FreeBSD Device Drivers
Joseph Kong
Copyright © 2012
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.
No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.
No Starch Press
DEDICATION
This book is dedicated to the FreeBSD community.
About the Technical Reviewer
John Baldwin has been working on various portions of the FreeBSD operating system for 12 years. His main areas of interest include SMP, PCI, ACPI, and support for x86. He has served as a member of both the FreeBSD core team and the release engineering team.
Foreword
While most portions of an operating system are maintained and developed by individuals who specialize in a given operating system, device drivers are unique: They’re maintained by a much broader spectrum of developers. Some device driver authors have extensive experience with a particular operating system, while others have detailed knowledge of specific hardware components and are tasked with maintaining device drivers for those components across multiple systems. Too, device drivers are often somewhat self-contained, so that a developer can maintain a device driver while viewing other parts of the system as a black box.
Of course, that black box still has an interface, and each operating system provides its own set of interfaces to device drivers. Device drivers on all systems need to perform many common tasks, such as discovering devices, allocating resources for connected devices, and managing asynchronous events. However, each operating system has its own ways of dealing with these tasks, and each differs in the interfaces it provides for higher-level tasks. The key to writing a device driver that is both robust and efficient lies in understanding the specific details of the interfaces that the particular operating system provides.
FreeBSD Device Drivers is an excellent guide to the most commonly used FreeBSD device driver interfaces. You’ll find coverage of lower-level interfaces, including attaching to eligible devices and managing device resources, as well as higher-level interfaces, such as interfacing with the network and storage stacks. In addition, the book’s coverage of several of the APIs available in the kernel environment, such as allocating memory, timers, and synchronization primitives, will be useful to anyone working with the FreeBSD kernel. This book is a welcome resource for FreeBSD device driver authors.
John Baldwin
Kernel Developer, FreeBSD
New York
March 20, 2012
Acknowledgments
No book is an island. You would not be holding this book in your hands without the help and support of a host of people to whom I am most grateful.
Foremost, thanks to Bill Pollock and the gang at No Starch Press for giving me the opportunity to write this book and for helping me along the way. Special thanks to Alison Law, Riley Hoffman, and Tyler Ortman for pulling things together. Alison, you deserve to be mentioned at least twice, if not more. Thanks for entering corrections multiple times and for keeping me on schedule (sort of). Thanks, too, to copyeditors Damon Larson and Megan Dunchak and to Jessica Miller for writing the back cover copy.
I couldn’t have done this without John Baldwin’s excellent technical review. He patiently answered all of my (inane) questions and helped to improve my code. To my brother, Justin Kong, thank you for reviewing this book multiple times. You definitely deserve the “Iron Man” award. Thanks to Aharon Robbins for his review and to my friend Elizabeth C. Mitchell for drawing my diagrams (and for baking me brownies). And thanks to George Neville-Neil and Michael W. Lucas for your advice.
Thanks, Dad, for lending me your expertise on hardware and for lending me actual hardware, which made it possible for me to write this book. Thanks, Mom, for your love and support. I know you pray for me every day. Thanks also go to my friends for their support.
And last but not least, thanks to the open source software and FreeBSD communities for your willingness to share. Without you, I’d be a lousy programmer, and I’d have nothing to write about.
Introduction
Welcome to FreeBSD Device Drivers! The goal of this book is to help you improve your understanding of device drivers under FreeBSD. By the time you finish this book, you should be able to build, configure, and manage your own FreeBSD device drivers.
This book covers FreeBSD version 8, the version recommended for production use as of this writing. Nonetheless, most of what you’ll learn will apply to earlier versions and should apply to later ones as well.
Who Is This Book For?
I wrote this book as a programmer, for programmers. As such, you’ll find a heavy focus on programming, not theory, and you’ll examine real device drivers (namely, ones that control hardware). Imagine trying to write a book without ever having read one. Inconceivable! The same thing goes for device drivers.
Prerequisites
To get the most out of this book, you should be familiar with the C programming language. You should also know something about operating system design; for example, the difference between a process and a thread.
If you lack the necessary background, I recommend reading the following three books prior to this one, or just keeping them around as references:
The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie (Prentice Hall PTR, 1988)
Expert C Programming, by Peter van der Linden (Prentice Hall, 1994)
The Design and Implementation of the FreeBSD Operating System, by Marshall Kirk McKusick and George V. Neville-Neil (Addison-Wesley Professional, 2005)
Contents at a Glance
FreeBSD Device Drivers contains the following chapters.
Provides an overview and introduction to basic device driver programming concepts and terminology.
Describes FreeBSD’s kernel memory management routines.
Teaches you how to communicate with and control your device drivers from user space.
Discusses the problems and solutions associated with multithreaded programming and concurrent execution.
Describes delaying code execution and asynchronous code execution, and explains why these tasks are needed.
Contains the first of several occasions where I walk you through a real-world device driver.
Covers the infrastructure used by FreeBSD to manage the hardware devices on the system. From here on, I deal exclusively with real hardware.
Discusses interrupt handling in FreeBSD.
Walks through lpt(4), the parallel port printer driver, in its entirety.
Covers port-mapped I/O and memory-mapped I/O.
Reviews the parts of ipmi(4), the Intelligent Platform Management Interface driver, which uses port-mapped I/O and memory-mapped I/O.
Explains how to use Direct Memory Access (DMA) in FreeBSD.
Teaches you how to manage storage devices, such as disk drives, flash memory, and so on.
Provides an overview and introduction to Common Access Method (CAM), which you’ll use to manage host bus adapters.
Teaches you how to manage USB devices. It also walks through ulpt(4), the USB printer driver, in its entirety.
Describes the data structures used by network drivers. It also goes over Message Signaled Interrupts (MSI).
Examines the packet reception and transmission components of em(4), the Intel PCI Gigabit Ethernet adapter driver.
Welcome Aboard!
I hope you find this book useful and entertaining. As always, I welcome feedback with comments or bug fixes to joe@thestackframe.org.
Okay, enough with the introductory stuff. Let’s begin.
Chapter 1. Building and Running Modules
This chapter provides an introduction to FreeBSD device drivers. We’ll start by describing the four different types of UNIX device drivers and how they are represented in FreeBSD. We’ll then describe the basics of building and running loadable kernel modules, and we’ll finish this chapter with an introduction to character drivers.
NOTE
If you don’t understand some of the terms used above, don’t worry; we’ll define them all in this chapter.
Types of Device Drivers
In FreeBSD, a device is any hardware-related item that belongs to the system; this includes disk drives, printers, video cards, and so on. A device driver is a computer program that controls or “drives” a device (or sometimes numerous devices). In UNIX and pre-4.0 FreeBSD, there are four different types of device drivers:
Character drivers, which control character devices
Block drivers, which control block devices
Network drivers, which control network devices
Pseudo-device drivers, which control pseudo-devices
Character devices provide either a character-stream-oriented I/O interface or, alternatively, an unstructured (raw) interface (McKusick and Neville-Neil, 2005).
Block devices transfer randomly accessible data in fixed-size blocks (Corbet et al., 2005). In FreeBSD 4.0 and later, block drivers are gone (for more information on this, See Block Drivers Are Gone in DEV_MODULE Macro).
Network devices transmit and receive data packets that are driven by the network subsystem (Corbet et al., 2005).
Finally, a pseudo-device is a computer program that emulates the behavior of a device using only software (that is, without any underlying hardware).
Loadable Kernel Modules
A device driver can be either statically compiled into the system or dynamically loaded using a loadable kernel module (KLD).
NOTE
Most operating systems call a loadable kernel module an LKM—FreeBSD just had to be different.
A KLD is a kernel subsystem that can be loaded, unloaded, started, and stopped after bootup. In other words, a KLD can add functionality to the kernel and later remove said functionality while the system is running. Needless to say, our “functionality” will be device drivers.
In general, two components are common to all KLDs:
A module event handler
A DECLARE_MODULE macro call
Module Event Handler
A module event handler is the function that handles the initialization and shutdown of a KLD. This function is executed when a KLD is loaded into the kernel or unloaded from the kernel, or when the system is shut down. Its function prototype is defined in the <sys/module.h> header as follows:
typedef int (*modeventhand_t)(module_t, int /*modeventtype_t */, void *);
Here, modeventtype_t is defined in the <sys/module.h> header like so:
typedef enum modeventtype {
MOD_LOAD, /* Set when module is loaded. */
MOD_UNLOAD, /* Set when module is unloaded. */
MOD_SHUTDOWN, /* Set on shutdown. */
MOD_QUIESCE /* Set when module is about to be unloaded. */
} modeventtype_t;
As you can see, modeventtype_t labels whether the KLD is being loaded into the kernel or
unloaded from the kernel, or whether the system is about to
shut down. (For now, ignore the value at
; we’ll discuss it in Chapter 4.)
Generally, you’d use the modeventtype_t argument in a switch statement to set up different code blocks for each situation. Some example code should help clarify what I mean:
static int
modevent(module_t mod __unused, intevent, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
uprintf("Hello, world!\n");
break;
case MOD_UNLOAD:
uprintf("Good-bye, cruel world!\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
Notice how the second argument is the
expression for the switch statement. Thus, this module event handler prints “Hello, world!” when the KLD is
loaded into the kernel, prints “Good-bye, cruel world!” when the KLD is
unloaded from the kernel, and returns EOPNOTSUPP (which stands for error: operation not supported) prior to
system shutdown.
DECLARE_MODULE Macro
The DECLARE_MODULE macro registers a KLD and its module event handler with the system. Here is its function prototype:
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/module.h>
DECLARE_MODULE(name, moduledata_t data, sub, order);
The arguments expected by this macro are as follows.
name
The name argument is the module name, which is used to identify the KLD.
data
The data argument expects a filled-out moduledata_t structure, which is defined in the <sys/module.h> header as follows:
typedef struct moduledata {
const char*name;
modeventhand_tevhand;
void*priv;
} moduledata_t;
Here, name is the official module name,
evhand is the KLD’s module event handler, and
priv is a pointer to private data (if any exists).
sub
The sub argument specifies the kernel subsystem that the KLD belongs in. Valid values for this argument are defined in the sysinit_sub_id enumeration, found in <sys/kernel.h>.
enum sysinit_sub_id {
SI_SUB_DUMMY = 0x0000000, /* Not executed. */
SI_SUB_DONE = 0x0000001, /* Processed. */
SI_SUB_TUNABLES = 0x0700000, /* Tunable values. */
SI_SUB_COPYRIGHT = 0x0800001, /* First console use. */
SI_SUB_SETTINGS = 0x0880000, /* Check settings. */
SI_SUB_MTX_POOL_STATIC = 0x0900000, /* Static mutex pool. */
SI_SUB_LOCKMGR = 0x0980000, /* Lock manager. */
SI_SUB_VM = 0x1000000, /* Virtual memory. */
...
SI_SUB_DRIVERS = 0x3100000, /* Device drivers. */
...
};
For obvious reasons, we’ll almost always set sub to SI_SUB_DRIVERS, which is the device driver subsystem.
order
The order argument specifies the KLD’s order of initialization within the sub subsystem. Valid values for this argument are defined in the sysinit_elem_order enumeration, found in <sys/kernel.h>.
enum sysinit_elem_order {
SI_ORDER_FIRST = 0x0000000, /* First. */
SI_ORDER_SECOND = 0x0000001, /* Second. */
SI_ORDER_THIRD = 0x0000002, /* Third. */
SI_ORDER_FOURTH = 0x0000003, /* Fourth. */
SI_ORDER_MIDDLE = 0x1000000, /* Somewhere in the middle. */
SI_ORDER_ANY = 0xfffffff /* Last. */
};
In general, we’ll always set order to SI_ORDER_MIDDLE.
Hello, world!
You now know enough to write your first KLD. Example 1-1 is the complete skeleton code for a KLD.
Example 1-1. hello.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
static int hello_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
uprintf("Hello, world!\n");
break;
case MOD_UNLOAD:
uprintf("Good-bye, cruel world!\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
} static moduledata_t hello_mod = {
"hello",
hello_modevent,
NULL
}; DECLARE_MODULE(hello,
hello_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);
This code contains a module event handler—it’s identical to the one described in Module Event Handler in Loadable Kernel Modules—and a filled-out
moduledata_t structure, which is passed as the
second argument to the
DECLARE_MODULE macro.
In short, this KLD is just a module event handler and a DECLARE_MODULE call. Simple, eh?
Compiling and Loading
To compile a KLD, you can use the <bsd.kmod.mk> Makefile. Here is the complete Makefile for Example 1-1:
KMOD= hello
SRCS= hello.c
.include <bsd.kmod.mk>
Here, KMOD is the KLD’s name and
SRCS is the KLD’s source files. Incidentally, I’ll adapt this Makefile to compile every KLD.
Now, assuming Example 1-1 and its Makefile are in the same directory, simply type make, and the compilation should proceed (very verbosely) and produce an executable named hello.ko, as shown here:
$ make
Warning: Object directory not changed from original /usr/home/ghost/hello
@ -> /usr/src/sys
machine -> /usr/src/sys/i386/include
cc -O2 -fno-strict-aliasing -pipe -D_KERNEL -DKLD_MODULE -std=c99 -nostdinc
-I. -I@ -I@/contrib/altq -finline-limit=8000 --param inline-unit-growth=100 -
-param large-function-growth=1000 -fno-common -mno-align-long-strings -mpref
erred-stack-boundary=2 -mno-mmx -mno-3dnow -mno-sse -mno-sse2 -mno-sse3 -ffr
eestanding -Wall -Wredundant-decls -Wnested-externs -Wstrict-prototypes -Wmi
ssing-prototypes -Wpointer-arith -Winline -Wcast-qual -Wundef -Wno-pointer-s
ign -fformat-extensions -c hello.c
ld -d -warn-common -r -d -o hello.kld hello.o
:> export_syms
awk -f /sys/conf/kmod_syms.awk hello.kld export_syms | xargs -J% objcopy % h
ello.kld
ld -Bshareable -d -warn-common -o hello.ko hello.kld
objcopy --strip-debug hello.ko
$ ls -F
@@ export_syms hello.kld hello.o
Makefile hello.c hello.ko* machine@
You can then load and unload hello.ko with kldload(8) and kldunload(8), respectively:
$ sudo kldload ./hello.ko
Hello, world!
$ sudo kldunload hello.ko
Good-bye, cruel world!
As an aside, with a Makefile that includes <bsd.kmod.mk>, you can use make load and make unload instead of kldload(8) and kldunload(8), as shown here:
$ sudo make load
/sbin/kldload -v /usr/home/ghost/hello/hello.ko
Hello, world!
Loaded /usr/home/ghost/hello/hello.ko, id=3
$ sudo make unload
/sbin/kldunload -v hello.ko
Unloading hello.ko, id=3
Good-bye, cruel world!
Congratulations! You’ve now successfully loaded code into a live kernel. Before moving on, one additional point is also worth mentioning. You can display the status of any file dynamically linked into the kernel using kldstat(8), like so:
$ kldstat
Id Refs Address Size Name
1 4 0xc0400000 906518 kernel
2 1 0xc0d07000 6a32c acpi.ko
3 1 0xc3301000 2000 hello.ko
As you can see, the output is pretty self-explanatory. Now, let’s do something more interesting.
Character Drivers
Character drivers are basically KLDs that create character devices. As mentioned previously, character devices provide either a character-stream-oriented I/O interface or, alternatively, an unstructured (raw) interface. These (character-device) interfaces establish the conventions for accessing a device, which include the set of procedures that can be called to do I/O operations (McKusick and Neville-Neil, 2005). In short, character drivers produce character devices, which provide device access. For example, the lpt(4) driver creates the /dev/lpt0 character device, which is used to access the parallel port printer. In FreeBSD 4.0 and later, most devices have a character-device interface.
In general, three components are common to all character drivers:
The d_foo functions
A character device switch table
A make_dev and destroy_dev function call
d_foo Functions
The d_foo functions, whose function prototypes are defined in the <sys/conf.h> header, are the I/O operations that a process can execute on a device. These I/O operations are mostly associated with the file I/O system calls and are accordingly named d_open, d_read, and so on. A character driver’s d_foo function is called when “foo” is done on its device. For example, d_read is called when a process reads from a device.
Table 1-1 provides a brief description of each d_foo function.
Table 1-1. d_foo Functions
Function	Description
d_open | Called to open the device in preparation for I/O operations |
d_close | Called to close the device |
d_read | Called to read data from the device |
d_write | Called to write data to the device |
d_ioctl | Called to perform an operation other than a read or a write |
d_poll | Called to check the device to see whether data is available for reading or space is available for writing |
d_mmap | Called to map a device offset into a memory address |
d_kqfilter | Called to register the device with a kernel event list |
d_strategy | Called to start a read or write operation and then immediately return |
d_dump | Called to write all physical memory to the device |
NOTE
If you don’t understand some of these operations, don’t worry; we’ll describe them in detail later when we implement them.
