crs=epsg:4326', "Population" , "memory")
i = tractLyr.fieldNameIndex('POPULAT11')
features = tractLyr.getFeatures()
vpr = popLyr.dataProvider()
dotFeatures = []
for feature in features:
pop = feature.attributes()[i]
density = pop / 100
found = 0
dots = []
g = feature.geometry()
minx = g.boundingBox().xMinimum()
miny = g.boundingBox().yMinimum()
maxx = g.boundingBox().xMaximum()
maxy = g.boundingBox().yMaximum()
while found < density:
x = random.uniform(minx,maxx)
y = random.uniform(miny,maxy)
pnt = QgsPoint(x,y)
if g.contains(pnt):
dots.append(pnt)
found += 1
geom = QgsGeometry.fromMultiPoint(dots)
f = QgsFeature()
f.setGeometry(geom)
dotFeatures.append(f)
vpr.addFeatures(dotFeatures)
popLyr.updateExtents()
QgsMapLayerRegistry.instance().addMapLayers(\ [popLyr,tractLyr])
How it works...
This approach is slightly inefficient; it uses a brute-force approach that can place randomly generated points outside irregular polygons. We use the feature's extents to contain the random points as close as possible and then use the geometry contains method to verify that the point is inside the polygon. The following screenshot shows a sample of the output:
Collecting field data
For decades, collecting field observation data from the field into a GIS required hours of manual data entry or, at best, loading data after the trip. Smartphones and laptops with cellular connections have revolutionzed this process. In this recipe, we'll use a simple but interesting geojson-based framework to enter information and a map location from any Internet-connected device with a web browser and update a map in QGIS.
Getting ready
There is no preparation required for this recipe.
How to do it...
We will load a world boundaries layer and the field data layer onto a QGIS map, go to the field data mobile website and create an entry, and then refresh the QGIS map to see the update. To do this, we need to perform the following steps:
wb = "https://raw.githubusercontent.com/johan/\ world.geo.json/master/countries.geo.json"
basemap = QgsVectorLayer(wb, "Countries", "ogr")
observations = \
QgsVectorLayer("http://bit.ly/QGISFieldApp", \
"Field Observations", "ogr")
QgsMapLayerRegistry.instance().addMapLayers(\ [basemap, observations])
How it works...
The simple mobile-friendly web page uses the Leaflet.js library for mapping and HTML5 for the form submission. The data is stored as a snippet on the MyJSON.com service. This approach serves our examples and demonstrates the client-server model. However, it is not very robust because users working concurrently can easily overwrite each other's data. So, if you don't see your update, try it again once or twice and it will probably work. Sample observations are reset from time to time in order to keep the site lightweight. Note that it's important to refresh the map either manually or programmatically to force QGIS to refresh the network link. You can get the source code for the mobile page on GitHub.com (https://github.com/GeospatialPython/qgis).
The following image shows the mobile field application on an iPhone:
This image shows how the corresponding data looks in QGIS:
Computing road slope using elevation data
A common geospatial workflow is to assign raster values to a coincident vector layer so that you can style or perform further analysis on the vector layer. This recipe will use this concept to illustrate the steepness of a road using color by mapping values to the road vector from a slope raster.
Getting ready
You will need to download a zipped directory from https://geospatialpython.googlecode.com/svn/road.zip and place the directory, named road, in your qgis_data directory.
How to do it...
We'll start with a DEM and compute its slope. Then, we'll load a road vector layer and break it into interval lengths of 500 meters. Next, we'll load the layer and style it using green, yellow, and red values for each segment to show the range of steepness. We'll overlay this layer on a hillshade of the DEM for a nice visualization. To do this, we need to perform the following steps:
from qgis.core import *
from PyQt4.QtGui import *
import processing
myCrs = QgsCoordinateReferenceSystem(26910, QgsCoordinateReferenceSystem.EpsgCrsId)
iface.mapCanvas().mapRenderer().setDestinationCrs(myCrs)
iface.mapCanvas().setMapUnits(QGis.Meters)
iface.mapCanvas().refresh()
src_dir = "/Users/joellawhead/qgis_data/road/"
dem = os.path.join(src_dir, "dem.asc")
road = os.path.join(src_dir, "road.shp")
slope = os.path.join(src_dir, "slope.tif")
segRoad = os.path.join(src_dir, "segRoad.shp")
steepness = os.path.join(src_dir, "steepness.shp")
hillshade = os.path.join(src_dir, "hillshade.tif")
demLyr = QgsRasterLayer(dem, "DEM")
roadLyr = QgsVectorLayer(road, "Road", "ogr")
ext = demLyr.extent()
xmin = ext.xMinimum()
ymin = ext.yMinimum()
xmax = ext.xMaximum()
ymax = ext.yMaximum()
demBox = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)
processing.runalg("grass:r.slope",dem,0,0,1,0,True,\ demBox,0,slope)
ext = roadLyr.extent()
xmin = ext.xMinimum()
ymin = ext.yMinimum()
xmax = ext.xMaximum()
ymax = ext.yMaximum()
roadBox = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)
processing.runalg("grass:v.split.length",road,500,\
roadBox,-1,0.0001,0,segRoad)
slopeLyr = QgsRasterLayer(slope, "Slope")
segRoadLyr = QgsVectorLayer(segRoad, \
"Segmented Road", "ogr")
QgsMapLayerRegistry
.instance().addMapLayers([\ segRoadLyr,slopeLyr], False)
processing.runalg("saga:addgridvaluestoshapes",\ segRoad,slope,0,steepness)
steepLyr = QgsVectorLayer(steepness, \ "Road Gradient", "ogr")
roadGrade = (("Rolling Hill", 0.0, 20.0, "green"),
("Steep", 20.0, 40.0, "yellow"),
("Very Steep", 40.0, 90.0, "red"))
ranges = []
for label, lower, upper, color in roadGrade:
sym = QgsSymbolV2.defaultSymbol(steepLyr.geometryType())
sym.setColor(QColor(color))
sym.setWidth(3.0)
rng = QgsRendererRangeV2(lower, upper, sym, label)
ranges.append(rng)
field = "slope"
renderer = QgsGraduatedSymbolRendererV2(field, ranges)
steepLyr.setRendererV2(renderer)
processing.runalg("saga:analyticalhillshading",dem,\
0,315,45,4,hillshade)
hs = QgsRasterLayer(hillshade, "Terrain")
QgsMapLayerRegistry.instance().addMapLayers([steepLyr, hs])
How it works...
For each of our 500-meter line segments, the algorithm averages the underlying slope values. This workflow is fairly simple and also provides all the building blocks you need for a more complex version. While performing calculations that involve measurements over a relatively small area, using projected data is the best option. The following image shows how the output looks:
Geolocating photos on the map
Photos taken with GPS-enabled cameras, including smartphones, store location information in the header of the file, in a format called EXIF tags. These tags are largely based on the same header tags used by the TIFF image standard. In this recipe, we'll use these tags to create locations on a map for some photos and provide links to open them.
Getting ready
You will need to download some sample geotagged photos from https://github.com/GeospatialPython/qgis/blob/gh-pages/photos.zip?raw=true and place them in a directory named photos in your qgis_data directory.
How to do it...
