
AdvAnce PrAise for Perl One-liners

“One of the slogans used by Perl is ‘Easy things should be easy and hard
things should be possible.’ This book illustrates just how easy things can be—
and how much can be done with so little code.”
—DaviD Precious, contributor to the Perl Dancer Project anD various
cPan moDules

“By reading this book you can make a step toward becoming the local
computer wizard, even without learning how to program.”
—Gabor szabo, founDer anD eDitor of the Perl Weekly newsletter

“A set of exercises for deepening your understanding of Perl.”
—john D. cook, sinGular value consultinG

“The author is enthusiastic about the material and uses an easy writing style.
Highly recommended.”
—thriG (jeremy mates), internet Plumber

“These one-liners are great. Simple. Clear. Concise.”
—jonathan scott Duff, Perl Guru

“A quick read full of useful command-line Perl programs.”
—chris feDDe, systems enGineer anD Perl enthusiast

“Handy for anyone who does a lot of one-off text processing: system
administrators, coders, or anyone with large amounts of data they need
shifted, filtered, or interpreted.”
—jim Davis, Perl DeveloPer

Perl One-liners

P e r l
O n e - l i n e r s

1 3 0 P r o g r a m s
T h a t G e t T h i n g s D o n e

San Francisco

by Pe ter i s Krumins

Perl One-liners. Copyright © 2014 by Peteris Krumins.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Printed in USA
First printing

17 16 15 14 13 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-520-X
ISBN-13: 978-1-59327-520-4

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Tina Salameh
Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Alastair McGowan-Douglas
Copyeditor: LeeAnn Pickrell
Compositor: Riley Hoffman
Proofreader: Elaine Merrill

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Krumins, Peteris.
 Perl one-liners : 130 programs that get things done / by Peteris Krumins.
 pages cm
 Summary: "Snappy Perl programs to streamline tasks and sharpen coding skills"-- Provided by publisher.
 ISBN 978-1-59327-520-4 (paperback) -- ISBN 1-59327-520-X (paperback)
 1. Perl (Computer program language) I. Title.
 QA76.73.P22K78 2013
 005.13'3--dc23
 2013030613

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

About the Author
Peteris Krumins is a programmer,
systems administrator, blogger, and
all-around hacker. He is currently
running his own company, Browserling,
which focuses on cross-browser testing.
He has self-published three books on
essential UNIX tools, and he enjoys
open-sourcing hundreds of small
projects on GitHub.

Find his website and blog at
http://www.catonmat.net/, follow
@pkrumins on Twitter, and see
his open source projects at
http://github.com/pkrumins/.

About the Technical reviewer
Alastair McGowan-Douglas lives in Rugby in the UK. He has been a
Perl developer since 2008 and is now stuck writing PHP for a living.
His favorite pastime at work is writing Perl scripts for internal use to
encourage others to embrace the language. Also a JavaScript developer
and Git aficionado, his rantings and musings on these various subjects
can be found at http://altreus.blogspot.com/.

B r i e f C O n T e n T s

Acknowledgments .xvii

Chapter 1: Introduction to Perl One-Liners . 1

Chapter 2: Spacing . 7

Chapter 3: Numbering . 17

Chapter 4: Calculations . 29

Chapter 5: Working with Arrays and Strings . 49

Chapter 6: Text Conversion and Substitution . 59

Chapter 7: Selectively Printing and Deleting Lines . 69

Chapter 8: Useful Regular Expressions . 83

Appendix A: Perl’s Special Variables . 95

Appendix B: Using Perl One-Liners on Windows . 105

Appendix C: perl1line .txt . 117

Index . 139

C O n T e n T s i n D e T a i l

AcknOwledgmenTs xvii

1
inTrOducTiOn TO Perl One-liners 1

2
sPAcing 7
2 .1 Double-space a file . 7
2 .2 Double-space a file, excluding the blank lines . 11
2 .3 Triple-space a file . 11
2 .4 N-space a file . 12
2 .5 Add a blank line before every line . 12
2 .6 Remove all blank lines . 12
2 .7 Remove all consecutive blank lines, leaving only one . 14
2 .8 Compress/expand all blank lines into N consecutive lines 14
2 .9 Double-space between all words . 15
2 .10 Remove all spacing between words . 15
2 .11 Change all spacing between words to one space . 16
2 .12 Insert a space between all characters . 16

3
numbering 17
3 .1 Number all lines in a file . 17
3 .2 Number only non-empty lines in a file . 18
3 .3 Number and print only non-empty lines in a file (drop empty lines) 19
3 .4 Number all lines but print line numbers only for non-empty lines 20
3 .5 Number only lines that match a pattern; print others unmodified 20
3 .6 Number and print only lines that match a pattern . 21
3 .7 Number all lines but print line numbers only for lines that match a pattern 21
3 .8 Number all lines in a file using a custom format . 22
3 .9 Print the total number of lines in a file (emulate wc -l) . 22
3 .10 Print the number of non-empty lines in a file . 24
3 .11 Print the number of empty lines in a file . 25
3 .12 Print the number of lines in a file that match a pattern (emulate grep -c) 25
3 .13 Number words across all lines . 26
3 .14 Number words on each individual line . 26
3 .15 Replace all words with their numeric positions . 27

xii Contents in Detail

4
cAlculATiOns 29
4 .1 Check if a number is a prime . 29
4 .2 Print the sum of all fields on each line . 30
4 .3 Print the sum of all fields on all lines . 31
4 .4 Shuffle all fields on each line . 32
4 .5 Find the numerically smallest element (minimum element) on each line 33
4 .6 Find the numerically smallest element (minimum element) over all lines 33
4 .7 Find the numerically largest element (maximum element) on each line 35
4 .8 Find the numerically largest element (maximum element) over all lines 35
4 .9 Replace each field with its absolute value . 36
4 .10 Print the total number of fields on each line . 36
4 .11 Print the total number of fields on each line, followed by the line 37
4 .12 Print the total number of fields on all lines . 37
4 .13 Print the total number of fields that match a pattern . 38
4 .14 Print the total number of lines that match a pattern . 38
4 .15 Print the number π . 39
4 .16 Print the number e . 39
4 .17 Print UNIX time (seconds since January 1, 1970, 00:00:00 UTC) 39
4 .18 Print Greenwich Mean Time and local computer time . 40
4 .19 Print yesterday’s date . 41
4 .20 Print the date 14 months, 9 days, and 7 seconds ago . 41
4 .21 Calculate the factorial . 41
4 .22 Calculate the greatest common divisor . 42
4 .23 Calculate the least common multiple . 43
4 .24 Generate 10 random numbers between 5 and 15 (excluding 15) 43
4 .25 Generate all permutations of a list . 44
4 .26 Generate the powerset . 45
4 .27 Convert an IP address to an unsigned integer . 45
4 .28 Convert an unsigned integer to an IP address . 47

5
wOrking wiTh ArrAys And sTrings 49
5 .1 Generate and print the alphabet . 49
5 .2 Generate and print all the strings from “a” to “zz” . 50
5 .3 Create a hex lookup table . 51
5 .4 Generate a random eight-character password . 51
5 .5 Create a string of specific length . 52
5 .6 Create an array from a string . 52
5 .7 Create a string from the command-line arguments . 53
5 .8 Find the numeric values for characters in a string . 53
5 .9 Convert a list of numeric ASCII values into a string . 55
5 .10 Generate an array with odd numbers from 1 to 100 . 55
5 .11 Generate an array with even numbers from 1 to 100 . 56
5 .12 Find the length of a string . 56
5 .13 Find the number of elements in an array . 56

Contents in Detail xiii

6
TexT cOnversiOn And subsTiTuTiOn 59
6 .1 ROT13 a string . 59
6 .2 Base64-encode a string . 60
6 .3 Base64-decode a string . 61
6 .4 URL-escape a string . 61
6 .5 URL-unescape a string . 61
6 .6 HTML-encode a string . 62
6 .7 HTML-decode a string . 62
6 .8 Convert all text to uppercase . 62
6 .9 Convert all text to lowercase . 62
6 .10 Uppercase only the first letter of each line . 63
6 .11 Invert the letter case . 63
6 .12 Title-case each line . 63
6 .13 Strip leading whitespace (spaces, tabs) from the beginning of each line 64
6 .14 Strip trailing whitespace (spaces, tabs) from the end of each line 64
6 .15 Strip whitespace (spaces, tabs) from the beginning and end of each line 64
6 .16 Convert UNIX newlines to DOS/Windows newlines . 65
6 .17 Convert DOS/Windows newlines to UNIX newlines . 65
6 .18 Convert UNIX newlines to Mac newlines . 65
6 .19 Substitute (find and replace) “foo” with “bar” on each line 66
6 .20 Substitute (find and replace) “foo” with “bar” on lines that match “baz” 66
6 .21 Print paragraphs in reverse order . 66
6 .22 Print all lines in reverse order . 67
6 .23 Print columns in reverse order . 67

7
selecTively PrinTing And deleTing lines 69
7 .1 Print the first line of a file (emulate head -1) . 70
7 .2 Print the first 10 lines of a file (emulate head -10) . 70
7 .3 Print the last line of a file (emulate tail -1) . 71
7 .4 Print the last 10 lines of a file (emulate tail -10) . 72
7 .5 Print only lines that match a regular expression . 72
7 .6 Print only lines that do not match a regular expression 73
7 .7 Print every line preceding a line that matches a regular expression 73
7 .8 Print every line following a line that matches a regular expression 74
7 .9 Print lines that match regular expressions AAA and BBB in any order 75
7 .10 Print lines that don’t match regular expressions AAA and BBB 75
7 .11 Print lines that match regular expression AAA followed by BBB followed by CCC . . 75
7 .12 Print lines that are at least 80 characters long . 76
7 .13 Print lines that are fewer than 80 characters long . 76
7 .14 Print only line 13 . 76
7 .15 Print all lines except line 27 . 76
7 .16 Print only lines 13, 19, and 67 . 77
7 .17 Print all lines from 17 to 30 . 77
7 .18 Print all lines between two regular expressions (including the lines that match) . . . 78

xiv Contents in Detail

7 .19 Print the longest line . 78
7 .20 Print the shortest line . 79
7 .21 Print all lines containing digits . 79
7 .22 Print all lines containing only digits . 79
7 .23 Print all lines containing only alphabetic characters . 80
7 .24 Print every second line . 80
7 .25 Print every second line, beginning with the second line 80
7 .26 Print all repeated lines only once . 81
7 .27 Print all unique lines . 81

8
 useful regulAr exPressiOns 83
8 .1 Match something that looks like an IP address . 83
8 .2 Test whether a number is in the range 0 to 255 . 84
8 .3 Match an IP address . 85
8 .4 Check whether a string looks like an email address . 86
8 .5 Check whether a string is a number . 87
8 .6 Check whether a word appears in a string twice . 88
8 .7 Increase all integers in a string by one . 89
8 .8 Extract the HTTP User-Agent string from HTTP headers . 89
8 .9 Match printable ASCII characters . 90
8 .10 Extract text between two HTML tags . 90
8 .11 Replace all tags with . 91
8 .12 Extract all matches from a regular expression . 92

A
Perl’s sPeciAl vAriAbles 95
A .1 Variable $_ . 95

Using $_ with the -n argument . 96
Using $_ with the -p argument . 97
Using $_ explicitly . 98

A .2 Variable $. . 99
A .3 Variable $/ . 100
A .4 Variable $\ . 101
A .5 Variables $1, $2, $3, and so on . 101
A .6 Variable $, . 102
A .7 Variable $" . 102
A .8 Variable @F . 103
A .9 Variable @ARGV . 103
A .10 Variable %ENV . 104

b
using Perl One-liners On windOws 105
B .1 Perl on Windows . 105
B .2 Bash on Windows . 106

Contents in Detail xv

B .3 Perl One-Liners in Windows Bash . 107
B .4 Perl One-Liners in the Windows Command Prompt . 108

Converting One-Liners in the Windows Command Prompt 108
Symbol Challenges . 110
Windows File Paths . 111

B .5 Perl One-Liners in PowerShell . 111
Converting One-Liners in PowerShell . 112
One-Liners in PowerShell 3 .0+ . 114

c
Perl1line.TxT 117
C .1 Spacing . 117
C .2 Numbering . 119
C .3 Calculations . 121
C .4 Working with Arrays and Strings . 127
C .5 Text Conversion and Substitution . 130
C .6 Selectively Printing and Deleting Lines . 133
C .7 Useful Regular Expressions . 136

index 139

A c k n o w l e d g m e n t s

I’d like to thank Eric Pement for inspiring me to write this book; Bill
Pollock for giving me the opportunity to publish it at No Starch Press;
Riley Hoffman and Laurel Chun for working with me to make it perfect;
Alastair McGowan-Douglas for his technical review; and David Precious,
Gabor Szabo, Jim Davis, Chris Fedde, Andy Lester, John D. Cook, Jonathan
Scott Duff, and Jeremy Mates for reviewing the book and making great
suggestions for improvements. I’d also like to thank everyone who helped
me on the #perl IRC channel on freenode. If I forgot anyone, I’m sorry, but
thanks for helping me to get this book written!

1
i n T r O D u C T i O n T O
P e r l O n e - l i n e r s

Perl one-liners are small and awesome Perl programs
that fit in a single line of code. They do one thing
really well—like changing line spacing, numbering
lines, performing calculations, converting and sub-
stituting text, deleting and printing specific lines,
parsing logs, editing files in-place, calculating statistics, carrying out
system administration tasks, or updating a bunch of files at once. Perl
one-liners will make you a shell warrior: what took you minutes (or even
hours) to solve will now take you only seconds!

In this introductory chapter, I’ll show you what one-liners look like
and give you a taste of what’s in the rest of the book. This book requires
some Perl knowledge, but most of the one-liners can be tweaked and
modified without knowing the language in depth.

2 Chapter 1

Let’s look at some examples. Here’s one:

perl -pi -e 's/you/me/g' file

This one-liner replaces all occurrences of the text you with me in the
file file. Very useful if you ask me. Imagine you’re on a remote server and
you need to replace text in a file. You can either open the file in a text edi-
tor and execute find-replace or simply perform the replacement through
the command line and, bam, be done with it.

This one-liner and others in this book work well in UNIX. I’m using
Perl 5.8 to run them, but they also work in newer Perl versions, such
as Perl 5.10 and later. If you’re on a Windows computer, you’ll need to
change them a little. To make this one-liner work on Windows, swap the
single quotes for double quotes. To learn more about using Perl one-
liners on Windows, see Appendix B.

I’ll be using Perl’s -e command-line argument throughout the book.
It allows you to use the command line to specify the Perl code to be
executed. In the previous one-liner, the code says “do the substitution
(s/you/me/g command) and replace you with me globally (/g flag).” The
-p argument ensures that the code is executed on every line of input and
that the line is printed after execution. The -i argument ensures that file
is edited in-place. Editing in-place means that Perl performs all the sub-
stitutions right in the file, overwriting the content you want to replace. I
recommend that you always make a backup of the file you’re working with
by specifying the backup extension to the -i argument, like this:

perl -pi.bak -e 's/you/me/g' file

Now Perl creates a file.bak backup file first and only then changes the
contents of file.

How about doing this same replacement in multiple files? Just specify
the files on the command line:

perl -pi -e 's/you/me/g' file1 file2 file3

Here, Perl first replaces you with me in file1 and then does the same in
file2 and file3.

You can also perform the same replacement only on lines that match
we, as simply as this:

perl -pi -e 's/you/me/g if /we/' file

Here, you use the conditional if /we/ to ensure that s/you/me/g is exe-
cuted only on lines that match the regular expression /we/.

Introduction to Perl One-Liners 3

The regular expression can be anything. Say you want to execute the
substitution only on lines with digits in them. You could use the /\d/ regu-
lar expression to match numbers:

perl -pi -e 's/you/me/g if /\d/' file

How about finding all lines in a file that appear more than once?

perl -ne 'print if $a{$_}++' file

This one-liner records the lines you’ve seen so far in the %a hash
and counts the number of times it sees the lines. If it has already seen
the line, the condition $a{$_}++ is true, so it prints the line. Otherwise it
“automagically” creates an element that contains the current line in the
%a hash and increments its value. The $_ special variable contains the
current line. This one-liner also uses the -n command-line argument to
loop over the input, but unlike -p, it doesn’t print the lines automatically.
(Don’t worry about all the command-line arguments right now; you’ll
learn about them as you work through this book!)

How about numbering lines? Super simple! Perl’s $. special variable
maintains the current line number. Just print it together with the line:

perl -ne 'print "$. $_"' file

You can do the same thing by using the -p argument and modifying
the $_ variable:

perl -pe '$_ = "$. $_"' file

Here, each line is replaced by the string "$. $_", which is equal to
the current line number followed by the line itself. (See one-liner 3.1
on page 17 for a full explanation.)

If you omit the filename at the end of the one-liner, Perl reads data
from standard input. From now on, I’ll assume the data comes from the
standard input and drop the filename at the end. You can always put it
back if you want to run one-liners on whole files.

You can also combine the previous two one-liners to create one that
numbers only the repeated lines:

perl -ne 'print "$. $_" if $a{$_}++'

Another thing you can do is sum the numbers in each line using the
sum function from the List::Util CPAN module. CPAN (Comprehensive
Perl Archive Network; http://www.cpan.org/) is an archive of over 100,000

4 Chapter 1

reusable Perl modules. List::Util is one of the modules on CPAN, and it
contains various list utility functions. You don’t need to install this mod-
ule because it comes with Perl. (It’s in Perl core.)

perl -MList::Util=sum -alne 'print sum @F'

The -MList::Util command-line argument imports the List::Util
module. The =sum part of this one-liner imports the sum function from
the List::Util module so that the program can use the function. Next,
-a enables the automatic splitting of the current line into fields in the
@F array. The splitting happens on the whitespace character by default.
The -l argument ensures that print outputs a newline at the end of each
line. Finally, sum @F sums all the elements in the @F list, and print prints
the result followed by a newline (which I added with the -l argument).
(See one-liner 4.2 on page 30 for a more detailed explanation.)

How about finding the date 1299 days ago? Try this:

perl -MPOSIX -le
 '@t = localtime; $t[3] -= 1299; print scalar localtime mktime @t'

I explain this example in detail in one-liner 4.19 (page 41), but
basically you modify the fourth element of the structure returned by
localtime, which happens to be days. You simply subtract 1299 days from
the current day and then reassemble the result into a new time with
localtime mktime @t and print the result in the scalar context to display
human-readable time.

How about generating an eight-letter password? Here you go:

perl -le 'print map { ("a".."z")[rand 26] } 1..8'

The "a".."z" generates a list of letters from a to z (for a total of
26 letters). Then you randomly choose a letter eight times! (This example
is explained in detail in one-liner 5.4 on page 51.)

Or suppose you want to find the decimal number that corresponds to
an IP address. You can use unpack to find it really quickly:

perl -le 'print unpack("N", 127.0.0.1)'

This one-liner uses a v-string, which is a version literal. V-strings offer
a way to compose a string with the specified ordinals. The IP address
127.0.0.1 is treated as a v-string, meaning the numbers 127, 0, 0, 1 are con-
catenated together into a string of four characters, where the first char-
acter has ordinal value 127, the second and third characters have ordinal
values 0, and the last character has ordinal value 1. Next, unpack unpacks
them to a single decimal number in “network” (big-endian) order. (See
one-liner 4.27 on page 45 for more.)

Introduction to Perl One-Liners 5

What about calculations? Let’s find the sum of the numbers in the
first column in a table:

perl -lane '$sum += $F[0]; END { print $sum }'

The lines are automatically split into fields with the -a argument,
which can be accessed through the @F array. The first element of the
array, $F[0], is the first column, so you simply sum all the columns with
$sum += $F[0]. When the Perl program finishes, it executes any code in
the END block, which, in this case, prints the total sum. Easy!

Now let’s find out how many packets have passed through iptables
rules:

iptables -L -nvx | perl -lane '$pkts += $F[0]; END { print $pkts }'

The iptables program outputs the packets in the first column. All
you have to do to find out how many packets have passed through the
firewall rules is sum the numbers in the first column. Although iptables
will output table headers as well, you can safely ignore these because Perl
converts them to zero for the += operation.

How about getting a list of all users on the system?

perl -a -F: -lne 'print $F[4]' /etc/passwd

Combining -a with the -F argument lets you specify the character
where lines should be split, which, by default, is whitespace. Here, you
split lines on the colon character, the record separator of /etc/passwd.
Next, you print the fifth field, $F[4], which contains the user’s real name.

If you ever get lost with command-line arguments, remember that
Perl comes with a fantastic documentation system called perldoc. Type
perldoc perlrun at the command line. This will display the documentation
about how to run Perl and all the command-line arguments. It’s very use-
ful when you suddenly forget which command-line argument does what
and need to look it up quickly. You may also want to read perldoc perlvar,
which explains variables; perldoc perlop, which explains operators; and
perldoc perlfunc, which explains functions.

Perl one-liners let you accomplish many tasks quickly. You’ll find over
130 one-liners in this book. Read them, try them, and soon enough you’ll
be the local shell wizard. (Just don’t tell your friends—unless you want
competition.)

Enjoy!

2
s P a C i n G

In this chapter, we look at various one-liners that
change line and word spacing, performing such
tasks as double- and triple-spacing lines in a file,
removing blank lines, and double-spacing words.
You’ll also learn about various command-line argu-
ments, such as -p, -e, -n, and special variables, such
as $_ and $\.

2.1 double-space a file

perl -pe '$\ = "\n"' file

This one-liner double-spaces a file. I need to explain three things
here: the -p and -e command-line options and the short $\ = "\n" Perl
program.

8 Chapter 2

Use the -e option to enter a Perl program directly at the command
line. Typically you won’t want to create source files for every small pro-
gram; with -e you can easily write a program directly at the command
line as a one-liner. In this case, the entire Perl program contained in this
one-liner is $\ = "\n". Be sure to use single quotes (') around the program,
or your shell will interpret things like $\ as shell variables, which have no
value, effectively removing them!

Now let’s look at the -p switch. Specifying -p tells Perl to assume the
following loop around your program:

while (<>) {
 # your program goes here (specified by -e)
} continue {
 print or die "-p failed: $!\n";
}

Broadly speaking, this construct loops over all the input, executes
your code, and prints the value of $_ (the print statement prints the value
of $_), which allows you to modify all or some lines of the input quickly.
The $_ variable is a special variable that gets replaced with the current
line of text. It can be replaced with other stuff as well. You’ll learn all
about $_ as you work through the book. (See Appendix A for a summary
of its use cases.)

But understanding what is going on in this loop in more detail is
important. First, the while (<>) loop takes each line from the standard
input and puts it in the $_ variable. Next, the code specified by -e is exe-
cuted, followed by the print or die portion.

The continue statement executes the print or die statement after each
line, which attempts to print the contents of the $_ variable. If the attempt
fails (for example, the terminal is not writable or standard output has been
redirected to something that isn’t writable), die makes Perl exit (die) with
an error message.

In this one-liner, the code specified by -e is $\ = "\n", so the program
that Perl executes looks like this:

while (<>) {
 $\ = "\n";
} continue {
 print or die "-p failed: $!\n";
}

This Perl program reads each line into the $_ variable and then
sets $\ to a newline and calls print. Another special variable is $\. It is
similar to the ORS (Output Record Separator) variable in Awk in that it
is appended after every print operation. A print statement with no argu-
ments prints the contents of $_ and appends $\ at the end of the output.

Spacing 9

As a result, each line is printed unmodified, followed by the $\, which was
set to newline. The input is now double-spaced.

In fact, you actually do not need to set $\ to newline for every line;
you can set it just once at the beginning of the program:

perl -pe 'BEGIN { $\ = "\n" }' file

This one-liner sets $\ to the newline character just once before Perl
does anything in the BEGIN code block. The BEGIN block is a special code
block that is executed before everything else in a Perl program. Here’s
what the expanded Perl program looks like, and it works exactly the same
way as the previous one-liner:

BEGIN { $\ = "\n" }

while (<>) {
} continue {
 print or die "-p failed: $!\n";
}

Here is another way to double-space a file. This one-liner appends
another newline character at the end of each line and then prints the line:

perl -pe '$_ .= "\n"' file

This one-liner is equivalent to

while (<>) {
 $_ = $_ . "\n"
} continue {
 print or die "-p failed: $!\n";
}

Writing $_ = $_ . "\n" is the same as writing $_ .= "\n". This expression
simply concatenates $_ with "\n". (The period (.) is the string concatena-
tion operator.)