Character Device Switch Table
A character device switch table, struct cdevsw, specifies which d_foo functions a character driver implements. It is defined in the <sys/conf.h> header as follows:
struct cdevsw {
int d_version;
u_int d_flags;
const char *d_name;
d_open_t *d_open;
d_fdopen_t *d_fdopen;
d_close_t *d_close;
d_read_t *d_read;
d_write_t *d_write;
d_ioctl_t *d_ioctl;
d_poll_t *d_poll;
d_mmap_t *d_mmap;
d_strategy_t *d_strategy;
dumper_t *d_dump;
d_kqfilter_t *d_kqfilter;
d_purge_t *d_purge;
d_spare2_t *d_spare2;
uid_t d_uid;
gid_t d_gid;
mode_t d_mode;
const char *d_kind;
/* These fields should not be messed with by drivers. */
LIST_ENTRY(cdevsw) d_list;
LIST_HEAD(, cdev) d_devs;
int d_spare3;
struct cdevsw *d_gianttrick;
};
Here is an example character device switch table for a read/write device:
static struct cdevsw echo_cdevsw = {
.d_version = D_VERSION,
.d_open = echo_open,
.d_close = echo_close,
.d_read = echo_read,
.d_write = echo_write,
.d_name = "echo"
};
As you can see, not every d_foo function or attribute needs to be defined. If a d_foo function is undefined, the corresponding operation is unsupported (for example, a character device switch table for a read-only device would not define d_write).
Unsurprisingly, d_version (which denotes the version of FreeBSD this driver supports) and d_name (which is the driver’s name) must be defined. Generally, d_version is set to D_VERSION, which is a macro substitution for whichever version of FreeBSD it’s compiled on.
make_dev and destroy_dev Functions
The make_dev function takes a character device switch table and creates a character device node under /dev. Here is its function prototype:
#include <sys/param.h>
#include <sys/conf.h>
structcdev *
make_dev(struct cdevsw *cdevsw, int minor, uid_t uid, gid_t gid,
int perms, const char *fmt, ...);
Conversely, the destroy_dev function takes the cdev structure returned by make_dev and destroys the character device node. Here is its function prototype:
#include <sys/param.h>
#include <sys/conf.h>
void
destroy_dev(struct cdev *dev);
Mostly Harmless
Example 1-2 is a complete character driver (based on code written by Murray Stokely and Søren Straarup) that manipulates a memory area as though it were a device. This pseudo (or memory) device lets you write and read a single character string to and from it.
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 1-2. echo.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#define BUFFER_SIZE 256
/* Forward declarations. */
static d_open_t echo_open;
static d_close_t echo_close;
static d_read_t echo_read;
static d_write_t echo_write; static struct cdevsw echo_cdevsw = {
.d_version = D_VERSION,
.d_open = echo_open,
.d_close = echo_close,
.d_read = echo_read,
.d_write = echo_write,
.d_name = "echo"
};
typedef struct echo {
char buffer[BUFFER_SIZE];
int length;
} echo_t; static echo_t *echo_message;
static struct cdev *echo_dev;
static int echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
uprintf("Opening echo device.\n");
return (0);
}
static int echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
uprintf("Closing echo device.\n");
return (0);
}
static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
int error = 0;
error = copyin(uio->uio_iov->iov_base, echo_message->buffer,
MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1));
if (error != 0) {
uprintf("Write failed.\n");
return (error);
}
*(echo_message->buffer +
MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1)) = 0;
echo_message->length = MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1);
return (error);
}
static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
int error = 0;
int amount;
amount = MIN(uio->uio_resid,
(echo_message->length - uio->uio_offset > 0) ?
echo_message->length - uio->uio_offset : 0);
error = uiomove(echo_message->buffer + uio->uio_offset, amount, uio);
if (error != 0)
uprintf("Read failed.\n");
return (error);
}
static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
echo_message = malloc(sizeof(echo_t), M_TEMP, M_WAITOK);
echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "echo");
uprintf("Echo driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
free(echo_message, M_TEMP);
uprintf("Echo driver unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(echo, echo_modevent, NULL);
This driver starts by defining a character device switch table, which contains four d_foo functions named echo_foo, where foo equals to open, close, read, and write. Consequently, the ensuing character device will support only these four I/O operations.
Next, there are two variable declarations: an echo structure pointer named echo_message (which will contain a
character string and its
length) and a cdev structure pointer named
echo_dev (which will maintain the cdev returned by the
make_dev call).
Then, the d_foo functions echo_open and
echo_close are defined—each just prints a debug message. Generally, the d_open function prepares a device for I/O, while d_close breaks apart those preparations.
NOTE
There is a difference between “preparing a device for I/O” and “preparing (or initializing) a device.” For pseudo-devices like Example 1-2, device initialization is done in the module event handler.
The remaining bits—echo_write, echo_read, echo_modevent, and DEV_MODULE—require a more in-depth explanation and are therefore described in their own sections.
echo_write Function
The echo_write function acquires a character string from user space and stores it. Here is its function definition (again):
static int
echo_write(struct cdev *dev,struct uio *uio, int ioflag)
{
int error = 0;
error =copyin(
uio->uio_iov->iov_base,
echo_message->buffer,
MIN(uio->uio_iov->iov_len,
BUFFER_SIZE - 1));
if (error != 0) {
uprintf("Write failed.\n");
return (error);
}
*(echo_message->buffer +
MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1)) = 0;
echo_message->length = MIN(uio->uio_iov->iov_len, BUFFER_SIZE - 1);
return (error);
}
Here, struct uio describes a character string in motion—the variables
iov_base and
iov_len specify the character string’s base address and length, respectively.
So, this function starts by copying a character string from
user space to
kernel space. At most,
'BUFFER_SIZE - 1' bytes of data are copied. Once this is done, the character string is
null-terminated, and its length (minus the null terminator) is
recorded.
NOTE
This isn’t the proper way to copy data from user space to kernel space. I should’ve used uiomove instead of copyin. However, copyin is easier to understand, and at this point, I just want to cover the basic structure of a character driver.
echo_read Function
The echo_read function returns the stored character string to user space. Here is its function definition (again):
static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
int error = 0;
int amount;
amount =MIN(
uio->uio_resid,
(echo_message->length -
uio->uio_offset > 0) ?
echo_message->length - uio->uio_offset : 0);
error =uiomove(
echo_message->buffer + uio->uio_offset,
amount,
uio);
if (error != 0)
uprintf("Read failed.\n");
return (error);
}
Here, the variables uio_resid and
uio_offset specify the amount of data remaining to be transferred and an offset into the character string, respectively.
So, this function first determines the number of characters to return—either the
amount the user requests or
all of it. Then echo_read
transfers that
number from
kernel space to
user space.
NOTE
For more on copying data between user and kernel space, see the copy(9) and uio(9) manual pages. I’d also recommend the OpenBSD uiomove(9) manual page.
echo_modevent Function
The echo_modevent function is the module event handler for this character driver. Here is its function definition (again):
static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
echo_message =
malloc(sizeof(echo_t), M_TEMP, M_WAITOK);
echo_dev =make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600,"echo");
uprintf("Echo driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
free(echo_message, M_TEMP);
uprintf("Echo driver unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
On module load, this function first calls malloc to allocate sizeof(echo_t) bytes of memory. Then it calls
make_dev to create a character device node named
echo under /dev. Note that when make_dev returns, the character device is “live” and its d_foo functions can be executed. Consequently, if I had called make_dev ahead of malloc, echo_write or echo_read could be executed before
echo_message points to valid memory, which would be disastrous. The point is: Unless your driver is completely ready, don’t call make_dev.
On module unload, this function first calls destroy_dev to destroy the echo device node. Then it calls
free to release the allocated memory.
DEV_MODULE Macro
The DEV_MODULE macro is defined in the <sys/conf.h> header as follows:
#define DEV_MODULE(name, evh, arg) \
static moduledata_t name##_mod = { \
#name, \
evh, \
arg \
}; \DECLARE_MODULE(name, name##_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE)
As you can see, DEV_MODULE merely wraps DECLARE_MODULE. So Example 1-2 could have called DECLARE_MODULE, but DEV_MODULE is cleaner (and it saves you some keystrokes).
Don’t Panic
Now that we’ve walked through Example 1-2, let’s give it a try:
$ sudo kldload ./echo.ko
Echo driver loaded.
$ ls -l /dev/echo
crw------- 1 root wheel 0, 95 Jun 4 23:23 /dev/echo
$ su
Password:
echo "DON'T PANIC" > /dev/echo
Opening echo device.
Closing echo device.
cat /dev/echo
Opening echo device.
DON'T PANIC
Closing echo device.
Unsurprisingly, it works. Before this chapter is concluded, a crucial topic bears mentioning.
Block Drivers Are Gone
As mentioned previously, block devices transfer randomly accessible data in fixed-size blocks; for example, disk drives. Naturally, block drivers provide access to block devices. Block drivers are characterized by the fact that all I/O is cached within the kernel’s buffer cache, which makes block drivers unreliable, for two reasons. First, because caching can reorder a sequence of write operations, it deprives the writing process of the ability to identify the exact disk contents at any moment in time. This makes reliable crash recovery of on-disk data structures (for example, filesystems) impossible. Second, caching can delay write operations. So if an error occurs, the kernel cannot report to the process that did the write which particular operation failed. For these reasons, every serious application that accesses block devices specifies that a character-device interface always be used. Consequently, FreeBSD dropped support for block drivers during the modernization of the disk I/O infrastructure.
NOTE
Obviously, FreeBSD still supports block devices. For more on this, see Chapter 13.
Conclusion
This chapter introduced you to the basics of FreeBSD device driver development. In the following chapters, we’ll build upon the concepts described here to complete your driver toolkit. As an aside, because most FreeBSD device drivers are character drivers, don’t think of them as a primary driver class—they’re more like a tool used to create character device nodes.
Chapter 2. Allocating Memory
In the previous chapter we used malloc and free for the allocation and release of memory. The FreeBSD kernel, however, contains a richer set of memory allocation primitives. In this chapter we’ll look at the stock kernel memory management routines. This includes describing malloc and free in more detail and introducing the malloc_type structure. We’ll finish this chapter by describing the contiguous physical memory management routines.
Memory Management Routines
The FreeBSD kernel provides four functions for non-pageable memory allocation and release: malloc, free, realloc, and reallocf. These functions can handle requests of arbitrary size or alignment, and they are the preferred way to allocate kernel memory.
#include <sys/types.h>
#include <sys/malloc.h>
void *
malloc(unsigned long size, struct malloc_type *type, int flags);
void
free(void *addr, struct malloc_type *type);
void *
realloc(void *addr, unsigned long size, struct malloc_type *type,
int flags);
void *
reallocf(void *addr, unsigned long size, struct malloc_type *type,
int flags);
The malloc function allocates size bytes of memory in kernel space. If successful, a kernel virtual address is returned; otherwise, NULL is returned.
The free function releases the memory at addr—that was previously allocated by malloc—for reuse. Note that free doesn’t clear this memory, which means that you should explicitly zero any memory whose contents you need to keep private. If addr is NULL, then free does nothing.
NOTE
If INVARIANTS is enabled, then free will stuff any released memory with 0xdeadc0de.
Thus, if you get a page fault panic and the faulting address is around 0xdeadc0de, this can be a sign that you’re using freed memory.[1]
The realloc function changes the size of the memory at addr to size bytes. If successful, a kernel virtual address is returned; otherwise, NULL is returned, and the memory is left alone. Note that the returned address may differ from addr, because when the size changes, the memory may be relocated to acquire or provide additional room. Interestingly, this implies that you should not have any pointers into the memory at addr when calling realloc. If addr is NULL, then realloc behaves identically to malloc.
The reallocf function is identical to realloc except that on failure it releases the memory at addr.
The malloc, realloc, and reallocf functions provide a flags argument to further qualify their operational characteristics. Valid values for this argument are shown in Table 2-1.
Table 2-1. malloc, realloc, and reallocf Symbolic Constants
The flags argument must include either M_NOWAIT or M_WAITOK.
[1] INVARIANTS is a kernel debugging option. For more on INVARIANTS, see /sys/conf/NOTES.
malloc_type Structures
The malloc, free, realloc, and reallocf functions include a type argument, which expects a pointer to a malloc_type structure; this structure describes the purpose of the allocated memory. The type argument has no impact on performance; it is used for memory profiling and for basic sanity checks.
NOTE
You can profile kernel dynamic memory usage, sorted by type, with the vmstat -m command.
MALLOC_DEFINE Macro
The MALLOC_DEFINE macro defines a new malloc_type structure. Here is its function prototype:
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
MALLOC_DEFINE(type, shortdesc, longdesc);
The type argument is the new malloc_type structure’s name. In general, type should begin with M_ and be in uppercase letters; for example, M_FOO.
The shortdesc argument expects a short description of the new malloc_type structure. This argument is used in the output of vmstat -m. As a result, it shouldn’t contain any spaces so that it’s easier to parse vmstat -m’s output in scripts.
The longdesc argument expects a long description of the new malloc_type structure.
MALLOC_DECLARE Macro
The MALLOC_DECLARE macro declares a new malloc_type structure with the extern keyword. Here is its function prototype:
#include <sys/types.h>
#include <sys/malloc.h>
MALLOC_DECLARE(type);
This macro is defined in the <sys/malloc.h> header as follows:
#define MALLOC_DECLARE(type) \
extern struct malloc_type type[1]
As an aside, if you require a private malloc_type structure, you would prefix the MALLOC_DEFINE call with the static keyword. In fact, a non-static MALLOC_DEFINE call without a corresponding MALLOC_DECLARE call actually causes a warning under gcc 4.x.
Tying Everything Together
Example 2-1 is a revision of Example 1-2 that uses its own malloc_type structure instead of the kernel-defined M_TEMP.[2] Example 2-1 should clarify any misunderstandings you may have about MALLOC_DEFINE and MALLOC_DECLARE.
NOTE
To save space, the functions echo_open, echo_close, echo_write, and echo_read aren’t listed here, as they haven’t been changed.
Example 2-1. echo-2.0.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#define BUFFER_SIZE 256 MALLOC_DECLARE(M_ECHO);
MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver");
static d_open_t echo_open;
static d_close_t echo_close;
static d_read_t echo_read;
static d_write_t echo_write;
static struct cdevsw echo_cdevsw = {
.d_version = D_VERSION,
.d_open = echo_open,
.d_close = echo_close,
.d_read = echo_read,
.d_write = echo_write,
.d_name = "echo"
};
typedef struct echo {
char buffer[BUFFER_SIZE];
int length;
} echo_t;
static echo_t *echo_message;
static struct cdev *echo_dev;
static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
...
}
static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}
static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
echo_message = malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "echo");
uprintf("Echo driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
free(echo_message, M_ECHO);
uprintf("Echo driver unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(echo, echo_modevent, NULL);
This driver declares and
defines a new malloc_type structure named M_ECHO. To use this malloc_type structure, malloc and free are
adjusted accordingly.
NOTE
Because M_ECHO is used only locally, MALLOC_DECLARE is unnecessary—it’s only included here for demonstration purposes.
Now that Example 2-1 uses a unique malloc_type structure, we can easily profile its dynamic memory usage, like so:
$ sudo kldload ./echo-2.0.ko
Echo driver loaded.
$ vmstat -m | head -n 1 && vmstat -m | grep "echo_buffer"
Type InUse MemUse HighUse Requests Size(s)
echo_buffer 1 1K - 1 512
Notice that Example 2-1 requests 512 bytes, though sizeof(echo_t) is only 260 bytes. This is because malloc rounds up to the nearest power of two when allocating memory. Additionally, note that the second argument to MALLOC_DEFINE (echo_buffer in this example) is used in the output of vmstat (instead of the first argument).
[2] M_TEMP is defined in /sys/kern/kern_malloc.c.
Contiguous Physical Memory Management Routines
The FreeBSD kernel provides two functions for contiguous physical memory management: contigmalloc and contigfree. Ordinarily, you’ll never use these functions. They’re primarily for dealing with machine-dependent code and the occasional network driver.
#include <sys/types.h>
#include <sys/malloc.h>
void *
contigmalloc(unsigned long size, struct malloc_type *type, int flags,
vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
unsigned long boundary);
void
contigfree(void *addr, unsigned long size, struct malloc_type *type);
The contigmalloc function allocates size bytes of contiguous physical memory. If size is 0, contigmalloc will panic. If successful, the allocation will reside between physical addresses low and high, inclusive.