QGIS requires the Python Imaging Library (PIL), which should already be included with your installation. PIL can parse EXIF tags. We will gather the filenames of the photos, parse the location information, convert it to decimal degrees, create the point vector layer, add the photo locations, and add an action link to the attributes. To do this, we need to perform the following steps:
import glob
import Image
from ExifTags import TAGS
def exif(img):
exif_data = {}
try:
i = Image.open(img)
tags = i._getexif()
for tag, value in tags.items():
decoded = TAGS.get(tag, tag)
exif_data[decoded] = value
except:
pass
return exif_data
def dms2dd(d, m, s, i):
sec = float((m * 60) + s)
dec = float(sec / 3600)
deg = float(d + dec)
if i.upper() == 'W':
deg = deg * -1
elif i.upper() == 'S':
deg = deg * -1
return float(deg)
def gps(exif):
lat = None
lon = None
if exif['GPSInfo']:
Lat
coords = exif['GPSInfo']
i = coords[1]
d = coords[2][0][0]
m = coords[2][1][0]
s = coords[2][2][0]
lat = dms2dd(d, m ,s, i)
Lon
i = coords[3]
d = coords[4][0][0]
m = coords[4][1][0]
s = coords[4][2][0]
lon = dms2dd(d, m ,s, i)
return lat, lon
photos = {}
photo_dir = "/Users/joellawhead/qgis_data/photos/"
files = glob.glob(photo_dir + "*.jpg")
for f in files:
e = exif(f)
lat, lon = gps(e)
photos[f] = [lon, lat]
lyr_info = "Point?crs=epsg:4326&field=photo:string(75)"
vectorLyr = QgsVectorLayer(lyr_info, \"Geotagged Photos" , "memory")
vpr = vectorLyr.dataProvider()
features = []
for pth, p in photos.items():
lon, lat = p
pnt = QgsGeometry.fromPoint(QgsPoint(lon,lat))
f = QgsFeature()
f.setGeometry(pnt)
f.setAttributes([pth])
features.append(f)
vpr.addFeatures(features)
vectorLyr.updateExtents()
QgsMapLayerRegistry.instance().addMapLayer(vectorLyr)
iface.setActiveLayer(vectorLyr)
activeLyr = iface.activeLayer()
actions = activeLyr.actions()
actions.addAction(QgsAction.OpenUrl, "Photos", \'[% "photo" %]')
How it works...
Using the included PIL EXIF parser, getting location information and adding it to a vector layer is relatively straightforward. The interesting part of this recipe is the QGIS action to open the photo. This action is a default option for opening a URL. However, you can also use Python expressions as actions to perform a variety of tasks. The following screenshot shows an example of the data visualization and photo popup:
There's more...
Another plugin called Photo2Shape is available, but it requires you to install an external EXIF tag parser.
Image change detection
Change detection allows you to automatically highlight the differences between two images in the same area if they are properly orthorectified. In this recipe, we'll do a simple difference change detection on two images, which are several years apart, to see the differences in urban development and the natural environment.
Getting ready
You can download the two images for this recipe from https://github.com/GeospatialPython/qgis/blob/gh-pages/change-detection.zip?raw=true and put them in a directory named change-detection in the rasters directory of your qgis_data directory. Note that the file is 55 megabytes, so it may take several minutes to download.
How to do it...
We'll use the QGIS raster calculator to subtract the images in order to get the difference, which will highlight significant changes. We'll also add a color ramp shader to the output in order to visualize the changes. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
from qgis.analysis import *
before = "/Users/joellawhead/qgis_data/rasters/change-detection/before.tif"
after = "/Users/joellawhead/qgis_data/rasters/change-detection/after.tif"
beforeName = "Before"
afterName = "After"
beforeRaster = QgsRasterLayer(before, beforeName)
afterRaster = QgsRasterLayer(after, afterName)
beforeEntry = QgsRasterCalculatorEntry()
afterEntry = QgsRasterCalculatorEntry()
beforeEntry.raster = beforeRaster
afterEntry.raster = afterRaster
beforeEntry.bandNumber = 1
afterEntry.bandNumber = 2
beforeEntry.ref = beforeName + "@1"
afterEntry.ref = afterName + "@2"
entries = [afterEntry, beforeEntry]
exp = "%s - %s" % (afterEntry.ref, beforeEntry.ref)
output = "/Users/joellawhead/qgis_data/rasters/change-detection/change.tif"
e = beforeRaster.extent()
w = beforeRaster.width()
h = beforeRaster.height()
change = QgsRasterCalculator(exp, output, "GTiff", e, w, h, entries)
change.processCalculation()
lyr = QgsRasterLayer(output, "Change")
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum
limits = QgsRaster.ContrastEnhancementMinMax
lyr.setContrastEnhancement(algorithm, limits)
s = QgsRasterShader()
c = QgsColorRampShader()
c.setColorRampType(QgsColorRampShader.INTERPOLATED)
i = []
qri = QgsColorRampShader.ColorRampItem
i.append(qri(0, QColor(0,0,0,0), 'NODATA'))
i.append(qri(-101, QColor(123,50,148,255), 'Significant Itensity Decrease'))
i.append(qri(-42.2395, QColor(194,165,207,255), 'Minor Itensity Decrease'))
i.append(qri(16.649, QColor(247,247,247,0), 'No Change'))
i.append(qri(75.5375, QColor(166,219,160,255), 'Minor Itensity Increase'))
i.append(qri(135, QColor(0,136,55,255), 'Significant Itensity Increase'))
c.setColorRampItemList(i)
s.setRasterShaderFunction(c)
ps = QgsSingleBandPseudoColorRenderer(lyr.dataProvider(), 1, s)
lyr.setRenderer(ps)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
The concept is simple. We subtract the older image data from the new image data. Concentrating on urban areas tends to be highly reflective and results in higher image pixel values. If a building is added in the new image, it will be brighter than its surroundings. If a building is removed, the new image will be darker in that area. The same holds true for vegetation, to some extent.
Chapter 9. Other Tips and Tricks
In this chapter, we will cover the following recipes:
Introduction
This chapter provides interesting and valuable QGIS Python tricks that didn't fit into any topics in other chapters. Each recipe has a specific purpose, but in many cases, a recipe may demonstrate multiple concepts that you'll find useful in other programs. All the recipes in this chapter run in the QGIS Python console.
Creating tiles from a QGIS map
This recipe creates a set of Internet web map tiles from your QGIS map. What's interesting about this recipe is that once the static map tiles are generated, you can serve them up locally or from any web-accessible directory using the client-side browser's JavaScript without the need of a map server, or you can serve them (for example, distribute them on a portable USB drive).
Getting ready
You will need to download the zipped shapefile from https://geospatialpython.googlecode.com/svn/countries.zip.
Unzip the shapefile to a directory named shapes in your qgis_data directory. Next, create a directory called tilecache in your qgis_data directory. You will also need to install the QTiles plugin using the QGIS Plugin Manager. This plugin is experimental, so make sure that the Show also experimental plugins checkbox is checked in the QGIS Plugin Manager's Settings tab.
How to do it...
We will load the shapefile and randomly color each country. We'll then manipulate the QTiles plugin using Python to generate map tiles for 5 zoom levels' worth of tiles. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import qtiles
import random
def randomColor(mix=(255,255,255)):
red = random.randrange(0,256)
green = random.randrange(0,256)
blue = random.randrange(0,256)
r,g,b = mix
red = (red + r) / 2
green = (green + g) / 2
blue = (blue + b) / 2
return (red, green, blue)
def done():
print "FINISHED!!"
shp = "/qgis_data/shapes/countries.shp"
dir = "/qgis_data/tilecache"
layer = QgsVectorLayer(shp, "Countries", "ogr")
field = 'CNTRY_NAME'
features = layer.getFeatures()
categories = []
for feature in features:
country = feature[field]
sym = QgsSymbolV2.defaultSymbol(layer.geometryType())
r,g,b = randomColor()
sym.setColor(QColor(r,g,b,255))
category = QgsRendererCategoryV2(country, sym, country)
categories.append(category)
renderer = QgsCategorizedSymbolRendererV2(field, categories)
layer.setRendererV2(renderer)
QgsMapLayerRegistry.instance().addMapLayer(layer)
canvas = iface.mapCanvas()
layers = canvas.mapSettings().layers()
extent = canvas.extent()
minZoom = 0
maxZoom = 5
width = 256
height = 256
transp = 255
quality = 70
format = "PNG"
outputPath = QFileInfo(dir)
rootDir = "countries"
antialiasing = False
tmsConvention = True
mapUrl = False
viewer = True
tt = qtiles.tilingthread.TilingThread(layers, extent, minZoom, maxZoom, width, height, transp,
quality, format, outputPath, rootDir, antialiasing, tmsConvention,
mapUrl, viewer)
tt.processFinished.connect(done)
tt.start()
How it works...