But probably the cleanest way to double-space a file is to use the sub-
stitution operator s:

perl -pe 's/$/\n/' file

This one-liner replaces the regular expression $ that matches the end
of a line with a newline, effectively adding a newline at the end.

10 Chapter 2

If you’re running Perl 5.10 or later, you can use the say operator.
The say operator acts much like print, but it always adds a newline at
the end of the line. In Perl 5.10, this same one-liner can be written
like this:

perl -nE 'say' file

The -E command-line argument works exactly the same way as the
-e command-line argument, but it also enables Perl 5.10 features, includ-
ing the say operator. The -n argument is similar to -p, but you have to
print the line yourself. (I explain the -n argument in more detail in one-
liner 2.6.) This one-liner prints the line, followed by another newline
that’s appended by the say operator.

For example, if a file contains four lines:

line1
line2
line3
line4

running any of these one-liners outputs the following:

line1

line2

line3

line4

In these first few examples, I passed a filename as the last argument
to the one-liners. When I do that, the one-liners operate on the contents
of that file. If I didn’t pass a filename to the one-liners, they’d operate
on the data from the standard input. From now on I won’t specify a file
at the end of the one-liners, but you can always add it back if you want to
run the one-liners on files. When writing one-liners, it’s a good idea to
quickly test if they’re correct by typing something directly to the standard
input. Then when you’re sure the one-liner works, you can pass one or
more filenames at the end.

Again, don’t forget about Perl’s handy documentation system, perldoc.
Just type perldoc perlrun at the command line to display information about
how to run Perl and all the command-line arguments.

Spacing 11

2.2 double-space a file, excluding the blank lines

perl -pe '$_ .= "\n" unless /^$/'

This one-liner double-spaces all lines that are not completely empty
by appending a newline character at the end of each nonblank line. The
unless means “if not,” and unless /^$/ means “if not ‘beginning then end
of line.’” The condition “beginning then end of line” is true only for
blank lines.

Here’s how this one-liner looks when expanded:

while (<>) {
 unless (/^$/) {
 $_ .= "\n"
 }
} continue {
 print or die "-p failed: $!\n";
}

Here is a better test, which takes into account spaces and tabs on a line:

perl -pe '$_ .= "\n" if /\S/'

Here, the line is matched against \S—a regular expression sequence
that is the inverse of \s, which matches any whitespace character (includ-
ing tab, vertical tab, space, newline, and carriage return). The inverse
of \s is any nonwhitespace character. The result is that every line with at
least one nonwhitespace character is double-spaced.

2.3 Triple-space a file
You can also triple-space a file simply by outputting more newlines at the
end of each line:

perl -pe '$\ = "\n\n"'

Or

perl -pe '$_ .= "\n\n"'

Or

perl -pe 's/$/\n\n/'

These one-liners are similar to the first one-liner in this chapter,
except that two newlines are appended after each line.

12 Chapter 2

2.4 n-space a file

perl -pe '$_ .= "\n"x7'

This one-liner inserts seven newlines after each line. Notice how I’ve
used "\n" x 7 to repeat the newline character seven times. The x operator
repeats the value on the left N times.

For example, the line

perl -e 'print "foo"x5'

prints foofoofoofoofoo.
As a side note, sometimes when you need to generate a certain

amount of data, the x operator comes in really handy. For example,
to generate 1KB of data, you could do this:

perl -e 'print "a"x1024'

This one-liner prints the a character 1024 times.

2.5 Add a blank line before every line

perl -pe 's/^/\n/'

This one-liner uses the s/regex/replace/ operator. It substitutes the
given regular expression with the replacement. In this one-liner, the
operator is s/^/\n/, the regular expression is ^, and the replacement is \n.
The ^ pattern matches the beginning position of the text, and the s oper-
ator replaces it with \n, a newline. As a result, the newline character is
inserted before the line. To insert something else before the line, simply
replace \n with the bit to be inserted.

2.6 remove all blank lines

perl -ne 'print unless /^$/'

This one-liner uses the -n flag, which tells Perl to assume a different
loop, other than -p, around the program:

while (<>) {
 # your program goes here
}

Spacing 13

Compare this loop to the one that Perl assumes when you specify
-p, and you’ll see that this loop has no continue { print or die } part.
In this loop, each line is read by the diamond operator <> and is placed
in the special variable $_, but it’s not printed! You have to print the line
yourself—a useful feature if you want to print, modify, or delete lines
selectively.

In this one-liner, the code is print unless /^$/, so the entire Perl pro-
gram becomes

while (<>) {
 print unless /^$/
}

Unraveling this a bit further, you get this:

while (<>) {
 print $_ unless $_ =~ /^$/
}

This one-liner prints all nonblank lines. (You saw the /^$/ regular
expression in one-liner 2.2 on page 11.)

This one-liner also removes all blank lines:

perl -lne 'print if length'

This one-liner uses the -l command-line argument, which automat-
ically chomps the input line (basically removes the newline at the end)
and appends it back at the end of the line when printing. The code speci-
fied to the -e argument is 'print if length', which says “print the line if it
has some length.” Empty lines have a length of 0, so they’re not printed
(0 is a false value in Perl, so the if length condition evaluates to false). All
other lines have length and are printed. Without -l, the string would still
have the newline at the end and thus be 1 or 2 characters long!1

Here’s another one-liner to remove all blank lines:

perl -ne 'print if /\S/'

This one-liner behaves slightly differently from the previous two.
Both print unless /^$/ and print if length also print the lines that consist
of only spaces and/or tabs. Such lines appear to be empty to the eye, and
you may want to filter them. This one-liner uses \S (explained in one-
liner 2.2 on page 11), a regular expression sequence that matches non-
blank characters. Lines containing only spaces and/or tabs don’t match
\S and therefore are not printed.

1. Windows uses two characters for the newline.

14 Chapter 2

As you can see, you can write the same program in many different
ways. In fact, Perl’s motto is There’s More Than One Way To Do It, which is
abbreviated as TIMTOWTDI and pronounced “Tim Toady.” (Fun trivia:
Larry Wall, the inventor of Perl, uses the handle @TimToady on Twitter
and IRC.)

2.7 remove all consecutive blank lines, leaving only one

perl -00 -pe ''

This one-liner is really tricky, isn’t it? First, it doesn’t have any code!
The -e is empty. Next, it has a silly -00 command-line option that turns
paragraph slurp mode on, meaning Perl reads text paragraph by paragraph,
rather than line by line. (A paragraph is text between two or more new-
lines.) The paragraph is put into $_, and the -p option prints it out.

You can even write this in a shorter fashion:

perl -00pe0

Here, the code specified to -e is 0, which does nothing.
This is one of my favorite one-liners because if you haven’t seen it

before, it can be tricky to figure out, and I love mind games. (There’s
no code specified to -e! How can it possibly do something?)

2.8 compress/expand all blank lines into
n consecutive lines
Say you have a file with two blank lines after each paragraph, and you
wish to expand the line spacing between the paragraphs to three lines.
To do so, you can simply combine one-liners 2.4 and 2.7 like this:

perl -00 -pe '$_ .= "\n"x2'

This one-liner slurps lines paragraph-wise via the -00 option and then
appends three newline characters after each paragraph. The code "\n"x2
prints two newlines, which are added to the blank line already at the end
of the paragraph.

In a similar vein, you can also reduce the spacing between para-
graphs. Say you’ve got a file that for some crazy reason has ten blank
lines between paragraphs, and you want to compress these blank lines
to just three. You can use the same one-liner again!

Spacing 15

2.9 double-space between all words

perl -pe 's/ / /g'

Here, you use the substitution operator s to replace one space “ ”
with two spaces “ ” globally on each line (the /g flag makes the replace-
ment global), and you’re done. It’s that simple!

Here’s an example. Let’s say you have this line of text:

this line doesn't have enough whitespace!

Running this one-liner increases the spacing between words:

this line doesn't have enough whitespace!

2.10 remove all spacing between words

perl -pe 's/ +//g'

This one-liner uses the “ +” regular expression to match one or more
spaces. When it finds a match, it substitutes it with nothing, globally, which
deletes all spaces between words.

If you also want to get rid of tabs and other special characters that
might add spacing, use the \s+ regular expression, which means “match
a space, a tab, a vertical tab, a newline, or a carriage return”:

perl -pe 's/\s+//g'

Here’s an example. Let’s say you have this line of text:

this line has too much whitespace said cowboy neal

Running this one-liner removes all spaces:

thislinehastoomuchwhitespacesaidcowboyneal

16 Chapter 2

2.11 change all spacing between words to one space

perl -pe 's/ +/ /g'

This one-liner is similar to the previous one, except that it replaces
one or more spaces with just one space.

For example, if you have this line:

this line has really messed-up spacing

running this one-liner normalizes the spacing between words to one space:

this line has really messed-up spacing

2.12 insert a space between all characters

perl -lpe 's// /g'

Here you match seemingly nothing and replace it with a single space.
The nothingness actually means “match between characters,” with the
result that you insert a space between all characters. (The matching
includes the beginning and end of the text.)

For example, given this line:

today was a great day

running this one-liner produces this result:

 t o d a y w a s a g r e a t d a y

It might be difficult to see where all the spaces are added, so let’s
illustrate that by modifying this one-liner to insert a colon between all
characters:

perl -lpe 's//:/g'

This will output:

:t:o:d:a:y: :w:a:s: :a: :g:r:e:a:t: :d:a:y:

As you can see, spaces (or colons) are also inserted at the beginning
and end of the text. Also note that the existing spaces count as characters,
so they’re triple-spaced.

3
n u m B e r i n G

In this chapter, we’ll look at various one-liners for
numbering lines and words, and you’ll get to know
the $. special variable. You’ll also learn about Perl
golfing, a “sport” that involves writing the shortest
Perl program to get a task done.

3.1 number all lines in a file

perl -pe '$_ = "$. $_"'

As I explained in one-liner 2.1 (page 7), -p tells Perl to assume a
loop around the program (specified by -e) that reads each line of input
into the $_ variable, executes the program, and then prints the contents
of the $_ variable.

18 Chapter 3

This one-liner simply modifies $_ by prepending the $. variable to
it. The special variable $. contains the current line number of the input.
The result is that each line has its line number prepended.

Similarly, you can also use the -n argument and print the string
"$. $_", which is the current line number followed by the line:

perl -ne 'print "$. $_"'

Say a file contains three lines:

foo
bar
baz

Running this one-liner numbers them:

1 foo
2 bar
3 baz

3.2 number only non-empty lines in a file

perl -pe '$_ = ++$x." $_" if /./'

Here you employ an “action if condition” statement that executes an
action only if the condition is true. In this case, the condition is the regu-
lar expression /./, which matches all characters other than newline (that
is, it matches a non-empty line). The action $_ = ++$x." $_" prepends
the variable $x incremented by one to the current line. Because you’re
not using the strict pragma, $x is created automatically the first time it’s
incremented.

The result is that at each non-empty line $x is incremented by one
and prepended to that line. Nothing is modified at the empty lines, and
they are printed as is.

One-liner 2.2 (page 11) shows another way to match non-empty
lines through the \S regular expression:

perl -pe '$_ = ++$x." $_" if /\S/'

Numbering 19

Say a file contains four lines, two of which are empty:

line1

line4

Running this one-liner numbers only lines one and four:

1 line1

2 line4

3.3 number and print only non-empty lines in a file
(drop empty lines)

perl -ne 'print ++$x." $_" if /./'

This one-liner uses the -n program argument, which places the line
in the $_ variable and then executes the program specified by -e. Unlike
-p, -n does not print the line after executing the code in -e, so you have to
call print explicitly to print the contents of the $_ variable.

The one-liner calls print only on lines with at least one character, and
as in the previous one-liner, it increments the line number in the variable
$x by one for each non-empty line. The empty lines are ignored and never
printed.

Say a file contains the same four lines as in one-liner 3.2:

line1

line4

Running this one-liner drops the empty lines and numbers lines one
and four:

1 line1
2 line4

20 Chapter 3

3.4 number all lines but print line numbers only for
non-empty lines

perl -pe '$_ = "$. $_" if /./'

This one-liner is similar to one-liner 3.2. Here, you modify the $_ vari-
able that holds the entire line only if the line has at least one character.
All other empty lines are printed as is, without line numbers.

Say a file contains four lines:

line1

line4

Running this one-liner numbers all the lines but prints the line num-
bers only for lines one and four:

1 line1

4 line4

3.5 number only lines that match a pattern;
print others unmodified

perl -pe '$_ = ++$x." $_" if /regex/'

Here, again, you use an “action if condition” statement, and again the
condition is a pattern (a regular expression): /regex/. The action is the
same as in one-liner 3.2.

Say a file contains these lines:

record foo
bar baz
record qux

and you want to number the lines that contain the word record. You can
replace /regex/ in the one-liner with /record/:

perl -pe '$_ = ++$x." $_" if /record/'

Numbering 21

When you run this one-liner, it gives you the following output:

1 record foo
bar baz
2 record qux

3.6 number and print only lines that match a pattern

perl -ne 'print ++$x." $_" if /regex/'

This one-liner is almost exactly like one-liner 3.3, except it only num-
bers and prints lines that match /regex/. It doesn’t print nonmatching
lines.

For example, a file contains the same lines as in one-liner 3.5:

record foo
bar baz
record qux

And let’s say you want to number and print only the lines that contain
the word record. In this case, changing /regex/ to /record/ and running the
one-liner gives you this result:

1 record foo
2 record qux

3.7 number all lines but print line numbers only for
lines that match a pattern

perl -pe '$_ = "$. $_" if /regex/'

This one-liner is similar to one-liners 3.4 and 3.6. Here, the line num-
ber is prepended to the line if the line matches a /regex/; otherwise, it’s
simply printed without a line number.

Replacing /regex/ with /record/ and running this one-liner on the
same example file shown in one-liner 3.6 gives you this output:

1 record foo
bar baz
3 record qux

22 Chapter 3

3.8 number all lines in a file using a custom format

perl -ne 'printf "%-5d %s", $., $_'

This one-liner uses printf to print the line number together with the
line contents. printf does formatted printing. You specify the format and
send it the data to print, and it formats and prints the data accordingly.
Here, the format for the line numbers is %-5d, which aligns the line num-
bers five positions to the left.

Here’s an example. Say the input to this one-liner is

hello world
bye world

Then the output is

1 hello world
2 bye world

Other format strings include %5d, which aligns the line numbers five
positions to the right, and %05d, which zero-fills and right-justifies the
line numbers. Here’s the output you get with the %5d format string for line
numbers:

 1 hello world
 2 bye world

And this is what you get with the %05d format string:

00001 hello world
00002 bye world

To learn more about the various formats that are available, run
perldoc -f sprintf at the command line.

3.9 Print the total number of lines in a file
(emulate wc -l)

perl -lne 'END { print $. }'

This one-liner uses the END block that Perl took as a feature from
the Awk language. The END block is executed once the Perl program
has executed. Here, the Perl program is the hidden loop over the input

Numbering 23

created by the -n argument. Once it loops over the input, the special vari-
able $. contains the number of lines in the input, and the END block prints
this variable. The -l parameter sets the output record separator for print
to a newline, so you don’t have to print the newline yourself, like this:
print "$.\n".

You can do the same thing with this one-liner:

perl -le 'print $n = () = <>'

This one-liner is easy to grasp if you understand Perl contexts well. The
() = <> part tells Perl to evaluate the <> operator (the diamond operator) in
the list context, which makes the diamond operator read the whole file as
a list of lines. Next, you assign this list to $n. Because $n is scalar, this list
assignment is evaluated in the scalar context.

What’s really happening here is the = operator is right-associative,
meaning the = on the right is done first and the = on the left is done
second:

perl -le 'print $n = (() = <>)'

Evaluating a list assignment in the scalar context returns the number
of elements in the list; thus, the $n = () = <> construction is equal to the
number of lines in the input, that is, the number of lines in the file. The
print statement prints this number. The -l argument ensures a newline is
added after printing this number.

You can also drop the variable $n from this one-liner and force the
scalar context through the scalar operator:

perl -le 'print scalar(() = <>)'

Here, instead of evaluating a list assignment in the scalar context by
assigning it again to another scalar, you simply evaluate the list assign-
ment in the scalar context using the scalar operator.

And now for a more obvious version:

perl -le 'print scalar(@foo = <>)'

Here, instead of using an empty list () to force the list context on <>,
you use the variable @foo to achieve the same effect.

And here’s another way to do it:

perl -ne '}{print $.'

This one-liner uses the so-called eskimo operator }{ (actually a clever
construct) in conjunction with the -n command-line argument. As I
explained earlier, the -n argument forces Perl to assume a while(<>) { }

24 Chapter 3

loop around the program. The eskimo operator forces Perl to escape
the loop, and the one-liner expands to

while (<>) {
}{ # eskimo operator here
 print $.;
}

As you can see, this program just loops over all the input, and once
it’s finished, it prints the $., which is the number of lines in the input. It
becomes even more obvious if you change the formatting a little:

while (<>) {}

{
 print $.;
}

As you can see, this is just an empty loop that loops over all the input,
followed by the print statement wrapped in curly brackets.

3.10 Print the number of non-empty lines in a file

perl -le 'print scalar(grep { /./ } <>)'

This one-liner uses Perl’s grep function, which is similar to the grep
UNIX command. Given a list of values, grep { condition } list returns only
those values in the list that make the condition true. In this case, the condi-
tion is a regular expression that matches at least one character, so the input
is filtered and grep{ /./ } returns all non-empty lines. To get the number of
lines, you evaluate grep in the scalar context and print the result.

Some Perl programmers like to create the shortest Perl program
that does some particular task—an exercise called Perl golfing. A golfer’s
version of this one-liner would replace scalar() with ~~ (double bitwise
negate) and drop the spaces, shortening it like this:

perl -le 'print ~~grep{/./}<>'

This double bitwise negate trick is effectively a synonym for scalar
because the bitwise negation works on scalar values, so grep is evaluated
in the scalar context.

You can make this even shorter by dropping the space after print and
getting rid of the curly brackets:

perl -le 'print~~grep/./,<>'

Numbering 25

If you have Perl 5.10 or later, you can also use the -E command-line
switch and the say operator:

perl -lE 'say~~grep/./,<>'

A true golfer’s masterpiece!

3.11 Print the number of empty lines in a file

perl -lne '$x++ if /^$/; END { print $x+0 }'

Here, you use the variable $x to count the number of empty lines
encountered. Once you’ve looped over all the lines, you print the value
of $x in the END block. You use the $x+0 construction to ensure that 0 is out-
put if no lines are empty. (Otherwise $x is never created and is undefined.
Adding +0 to the undefined value produces 0.) An alternative to $x+0 is
the int operator:

perl -lne '$x++ if /^$/; END { print int $x }'

You could also modify the previous one-liner by doing this:

perl -le 'print scalar(grep { /^$/ } <>)'

Or write it with ~~:

perl -le 'print ~~grep{ /^$/ } <>'

The ~~ does bitwise negation twice, which makes grep execute in the
scalar context and return the number of empty lines.

These last two versions are not as effective as the one-liner with the
END block because they read the whole file into memory, whereas the one-
liner with the END block does it line by line and, therefore, keeps only one
line of input in memory.

3.12 Print the number of lines in a file that match a
pattern (emulate grep -c)

perl -lne '$x++ if /regex/; END { print $x+0 }'

This one-liner is basically the same as 3.11, except it increments the
line counter $x by one when a line matches the regular expression /regex/.
The $x+0 trick makes sure 0 is printed when no lines match /regex/. (See
one-liner 3.11 for a more detailed explanation of the $x+0 trick.)

26 Chapter 3

3.13 number words across all lines

perl -pe 's/(\w+)/++$i.".$1"/ge'

This one-liner uses the /e flag, which makes Perl evaluate the replace
part of the s/regex/replace/ expression as code!

The code here is ++$i.".$1", which means “increment variable $i by
one and then add it in front of the string ".$1" (that is, a dot followed by
the contents of the matched group $1).” The matched group here is each
word: (\w+).

In one sentence, this one-liner matches a word (\w+), puts it in $1,
and then executes the ++$i.".$1" code that numbers the word globally
(/g flag). There—all words are numbered.

For example, if you have a file with the following three lines:

just another
perl hacker
hacking perl code

running this one-liner numbers each word in the file and produces the
following output:

1.just 2.another
3.perl 4.hacker
5.hacking 6.perl 7.code

3.14 number words on each individual line

perl -pe '$i=0; s/(\w+)/++$i.".$1"/ge'

This is similar to one-liner 3.13, except that you reset the $i vari-
able to 0 on each line. Here’s the result of running this one-liner on the
example from one-liner 3.13:

1.just 2.another
1.perl 2.hacker
1.hacking 2.perl 3.code

As you can see, in each line the words are numbered independently
of other lines.

Numbering 27

3.15 replace all words with their numeric positions

perl -pe 's/(\w+)/++$i/ge'

This one-liner is almost the same as one-liner 3.13. Here, you simply
replace each word with its numeric position, which is kept in the variable
$i. For example, if you run this one-liner on the file from one-liners 3.13
and 3.14, it replaces the words in the file with their numeric positions to
produce this output:

1 2
3 4
5 6 7

Fun!

4
C a l C u l a T i O n s

In this chapter, we’ll look at various one-liners
for performing calculations, such as finding mini-
mum and maximum elements, counting, shuffling
and permuting words, and calculating dates and
numbers. You’ll also learn about the -a, -M, and -F
command-line arguments, the $, special variable,
and the @{[...]} construction that lets you run
code inside double quotes.

4.1 check if a number is a prime

perl -lne '(1x$_) !~ /^1?$|^(11+?)\1+$/ && print "$_ is prime"'

This one-liner uses an ingenious regular expression by Abigail
to detect whether a given number is a prime. (Don’t take this regular

30 Chapter 4

expression too seriously; I’ve included it for its artistic value. For serious
purposes, use the Math::Primality module from CPAN to see whether a
number is prime.)

Here’s how this ingenious one-liner works: First, the number is con-
verted into its unary representation by (1x$_). For example, 5 is converted
into 1x5, which is 11111 (1 repeated 5 times). Next, the unary number is
tested against the regular expression. If it doesn’t match, the number is a
prime; otherwise it’s a composite. The !~ operator is the opposite of the
=~ operator and is true if the regular expression doesn’t match.

The regular expression consists of two parts: The first part, ^1?$,
matches 1 and the empty string. The empty string and 1 are clearly not
prime numbers, so this part of the regular expression discards them.

The second part, ^(11+?)\1+$, determines whether two or more 1s
repeatedly make up the whole number. If so, the regular expression
matches, which means the number is a composite. If not, it’s a prime.

Now consider how the second part of the regular expression would act
on the number 5. The number 5 in unary is 11111, so the (11+?) matches
the first two 1s, the back-reference \1 becomes 11, and the whole regular
expression now becomes ^11(11)+$. Because it can’t match five 1s, it fails.
Next, it attempts to match the first three 1s. The back-reference becomes
111, and the whole regular expression becomes ^111(111)+$, which doesn’t
match. The process repeats for 1111 and 11111, which also don’t match,
and as a result the entire regular expression doesn’t match and the num-
ber is a prime.

What about the number 4? The number 4 is 1111 in unary. The (11+?)
matches the first two 1s. The back-reference \1 becomes 11, and the regu-
lar expression becomes ^11(11)+$, which matches the original string and
confirms that the number is not prime.

4.2 Print the sum of all fields on each line

perl -MList::Util=sum -alne 'print sum @F'

This one-liner turns on field auto-splitting with the -a command-line
option and imports the sum function from the List::Util module with
-Mlist::Util=sum. (List::Util is part of the Perl core, so you don’t need
install it.) Auto-splitting happens on whitespace characters by default,
and the resulting fields are put in the @F variable. For example, the line
1 4 8 would be split on each space so that @F would become (1, 4, 8).
The sum @F statement sums the elements in the @F array, giving you 13.