The alignment argument denotes the physical alignment, in bytes, of the allocated memory. This argument must be a power of two.
The boundary argument specifies the physical address boundaries that cannot be crossed by the allocated memory; that is, it cannot cross any multiple of boundary. This argument must be 0, which indicates no boundary restrictions, or a power of two.
The flags argument modifies contigmalloc’s behavior. Valid values for this argument are shown in Table 2-2.
Table 2-2. contigmalloc Symbolic Constants
Constant	Description
M_ZERO | Causes the allocated physical memory to be zero filled |
M_NOWAIT | Causes contigmalloc to return NULL if the allocation cannot be immediately fulfilled due to resource shortage |
M_WAITOK | Indicates that it is okay to wait for resources; if the allocation cannot be immediately fulfilled, the current process is put to sleep to wait for resources to become available |
The contigfree function releases the memory at addr—that was previously allocated by contigmalloc—for reuse. The size argument is the amount of memory to release. Generally, size should equal the amount allocated.
A Straightforward Example
Example 2-2 modifies Example 2-1 to use contigmalloc and contigfree instead of malloc and free. Example 2-2 should clarify any misunderstandings you may have about contigmalloc and contigfree.
NOTE
To save space, the functions echo_open, echo_close, echo_write, and echo_read aren’t listed here, as they haven’t been changed.
Example 2-2. echo_contig.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#define BUFFER_SIZE 256
MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver");
static d_open_t echo_open;
static d_close_t echo_close;
static d_read_t echo_read;
static d_write_t echo_write;
static struct cdevsw echo_cdevsw = {
.d_version = D_VERSION,
.d_open = echo_open,
.d_close = echo_close,
.d_read = echo_read,
.d_write = echo_write,
.d_name = "echo"
};
typedef struct echo {
char buffer[BUFFER_SIZE];
int length;
} echo_t;
static echo_t *echo_message;
static struct cdev *echo_dev;
static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
...
}
static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}
static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
echo_message = contigmalloc(
sizeof(echo_t), M_ECHO,
M_WAITOK | M_ZERO,
0,
0xffffffff,
PAGE_SIZE,
1024 * 1024);
echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "echo");
uprintf("Echo driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
contigfree(echo_message, sizeof(echo_t), M_ECHO);
uprintf("Echo driver unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(echo, echo_modevent, NULL);
Here, contigmalloc allocates
sizeof(echo_t) bytes of
zero-filled memory. This memory resides between physical address
0 and
0xffffffff, is aligned on a
PAGE_SIZE boundary, and does not cross a
1MB address boundary.
The following output shows the results from vmstat -m after loading Example 2-2:
$ sudo kldload ./echo_contig.ko
Echo driver loaded.
$ vmstat -m | head -n 1 && vmstat -m | grep "echo_buffer"
Type InUse MemUse HighUse Requests Size(s)
echo_buffer 1 4K - 1
Notice that Example 2-2 uses 4KB of memory, though sizeof(echo_t) is only 260 bytes. This is because contigmalloc allocates memory in PAGE_SIZE blocks. Predictably, this example was run on an i386 machine, which uses a page size of 4KB.
Conclusion
This chapter detailed FreeBSD’s memory management routines and contiguous physical memory management routines. It also introduced the malloc_type structure.
Incidentally, most drivers should define their own malloc_type structure.
Chapter 3. Device Communication and Control
In Chapter 1 we constructed a driver that could read from and write to a device. In addition to reading and writing, most drivers need to perform other I/O operations, such as reporting error information, ejecting removable media, or activating self-destruct sequences. This chapter details how to make drivers do those things.
We’ll start by describing the ioctl interface, also known as the input/output control interface. This interface is commonly used for device communication and control. Then we’ll describe the sysctl interface, also known as the system control interface. This interface is used to dynamically change or examine the kernel’s parameters, which includes device drivers.
ioctl
The ioctl interface is the catchall of I/O operations (Stevens, 1992). Any operation that cannot be expressed using d_read or d_write (that is, any operation that’s not a data transfer) is supported by d_ioctl.[3] For example, the CD-ROM driver’s d_ioctl function performs 29 distinct operations, such as ejecting the CD, starting audio playback, stopping audio playback, muting the audio, and so on.
The function prototype for d_ioctl is defined in the <sys/conf.h> header as follows:
typedef int d_ioctl_t(struct cdev *dev, u_longcmd, caddr_t
data,
int fflag, struct thread *td);
Here, cmd is an ioctl command passed from user space. ioctl commands are driver-defined numeric constants that identify the different I/O operations that a d_ioctl function can perform. Generally, you’d use the cmd argument in a switch statement to set up a code block for each I/O operation. Any arguments required for an I/O operation are passed through
data.
Here is an example d_ioctl function:
NOTE
Just concentrate on the structure of this code and ignore what it does.
static int
echo_ioctl(struct cdev *dev, u_longcmd, caddr_t
data, int fflag,
struct thread *td)
{
int error = 0;
switch (cmd) {
case ECHO_CLEAR_BUFFER:
memset(echo_message->buffer, '\0',
echo_message->buffer_size);
echo_message->length = 0;
uprintf("Buffer cleared.\n");
break;
case ECHO_SET_BUFFER_SIZE:
error = echo_set_buffer_size(*(int *)data);
if (error == 0)
uprintf("Buffer resized.\n");
break;
default:
error = ENOTTY;
break;
}
return (error);
}
Notice how the cmd argument is the
expression for the switch statement. The constants
ECHO_CLEAR_BUFFER and
ECHO_SET_BUFFER_SIZE are (obviously) the ioctl commands. All ioctl commands are defined using one of four macros. I’ll discuss these macros in the following section.
Additionally, notice how the data argument is
cast—as an integer pointer—before it is dereferenced. This is because data is fundamentally a “pointer to void.”
NOTE
Pointers to void can hold any pointer type, so they must be cast before they’re dereferenced. In fact, you can’t directly dereference a pointer to void.
Finally, according to the POSIX standard, when an inappropriate ioctl command is received, the error code ENOTTY should be returned (Corbet et al., 2005). Hence, the default block sets
error to ENOTTY.
NOTE
At one point in time, only TTY drivers had an ioctl function, which is why ENOTTY means “error: inappropriate ioctl for device” (Corbet et al., 2005).
Now that you’ve examined the structure of a d_ioctl function, I’ll explain how to define an ioctl command.
[3] The d_ioctl function was first introduced in d_foo Functions in Character Drivers.
Defining ioctl Commands
To define an ioctl command, you’d call one of the following macros: _IO, _IOR, _IOW, or _IOWR. An explanation of each macro is provided in Table 3-1.
Table 3-1. ioctl Command Macros
_IO, _IOR, _IOW, and _IOWR are defined in the <sys/ioccom.h> header as follows:
#define _IO(g,n) _IOC(IOC_VOID, (g), (n), 0)
#define _IOR(g,n,t) _IOC(IOC_OUT, (g), (n), sizeof(t))
#define _IOW(g,n,t) _IOC(IOC_IN, (g), (n), sizeof(t))
#define _IOWR(g,n,t) _IOC(IOC_INOUT, (g), (n), sizeof(t))
The g argument, which stands for group, expects an 8-bit magic number. You can choose any number—just use it throughout your driver.
The n argument is the ordinal number. This number is used to differentiate your driver’s ioctl commands from one another.
Finally, the t argument is the type of data transferred during the I/O operation. Obviously, the _IO macro does not have a t argument, because no data transfer occurs.
Generally, ioctl command definitions look like this:
#define FOO_DO_SOMETHING _IO('F', 1)
#define FOO_GET_SOMETHING _IOR('F', 2, int)
#define FOO_SET_SOMETHING _IOW('F', 3, int)
#define FOO_SWITCH_SOMETHING _IOWR('F', 10,struct foo)
Here, 'F' is the magic number for these ioctl commands. Customarily, the first letter of your driver’s name—in uppercase—is selected as the magic number.
Naturally, all of the ordinal numbers are unique. But they don’t have to be consecutive. You can leave gaps.
Lastly, note that you can pass structures as the t argument. Using a structure is how you’ll pass multiple arguments to an ioctl-based operation.
Implementing ioctl
Example 3-1 is a revision of Example 2-1 that adds in a d_ioctl function. As you’ll see, this d_ioctl function handles two ioctl commands.
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 3-1. echo-3.0.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver"); #define ECHO_CLEAR_BUFFER _IO('E', 1)
#define ECHO_SET_BUFFER_SIZE _IOW('E', 2,
int)
static d_open_t echo_open;
static d_close_t echo_close;
static d_read_t echo_read;
static d_write_t echo_write;
static d_ioctl_t echo_ioctl;
static struct cdevsw echo_cdevsw = {
.d_version = D_VERSION,
.d_open = echo_open,
.d_close = echo_close,
.d_read = echo_read,
.d_write = echo_write,
.d_ioctl = echo_ioctl,
.d_name = "echo"
};
typedef struct echo {
int buffer_size;
char *buffer;
int length;
} echo_t;
static echo_t *echo_message;
static struct cdev *echo_dev;
static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
uprintf("Opening echo device.\n");
return (0);
}
static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
uprintf("Closing echo device.\n");
return (0);
}
static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
int error = 0;
int amount;
amount = MIN(uio->uio_resid,
(echo_message->buffer_size - 1 - uio->uio_offset > 0) ?
echo_message->buffer_size - 1 - uio->uio_offset : 0);
if (amount == 0)
return (error);
error = uiomove(echo_message->buffer, amount, uio);
if (error != 0) {
uprintf("Write failed.\n");
return (error);
}
echo_message->buffer[amount] = '\0';
echo_message->length = amount;
return (error);
}
static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
int error = 0;
int amount;
amount = MIN(uio->uio_resid,
(echo_message->length - uio->uio_offset > 0) ?
echo_message->length - uio->uio_offset : 0);
error = uiomove(echo_message->buffer + uio->uio_offset, amount, uio);
if (error != 0)
uprintf("Read failed.\n");
return (error);
}
static int
echo_set_buffer_size(int size)
{
int error = 0;
if (echo_message->buffer_size == size)
return (error);
if (size >= 128 && size <= 512) {
echo_message->buffer = realloc(echo_message->buffer, size,
M_ECHO, M_WAITOK);
echo_message->buffer_size = size;
if (echo_message->length >= size) {
echo_message->length = size - 1;
echo_message->buffer[size - 1] = '\0';
}
} else
error = EINVAL;
return (error);
}
static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
int error = 0;
switch (cmd) {
case ECHO_CLEAR_BUFFER:
memset(echo_message->buffer, '\0',
echo_message->buffer_size);
echo_message->length = 0;
uprintf("Buffer cleared.\n");
break;
case ECHO_SET_BUFFER_SIZE:
error = echo_set_buffer_size(*(int *)data);
if (error == 0)
uprintf("Buffer resized.\n");
break;
default:
error = ENOTTY;
break;
}
return (error);
}
static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
echo_message = malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
echo_message->buffer_size = 256;
echo_message->buffer = malloc(echo_message->buffer_size,
M_ECHO, M_WAITOK);
echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "echo");
uprintf("Echo driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
free(echo_message->buffer, M_ECHO);
free(echo_message, M_ECHO);
uprintf("Echo driver unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(echo, echo_modevent, NULL);
This driver starts by defining two ioctl commands: ECHO_CLEAR_BUFFER (which clears the memory buffer) and
ECHO_SET_BUFFER_SIZE (which takes an
integer to resize the memory buffer).
NOTE
Usually, ioctl commands are defined in a header file—they were defined in Example 3-1 solely to simplify this discussion.
Obviously, to accommodate adding in a d_ioctl function, the character device switch table was adapted. Moreover, struct echo was adjusted to include a variable (
buffer_size) to maintain the buffer size (because it can be changed now). Naturally, Example 3-1 was
altered to use this new variable.
NOTE
Interestingly, only echo_write had to be altered. The echo_open, echo_close, and echo_read functions remain the same.
The echo_write, echo_set_buffer_size, echo_ioctl, and echo_modevent functions call for a more in-depth explanation and are therefore described in their own sections.
echo_write Function
As mentioned above, the echo_write function was altered from its Example 2-1 (and Example 1-2) form. Here is its function definition (again):
static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
int error = 0;
int amount;
amount =MIN(
uio->uio_resid,
(echo_message->buffer_size - 1 - uio->uio_offset > 0) ?
echo_message->buffer_size - 1 - uio->uio_offset : 0);
if (amount == 0)
return (error);
error =uiomove(
echo_message->buffer,
amount,
uio);
if (error != 0) {
uprintf("Write failed.\n");
return (error);
}
echo_message->buffer[amount] = '\0';
echo_message->length = amount;
return (error);
}
This version of echo_write uses uiomove (as described in Chapter 1) instead of copyin. Note that uiomove decrements uio->uio_resid (by one) and increments uio->uio_offset (by one) for each byte copied. This lets multiple calls to uiomove effortlessly copy a chunk of data.
NOTE
You’ll recall that uio->uio_resid and uio->uio_offset denote the number of bytes remaining to be transferred and an offset into the data (that is, the character string), respectively.
This function starts by determining the number of bytes to copy—either the
amount the user sent or
whatever the buffer can accommodate. Then it
transfers that
amount from
user space to
kernel space.
The remainder of this function should be self-explanatory.
echo_set_buffer_size Function
As its name implies, the echo_set_buffer_size function takes an integer to resize the memory buffer echo_message->buffer. Here is its function definition (again):
static int
echo_set_buffer_size(int size)
{
int error = 0;
if (
echo_message->buffer_size ==
size)
return (error);
if (size >= 128 && size <= 512) {
echo_message->buffer =realloc(echo_message->buffer, size,
M_ECHO, M_WAITOK);
echo_message->buffer_size = size;
if (echo_message->length >= size) {
echo_message->length = size - 1;
echo_message->buffer[size - 1] = '\0';
}
} else
error = EINVAL;
return (error);
}
This function can be split into three parts. The first part confirms that the
current and
proposed buffer sizes are distinct (or else
nothing needs to occur).
The second part changes the size of the memory buffer. Then it
records the new buffer size. Note that if the data stored in the buffer is longer than the proposed buffer size, the resize operation (that is, realloc) will truncate that data.
The third part comes about only if the data stored in the buffer was truncated. It begins by
correcting the stored data’s length. Then it
null-terminates the data.
echo_ioctl Function
The echo_ioctl function is the d_ioctl function for Example 3-1. Here is its function definition (again):
static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_tdata, int fflag,
struct thread *td)
{
int error = 0;
switch (cmd) {
case ECHO_CLEAR_BUFFER:
memset(echo_message->buffer, '\0',
echo_message->buffer_size);
echo_message->length = 0;
uprintf("Buffer cleared.\n");
break;
case ECHO_SET_BUFFER_SIZE:
error =echo_set_buffer_size(*(int *)
data);
if (error == 0)
uprintf("Buffer resized.\n");
break;
default:
error = ENOTTY;
break;
}
return (error);
}
This function can perform one of two ioctl-based operations. The first clears the memory buffer. It begins by
zeroing the buffer. Then it
sets the data length to 0.
The second resizes the memory buffer by calling
echo_set_buffer_size. Note that this operation requires an
argument: the proposed buffer size. This argument is obtained from user space through
data.
NOTE
Remember that you must cast data before it can be dereferenced.
echo_modevent Function
As you know, the echo_modevent function is the module event handler. Like echo_write, this function had to be altered to accommodate adding in echo_ioctl. Here is its function definition (again):
static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
echo_message =malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
echo_message->buffer_size = 256;
echo_message->buffer =malloc(echo_message->buffer_size,
M_ECHO, M_WAITOK);
echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "echo");
uprintf("Echo driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
free(echo_message->buffer, M_ECHO);
free(echo_message, M_ECHO);
uprintf("Echo driver unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
This version of echo_modevent allocates memory for the echo structure and
memory buffer individually—that’s the only change. Previously, the memory buffer couldn’t be resized. So, individual memory allocations were unnecessary.
Don’t Panic
Now that we’ve walked through Example 3-1, let’s give it a try:
$ sudo kldload ./echo-3.0.ko
Echo driver loaded.
$ su
Password:
echo "DON'T PANIC" > /dev/echo
Opening echo device.
Closing echo device.
cat /dev/echo
Opening echo device.
DON'T PANIC
Closing echo device.
Apparently it works. But how do we invoke echo_ioctl?
Invoking ioctl
To invoke a d_ioctl function, you’d use the ioctl(2) system call.
#include <sys/ioctl.h>
int
ioctl(int d, unsigned long request, ...);
The d argument, which stands for descriptor, expects a file descriptor for a device node. The request argument is the ioctl command to be issued (for example, ECHO_CLEAR_BUFFER). The remaining argument (...) is a pointer to the data that’ll be passed to the d_ioctl function.