You can generate up to 16 zoom levels with this plugin. After eight zoom levels, the tile generation process takes a long time and the tile set becomes quite large on the filesystem, totaling hundreds of megabytes. One way to avoid creating a lot of files is to use the mbtiles format, which stores all the data in a single file. However, you need a web application using GDAL to access it.
Note
You can see a working example of the output recipe stored in a github.io web directory at http://geospatialpython.github.io/qgis/tiles/countries.html.
The following image shows the output in a browser:
Adding a layer to geojson.io
Cloud services have become common and geospatial maps are no exception. This recipe uses a service named geojson.io, which serves vector layers online, which you can upload from QGIS using Python.
Getting ready
For this recipe, you will need to install the qgisio plugin using the QGIS Plugin Manager.
You will also need a shapefile in a geodetic coordinate system (WGS84) from https://geospatialpython.googlecode.com/svn/union.zip.
Decompress the ZIP file and place it in your qgis_data directory named shapes.
How to do it...
We will convert our shapefile to GeoJSON using a temporary file. We'll then use Python to call the qgisio plugin in order to upload the data to be displayed online. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from tempfile import mkstemp
import os
from qgisio import geojsonio
layer = QgsVectorLayer("/qgis_data/shapes/building.shp", "Building", "ogr")
name = layer.name()
handle, tmpfile = mkstemp(suffix='.geojson')
os.close(handle)
crs = QgsCoordinateReferenceSystem(4326,
QgsCoordinateReferenceSystem.PostgisCrsId)
error = QgsVectorFileWriter.writeAsVectorFormat(layer, tmpfile,
"utf-8", crs, "GeoJSON", onlySelected=False)
if error != QgsVectorFileWriter.NoError:
print "Unable to write geoJSON!"
with open(str(tmpfile), 'r') as f:
contents = f.read()
os.remove(tmpfile)
url = geojsonio._create_gist(contents, "Layer exported from QGIS", name + ".geojson")
QDesktopServices.openUrl(QUrl(url))
How it works...
This recipe actually uses two cloud services. The GeoJSON data is stored on a https://github.com service named Gist that allows you to store code snippets such as JSON. The geojson.io service can read data from Gist.
Note
Note that sometimes it can take several seconds to several minutes for the generated URL to become available online.
This screenshot shows the building layer on an OSM map on geojson.io, with the GeoJSON displayed next to the map:
There's more...
There are additional advanced services that can serve QGIS maps, including www.QGISCloud.com and www.CartoDB.com, which can also display raster maps. Both of these services have free options and QGIS plugins. However, they are far more difficult to script from Python if you are trying to automate publishing maps to the Web as part of a workflow.
Rendering map layers based on rules
Rendering rules provide a powerful way to control how and when a layer is displayed relative to other layers or to the properties of the layer itself. Using a rule-based renderer, this recipe demonstrates how to color code a layer based on an attribute.
Getting ready
You will need to download a zipped shapefile from https://geospatialpython.googlecode.com/svn/ms_rails_mstm.zip.
Unzip it and place it in the directory named ms in your qgis_data directory.
In this same directory, download and unzip the following shapefile:
https://geospatialpython.googlecode.com/files/Mississippi.zip
Finally, add this shapefile to the directory as well:
https://geospatialpython.googlecode.com/svn/jackson.zip
How to do it...
We will set up a railroad layer, then we'll set up our rules as Python tuples to color code it based on the frequency of use. Finally, we'll add some other layers to the map for reference. To do this, we need to perform the following steps:
from PyQt4.QtGui import *
prefix = "/Users/joellawhead/qgis_data/ms/"
rails = QgsVectorLayer(prefix + "ms_rails_mstm.shp", "Railways", "ogr")
rules = (
('Heavily Used', '"DEN09CODE" > 3', 'red', (0, 6000000)),
('Moderately Used', '"DEN09CODE" < 4 AND "DEN09CODE" > 1', 'orange', (0, 1500000)),
('Lightly Used', '"DEN09CODE" < 2', 'grey', (0, 250000)),
)
sym_rails = QgsSymbolV2.defaultSymbol(rails.geometryType())
rend_rails = QgsRuleBasedRendererV2(sym_rails)
root_rule = rend_rails.rootRule()
for label, exp, color, scale in rules:
create a clone (i.e. a copy) of the default rule
rule = root_rule.children()[0].clone()
set the label, exp and color
rule.setLabel(label)
rule.setFilterExpression(exp)
rule.symbol().setColor(QColor(color))
set the scale limits if they have been specified
if scale is not None:
rule.setScaleMinDenom(scale[0])
rule.setScaleMaxDenom(scale[1])
append the rule to the list of rules
root_rule.appendChild(rule)
root_rule.removeChildAt(0)
rails.setRendererV2(rend_rails)
jax = QgsVectorLayer(prefix + "jackson.shp", "Jackson", "ogr")
jax_style = {}
jax_style['color'] = "#ffff00"
jax_style['name'] = 'regular_star'
jax_style['outline'] = '#000000'
jax_style['outline-width'] = '1'
jax_style['size'] = '8'
sym_jax = QgsSimpleMarkerSymbolLayerV2.create(jax_style)
jax.rendererV2().symbols()[0].changeSymbolLayer(0, sym_jax)
ms = QgsVectorLayer(prefix + "mississippi.shp", "Mississippi", "ogr")
ms_style = {}yea
ms_style['color'] = "#F7F5EB"
sym_ms = QgsSimpleFillSymbolLayerV2.create(ms_style)
ms.rendererV2().symbols()[0].changeSymbolLayer(0, sym_ms)
QgsMapLayerRegistry.instance().addMapLayers([jax, rails, ms])
How it works...
Rules are a hierarchical collection of symbols and expressions. Symbols are collections of symbol layers. This recipe is relatively simple but contains over 50 lines of code. Rendering is one of the most complex features to code in QGIS. However, rules also have their own sets of properties, separate from layers and symbols. Notice that in this recipe, we are able to set labels and filters for the rules, properties that are normally relegated to layers. One way to think of rules is as separate layers. We can do the same thing by loading our railroad layer as a new layer for each rule. Rules are a more compact way to break up the rendering for a single layer.
This image shows the rendering at a scale where all the rule outputs are visible:
Creating a layer style file
Layer styling is one of the most complex aspects of the QGIS Python API. Once you've developed the style for a layer, it is often useful to save the styling to the QGIS Markup Language (QML) in the XML format.
Getting ready
You will need to download the zipped directory named saveqml and decompress it to your qgis_data/rasters directory from https://geospatialpython.googlecode.com/svn/saveqml.zip.
How to do it...