Calculations 31

The -Mmodule=arg option imports arg from module. It’s the same as
writing

use module qw(arg);

This one-liner is equivalent to

use List::Util qw(sum);
while (<>) {
 @F = split(' ');
 print sum @F, "\n";
}

You can change auto-splitting’s default behavior by specifying an argu-
ment to the -F command-line switch. Say you have the following line:

1:2:3:4:5:6:7:8:9:10

And you wish to find the sum of all these numbers. You can simply
specify : as an argument to the -F switch, like this:

perl -MList::Util=sum -F: -alne 'print sum @F'

This splits the line on the colon character and sums all the numbers.
The output is 55 because that’s the sum of the numbers 1 through 10.

4.3 Print the sum of all fields on all lines

perl -MList::Util=sum -alne 'push @S,@F; END { print sum @S }'

This one-liner keeps pushing the split fields in @F to the @S array.
Once the input stops and Perl is about to quit, the END { } block is exe-
cuted and it outputs the sum of all items in @F. This sums all fields over
all lines.

Notice how pushing the @F array to the @S array actually appends
elements to it. This differs from many other languages, where pushing
array1 to array2 would put array1 into array2, rather than appending the
elements of array1 onto array2. Perl performs list flattening by design.

Unfortunately, summing all fields on all lines using this solution cre-
ates a massive @S array. A better solution is to keep only the running sum,
like this:

perl -MList::Util=sum -alne '$s += sum @F; END { print $s }'

32 Chapter 4

Here, each line is split into @F and the values are summed and stored
in the running sum variable $s. Once all input has been processed, the
one-liner prints the value of $s.

4.4 shuffle all fields on each line

perl -MList::Util=shuffle -alne 'print "@{[shuffle @F]}"'

The trickiest part of this one-liner is the @{[shuffle @F]} construction.
This construction allows you to execute the code inside the quotation
marks. Normally text and variables are placed inside quotation marks,
but with the @{[...]} construction you can run code, too.

In this one-liner, the code to execute inside of the quotation marks
is shuffle @F, which shuffles the fields and returns the shuffled list. The
[shuffle @F] creates an array reference containing the shuffled fields, and
the @{ ... } dereferences it. You simply create a reference and immediately
dereference it. This allows you to run the code inside the quotation marks.

Let’s look at several examples to understand why I chose to run the
code inside the quotation marks. If I had written print shuffle @F, the
fields on the line would be concatenated. Compare the output of this
one-liner:

$ echo a b c d | perl -MList::Util=shuffle -alne 'print "@{[shuffle @F]}"'
b c d a

to this:

$ echo a b c d | perl -MList::Util=shuffle -alne 'print shuffle @F'
bcda

In the first example, the array of shuffled fields (inside the double
quotation marks) is interpolated, and the array’s elements are separated
by a space, so the output is b c d a. In the second example, interpolation
doesn’t happen, and Perl simply dumps out element by element without
separating them, and the output is bcda.

You can use the $, special variable to change the separator between
array elements when they’re printed. For example, here’s what happens
when I change the separator to a colon:

$ echo a b c d | perl -MList::Util=shuffle -alne '$,=":"; print shuffle @F'
b:c:d:a

Calculations 33

You can also use the join function to join the elements of @F with a
space:

perl -MList::Util=shuffle -alne 'print join " ", shuffle @F'

Here, the join function joins the elements of an array using the given
separator, but the @{[...]} construction is the cleanest way to do it.

4.5 find the numerically smallest element (minimum
element) on each line

perl -MList::Util=min -alne 'print min @F'

This one-liner is somewhat similar to the previous ones. It uses the
min function from List::Util. Once the line has been automatically split
by -a and the elements are in the @F array, the min function finds the
numerically smallest element, which it prints.

For example, if you have a file that contains these lines:

-8 9 10 5
7 0 9 3
5 -25 9 999

Running this one-liner produces the following output:

-8
0
-25

The smallest number on the first line is -8; on the second line, the
smallest number is 0; and on the third line, -25.

4.6 find the numerically smallest element (minimum
element) over all lines

perl -MList::Util=min -alne '@M = (@M, @F); END { print min @M }'

This one-liner combines one-liners 4.3 and 4.5. The @M = (@M, @F)
construct is the same as push @M, @F. It appends the contents of @F to the
@M array.

34 Chapter 4

This one-liner stores all data in memory, and if you run it on a really
huge file, Perl will run out of memory. Your best bet is to find the smallest
element on every line and compare that element with the smallest ele-
ment on the previous line. If the element on the current line is less than
the previous one, it’s the smallest element so far. Once all lines have been
processed, you can just print the smallest element found through the END
block:

perl -MList::Util=min -alne '
 $min = min @F;
 $rmin = $min unless defined $rmin && $min > $rmin;
 END { print $rmin }
'

Here, you first find the minimum element on the current line and
store it in $min. Then you check to see if the smallest element on the
 current line is the smallest element so far. If so, assign it to $rmin. Once
you’ve looped over the whole input, the END block executes and you print
the $rmin.

Say your file contains these lines:

-8 9 10 5
7 0 9 3
5 -25 9 999

Running this one-liner outputs -25 because that’s the smallest num-
ber in the file.

If you’re using Perl 5.10 or later, you can do the same thing with this
one-liner:

perl -MList::Util=min -alne '$min = min($min // (), @F); END { print $min }'

This one-liner uses the // operator, which is new to Perl 5.10. This
operator is similar to the logical OR operator (||), except that it tests
the left side’s definedness rather than the truth. What that means is it
tests whether the left side is defined rather than whether it is true or
false. In this one-liner, the expression $min // () returns $min if $min has
been defined, or else it returns an empty list (). The // operator saves
you from having to use defined to test definedness.

Consider what happens when this one-liner is run on the previ-
ous file. First, Perl reads the line -8 9 10 5 , splits it, and puts the
numbers in the @F array. The @F array is now (-8, 9, 10, 5). Next,
it executes $min = min ($min // (), @F). Because $min hasn’t been
defined, $min // () evaluates to (), so the whole expression becomes
$min = min ((), (-8, 9, 10, 5)).

Calculations 35

Perl does list flattening by design, so after flattening the arguments
to the min function, the expression becomes $min = min(-8, 9, 10, 5).
This defines $min, setting it to -8. Perl proceeds to the next line, where
it sets @F to (7, 0, 9, 3) and again evaluates $min = min($min // (), @F).
Because $min has now been defined, $min // () evaluates to $min and the
expression becomes $min = min(-8, 7, 0, 9, 3). At this point, -8 is still the
smallest element, so $min remains -8. Finally, Perl reads in the last line,
and after evaluating $min = min(-8, 5, -25, 9, 999), it finds that -25 is the
smallest element in the file.

4.7 find the numerically largest element (maximum
element) on each line

perl -MList::Util=max -alne 'print max @F'

This works the same as one-liner 4.5, except that you replace min
with max.

4.8 find the numerically largest element (maximum
element) over all lines

perl -MList::Util=max -alne '@M = (@M, @F); END { print max @M }'

This one-liner is similar to one-liners 4.6 and 4.7. In this one-liner,
each line is auto-split and put in the @F array, and then this array is
merged with the @M array. When the input has been processed, the END
block executes and the maximum element is printed.

Here’s another way to find the maximum element, keeping just the
running maximum element instead of all elements in memory:

perl -MList::Util=max -alne '
 $max = max @F;
 $rmax = $max unless defined $rmax && $max < $rmax;
 END { print $rmax }
'

If you’re using Perl 5.10 or later, you can use the // operator to
shorten this one-liner:

perl -MList::Util=max -alne '$max = max($max // (), @F); END { print $max }'

This is the same as one-liner 4.6, except you replace min with max.

36 Chapter 4

4.9 replace each field with its absolute value

perl -alne 'print "@{[map { abs } @F]}"'

This one-liner first auto-splits the line using the -a option. The split
fields end up in the @F variable. Next, it calls the absolute value function
abs on each field with the help of the map function. Essentially, the map
function applies a given function to each element of the list and returns
a new list that contains the results of applying the function. For example,
if the list @F is (-4, 2, 0), mapping abs over it produces the list (4, 2, 0).
Finally, this one-liner prints the new list of positive values.

The @{[...]} construct, introduced in one-liner 4.4, allows you to
execute the code inside the quotation marks.

4.10 Print the total number of fields on each line

perl -alne 'print scalar @F'

This one-liner forces the evaluation of @F in the scalar context, which
in Perl means “the number of elements in @F.” As a result, it prints the
number of elements on each line.

For example, if your file contains the following lines:

foo bar baz
foo bar
baz

Running this one-liner produces the following output:

3
2
1

The first line has three fields, the second line has two fields, and the
last line has one field.

Calculations 37

4.11 Print the total number of fields on each line,
followed by the line

perl -alne 'print scalar @F, " $_"'

This one-liner is the same as one-liner 4.10, with the addition of $_
at the end, which prints the whole line. (Remember that -n puts each
line in the $_ variable.)

Let’s run this one-liner on the same example file that I used in one-
liner 4.10:

foo bar baz
foo bar
baz

Running the one-liner produces the following output:

3 foo bar baz
2 foo bar
1 baz

4.12 Print the total number of fields on all lines

perl -alne '$t += @F; END { print $t }'

Here, the one-liner keeps adding the number of fields on each line
to variable $t until all lines have been processed. Next, it prints the result,
which contains the number of words on all lines. Notice that you add the
@F array to the scalar variable $t. Because $t is scalar, the @F array is evalu-
ated in the scalar context and returns the number of elements it contains.

Running this one-liner on the following file:

foo bar baz
foo bar
baz

produces the number 6 as output because the file contains a total of
six words.

38 Chapter 4

4.13 Print the total number of fields that match a
pattern

perl -alne 'map { /regex/ && $t++ } @F; END { print $t || 0 }'

This one-liner uses map to apply an operation to each element in the
@F array. In this example, the operation checks to see if each element
matches /regex/, and if it does, it increments the $t variable. It then
prints the $t variable, which contains the number of fields that match
the /regex/ pattern. The $t || 0 construct is necessary because if no fields
match, $t wouldn’t exist, so you must provide a default value. Instead of 0,
you can provide any other default value, even a string!

Looping would be a better approach:

perl -alne '$t += /regex/ for @F; END { print $t }'

Here, each element in @F is tested against /regex/. If it matches, /regex/
returns true; otherwise it returns false. When used numerically, true con-
verts to 1 and false converts to 0, so $t += /regex/ adds either 1 or 0 to the
$t variable. As a result, the number of matches is counted in $t. You do
not need a default value when printing the result in the END block because
the += operator is run regardless of whether the field matches. You will
always get a value, and sometimes that value will be 0.

Another way to do this is to use grep in the scalar context:

perl -alne '$t += grep /regex/, @F; END { print $t }'

Here, grep returns the number of matches because it’s evaluated in
the scalar context. In the list context, grep returns all matching elements,
but in the scalar context, it returns the number of matching elements. This
number is accumulated in $t and printed in the END block. In this case, you
don’t need to provide a default value for $t because grep returns 0 in those
situations.

4.14 Print the total number of lines that match a pattern

perl -lne '/regex/ && $t++; END { print $t || 0 }'

Here, /regex/ evaluates to true if the current line of input matches
this regular expression. Writing /regex/ && $t++ is the same as writing
if ($_ =~ /regex/) { $t++ }, which increments the $t variable if the line
matches the specified pattern. In the END block, the $t variable contains
the total number of pattern matches and is printed; but if no lines match,
$t is once again undefined, so you must print a default value.

Calculations 39

4.15 Print the number π

perl -Mbignum=bpi -le 'print bpi(21)'

The bignum package exports the bpi function that calculates the π con-
stant to the desired accuracy. This one-liner prints π to 20 decimal places.
(Notice that you need to specify n+1 to print it to an accuracy of n.)

The bignum library also exports the constant π, precomputed to 39
decimal places:

perl -Mbignum=PI -le 'print PI'

4.16 Print the number e

perl -Mbignum=bexp -le 'print bexp(1,21)'

The bignum library exports the bexp function, which takes two argu-
ments: the power to raise e to, and the desired accuracy. This one-liner
prints the constant e to 20 decimal places.

For example, you could print the value of e 2 to 30 decimal places:

perl -Mbignum=bexp -le 'print bexp(2,31)'

As with π, bignum also exports the constant e precomputed to 39 deci-
mal places:

perl -Mbignum=e -le 'print e'

4.17 Print unix time (seconds since January 1, 1970,
00:00:00 uTc)

perl -le 'print time'

The built-in time function returns seconds since the epoch. This one-
liner simply prints the time.

40 Chapter 4

4.18 Print greenwich mean Time and local computer time

perl -le 'print scalar gmtime'

The gmtime function is a built-in Perl function. When used in the scalar
context, it returns the time localized to Greenwich Mean Time (GMT).

The built-in localtime function acts like gmtime, except it returns the
computer’s local time when it’s used in the scalar context:

perl -le 'print scalar localtime'

In the array context, both gmtime and localtime return a nine-element
list (known as struct tm to UNIX programmers) with the following
elements:

($second, [0]
$minute, [1]
$hour, [2]
$month_day, [3]
$month, [4]
$year, [5]
$week_day, [6]
$year_day, [7]
$is_daylight_saving [8]
)

You can slice this list (that is, extract elements from it) or print indi-
vidual elements if you need just some part of the information it contains.
For example, to print H:M:S, slice the elements 2, 1, and 0 from localtime,
like this:

perl -le 'print join ":", (localtime)[2,1,0]'

To slice elements individually, specify a list of elements to extract, for
instance [2,1,0]. Or slice them as a range:

perl -le 'print join ":", (localtime)[2..6]'

This one-liner prints the hour, date, month, year, and day of the week.
You can also use negative indexes to select elements from the oppo-

site end of a list:

perl -le 'print join ":", (localtime)[-2, -3]'

This one-liner prints elements 7 and 6, which are the day of the year
(for example, the 200th day) and of the week (for example, the 4th day),
respectively.

Calculations 41

4.19 Print yesterday’s date

perl -MPOSIX -le '
 @now = localtime;
 $now[3] -= 1;
 print scalar localtime mktime @now
'

Remember that localtime returns a nine-item list (see one-liner 4.18)
of various date elements. The fourth element in the list is the current
month’s day. If you subtract 1 from this element, you get yesterday.

The mktime function constructs the UNIX epoch time from this modi-
fied nine-element list, and the scalar localtime construct prints the new
date, which is yesterday. This one-liner also works in edge cases, such as
when the current day is the first day of the month. You need the POSIX
package because it exports the mktime function.

For example, if it’s Mon May 20 05:49:55 right now, running this one-
liner prints Sun May 19 05:49:55.

4.20 Print the date 14 months, 9 days, and 7 seconds ago

perl -MPOSIX -le '
 @now = localtime;
 $now[0] -= 7;
 $now[3] -= 9;
 $now[4] -= 14;
 print scalar localtime mktime @now
'

This one-liner modifies the first, fourth, and fifth elements of the
@now list. The first element is seconds, the fourth is days, and the fifth is
months. The mktime command generates the UNIX time from this new
structure, and localtime, which is evaluated in the scalar context, prints
the date 14 months, 9 days, and 7 seconds ago.

4.21 calculate the factorial

perl -MMath::BigInt -le 'print Math::BigInt->new(5)->bfac()'

This one-liner uses the bfac() function from the Math::BigInt mod-
ule in the Perl core. (In other words, you don’t need to install it.) The
Math::BigInt->new(5) construction creates a new Math::BigInt object with

42 Chapter 4

a value of 5, after which the bfac() method is called on the newly created
object to calculate the factorial of 5. Change 5 to any number you wish to
find its factorial.

Another way to calculate a factorial is to multiply the numbers from 1
to n together:

perl -le '$f = 1; $f *= $_ for 1..5; print $f'

Here, I set $f to 1 and then loop from 1 to 5 and multiply $f by each
value. The result is 120 (1*2*3*4*5), the factorial of 5.

4.22 calculate the greatest common divisor

perl -MMath::BigInt=bgcd -le 'print bgcd(@list_of_numbers)'

Math::BigInt has several other useful math functions including bgcd,
which calculates the greatest common divisor (gcd) of a list of numbers. For
example, to find the greatest common divisor of (20, 60, 30), execute the
one-liner like this:

perl -MMath::BigInt=bgcd -le 'print bgcd(20,60,30)'

To calculate the gcd from a file or user’s input, use the -a command-
line argument and pass the @F array to the bgcd function:

perl -MMath::BigInt=bgcd -anle 'print bgcd(@F)'

(I explained the -a argument and the @F array in one-liner 4.2 on
page 30.)

You could also use Euclid’s algorithm to find the gcd of $n and $m.
This one-liner does just that and stores the result in $m:

perl -le '
 $n = 20; $m = 35;
 ($m,$n) = ($n,$m%$n) while $n;
 print $m
'

Euclid’s algorithm is one of the oldest algorithms for finding the gcd.

Calculations 43

4.23 calculate the least common multiple
The least common multiple (lcm) function, blcm, is included in Math::BigInt.
Use this one-liner to find the least common multiple of (35, 20, 8):

perl -MMath::BigInt=blcm -le 'print blcm(35,20,8)'

To find the lcm from a file with numbers, use the -a command-line
switch and the @F array:

perl -MMath::BigInt=blcm -anle 'print blcm(@F)'

If you know a bit of number theory, you may recall that there is a con-
nection between the gcd and the lcm. Given two numbers $n and $m, you
know that their lcm is $n*$m/gcd($n,$m). This one-liner, therefore, follows:

perl -le '
 $a = $n = 20;
 $b = $m = 35;
 ($m,$n) = ($n,$m%$n) while $n;
 print $a*$b/$m
'

4.24 generate 10 random numbers between 5 and 15
(excluding 15)

perl -le 'print join ",", map { int(rand(15-5))+5 } 1..10'

This one-liner prints 10 random numbers between 5 and 15. It
may look complicated, but it’s actually simple. int(rand(15-5)) is just
int(rand(10)), which returns a random integer from 0 to 9. Adding 5
to it makes it return a random integer from 5 to 14. The range 1..10
makes it draw 10 random integers.

You can also write this one-liner more verbosely:

perl -le '
 $n=10;
 $min=5;
 $max=15;
 $, = " ";
 print map { int(rand($max-$min))+$min } 1..$n;
'

44 Chapter 4

Here, all variables are more explicit. To modify this one-liner, change
the variables $n, $min, and $max. The $n variable represents how many ran-
dom numbers to generate, and $min-$max is the range of numbers for use
in that generation.

The $, variable is set to a space because it’s the output field separator
for print and it’s undef by default. If you didn’t set $, to a space, the num-
bers would be printed concatenated. (See one-liner 4.4 on page 32 for
a discussion of $,.)

4.25 generate all permutations of a list

perl -MAlgorithm::Permute -le '
 $l = [1,2,3,4,5];
 $p = Algorithm::Permute->new($l);
 print "@r" while @r = $p->next
'

This one-liner uses the object-oriented interface of the module
Algorithm::Permute to find all permutations of a list, that is, all ways to
rearrange items. The constructor of Algorithm::Permute takes an array
reference of elements to permute. In this particular one-liner, the ele-
ments are the numbers 1, 2, 3, 4, 5.

The next method returns the next permutation. Calling it repeatedly
iterates over all permutations, and each permutation is put in the @r array
and then printed. (Beware: The output list gets large really quickly. There
are n! (n factorial) permutations for a list of n elements.)

Another way to print all permutations is with the permute subroutine:

perl -MAlgorithm::Permute -le '
 @l = (1,2,3,4,5);
 Algorithm::Permute::permute { print "@l" } @l
'

Here’s what you get if you change @l to just three elements (1, 2, 3)
and run it:

1 2 3
1 3 2
3 1 2
2 1 3
2 3 1
3 2 1

Calculations 45

4.26 generate the powerset

perl -MList::PowerSet=powerset -le '
 @l = (1,2,3,4,5);
 print "@$_" for @{powerset(@l)}
'

This one-liner uses the List::PowerSet module from CPAN. The module
exports the powerset function, which takes a list of elements and returns a
reference to an array containing references to subset arrays. You can install
this module by running cpan List::PowerSet at the command line.

In the for loop, you call the powerset function and pass it the list of
elements of @l. Next, you dereference the return value of powerset, which
is a reference to an array of subsets, and then dereference each individual
subset @$_ and print it.

The powerset is the set of all subsets. For a set of n elements, there are
exactly 2n subsets in the powerset. Here’s an example of the powerset of
(1, 2, 3):

1 2 3
2 3
1 3
3
1 2
2
1

4.27 convert an iP address to an unsigned integer

perl -le '
 $i=3;
 $u += ($_<<8*$i--) for "127.0.0.1" =~ /(\d+)/g;
 print $u
'

This one-liner converts the IP address 127.0.0.1 into an unsigned inte-
ger by first doing a global match of (\d+) on the IP address. Performing a
for loop over a global match iterates over all the matches, which are the
four parts of the IP address: 127, 0, 0, 1.

46 Chapter 4

Next, the matches are summed in the $u variable. The first bit is
shifted 8 × 3 = 24 places, the second is shifted 8 × 2 = 16 places, and the
third is shifted 8 places. The last is simply added to $u. The resulting
integer happens to be 2130706433 (a very geeky number).

Here are some more one-liners:

perl -le '
 $ip="127.0.0.1";
 $ip =~ s/(\d+)\.?/sprintf("%02x", $1)/ge;
 print hex($ip)
'

This one-liner utilizes the fact that 127.0.0.1 can be easily converted
to hex. Here, the $ip is matched against (\d+), and each IP part is trans-
formed into a hex number with sprintf("%02x", $1) inside the s operator.
The /e flag of the s operator makes it evaluate the substitution part as
a Perl expression. As a result, 127.0.0.1 is transformed into 7f000001 and
then interpreted as a hexadecimal number by Perl’s hex operator, which
converts it to a decimal number.

You can also use unpack:

perl -le 'print unpack("N", 127.0.0.1)'

This one-liner is probably as short as possible. It uses vstring literals
(version strings) to express the IP address. A vstring forms a string lit-
eral composed of characters with the specified ordinal values. The newly
formed string literal is unpacked into a number from a string in network
byte order (big-endian order) and then printed.

If you have a string with an IP (rather than a vstring), you first have
to convert it to byte form with the function inet_aton:

perl -MSocket -le 'print unpack("N", inet_aton("127.0.0.1"))'

Here, inet_aton converts the string 127.0.0.1 to the byte form (equiva-
lent to the pure vstring 127.0.0.1) and then unpack unpacks it, as in the
previous one-liner.

Calculations 47

4.28 convert an unsigned integer to an iP address

perl -MSocket -le 'print inet_ntoa(pack("N", 2130706433))'

Here, the integer 2130706433 is packed into a number in big-endian
byte order and then passed to the inet_ntoa function that converts a
number back to an IP address. (Notice that inet_ntoa is the opposite
of inet_aton.)

You can do the same thing like this:

perl -le '
 $ip = 2130706433;
 print join ".", map { (($ip>>8*($_))&0xFF) } reverse 0..3
'

Here, the $ip is shifted 24 bits to the right and then bitwise ANDed
with 0xFF to produce the first part of the IP, which is 127. Next, it’s shifted
16 bits and bitwise ANDed with 0xFF, producing 0, and then shifted 8 bits
and bitwise ANDed with 0xFF, producing another 0. Finally, the whole
number is bitwise ANDed with 0xFF, producing 1.

The result from map { ... } is a list (127, 0, 0, 1). That list is now
joined by a dot "." to produce the IP address 127.0.0.1.

You can replace join with the special variable $,, which acts as a value
separator for the print statement:

perl -le '
 $ip = 2130706433;
 $, = ".";
 print map { (($ip>>8*($_))&0xFF) } reverse 0..3
'

Because reverse 0..3 is the same as 3,2,1,0, you could also write:

perl -le '
 $ip = 2130706433;
 $, = ".";
 print map { (($ip>>8*($_))&0xFF) } 3,2,1,0
'

5
w O r k i n G w i T h

a r r a y s a n D s T r i n G s

In this chapter, we’ll look at various one-liners for
creating strings and arrays, for doing things like gen-
erating passwords, creating strings of certain length,
finding the numeric values of characters, and creat-
ing arrays of numbers. You’ll also learn about the
range operator .., the x operator, the $, special vari-
able, and the @ARGV array.