Example 3-2 presents a command-line utility designed to invoke the echo_ioctl function in Example 3-1:
Example 3-2. echo_config.c
#include <sys/types.h>
#include <sys/ioctl.h>
#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> #define ECHO_CLEAR_BUFFER _IO('E', 1)
#define ECHO_SET_BUFFER_SIZE _IOW('E', 2, int)
static enum {UNSET, CLEAR, SETSIZE} action = UNSET;
/*
* The usage statement: echo_config -c | -s size
*/
static void
usage()
{
/*
* Arguments for this program are "either-or." That is,
* 'echo_config -c' and 'echo_config -s size' are valid; however,
* 'echo_config -c -s size' is invalid.
*/
fprintf(stderr, "usage: echo_config -c | -s size\n");
exit(1);
}
/*
* This program clears or resizes the memory buffer
* found in /dev/echo.
*/
int
main(int argc, char *argv[])
{
int ch, fd, i, size;
char *p;
/*
* Parse the command-line argument list to determine
* the correct course of action.
*
* -c: clear the memory buffer
* -s size: resize the memory buffer to size.
*/
while ((ch = getopt(argc, argv, "cs:")) != −1)
switch (ch) {
case 'c':
if (action != UNSET)
usage();
action = CLEAR;
break;
case 's':
if (action != UNSET)
usage();
action = SETSIZE;
size = (int)strtol(optarg, &p, 10);
if (*p)
errx(1, "illegal size -- %s", optarg);
break;
default:
usage();
}
/*
* Perform the chosen action.
*/
if (action == CLEAR) {
fd = open("/dev/echo", O_RDWR);
if (fd < 0)
err(1, "open(/dev/echo)");
i = ioctl(fd, ECHO_CLEAR_BUFFER,
NULL);
if (i < 0)
err(1, "ioctl(/dev/echo)");
close (fd);
} else if (action == SETSIZE) {
fd = open("/dev/echo", O_RDWR);
if (fd < 0)
err(1, "open(/dev/echo)");
i = ioctl(fd, ECHO_SET_BUFFER_SIZE, &size);
if (i < 0)
err(1, "ioctl(/dev/echo)");
close (fd);
} else
usage();
return (0);
}
NOTE
Example 3-2 is a fairly standard command-line utility. As such, I won’t cover its program structure. Instead, I’ll concentrate on how it invokes echo_ioctl.
This program begins by redefining ECHO_CLEAR_BUFFER and
ECHO_SET_BUFFER_SIZE.[4] To issue an ioctl command, Example 3-2 starts by
opening /dev/echo. Then it
calls ioctl(2) with the appropriate arguments.
Note that since ECHO_CLEAR_BUFFER doesn’t transmit any data, NULL is passed as the third argument to ioctl(2).
The following shows the results from executing Example 3-2 to clear the memory buffer:
$ sudo cat /dev/echo
Opening echo device.
DON'T PANIC
Closing echo device.
$ sudo ./echo_config -c
Opening echo device.
Buffer cleared.
Closing echo device.
$ sudo cat /dev/echo
Opening echo device.
Closing echo device.
The following shows the results from executing Example 3-2 to resize the memory buffer:
$ sudo ./echo_config -s 128
Opening echo device.
Buffer resized.
Closing echo device.
[4] This step could have been avoided by defining those ioctl commands in a header file.
sysctl
As mentioned earlier, the sysctl interface is used to dynamically change or examine the kernel’s parameters, which includes device drivers. For example, some drivers let you enable (or disable) debug options using sysctls.
NOTE
This book was written under the assumption that you know how to work with sysctls; if you don’t, see the sysctl(8) manual page.
Unlike with previous topics, I’m going to take a holistic approach to explain sysctl. That is, I’m going to show an example first, and then I’ll describe the sysctl functions. I found this to be the easiest way to grok implementing sysctls.
Implementing sysctls, Part 1
Example 3-3 is a complete KLD (based on code written by Andrzej Bialecki) that creates multiple sysctls.
Example 3-3. pointless.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
static long a = 100;
static int b = 200;
static char *c = "Are you suggesting coconuts migrate?";
static struct sysctl_ctx_list clist;
static struct sysctl_oid *poid;
static int sysctl_pointless_procedure(SYSCTL_HANDLER_ARGS)
{
char *buf = "Not at all. They could be carried.";
return (sysctl_handle_string(oidp, buf, strlen(buf), req));
}
static int
pointless_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
sysctl_ctx_init(&clist);
poid = SYSCTL_ADD_NODE(&clist,
SYSCTL_STATIC_CHILDREN(/* tree top */), OID_AUTO,
"example", CTLFLAG_RW, 0, "new top-level tree");
if (poid == NULL) {
uprintf("SYSCTL_ADD_NODE failed.\n");
return (EINVAL);
}
SYSCTL_ADD_LONG(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
"long", CTLFLAG_RW, &a, "new long leaf");
SYSCTL_ADD_INT(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
"int", CTLFLAG_RW, &b, 0, "new int leaf");
poid = SYSCTL_ADD_NODE(&clist, SYSCTL_CHILDREN(poid),
OID_AUTO, "node", CTLFLAG_RW, 0,
"new tree under example");
if (poid == NULL) {
uprintf("SYSCTL_ADD_NODE failed.\n");
return (EINVAL);
}
SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
"proc", CTLFLAG_RD, 0, 0, sysctl_pointless_procedure,
"A", "new proc leaf");
poid = SYSCTL_ADD_NODE(&clist,
SYSCTL_STATIC_CHILDREN(_debug), OID_AUTO, "example",
CTLFLAG_RW, 0, "new tree under debug");
if (poid == NULL) {
uprintf("SYSCTL_ADD_NODE failed.\n");
return (EINVAL);
}
SYSCTL_ADD_STRING(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
"string", CTLFLAG_RD, c, 0, "new string leaf");
uprintf("Pointless module loaded.\n");
break;
case MOD_UNLOAD:
if (sysctl_ctx_free(&clist)) {
uprintf("sysctl_ctx_free failed.\n");
return (ENOTEMPTY);
}
uprintf("Pointless module unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static moduledata_t pointless_mod = {
"pointless",
pointless_modevent,
NULL
};
DECLARE_MODULE(pointless, pointless_mod, SI_SUB_EXEC, SI_ORDER_ANY);
On module load, Example 3-3 starts by initializing a sysctl context named clist. Generally speaking, sysctl contexts are responsible for keeping track of dynamically created sysctls—this is why clist gets passed to every SYSCTL_ADD_* call.
The first SYSCTL_ADD_NODE call creates a new top-level category named example. The
SYSCTL_ADD_LONG call creates a new sysctl named long that handles a long variable. Notice that SYSCTL_ADD_LONG’s second argument is SYSCTL_CHILDREN(poid)[5] and that poid contains the return value from SYSCTL_ADD_NODE. Thus, long is placed under example, like so:
example.long
The SYSCTL_ADD_INT call creates a new sysctl named int that handles an integer variable. For reasons identical to those for SYSCTL_ADD_LONG, int is placed under example:
example.long
example.int
The second SYSCTL_ADD_NODE call creates a new subcategory named node, which is placed under example, like so:
example.long
example.int
example.node
The SYSCTL_ADD_PROC call creates a new sysctl named proc that employs a
function to handle its read and write requests; in this case, the function simply prints some flavor text. You’ll note that SYSCTL_ADD_PROC’s second argument is also SYSCTL_CHILDREN(poid). But poid now contains the return value from the second SYSCTL_ADD_NODE call. So, proc is placed under node:
example.long
example.int
example.node.proc
The third SYSCTL_ADD_NODE call creates a new subcategory named example. As you can see, its second argument is SYSCTL_STATIC_CHILDREN(_debug),[6] which puts example under debug (which is a static top-level category).
debug.example
example.long
example.int
example.node.proc
The SYSCTL_ADD_STRING call creates a new sysctl named string that handles a character string. For obvious reasons, string is placed under debug.example:
debug.example.string
example.long
example.int
example.node.proc
On module unload, Example 3-3 simply passes clist to sysctl_ctx_free to destroy every sysctl created during module load.
The following shows the results from loading Example 3-3:
$ sudo kldload ./pointless.ko
Pointless module loaded.
$ sysctl -A | grep example
debug.example.string: Are you suggesting coconuts migrate?
example.long: 100
example.int: 200
example.node.proc: Not at all. They could be carried.
Now, let’s discuss in detail the different functions and macros used in Example 3-3.
[5] The SYSCTL_CHILDREN macro is described in SYSCTL_STATIC_CHILDREN Macro.
[6] The SYSCTL_STATIC_CHILDREN macro is described in SYSCTL_STATIC_CHILDREN Macro.
sysctl Context Management Routines
As mentioned previously, sysctl contexts manage dynamically created sysctls. A sysctl context is initialized via the sysctl_ctx_init function.
#include <sys/types.h>
#include <sys/sysctl.h>
int
sysctl_ctx_init(struct sysctl_ctx_list *clist);
After a sysctl context is initialized, it can be passed to the various SYSCTL_ADD_* macros. These macros will update the sysctl context with pointers to the newly created sysctls.
Conversely, the sysctl_ctx_free function takes a sysctl context and destroys every sysctl that it has a pointer to.
#include <sys/types.h>
#include <sys/sysctl.h>
int
sysctl_ctx_free(struct sysctl_ctx_list *clist);
If a sysctl cannot be destroyed, all the sysctls that were associated with the sysctl context are reinstated.
Creating Dynamic sysctls
The FreeBSD kernel provides the following 10 macros for creating sysctls during runtime:
#include <sys/types.h>
#include <sys/sysctl.h>
struct sysctl_oid *
SYSCTL_ADD_OID(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int kind, void *arg1, int arg2, int (*handler) (SYSCTL_HANDLER_ARGS),
const char *format, const char *descr);
struct sysctl_oid *
SYSCTL_ADD_NODE(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, int (*handler) (SYSCTL_HANDLER_ARGS), const char *descr);
struct sysctl_oid *
SYSCTL_ADD_STRING(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, char *arg, int len, const char *descr);
struct sysctl_oid *
SYSCTL_ADD_INT(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, int *arg, int len, const char *descr);
struct sysctl_oid *
SYSCTL_ADD_UINT(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, unsigned int *arg, int len, const char *descr);
struct sysctl_oid *
SYSCTL_ADD_LONG(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, long *arg, const char *descr);
struct sysctl_oid *
SYSCTL_ADD_ULONG(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, unsigned long *arg, const char *descr);
struct sysctl_oid *
SYSCTL_ADD_OPAQUE(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, void *arg, int len, const char *format,
const char *descr);
struct sysctl_oid *
SYSCTL_ADD_STRUCT(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, void *arg, STRUCT_NAME, const char *descr);
struct sysctl_oid *
SYSCTL_ADD_PROC(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *parent, int number, const char *name,
int access, void *arg, int len,
int (*handler) (SYSCTL_HANDLER_ARGS), const char *format,
const char *descr);
The SYSCTL_ADD_OID macro creates a new sysctl that can handle any data type. If successful, a pointer to the sysctl is returned; otherwise, NULL is returned.
The other SYSCTL_ADD_* macros are alternatives to SYSCTL_ADD_OID that create a sysctl that can handle a specific data type. These macros are explained in Table 3-2.
Table 3-2. SYSCTL_ADD_* Macros
Macro | Description |
---|---|
SYSCTL_ADD_NODE | Creates a new node (or category) to which child nodes may be added |
SYSCTL_ADD_STRING | Creates a new sysctl that handles a null-terminated character string |
SYSCTL_ADD_INT | Creates a new sysctl that handles an integer variable |
SYSCTL_ADD_UINT | Creates a new sysctl that handles an unsigned integer variable |
SYSCTL_ADD_LONG | Creates a new sysctl that handles a long variable |
SYSCTL_ADD_ULONG | Creates a new sysctl that handles an unsigned long variable |
SYSCTL_ADD_OPAQUE | Creates a new sysctl that handles a chunk of opaque data; the size of this data is specified by the len argument |
SYSCTL_ADD_STRUCT | Creates a new sysctl that handles a structure |
SYSCTL_ADD_PROC | Creates a new sysctl that uses a function to handle its read and write requests; this “handler function” is normally used to process the data before importing or exporting it |
In most cases, you should use a SYSCTL_ADD_* macro instead of the generic SYSCTL_ADD_OID macro.
The arguments for the SYSCTL_ADD_* macros are described in Table 3-3.
Table 3-3. SYSCTL_ADD_* Arguments
A sysctl created by a SYSCTL_ADD_* macro must be connected to a parent sysctl. This is done by passing SYSCTL_STATIC_CHILDREN or SYSCTL_CHILDREN as the parent argument.
SYSCTL_STATIC_CHILDREN Macro
The SYSCTL_STATIC_CHILDREN macro is passed as parent when connecting to a static node. A static node is part of the base system.
#include <sys/types.h>
#include <sys/sysctl.h>
struct sysctl_oid_list *
SYSCTL_STATIC_CHILDREN(struct sysctl_oid_list OID_NAME);
This macro takes the name of the parent sysctl preceded by an underscore. And all dots must be replaced by an underscore. So to connect to hw.usb, you would use _hw_usb.
If SYSCTL_STATIC_CHILDREN(/* no argument */) is passed as parent to SYSCTL_ADD_NODE, a new top-level category will be created.
SYSCTL_CHILDREN Macro
The SYSCTL_CHILDREN macro is passed as parent when connecting to a dynamic node. A dynamic node is created by a SYSCTL_ADD_NODE call.
#include <sys/types.h>
#include <sys/sysctl.h>
struct sysctl_oid_list *
SYSCTL_CHILDREN(struct sysctl_oid *oidp);
This macro takes as its sole argument the pointer returned by a SYSCTL_ADD_NODE call.
Implementing sysctls, Part 2
Now that you know how to create sysctls during runtime, let’s do some actual device control (as opposed to quoting Monty Python).
Example 3-4 is a revision of Example 3-1 that employs a sysctl to resize the memory buffer.
NOTE
To save space, the functions echo_open, echo_close, echo_write, and echo_read aren’t listed here, as they haven’t been changed.
Example 3-4. echo-4.0.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/sysctl.h>
MALLOC_DEFINE(M_ECHO, "echo_buffer", "buffer for echo driver");
#define ECHO_CLEAR_BUFFER _IO('E', 1)
static d_open_t echo_open;
static d_close_t echo_close;
static d_read_t echo_read;
static d_write_t echo_write;
static d_ioctl_t echo_ioctl;
static struct cdevsw echo_cdevsw = {
.d_version = D_VERSION,
.d_open = echo_open,
.d_close = echo_close,
.d_read = echo_read,
.d_write = echo_write,
.d_ioctl = echo_ioctl,
.d_name = "echo"
};
typedef struct echo {
int buffer_size;
char *buffer;
int length;
} echo_t;
static echo_t *echo_message;
static struct cdev *echo_dev;
static struct sysctl_ctx_list clist;
static struct sysctl_oid *poid;
static int
echo_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
...
}
static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}
static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
int error = 0;
switch (cmd) {
case ECHO_CLEAR_BUFFER:
memset(echo_message->buffer, '\0',
echo_message->buffer_size);
echo_message->length = 0;
uprintf("Buffer cleared.\n");
break;
default:
error = ENOTTY;
break;
}
return (error);
}
static int
sysctl_set_buffer_size(SYSCTL_HANDLER_ARGS)
{
int error = 0;
int size = echo_message->buffer_size;
error = sysctl_handle_int(oidp, &size, 0, req);
if (error || !req->newptr || echo_message->buffer_size == size)
return (error);
if (size >= 128 && size <= 512) {
echo_message->buffer = realloc(echo_message->buffer, size,
M_ECHO, M_WAITOK);
echo_message->buffer_size = size;
if (echo_message->length >= size) {
echo_message->length = size - 1;
echo_message->buffer[size - 1] = '\0';
}
} else
error = EINVAL;
return (error);
}
static int
echo_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
echo_message = malloc(sizeof(echo_t), M_ECHO, M_WAITOK);
echo_message->buffer_size = 256;
echo_message->buffer = malloc(echo_message->buffer_size,
M_ECHO, M_WAITOK);
sysctl_ctx_init(&clist);
poid = SYSCTL_ADD_NODE(&clist,
SYSCTL_STATIC_CHILDREN(/* tree top */), OID_AUTO,
"echo", CTLFLAG_RW, 0, "echo root node");
SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO,
"buffer_size", CTLTYPE_INT | CTLFLAG_RW,
&echo_message->buffer_size, 0,
sysctl_set_buffer_size,
"I", "echo buffer size");
echo_dev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "echo");
uprintf("Echo driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
sysctl_ctx_free(&clist);
free(echo_message->buffer, M_ECHO);
free(echo_message, M_ECHO);
uprintf("Echo driver unloaded.\n");
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(echo, echo_modevent, NULL);
On module load, Example 3-4 creates a sysctl named echo.buffer_size that manages the size of the memory buffer. Moreover, this sysctl uses a
handler function named sysctl_set_buffer_size to resize the memory buffer.
sysctl_set_buffer_size Function
As stated above, the sysctl_set_buffer_size function resizes the memory buffer. Before I describe this function, let’s identify its arguments.
static int
sysctl_set_buffer_size(SYSCTL_HANDLER_ARGS)
The constant SYSCTL_HANDLER_ARGS is defined in <sys/sysctl.h> like so:
#define SYSCTL_HANDLER_ARGS struct sysctl_oid*oidp, void
*arg1, \
intarg2, struct sysctl_req
*req
Here, oidp points to the sysctl,
arg1 points to the data that the sysctl manages,
arg2 is the length of the data, and
req depicts the sysctl request.