We will create a color ramp for a DEM and make it semi transparent to overlay a hillshaded tiff of the DEM. We'll save the style we create to a QML file. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
hs = QgsRasterLayer("/qgis_data/saveqml/hillshade.tif", "Hillshade")
dem = QgsRasterLayer("/qgis_data/saveqml/dem.asc", "DEM")
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum
limits = QgsRaster.ContrastEnhancementMinMax
dem.setContrastEnhancement(algorithm, limits)
s = QgsRasterShader()
c = QgsColorRampShader()
c.setColorRampType(QgsColorRampShader.INTERPOLATED)
i = []
qri = QgsColorRampShader.ColorRampItem
i.append(qri(356.334, QColor(63,159,152,255), '356.334'))
i.append(qri(649.292, QColor(96,235,155,255), '649.292'))
i.append(qri(942.25, QColor(100,246,174,255), '942.25'))
i.append(qri(1235.21, QColor(248,251,155,255), '1235.21'))
i.append(qri(1528.17, QColor(246,190,39,255), '1528.17'))
i.append(qri(1821.13, QColor(242,155,39,255), '1821.13'))
i.append(qri(2114.08, QColor(165,84,26,255), '2114.08'))
i.append(qri(2300, QColor(236,119,83,255), '2300'))
i.append(qri(2700, QColor(203,203,203,255), '2700'))
c.setColorRampItemList(i)
s.setRasterShaderFunction(c)
ps = QgsSingleBandPseudoColorRenderer(dem.dataProvider(), 1, s)
ps.setOpacity(0.5)
dem.setRenderer(ps)
QgsMapLayerRegistry.instance().addMapLayers([dem, hs])
dem.saveNamedStyle("/qgis_data/saveqml/dem.qml")
How it works...
The QML format is easy to read and can be edited by hand. The saveNamedStyle() method works on vector layers in the exact same way. Instead of styling the preceding code, you can just reference the QML file using the loadNamedStyle() method:
dem.loadNamedStyle("/qgis_data/saveqml/dem.qml")
If you save the QML file along with a shapefile and use the same filename (with the .qml extension), then QGIS will load the style automatically when the shapefile is loaded.
Using NULL values in PyQGIS
QGIS can use NULL values as field values. Python has no concept of NULL values. The closest type it has is the None type. You must be aware of this fact when working with Python in QGIS. In this recipe, we'll explore the implications of QGIS's NULL values in Python. The computing of a NULL value involves a pointer that is an uninitialized, undefined, empty, or meaningless value.
Getting ready
In your qgis_data/shapes directory, download the shapefile from https://geospatialpython.googlecode.com/svn/NullExample.zip, which contains some NULL field values, and unzip it.
How to do it...
We will load the shapefile and grab its first feature. Then, we'll access one of its NULL field values. Next, we'll run through some tests that allow you to see how the NULL values behave in Python. To do this, we need to perform the following steps:
lyrPth = "/qgis_data/shapes/NullExample.shp"
lyr = QgsVectorLayer(lyrPth, "Null Field Example", "ogr")
features = lyr.getFeatures()
f = features.next()
value = f["SAMPLE"]
print "Check python value type:"
print type(value)
print "Check if value is None:"
print value is None
print "Check if value == None:"
print value == None
print "Check if value == NULL:"
print value == NULL
print "Check if value is NULL:"
print value is NULL
print "Check type(value) is type(NULL):"
print type(value) is type(NULL)
How it works...
As you can see, the type of the NULL value is PyQt4.QtCore.QPyNullVariant. This class is a special type injected into the PyQt framework. It is important to note the cases where the comparison using the is operator returns a different value than the == operator comparison. You should be aware of the differences to avoid unexpected results in your code.
Using generators for layer queries
Python generators provide an efficient way to process large datasets. A QGIS developer named Nathan Woodrow has created a simple Python QGIS query engine that uses generators to easily fetch features from QGIS layers. We'll use this engine in this recipe to query a layer.
Getting ready
You need to install the query engine using easy_install or by downloading it and adding it to your QGIS Python installation. To use easy_install, run the following command from a console, which downloads a clone of the original code that includes a Python setup file:
easy_install
https://github.com/GeospatialPython/qquery/archive/master.zip
You can also download the ZIP file from https://github.com/NathanW2/qquery/archive/master.zip and copy the contents to your working directory or the site-packages directory of your QGIS Python installation.
You will also need to download the zipped shapefile and decompress it to a directory named ms in your qgis_data directory from the following location:
https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip
How to do it...
We'll load a layer containing population data. Then, we'll use the query engine to perform a simple query for an urban area with less than 50,000 people. We'll filter the results to only give us three columns, place name, population level, and land area. To do this, we need to perform the following steps:
from query import query
pth = "/Users/joellawhead/qgis_data/ms/MS_UrbanAnC10.shp"
layer = QgsVectorLayer(pth, "Urban Areas", "ogr")
q = (query(layer).where("POP > 50000").select('NAME10', "POP", "AREALAND", "POPDEN"))
q().next()
How it works...
As you can see, this module is quite handy. To perform this same query using the default PyQGIS API, it would take nearly four times as much code.
Using alpha values to show data density
Thematic maps often use a color ramp based on a single color to show data density. Darker colors show a higher concentration of objects, while lighter colors show lower concentrations. You can use a transparency ramp instead of a color ramp to show density as well. This technique is useful if you want to overlay the density layer on imagery or other vector layers. In this recipe, we'll be using some bear-sighting data to show the concentration of bears over an area. We'll use alpha values to show the density. We'll use an unusual hexagonal grid to divide the area and a rule-based renderer to build the display.
Getting ready
You will need to install the MMQGIS plugin, which is used to build the hexagonal grid using the QGIS Plugin Manager.
You also need to download the bear data from https://geospatialpython.googlecode.com/svn/bear-data.zip, unzip the shapefile, and put it in the ms directory of your qgis_data directory.
How to do it...
We will load the bear data. Then, we will use the MMQGIS plugin to generate the hexagonal grid. Then, we'll use the Processing Toolbox to clip the hexagon to the bear shapefile, and join the shapefile attribute data to the hexagon grid. Finally, we'll use a rule-based renderer to apply alpha values based on bear-sighting density and add the result to the map. To do this, we need to perform the following steps:
import processing
from PyQt4.QtGui import *
from mmqgis import mmqgis_library as mmqgis
dir = "/qgis_data/ms/"
source = dir + "bear-data.shp"
grid = dir + "grid.shp"
clipped_grid = dir + "clipped_grid.shp"
output = dir + "ms-bear-sightings.shp"
layer = QgsVectorLayer(source, "bear data", "ogr")
e = layer.extent()
llx = e.xMinimum()
lly = e.yMinimum()
w = e.width()
h = e.height()
mmqgis.mmqgis_grid(iface, grid, .1, .1, w, h, llx, lly, "Hexagon (polygon)", False)
processing.runalg("qgis:clip",grid,source,clipped_grid)
processing.runalg("qgis:joinbylocation",source,clipped_grid,0,"sum,mean,min,max,median",0,0,output)
bears = QgsVectorLayer(output, "Bear Sightings", "ogr")
rules = (
('RARE', '"BEARS" < 5', (227,26,28,255), .2),
('UNCOMMON', '"BEARS" > 5 AND "BEARS" < 15', (227,26,28,255), .4),
('OCCASIONAL', '"BEARS" > 14 AND "BEARS" < 50', (227,26,28,255), .6),
('FREQUENT', '"BEARS" > 50', (227,26,28,255), 1),
)
sym_bears = QgsFillSymbolV2.createSimple({"outline_color":"white","outline_width":".26"})
rend_bears = QgsRuleBasedRendererV2(sym_bears)
root_rule = rend_bears.rootRule()
for label, exp, color, alpha in rules:
create a clone (i.e. a copy) of the default rule
rule = root_rule.children()[0].clone()
set the label, exp and color
rule.setLabel(label)
rule.setFilterExpression(exp)
r,g,b,a = color
rule.symbol().setColor(QColor(r,g,b,a))
set the transparency level
rule.symbol().setAlpha(alpha)
append the rule to the list of rules
root_rule.appendChild(rule)
root_rule.removeChildAt(0)
bears.setRendererV2(rend_bears)
QgsMapLayerRegistry.instance().addMapLayer(bears)
How it works...