5.1 generate and print the alphabet

perl -le 'print a..z'

This one-liner prints all letters from a to z in the English alphabet
as abcdefghijklmnopqrstuvwxyz. The letters are generated by the range oper-
ator .., which, when used on strings in the list context (provided here by

50 Chapter 5

print), applies the magical auto-increment algorithm that advances
the string to the next character. Therefore, in this one-liner, the auto-
increment algorithm on the range a..z produces all letters from a to z.

I really golfed this one-liner. If I had used strict, it wouldn’t have
worked because of the bare words a and z. This version is more correct
semantically:

perl -le 'print ("a".."z")'

Remember that the range operator .. produces a list of values. If you
wish, you could print the values with comma separations by setting the
$, special variable:

perl -le '$, = ","; print ("a".."z")'

The $, is the field separator. It’s output by print between each field.
Semantically, though, using join to separate the list of letters with a comma
is more appealing because it works even when not using print directly:

perl -le '$alphabet = join ",", ("a".."z"); print $alphabet'

Here, the list a..z is joined by a comma before printing, and the out-
put is

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

5.2 generate and print all the strings from “a” to “zz”

perl -le 'print join ",", ("a".."zz")'

This one-liner uses the range operator .. again, but this time, it
doesn’t stop at z as in the previous one-liner. Instead, it advances z by
one character, producing aa. Then it keeps going, producing ab, ac, and
so on, until it hits az. At that point, it advances the string to ba, continues
with bb, bc, and so on, until eventually it reaches zz.

You could also generate all strings from aa to zz by doing this:

perl -le 'print join ",", "aa".."zz"'

The output from this one-liner is

aa, ab, ..., az, ba, bb, ..., bz, ca, ..., zz

Working with Arrays and Strings 51

5.3 create a hex lookup table

@hex = (0..9, "a".."f")

In this one-liner, the @hex array is filled with the numbers 0, 1, 2, 3, 4,
5, 6, 7, 8, 9 and the letters a, b, c, d, e, f. You could use this array to con-
vert a number (in variable $num) from decimal to hex with the following
base conversion formula. (This isn’t a one-liner; I include it to illustrate
how to use the @hex lookup array.)

perl -le '
 $num = 255;
 @hex = (0..9, "a".."f");
 while ($num) {
 $s = $hex[($num % 16)].$s;
 $num = int $num/16;
 }
 print $s
'

But surely, converting a number to hex is much easier if I use printf
(or sprintf) with the %x format specifier.

perl -le 'printf("%x", 255)'

To convert the number back from hex to dec, use the hex operator:

perl -le '$num = "ff"; print hex $num'

The hex operator takes a hex string (beginning with or without 0x)
and converts it to decimal.

5.4 generate a random eight-character password

perl -le 'print map { ("a".."z")[rand 26] } 1..8'

Here, the map operator executes the code ("a".."z")[rand 26] eight
times because it iterates over the range 1..8. In each iteration, the code
chooses a random letter from the alphabet. When map has finished iterat-
ing, it returns the generated list of characters, and print prints it, thereby
concatenating all the characters.

52 Chapter 5

To also include numbers in the password, add 0..9 to the list of char-
acters to choose from and change 26 to 36 because you now have 36 pos-
sible characters:

perl -le 'print map { ("a".."z", 0..9)[rand 36] } 1..8'

If you need a longer password, change 1..8 to 1..20 to generate one
that’s 20 characters long.

5.5 create a string of specific length

perl -le 'print "a"x50'

This one-liner creates a string of 50 letters a and prints it. Operator x is
the repetition operator. Here, the letter a is repeated 50 times by x50. This
one-liner is handy when you need to generate a specific amount of data
for debugging or other tasks. For example, if you need 1KB of data, just
do this:

perl -e 'print "a"x1024'

I removed the -l argument because it would have output an addi-
tional newline symbol, producing 1025 bytes of data.

When you use the repetition operator in the list context, with a list
as its first operand, you create a list with the given elements repeated,
like this:

perl -le '@list = (1,2)x20; print "@list"'

This one-liner creates a list of 20 repetitions of (1, 2) that looks like
(1, 2, 1, 2, 1, 2, ...). (The parentheses to the left of x make a list.)

5.6 create an array from a string

@months = split ' ', "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"

Here, @months is filled with values from the string containing month
names. Because all month names are separated by a space, the split oper-
ator splits them and puts them in @months. As a result, $months[0] contains
Jan, $months[1] contains Feb, . . . , and $months[11] contains Dec.

Working with Arrays and Strings 53

You could do the same thing with the qw/.../ operator:

@months = qw/Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec/

The qw/.../ operator takes a space-separated string and creates an
array in which each word is an array element.

Although not a one-liner per se, this is a useful, idiomatic way to
create arrays that can come in handy when writing one-liners.

5.7 Create a string from the command-line arguments

perl -le 'print "(", (join ",", @ARGV), ")"' val1 val2 val3

This one-liner uses the @ARGV array, which contains all the arguments
that have been passed to Perl. In this one-liner, the values passed to Perl
are val1, val2, and val3, so @ARGV contains the strings val1, val2, and val3.
This one-liner prints the string (val1,val2,val3) and would be useful, for
example, to generate a SQL query.

If you’re familiar with the INSERT query in SQL, you know its most
basic form looks like INSERT INTO table VALUES (val1, val2, val3, ...). As
you can see, this one-liner generates the VALUES part of the SQL query.

You can easily modify this one-liner to print the whole INSERT
query:

perl -le '
 print "INSERT INTO table VALUES (", (join ",", @ARGV), ")"
' val1 val2 val3

Here’s what the one-liner prints:

INSERT INTO table VALUES (val1,val2,val3)

5.8 Find the numeric values for characters in a string

perl -le 'print join ", ", map { ord } split //, "hello world"'

This one-liner takes the string "hello world" and splits it into a list of
characters with split //, "hello world". It then maps the ord operator onto
each of the characters, which returns each character’s numeric value.

54 Chapter 5

Finally, all of the numeric values are joined together by a comma and
printed. Here’s the output:

104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100

You could also do this with the unpack operator by specifying C* as the
unpacking template:

perl -le 'print join ", ", unpack("C*", "hello world")'

The C in the template means “unsigned character” and * means “all
characters.”

To find the hexadecimal values of the characters, you could do this:

perl -le '
 print join ", ", map { sprintf "0x%x", ord $_ } split //, "hello world"
'

Here, the map operator executes sprintf "0x%x", ord $_ for every char-
acter, which returns the character’s hexadecimal value prepended with
'0x'. Here’s the output:

0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, 0x6f, 0x72, 0x6c, 0x64

Similarly, to get the octal values of characters, you do this:

perl -le '
 print join ", ", map { sprintf "%o", ord $_ } split //, "hello world"
'

Here’s the output:

150, 145, 154, 154, 157, 40, 167, 157, 162, 154, 144

And finally, to generate proper octal values that begin with 0, you can
specify the %#o format to the sprintf function:

perl -le '
 print join ", ", map { sprintf "%#o", ord $_ } split //, "hello world"
'

And here’s the output:

0150, 0145, 0154, 0154, 0157, 040, 0167, 0157, 0162, 0154, 0144

Working with Arrays and Strings 55

5.9 convert a list of numeric Ascii values into a string

perl -le '
 @ascii = (99, 111, 100, 105, 110, 103);
 print pack("C*", @ascii)
'

Just as I unpacked a string into a list of values with the C* template in
the previous one-liner, I can pack them into a string by using the same
template. Here’s the output from the one-liner:

coding

Another way to convert a list of numeric ASCII values into a string is
to use the chr operator, which takes the code point value and returns the
corresponding character:

perl -le '
 @ascii = (99, 111, 100, 105, 110, 103);
 $str = join "", map chr, @ascii;
 print $str
'

Here, you simply map the chr operator onto each numeric value in the
@ascii array, which produces a list of characters that correspond to the
numeric values. Next, you join the characters together and produce the
$str, and then you print it out.

You can also golf this one-liner and come up with the following:

perl -le 'print map chr, 99, 111, 100, 105, 110, 103'

You can also use the @ARGV array and pass the ASCII values as argu-
ments to the one-liner:

perl -le 'print map chr, @ARGV' 99 111 100 105 110 103

5.10 generate an array with odd numbers from 1 to 100

perl -le '@odd = grep {$_ % 2 == 1} 1..100; print "@odd"'

This one-liner generates an array of odd numbers from 1 to 99 (that
is, 1, 3, 5, 7, 9, 11, . . . , 99). It uses grep to evaluate the code $_ % 2 == 1 for
each element in the list 1..100 and returns only those elements for which

56 Chapter 5

the given code evaluates to true. In this case, the code tests to see if the
remainder when dividing by 2 is 1. If it is, the number is odd, and it’s put
in the @odd array.

You could also write this using the fact that odd numbers have the
least significant bit set and test for the least significant bit:

perl -le '@odd = grep { $_ & 1 } 1..100; print "@odd"'

The expression $_ & 1 isolates the least significant bit, and grep
selects only those numbers with the least significant bit set—that is, all
odd numbers.

5.11 generate an array with even numbers from 1 to 100

perl -le '@even = grep {$_ % 2 == 0} 1..100; print "@even"'

This one-liner is almost the same as the one in 5.10, except that grep
tests for the condition “is the number even (remainder after dividing by
two is 0)?”

5.12 find the length of a string

perl -le 'print length "one-liners are great"'

The length subroutine finds the length of a string.

5.13 find the number of elements in an array

perl -le '@array = ("a".."z"); print scalar @array'

Evaluating an array in the scalar context returns its number of
elements.

You could also do this by adding 1 to the last index of an array:

perl -le '@array = ("a".."z"); print $#array + 1'

Here, $#array returns the last index in @array. Because that number is
one less than the number of elements in the array, you add 1 to the result
to find the total number of elements in the array.

For example, say you want to find out how many text files are in the
current directory. You can use @ARGV and pass the *.txt wildcard to Perl.

Working with Arrays and Strings 57

The shell expands the *.txt wildcard to a list of filenames that match
*.txt, and Perl puts them into the @ARGV array and prints the array in the
scalar context. The output will be the number of text files in the current
directory:

perl -le 'print scalar @ARGV' *.txt

If your shell doesn’t support filename expansion (also known as
globbing) or if you’re on Windows, you can use the diamond operator with
the *.txt argument:

perl -le 'print scalar (@ARGV=<*.txt>)'

In this case, the diamond operator does the globbing and returns a
list of filenames that match *.txt. Evaluating this list in the scalar context
returns the number of files that matched.

6
T e x T C O n v e r s i O n a n D

s u B s T i T u T i O n

In this chapter, we’ll look at various one-liners
that change, convert, and substitute text, including
base64 encoding and decoding, URL escaping and
unescaping, HTML escaping and unescaping, con-
verting text case, and reversing lines. You’ll also get
to know the y, tr, uc, lc, and reverse operators and
string-escape sequences.

6.1 rOT13 a string

perl -le '$string = "bananas"; $string =~ y/A-Za-z/N-ZA-Mn-za-m/; print $string'

This one-liner uses the y operator (also known as the tr operator)
to do ROT13. The operators y and tr perform string transliteration.
Given y/search/replace/, the y operator transliterates all occurrences of

60 Chapter 6

the characters found in the search list with the characters in the corre-
sponding positions in the replace list. The y and tr operators are often
mistaken for taking a regular expression, but they don’t. They transliterate
things and take a list of characters in both the search and replace parts.

In this one-liner, A-Za-z creates the following list of characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

And N-ZA-Mn-za-m creates this list:

NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm

Notice that in the second list the uppercase and lowercase alphabets
are offset by 13 characters. Now the y operator translates each charac-
ter in the first list to a character in the second list, thus performing the
ROT13 operation. (One fun fact about ROT13 is that applying it twice
produces the same string; that is, ROT13(ROT13(string)) equals string.)

To ROT13 the whole file bananas.txt and print it to the screen, just
do this:

perl -lpe 'y/A-Za-z/N-ZA-Mn-za-m/' bananas.txt

You can also use Perl’s -i argument to do in-place replacement of the
file. For example, to ROT13 oranges.txt in-place, write this:

perl -pi.bak -e 'y/A-Za-z/N-ZA-Mn-za-m/' oranges.txt

This one-liner first creates a backup file called oranges.txt.bak and then
replaces the contents of oranges.txt with ROT13-ed text. The .bak part of
the -i command creates the backup file. You can omit the .bak part of the
command if you’re sure about the result, but I recommend always using
-i.bak because one day you might make a mistake and mess up an impor-
tant file. (I speak from experience.)

6.2 base64-encode a string

perl -MMIME::Base64 -e 'print encode_base64("string")'

This one-liner uses the MIME::Base64 module. It exports the encode_base64
function, which takes a string and returns a base64-encoded version of it.

To base64-encode the whole file, use this:

perl -MMIME::Base64 -0777 -ne 'print encode_base64($_)' file

Text Conversion and Substitution 61

Here, the -0777 argument together with -n causes Perl to slurp the
whole file into the $_ variable. Next, the file is base64-encoded and
printed. (If Perl didn’t slurp the entire file, it would be encoded line by
line, and you’d end up with a mess.)

6.3 base64-decode a string

perl -MMIME::Base64 -le 'print decode_base64("base64string")'

The MIME::Base64 module also exports the decode_base64 function,
which takes a base64-encoded string and decodes it.

The entire file can be decoded similarly with

perl -MMIME::Base64 -0777 -ne 'print decode_base64($_)' file

6.4 url-escape a string

perl -MURI::Escape -le 'print uri_escape("http://example.com")'

To use this one-liner, you need to install the URI::Escape module
first by entering cpan URI::Escape in the shell. The module exports two
functions: uri_escape and uri_unescape. The first function performs URL
escaping (sometimes referred to as URL encoding), and the other does
URL unescaping (or URL decoding). Now, to URL-escape a string, just call
uri_escape($string) and you’re done!

The output of this one-liner is http%3A%2F%2Fexample.com.

6.5 url-unescape a string

perl -MURI::Escape -le 'print uri_unescape("http%3A%2F%2Fexample.com")'

This one-liner uses the uri_unescape function from the URI::Escape
module to perform URL unescaping. It unescapes the output of the pre-
vious one-liner to reverse the operation.

The output of this one-liner is http://example.com.

62 Chapter 6

6.6 hTml-encode a string

perl -MHTML::Entities -le 'print encode_entities("<html>")'

This one-liner uses the encode_entities function from the HTML::Entities
module to encode HTML entities. For example, you can turn < and > into
< and >.

6.7 hTml-decode a string

perl -MHTML::Entities -le 'print decode_entities("<html>")'

This one-liner uses the decode_entities function from the HTML::Entities
module. For example, you can turn < and > back into < and >.

6.8 convert all text to uppercase

perl -nle 'print uc'

This one-liner uses the uc function, which, by default, operates on the
$_ variable and returns an uppercase version of the text it contains.

You could do the same thing with the -p command-line option, which
enables the automatic printing of the $_ variable and modifies it in-place:

perl -ple '$_ = uc'

Or you can apply the \U escape sequence to string interpolation:

perl -nle 'print "\U$_"'

This one-liner uppercases everything that follows it (or everything up
to the first occurrence of \E).

6.9 convert all text to lowercase

perl -nle 'print lc'

This one-liner is similar to the previous one. The lc function converts
the contents of $_ to lowercase.

Text Conversion and Substitution 63

You could also use the escape sequence \L and string interpolation:

perl -nle 'print "\L$_"'

Here, \L lowercases everything after it (or until the first instance of \E).

6.10 uppercase only the first letter of each line

perl -nle 'print ucfirst lc'

This one-liner first lowercases the input with the lc function and then
uses ucfirst to uppercase only the first character. For example, if you pass
it a line that says foo bar baz, it produces the text Foo bar baz. Similarly, if
you pass it a line FOO BAR BAZ, it lowercases the line first and then upper-
cases the first letter, producing Foo bar baz again.

You can do the same thing using escape codes and string interpolation:

perl -nle 'print "\u\L$_"'

First \L lowercases the whole line and then \u uppercases the first
character.

6.11 invert the letter case

perl -ple 'y/A-Za-z/a-zA-Z/'

This one-liner changes the case of the letters: The capital letters
become lowercase letters, and the lowercase letters become capital letters.
For example, the text Cows are COOL becomes cOWS ARE cool. The trans-
literation operator y (explained in one-liner 6.1 on page 59) creates a
mapping from capital letters A-Z to lowercase letters a-z and a mapping
from lowercase letters a-z to capital letters A-Z.

6.12 Title-case each line

perl -ple 's/(\w+)/\u$1/g'

This one-liner attempts to title-case a string, meaning the first letter
of each word is uppercased; for example, This Text Is Written In Title Case.
This one-liner works by matching every word with \w+ and replacing the
matched word with \u$1, which uppercases the first letter of the word.

64 Chapter 6

6.13 strip leading whitespace (spaces, tabs) from the
beginning of each line

perl -ple 's/^[\t]+//'

This one-liner deletes all whitespace from the beginning of every
line with the help of the substitution operator s. Given s/regex/replace/,
it replaces the matched regex with the replace string. In this case, the regex
is ^[\t]+, which means “match one or more spaces or tabs at the begin-
ning of the string,” and replace is empty, meaning “replace the matched
part with an empty string.”

The regular expression class [\t] can also be replaced by \s+ to
match any whitespace (including tabs and spaces):

perl -ple 's/^\s+//'

6.14 strip trailing whitespace (spaces, tabs) from the
end of each line

perl -ple 's/[\t]+$//'

This one-liner deletes all whitespace from the end of each line. The
regex of the s operator says “match one or more spaces or tabs at the end
of the string.” The replace part is empty again, which means “erase the
matched whitespace.”

You can also achieve the same by writing:

perl -ple 's/\s+$//'

Here, you replace with [\t]+$ with \s+, as in one-liner 6.13.

6.15 strip whitespace (spaces, tabs) from the beginning
and end of each line

perl -ple 's/^[\t]+|[\t]+$//g'

This one-liner combines one-liners 6.13 and 6.14. It specifies the
global /g flag to the s operator because you want it to delete whitespace

Text Conversion and Substitution 65

at the beginning and the end of the string. If you don’t specify this, it
deletes whitespace only at the beginning (if there is whitespace) or only
at the end (if there was no whitespace at the beginning).

You can also replace [\t]+$ with \s+ and get the same results:

perl -ple 's/^\s+|\s+$//g'

Writing \s+ is shorter than writing [\t]+. And s stands for space,
which makes it easier to remember.

6.16 convert unix newlines to dOs/windows newlines

perl -pe 's|\012|\015\012|'

This one-liner substitutes the UNIX newline character \012 (LF) for
the Windows/DOS newline character \015\012 (CRLF) on each line. One
nice feature of s/regex/replace/ is that it can take characters other than
forward slashes as delimiters. Here, it uses vertical pipes to delimit regex
from replace to improve readability.

Newlines are usually represented as \n and carriage returns as \r, but
across platforms, the meanings of the \n and \r sequences can vary. The
UNIX newline character, however, is always available as \012 (LF), and the
carriage-return character represented by \r is always available as \015 (CR).
That’s why you use those numeric codes: Sometimes using the flexible
sequence is preferable, but not here.

6.17 convert dOs/windows newlines to unix newlines

perl -pe 's|\015\012|\012|'

This one-liner works in the opposite direction from one-liner 6.16. It
takes Windows newlines (CRLF) and converts them to UNIX newlines (LF).

6.18 convert unix newlines to mac newlines

perl -pe 's|\012|\015|'

Mac OS previously used \015 (CR) as newlines. This one-liner converts
UNIX’s \012 (LF) to Mac OS’s \015 (CR).

66 Chapter 6

6.19 substitute (find and replace) “foo” with “bar” on
each line

perl -pe 's/foo/bar/'

This one-liner uses the s/regex/replace/ command to substitute the
first occurrence of foo with bar on each line.

To replace all foos with bars, add the global /g flag:

perl -pe 's/foo/bar/g'

6.20 substitute (find and replace) “foo” with “bar” on
lines that match “baz”

perl -pe '/baz/ && s/foo/bar/'

This one-liner is roughly equivalent to

while (defined($line = <>)) {
 if ($line =~ /baz/) {
 $line =~ s/foo/bar/
 }
}

This expanded code puts each line into the variable $line and then
checks to see if a line in that variable matches baz. If so, it replaces foo
with bar in that line.

You could also write

perl -pe 's/foo/bar/ if /baz/'

6.21 Print paragraphs in reverse order

perl -00 -e 'print reverse <>' file

This one-liner uses the -00 argument discussed in one-liner 2.7
(page 14) to turn paragraph slurp mode on, meaning that Perl reads
text paragraph by paragraph, rather than line by line. Next, it uses the
<> operator to make Perl read the input from either standard input or
files specified as arguments. Here, I’ve specified file as the argument

Text Conversion and Substitution 67

so Perl will read file paragraph by paragraph (thanks to -00). Once Perl
finishes reading the file, it returns all paragraphs as a list and calls reverse
to reverse the order of the paragraph list. Finally, print prints the list of
reversed paragraphs.

6.22 Print all lines in reverse order

perl -lne 'print scalar reverse $_'

This one-liner evaluates the reverse operator in the scalar context. In
the previous one-liner, you saw that evaluating reverse in the list context
reverses the whole list, that is, the order of the elements. To do the same
for scalar values such as $_ that contain the whole line, you have to call
reverse in the scalar context. Otherwise, it simply reverses a list with only
one element, which is the same list! Once you’ve done that, you simply
print the reversed line.

Often you can drop the $_ variable when using operators and Perl will
still apply the function on the $_ variable. In other words, you can rewrite
the same one-liner as

perl -lne 'print scalar reverse'

Or you can substitute -n for -p, modify the $_ variable, and set its
value to reverse:

perl -lpe '$_ = reverse $_'

You can also write this as

perl -lpe '$_ = reverse'

Here, $_ is dropped because most Perl operators default to $_ when
not given an argument.

6.23 Print columns in reverse order

perl -alne 'print "@{[reverse @F]}"'

This one-liner reverses the order of columns in a file. The -a
command-line argument splits each line into columns at spaces
and puts them in the @F array, which is then reversed and printed.

68 Chapter 6

This one-liner is similar to one-liner 4.4 on page 32; I explained the
@{[...]} construct there. It simply lets you run code inside of double
quotes. For example, given the following input file:

one two three four
five six seven eight

the one-liner reverses the order of the columns, and the output is the
following:

four three two one
eight seven six five

If the columns in your input are separated by any character other
than a space, you can use the -F command-line argument to set a differ-
ent delimiter. For example, given the following input file:

one:two:three:four
five:six:seven:eight

you can add the -F: command-line argument to the one-liner like this:

perl -F: -alne 'print "@{[reverse @F]}"'

and it produces this output:

four three two one
eight seven six five

Notice, however, that the : characters are missing in this output. To
get them back, you need to modify the one-liner a bit and set the $" vari-
able to ":", as shown here:

perl -F: -alne '$" = ":"; print "@{[reverse @F]}"'

This produces the expected output:

four:three:two:one
eight:seven:six:five

The $" variable changes the character that’s printed between array
elements when an array is interpolated within a double-quoted string.

7
s e l e C T i v e ly P r i n T i n G

a n D D e l e T i n G l i n e s

In this chapter, we’ll examine various one-liners that
print and delete certain lines. These one-liners will,
for example, print repeated lines, print the short-
est line in a file, and print lines that match certain
patterns.

But every one-liner that prints certain lines can also be viewed as one
that deletes the lines that aren’t printed. For example, a one-liner that
prints all unique lines deletes all repeated lines. I’ll discuss only the one-
liners that print something, rather than delete something, because one is
always the inverse of the other.

70 Chapter 7

7.1 Print the first line of a file (emulate head -1)

perl -ne 'print; exit' file

This one-liner is quite simple. Perl reads the first line into the $_ vari-
able, thanks to the -n option, and then calls print to print the contents of
the $_ variable. Then it just exits. That’s it. The first line is printed and
that’s what you want.

You might also say that this one-liner deletes all lines except the first
one. But don’t worry. This particular one-liner won’t delete the contents
of the file unless you also specify the -i command-line argument, like this:

perl -i -ne 'print; exit' file

As I explained in Chapter 1 and in one-liner 6.1 on page 59, the -i
argument edits the file in-place. In this case, all the lines in the file would
be deleted except for the first. When using -i, always specify a backup
extension to it, like this:

perl -i.bak -ne 'print; exit' file

This will create a backup file file.bak before the contents are
overwritten.