Now, keeping these arguments in mind, let’s examine the function sysctl_set_buffer_size.
static int
sysctl_set_buffer_size(SYSCTL_HANDLER_ARGS)
{
int error = 0;
int size = echo_message->buffer_size;
error =sysctl_handle_int(oidp,
&size, 0, req);
if (
error ||
!req->newptr || echo_message->buffer_size == size)
return (error);
if (size >= 128 && size <= 512) {
echo_message->buffer = realloc(echo_message->buffer, size,
M_ECHO, M_WAITOK);
echo_message->buffer_size = size;
if (echo_message->length >= size) {
echo_message->length = size - 1;
echo_message->buffer[size - 1] = '\0';
}
} else
error = EINVAL;
return (error);
}
This function first sets size to the current buffer size. Afterward,
sysctl_handle_int is called to obtain the new sysctl value (that is, the proposed buffer size) from user space.
Note that the second argument to sysctl_handle_int is &size. See, this function takes a pointer to the original sysctl value and overwrites it with the new sysctl value.
This if statement ensures that the new sysctl value was obtained successfully. It works by verifying that sysctl_handle_int returned
error free and that
req->newptr is valid.
The remainder of sysctl_set_buffer_size is identical to echo_set_buffer_size, which was described in echo_set_buffer_size Function.
Don’t Panic
Now, let’s give Example 3-4 a try:
$ sudo kldload ./echo-4.0.ko
Echo driver loaded.
$ sudo sysctl echo.buffer_size=128
echo.buffer_size: 256 -> 128
Success!
Conclusion
This chapter has described the traditional methods for device communication and control: sysctl and ioctl. Generally, sysctls are employed to adjust parameters, and ioctls are used for everything else—that’s why ioctls are the catchall of I/O operations. Note that if you find yourself creating a device node just for ioctl requests, you should probably use sysctls instead.
Incidentally, be aware that it’s fairly trivial to write user-mode programs that interact with drivers. Thus, your drivers—not your user-mode programs (for example, Example 3-2)—should always validate user input.
Chapter 4. Thread Synchronization
This chapter deals with the problem of data and state corruption caused by concurrent threads. When multiple threads executing on different CPUs simultaneously modify the same data structure, that structure can be corrupted. Similarly, when a thread gets interrupted and another thread manipulates the data that the first thread was manipulating, that data can be corrupted (Baldwin, 2002).
Fortunately, FreeBSD provides a set of synchronization primitives to deal with these issues. Before I describe what synchronization primitives do, you’ll need an in-depth understanding of the abovementioned concurrency issues, also known as synchronization problems. To that end, let’s analyze a few.
A Simple Synchronization Problem
Consider the following scenario in which two threads increment the same global variable. On i386, this operation might utilize the following processor instructions:
movl count,%eax # Move the value of count into a register (eax).
addl $0x1,%eax # Add 1 to the value in the register.
movl %eax,count # Move the value of the register into count.
Imagine that count is currently 0 and that the first thread manages to load the current value of count into %eax (that is, it completes the first instruction) just before the second thread preempts it. As part of the thread switch, FreeBSD saves the value of %eax, which is 0, into the outgoing thread’s context. Now, suppose that the second thread manages to complete all three instructions, thereby incrementing count from 0 to 1. If the first thread preempts the second thread, FreeBSD will restore its thread context, which includes setting %eax to 0. The first thread, which resumes execution at the second instruction, will now proceed to add 1 to %eax and then store the result in count. At this point, count equals 1 when it should equal 2. Thus, because of a synchronization problem, we lost an update. This can also occur when the two threads are executing concurrently but just slightly out of step (that is, one thread begins executing the first instruction when the other thread begins executing the second instruction).
A More Complex Synchronization Problem
Example 4-1 is a complete character driver that lets you manipulate a doubly linked list through its d_ioctl function. You can add or remove an item from the list, determine whether an item is on the list, or print every item on the list. Example 4-1 also contains some synchronization problems.
NOTE
Take a quick look at this code and try to identify the synchronization problems.
Example 4-1. race.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include "race_ioctl.h"
MALLOC_DEFINE(M_RACE, "race", "race object");
struct race_softc {
LIST_ENTRY(race_softc) list;
int unit;
};
static LIST_HEAD(, race_softc) race_list =
LIST_HEAD_INITIALIZER(&race_list);
static struct race_softc * race_new(void);
static struct race_softc * race_find(int unit);
static void race_destroy(struct race_softc *sc);
static d_ioctl_t race_ioctl; static struct cdevsw race_cdevsw = {
.d_version = D_VERSION,
.d_ioctl = race_ioctl,
.d_name = RACE_NAME
};
static struct cdev *race_dev;
static int race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
struct race_softc *sc;
int error = 0;
switch (cmd) {
case RACE_IOC_ATTACH:
sc = race_new();
*(int *)data = sc->unit;
break;
case RACE_IOC_DETACH:
sc = race_find(*(int *)data);
if (sc == NULL)
return (ENOENT);
race_destroy(sc);
break;
case RACE_IOC_QUERY:
sc = race_find(*(int *)data);
if (sc == NULL)
return (ENOENT);
break;
case RACE_IOC_LIST:
uprintf(" UNIT\n");
LIST_FOREACH(sc, &race_list, list)
uprintf(" %d\n", sc->unit);
break;
default:
error = ENOTTY;
break;
}
return (error);
}
static struct race_softc *
race_new(void)
{
struct race_softc *sc;
int unit, max = −1;
LIST_FOREACH(sc, &race_list, list) {
if (sc->unit > max)
max = sc->unit;
}
unit = max + 1;
sc = (struct race_softc *)malloc(sizeof(struct race_softc), M_RACE,
M_WAITOK | M_ZERO);
sc->unit = unit;
LIST_INSERT_HEAD(&race_list, sc, list);
return (sc);
}
static struct race_softc *
race_find(int unit)
{
struct race_softc *sc;
LIST_FOREACH(sc, &race_list, list) {
if (sc->unit == unit)
break;
}
return (sc);
}
static void
race_destroy(struct race_softc *sc)
{
LIST_REMOVE(sc, list);
free(sc, M_RACE);
}
static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, RACE_NAME);
uprintf("Race driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(race_dev);
uprintf("Race driver unloaded.\n");
break;
case MOD_QUIESCE:
if (!LIST_EMPTY(&race_list))
error = EBUSY;
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(race, race_modevent, NULL);
Before I identify Example 4-1’s synchronization problems, let’s walk through it. Example 4-1 begins by defining and
initializing a doubly linked list of race_softc structures named race_list. Each race_softc structure contains a (unique)
unit number and a
structure that maintains a pointer to the previous and next race_softc structure in race_list.
Next, Example 4-1’s character device switch table is defined. The constant
RACE_NAME is defined in the race_ioctl.h header as follows:
#define RACE_NAME "race"
Note how Example 4-1’s character device switch table doesn’t define d_open and d_close. Recall, from Chapter 1, that if a d_foo function is undefined the corresponding operation is unsupported. However,d_open and d_close are unique; when they’re undefined the kernel will automatically define them as follows:
int
nullop(void)
{
return (0);
}
This ensures that every registered character device can be opened and closed.
NOTE
Drivers commonly forgo defining a d_open and d_close function when they don’t need to prepare their devices for I/O—like Example 4-1.
Next, Example 4-1’s d_ioctl function, named race_ioctl, is defined. This function is like the main function for Example 4-1. It uses three helper functions to do its work:
race_new
race_find
race_destroy
Before I describe race_ioctl, I’ll describe these functions first.
race_new Function
The race_new function creates a new race_softc structure, which is then inserted at the head of race_list. Here is the function definition for race_new (again):
static struct race_softc *
race_new(void)
{
struct race_softc *sc;
int unit, max = −1;
LIST_FOREACH(sc, &race_list, list) {
if (sc->unit > max)
max = sc->unit;
}
unit =max + 1;
sc = (struct race_softc *)malloc(sizeof(struct race_softc), M_RACE,
M_WAITOK | M_ZERO);
sc->unit =unit;
LIST_INSERT_HEAD(&race_list, sc, list);
return (sc);
}
This function first iterates through race_list looking for the largest unit number, which it stores in
max. Next, unit is set to
max plus one. Then race_new
allocates memory for a new race_softc structure, assigns it the unit number
unit, and
inserts it at the head of race_list. Lastly, race_new
returns a pointer to the new race_softc structure.
race_find Function
The race_find function takes a unit number and finds the associated race_softc structure on race_list.
static struct race_softc *
race_find(int unit)
{
struct race_softc *sc;
LIST_FOREACH(sc, &race_list, list) {
if (sc->unit == unit)
break;
}
return (sc);
}
If race_find is successful, a pointer to the race_softc structure is returned; otherwise, NULL is returned.
race_destroy Function
The race_destroy function destroys a race_softc structure on race_list. Here is its function definition (again):
static void
race_destroy(struct race_softc *sc)
{
LIST_REMOVE(sc, list);
free(sc, M_RACE);
}
This function takes a pointer to a race_softc structure and
removes that structure from race_list. Then it
frees the allocated memory for that structure.
race_ioctl Function
Before I walk through race_ioctl, an explanation of its ioctl commands, which are defined in race_ioctl.h, is needed.
#define RACE_IOC_ATTACH _IOR('R', 0, int)
#define RACE_IOC_DETACH _IOW('R', 1, int)
#define RACE_IOC_QUERY _IOW('R', 2, int)
#define RACE_IOC_LIST _IO('R', 3)
As you can see, three of race_ioctl’s ioctl commands transfer an integer value. As you’ll see, this integer value is a unit number.
Here is the function definition for race_ioctl (again):
static int
race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
struct race_softc *sc;
int error = 0;
switch (cmd) {
case RACE_IOC_ATTACH:
sc =race_new();
*(int *)data = sc->unit;
break;
case RACE_IOC_DETACH:
sc = race_find(*(int *)data);
if (sc == NULL)
return (ENOENT);
race_destroy(sc);
break;
case RACE_IOC_QUERY:
sc = race_find(*(int *)data);
if (sc == NULL)
return (ENOENT);
break;
case RACE_IOC_LIST:
uprintf(" UNIT\n");
LIST_FOREACH(sc, &race_list, list)
uprintf(" %d\n", sc->unit);
break;
default:
error = ENOTTY;
break;
}
return (error);
}
This function can perform one of four ioctl-based operations. The first, RACE_IOC_ATTACH,
creates a new race_softc structure, which is then inserted at the head of race_list. Afterward, the unit number of the new race_softc structure is
returned.
The second operation, RACE_IOC_DETACH, removes a user-specified race_softc structure from race_list.
The third operation, RACE_IOC_QUERY, determines whether a user-specified race_softc structure is on race_list.
Lastly, the fourth operation, RACE_IOC_LIST, prints the unit number of every race_softc structure on race_list.
race_modevent Function
The race_modevent function is the module event handler for Example 4-1. Here is its function definition (again):
static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
switch (event) {
case MOD_LOAD:
race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, RACE_NAME);
uprintf("Race driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(race_dev);
uprintf("Race driver unloaded.\n");
break;
case MOD_QUIESCE:
if (!LIST_EMPTY(&race_list))
error = EBUSY;
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
As you can see, this function includes a new case: MOD_QUIESCE.
NOTE
Because MOD_LOAD and MOD_UNLOAD are extremely rudimentary and because you’ve seen similar code elsewhere, I’ll omit discussing them.
When one issues the kldunload(8) command, MOD_QUIESCE is run before MOD_UNLOAD. If MOD_QUIESCE returns an error, MOD_UNLOAD does not get executed. In other words, MOD_QUIESCE verifies that it is safe to unload your module.
NOTE
The kldunload -f command ignores every error returned by MOD_QUIESCE. So you can always unload a module, but it may not be the best idea.
Here, MOD_QUIESCE guarantees that race_list is empty (before Example 4-1 is unloaded). This is done to prevent memory leaks from any potentially unclaimed race_softc structures.
The Root of the Problem
Now that we’ve walked through Example 4-1, let’s run it and see if we can identify its synchronization problems.
Example 4-2 presents a command-line utility designed to invoke the race_ioctl function in Example 4-1:
Example 4-2. race_config.c
#include <sys/types.h>
#include <sys/ioctl.h>
#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "../race/race_ioctl.h"
static enum {UNSET, ATTACH, DETACH, QUERY, LIST} action = UNSET;
/*
* The usage statement: race_config -a | -d unit | -q unit | -l
*/
static void
usage()
{
/*
* Arguments for this program are "either-or." For example,
* 'race_config -a' or 'race_config -d unit' are valid; however,
* 'race_config -a -d unit' is invalid.
*/
fprintf(stderr, "usage: race_config -a | -d unit | -q unit | -l\n");
exit(1);
}
/*
* This program manages the doubly linked list found in /dev/race. It
* allows you to add or remove an item, query the existence of an item,
* or print every item on the list.
*/
int
main(int argc, char *argv[])
{
int ch, fd, i, unit;
char *p;
/*
* Parse the command line argument list to determine
* the correct course of action.
*
* -a: add an item.
* -d unit: detach an item.
* -q unit: query the existence of an item.
* -l: list every item.
*/
while ((ch = getopt(argc, argv, "ad:q:l")) != −1)
switch (ch) {
case 'a':
if (action != UNSET)
usage();
action = ATTACH;
break;
case 'd':
if (action != UNSET)
usage();
action = DETACH;
unit = (int)strtol(optarg, &p, 10);
if (*p)
errx(1, "illegal unit -- %s", optarg);
break;
case 'q':
if (action != UNSET)
usage();
action = QUERY;
unit = (int)strtol(optarg, &p, 10);
if (*p)
errx(1, "illegal unit -- %s", optarg);
break;
case 'l':
if (action != UNSET)
usage();
action = LIST;
break;
default:
usage();
}
/*
* Perform the chosen action.
*/
if (action == ATTACH) {
fd = open("/dev/" RACE_NAME, O_RDWR);
if (fd < 0)
err(1, "open(/dev/%s)", RACE_NAME);
i = ioctl(fd, RACE_IOC_ATTACH, &unit);
if (i < 0)
err(1, "ioctl(/dev/%s)", RACE_NAME);
printf("unit: %d\n", unit);
close (fd);
} else if (action == DETACH) {
fd = open("/dev/" RACE_NAME, O_RDWR);
if (fd < 0)
err(1, "open(/dev/%s)", RACE_NAME);
i = ioctl(fd, RACE_IOC_DETACH, &unit);
if (i < 0)
err(1, "ioctl(/dev/%s)", RACE_NAME);
close (fd);
} else if (action == QUERY) {
fd = open("/dev/" RACE_NAME, O_RDWR);
if (fd < 0)
err(1, "open(/dev/%s)", RACE_NAME);
i = ioctl(fd, RACE_IOC_QUERY, &unit);
if (i < 0)
err(1, "ioctl(/dev/%s)", RACE_NAME);
close (fd);
} else if (action == LIST) {
fd = open("/dev/" RACE_NAME, O_RDWR);
if (fd < 0)
err(1, "open(/dev/%s)", RACE_NAME);
i = ioctl(fd, RACE_IOC_LIST, NULL);
if (i < 0)
err(1, "ioctl(/dev/%s)", RACE_NAME);
close (fd);
} else
usage();
return (0);
}
NOTE
Example 4-2 is a bog-standard command-line utility. As such, I won’t cover its program structure.
The following shows an example execution of Example 4-2:
$ sudo kldload ./race.ko
Race driver loaded.
$ sudo ./race_config -a & sudo ./race_config -a &
[1] 2378
[2] 2379
$ unit: 0
unit: 0
Above, two threads simultaneously add a race_softc structure to race_list, which results in two race_softc structures with the “unique” unit number 0—this is a problem, yes?