The rule-based renderer forms the core of this recipe. However, the hexagonal grid provides a more interesting way to visualize statistical data. Like a dot-based density map, hexagons are not entirely spatially accurate or precise but make it very easy to understand the overall trend of the data. The interesting feature of hexagons is their centroid, which is equidistant to each of their neighbors, whereas with a square grid, the diagonal neighbors are further away.
This image shows how the resulting map will look:
Using the __geo_interface__ protocol
The __geo_interface__ protocol is a new protocol created by Sean Gillies and is targeted mainly at Python to provide a string representation of geographic data following Python's built-in protocols. The string representation for geographic data is basically GeoJSON.
Note
You can read more about this protocol at https://gist.github.com/sgillies/2217756.
Two developers, Nathan Woodrow and Martin Laloux, refined a version of this protocol for QGIS Python data objects. This recipe borrows from their examples to provide a code snippet that you can put at the beginning of your Python scripts to retrofit QGIS features and geometry objects with a __geo_interface__ method.
Getting ready
This recipe requires no preparation.
How to do it...
We will create two functions: one for features and one for geometry. We'll then use Python's dynamic capability to patch the QGIS objects with a __geo_interface__ built-in method. To do this, we need to perform the following steps:
import json
def mapping_feature(feature):
geom = feature.geometry()
properties = {}
fields = [field.name() for field in feature.fields()]
properties = dict(zip(fields, feature.attributes()))
return { 'type' : 'Feature',
'properties' : properties,
'geometry' : geom.__geo_interface__}
def mapping_geometry(geometry):
geo = geometry.exportToGeoJSON()
return json.loads(geo)
QgsFeature.__geo_interface__ = property(lambda self: mapping_feature(self))
QgsGeometry.__geo_interface__ = property(lambda self: mapping_geometry(self))
How it works...
This recipe is surprisingly simple but exploits some of Python's most interesting features. First, note that the feature function actually calls the geometry function as part of its output. Also, note that adding the __geo_interface__ built-in function is as simple as using the double-underscore naming convention and Python's built-in property method to declare lambda functions as internal to the objects. Another interesting Python feature is that the QGIS objects are able to pass themselves to our custom functions using the self keyword.
Generating points along a line
You can generate points within a polygon in a fairly simple way by using the point in polygon method. However, sometimes you may want to generate points along a line. You can randomly place points inside the polygon's extent — which is essentially just a rectangular polygon — or you can place points at random locations along the line at random distances. In this recipe, we'll demonstrate both of these methods.
Getting ready
You will need to download the zipped shapefile and place it in a directory named shapes in your qgis_data directory from the following:
https://geospatialpython.googlecode.com/svn/path.zip
How to do it...
First, we will generate random points along a line using a grass() function in the Processing Toolbox. Then, we'll generate points within the line's extent using a native QGIS processing function. To do this, we need to perform the following steps:
import processing
line = QgsVectorLayer("/qgis_data/shapes/path.shp", "Line", "ogr")
QgsMapLayerRegistry.instance().addMapLayer(line)
processing.runandload("grass:v.to.points",line,"1000",False, False,True,"435727.015026,458285.819185,5566442.32879,5591754.78979",-1,0.0001,0,None)
processing.runandload("qgis:randompointsinextent","435727.015026,458285.819185,5566442.32879,5591754.78979",100,100,None)
How it works...
The first algorithm puts the points on the line. The second places them within the vicinity. Both approaches have different use cases.
There's more...
Another option will be to create a buffer around the line at a specified distance and clip the output of the second algorithm so that the points aren't near the corners of the line extent. The QgsGeometry class also has an interpolate which allows you to create a point on a line at a specified distance from its origin. This is documented at http://qgis.org/api/classQgsGeometry.html#a8c3bb1b01d941219f2321e6c6c3db7e1.
Using expression-based labels
Expressions are a kind of mini-programming language or SQL-like language found throughout different QGIS functions to select features. One important use of expressions is to control labels. Maps easily become cluttered if you label every single feature. Expressions make it easy to limit labels to important features. You can filter labels using expressions from within Python, as we will do in this recipe.
Getting ready
You will need to download the zipped shapefile and decompress it to a directory named ms in your qgis_data directory from the following:
https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip
How to do it...
We'll use the QGIS PAL labeling engine to filter labels based on a field name. After loading the layer, we'll create our PAL settings and write them to the layer. Finally, we'll add the layer to the map. To do this, we need to perform the following steps:
pth = "/Users/joellawhead/qgis_data/ms/MS_UrbanAnC10.shp"
lyr = QgsVectorLayer(pth, "Urban Areas", "ogr")
palyr = QgsPalLayerSettings()
palyr.readFromLayer(lyr)
palyr.fieldName = 'CASE WHEN "POP" > 50000 THEN NAME10 END'
palyr.enabled = True
palyr.writeToLayer(lyr)
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
While labels are a function of the layer, the settings for the labeling engine are controlled by an external object and then applied to the layer.
Creating dynamic forms in QGIS
When you edit the fields of a layer in QGIS, you have the option of using a spreadsheet-like table view or you can use a database-style form view. Forms are useful because you can change the design of the form and add interactive features that react to user input in order to better control data editing. In this recipe, we'll add some custom validation to a form that checks user input for valid values.
Getting ready
You will need to download the zipped shapefile and decompress it to a directory named ms in your qgis_data directory from the following:
https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip
You'll also need to create a blank Python file called validate.py, which you'll edit as shown in the following steps. Put the validate.py file in the ms directory of your qgis_data directory with the shapefile.
How to do it...
We'll create the two functions we need for our validation engine. Then, we'll use the QGIS interface to attach the action to the layer. Make sure that you add the following code to the validate.py file in the same directory as the shapefile, as follows:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
popFld = None
dynamicDialog = None
def dynamicForm(dialog,lyrId,featId):
globaldynamicDialog
dynamicDialog = dialog
globalpopFld = dialog.findChild(QLineEdit,"POP")
buttonBox=\
dialog.findChild(QDialogButtonBox,"buttonBox")
buttonBox.accepted.disconnect(dynamicDialog.accept)
buttonBox.accepted.connect(validate)
buttonBox.rejected.connect(dynamicDialog.reject)
def validate():
if not float(popFld.text()) > 0:
msg = QMessageBox(f)
msg.setText("Population must be \
greater than zero.")
msg.exec_()
else:
dynamicDialog.accept()
validate.dynamicForm
How it works...
The validate.py file must be in your Python path. Putting this file in the same directory as the project makes the functions available. Validation is one of the simplest functions you can implement.
This screenshot shows the rejection message when the population is set to 0:
Calculating length for all selected lines
If you need to calculate the total of a given dataset property, such as length, the easiest thing to do is use Python. In this recipe, we'll total the length of the railways in a dataset.
Getting ready
You will need to download a zipped shapefile from https://geospatialpython.googlecode.com/svn/ms_rails_mstm.zip.
Unzip it and place it in directory named ms in your qgis_data directory.
How to do it...
We will load the layer, loop through the features while keeping a running total of line lengths, and finally convert the result to kilometers. To do this, we need to perform the following steps:
pth = "/Users/joellawhead/qgis_data/ms/ms_rails_mstm.shp"
lyr = QgsVectorLayer(pth, "Railroads", "ogr")
total = 0
for f in lyr.getFeatures():
geom = f.geometry()
total += geom.length()
print "%0.2f total kilometers of rails." % (total / 1000)
How it works...
This function is simple, but it's not directly available in the QGIS API. You can use a similar technique to total up the area of a set of polygons or perform conditional counting.
Using a different status bar CRS than the map
Sometimes, you may want to display a different coordinate system for the mouse coordinates in the status bar than what the source data is. With this recipe, you can set a different coordinate system without changing the data coordinate reference system or the CRS for the map.
Getting ready
Download the zipped shapefile and unzip it to your qgis_data/ms directory from the following:
https://geospatialpython.googlecode.com/files/MSCities_Geo.zip
How to do it...