You can add the -i command-line argument to any of the one-liners
to change the file content. If you don’t use the -i argument, the one-
liners simply print the new content of the file to screen rather than
modifying the file.

7.2 Print the first 10 lines of a file (emulate head -10)

perl -ne 'print if $. <= 10' file

This one-liner uses the $. special variable, which stands for “the cur-
rent line number.” Each time Perl reads in a line, it increments $. by 1, so
clearly this one-liner simply prints the first 10 lines.

This one-liner can also be written without the if statement:

perl -ne '$. <= 10 && print' file

Here, print is called only if the Boolean expression $. <= 10 is true,
and this expression is true only if the current line number is less than or
equal to 10.

Selectively Printing and Deleting Lines 71

Another, though somewhat trickier, way to do this is with the range
operator (..) in the scalar context:

perl -ne 'print if 1..10' file

The range operator in the scalar context returns a Boolean value.
The operator is bistable, like a flip-flop, and emulates the line-range
(comma) operator in sed, awk, and various text editors. Its value is false
as long as its left operand is false. Once the left operand is true, the range
operator is true until the right operand is true, after which the range oper-
ator becomes false again. As a result, this bistable operator becomes true at
the first line, stays true until the tenth line, and then becomes and remains
false.

A fourth option is to follow the first example in this chapter:

perl -ne 'print; exit if $. == 10' file

Here, I put a condition on exit, which is that the current line (which I
just printed) is number 10.

7.3 Print the last line of a file (emulate tail -1)

perl -ne '$last = $_; END { print $last }' file

Printing the last line of a file is trickier than printing the first line,
because you never know which is the last line. As a result, you always have
to keep the line you just read in memory. In this one-liner, you always save
the current line held in $_ into the $last variable. When the Perl program
ends, it executes the code in the END block, which prints the last line read.

Here’s another way to do this:

perl -ne 'print if eof' file

This one-liner uses the eof (or end-of-file) function, which returns 1
if the next read returns the end-of-file. Because the next read after the
last line in the file will return the end-of-file, this one-liner does the job.
The next read means that Perl will attempt to read a character from the
current file, and if reading the character fails, it will signal that the end-
of-file has been reached, meaning the whole file has been read. If the
read succeeds, Perl secretly puts the character back in the input stream
as if nothing had happened.

72 Chapter 7

7.4 Print the last 10 lines of a file (emulate tail -10)

perl -ne 'push @a, $_; @a = @a[@a-10..$#a] if @a>10; END { print @a }' file

This one-liner is a bit tricky. Here, you push each line to the @a array
and then replace @a with a slice of itself if the list contains more than
10 elements. The phrase @a = @a[@a-10..$#a] means “replace @a with the
last 10 elements of @a.” The bit @a-10 causes @a to be evaluated in the
scalar context, and thus it returns the number of elements in the array
minus 10. The expression $#a is the last index in the @a array. And finally,
@a[@a-10..$#a] slices (returns) the last 10 elements of the array, with which
it overwrites @a itself so it always contains only the last 10 elements.

For example, suppose @a contains (line1, line2, line3, line4), and
you want to print the last four lines of the file. When you read the fifth
line, the array becomes (line1, line2, line3, line4, line5), and the value
of @a-4 is 1 because @a in the scalar context is 5. But the value of $#a is 4
because it’s the last index in the array. Therefore when you take the slice
@a[@a-4..$#a], it becomes @a[1..4], which drops the front element from the
array, and the @a array becomes (line2, line3, line4, line5).

A simpler way to write this is with shift:

perl -ne 'push @a, $_; shift @a if @a>10; END { print @a }' file

This one-liner doesn’t need to slice @a because you can guarantee that
if @a > 10, then @a == 11. shift is an operator that removes the first element
of an array. So in this loop, you can simply shift off the first stored line
when you have more than 10 lines.

7.5 Print only lines that match a regular expression

perl -ne '/regex/ && print'

This one-liner tests to see whether the current line matches /regex/. If
so, the /regex/ match succeeds and print is called.

Instead of using &&, you can also use if to reverse the /regex/ and print
statements:

perl -ne 'print if /regex/'

Selectively Printing and Deleting Lines 73

7.6 Print only lines that do not match a regular
expression

perl -ne '!/regex/ && print'

This one-liner inverts the previous one-liner. Here, I test to see that
the line doesn’t match /regex/ by inverting the match via the ! operator.
If the line doesn’t match, I call print to print the line.

You can also write this the other way around:

perl -ne 'print if !/regex/'

And you can also use unless instead of if !:

perl -ne 'print unless /regex/'

Another way to write this is to apply De Morgan’s law to
!/regex/ && print:

perl -ne '/regex/ || print'

7.7 Print every line preceding a line that matches a
regular expression

perl -ne '/regex/ && $last && print $last; $last = $_'

This one-liner prints a line when it is above a line that matches /regex/.
Let’s walk through it, beginning at the last statement, $last = $_, which
saves each line in the $last variable. Suppose the next line is read and it
matches /regex/. Because the previous line is saved in $last, the one-liner
simply prints it. The series of && means first that the regular expression
must match and second that $last must be a true value. (Blank lines are
still printed because they contain the newline character.)

Say you have a file with four lines:

hello world
magic line
bye world
magic line

74 Chapter 7

and you want to print all lines above those that match magic. You can
do this:

perl -ne '/magic/ && $last && print $last; $last = $_'

and the one-liner will print:

hello world
bye world

7.8 Print every line following a line that matches a
regular expression

perl -ne 'if ($p) { print; $p = 0 } $p++ if /regex/'

Here, I set the variable $p to 1 if the current line matches the regular
expression. The fact that the variable $p is 1 indicates that the next line
should be printed. Now, when the next line is read in and $p is set, that
line is printed and $p is reset to 0. Quite simple.

Let’s say you have this four-line file:

science
physics
science
math

and you want to print all lines below those that match science. Do this:

perl -ne 'if ($p) { print; $p = 0 } $p++ if /science/'

The one-liner will print:

physics
math

If you want to write this with && and avoid using if and curly brackets,
do this:

perl -ne '$p && print && ($p = 0); $p++ if /science/'

Selectively Printing and Deleting Lines 75

You can also be very smart about this and simplify this one-liner to
the following:

perl -ne '$p && print; $p = /science/'

If the current line matches science, then variable $p is set to a true
value and the next line gets printed. If the current line doesn’t match
science, then $p becomes undefined and the next line doesn’t get printed.

7.9 Print lines that match regular expressions AAA and
bbb in any order

perl -ne '/AAA/ && /BBB/ && print'

This one-liner tests to see whether a line matches two regular expres-
sions. If a line matches /AAA/ and /BBB/, it’s printed. Specifically, this one-
liner prints the line foo AAA bar BBB baz because it contains both AAA
and BBB, but it won’t print the line foo AAA bar AAA because it doesn’t
contain BBB.

7.10 Print lines that don’t match regular expressions
AAA and bbb

perl -ne '!/AAA/ && !/BBB/ && print'

This one-liner is almost the same as the previous one. Here, I test to
see if a line doesn’t match both regular expressions. If it doesn’t match
/AAA/ or /BBB/, it prints.

7.11 Print lines that match regular expression AAA
followed by bbb followed by ccc

perl -ne '/AAA.*BBB.*CCC/ && print'

Here, I simply chain the regular expressions AAA, BBB, and CCC with
.*, which means “match anything or nothing at all.” If AAA is followed by
BBB, which is followed by CCC, the line prints. For example, this one-liner
matches and prints strings like 123AAA880BBB222CCC, xAAAyBBBzCCC,
and AAABBBCCC.

76 Chapter 7

7.12 Print lines that are at least 80 characters long

perl -ne 'print if length >= 80'

This one-liner prints all lines that are at least 80 characters long.
In Perl, you can sometimes omit the parentheses () for function calls,
so here I’ve omitted them for the length function call. In fact, the invo-
cations length, length(), and length($_) are all the same as far as Perl is
concerned.

If you don’t want to count line endings, you can turn on automatic
handling of line endings with -l:

perl -lne 'print if length >= 80'

This switch ensures that a blank line has zero length, whereas it usu-
ally has length 1 or 2, depending on the file format. (UNIX newlines have
length 1; Windows newlines have length 2.)

7.13 Print lines that are fewer than 80 characters long

perl -ne 'print if length() < 80'

This one-liner reverses the previous one. It checks to see whether the
length of a line is less than 80 characters. Again, you use -l if you don’t
want the line endings to be counted.

7.14 Print only line 13

perl -ne '$. == 13 && print && exit'

As I explained in one-liner 7.2 on page 70, the $. special variable
stands for “the current line number.” Therefore, if $. has a value of 13,
this one-liner prints the line and exits.

7.15 Print all lines except line 27

perl -ne '$. != 27 && print'

As in the previous one-liner, this one checks to see whether the line
number of the current line is 27. If a line is not 27, it prints; if it is, it
doesn’t print.

Selectively Printing and Deleting Lines 77

You can accomplish the same thing by reversing print and $. != 27
and using the if statement modifier—just like this:

perl -ne 'print if $. != 27'

Or you can use unless:

perl -ne 'print unless $. == 27'

7.16 Print only lines 13, 19, and 67

perl -ne 'print if $. == 13 || $. == 19 || $. == 67'

This one-liner prints only lines 13, 19, and 67. It doesn’t print any
other lines. Here’s how it works: It calls print if the current line number,
stored in the $. variable, is 13, 19, or 67. You can use any line numbers
to print specific lines. For example, to print the lines 13, 19, 88, 290, and
999, you do this:

perl -ne 'print if $. == 13 || $. == 19 || $. == 88 || $. == 290 || $. == 999'

If you want to print more lines, you can put them in a separate array
and then test whether $. is in this array:

perl -ne '
 @lines = (13, 19, 88, 290, 999, 1400, 2000);
 print if grep { $_ == $. } @lines
'

This one-liner uses grep to test if the current line $. is in the @lines
array. If the current line number is found in the @lines array, the grep func-
tion returns a list of one element that contains the current line number
and this list evaluates to true. If the current line number is not found in the
@lines array, the grep function returns an empty list that evaluates to false.

7.17 Print all lines from 17 to 30

perl -ne 'print if $. >= 17 && $. <= 30'

In this one-liner, the $. variable stands for the current line number.
As a result, the one-liner checks to see whether the current line number
is greater than or equal to 17 and less than or equal to 30.

78 Chapter 7

You can do the same thing using the flip-flop operator, which is
explained in one-liner 7.2 on page 70. The flip-flop operator operates
on $. when used with integers:

perl -ne 'print if 17..30'

7.18 Print all lines between two regular expressions
(including the lines that match)

perl -ne 'print if /regex1/../regex2/'

This one-liner uses the flip-flop operator (explained in one-liner 7.2
on page 70). When used with integers, the operands are tested against
the $. variable. When used with regular expressions, the operands are
tested against the current line, stored in the $_ variable. Initially the oper-
ator returns false. When a line matches regex1, the operator flips and starts
returning true until another line matches regex2. At that point, the opera-
tor returns true for the last time and then flips to the false state. From now
on the operator returns false. This one-liner, therefore, prints all lines
between (and including) the lines that match regex1 and regex2.

7.19 Print the longest line

perl -ne '
 $l = $_ if length($_) > length($l);
 END { print $l }
'

This one-liner keeps the longest line seen so far in the $l variable.
If the length of the current line $_ exceeds the length of the longest line,
the value in $l is replaced with the value of the current line. Before exit-
ing, the END block is executed, and it prints the longest line value that’s
held in $l.

Remember to use -l if you want to prevent the newline characters
from counting toward the line length.

Selectively Printing and Deleting Lines 79

7.20 Print the shortest line

perl -ne '
 $s = $_ if $. == 1;
 $s = $_ if length($_) < length($s);
 END { print $s }
'

This one-liner is the opposite of the previous one. Because it’s finding
the shortest line and $s is not defined for the first line, you have to set its
value to the first line explicitly through $s = $_ if $. == 1. Then it simply
does the opposite of the previous one-liner. That is, it checks to see whether
the current line is the shortest line so far and, if so, assigns it to $s.

7.21 Print all lines containing digits

perl -ne 'print if /\d/'

This one-liner uses the regular expression \d (which stands for “a
digit”) to see whether a line contains a digit. If so, the check succeeds,
and the line is printed. For example, this line would be printed because
it contains digits:

coding is as easy as 123

However, this line wouldn’t be printed because it doesn’t contain digits:

coding is as easy as pie

7.22 Print all lines containing only digits

perl -ne 'print if /^\d+$/'

In this one-liner, the regular expression ^\d+$ means “match a line if
it contains only digits from the beginning until the end.” For example,
this line would be printed because it contains only digits:

3883737189170238912377

80 Chapter 7

However, this line wouldn’t be printed because it also contains some
characters:

8388338 foo bar random data 999

You can also invert the ^\d$ regular expression and use \D:

perl -lne 'print unless /\D/'

This one-liner is great for developing your logical reasoning because
it uses logical negation twice. Here, the line prints only if it does not con-
tain a non-numeric character. In other words, it prints only if all the char-
acters are numeric. (Notice that I used the -l command-line argument
for this one-liner because of the newline character at the end of the line.
If I didn’t use -l, the line would contain the newline character—a non-
numeric character—and it wouldn’t be printed.)

7.23 Print all lines containing only alphabetic characters

perl -ne 'print if /^[[:alpha:]]+$/

This one-liner checks to see whether a line contains only alphabetic
characters. If so, it prints the line. The [[:alpha:]] stands for “any alpha-
betic character.” And [[:alpha:]]+ stands for “all alphabetic characters.”

7.24 Print every second line

perl -ne 'print if $. % 2'

This one-liner prints the first, third, fifth, and seventh lines (and so
on). It does so because $. % 2 is true when the current line number is odd
and false when the current line number is even.

7.25 Print every second line, beginning with the
second line

perl -ne 'print if $. % 2 == 0'

This one-liner is like previous one, except it prints the second, fourth,
sixth, and eighth lines (and so on) because $. % 2 == 0 is true when the
current line number is even.

Selectively Printing and Deleting Lines 81

Alternatively, you can simply invert the test from the previous
example:

perl -ne 'print unless $. % 2'

7.26 Print all repeated lines only once

perl -ne 'print if ++$a{$_} == 2'

This one-liner tracks the lines it has seen so far and counts the num-
ber of times it has seen the lines previously. If it sees a line a second time,
it prints the line because ++$a{$_} == 2 is true. If it sees a line more than two
times, it does nothing because the count for this line is greater than 2.

7.27 Print all unique lines

perl -ne 'print unless $a{$_}++'

This one-liner prints a line only if the hash value $a{$_} for that line
is false. Every time Perl reads in a line, it increments $a{$_}, which ensures
that this one-liner prints only never-before-seen lines.

8
 u s e f u l r e G u l a r e x P r e s s i O n s

In this chapter, we’ll look at various regular expres-
sions and how to use them in some handy one-
liners. The regular expressions include matching
IP addresses, HTTP headers, and email addresses;
matching numbers and number ranges; and extracting and changing
matches. I’ll also share some regular expression puzzles and best prac-
tices. This chapter will be a bit different from previous ones because I’ll
start with a regular expression and then write a one-liner that uses it.

8.1 match something that looks like an iP address

/^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$/

This regular expression doesn’t actually guarantee that the thing that
matched is, in fact, a valid IP; it simply matches something that looks like

84 Chapter 8

an IP address. For example, it matches a valid IP such as 81.198.240.140 as
well as an invalid IP such as 936.345.643.21.

Here’s how it works. The ^ at the beginning of the regular expres-
sion is an anchor that matches the beginning of the string. Next, \d{1,3}
matches one, two, or three consecutive digits. The \. matches a dot. The $
at the end is an anchor that matches the end of the string. (You use both ^
and $ anchors to prevent strings like foo213.3.1.2bar from matching.)

You can simplify this regular expression by grouping the first three
repeated \d{1,3}\. expressions:

/^(\d{1,3}\.){3}\d{1,3}$/

Say you have a file with the following content and you want to extract
only the lines that look like IP addresses:

81.198.240.140
1.2.3.4
5.5
444.444.444.444
90.9000.90000.90000
127.0.0.1

To extract only the matching lines, you can write this:

perl -ne 'print if /^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$/'

which should print

81.198.240.140
1.2.3.4
444.444.444.444
127.0.0.1

One-liner 8.3 explains how to match an IP precisely, not just some-
thing that looks like an IP.

8.2 Test whether a number is in the range 0 to 255

/^([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$/

I like to challenge people with puzzles. One of my favorites is to ask
someone to come up with a regular expression that matches a number
range. Writing one is actually quite tricky if you’ve never done so before.

Here’s how it works. A number can have one, two, or three digits.
If the number has one digit, you allow it to be anything [0-9]. If it has

­seeul egular xpressions 85

two digits, you also let it be any combination of [0-9][0-9]. But if the
number has three digits, it has to be either one hundred–something
or two hundred–something. If the number is one hundred–something,
1[0-9][0-9] matches it. If the number is two hundred–something, the
number is either 200 to 249 (which is matched by 2[0-4][0-9]) or it’s 250
to 255 (which is matched by 25[0-5]).

Let’s confirm this regular expression really matches all numbers in
the range 0 to 255 and write a one-liner to do it:

perl -le '
 map { $n++ if /^([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$/ } 0..255;
 END { print $n }
'

This one-liner outputs 256, the total numbers in the range 0 to 255.
It iterates over the range 0 to 255 and increments the $n variable for every
number that matches. If the output value was less than 256, you’d know
that some numbers didn’t match.

Let’s also make sure this one-liner doesn’t match numbers above 255:

perl -le '
 map { $n++ if /^([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$/ } 0..1000;
 END { print $n }
'

Although there are 1001 iterations, from 0 to 1000, the final value of
$n and the output should still be 256 because numbers greater than 255
should not match. If the value was greater than 256, you’d know that too
many numbers matched and the regular expression was incorrect.

8.3 match an iP address

my $ip_part = qr/[0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5]/;

if ($ip =~ /^$ip_part\.$ip_part\.$ip_part\.ip_part/) {
 print "valid ip\n";
}

This regular expression combines the ideas from the previous two
regular expressions (8.1 and 8.2) and introduces the qr/.../ operator,
which lets you construct a regular expression and save it in a variable.
Here, I’m saving the regular expression that matches all numbers in the
range 0 to 255 in the $ip_part variable. Next, the $ip_part matches the
four parts of the IP address.

86 Chapter 8

You can simplify this by grouping the first three IP parts:

if ($ip =~ /^($ip_part\.){3}ip_part/) {
 print "valid ip\n";
}

Let’s run this on the same file from one-liner 8.1. If you have this file
as input:

81.198.240.140
1.2.3.4
5.5
444.444.444.444
90.9000.90000.90000
127.0.0.1

and your one-liner is

perl -ne '
 $ip_part = qr|([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])|;
 print if /^($ip_part\.){3}$ip_part$/
'

then the output is

81.198.240.140
1.2.3.4
127.0.0.1

As you can see, only the valid IP addresses are printed.

8.4 check whether a string looks like an email address

/\S+@\S+\.\S+/

This regular expression makes sure the string looks like an email
address; it doesn’t guarantee the string is an email address, however.
First, it matches something that’s not whitespace (\S+) up to the @ symbol;
then it matches as much as possible until it finds a dot; then it matches
some more.

If the matches succeed, you know the string at least looks like an email
address with the @ symbol and a dot in it. For example, cats@catonmat.net
matches, but cats@catonmat doesn’t because the regular expression can’t
find the dot that’s required in a fully qualified domain name.

­seeul egular xpressions 87

Here’s a much more robust way to see whether a string is a valid email
address, using the Email::Valid module:

use Email::Valid;
print Email::Valid->address('cats@catonmat.net') ? 'valid email' : 'invalid email';

Here, you use the ternary operator cond ? true : false. If the cond is
true, the true part executes; otherwise the false part executes. This prints
valid email if the email is valid; if not, it prints invalid email.

So a one-liner would look like this:

perl -MEmail::Valid -ne 'print if Email::Valid->address($_)'

Here, if the email address is valid, you simply print it.

8.5 check whether a string is a number
Determining whether a string is a number is difficult with a regular
expression. This is a derivation of a regular expression that matches
decimal numbers.

I start with Perl’s \d regular expression, which matches the digits 0
through 9:

/^\d+$/

This regular expression matches one or more digits \d from the
beginning of the string ^ to the end at $. But it doesn’t match numbers
such as +3 and -3. Let’s modify the regular expression to match them:

/^[+-]?\d+$/

Here, the [+-]? means “match an optional plus or a minus before the
digits.” This regular expression now matches +3 and -3 but not -0.3. Let’s
add that:

/^[+-]?\d+\.?\d*$/

I’ve expanded the previous regular expression by adding \.?\d*,
which matches an optional dot followed by zero or more numbers. Now
we’re in business. This regular expression also matches numbers like -0.3
and 0.3, though it would not match numbers such as 123,456 or .5.

A much better way to match a decimal number is to use the
Regexp::Common module. For example, to match a decimal number,

88 Chapter 8

you can use $RE{num}{real} from Regexp::Common. Here’s a one-liner that
filters the input and prints only the decimal numbers:

perl -MRegexp::Common -ne 'print if /$RE{num}{real}/'

This one-liner also matches and prints numbers such as 123,456 and .5.
How about matching positive hexadecimal numbers? Here’s how:

/^0x[0-9a-f]+$/i

This one-liner matches the hex prefix 0x followed by the hex number
itself. The /i flag at the end ensures the match is case insensitive. For
example, 0x5af matches, 0X5Fa matches, but 97 doesn’t because 97 has no
hex prefix.

Better still, use $RE{num}{hex} because it supports negative numbers,
decimal places, and number grouping.

How about matching octals?

/^0[0-7]+$/

Octal numbers are prefixed by 0, which is followed by the octal digits
0-7. For example, 013 matches but 09 doesn’t because it’s not a valid octal
number. Using $RE{num}{oct} is better because it supports negative octal
numbers, octal numbers with decimal places, and number grouping.

Finally, we come to binary matching:

/^[01]+$/

Binary base consists of only 0s and 1s, so 010101 matches but 210101
doesn’t because 2 is not a valid binary digit.

Regexp::Common also offers a better regular expression for matching
binary numbers: $RE{num}{bin}.

8.6 check whether a word appears in a string twice

/(word).*\1/

This regular expression matches a word followed by something or
nothing at all, followed by the same word. Here, (word) captures the word
in group 1, and \1 refers to the contents of group 1, which is the same
as writing /(word).*word/. For example, silly things are silly matches
/(silly).*\1/, but silly things are boring doesn’t because silly is not
repeated in the string.

­seeul egular xpressions 89

8.7 increase all integers in a string by one

$str =~ s/(\d+)/$1+1/ge

Here, you use the substitution operator s to match all integers (\d+),
put them in capture group 1, and then replace them with their value
incremented by one: $1+1. The g flag finds all numbers in the string, and
the e flag evaluates $1+1 as a Perl expression. For example, this 1234 is
awesome 444 is turned into this 1235 is awesome 445.

Note that this regular expression doesn’t increment floating-point
numbers because it uses \d+ to match integers. To increment floating-
point numbers, use the $RE{num}{real} regular expression from one-
liner 8.5. Here’s a sample one-liner that uses $RE{num}{real}:

perl -MRegexp::Common -pe 's/($RE{num}{real})/$1+1/ge'

If you pass this one-liner the input weird 44.5 line -1.25, it prints weird
45.5 line -0.25.

8.8 extract the hTTP user-Agent string from hTTP
headers

/^User-Agent: (.+)$/

HTTP headers are formatted as Key: Value pairs. You can easily parse
such strings by instructing the regular expression engine to save the Value
part in the $1 group variable. For example, if the HTTP headers contain
the following:

Host: www.catonmat.net
Connection: keep-alive
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_0_0; en-US)
Accept: application/xml,application/xhtml+xml,text/html
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

then the regular expression will extract the string Mozilla/5.0 (Macintosh;
U; Intel Mac OS X 10_0_0; en-US).