Here’s another example:
$ sudo kldload ./race.ko
Race driver loaded.
$ sudo ./race_config -a & sudo kldunload race.ko &
[1] 2648
[2] 2649
$ unit: 0
Race driver unloaded.
[1]- Done sudo ./race_config -a
[2]+ Done sudo kldunload race.ko
$ dmesg | tail -n 1
Warning: memory type race leaked memory on destroy (1 allocations, 16 bytes
leaked).
Above, one thread adds a race_softc structure to race_list while another thread unloads race.ko, which causes a memory leak. Recall that MOD_QUIESCE is supposed to prevent this, but it didn’t. Why?
The problem, in both examples, is a race condition. Race conditions are errors caused by a sequence of events. In the first example, both threads check race_list simultaneously, discover that it is empty, and assign 0 as the unit number. In the second example, MOD_QUIESCE returns error-free, a race_softc structure is then added to race_list, and finally MOD_UNLOAD completes.
NOTE
One characteristic of race conditions is that they’re hard to reproduce. Ergo, the results were doctored in the preceding examples. That is, I caused the threads to context switch at specific points to achieve the desired outcome. Under normal conditions, it would have taken literally millions of attempts before those race conditions would occur, and I didn’t want to spend that much time.
Preventing Race Conditions
Race conditions are prevented using locks. Locks, also known as synchronization primitives, are used to serialize the execution of two or more threads. For example, the race conditions in Example 4-1, which are caused by concurrent access to race_list, can be prevented by using a lock to serialize access to race_list. Before a thread can access race_list, it must first a cquire the foo lock. Only one thread can hold foo at a time. If a thread cannot acquire foo, it cannot access race_list and must wait for the current owner to relinquish foo. This protocol guarantees that at any moment in time only one thread can access race_list, which eliminates Example 4-1’s race conditions.
There are several different types of locks in FreeBSD, each having its own characteristics (for example, some locks can be held by more than one thread). The remainder of this chapter describes the different types of locks available in FreeBSD and how to use them.
Mutexes
Mutex locks (mutexes) ensure that at any moment in time, only one thread can access a shared object. Mutex is an amalgamation of mutual and exclusion.
NOTE
The foo lock described in the previous section was a mutex lock.
FreeBSD provides two types of mutex locks: spin mutexes and sleep mutexes.
Spin Mutexes
Spin mutexes are simple spin locks. If a thread attempts to acquire a spin lock that is being held by another thread, it will “spin” and wait for the lock to be released. Spin, in this case, means to loop infinitely on the CPU. This spinning can result in deadlock if a thread that is holding a spin lock is interrupted or if it context switches, and all subsequent threads attempt to acquire that lock. Consequently, while holding a spin mutex all interrupts are blocked on the local processor and a context switch cannot be performed.
Spin mutexes should be held only for short periods of time and should be used only to protect objects related to nonpreemptive interrupts and low-level scheduling code (McKusick and Neville-Neil, 2005). Ordinarily, you’ll never use spin mutexes.
Sleep Mutexes
Sleep mutexes are the most commonly used lock. If a thread attempts to acquire a sleep mutex that is being held by another thread, it will context switch (that is, sleep) and wait for the mutex to be released. Because of this behavior, sleep mutexes are not susceptible to the deadlock described above.
Sleep mutexes support priority propagation. When a thread sleeps on a sleep mutex and its priority is higher than the sleep mutex’s current owner, the current owner will inherit the priority of this thread (Baldwin, 2002). This characteristic prevents a lower priority thread from blocking a higher priority thread.
NOTE
Sleeping (for example, calling a *sleep function, which is discussed in Chapter 5) while holding a mutex is never safe and must be avoided; otherwise, there are numerous assertions that will fail and the kernel will panic (McKusick and Neville-Neil, 2005).
Mutex Management Routines
The FreeBSD kernel provides the following seven functions for working with mutexes:
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
void
mtx_init(struct mtxmutex, const char
name, const char
type,
intopts);
void
mtx_lock(struct mtxmutex);
void
mtx_lock_spin(struct mtxmutex);
int
mtx_trylock(struct mtxmutex);
void
mtx_unlock(struct mtx mutex);
void
mtx_unlock_spin(struct mtxmutex);
void
mtx_destroy(struct mtx*mutex);
The mtx_init function initializes the mutex mutex. The
name argument is used during debugging to identify mutex. The
type argument is used during lock-order verification by witness(4). If type is NULL, name is used instead.
NOTE
You’ll typically pass NULL as type.
The opts argument modifies mtx_init’s behavior. Valid values for opts are shown in Table 4-1.
Table 4-1. mtx_init Symbolic Constants
Constant | Description |
---|---|
MTX_DEF | Initializes mutex as a sleep mutex; this bit or MTX_SPIN must be present |
MTX_SPIN | Initializes mutex as a spin mutex; this bit or MTX_DEF must be present |
MTX_RECURSE | Specifies that mutex is a recursive lock; more on recursive locks later |
MTX_QUIET | Instructs the system to not log the operations done on this lock |
MTX_NOWITNESS | Causes witness(4) to ignore this lock |
MTX_DUPOK | Causes witness(4) to ignore duplicates of this lock |
MTX_NOPROFILE | Instructs the system to not profile this lock |
Threads acquire sleep mutexes by calling mtx_lock. If another thread is currently holding mutex, the caller will sleep until mutex is available.
Threads acquire spin mutexes by calling mtx_lock_spin. If another thread is currently holding mutex, the caller will spin until mutex is available. Note that all interrupts are blocked on the local processor during the spin, and they remain disabled following the acquisition of mutex.
A thread can recursively acquire mutex (with no ill effects) if MTX_RECURSE was passed to
opts. A recursive lock is useful if it’ll be acquired at two or more levels. For example:
static void
foo()
{
...
mtx_lock(&mutex);
...
foo();
...
mtx_unlock(&mutex);
...
}
By using a recursive lock, lower levels don’t need to check if mutex has been acquired by a higher level. They can simply acquire and release mutex as needed (McKusick and Neville-Neil, 2005).
NOTE
I would avoid recursive mutexes. You’ll learn why in Avoid Recursing on Exclusive Locks in Memory Management Routines
The mtx_trylock function is identical to mtx_lock except that if another thread is currently holding mutex, it returns 0 (that is, the caller does not sleep).
Threads release sleep mutexes by calling mtx_unlock. Note that recursive locks “remember” the number of times they’ve been acquired. Consequently, each successful lock acquisition must have a corresponding lock release.
Threads release spin mutexes by calling mtx_unlock_spin. The mtx_unlock_spin function also restores the interrupt state to what it was before mutex was acquired.
The mtx_destroy function destroys the mutex mutex. Note that mutex can be held when it is destroyed. However, mutex cannot be held recursively orhave other threads waiting for it when it is destroyed or else the kernel will panic (McKusick and Neville-Neil, 2005).
Implementing Mutexes
Example 4-3 is a revision of Example 4-1 that uses a mutex to serialize access to race_list.
NOTE
To save space, the functions race_ioctl, race_new, race_find, and race_destroy aren’t listed here, as they haven’t been changed.
Example 4-3. race_mtx.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include "race_ioctl.h"
MALLOC_DEFINE(M_RACE, "race", "race object");
struct race_softc {
LIST_ENTRY(race_softc) list;
int unit;
};
static LIST_HEAD(, race_softc) race_list = LIST_HEAD_INITIALIZER(&race_list); static struct mtx race_mtx;
static struct race_softc * race_new(void);
static struct race_softc * race_find(int unit);
static void race_destroy(struct race_softc *sc);
static d_ioctl_t race_ioctl_mtx;
static d_ioctl_t race_ioctl;
static struct cdevsw race_cdevsw = {
.d_version = D_VERSION,
.d_ioctl = race_ioctl_mtx,
.d_name = RACE_NAME
};
static struct cdev *race_dev;
static int race_ioctl_mtx(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
int error;
mtx_lock(&race_mtx);
error = race_ioctl(dev, cmd, data, fflag, td);
mtx_unlock(&race_mtx);
return (error);
}
static int
race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
...
}
static struct race_softc *
race_new(void)
{
...
}
static struct race_softc *
race_find(int unit)
{
...
}
static void
race_destroy(struct race_softc *sc)
{
...
}
static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
struct race_softc *sc, *sc_temp;
switch (event) {
case MOD_LOAD:
mtx_init(&race_mtx, "race config lock", NULL, MTX_DEF);
race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, RACE_NAME);
uprintf("Race driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(race_dev);
mtx_lock(&race_mtx);
if (!LIST_EMPTY(&race_list)) {
LIST_FOREACH_SAFE(sc, &race_list, list, sc_temp) {
LIST_REMOVE(sc, list);
free(sc, M_RACE);
}
}
mtx_unlock(&race_mtx);
mtx_destroy(&race_mtx);
uprintf("Race driver unloaded.\n");
break;
case MOD_QUIESCE:
mtx_lock(&race_mtx);
if (!LIST_EMPTY(&race_list))
error = EBUSY;
mtx_unlock(&race_mtx);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(race, race_modevent, NULL);
This driver declares a mutex named race_mtx, which gets initialized as a
sleep mutex in the module event handler.
NOTE
As you’ll see, a mutex is not the ideal solution for Example 4-1. However, for now, I just want to cover how to use mutexes.
In Example 4-1, the main source of concurrent access to race_list is the race_ioctl function. This should be obvious, because race_ioctl manages race_list.
Example 4-3 remedies the race conditions caused by race_ioctl by serializing its execution via the race_ioctl_mtx function. race_ioctl_mtx is defined as the
d_ioctl function. It begins by
acquiring race_mtx. Then
race_ioctl is called and subsequently race_mtx is
released.
As you can see, it takes just three lines (or one mutex) to serialize the execution of race_ioctl.
race_modevent Function
The race_modevent function is the module event handler for Example 4-3. Here is its function definition (again):
static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
struct race_softc *sc, *sc_temp;
switch (event) {
case MOD_LOAD:
mtx_init(&race_mtx, "race config lock", NULL,
MTX_DEF);
race_dev =make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, RACE_NAME);
uprintf("Race driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(race_dev);
mtx_lock(&race_mtx);
if (!LIST_EMPTY(&race_list)) {
LIST_FOREACH_SAFE(sc, &race_list, list, sc_temp) {
LIST_REMOVE(sc, list);
free(sc, M_RACE);
}
}
mtx_unlock(&race_mtx);
mtx_destroy(&race_mtx);
uprintf("Race driver unloaded.\n");
break;
case MOD_QUIESCE:
mtx_lock(&race_mtx);
if (!LIST_EMPTY(&race_list))
error = EBUSY;
mtx_unlock(&race_mtx);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
On module load, this function initializes race_mtx as a
sleep mutex. Then it
creates Example 4-3’s device node: race.
On MOD_QUIESCE, this function acquires race_mtx,
confirms that race_list is empty, and then
releases race_mtx.
On module unload, this function first calls destroy_dev to destroy the race device node.
NOTE
The destroy_dev function does not return until every d_foo function currently executing completes. Consequently, one should not hold a lock while calling destroy_dev; otherwise, you could deadlock your driver or panic your system.
Next, race_modevent confirms that race_list is still empty. See, after the execution of MOD_QUIESCE, a race_softc structure could have been added to race_list. So, race_list is checked again and every race_softc structure found is
released. Once this is done, race_mtx is
destroyed.
As you can see, every time race_list was accessed, mtx_lock(&race_mtx) was called first. This was necessary in order to serialize access to race_list throughout Example 4-3.
Don’t Panic
Now that we’ve examined Example 4-3, let’s give it a try:
$ sudo kldload ./race_mtx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo ./race_config -a &
[1] 923
[2] 924
$ unit: 0
unit: 1
...
$ sudo kldload ./race_mtx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo kldunload race_mtx.ko &
[1] 933
[2] 934
$ Race driver unloaded.
race_config: open(/dev/race): No such file or directory
[1]- Exit 1 sudo ./race_config -a
[2]+ Done sudo kldunload race_mtx.ko
Unsurprisingly, it works. Yet using a mutex has introduced a new problem. See, the function definition for race_new contains this line:
sc = (struct race_softc *)malloc(sizeof(struct race_softc), M_RACE,
M_WAITOK | M_ZERO);
Here, M_WAITOK means that it’s okay to sleep. But it’s never okay to sleep while holding a mutex. Recall that sleeping while holding a mutex causes the kernel to panic.
There are two solutions to this problem: First, change M_WAITOK to M_NOWAIT. Second, use a lock that can be held while sleeping. As the first solution changes the functionality of Example 4-1 (that is, currently, race_new never fails), let’s go with the second.
Shared/Exclusive Locks
Shared/exclusive locks (sx locks) are locks that threads can hold while asleep. As the name implies, multiple threads can have a shared hold on an sx lock, but only one thread can have an exclusive hold on an sx lock. When a thread has an exclusive hold on an sx lock, other threads cannot have a shared hold on that lock.
sx locks do not support priority propagation and are inefficient compared to mutexes. The main reason for using sx locks is that threads can sleep while holding one.
Shared/Exclusive Lock Management Routines
The FreeBSD kernel provides the following 14 functions for working with sx locks:
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/sx.h>
void
sx_init(struct sxsx, const char
description);
void
sx_init_flags(struct sx sx, const char description, intopts);
void
sx_slock(struct sx sx);
void
sx_xlock(struct sx sx);
int
sx_slock_sig(struct sx sx);
int
sx_xlock_sig(struct sx sx);
int
sx_try_slock(struct sx sx);
int
sx_try_xlock(struct sx sx);
void
sx_sunlock(struct sx sx);
void
sx_xunlock(struct sx sx);
void
sx_unlock(struct sx sx);
int
sx_try_upgrade(struct sx sx);
void
sx_downgrade(struct sx sx);
void
sx_destroy(struct sxsx);
The sx_init function initializes the sx lock sx. The
description argument is used during debugging to identify sx.
The sx_init_flags function is an alternative to sx_init. The opts argument modifies sx_init_flags’s behavior. Valid values for opts are shown in Table 4-2.
Table 4-2. sx_init_flags Symbolic Constants
Constant | Description |
---|---|
SX_NOADAPTIVE | If this bit is passed and the kernel is compiled without options NO_ADAPTIVE_SX, then threads holding sx will spin instead of sleeping. |
SX_RECURSE | Specifies that sx is a recursive lock |
SX_QUIET | Instructs the system to not log the operations done on this lock |
SX_NOWITNESS | Causes witness(4) to ignore this lock |
SX_DUPOK | Causes witness(4) to ignore duplicates of this lock |
SX_NOPROFILE | Instructs the system to not profile this lock |
Threads acquire a shared hold on sx by calling sx_slock. If another thread currently has an exclusive hold on sx, the caller will sleep until sx is available.
Threads acquire an exclusive hold on sx by calling sx_xlock. If any threads currently have a shared or exclusive hold on sx, the caller will sleep until sx is available.
The sx_slock_sig and sx_xlock_sig functions are identical to sx_slock and sx_xlock except that when the caller sleeps it can be woken up by signals. If this occurs, a nonzero value is returned.
NOTE
Normally, threads sleeping on locks cannot be woken up early.
The sx_try_slock and sx_try_xlock functions are identical to sx_slock and sx_xlock except that if sx cannot be acquired, they return 0 (that is, the caller does not sleep).
Threads release a shared hold on sx by calling sx_sunlock, and they release an exclusive hold by calling sx_xunlock.
The sx_unlock function is a front end to sx_sunlock and sx_xunlock. This function is used when the hold state on sx is unknown.
Threads can upgrade a shared hold to an exclusive hold by calling sx_try_upgrade. If the hold cannot be immediately upgraded, 0 is returned. Threads can downgrade an exclusive hold to a shared hold by calling sx_downgrade.
The sx_destroy function destroys the sx lock sx. Note that sx cannot be held when it is destroyed.
Implementing Shared/Exclusive Locks
Example 4-4 is a revision of Example 4-3 that uses an sx lock instead of a mutex.
NOTE
To save space, the functions race_ioctl, race_new, race_find, and race_destroy aren’t listed here, as they haven’t been changed.
Example 4-4. race_sx.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include <sys/lock.h> #include <sys/sx.h>
#include "race_ioctl.h"
MALLOC_DEFINE(M_RACE, "race", "race object");
struct race_softc {
LIST_ENTRY(race_softc) list;
int unit;
};
static LIST_HEAD(, race_softc) race_list = LIST_HEAD_INITIALIZER(&race_list); static struct sx race_sx;
static struct race_softc * race_new(void);
static struct race_softc * race_find(int unit);
static void race_destroy(struct race_softc *sc);
static d_ioctl_t race_ioctl_sx;
static d_ioctl_t race_ioctl;
static struct cdevsw race_cdevsw = {
.d_version = D_VERSION,
.d_ioctl = race_ioctl_sx,
.d_name = RACE_NAME
};
static struct cdev *race_dev;
static int
race_ioctl_sx(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
int error;
sx_xlock(&race_sx);
error = race_ioctl(dev, cmd, data, fflag, td);
sx_xunlock(&race_sx);
return (error);
}
static int
race_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
...