We will load our layer, establish a message in the status bar, create a special event listener to transform the map coordinates at the mouse's location to our alternate CRS, and then connect the map signal for the mouse's map coordinates to our listener function. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
pth = "/qgis_data/ms/MSCities_Geo_Pts.shp"
lyr = QgsVectorLayer(pth, "Cities", "ogr")
QgsMapLayerRegistry.instance().addMapLayer(lyr)
msg = "Alternate CRS (x: %s, y: %s)"
iface.mainWindow().statusBar().showMessage(msg % ("--", "--"))
def listen_xyCoordinates(point):
crsSrc = iface.mapCanvas().mapRenderer().destinationCrs()
crsDest = QgsCoordinateReferenceSystem(3815)
xform = QgsCoordinateTransform(crsSrc, crsDest)
xpoint = xform.transform(point)
iface.mainWindow().statusBar().showMessage(msg % (xpoint.x(), xpoint.y()))
QObject.connect(iface.mapCanvas(), SIGNAL("xyCoordinates(const QgsPoint &)"), listen_xyCoordinates)
How it works...
The coordinate transformation engine in QGIS is very fast. Normally, QGIS tries to transform everything to WGS84 Geographic, but sometimes you need to view coordinates in a different reference system.
Creating HTML labels in QGIS
QGIS map tips allow you to hover the mouse cursor over a feature in order to create a popup that displays information. This information is normally a data field, but you can also display other types of information using a subset of HTML tags. In this recipe, we'll create an HTML map tip that displays a Google Street View image at the feature's location.
Getting ready
In your qgis_data directory, create a directory named tmp.
You will also need to download the following zipped shapefile and place it in your qgis_data/nyc directory:
https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip
How to do it...
We will create a function to process the Google data and register it as a QGIS function. Then, we'll load the layer and set its map tip display field. To do this, we need to perform the following steps:
from qgis.utils import qgsfunction
from qgis.core import QGis
import urllib
@qgsfunction(0, "Python")
def googleStreetView(values, feature, parent):
x,y = feature.geometry().asPoint()
baseurl = "https://maps.googleapis.com/maps/api/streetview?"
w = 400
h = 400
fov = 90
heading = 235
pitch = 10
params = "size=%sx%s&" % (w,h)
params += "location=%s,%s&" % (y,x)
params += "fov=%s&heading=%s&pitch=%s" % (fov, heading, pitch)
url = baseurl + params
tmpdir = "/qgis_data/tmp/"
img = tmpdir + str(feature.id()) + ".jpg"
urllib.urlretrieve(url, img)
return img
pth = "/qgis_data/nyc/nyc_museums_geo.shp"
lyr = QgsVectorLayer(pth, "New York City Museums", "ogr")
lyr.setDisplayField('')
QgsMapLayerRegistry.instance().addMapLayer(lyr)
How it works...
The key to this recipe is the @qgsfunction decorator. When you register the function in this way, it shows up in the menus for Python functions in expressions. The function must also have the parent and value parameters, but we didn't need them in this case.
The following screenshot shows a Google Street View map tip:
There's more...
If you don't need the function any more, you must unregister it for the function to go away. The unregister command uses the following convention, referencing the function name with a dollar sign:
QgsExpression.unregisterFunction("$googleStreetView")
Using OpenStreetMap's points of interest in QGIS
OpenStreetMap has an API called Overpass that lets you access OSM data dynamically. In this recipe, we'll add some OSM tourism points of interest to a map.
Getting ready
You will need to use the QGIS Plugin Manager to install the Quick OSM plugin.
You will also need to download the following shapefile and unzip it to your qgis_data/ms directory:
https://geospatialpython.googlecode.com/svn/MSCoast_geo.zip
How to do it...
We will load our base layer that defines the area of interest. Then, we'll use the Processing Toolbox to build a query for OSM, download the data, and add it to the map. To do this, we need to perform the following steps:
import processing
lyr = QgsVectorLayer("/qgis_data/ms/MSCoast_geo.shp", "MS Coast", "ogr")
ext = lyr.extent()
w = ext.xMinimum()
s = ext.yMinimum()
e = ext.xMaximum()
n = ext.yMaximum()
factory = processing.runalg("quickosm:queryfactory",\
"tourism","","%s,%s,%s,%s" % (w,e,s,n),"",25)
q = factory["OUTPUT_QUERY"]
bbox_query = """<bbox-query e="%s" n="%s" s="%s" \ w="%s"/>""" % (e,n,s,w)
bad_xml = """<bbox-query %s,%s,%s,%s/>""" % (w,e,s,n)
good_query = q.replace(bad_xml, bbox_query)
results = processing.runalg("quickosm:queryoverpassapiwithastring",\"http://overpass-api.de/api/",good_query,"0,0,0,0","",None)
osm = results["OUTPUT_FILE"]
poly = "/qgis_data/ms/tourism_poly.shp"
multiline = "/qgis_data/ms/tourism_multil.shp"
line = "/qgis_data/ms/tourism_lines.shp"
points = "/qgis_data/ms/tourism_points.shp"
processing.runalg("quickosm:ogrdefault",osm,"","","","",poly,multiline,line,points)
tourism_points = QgsVectorLayer(points, "Points of Interest", "ogr")
QgsMapLayerRegistry.instance().addMapLayers([tourism_points, lyr]
How it works...
The Quick OSM plugin manages the Overpass API. What's interesting about this plugin is that it provides processing algorithms in addition to a GUI interface. The processing algorithm that creates the query unfortunately formats the bbox-query tag improperly, so we need to work around this issue with the string replace. The API returns an OSM XML file that we must convert to shapefiles for use in QGIS.
Visualizing data in 3D with WebGL
QGIS displays data in a two-dimensions even if the data is three-dimensional. However, most modern browsers can display 3D data using the WebGL standard. In this recipe, we'll use the Qgis2threejs plugin to display QGIS data in 3D in a browser.
Getting ready
You will need to download some raster elevation data in the zipped directory and place it in your qgis_data directory from the following:
https://geospatialpython.googlecode.com/svn/saveqml.zip
You will also need to install the Qgis2threejs plugin using the QGIS Plugin Manager.
How to do it...
We will set up a color ramp for a DEM draped over a hillshade image and use the plugin to create a WebGL page in order to display the data. To do this, we need to perform the following steps:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import Qgis2threejs as q23js
iface.mapCanvas().setCrsTransformEnabled(False)
iface.mapCanvas().setMapUnits(0)
demPth = "/Users/joellawhead/qgis_data/saveqml/dem.asc"
hillshadePth = "/Users/joellawhead/qgis_data/saveqml/hillshade.tif"
dem = QgsRasterLayer(demPth, "DEM")
hillshade = QgsRasterLayer(hillshadePth, "Hillshade")
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum
limits = QgsRaster.ContrastEnhancementMinMax
dem.setContrastEnhancement(algorithm, limits)
s = QgsRasterShader()
c = QgsColorRampShader()
c.setColorRampType(QgsColorRampShader.INTERPOLATED)
i = []
qri = QgsColorRampShader.ColorRampItem
i.append(qri(356.334, QColor(63,159,152,255), '356.334'))
i.append(qri(649.292, QColor(96,235,155,255), '649.292'))
i.append(qri(942.25, QColor(100,246,174,255), '942.25'))
i.append(qri(1235.21, QColor(248,251,155,255), '1235.21'))
i.append(qri(1528.17, QColor(246,190,39,255), '1528.17'))
i.append(qri(1821.13, QColor(242,155,39,255), '1821.13'))
i.append(qri(2114.08, QColor(165,84,26,255), '2114.08'))
i.append(qri(2300, QColor(236,119,83,255), '2300'))
i.append(qri(2700, QColor(203,203,203,255), '2700'))
c.setColorRampItemList(i)
s.setRasterShaderFunction(c)
ps = QgsSingleBandPseudoColorRenderer(dem.dataProvider(), 1, s)
ps.setOpacity(0.5)
dem.setRenderer(ps)
QgsMapLayerRegistry.instance().addMapLayers([dem, hillshade])
d = q23js.qgis2threejsdialog.Qgis2threejsDialog(iface)
props = [None,
None,
{u'spinBox_Roughening': 4,
u'checkBox_Surroundings': False,
u'horizontalSlider_Resolution': 2,
u'lineEdit_Color': u'',
'visible': False,
'dem_Height': 163,
u'checkBox_Frame': False,
u'lineEdit_ImageFile': u'',
u'spinBox_Size': 5,
u'spinBox_sidetransp': 0,
u'lineEdit_xmax': u'',
u'radioButton_MapCanvas': True,
'dem_Width': 173,
u'radioButton_Simple': True,
u'lineEdit_xmin': u'',
u'checkBox_Sides': True,
u'comboBox_DEMLayer': dem.id(),
u'spinBox_demtransp': 0,
u'checkBox_Shading': False,
u'lineEdit_ymax': u'',
u'lineEdit_ymin': u'',
u'spinBox_Height': {5},{},{},{},{}]}
d.properties = props
d.ui.lineEdit_OutputFilename.setText('/qgis_data/3D/3d.html')
def sp(a,b):
return
d.saveProperties = sp
d.run()
How it works...