90 Chapter 8

8.9 match printable Ascii characters

/[-~]/

This regular expression is tricky and smart. To understand it, take
a look at man ascii, and you’ll see that space starts at value 0x20 and the ~
character is 0x7e. The expression [-~] defines a range of characters from
the space until ~. Because all characters between the space and ~ are
printable, this regular expression matches all printable characters. This is
my favorite regular expression of all time because it’s quite puzzling when
you first see it. What does it match? A space, a dash, and a tilde? No, it
matches a range of characters from the space until the tilde!

To invert the match, place ^ as the first character in the group:

/[^ -~]/

This matches the opposite of [-~], that is, all nonprintable characters.

8.10 extract text between two hTml tags

m|([^<]*)|

Before I explain this regular expression, let me say that it’s okay
to match HTML with regular expressions only for quick hacks when
you need to get things done and move on. You should never use regu-
lar expressions to match and parse HTML in serious applications
because HTML is actually a complicated language, and, in general,
it can’t be parsed by a regular expression. Instead, use modules like
HTML::TreeBuilder to accomplish the task more cleanly!

This regular expression saves text between the ...
HTML tags in the $1 special variable. The trickiest part of this one-liner
is ([^<]*), which matches everything up to the < character. It’s a regular
expression idiom.

For example, if the HTML you’re trying to match is hello
, then this regular expression captures hello in the $1 variable.
However, if the HTML you’re trying to match is hello
, then this regular expression doesn’t match at all because there
is another HTML tag between and .

To extract everything between two HTML tags, including other
HTML tags, you can write:

m|(.*?)|

­seeul egular xpressions 91

This regular expression saves everything between ...
in the $1 variable. For example, if the HTML is hello
, this regular expression sets $1 to hello. The (.*?) part
of the regular expression matches everything between the two nearest
 and tags. The question mark ? in this regular expres-
sion controls its greediness.

If you want to be a good citizen and use HTML::TreeBuilder, then a Perl
program that does the same thing would look like this:

use warnings;
use strict;

use HTML::TreeBuilder;

my $tree = HTML::TreeBuilder->new_from_content(
 "hello"
);
my $strong = $tree->look_down(_tag => 'strong');
if ($strong) {
 print $_->as_HTML for $strong->content_list;
}
$tree->delete;

Here, I created a new HTML::TreeBuilder instance from the given string;
then I found the tag and dumped all the child elements of the
 tag as HTML. As you can see, although writing a program like
this isn’t suitable as a one-liner, it’s a much more robust solution.

8.11 replace all tags with

$html =~ s|<(/)?b>|<$1strong>|g

Here, I assume that the HTML is in the variable $html. The expression
<(/)?b> matches the opening and closing tags, captures the optional
closing tag slash in the group $1, and then replaces the matched tag with
either or , depending on whether it finds an opening or
closing tag.

Remember that the correct way to do this is to use HTML::TreeBuilder and
write a proper program. You should only use this regular expression for a
quick hack. Here’s what a program that uses HTML::TreeBuilder looks like:

use warnings;
use strict;

use HTML::TreeBuilder;

92 Chapter 8

my $tree = HTML::TreeBuilder->new_from_content("
 <div><p>section 1</p><p>section 2</p></div>
");

my @bs = $tree->look_down(_tag => 'b');
$_->tag('strong') for @bs;

print $tree->as_HTML;
$tree->delete;

Here, I’ve created the HTML::TreeBuilder object from the given string;
next, I found all the tags, stored them in the @bs array, and then
looped over all @bs and changed their tag name to .

8.12 extract all matches from a regular expression

my @matches = $text =~ /regex/g;

Here, the regular expression match is evaluated in the list context,
which makes it return all matches. The matches are put in the @matches
variable.

For example, the following regular expression extracts all integers
from a string:

my $t = "10 hello 25 moo 30 foo";
my @nums = $text =~ /\d+/g;

After executing this code, @nums contains (10, 25, 30). You can also
use parentheses to capture only part of the string. For example, here’s
how to capture only the values from a line containing lots of key-value
pairs (such as key=value), separated by semicolons:

my @vals = $text =~ /[^=]+=([^;]+)/g;

This regular expression first matches the keys through [^=]+, then
it matches the = character that separates the keys and values, and then it
matches the values ([^;]+). As you can see, the value part of the regular
expression is wrapped in parentheses so the values are captured.

Here’s an example. Say you have a file with the following contents:

access=all; users=peter,alastair,bill; languages=awk,sed,perl

­seeul egular xpressions 93

and you write this one-liner:

perl -nle 'my @vals = $_ =~ /[^=]+=([^;]+)/g; print "@vals"'

Running it outputs the following:

all peter,alastair,bill awk,sed,perl

These are the values for the access, users, and languages keys!

A
P e r l’ s s P e C i a l v a r i a B l e s

In this appendix, I summarize Perl’s most commonly
used special (predefined) variables, such as $_, $.,
$/, $\, $1, $2, $3 (and so on), $,, @F, and @ARGV, among
others.

A.1 variable $_
The $_ variable, called the default variable, is the most commonly used
variable in Perl. Often this variable is pronounced “it” (when not pro-
nounced “dollar-underscore”); as you read on, you’ll understand why.

When using the -n and -p command-line arguments, it’s (see?) where
the input is stored. Also, many operators and functions act on it implic-
itly. Here’s an example:

perl -le '$_ = "foo"; print'

96 Appendix A

Here, I place the string "foo" in the $_ variable and then call print.
When given no arguments, print prints the contents of the $_ variable,
which is "foo".

Similarly, $_ is used by the s/regex/replace/ and /regex/ operators
when used without the =~ operator. Consider this example:

perl -ne '/foo/ && print'

This one-liner prints only lines that match /foo/. The /foo/ opera-
tor implicitly operates on the $_ variable that contains the current line.
You could rewrite this as follows, but doing so would require too much
typing:

perl -ne 'if ($_ =~ /foo/) { print $_ }'

“If it matches /foo/, print it”—you get the idea. You could also replace
text in all the lines simply by calling s/foo/bar/:

perl -pe 's/foo/bar/'

Interestingly, Perl borrows the $_ variable from sed. Remember that
sed has a pattern space? The $_ variable can also be called Perl’s pattern
space. If you wrote the previous one-liner (perl -pe 's/foo/bar/') in sed, it
would look like sed 's/foo/bar/' because sed puts each line in the pattern
space and the s command acts on it implicitly. Perl borrows many con-
cepts and commands from sed.

Using $_ with the -n argument
When using the -n argument, Perl puts the following loop around your
program:

while (<>) {
 # your program goes here (specified by -e)
}

The while (<>) loop reads lines from standard input or files named
on the command line and puts each line into the $_ variable. You can
then modify the lines and print them. For example, you can reverse
the lines:

perl -lne 'print scalar reverse'

Perl’s Special Variables 97

Because I’m using the -n argument here, this program becomes

while (<>) {
 print scalar reverse
}

which is equivalent to

while (<>) {
 print scalar reverse $_
}

The two programs are equivalent because many Perl functions act on
$_ implicitly, which makes writing reverse and reverse $_ functionally the
same thing. You need scalar to put the reverse function in the scalar con-
text. Otherwise it’s in the list context (print forces the list context) and
won’t reverse strings. (I explain the -n flag in great detail in one-liner 2.6
on page 12 and line reversing in one-liner 6.22 on page 67.)

Using $_ with the -p argument
When you use the -p argument, Perl puts the following loop around your
program:

while (<>) {
 # your program goes here (specified by -e)
} continue {
 print or die "-p failed: $!\n";
}

The result is almost the same as for the -n argument, except that after
each iteration the content of $_ is printed (through print in the continue
block).

To reverse the lines as I did with -n, I can do this:

perl -pe '$_ = reverse $_'

The program now becomes:

while (<>) {
 $_ = reverse $_;
} continue {
 print or die "-p failed: $!\n";
}

98 Appendix A

I’ve modified the $_ variable and set it to reverse $_, which reverses
the line. The continue block makes sure that it’s printed. (One-liner 2.1
on page 7 explains the -p argument in more detail.)

Using $_ explicitly
The $_ variable is also often used explicitly. Here are some examples of
using the $_ variable explicitly:

perl -le '@vals = map { $_ * 2 } 1..10; print "@vals"'

The output of this one-liner is 2 4 6 8 10 12 14 16 18 20. Here, I use
the map function to map an expression over each element in the given list
and return a new list, where each element is the result of the expression.
In this case, the list is 1..10 (1 2 3 4 5 6 7 8 9 10) and the expression is
$_ * 2, which means multiply each element (“it”) by 2. As you can see, I’m
using $_ explicitly. When the map function iterates over the list, each ele-
ment is put into $_ for my convenience.

Now let’s use map in a handy one-liner. How about one that multiplies
each element on a line by 2?

perl -alne 'print "@{[map { $_ * 2 } @F]}"'

This one-liner maps the expression $_ * 2 onto each element in @F.
The crazy-looking "@{[...]}" is just a way to execute code inside quotes.
(One-liner 4.2 on page 30 explains @F, and one-liner 4.4 on page 32
explains "@{[...]}".)

Another function that explicitly uses $_ is grep, which lets you filter
the elements from a list. Here’s an example:

perl -le '@vals = grep { $_ > 5 } 1..10; print "@vals"'

The output of this one-liner is 6 7 8 9 10. As you can see, grep filtered
elements greater than 5 from the list. The condition $_ > 5 asks, “Is the
current element greater than 5?”—or, more succinctly, “Is it greater
than 5?”

Let’s use grep in a one-liner. How about one that finds and prints all
elements on the current line that are palindromes?

perl -alne 'print "@{[grep { $_ eq reverse $_ } @F]}"'

Perl’s Special Variables 99

The condition specified to the grep function here is $_ eq reverse $_,
which asks, “Is the current element the same as its reverse?” This condi-
tion is true only for palindromes. For example, given the following input:

civic foo mom dad
bar baz 1234321 x

the one-liner outputs this:

civic mom dad
1234321 x

As you can see, all of these elements are palindromes.
You can learn even more about the $_ variable by typing perldoc

perlvar at the command line. The perlvar documentation explains all
the predefined variables in Perl.

A.2 variable $.
When reading a file, the $. variable always contains the line number of
the line currently being read. For example, this one-liner numbers the
lines in file:

perl -lne 'print "$. $_"' file

You can do the same thing with this one-liner, which replaces the cur-
rent line with the line number followed by the same line:

perl -pe '$_ = "$. $_"' file

The $. variable isn’t reset across files, so to number multiple files
simultaneously, you write

perl -pe '$_ = "$. $_"' file1 file2

This one-liner continues numbering lines in file2 where file1 left off.
(If file1 contains 10 lines, the first line of file2 is numbered 11.)

To reset the $. variable, you use an explicit close on the current file
handle ARGV:

perl -pe '$_ = "$. $_"; close ARGV if eof' file1 file2

100 Appendix A

ARGV is a special file handle that contains the currently open file.
By calling eof, I’m checking to see if it’s the end of the current file. If so,
close closes it, which resets the $. variable.

You can change what Perl considers to be a line by modifying the
$/ variable. The next section discusses this variable.

A.3 variable $/
The $/ variable is the input record separator, which is a newline by
default. This variable tells Perl what to consider a line. Say you have
this simple program that numbers lines:

perl -lne 'print "$. $_"' file

Because $/ is a newline by default, Perl reads everything up to the
first newline, puts it in the $_ variable, and increments the $. variable.
Next, it calls print "$. $_", which prints the current line number and the
line. But if you change the value of $/ to two newlines, like $/ = "\n\n",
Perl reads everything up to the first two newlines; that is, it reads text
paragraph by paragraph rather than line by line.

Here’s another example. If you have a file like the following, you can
set $/ to :, and Perl will read the file digit by digit.

3:9:0:7:1:2:4:3:8:4:1:0:0:1:... (goes on and on)

Or if you set $/ to undef, Perl reads the entire file in a single read
(called slurping):

perl -le '$/ = undef; open $f, "<", "file"; $contents = <$f>"

This one-liner slurps the entire file file in variable $contents.
You can also set $/ to reference an integer:

$/ = \1024

In this case, Perl reads the file 1024 bytes at a time. (This is also
called record-by-record reading.)

You can also use the -0 command-line switch to provide this variable
with a value, but note that you can’t do the record-by-record version like
this. For example, to set $/ to :, specify -0072 because 072 is the octal value
of the : character.

To remember what this variable does, recall that when quoting
poetry, lines are separated by /.

Perl’s Special Variables 101

A.4 variable $\
The dollar-backslash variable is appended after every print operation. For
example, you could append a dot followed by a space ". " after each print:

perl -e '$\ = ". "; print "hello"; print "world"'

This one-liner produces the following output:

hello. world.

Modifying this variable is especially helpful when you want to sepa-
rate printouts by double newlines.

To remember this variable, just recall that you probably want to print
\n after every line. Note that for Perl 5.10 and later, the function say is
available, which is like print, except that it always adds a newline at the
end and doesn’t use the $\ variable.

A.5 variables $1, $2, $3, and so on
Variables $1, $2, $3, and so on contain the matches from the correspond-
ing set of capturing parentheses in the last pattern match. Here’s an
example:

perl -nle 'if (/She said: (.*)/) { print $1 }'

This one-liner matches lines that contain the string She said: and
then captures everything after the string in variable $1 and prints it.

When you use another pair of parentheses, the text is captured in
variable $2, and so on:

perl -nle 'if (/(She|He) said: (.*)/) { print "$1: $2" }'

In this one-liner, first either "She" or "He" is captured in variable $1
and then anything she or he said is captured in variable $2 and printed as
"$1: $2". You’ll get the same number of capture variables as you have pairs
of parentheses.

To avoid capturing text in a variable, use the ?: symbols inside the
opening parenthesis. For example, changing (She|He) to (?:She|He):

perl -nle 'if (/(?:She|He) said: (.*)/) { print "Someone said: $1" }'

will not capture "She" or "He" in variable $1. Instead, the second pair of
parentheses captures what she or he said in variable $1.

102 Appendix A

Beginning with Perl 5.10, you can use named capture groups as in
(?<name>...). When you do, instead of using variables $1, $2, and so on, you
can use $+{name} to refer to the group. For example, this captures "She" or
"He" in the named group gender and the said text in the named group text:

perl -nle 'if (/(?<gender>She|He) said: (?<text>.*)/) {
 print "$+{gender}: $+{text}"
}'

A.6 variable $,
The $, variable is the output field separator for print when printing mul-
tiple values. It’s undefined by default, which means that all items printed
are concatenated together. Indeed, if you do this:

perl -le 'print 1, 2, 3'

you get 123 printed out. If you set $, to a colon, however:

perl -le '$,=":"; print 1, 2, 3'

you get 1:2:3.
Now, suppose you want to print an array of values. If you do this:

perl -le '@data=(1,2,3); print @data'

the output is 123. But if you quote the variable, the values are space
separated:

perl -le '@data=(1,2,3); print "@data"'

So the output is 1 2 3 because the array is interpolated in a double-
quoted string.

A.7 variable $"
This brings us to the $" variable: a single white space (by default) that’s
inserted between every array value when it’s interpolated. When you write
things like print "@data", the @data array gets interpolated, and the value of
$" is inserted between every array element. For example, this prints 1 2 3:

perl -le '@data=(1,2,3); print "@data"'

Perl’s Special Variables 103

But if you change $" to, say, a dash -, the output becomes 1-2-3:

perl -le '@data=(1,2,3); $" = "-"; print "@data"'

Recall the @{[...]} trick here. If you print "@{[...]}", you can exe-
cute code placed between the square brackets. For examples and more
details, see section A.1’s discussion of the $_ variable on page 95 and
one-liner 4.4 on page 32.

A.8 variable @f
The @F variable is created in your Perl program when you use the -a
argument, which stands for auto-split fields. When you use -a, the input
is split on whitespace characters and the resulting fields are put in @F.
For example, if the input line is foo bar baz, then @F is an array ("foo",
"bar", "baz").

This technique allows you to operate on individual fields. For instance,
you can access $F[2] to print the third field as follows (remembering that
arrays start from index 0):

perl -ane 'print $F[2]'

You can also perform various calculations, like multiplying the fifth
field by 2:

perl -ane '$F[4] *= 2; print "@F"'

Here, the fifth field $F[4] is multiplied by 2, and print "@F" prints all
the fields, separated by a space.

You can also use the -a argument with the -F argument, which speci-
fies the character to split on. For example, to process the colon-separated
entries in /etc/passwd entries, you write

perl -a -F: -ne 'print $F[0]' /etc/passwd

which prints the usernames from /etc/passwd.

A.9 variable @Argv
The @ARGV variable contains the arguments that you pass to your Perl pro-
gram. For example, this prints foo bar baz:

perl -le 'print "@ARGV"' foo bar baz

104 Appendix A

When you use -n or -p flags, the arguments that you pass to your
Perl program are opened one by one as files and removed from @ARGV.
To access the filenames passed to your program, save them in a new
 variable in the BEGIN block:

perl -nle 'BEGIN { @A = @ARGV }; ...' file1 file2

Now you can use @A in your program, which contains ("file1", "file2").
If you didn’t do this and you used @ARGV, it would contain ("file2") at first,
but when file1 was processed, it would be empty (). Be careful here!

A similar-looking variable, $ARGV, contains the filename of the file cur-
rently being read, which is "-" if the program is currently reading from
the standard input.

A.10 variable %env
The %ENV hash contains environment variables from your shell. This vari-
able comes in handy when you wish to predefine some values in your
script and then use these values in your Perl program or one-liner.

Say you want to use the system function to execute a program that’s
not in the path. You could modify the $ENV{PATH} variable and append the
needed path:

perl -nle '
 BEGIN { $ENV{PATH} .= ":/usr/local/yourprog/bin" }
 ...
 system("yourprog ...");
'

This one-liner prints all environment variables from Perl:

perl -le 'print "$_: $ENV{$_}" for keys %ENV'

It loops over the keys (environment variable names) of the %ENV hash,
puts each key into the $_ variable, and then prints the name followed by
$ENV{$_}, which is the value of the environment variable.

B
u s i n G P e r l O n e - l i n e r s

O n w i n D O w s

In this appendix, I’ll show you how to run Perl on
Windows, install a bash port on Windows, and use
Perl one-liners in three different ways: from the
Windows bash port, the Windows command prompt
(cmd.exe), and PowerShell.

b.1 Perl on windows
Before you can run Perl on Windows, you need to install Perl for Windows.
My favorite Windows Perl port is Strawberry Perl (http://strawberryperl
.com/), a Perl environment with everything you need to run and develop
Perl applications on Windows. Strawberry Perl is designed to function as
much as possible like the Perl environment on UNIX systems. It includes
Perl binaries, the gcc compiler and related build tools, and many external
libraries.

106 Appendix B

To install Strawberry Perl, download and run the installer, click
through a bunch of menus a few times, and you’re done. My choice for
the installation directory is c:\strawberryperl. (Installing any UNIX soft-
ware for Windows in a directory with no spaces in it is always a good
idea.) Once the installation is done, the installer should put the instal-
lation directory in your path environment variable so you can run Perl
from the command line right away.

Unfortunately, the Windows command line is really basic compared
to the command line on UNIX systems. A UNIX system runs a real shell
with well-defined command-line parsing rules, but Windows doesn’t really
have anything like that. The Windows command line has weird rules about
how it treats certain symbols, the quoting rules aren’t well defined, and the
escaping rules are strange, all of which makes it difficult to run Perl one-
liners. Therefore, the preferred way to run one-liners on Windows is to
use a UNIX shell (such as bash) for Windows, as you’ll learn in the next
section.

b.2 bash on windows
Getting a bash shell to run on Windows is simple. I recommend win-bash
(http://win-bash.sourceforge.net/), a stand-alone bash port for Windows that
doesn’t need a special environment or additional DLLs. The download
is a single zip file that contains the bash shell (bash.exe) and a bunch of
UNIX utilities (such as awk, cat, cp, diff, find, grep, sed, vi, wc, and about
100 others).

To install bash and all the utilities, simply unzip the file and you’re
done. My choice for the installation directory is c:\winbash, again with
no spaces in the directory. Run bash.exe from c:\winbash to start the bash
shell.

If you start bash.exe after you install Strawberry Perl, Perl should be
available for use right away because the Strawberry Perl installer should
have updated the path with the installation directory. To confirm,
run perl --version. It should output the version of the installed Perl. If
you get an error saying that perl was not found, manually append the
C:\strawberryperl\perl\bin directory to the PATH environment variable by
entering this in the command line:

PATH=$PATH:C:\\strawberryperl\\perl\\bin

Bash uses the PATH variable to find executables to run. By appending
Strawberry Perl’s binary directory to the PATH variable, you tell bash where
to look for the perl executable.

­sing Perl One-Liners on Windows 107

b.3 Perl One-liners in windows bash
There are some important differences between bash on Windows and
UNIX. The first difference pertains to file paths. Win-bash supports
both UNIX-style and Windows-style paths.

Say you install win-bash in C:\winbash. When you start bash.exe, it
should map the root directory / to the current C: drive. To change the
root directory to another drive, such as D:, enter cd d: in the bash shell.
To change back to C:, enter cd c: in the shell. Now you can access a file
such as C:\work\report.txt via /work/report.txt, c:/work/report.txt, or c:\\work\\
report.txt.

The best thing about using win-bash is that all of the one-liners in
this book should work because you’re running a real shell just like in a
UNIX environment! For example, to number the lines in the C:\work\
report.txt file (one-liner 3.1 on page 17), you can run:

perl -pe '$_ = "$. $_"' C:/work/report.txt

Or you can refer to the file as if you were in UNIX:

perl -pe '$_ = "$. $_"' /work/report.txt

Or you can use Windows-style paths:

perl -pe '$_ = "$. $_"' C:\\work\\report.txt

To avoid using double backslashes, you can single-quote the file path:

perl -pe '$_ = "$. $_"' 'C:\work\report.txt'

If the filename has spaces in it, then you always have to quote it.
For example, to work with C:\Documents and Settings\Peter\My Documents\
report.txt, quote the entire path when passing it to a one-liner:

perl -pe '$_ = "$. $_"' 'C:\Documents and Settings\Peter\My Documents\report.txt'

Or use the UNIX-style path to the file:

perl -pe '$_ = "$. $_"' '/Documents and Settings/Peter/My Documents/report.txt'

Quoting the filename is necessary here because without it Perl thinks
you’re passing it a bunch of files rather than a single file with spaces in it.

108 Appendix B

b.4 Perl One-liners in the windows command Prompt
If, for some reason, you can’t use win-bash as recommended, you can run
one-liners through the Windows command prompt (cmd.exe). You will
need to change the one-liners in this book a bit if you’re running them in
the Windows command prompt because of the way Windows parses and
treats the command-line arguments. Here’s what to do.

First, verify that Perl is available from the command prompt. Start
cmd.exe and enter perl --version in the command line. If you do this after
having installed Strawberry Perl, the command should output the Perl
version, and you’re good to go. Otherwise, you’ll have to update the PATH
environment variable with the path to Strawberry Perl’s binary directory:

set PATH=%PATH%;C:\strawberryperl\perl\bin

As in UNIX, the PATH variable tells the command prompt where to
look for executables.

Converting One-Liners in the Windows Command Prompt
Now let’s see how to convert one-liners for the command prompt, begin-
ning with one-liner 2.1 (page 7), which double-spaces a file. In UNIX,
you simply run:

perl -pe '$\ = "\n"' file

If you’re running this one-liner in the Windows command prompt,
however, you have to make sure that it’s always wrapped in double quotes
from the outside and that you’ve escaped any double quotes and special
characters inside it. With those changes, the one-liner looks like this on
Windows:

perl -pe "$\ = \"\n\"" file

This one-liner is getting ugly quickly, but you can employ a couple of
Perl tricks to make it look a little nicer. First, replace double quotes inside
the one-liner with the qq/.../ operator, which double-quotes anything
between the slashes. Writing qq/text/ in Perl is the same as writing "text".
Now you rewrite this one-liner like this:

perl -pe "$\ = qq/\n/" file

­sing Perl One-Liners on Windows 109

That’s a little nicer. You can also change the character that the
qq operator uses to separate its content. For example, the syntax qq|...|
double-quotes anything between the pipes:

perl -pe "$\ = qq|\n|" file

You could even use matching parentheses or curly brackets, like this:

perl -pe "$\ = qq(\n)" file

or this:

perl -pe "$\ = qq{\n}" file

Let’s see how to convert several more one-liners to Windows. How
about converting an IP address to an integer (one-liner 4.27 on page 45)?
In UNIX you run:

perl -MSocket -le 'print unpack("N", inet_aton("127.0.0.1"))'

On Windows, you need to change the quotes outside the one-liner to
double quotes and escape the double quotes inside the one-liner:

perl -MSocket -le "print unpack(\"N\", inet_aton(\"127.0.0.1\"))"

Or you can use the qq|...| operator to avoid escaping double quotes
inside the one-liner:

perl -MSocket -le "print unpack(qq|N|, inet_aton(qq|127.0.0.1|))"

For things that don’t need interpolation, such as the format string
N and the IP address 127.0.0.1, you can also use single quotes instead of
double quotes:

perl -MSocket -le "print unpack('N', inet_aton('127.0.0.1'))"

Another trick is to use the q/.../ operator, which single-quotes any
text between the slashes:

perl -MSocket -le "print unpack(q/N/, inet_aton(q/127.0.0.1/))"

Writing q/N/ and q/127.0.0.1/ is the same as writing 'N' and
'127.0.0.1'.