}
static struct race_softc *
race_new(void)
{
...
}
static struct race_softc *
race_find(int unit)
{
...
}
static void
race_destroy(struct race_softc *sc)
{
...
}
static int
race_modevent(module_t mod __unused, int event, void *arg __unused)
{
int error = 0;
struct race_softc *sc, *sc_temp;
switch (event) {
case MOD_LOAD:
sx_init(&race_sx, "race config lock");
race_dev = make_dev(&race_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, RACE_NAME);
uprintf("Race driver loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(race_dev);
sx_xlock(&race_sx);
if (!LIST_EMPTY(&race_list)) {
LIST_FOREACH_SAFE(sc, &race_list, list, sc_temp) {
LIST_REMOVE(sc, list);
free(sc, M_RACE);
}
}
sx_xunlock(&race_sx);
sx_destroy(&race_sx);
uprintf("Race driver unloaded.\n");
break;
case MOD_QUIESCE:
sx_xlock(&race_sx);
if (!LIST_EMPTY(&race_list))
error = EBUSY;
sx_xunlock(&race_sx);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(race, race_modevent, NULL);
Example 4-4 is identical to Example 4-3 except that every mutex management function has been replaced by its sx lock equivalent.
NOTE
The numbered balls in Example 4-4 highlight the differences.
Here are the results from interacting with Example 4-4:
$ sudo kldload ./race_sx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo ./race_config -a &
[1] 800
[2] 801
$ unit: 0
unit: 1
...
$ sudo kldload ./race_sx.ko
Race driver loaded.
$ sudo ./race_config -a & sudo kldunload race_sx.ko &
[1] 811
[2] 812
$ unit: 0
kldunload: can't unload file: Device busy
[1]- Done sudo ./race_config -a
[2]+ Exit 1 sudo kldunload race_sx.ko
Naturally, everything works, and no new problems were introduced.
Reader/Writer Locks
Reader/writer locks (rw locks) are basically mutexes with sx lock semantics. Like sx locks, threads can hold rw locks as a reader, which is identical to a shared hold, or as a writer, which is identical to an exclusive hold. Like mutexes, rw locks support priority propagation and threads cannot hold them while sleeping (or the kernel will panic).
rw locks are used when you need to protect an object that is mostly going to be read from instead of written to.
Reader/Writer Lock Management Routines
The FreeBSD kernel provides the following 11 functions for working with rw locks:
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
void
rw_init(struct rwlock*rw, const char
*name);
void
rw_init_flags(struct rwlock *rw, const char *name, intopts);
void
rw_rlock(struct rwlock *rw);
void
rw_wlock(struct rwlock *rw);
int
rw_try_rlock(struct rwlock *rw);
int
rw_try_wlock(struct rwlock *rw);
void
rw_runlock(struct rwlock *rw);
void
rw_wunlock(struct rwlock *rw);
int
rw_try_upgrade(struct rwlock *rw);
void
rw_downgrade(struct rwlock *rw);
void
rw_destroy(struct rwlock*rw);
The rw_init function initializes the rw lock rw. The
name argument is used during debugging to identify rw.
The rw_init_flags function is an alternative to rw_init. The opts argument modifies rw_init_flags’s behavior. Valid values for opts are shown in Table 4-3.
Table 4-3. rw_init_flags Symbolic Constants
Constant | Description |
---|---|
RW_RECURSE | Specifies that rw is a recursive lock |
RW_QUIET | Instructs the system to not log the operations done on this lock |
RW_NOWITNESS | Causes witness(4) to ignore this lock |
RW_DUPOK | Causes witness(4) to ignore duplicates of this lock |
RW_NOPROFILE | Instructs the system to not profile this lock |
Threads acquire a shared hold on rw by calling rw_rlock. If another thread currently has an exclusive hold on rw, the caller will sleep until rw is available.
Threads acquire an exclusive hold on rw by calling rw_wlock. If any threads currently have a shared or exclusive hold on rw, the caller will sleep until rw is available.
The rw_try_rlock and rw_try_wlock functions are identical to rw_rlock and rw_wlock except that if rw cannot be acquired, they return 0 (that is, the caller does not sleep).
Threads release a shared hold on rw by calling rw_runlock, and they release an exclusive hold by calling rw_wunlock.
Threads can upgrade a shared hold to an exclusive hold by calling rw_try_upgrade. If the hold cannot be immediately upgraded, 0 is returned. Threads can downgrade an exclusive hold to a shared hold by calling rw_downgrade.
The rw_destroy function destroys the rw lock rw. Note that rw cannot be held when it is destroyed.
At this point, you should be comfortable with locks—there’s really nothing to them. So, I’m going to omit discussing an example that uses rw locks.
Condition Variables
Condition variables synchronize the execution of two or more threads based upon the value of an object. In contrast, locks synchronize threads by controlling their access to objects.
Condition variables are used in conjunction with locks to “block” threads until a condition is true. It works like this: A thread first acquires the foo lock. Then it examines the condition. If the condition is false, it sleeps on the bar condition variable. While asleep on bar, threads relinquish foo. A thread that causes the condition to be true wakes up the threads sleeping on bar. Threads woken up in this manner reacquire foo before proceeding.
Condition Variable Management Routines
The FreeBSD kernel provides the following 11 functions for working with condition variables:
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/condvar.h>
void
cv_init(struct cv*cvp, const char
*d);
const char *
cv_wmesg(struct cv*cvp);
void
cv_wait(struct cv*cvp,
lock);
void
cv_wait_unlock(struct cv*cvp,
lock);
int
cv_wait_sig(struct cv *cvp, lock);
int
cv_timedwait(struct cv *cvp, lock, inttimo);
int
cv_timedwait_sig(struct cv *cvp, lock, int timo);
void
cv_signal(struct cv *cvp);
void
cv_broadcast(struct cv *cvp);
void
cv_broadcastpri(struct cv *cvp, intpri);
void
cv_destroy(struct cv*cvp);
The cv_init function initializes the condition variable cvp. The
d argument describes cvp.
The cv_wmesg function gets the description of
cvp. This function is primarily used in error reporting.
Threads sleep on cvp by calling cv_wait. The
lock argument demands a sleep mutex, sx lock, or rw lock. Threads must hold lock before calling cv_wait. Threads must not sleep on cvp with lock held recursively.
The cv_wait_unlock function is a variant of cv_wait. When threads wake up from sleeping on cvp, they forgo reacquiring
lock.
The cv_wait_sig function is identical to cv_wait except that when the caller is asleep it can be woken up by signals. If this occurs, the error code EINTR or ERESTART is returned.
NOTE
Normally, threads sleeping on condition variables cannot be woken up early.
The cv_timedwait function is identical to cv_wait except that the caller sleeps at most timo / hz seconds. If the sleep times out, the error code EWOULDBLOCK is returned.
The cv_timedwait_sig function is like cv_wait_sig and cv_timedwait. The caller can be woken up by signals and sleeps at most timo / hz seconds.
Threads wake up one thread sleeping on cvp by calling cv_signal, and they wake up every thread sleeping on cvp by calling cv_broadcast.
The cv_broadcastpri function is identical to cv_broadcast except that all threads woken up have their priority raised to pri. Threads with a priority higher than pri do not have their priority lowered.
The cv_destroy function destroys the condition variable cvp.
NOTE
We’ll walk through an example that uses condition variables in Chapter 5.
General Guidelines
Here are some general guidelines for lock usage. Note that these aren’t hard-and-fast rules, just things to keep in mind.
Avoid Recursing on Exclusive Locks
When an exclusive hold or lock is acquired, the holder usually assumes that it has exclusive access to the objects the lock protects. Unfortunately, recursive locks can break this assumption in some cases. As an example, suppose function F1 uses a recursive lock L to protect object O. If function F2 acquires L, modifies O, leaving it in an inconsistent state, and then calls F1, F1 will recursively acquire L and falsely assume that O is in a consistent state.[7]
One solution to this problem is to use a nonrecursive lock and to rewrite F1 so that it does not acquire L. Instead, L must be acquired before calling F1.
Avoid Holding Exclusive Locks for Long Periods of Time
Exclusive locks reduce concurrency and should be released as soon as possible. Note that it is better to hold a lock for a short period of time when it is not needed than to release the lock only to reacquire it (Baldwin, 2002). This is because the operations to acquire and release a lock are relatively expensive.
[7] This paragraph is adapted from Locking in the Multithreaded FreeBSD Kernel by John H. Baldwin (2002)
Conclusion
This chapter dealt with the problem of data and state corruption caused by concurrent threads. In short, whenever an object is accessible by multiple threads, its access must be managed.
Chapter 5. Delaying Execution
Often, drivers need to delay their execution in order to give their device(s), the kernel, or a user the time to accomplish some task. In this chapter, I’ll detail the different functions available for achieving these delays. In the process, I’ll also describe asynchronous code execution.
Voluntary Context Switching, or Sleeping
Voluntary context switching, or sleeping, is done when a driver thread must await the availability of a resource or the arrival of an event; for example, a driver thread should sleep after it requests data from an input device, such as a terminal (McKusick and Neville-Neil, 2005). A driver thread sleeps by calling a *sleep function.
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
int
tsleep(void *chan, int priority, const char *wmesg, int timo);
void
wakeup(void *chan);
void
wakeup_one(void *chan);
void
pause(const char *wmesg, int timo);
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
int
mtx_sleep(void *chan, struct mtx *mtx, int priority, const char *wmesg,
int timo);
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
int
msleep_spin(void *chan, struct mtx *mtx, const char *wmesg, int timo);
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/sx.h>
int
sx_sleep(void *chan, struct sx *sx, int priority, const char *wmesg,
int timo);
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
int
rw_sleep(void *chan, struct rwlock *rw, int priority, const char *wmesg,
int timo);
A thread voluntarily context switches (or sleeps) by calling tsleep. The arguments for tsleep are common to the other *sleep functions and are described in the next few paragraphs.
The chan argument is the channel (that is to say, an arbitrary address) that uniquely identifies the event that the thread is waiting for.
The priority argument is the priority for the thread when it resumes. If priority is 0, the current thread priority is used. If PCATCH is OR’ed into priority, signals are checked before and after sleeping.
The wmesg argument expects a concise description of the sleeping thread. This description is displayed by user-mode utilities, such as ps(1), and has no real impact on performance.
The timo argument specifies the sleep timeout. If timo is nonzero, the thread will sleep for at most timo / hz seconds. Afterward, tsleep returns the error code EWOULDBLOCK.
The wakeup function wakes up every thread asleep on the channel chan. Generally speaking, threads woken from sleep should re-evaluate the conditions they slept on.
The wakeup_one function is a variant of wakeup that only gets up the first thread that it finds asleep on chan. The assumption is that when the awakened thread is done, it calls wakeup_one to wake up another thread that’s asleep on chan; this succession of wakeup_one calls continues until every thread asleep on chan has been awakened (McKusick and Neville-Neil, 2005). This reduces the load in cases when numerous threads are asleep on chan, but only one thread can do anything meaningful when made runnable.
The pause function puts the calling thread to sleep for timo / hz seconds. This thread cannot be awoken by wakeup, wakeup_one, or signals.
The remaining *sleep functions—mtx_sleep, msleep_spin, sx_sleep, and rw_sleep—are variants of tsleep that take a particular lock. This lock is dropped before the thread sleeps and is reacquired before the thread awakes; if PDROP is OR’ed into priority, this lock is not reacquired.
Note that the msleep_spin function does not have a priority argument. Consequently, it cannot assign a new thread priority, catch signals via PCATCH, or drop its spin mutex via PDROP.
Implementing Sleeps and Condition Variables
Example 5-1 (which is based on code written by John Baldwin) is a KLD designed to demonstrate sleeps and condition variables. It works by obtaining “events” from a sysctl; each event is then passed to a thread, which performs a specific task based on the event it received.
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 5-1. sleep.c
#define INVARIANTS
#define INVARIANT_SUPPORT
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/unistd.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h> #define MAX_EVENT 1
static struct proc *kthread;
static int event;
static struct cv event_cv;
static struct mtx event_mtx;
static struct sysctl_ctx_list clist;
static struct sysctl_oid *poid;
static void sleep_thread(void *arg)
{
int ev;
for (;;) {
mtx_lock(&event_mtx);
while ((ev = event) == 0)
cv_wait(&event_cv, &event_mtx);
event = 0;
mtx_unlock(&event_mtx);
switch (ev) {
case −1:
kproc_exit(0);
break;
case 0:
break;
case 1:
printf("sleep... is alive and well.\n");
break;
default:
panic("event %d is bogus\n", event);
}
}
}
static int sysctl_debug_sleep_test(SYSCTL_HANDLER_ARGS)
{
int error, i = 0;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error == 0 && req->newptr != NULL) {
if (i >= 1 && i <= MAX_EVENT) {
mtx_lock(&event_mtx);
KASSERT(event == 0, ("event %d was unhandled",
event));
event = i;
cv_signal(&event_cv);
mtx_unlock(&event_mtx);
} else
error = EINVAL;
}
return (error);
}
static int load(void *arg)
{
int error;
struct proc *p;
struct thread *td;
error = kproc_create(sleep_thread, NULL, &p, RFSTOPPED, 0, "sleep");
if (error)
return (error);
event = 0;
mtx_init(&event_mtx, "sleep event", NULL, MTX_DEF);
cv_init(&event_cv, "sleep");
td = FIRST_THREAD_IN_PROC(p);
thread_lock(td);
TD_SET_CAN_RUN(td);
sched_add(td, SRQ_BORING);
thread_unlock(td);
kthread = p;
sysctl_ctx_init(&clist);
poid = SYSCTL_ADD_NODE(&clist, SYSCTL_STATIC_CHILDREN(_debug),
OID_AUTO, "sleep", CTLFLAG_RD, 0, "sleep tree");
SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO, "test",
CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_debug_sleep_test, "I",
"");
return (0);
}
static int unload(void *arg)
{
sysctl_ctx_free(&clist);
mtx_lock(&event_mtx);
event = −1;
cv_signal(&event_cv);
mtx_sleep(kthread, &event_mtx, PWAIT, "sleep", 0);
mtx_unlock(&event_mtx);
mtx_destroy(&event_mtx);
cv_destroy(&event_cv);
return (0);
}
static int sleep_modevent(module_t mod __unused, int event, void *arg)
{
int error = 0;
switch (event) {
case MOD_LOAD:
error = load(arg);
break;
case MOD_UNLOAD:
error = unload(arg);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static moduledata_t sleep_mod = {
"sleep",
sleep_modevent,
NULL
};
DECLARE_MODULE(sleep, sleep_mod, SI_SUB_SMP, SI_ORDER_ANY);
Near the beginning of Example 5-1, a constant named MAX_EVENT is defined as 1, and a struct proc pointer named
kthread is declared. For now, ignore these two objects; I’ll discuss them later.
Next, there are two variable declarations: an integer named event and a condition variable named
event_cv. These variables are used to synchronize Example 5-1’s threads. Obviously, the
event_mtx mutex is used to protect event.
The remaining parts— sleep_thread,
sysctl_debug_sleep_test,
load,
unload, and
sleep_modevent—require a more in-depth explanation and are therefore described in their own sections.
To make things easier to follow, I’ll describe the abovementioned parts in the order they execute, rather than in the order they appear. Thus, I’ll begin with Example 5-1’s module event handler.
sleep_modevent Function
The sleep_modevent function is the module event handler for Example 5-1. Here is its function definition (again):
static int
sleep_modevent(module_t mod __unused, int event, void *arg)
{
int error = 0;
switch (event) {
case MOD_LOAD:
error =load(arg);
break;
case MOD_UNLOAD:
error =unload(arg);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
On module load, this function simply calls the load function. On module unload, it calls the
unload function.
load Function
The load function initializes this KLD. Here is its function definition (again):
static int
load(void *arg)
{
int error;
struct proc *p;
struct thread *td;
error =kproc_create(
sleep_thread, NULL,
&p,
RFSTOPPED, 0,
"sleep");
if (error)
return (error);
event = 0;
mtx_init(&event_mtx, "sleep event", NULL, MTX_DEF);
cv_init(&event_cv, "sleep");
td = FIRST_THREAD_IN_PROC(p);
thread_lock(td);
TD_SET_CAN_RUN(td);
sched_add(td, SRQ_BORING);
thread_unlock(td);
kthread = p;
sysctl_ctx_init(&clist);
poid = SYSCTL_ADD_NODE(&clist, SYSCTL_STATIC_CHILDREN(_debug),
OID_AUTO, "sleep", CTLFLAG_RD, 0, "sleep tree");
SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(poid), OID_AUTO, "test",
CTLTYPE_INT | CTLFLAG_RW, 0, 0,sysctl_debug_sleep_test, "I",
"");
return (0);
}
This function can be split into four parts. The first creates a kernel process to execute the function
sleep_thread. A handle to this process is saved in
p. The constant
RFSTOPPED puts the process in the stopped state. The second part initializes the
event,
event_mtx, and
event_cv variables. The third part
schedules the new process to execute sleep_thread. It also saves the process handle in
kthread.