This plugin is absolutely not designed for script-level access. However, Python is so flexible that we can even script the plugin at the GUI level and avoid displaying the GUI, so it is seamless to the user. The only glitch in this approach is that the save method overwrites the properties we set, so we must insert a dummy function that prevents this overwrite.
The following image shows the WebGL viewer in action:
Visualizing data on a globe
Ever since the release of Google Earth, spinning globe applications have become a useful and popular method of geographic exploration. QGIS has an experimental plugin called QGIS Globe, which is similar to Google Earth; however, it is extremely unstable. In this recipe, we'll display a layer in Google Earth.
Getting ready
You will need to use the QGIS Plugin Manager to install the MMQGIS plugin.
Make sure you have Google Earth installed from https://www.google.com/earth/.
You will also need the following dataset from a previous recipe. It is a zipped directory called ufo which you should uncompress to your qgis_data directory:
https://geospatialpython.googlecode.com/svn/ufo.zip
How to do it...
We will load our layer and set up the attribute we want to use for the Google Earth KML output as the descriptor. We'll use the MMQIGS plugin to output our layer to KML. Finally, we'll use a cross-platform technique to open the file, which will trigger it to open in Google Earth. To do this, we need to perform the following steps:
from mmqgis import mmqgis_library as mmqgis
import webbrowser
import os
pth = "/Users/joellawhead/qgis_data/continental-us"
lyrName = "continental-us"
lyr = QgsVectorLayer(pth, lyrName, "ogr")
output = "/Users/joellawhead/qgis_data/us.kml"
nameAttr = "FIPS_CNTRY"
desc = ["CNTRY_NAME",]
sep = "Paragraph"
mmqgis.mmqgis_kml_export(iface, lyrName, nameAttr, desc, \
sep, output, False)
webbrowser.open("file://" + output)
How it works...
The MMQGIS plugin does a good job with custom scripts and has easy-to-use functions. While our method for automatically launching Google Earth may not work in every possible case, it is almost perfect.
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
Z
Table of Contents
QGIS Python Programming Cookbook
Table of Contents
QGIS Python Programming Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Sections
Getting ready
How to do it…
How it works…
There's more…
See also
Conventions
Reader feedback
Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Automating QGIS
Introduction
Installing QGIS for development
Getting ready
How to do it
Installing PyQGIS using the Debian package manager
Installing PyQGIS using the RPM package manager
Setting the environment variables
Setting the environment variables on Windows
Setting the environment variables on Linux
How it works…
There's more…
Finding the PyQGIS path on Windows
Finding the location of the QGIS Python installation on other platforms
Using the QGIS Python console for interactive control
How to do it…
How it works…
Using the Python ScriptRunner plugin
Getting ready
How to do it…
How it works…
Setting up your QGIS IDE
Getting ready
How to do it…
Adding the QGIS Python interpreter on Windows
Adding the PyQGIS module paths to the interpreter
Adding the PyQGIS API to the IDE
Adding environment variables
How it works…
Debugging QGIS Python scripts
How to do it…
Configuring QGIS
Configuring Eclipse
Testing the debugger
How it works…
Navigating the PyQGIS API
Getting ready
How to do it…
How it works…
There's more…
Creating a QGIS plugin
Getting ready
How to do it…
How it works…
There's more…
Distributing a plugin
Getting ready
How to do it…
How it works…
Creating a standalone application
Getting ready
How to do it…
How it works…
There's more...
Storing and reading global preferences
Getting ready
How to do it…
How it works…
There's more…
Storing and reading project preferences
Getting ready
How to do it…
How it works…
There's more…
Accessing the script path from within your script
Getting ready
How to do it…
How it works…
There's more…
2. Querying Vector Data
Introduction
Loading a vector layer from a file sample
Getting ready
How to do it...
How it works...
Loading a vector layer from a spatial database
Getting ready
How to do it...
How it works...
Examining vector layer features
Getting ready
How to do it...
How it works...
Examining vector layer attributes
Getting ready
How to do it...
How it works...
There's more...
Filtering a layer by geometry
Getting ready
How to do it...
How it works...
Filtering a layer by attributes
Getting ready
How to do it...
How it works...
Buffering a feature intermediate
Getting ready
How to do it...
How it works...
Measuring the distance between two points
Getting ready
How to do it...
How it works...
Measuring the distance along a line sample
Getting ready
How to do it...
How it works...
Calculating the area of a polygon
Getting ready
How to do it...
How it works...
Creating a spatial index
Getting ready
How to do it...
How it works...
Calculating the bearing of a line
Getting ready
How to do it...
How it works...
Loading data from a spreadsheet
Getting ready
How to do it...
How it works...
There's more...
3. Editing Vector Data
Introduction
Creating a vector layer in memory
Getting ready
How to do it...
How it works...
There's more…
Adding a point feature to a vector layer
Getting ready
How to do it...
How it works...
Adding a line feature to a vector layer
Getting ready
How to do it...
How it works...
Adding a polygon feature to a vector layer
Getting ready
How to do it...
How it works...
Adding a set of attributes to a vector layer
Getting ready
How to do it...
How it works...
Adding a field to a vector layer
Getting ready
How to do it...
How it works...
Joining a shapefile attribute table to a CSV file
Getting ready
How to do it...
How it works...
There's more...
Moving vector layer geometry
Getting ready
How to do it...
How it works...
Changing a vector layer feature's attribute
Getting ready
How to do it...
How it works...
Deleting a vector layer feature
Getting ready
How to do it...
How it works...
Deleting a vector layer attribute
Getting ready
How to do it...
How it works...
Reprojecting a vector layer
Getting ready
How to do it...
How it works...
Converting a shapefile to KML
Getting ready
How to do it...
How it works...
Merging shapefiles
Getting ready
How to do it...
How it works...
There's more...
Splitting a shapefile
Getting ready
How to do it...
How it works...
Generalizing a vector layer
Getting ready
How to do it...
How it works...
Dissolving vector shapes
Getting ready
How to do it...
How it works...
Performing a union on vector shapes
Getting ready
How to do it...
How it works...
Rasterizing a vector layer
Getting ready
How to do it...
How it works...
4. Using Raster Data
Introduction
Loading a raster layer
Getting ready
How to do it...
How it works...
Getting the cell size of a raster layer
Getting ready
How to do it...
How it works...
Obtaining the width and height of a raster
Getting ready
How to do it...
How it works...