110 Appendix B

Let’s convert another one-liner from UNIX to Windows. I’ve expanded
it to multiple lines for clarity:

perl -le '
 $ip="127.0.0.1";
 $ip =~ s/(\d+)\.?/sprintf("%02x", $1)/ge;
 print hex($ip)
'

Unfortunately, to convert this to Windows, you have to join all of the
lines together (making the result less readable), and apply the new quot-
ing rules:

perl -le "$ip=\"127.0.0.1\"; $ip =~ s/(\d+)\.?/sprintf(\"%02x\", $1)/ge;
print hex($ip)"

You can increase the readability a little by using the qq operator:

perl -le "$ip=qq|127.0.0.1|; $ip =~ s/(\d+)\.?/sprintf(qq|%02x|, $1)/ge;
print hex($ip)"

or by using single quotes:

perl -le "$ip='127.0.0.1'; $ip =~ s/(\d+)\.?/sprintf('%02x', $1)/ge;
print hex($ip)"

Symbol Challenges
You might also run into issues with the caret (^) symbol in one-liners
because the Windows command prompt uses the caret as the escape sym-
bol. To tell Windows to treat the caret symbol literally, you usually have to
replace each caret with two carets: ^^.

Let’s look at several examples that simply try to print the ^ character.
Here’s my first attempt:

perl -e "print \"^\""

No output! The ^ symbol disappeared. Let’s try ^ twice:

perl -e "print \"^^\""

This worked! It printed the ^ symbol. Now let’s try using single quotes:

perl -e "print '^'"

­sing Perl One-Liners on Windows 111

This also worked and printed ^, and I didn’t need to enter ^ twice.
Using qq/^/ also works:

perl -e "print qq/^/"

As you can see, running one-liners on Windows can be tricky because
there are no uniform parsing rules for the command-line arguments. You
may run into similar issues when writing one-liners with the %, &, <, >, and |
symbols. If so, try preceding them with the ^ escape character so that %
becomes ^%, & becomes ^&, < becomes ^<, > becomes ^>, and | becomes ^|.
Or try wrapping them in the qq operator, as I discussed previously. (Better
yet, install win-bash and use the one-liners through it to avoid all these
issues.)

Windows File Paths
When using the Windows command prompt, you can pass filenames
to one-liners in several different ways. For example, to access the file
C:\work\wrong-spacing.txt, you can enter:

perl -pe "$\ = qq{\n}" C:\work\wrong-spacing.txt

Or you can reverse the slashes:

perl -pe "$\ = qq{\n}" C:/work/wrong-spacing.txt

If the filename contains spaces, you have to quote the path:

perl -pe "$\ = qq{\n}" "C:\Documents and Settings\wrong-spacing.txt"

For more Windows Perl usage hints, see the Win32 Perl documenta-
tion at http://perldoc.perl.org/perlwin32.html.

b.5 Perl One-liners in Powershell
Running one-liners in PowerShell is a bit different than running them in
the command prompt (cmd.exe). The main difference is that PowerShell
is a modern shell implementation with different parsing rules than the
command prompt. In this section, I’ll show you how to run Perl one-liners
in PowerShell.

First, you need to verify that Perl works in the PowerShell environ-
ment. Run perl --version in the PowerShell. If the command outputs
the Perl version, then Perl is available, and you should be able to run

112 Appendix B

the one-liners. Otherwise, update the Path environment variable and
append Strawberry Perl’s binary directory to it by running the following
command in PowerShell:

$env:Path += ";C:\strawberryperl\perl\bin"

The Path variable tells PowerShell where to look for executables, so
when you run perl, it searches all the directories (separated by the ; char-
acter) for perl.exe.

Converting One-Liners in PowerShell
Consider one-liner 2.1 (page 7), which double-spaces a file. In UNIX,
the one-liner looks like this:

perl -pe '$\ = "\n"' file

To make this one-liner work in PowerShell, you have to change three
things:

•	 Escape the $ symbol, which PowerShell uses for variables, by adding
the ` character (backtick) before it: `$.

•	 As with the cmd.exe command prompt, make sure double quotes are
used on the outside of the one-liner.

•	 Use the qq/.../ operator for the double quotes inside the one-liner,
as explained in “Converting One-Liners in the Windows Command
Prompt” on page 108. You can’t just escape the double quotes with
a backslash as with the command prompt, however; you must use
the qq/.../ operator.

When you put it all together, the PowerShell version of this one-liner
becomes:

perl -pe "`$\ = qq/\n/" file

To specify full paths to files, use Windows-style paths. For example, to
reference a file at C:\work\wrong-spacing.txt, enter that path directly after
the one-liner:

perl -pe "`$\ = qq/\n/" C:\work\wrong-spacing.txt

If the filename or file path contains spaces, enter it like this, with
double quotes around it:

perl -pe "`$\ = qq/\n/" "C:\Documents and Settings\wrong-spacing.txt"

­sing Perl One-Liners on Windows 113

Now for another version of the same one-liner. In UNIX the one-liner
looks like this:

perl -pe '$_ .= "\n" unless /^$/' file

But in PowerShell you have to change the outer single quotes to double
quotes, escape the $ symbol, and change double quotes to qq/.../ inside
the one-liner:

perl -pe "`$_ .= qq/\n/ unless /^`$/" file

Now let’s look at the one-liner that numbers the non-empty lines in a
file (one-liner 3.2 on page 18):

perl -pe '$_ = ++$x." $_" if /./'

When converted to PowerShell, the one-liner looks like this:

perl -pe "`$_ = ++`$a.qq/ `$_/ if /./"

How about the artistic one-liner that checks if a number is prime
(one-liner 4.1 on page 29)?

perl -lne '(1x$_) !~ /^1?$|^(11+?)\1+$/ && print "$_ is prime"'

In PowerShell, the one-liner looks like this:

perl -lne "(1x`$_) !~ /^1?`$|^(11+?)\1+`$/ && print qq/`$_ is prime/"

Remember the one-liner on page 46 that converts IPs to integers?
Here’s how it looks in UNIX:

perl -le '
 $ip="127.0.0.1";
 $ip =~ s/(\d+)\.?/sprintf("%02x", $1)/ge;
 print hex($ip)
'

And here’s the same one-liner for PowerShell:

perl -le "
 `$ip=qq|127.0.0.1|;
 `$ip =~ s/(\d+)\.?/sprintf(qq|%02x|, `$1)/ge;
 print hex(`$ip)
"

114 Appendix B

One-Liners in PowerShell 3.0+
If you’re running PowerShell version 3.0 or later, you can use the
--% escape sequence to prevent PowerShell from doing any additional
parsing.

To find out which PowerShell version you’re running, enter
$PSVersionTable.PSVersion in the shell. It should output a table like this:

PS C:\Users\Administrator> $PSVersionTable.PSVersion
Major Minor Build Revision
----- ----- ----- --------
3 0 -1 -1

This table shows that you’re running PowerShell version 3.0, which
has the --% escape sequence. (Older versions of PowerShell don’t have this
sequence, in which case you have to use the tricks I described earlier.)

When using the --% escape sequence, you don’t have to escape the
$ symbol. It also lets you escape the double quotes with backslashes inside
the one-liner. For example, here’s how the one-liner that double-spaces
lines looks with the --% escape sequence:

perl --% -pe "$\ = \"\n\""

You can also use the qq/.../ operator to avoid escaping double quotes
inside the one-liner:

perl --% -pe "$\ = qq/\n/"

Here’s how you can write the other version of the same one-liner in
PowerShell 3.0 and later:

perl --% -pe "$_ .= \"\n\" unless /^$/" file

And this is how the one-liner that numbers the lines looks:

perl --% -pe "$_ = ++$a.qq/ $_/ if /./"

Here’s the one-liner that uses a regular expression to see if a number
is prime:

perl --% -lne "(1x$_) !~ /^1?$|^(11+?)\1+$/ && print \"$_ is prime\""

­sing Perl One-Liners on Windows 115

And here’s the one-liner that converts IPs to integers:

perl --% -le "
 $ip=\"127.0.0.1\";
 $ip =~ s/(\d+)\.?/sprintf(\"%02x\", $1)/ge;
 print hex($ip)
"

As you can see, running one-liners in PowerShell is quite tricky and
requires several workarounds. Again, I recommend that you install win-
bash as described in “Bash on Windows” on page 106 to avoid having to
implement these workarounds.

C
P e r l 1 l i n e .T x T

As I was writing this book, I compiled all the one-
liners in a file called perl1line.txt. This appendix is that
file. It comes in very handy when you need to quickly
look up a one-liner. You can just open perl1line.txt in
a text editor and search for the action you want to
perform. The latest version of this file can always be
found at http://www.catonmat.net/download/perl1line.txt.

c.1 spacing

Double-space a file

perl -pe '$\ = "\n"'
perl -pe 'BEGIN { $\ = "\n" }'
perl -pe '$_ .= "\n"'

118 Appendix C

perl -pe 's/$/\n/'
perl -nE 'say'

Double-space a file, excluding the blank lines

perl -pe '$_ .= "\n" unless /^$/'
perl -pe '$_ .= "\n" if /\S/'

Triple-space a file

perl -pe '$\ = "\n\n"'
perl -pe '$_ .= "\n\n"'
perl -pe 's/$/\n\n/'

N-space a file

perl -pe '$_ .= "\n"x7'

Add a blank line before every line

perl -pe 's/^/\n/'

Remove all blank lines

perl -ne 'print unless /^$/'
perl -lne 'print if length'
perl -ne 'print if /\S/'

Remove all consecutive blank lines, leaving only one

perl -00 -pe ''
perl -00pe0

Compress/expand all blank lines into N consecutive lines

perl -00 -pe '$_ .= "\n"x2'

perl1line.txt 119

Double-space between all words

perl -pe 's/ / /g'

Remove all spacing between words

perl -pe 's/ +//g'
perl -pe 's/\s+//g'

Change all spacing between words to one space

perl -pe 's/ +/ /g'

Insert a space between all characters

perl -lpe 's// /g'

c.2 numbering

Number all lines in a file

perl -pe '$_ = "$. $_"'
perl -ne 'print "$. $_"'

Number only non-empty lines in a file

perl -pe '$_ = ++$x." $_" if /./'
perl -pe '$_ = ++$x." $_" if /\S/'

Number and print only non-empty lines in a file (drop empty lines)

perl -ne 'print ++$x." $_" if /./'

Number all lines but print line numbers only for non-empty lines

perl -pe '$_ = "$. $_" if /./'

120 Appendix C

Number only lines that match a pattern; print others unmodified

perl -pe '$_ = ++$x." $_" if /regex/'

Number and print only lines that match a pattern

perl -ne 'print ++$x." $_" if /regex/'

Number all lines but print line numbers only for lines that match a pattern

perl -pe '$_ = "$. $_" if /regex/'

Number all lines in a file using a custom format

perl -ne 'printf "%-5d %s", $., $_'

Print the total number of lines in a file (emulate wc -l)

perl -lne 'END { print $. }'
perl -le 'print $n = () = <>'
perl -le 'print $n = (() = <>)'
perl -le 'print scalar(() = <>)'
perl -le 'print scalar(@foo = <>)'
perl -ne '}{print $.'

Print the number of non-empty lines in a file

perl -le 'print scalar(grep { /./ } <>)'
perl -le 'print ~~grep{/./}<>'
perl -le 'print~~grep/./,<>'
perl -lE 'say~~grep/./,<>'

Print the number of empty lines in a file

perl -lne '$x++ if /^$/; END { print $x+0 }'
perl -lne '$x++ if /^$/; END { print int $x }'
perl -le 'print scalar(grep { /^$/ } <>)'
perl -le 'print ~~grep{ /^$/ } <>'

perl1line.txt 121

Print the number of lines in a file that match a pattern (emulate grep -c)

perl -lne '$x++ if /regex/; END { print $x+0 }'

Number words across all lines

perl -pe 's/(\w+)/++$i.".$1"/ge'

Number words on each individual line

perl -pe '$i=0; s/(\w+)/++$i.".$1"/ge'

Replace all words with their numeric positions

perl -pe 's/(\w+)/++$i/ge'

c.3 calculations

Check if a number is a prime

perl -lne '(1x$_) !~ /^1?$|^(11+?)\1+$/ && print "$_ is prime"'

Print the sum of all fields on each line

perl -MList::Util=sum -alne 'print sum @F'
perl -MList::Util=sum -F: -alne 'print sum @F'

Print the sum of all fields on all lines

perl -MList::Util=sum -alne 'push @S,@F; END { print sum @S }'
perl -MList::Util=sum -alne '$s += sum @F; END { print $s }'

Shuffle all fields on each line

perl -MList::Util=shuffle -alne 'print "@{[shuffle @F]}"'
perl -MList::Util=shuffle -alne 'print join " ", shuffle @F'

122 Appendix C

Find the numerically smallest element (minimum element) on each line

perl -MList::Util=min -alne 'print min @F'

Find the numerically smallest element (minimum element) over all lines

perl -MList::Util=min -alne '@M = (@M, @F); END { print min @M }'

perl -MList::Util=min -alne '
 $min = min @F;
 $rmin = $min unless defined $rmin && $min > $rmin;
 END { print $rmin }
'

perl -MList::Util=min -alne '$min = min($min // (), @F); END { print $min }'

Find the numerically largest element (maximum element) on each line

perl -MList::Util=max -alne 'print max @F'

Find the numerically largest element (maximum element) over all lines

perl -MList::Util=max -alne '@M = (@M, @F); END { print max @M }'

perl -MList::Util=max -alne '
 $max = max @F;
 $rmax = $max unless defined $rmax && $max < $rmax;
 END { print $rmax }
'

perl -MList::Util=max -alne '$max = max($max // (), @F); END { print $max }'

Replace each field with its absolute value

perl -alne 'print "@{[map { abs } @F]}"'

perl1line.txt 123

Print the total number of fields on each line

perl -alne 'print scalar @F'

Print the total number of fields on each line, followed by the line

perl -alne 'print scalar @F, " $_"'

Print the total number of fields on all lines

perl -alne '$t += @F; END { print $t }'

Print the total number of fields that match a pattern

perl -alne 'map { /regex/ && $t++ } @F; END { print $t || 0 }'
perl -alne '$t += /regex/ for @F; END { print $t }'
perl -alne '$t += grep /regex/, @F; END { print $t }'

Print the total number of lines that match a pattern

perl -lne '/regex/ && $t++; END { print $t || 0 }'

Print the number π

perl -Mbignum=bpi -le 'print bpi(21)'
perl -Mbignum=PI -le 'print PI'

Print the number e

perl -Mbignum=bexp -le 'print bexp(1,21)'
perl -Mbignum=e -le 'print e'

Print UNIX time (seconds since January 1, 1970, 00:00:00 UTC)

perl -le 'print time'

124 Appendix C

Print Greenwich Mean Time and local computer time

perl -le 'print scalar gmtime'
perl -le 'print scalar localtime'

Print yesterday’s date

perl -MPOSIX -le '
 @now = localtime;
 $now[3] -= 1;
 print scalar localtime mktime @now
'

Print the date 14 months, 9 days, and 7 seconds ago

perl -MPOSIX -le '
 @now = localtime;
 $now[0] -= 7;
 $now[3] -= 9;
 $now[4] -= 14;
 print scalar localtime mktime @now
'

Calculate the factorial

perl -MMath::BigInt -le 'print Math::BigInt->new(5)->bfac()'
perl -le '$f = 1; $f *= $_ for 1..5; print $f'

Calculate the greatest common divisor

perl -MMath::BigInt=bgcd -le 'print bgcd(@list_of_numbers)'
perl -MMath::BigInt=bgcd -le 'print bgcd(20,60,30)'
perl -MMath::BigInt=bgcd -anle 'print bgcd(@F)'

perl -le '
 $n = 20; $m = 35;
 ($m,$n) = ($n,$m%$n) while $n;
 print $m
'

perl1line.txt 125

Calculate the least common multiple

perl -MMath::BigInt=blcm -le 'print blcm(35,20,8)'
perl -MMath::BigInt=blcm -anle 'print blcm(@F)'

perl -le '
 $a = $n = 20;
 $b = $m = 35;
 ($m,$n) = ($n,$m%$n) while $n;
 print $a*$b/$m
'

Generate 10 random numbers between 5 and 15 (excluding 15)

perl -le 'print join ",", map { int(rand(15-5))+5 } 1..10'

perl -le '
 $n=10;
 $min=5;
 $max=15;
 $, = " ";
 print map { int(rand($max-$min))+$min } 1..$n;
'

Generate all permutations of a list

perl -MAlgorithm::Permute -le '
 $l = [1,2,3,4,5];
 $p = Algorithm::Permute->new($l);
 print "@r" while @r = $p->next
'

perl -MAlgorithm::Permute -le '
 @l = (1,2,3,4,5);
 Algorithm::Permute::permute { print "@l" } @l
'

126 Appendix C

Generate the powerset

perl -MList::PowerSet=powerset -le '
 @l = (1,2,3,4,5);
 print "@$_" for @{powerset(@l)}
'

Convert an IP address to an unsigned integer

perl -le '
 $i=3;
 $u += ($_<<8*$i--) for "127.0.0.1" =~ /(\d+)/g;
 print $u
'

perl -le '
 $ip="127.0.0.1";
 $ip =~ s/(\d+)\.?/sprintf("%02x", $1)/ge;
 print hex($ip)
'

perl -le 'print unpack("N", 127.0.0.1)'
perl -MSocket -le 'print unpack("N", inet_aton("127.0.0.1"))'

Convert an unsigned integer to an IP address

perl -MSocket -le 'print inet_ntoa(pack("N", 2130706433))'

perl -le '
 $ip = 2130706433;
 print join ".", map { (($ip>>8*($_))&0xFF) } reverse 0..3
'

perl -le '
 $ip = 2130706433;
 $, = ".";
 print map { (($ip>>8*($_))&0xFF) } reverse 0..3
'

perl1line.txt 127

perl -le '
 $ip = 2130706433;
 $, = ".";
 print map { (($ip>>8*($_))&0xFF) } 3,2,1,0
'

c.4 working with Arrays and strings

Generate and print the alphabet

perl -le 'print a..z'
perl -le 'print ("a".."z")'
perl -le '$, = ","; print ("a".."z")'
perl -le '$alphabet = join ",", ("a".."z"); print $alphabet'

Generate and print all the strings from “a” to “zz”

perl -le 'print join ",", ("a".."zz")'
perl -le 'print join ",", "aa".."zz"'

Create a hex lookup table

@hex = (0..9, "a".."f")

perl -le '
 $num = 255;
 @hex = (0..9, "a".."f");
 while ($num) {
 $s = $hex[($num % 16)].$s;
 $num = int $num/16;
 }
 print $s
'

perl -le 'printf("%x", 255)'
perl -le '$num = "ff"; print hex $num'

Generate a random eight-character password

perl -le 'print map { ("a".."z")[rand 26] } 1..8'
perl -le 'print map { ("a".."z", 0..9)[rand 36] } 1..8'

128 Appendix C

Create a string of specific length

perl -le 'print "a"x50'
perl -e 'print "a"x1024'
perl -le '@list = (1,2)x20; print "@list"'

Create an array from a string

@months = split ' ', "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"
@months = qw/Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec/

Create a string from the command-line arguments

perl -le 'print "(", (join ",", @ARGV), ")"' val1 val2 val3

perl -le '
 print "INSERT INTO table VALUES (", (join ",", @ARGV), ")"
' val1 val2 val3

Find the numeric values for characters in a string

perl -le 'print join ", ", map { ord } split //, "hello world"'
perl -le 'print join ", ", unpack("C*", "hello world")'

perl -le '
 print join ", ", map { sprintf "0x%x", ord $_ } split //, "hello world"
'

perl -le '
 print join ", ", map { sprintf "%o", ord $_ } split //, "hello world"
'

perl -le '
 print join ", ", map { sprintf "%#o", ord $_ } split //, "hello world"
'

perl1line.txt 129

Convert a list of numeric ASCII values into a string

perl -le '
 @ascii = (99, 111, 100, 105, 110, 103);
 print pack("C*", @ascii)
'

perl -le '
 @ascii = (99, 111, 100, 105, 110, 103);
 $str = join "", map chr, @ascii;
 print $str
'

perl -le 'print map chr, 99, 111, 100, 105, 110, 103'
perl -le 'print map chr, @ARGV' 99 111 100 105 110 103

Generate an array with odd numbers from 1 to 100

perl -le '@odd = grep {$_ % 2 == 1} 1..100; print "@odd"'
perl -le '@odd = grep { $_ & 1 } 1..100; print "@odd"'

Generate an array with even numbers from 1 to 100

perl -le '@even = grep {$_ % 2 == 0} 1..100; print "@even"'

Find the length of a string

perl -le 'print length "one-liners are great"'

Find the number of elements in an array

perl -le '@array = ("a".."z"); print scalar @array'
perl -le '@array = ("a".."z"); print $#array + 1'
perl -le 'print scalar @ARGV' *.txt
perl -le 'print scalar (@ARGV=<*.txt>)'

130 Appendix C

c.5 Text conversion and substitution

ROT13 a string

perl -le '$str = "bananas"; $str =~ y/A-Za-z/N-ZA-Mn-za-m/; print $str'
perl -lpe 'y/A-Za-z/N-ZA-Mn-za-m/' file
perl -pi.bak -e 'y/A-Za-z/N-ZA-Mn-za-m/' file

Base64-encode a string

perl -MMIME::Base64 -e 'print encode_base64("string")'
perl -MMIME::Base64 -0777 -ne 'print encode_base64($_)' file

Base64-decode a string

perl -MMIME::Base64 -le 'print decode_base64("base64string")'
perl -MMIME::Base64 -0777 -ne 'print decode_base64($_)' file

URL-escape a string

perl -MURI::Escape -le 'print uri_escape("http://example.com")'

URL-unescape a string

perl -MURI::Escape -le 'print uri_unescape("http%3A%2F%2Fexample.com")'

HTML-encode a string

perl -MHTML::Entities -le 'print encode_entities("<html>")'

HTML-decode a string

perl -MHTML::Entities -le 'print decode_entities("<html>")'

Convert all text to uppercase

perl -nle 'print uc'
perl -ple '$_ = uc'
perl -nle 'print "\U$_"'

perl1line.txt 131

Convert all text to lowercase

perl -nle 'print lc'
perl -nle 'print "\L$_"'

Uppercase only the first letter of each line

perl -nle 'print ucfirst lc'
perl -nle 'print "\u\L$_"'

Invert the letter case

perl -ple 'y/A-Za-z/a-zA-Z/'

Title-case each line

perl -ple 's/(\w+)/\u$1/g'

Strip leading whitespace (spaces, tabs) from the beginning of each line

perl -ple 's/^[\t]+//'
perl -ple 's/^\s+//'

Strip trailing whitespace (spaces, tabs) from the end of each line

perl -ple 's/[\t]+$//'
perl -ple 's/\s+$//'

Strip whitespace (spaces, tabs) from the beginning and end of each line

perl -ple 's/^[\t]+|[\t]+$//g'
perl -ple 's/^\s+|\s+$//g'

Convert UNIX newlines to DOS/Windows newlines

perl -pe 's|\012|\015\012|'

132 Appendix C

Convert DOS/Windows newlines to UNIX newlines

perl -pe 's|\015\012|\012|'