Counting raster bands
Getting ready
How to do it...
How it works...
Swapping raster bands
Getting ready
How to do it...
How it works...
There's more...
Querying the value of a raster at a specified point
Getting ready
How to do it...
How it works...
Reprojecting a raster
Getting ready
How to do it...
How it works...
There's more...
Creating an elevation hillshade
Getting ready
How to do it...
How it works...
Creating vector contours from elevation data
Getting ready
How to do it...
How it works...
Sampling a raster dataset using a regular grid
Getting ready
How to do it...
How it works...
There's more...
Adding elevation data to line vertices using a digital elevation model
Getting ready
How to do it...
How it works...
There's more...
Creating a common extent for rasters
Getting ready
How to do it...
How it works...
Resampling raster resolution
Getting ready
How to do it...
How it works...
Counting the unique values in a raster
Getting ready
How to do it...
How it works...
Mosaicing rasters
Getting ready
How to do it...
How it works...
Converting a TIFF image to a JPEG image
Getting ready
How to do it...
How it works...
Creating pyramids for a raster
Getting ready
How to do it...
How it works...
Converting a pixel location to a map coordinate
Getting ready
How to do it...
How it works...
Converting a map coordinate to a pixel location
Getting ready
How to do it...
How it works...
Creating a KML image overlay for a raster
Getting ready
How to do it...
How it works...
There's more...
Classifying a raster
Getting ready
How to do it...
How it works...
Converting a raster to a vector
Getting ready
How to do it...
How it works...
Georeferencing a raster from control points
Getting ready
How to do it...
How it works...
Clipping a raster using a shapefile
Getting ready
How to do it...
How it works...
5. Creating Dynamic Maps
Introduction
Accessing the map canvas
Getting ready
How to do it...
How it works...
Changing the map units
Getting ready
How to do it...
How it works...
Iterating over layers
Getting ready
How to do it...
How it works...
Symbolizing a vector layer
Getting ready
How to do it...
How it works...
Rendering a single band raster using a color ramp algorithm
Getting ready
How to do it...
How it works…
Creating a complex vector layer symbol
Getting ready
How to do it…
How it works…
Using icons as vector layer symbols
Getting ready
How to do it…
How it works…
Creating a graduated vector layer symbol renderer
Getting ready
How to do it...
How it works...
Creating a categorized vector layer symbol
Getting ready
How to do it...
How it works...
Creating a map bookmark
Getting ready
How to do it...
How it works...
Navigating to a map bookmark
Getting ready
How to do it...
How it works...
Setting scale-based visibility for a layer
Getting ready
How to do it...
How it works...
Using SVG for layer symbols
Getting ready
How to do it...
How it works...
Using pie charts for symbols
Getting ready
How to do it...
How it works...
There's more...
Using the OpenStreetMap service
Getting ready
How to do it...
How it works...
Using the Bing aerial image service
Getting ready
How to do it...
How it works...
Adding real-time weather data from OpenWeatherMap
Getting ready
How to do it...
How it works...
Labeling features
Getting ready
How to do it...
How it works...
Changing map layer transparency
Getting ready
How to do it...
How it works...
Adding standard map tools to the canvas
Getting ready
How to do it...
How it works...
Using a map tool to draw points on the canvas
Getting ready
How to do it...
How it works...
Using a map tool to draw polygons or lines on the canvas
Getting ready
How to do it...
How it works...
Building a custom selection tool
Getting ready
How to do it...
How it works...
Creating a mouse coordinate tracking tool
Getting ready
How to do it...
How it works...
6. Composing Static Maps
Introduction
Creating the simplest map renderer
Getting ready
How to do it...
How it works...
There's more...
Using the map composer
Getting ready
How to do it...
How it works...
There's more…
Adding labels to a map for printing
Getting ready
How to do it...
How it works...
Adding a scale bar to the map
Getting ready
How to do it...
How it works...
Adding a north arrow to the map
Getting ready
How to do it...
How it works...
There's more...
Adding a logo to the map
Getting ready
How to do it...
How it works...
Adding a legend to the map
Getting ready
How to do it...
How it works...
Adding a custom shape to the map
Getting ready
How to do it...
How it works...
There's more...
Adding a grid to the map
Getting ready
How to do it...
How it works...
Adding a table to the map
Getting ready
How to do it...
How it works...
Adding a world file to a map image
Getting ready
How to do it...
How it works...
Saving a map to a project
Getting ready
How to do it...
How it works...
Loading a map from a project
Getting ready
How to do it...
How it works...
7. Interacting with the User
Introduction
Using log files
Getting ready
How to do it...
How it works...
Creating a simple message dialog
Getting ready
How to do it...
How it works...
There's more…
Creating a warning dialog
Getting ready
How to do it...
How it works...
Creating an error dialog
Getting ready
How to do it...
How it works...
Displaying a progress bar
Getting ready
How to do it...
How it works...
There's more…
Creating a simple text input dialog
Getting ready
How to do it...
How it works...
Creating a file input dialog
Getting ready
How to do it...
How it works...
There's more…
Creating a combobox
Getting ready
How to do it...
How it works...
Creating radio buttons
Getting ready
How to do it...
How it works...
Creating checkboxes
Getting ready
How to do it...
How it works...
Creating tabs
Getting ready
How to do it...
How it works...
Stepping the user through a wizard
Getting ready
How to do it...
How it works...
Keeping dialogs on top
Getting ready
How to do it...
How it works...
8. QGIS Workflows
Introduction
Creating an NDVI
Getting ready
How to do it...
How it works...
Geocoding addresses
Getting ready
How to do it...
How it works...
There's more...
Creating raster footprints
Getting ready
How to do it...
How it works...
There's more...
Performing network analysis
Getting ready
How to do it...
How it works...
Routing along streets
Getting ready
How to do it...
How it works...
Tracking a GPS
Getting ready
How to do it...
How it works...
There's more...
Creating a mapbook
Getting ready
How to do it...
How it works...
Finding the least cost path
Getting ready
How to do it...
How it works...
Performing nearest neighbor analysis
Getting ready
How to do it...
How it works...
Creating a heat map
Getting ready
How to do it...
How it works...
There's more...
Creating a dot density map
Getting ready
How to do it...
How it works...
Collecting field data
Getting ready
How to do it...
How it works...
Computing road slope using elevation data
Getting ready
How to do it...
How it works...
Geolocating photos on the map
Getting ready
How to do it...
How it works...
There's more...
Image change detection
Getting ready
How to do it...
How it works...
9. Other Tips and Tricks
Introduction
Creating tiles from a QGIS map
Getting ready
How to do it...
How it works...
Adding a layer to geojson.io
Getting ready
How to do it...
How it works...
There's more...
Rendering map layers based on rules
Getting ready
How to do it...
How it works...
Creating a layer style file
Getting ready
How to do it...
How it works...
Using NULL values in PyQGIS
Getting ready
How to do it...
How it works...
Using generators for layer queries
Getting ready
How to do it...
How it works...
Using alpha values to show data density
Getting ready
How to do it...
How it works...
Using the __geo_interface__ protocol
Getting ready
How to do it...
How it works...
Generating points along a line
Getting ready
How to do it...
How it works...
There's more...
Using expression-based labels
Getting ready
How to do it...
How it works...
Creating dynamic forms in QGIS
Getting ready
How to do it...
How it works...
Calculating length for all selected lines
Getting ready
How to do it...
How it works...
Using a different status bar CRS than the map
Getting ready
How to do it...
How it works...
Creating HTML labels in QGIS
Getting ready
How to do it...
How it works...
There's more...
Using OpenStreetMap's points of interest in QGIS
Getting ready
How to do it...
How it works...
Visualizing data in 3D with WebGL
Getting ready
How to do it...
How it works...
Visualizing data on a globe
Getting ready
How to do it...
How it works...
Index