Convert UNIX newlines to Mac newlines

perl -pe 's|\012|\015|'

Substitute (find and replace) “foo” with “bar” on each line

perl -pe 's/foo/bar/'
perl -pe 's/foo/bar/g'

Substitute (find and replace) “foo” with “bar” on lines that match “baz”

perl -pe '/baz/ && s/foo/bar/'
perl -pe 's/foo/bar/ if /baz/'

Print paragraphs in reverse order

perl -00 -e 'print reverse <>' file

Print all lines in reverse order

perl -lne 'print scalar reverse $_'
perl -lne 'print scalar reverse'
perl -lpe '$_ = reverse $_'
perl -lpe '$_ = reverse'

Print columns in reverse order

perl -alne 'print "@{[reverse @F]}"'
perl -F: -alne 'print "@{[reverse @F]}"'
perl -F: -alne '$" = ":"; print "@{[reverse @F]}"'

perl1line.txt 133

c.6 selectively Printing and deleting lines

Print the first line of a file (emulate head -1)

perl -ne 'print; exit' file
perl -i -ne 'print; exit' file
perl -i.bak -ne 'print; exit' file

Print the first 10 lines of a file (emulate head -10)

perl -ne 'print if $. <= 10' file
perl -ne '$. <= 10 && print' file
perl -ne 'print if 1..10' file
perl -ne 'print; exit if $. == 10' file

Print the last line of a file (emulate tail -1)

perl -ne '$last = $_; END { print $last }' file
perl -ne 'print if eof' file

Print the last 10 lines of a file (emulate tail -10)

perl -ne 'push @a, $_; @a = @a[@a-10..$#a] if @a>10; END { print @a }' file
perl -ne 'push @a, $_; shift @a if @a>10; END { print @a }' file

Print only lines that match a regular expression

perl -ne '/regex/ && print'
perl -ne 'print if /regex/'

Print only lines that do not match a regular expression

perl -ne '!/regex/ && print'
perl -ne 'print if !/regex/'
perl -ne 'print unless /regex/'
perl -ne '/regex/ || print'

Print every line preceding a line that matches a regular expression

perl -ne '/regex/ && $last && print $last; $last = $_'

134 Appendix C

Print every line following a line that matches a regular expression

perl -ne 'if ($p) { print; $p = 0 } $p++ if /regex/'
perl -ne '$p && print && ($p = 0); $p++ if /regex/'
perl -ne '$p && print; $p = /regex/'

Print lines that match regular expressions AAA and BBB in any order

perl -ne '/AAA/ && /BBB/ && print'

Print lines that don’t match regular expressions AAA and BBB

perl -ne '!/AAA/ && !/BBB/ && print'

Print lines that match regular expression AAA followed by BBB followed by CCC

perl -ne '/AAA.*BBB.*CCC/ && print'

Print lines that are at least 80 characters long

perl -ne 'print if length >= 80'
perl -lne 'print if length >= 80'

Print lines that are fewer than 80 characters long

perl -ne 'print if length() < 80'

Print only line 13

perl -ne '$. == 13 && print && exit'

Print all lines except line 27

perl -ne '$. != 27 && print'
perl -ne 'print if $. != 27'
perl -ne 'print unless $. == 27'

perl1line.txt 135

Print only lines 13, 19, and 67

perl -ne 'print if $. == 13 || $. == 19 || $. == 67'

perl -ne '
 @lines = (13, 19, 88, 290, 999, 1400, 2000);
 print if grep { $_ == $. } @lines
'

Print all lines from 17 to 30

perl -ne 'print if $. >= 17 && $. <= 30'
perl -ne 'print if 17..30'

Print all lines between two regular expressions (including the lines that match)

perl -ne 'print if /regex1/../regex2/'

Print the longest line

perl -ne '
 $l = $_ if length($_) > length($l);
 END { print $l }
'

Print the shortest line

perl -ne '
 $s = $_ if $. == 1;
 $s = $_ if length($_) < length($s);
 END { print $s }
'

Print all lines containing digits

perl -ne 'print if /\d/'

136 Appendix C

Print all lines containing only digits

perl -ne 'print if /^\d+$/'
perl -lne 'print unless /\D/'

Print all lines containing only alphabetic characters

perl -ne 'print if /^[[:alpha:]]+$/

Print every second line

perl -ne 'print if $. % 2'

Print every second line, beginning with the second line

perl -ne 'print if $. % 2 == 0'
perl -ne 'print unless $. % 2'

Print all repeated lines only once

perl -ne 'print if ++$a{$_} == 2'

Print all unique lines

perl -ne 'print unless $a{$_}++'

c.7 useful regular expressions

Match something that looks like an IP address

/^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$/
/^(\d{1,3}\.){3}\d{1,3}$/

perl -ne 'print if /^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$/'

perl1line.txt 137

Test whether a number is in the range 0 to 255

/^([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$/

perl -le '
 map { $n++ if /^([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$/ } 0..255;
 END { print $n }
'

perl -le '
 map { $n++ if /^([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$/ } 0..1000;
 END { print $n }
'

Match an IP address

my $ip_part = qr/[0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5]/;

if ($ip =~ /^$ip_part\.$ip_part\.$ip_part\.ip_part/) {
 print "valid ip\n";
}

if ($ip =~ /^($ip_part\.){3}ip_part/) {
 print "valid ip\n";
}

perl -ne '
 $ip_part = qr|([0-9]|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])|;
 print if /^($ip_part\.){3}$ip_part$/
'

Check whether a string looks like an email address

/\S+@\S+\.\S+/

use Email::Valid;
print Email::Valid->address('cats@catonmat.net') ? 'valid email' : 'invalid email';

perl -MEmail::Valid -ne 'print if Email::Valid->address($_)'

138 Appendix C

Check whether a string is a number

/^\d+$/
/^[+-]?\d+$/
/^[+-]?\d+\.?\d*$/

perl -MRegexp::Common -ne 'print if /$RE{num}{real}/'
perl -MRegexp::Common -ne 'print if /$RE{num}{hex}/'
perl -MRegexp::Common -ne 'print if /$RE{num}{oct}/'
perl -MRegexp::Common -ne 'print if /$RE{num}{bin}/'

Check whether a word appears in a string twice

/(word).*\1/

Increase all integers in a string by one

$str =~ s/(\d+)/$1+1/ge
perl -MRegexp::Common -pe 's/($RE{num}{real})/$1+1/ge'

Extract the HTTP User-Agent string from HTTP headers

/^User-Agent: (.+)$/

Match printable ASCII characters

/[-~]/

Extract text between two HTML tags

m|([^<]*)|
m|(.*?)|

Replace all tags with

$html =~ s|<(/)?b>|<$1strong>|g

Extract all matches from a regular expression

my @matches = $text =~ /regex/g;

I n d e x

Numbers
-0 command-line argument, 14, 100

-00 command-line argument, 14,
66–67

-0777 command-line argument,
60–61

e constant, 39
π constant, 39

Symbols
<> (diamond) operator, 13, 23, 57, 66
@{[...]} construct, 32–33
@ARGV array, 53, 103–104
@array1 = (@array1, @array2) construct,

33–35
@F array, 30–31, 36, 103
}{ (eskimo operator) construct, 23–24
$1, $2, $3, … variables, 26, 101–102
$\ variable, 8–9, 101
$, (field separator) variable, 32, 102
$" variable, 68, 102–103
$/ variable, 100
$. variable, 18, 99–100
$_ variable, 8–9, 67, 95–99
$variable = () = <> construct, 23
$variable || 0 construct, 38
$variable + 0 construct, 25
=~ operator, 30
! operator, 73
!~ operator, 30
// operator, 34
. operator, 9
.. (range) operator, 49–50, 71, 78
%ENV variable, 104
|| (logical OR) operator, 34
~~ (double bitwise negate) construct,

24, 25

A
-a command-line argument, 30–31, 103
Abigail, 29
abs (absolute value) function, 36
“action if condition” statement, 18, 20
“action unless condition” statement, 11
adding

blank lines, 7–12
fields (calculating sum of),

5, 30–32
spaces, between characters, 16

addresses
email, matching lookalikes with

regular expressions, 86–87
IP

converting unsigned integers,
to and from, 45–47

lookalikes, matching, 83–84
valid, matching, 85–86

Algorithm::Permute module, 44
alphabet, generating, 49–50
arguments. See command-line

arguments
@ARGV array, 53, 103–104
ARGV file handle, 99–100
arrays. See lists
ASCII

characters, printable, finding with
regular expressions, 90

numeric values, converting into
strings, 55

auto-splitting, 30–31, 103

B
backup files, 2
base64 encoding, 60–61

140 Index

bash, on Windows, 106
one-liners in, 107

bash.exe (win-bash), 106, 107
BEGIN block, 9
bignum module, 39
blank lines, adding or removing, 7–14
blocks

BEGIN, 9
END, 22–23

C
calculating

absolute value, 36
array, number of elements in,

56–57
e constant, 39
factorials, 41–42
greatest common divisor (gcd), 42
increasing, integers in a string, 89
least common multiple (lcm), 43
maximum element, 35
minimum element, 33–35
number

of elements, in an array, 56–57
of fields, 36–38
of lines, 22–25, 38

numeric positions, of words, 27
permutations, of lists, 44
π constant, 39
powerset, 45
range, whether a number is in,

84–85
sum, of fields, 5, 30–32

case, converting, 62–63
characters

ASCII, printable, 90
case of, 62–63
numeric values of, 53–54
spacing of, 16

chr operator, 55
close function, 99–100
cmd.exe (Windows command

prompt), 108
columns

order of, reversing, 67–68
sum of elements in, 5

command-line arguments
-0, 14, 100

-00, 14, 66–67
-0777, 60–61

-a, 30–31, 103

-e, 2, 8
-E, 10
-F, 31, 68
-i, 2, 60, 70
-i.bak, 2, 60, 70
-l, 4, 13
-M, 30–31

-Mmodule=arg, 31
-n, 3, 12, 96–97
-p, 2, 8, 97–98

command prompt, Windows, 108–111
Comprehensive Perl Archive Network

(CPAN), 3–4
conditional statements (if, unless), 11,

18, 20
constants

e, 39
π, 39

constructs
@{[...]} construct, 32–33
@array1 = (@array1, @array2)

construct, 33–35
}{ (eskimo operator), 23–24
$variable = () = <> construct, 23
$variable || 0 construct, 38
$variable + 0 construct, 25
~~ (double bitwise negate), 24, 25

converting
case, 62–63
IP addresses, to and from unsigned

integers, 45–47
newlines, for different operating

systems, 65
numeric ASCII values, into

strings, 55
CPAN (Comprehensive Perl Archive

Network), 3–4
cpan (utility), 63, 79

D
date, 4, 40, 41
De Morgan’s law, 73
decoding

from base64, 61
from HTML, 62
URLs, 61

defined function, 34
deleting

blank lines, 12–14
lines, by printing others, 69
spacing between words, 15
whitespace, 64–65

Index 141

diamond operator (<>), 13, 23,
57, 66

documentation
perldoc, 5
Win32 Perl, 111

DOS/Windows newlines,
converting, 65

double bitwise negate ~~ construct,
24, 25

E
-e command-line argument, 2, 8
-E command-line argument, 10
e constant, 39
\E escape sequence, 62, 63
elements. See also fields

maximum, 35
minimum, 33–35
number of, in an array, 56–57

email addresses, matching lookalikes
with regular expressions,
86–87

Email::Valid module, 87
empty lines, number of, 25
encoding

as base64, 60–61
as HTML, 62
URLs, 61

END block, 22–23
eof function, 71
epoch, time since, 39
escape sequences

\E, 62, 63
\L, 63
\u, 63
\U, 62

escaping
characters, to use one-liners

in PowerShell, 112–114
in Windows, 108–111

loops, with the eskimo operator }{
construct, 24

URLs, 61
eskimo operator }{ construct,

23–24
/etc/passwd, 5, 103
Euclid’s algorithm, 42
exit function, 70–71

F
@F array, 30–31, 36, 103
-F command-line argument, 31, 68
factorials, calculating, 41–42
fields. See also words

absolute value, replacing with, 36
auto-splitting, 30–31
number of, 36–38
separator ($, variable), 32, 102
shuffling, 32–33
sum of, calculating, 5, 30–32

file paths, in Windows, 107, 111
filename expansion (globbing), 57
files

backup, 2
number of lines in, 22–25
numbering lines in, 17–22
printing, first and last lines in,

70–72
slurping, 100
spacing, 7–12

find-and-replace
HTML tags, 91–92
text, 2–3, 66

flip-flop operator, 71, 78
functions. See also operators

abs, 36
close, 99–100
defined, 34
eof, 71
exit, 70–71
gmtime, 40
grep, 24–25, 98–99
inet_aton, 46
inet_ntoa, 47
join, 33, 50
lc, 62–63
length, 13, 56
localtime, 40, 41
map, 36, 98
mktime, 41
pack, 47, 55
printf, 22
push, 31
rand, 43, 51–52
sprintf, 54
system, 104
time, 39
uc, 62
ucfirst, 63
unpack, 46, 54

142 Index

G
gcd (greatest common divisor), 42
generating

alphabet, 49–50
numbers

constants, 39
even, 56
odd, 55–56
random, 43–44

passwords, 51–52
permutations, 44
powerset, 45
strings, from “a” to “zz”, 50

globbing (filename expansion), 57
GMT (Greenwich Mean Time), 40
gmtime function, 40
golfing (Perl), 24
greatest common divisor (gcd), 42
Greenwich Mean Time (GMT), 40
grep function, 24–25, 98–99

H
hex lookup table, 51
hex operator, 46, 51
HTML

encoding, 62
tags

extracting text between, 90–91
replacing, 91–92

HTML::Entities module, 62
HTML::TreeBuilder module, 90–92
HTTP headers, extracting User-Agent

string from, 89

I
-i command-line argument, 2, 60, 70
-i.bak command-line argument,

2, 60, 70
if statement, 18, 20
inet_aton function, 46
inet_ntoa function, 47
initial capitalization, 63
int operator, 25
integers

converting IP addresses, to and
from, 45–47

increasing, 89
inverting case, of letters, 63

IP addresses
converting

to unsigned integers, 45–46
unsigned integers to, 47

matching
lookalikes, 83–84
valid, 85–86

iptables, 5

J
join function, 33, 50

L
-l command-line argument, 4, 13
\L escape sequence, 63
lc function, 62–63
lcm (least common multiple), 43
least common multiple (lcm), 43
length

creating strings by, 52
none, 13
printing lines by, 76, 78–79
of strings, finding, 56

length function, 13, 56
letters. See characters
lines

blank, adding or removing, 12–14
case, converting, 62–63
number of

empty or non-empty, 24–25
in a file, total, 22–24
matching a pattern, 38

numbering, 17–22
with total number of

words on, 37
words on, 26

order, reversing, 67
printing

by contents, 79–80
every second, 80–81
first and last, 70–72
by length, 76, 78–79
by matching regular

expressions, 25, 72–75, 78
by number, 76–77
repeated or unique, 81

replacing text on, 66
spacing, 7–14

List::PowerSet module, 45

Index 143

lists
converting into strings, 55
creating from strings, 52–53
generating

alphabet, 49–50
even numbers, 56
odd numbers, 55–56
from regular expression

matches, 92–93
number of elements in, 56–57
permutations of, 44
powerset, 45
slicing, 40

List::Util module, 30, 32
local time, 40
localtime function, 40, 41
logical OR operator, 34
lookup table, hex, 51
lowercase, converting to,

62–63

M
-M command-line argument, 30–31

-Mmodule=arg, 31
Mac OS newlines, converting to, 65
map function, 36, 98
matching. See regular expressions
Math::BigInt module, 41–42
maximum element, calculating, 35
MIME::Base64 module, 60–61
minimum element, calculating,

33–35
mktime function, 41
modules

Algorithm::Permute, 44
bignum, 39
Email::Valid, 87
HTML::Entities, 62
HTML::TreeBuilder, 90–92
List::PowerSet, 45
List::Util, 30, 32
Math::BigInt, 41–42
MIME::Base64, 60–61
POSIX, 41
Regexp::Common, 87–88
Socket, 46
URI::Escape, 61

months, days, and seconds
ago, 41

N
-n command-line argument, 3, 12,

96–97
newlines

adding, 7–12
converting for different operating

systems, 65
non-empty lines

numbering, 18–20
number of, 24–25

number
of elements, in an array, 56–57
of fields, 36–38
of lines, 22–25, 38

numbering
lines, 17–22, 37
words, 26

numbers
constants, 39
even, 56
odd, 55–56
random, 43–44

numeric
positions, of words, 27
values, of characters, 53–54

O
one-liners in Windows

in bash, 107
in PowerShell, 111–115
in Windows command prompt,

108–111
operating systems. See also Windows

newlines, converting for, 65
operators. See also functions

<> (diamond), 13, 23, 57, 66
}{ (eskimo), 23–24
=~ operator, 30
! operator, 73
!~ operator, 30
// operator, 34
. operator, 9
.. (range), 49–50, 71, 78
|| (logical OR), 34
chr, 55
flip-flop, 71, 78
hex, 46, 51
int, 25
ord, 53–54
q/.../, 109
qq/.../, 108
qr/.../, 85

144 Index

operators, continued
qw/.../, 53
reverse, 67
say, 10
scalar, 23
shift, 72
split, 52
s/regex/replace/, 12
ternary, 87
tr, 59–60
x, 12, 52
y, 59–60

OR operator, logical, 34
ord operator, 53–54
order, reversing, 66–68

P
-p command-line argument, 2, 8, 97–98
pack function, 47, 55
paragraphs

order of, reversing, 66–67
slurping, 14

passwords, generating random, 51–52
patterns. See regular expressions
Perl

golfing, 24
Strawberry, 105–106, 108
versions, 2
on Windows, 105–106. See also

Windows
perldoc, 5
permutations, of lists, 44
π constant, 39
POSIX module, 41
powerset, generating, 45
PowerShell, 111–115
prime, checking if a number is, 29–30
printf function, 22
printing

fields, number of, 36–38
lines

by contents, 79–80
every second, 80–81
first and last, 70–72
by length, 76, 78–79
by matching regular

expressions, 25, 72–75, 78
non-empty, 18–20
by number, 76–77
number of, 22–25, 38
repeated or unique, 81

push function, 31

Q
q/.../ operator, 109
qq/.../ operator, 108
qr/.../ operator, 85
qw/.../ operator, 53

R
rand function, 43, 51–52
random

numbers, generating, 43–44
passwords, generating, 51–52

range, calculating whether a number
is in, 84–85

range operator, 49–50, 71
Regexp::Common module, 87–88
regular expressions

ASCII characters, to match
printable, 90

email addresses, to match
lookalikes, 86–87

HTML tags
to extract text between, 90–91
to replace, 91–92

IP addresses, and lookalikes, to
match, 83–86

lines matching
to number and print, 21
number of, 38
to print, 25, 72–75, 78–80

listing all matches, 92–93
range, to test whether a number

is in, 84–85
removing. See deleting
repeated

lines, 81
words, 88

replacing
HTML tags, 91–92
text, 2–3, 66

reverse operator, 67
ROT13, a string, 59–60

S
say operator, 10
scalar operator, 23
shift operator, 72
shuffling fields (words), 32–33
slicing, lists, 40
slurping, 14, 100
Socket module, 46

Index 145

spacing
of characters, 16
of lines, 7–14
of words, 15–16

splitting, auto-, 30–31, 103
split operator, 52
sprintf function, 54
s/regex/replace/ operator, 12
Strawberry Perl, 105–106, 108
strings

arrays, creating from, 52–53
base64 encoding, 60–61
case, converting, 62–63
characters, numeric values of,

53–54
email addresses, and lookalikes,

86–87
generating

from “a” to “zz”, 50
alphabet, 49–50
from ASCII values, 55
from command-line

arguments, 53
by length, 52
passwords, random, 51–52

HTML encoding, 62
integers, increasing, 89
IP addresses, and lookalikes, 83–86
length, finding, 56
numbers, checking if, 87–88
numeric values, of characters,

53–54
order, reversing, 66–68
ROT13, 59–60
shuffling fields (words), 32–33
spacing, 15–16
URL escaping, 61
with words appearing twice, 88

stripping whitespace, 64–65
substituting

HTML tags, 91–92
text, 2–3, 66

sum (of fields), calculating, 5, 30–32
system function, 104

T
ternary operator, 87
text. See files; lines; words
There’s More Than One Way To Do It

(TIMTOWTDI), 14

time
date, 4, 40, 41
Greenwich Mean Time (GMT), 40
local, 40
UNIX, 39

time function, 39
@TimToady (Larry Wall), 14
TIMTOWTDI (There’s More Than

One Way To Do It), 14
title case, converting to, 63
tr operator, 59–60

U
\u escape sequence, 63
\U escape sequence, 62
uc function, 62
ucfirst function, 63
unescaping, URLs, 61
unique lines, 81
UNIX

newlines, converting, 65
time, 39

unless statement, 11
unpack function, 46, 54
unsigned integers, converting IP

addresses to and from,
45–47

uppercase, converting to, 62–63
URI::Escape module, 61
URL-escaping, 61
usernames, listing from /etc/passwd,

5, 103

V
valid IP addresses, matching, 85–86
values, of characters, 53–54
variables

@ARGV variable, 53, 103–104
@F variable, 30, 103
$1, $2, $3, … variables, 26, 101–102
$\ variable, 8–9, 101
$, (field separator), 32, 102
$" variable, 68, 102–103
$/ variable, 100
$. variable, 18, 99–100
$_ variable, 8–9, 67, 95–99
%ENV variable, 104

v-string (version string) literal, 64

146 Index

W
Wall, Larry, 14
whitespace, stripping, 64–65
win-bash (bash.exe), 106, 107
Windows

bash on, 106
bash.exe (win-bash), 106, 107
cmd.exe, 108
command prompt, 108–111
file paths

bash, 107
command prompt, 111
PowerShell, 112

newlines, 65
one-liners

in bash, 107
in PowerShell, 111–115
in Windows command prompt,

108–111
Perl on, 105–106
Strawberry Perl, 105–106
win-bash, 106, 107

words. See also fields
number of, on a line, 36–37
numbering, on a line, 26
numeric positions of, 27
passwords, generating random,

51–52
repeated, 88
shuffling, 32–33
spacing of, 15–16

X
x operator, 12, 52

Y
y operator, 59–60
yesterday’s date, 41

Perl One-Liners is set in New Baskerville, TheSansMono Condensed, Futura,
and Dogma. The book was printed and bound by Edwards Brothers Malloy
in Ann Arbor, Michigan. The paper is Williamsburg 70# Smooth, which is
certified by the Sustainable Forestry Initiative (SFI).

The book uses an Otabind binding, in which the pages are bound
together with a cold-set, flexible glue and the first and last pages of the
resulting book block are attached to the cover with glue. The cover is
not actually glued to the book’s spine, and when open, the book lies flat
and the spine doesn’t crack.

More no-nonsense books from no starch press

u P D a T e s

Visit http://nostarch.com/perloneliners/ for updates, errata, and other information.

The arT Of r
PrOGr amminG
A Tour of Statistical
Software Design
by norman matloff

october 2011, 400 PP., $39.95
isbn 978-1-59327-384-2

The linux
COmmanD line
A Complete Introduction
by william e. shotts, jr.
january 2012, 480 PP., $39.95
isbn 978-1-59327-389-7

The linux
PrOGr amminG
inTerfaCe
A Linux and UNIX® System
Programming Handbook
by michael kerrisk

october 2010, 1552 PP., $99.95
isbn 978-1-59327-220-3
hardcover

ruBy unDer a
miCrOsCOPe
An Illustrated Guide to
Ruby Internals
by Pat shauGhnessy

november 2013, 360 PP., $39.95
isbn 978-1-59327-527-3

wiCkeD COOl
shell sCriPTs
101 Scripts for Linux, Mac OS X,
and UNIX Systems
by Dave taylor

january 2004, 368 PP., $29.95
isbn 978-1-59327-012-4

Py ThOn fOr kiDs
A Playful Introduction to
Programming
by jason r. briGGs

December 2012, 344 PP., $34.95
isbn 978-1-59327-407-8
full color

800.420.7240 or 415.863.9900 | sales@nostarch.com | www.nostarch.com