NOTE
Processes are executed at thread granularity, which is why this code is thread centric.
The fourth part creates a sysctl named debug.sleep.test, which uses a handler function named sysctl_debug_sleep_test.
sleep_thread Function
The sleep_thread function receives events from the sysctl_debug_sleep_test function. It then performs a specific task based on the event received. Here is its function definition (again):
static void
sleep_thread(void *arg)
{
int ev;
for (;;) {
mtx_lock(&event_mtx);
while ((ev = event) == 0)
cv_wait(&event_cv, &event_mtx);
event = 0;
mtx_unlock(&event_mtx);
switch (ev) {
case −1:
kproc_exit(0);
break;
case 0:
break;
case 1:
printf("sleep... is alive and well.\n");
break;
default:
panic("event %d is bogus\n", event);
}
}
}
As you can see, the execution of sleep_thread is contained within a forever loop. This loop begins by
acquiring event_mtx. Next, the value of event is
saved in ev. If event is equal to 0, sleep_thread
waits on event_cv. See, event is only 0 if sleep_thread has yet to receive an event. If an event has been received, sleep_thread
sets event to 0 to prevent reprocessing it. Next, event_mtx is
released. Finally, the received event is processed by a
switch statement. Note that if the received event is
−1, sleep_thread
self-terminates via kproc_exit.
sysctl_debug_sleep_test Function
The sysctl_debug_sleep_test function obtains events from the sysctl debug.sleep.test. It then passes those events to the sleep_thread function.
static int
sysctl_debug_sleep_test(SYSCTL_HANDLER_ARGS)
{
int error, i = 0;
error =sysctl_handle_int(oidp,
&i, 0, req);
if (error == 0 && req->newptr != NULL) {
if (i >= 1 && i <= MAX_EVENT) {
mtx_lock(&event_mtx);
KASSERT(event == 0, ("event %d was unhandled",
event));
event = i;
cv_signal(&event_cv);
mtx_unlock(&event_mtx);
} else
error = EINVAL;
}
return (error);
}
This function begins by obtaining an event from debug.sleep.test and
storing it in i. The following
if statement ensures that the event was obtained successfully. Next, a
range check is performed on i. If i is in the allowable range, event_mtx is
acquired and event is
queried to ensure that it equals 0.
NOTE
If event does not equal 0, something has gone horribly wrong. And if INVARIANTS is enabled, the kernel panics.
Finally, event is set to i and sleep_thread is
unblocked to process it.
unload Function
The unload function shuts down this KLD. Here is its function definition (again):
static int
unload(void *arg)
{
sysctl_ctx_free(&clist);
mtx_lock(&event_mtx);
event = −1;
cv_signal(&event_cv);
mtx_sleep(
kthread, &event_mtx, PWAIT, "sleep", 0);
mtx_unlock(&event_mtx);
mtx_destroy(&event_mtx);
cv_destroy(&event_cv);
return (0);
}
This function begins by tearing down the sysctl debug.sleep.test. Afterward, event is
set to -1 and sleep_thread is
unblocked to process it.
Recall that if event is −1, sleep_thread self-terminates via kproc_exit. Note that kproc_exit executes wakeup on its caller’s process handle before returning. This is why unload sleeps on the channel
kthread, because it contains sleep_thread’s process handle.
NOTE
Recall that load saved sleep_thread’s process handle in kthread.
As unload sleeps (at) until sleep_thread exits, it cannot destroy
event_mtx and
event_cv while they’re still in use.
Don’t Panic
Here are the results from loading and unloading Example 5-1:
$ sudo kldload ./sleep.ko
$ sudo sysctl debug.sleep.test=1
debug.sleep.test: 0 -> 0
$ dmesg | tail -n 1
sleep... is alive and well.
$ sudo kldunload ./sleep.ko
$
Naturally, it works. Now, let’s look at some other ways to delay execution.
Kernel Event Handlers
Event handlers allow drivers to register one or more functions to be called when an event occurs. As an example, before halting the system, every function that is registered with the event handler shutdown_final is called. Table 5-1 describes every event handler that is available.
Table 5-1. Kernel Event Handlers
The FreeBSD kernel provides the following three macros for working with event handlers:
#include <sys/eventhandler.h>eventhandler_tag
EVENTHANDLER_REGISTER(name,
func,
arg,
priority);
EVENTHANDLER_DEREGISTER(name,
tag);
EVENTHANDLER_INVOKE(name, ...);
The EVENTHANDLER_REGISTER macro registers the function func with the event handler
name. If successful, an
eventhandler_tag is returned. When func is called,
arg will be its first argument. Functions registered with name are called in order of
priority. priority can be 0 (which is the highest priority) to 20000 (which is the lowest priority).
NOTE
Generally, I use the constant EVENTHANDLER_PRI_ANY, which equals 10000, for priority.
The EVENTHANDLER_DEREGISTER macro deletes the function associated with tag from the event handler
name (where tag is an
eventhandler_tag).
The EVENTHANDLER_INVOKE macro executes every function registered with the event handler name. Note that you’ll never call EVENTHANDLER_INVOKE, because each event handler has threads dedicated to do just that.
NOTE
We’ll walk through an example that uses event handlers in Chapter 6.
Callouts
Callouts allow drivers to asynchronously execute a function after a specified amount of time (or at regular intervals). These functions are known as callout functions.
The FreeBSD kernel provides the following seven functions for working with callouts:
#include <sys/types.h>
#include <sys/systm.h>
typedef void timeout_t (void *);
void
callout_init(struct callout*c, int
mpsafe);
void
callout_init_mtx(struct callout *c, struct mtx*mtx, int
flags);
void
callout_init_rw(struct callout *c, struct rwlock*rw, int
flags);
int
callout_stop(struct callout *c);
int
callout_drain(struct callout *c);
int
callout_reset(struct callout*c, int
ticks, timeout_t
*func,
void*arg);
int
callout_schedule(struct callout *c, int ticks);
The callout_init function initializes the callout structure c. The
mpsafe argument denotes whether the callout function is “multiprocessor safe.” Valid values for this argument are shown in Table 5-2.
Table 5-2. callout_init Symbolic Constants
NOTE
Here, Giant is acquired and dropped by the callout subsystem. Giant primarily protects legacy code and should not be used by contemporary code.
The callout_init_mtx function is an alternative to callout_init. The mutex mtx is acquired before executing the callout function and it’s dropped after the callout function returns (mtx is acquired and dropped by the callout subsystem). After callout_init_mtx returns, mtx is associated with the callout structure c and its callout function.
The flags argument modifies callout_init_mtx’s behavior. Table 5-3 displays its only valid value.
Table 5-3. callout_init_mtx Symbolic Constants
Constant | Description |
---|---|
CALLOUT_RETURNUNLOCKED | Indicates that the callout function will drop mtx itself; in other words, mtx is not dropped after the callout function returns, but during. |
The callout_init_rw function is an alternative to callout_init. The rw lock rw is acquired, as a writer, before executing the callout function and it’s dropped after the callout function returns (rw is acquired and dropped by the callout subsystem). After callout_init_rw returns, rw is associated with the callout structure c and its callout function.
The flags argument modifies callout_init_rw’s behavior. Table 5-4 displays its only valid value.
Table 5-4. callout_init_rw Symbolic Constants
Constant | Description |
---|---|
CALLOUT_SHAREDLOCK | Causes rw to be acquired as a reader |
The callout_stop function cancels a callout function that’s currently pending. If successful, a nonzero value is returned. If 0 is returned, the callout function is either currently executing or it has already finished executing.
NOTE
You must exclusively hold the lock associated with the callout function that you’re trying to stop before calling callout_stop.
The callout_drain function is identical to callout_stop except that if the callout function is currently executing, it waits for the callout function to finish before returning. If the callout function that you’re trying to stop requires a lock and you’re exclusively holding that lock while calling callout_drain, deadlock will result.
The callout_reset function schedules the function func to be executed, one time, after
ticks / hz seconds; negative values for ticks are converted to 1. When func is called,
arg will be its first and only argument. After callout_reset returns, func is the callout function for the callout structure
c.
The callout_reset function can also reschedule a pending callout function to execute at a new time.
NOTE
You must exclusively hold the lock associated with the callout or callout function that you’re trying to establish or reschedule before calling callout_reset.
The callout_schedule function reschedules a pending callout function to execute at a new time. This function is simply a convenience wrapper for callout_reset.
NOTE
You must exclusively hold the lock associated with the callout function that you’re trying to reschedule before calling callout_schedule.
Callouts and Race Conditions
Because callout functions execute asynchronously, it’s possible for a callout function to be called while another thread attempts to stop or reschedule it; thus creating a race condition. Fortunately, there are two simple solutions available for solving this problem:
Use callout_init_mtx, callout_init_rw, or callout_init(foo, 0)
Callout functions associated with a lock are exempt from the race condition described above—as long as the associated lock is held before calling the callout management functions.
Use callout_drain to permanently cancel a callout function
Use callout_drain instead of callout_stop to permanently cancel a callout function. See, by waiting for the callout function to finish, you can’t destroy any objects that it might need.
NOTE
We’ll walk through an example that uses callouts in Chapter 6.
Taskqueues
Taskqueues allow drivers to schedule the asynchronous execution of one or more functions at a later time. These functions are known as tasks. Taskqueues are primarily used for deferred work.
NOTE
Taskqueues are like callouts except that you can’t specify the time to execute your functions.
Taskqueues work by having tasks queued on them. Intermittently, these tasks get executed.
Global Taskqueues
FreeBSD runs and maintains four global taskqueues:
taskqueue_swi
The taskqueue_swi taskqueue executes its tasks in the context of an interrupt. Interrupt handlers typically defer their computationally expensive work to this taskqueue. This taskqueue lets interrupt handlers finish sooner, thereby reducing the amount of time spent with interrupts disabled. Interrupt handlers are discussed in detail in Chapter 8.
taskqueue_swi_giant
The taskqueue_swi_giant taskqueue is identical to taskqueue_swi except that it acquires the Giant mutex before executing its tasks. Contemporary code should avoid this taskqueue.
taskqueue_thread
The taskqueue_thread taskqueue is the general-purpose taskqueue. It executes its tasks in the context of a kernel thread (which is the same context that drivers execute in). You can use this taskqueue when you have code that executes without a thread context (such as an interrupt handler) that needs to execute code that requires a thread context.
taskqueue_fast
The taskqueue_fast taskqueue is identical to taskqueue_thread except that it acquires a spin mutex before executing its tasks. Use this taskqueue when your tasks cannot sleep.
Taskqueue Management Routines
The FreeBSD kernel provides the following macro and functions for working with taskqueues:
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
typedef void (*task_fn_t)(void *context, int pending);
struct task {
STAILQ_ENTRY(task) ta_link; /* Link for queue. */
u_shortta_pending; /* # of times queued. */
u_short ta_priority; /* Task priority. */
task_fn_t ta_func; /* Task handler function. */
void *ta_context; /* Argument for handler. */
};
TASK_INIT(struct task*task, int
priority, task_fn_t
*func,
void*context);
int
taskqueue_enqueue(struct taskqueue*queue, struct task
*task);
void
taskqueue_run(struct taskqueue*queue);
void
taskqueue_drain(struct taskqueue*queue, struct task
*task);
The TASK_INIT macro initializes the task structure task. The
priority argument is task’s position on a taskqueue. The
func argument is the function to be executed (one time). When func is called,
context will be its first argument and the value of
ta_pending will be its second.
The taskqueue_enqueue function puts task on the taskqueue
queue right before the first task structure that has a lower priority value. If taskqueue_enqueue gets called to put task on queue again, task’s ta_pending value is incremented—another copy of task is not put on queue.
The taskqueue_run function executes every task on the taskqueue queue in the order of the task’s priority value. After each task finishes, its task structure is removed from queue. Then its ta_pending value is zeroed and wakeup is called on its task structure. Note that you’ll never call taskqueue_run, because each taskqueue has threads dedicated to do just that.
The taskqueue_drain function waits for task, which is on
queue, to finish executing.
NOTE
We’ll walk through an example that uses taskqueues in Chapter 6.
Conclusion
This chapter covered the four different methods for delaying execution:
Sleeping Sleeping is done when you must wait for something to occur before you can proceed. |
Event Handlers Event handlers let you register one or more functions to be executed when an event occurs. |
Callouts Callouts let you perform asyn chronous code execution. Callouts are used to execute your functions at a specific time. |
Taskqueues Taskqueues also let you perform asynchronous code execution. Taskqueues are used for deferred work. |
Chapter 6. Case Study: Virtual Null Modem
This chapter is the first of several case studies that’ll guide you through a real-world device driver. The purpose of these case studies is to expose you to genuine driver code—warts and all—and to consolidate the information presented in earlier chapters.
In this chapter, we’ll go through nmdm(4), the virtual null modem terminal driver. This driver creates two tty(4) devices that are connected by a virtual null modem cable. In other words, the output of one tty(4) device is the input for the other tty(4) device, and vice versa. I chose to profile nmdm(4) because it uses event handlers, callouts, and taskqueues, all of which were described, but not demonstrated, in Chapter 5.
Prerequisites
Before I can walk you through nmdm(4), you’ll need to grok the following functions:
#include <sys/tty.h>
struct tty *
tty_alloc_mutex(struct ttydevsw *tsw, void *softc, struct mtx *mtx);
void
tty_makedev(struct tty *tp, struct ucred *cred, const char *fmt, ...);
void *
tty_softc(struct tty *tp);
The tty_alloc_mutex function creates a TTY device. The tsw argument expects a pointer to a TTY device switch table, which is like a character device switch table, but for TTY devices. The softc argument is the software context (or instance variables) for the TTY device. The mtx argument specifies the mutex that’ll protect the TTY device.
NOTE
At some point in the near future, the tty_alloc_mutex function is supposed to be deprecated and removed.
The tty_makedev function creates a TTY device node under /dev. The tp argument expects a pointer to a TTY device (for example, the return value from tty_alloc_mutex). The cred argument is the credentials for the device node. If cred is NULL, UID_ROOT and GID_WHEEL are used. The fmt argument specifies the name for the device node.
The tty_softc function returns the software context of the TTY device tp.
Code Analysis
Example 6-1 provides a terse, source-level overview of nmdm(4).
Example 6-1. nmdm.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/tty.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/limits.h>
#include <sys/serial.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
MALLOC_DEFINE(M_NMDM, "nullmodem", "nullmodem data structures");
struct nmdm_part {
struct tty *np_tty;
struct nmdm_part *np_other;
struct task np_task;
struct callout np_callout;
int np_dcd;
int np_rate;
u_long np_quota;
int np_credits;
u_long np_accumulator;
#define QS 8 /* Quota shift. */
};
struct nmdm_softc {
struct nmdm_part ns_partA;
struct nmdm_part ns_partB;
struct mtx ns_mtx;
};
static tsw_outwakeup_t nmdm_outwakeup;
static tsw_inwakeup_t nmdm_inwakeup;
static tsw_param_t nmdm_param;
static tsw_modem_t nmdm_modem;
static struct ttydevsw nmdm_class = {
.tsw_flags = TF_NOPREFIX,
.tsw_outwakeup = nmdm_outwakeup,
.tsw_inwakeup = nmdm_inwakeup,
.tsw_param = nmdm_param,
.tsw_modem = nmdm_modem
};
static int nmdm_count = 0;
static void
nmdm_timeout(void *arg)
{
...
}
static void
nmdm_task_tty(void *arg, int pending __unused)
{
...
}
static struct nmdm_softc *
nmdm_alloc(unsigned long unit)
{
...
}
static void
nmdm_clone(void *arg, struct ucred *cred, char *name, int len,
struct cdev **dev)
{
...
}
static void
nmdm_outwakeup(struct tty *tp)
{
...
}
static void
nmdm_inwakeup(struct tty *tp)
{
...
}
static int
bits_per_char(struct termios *t)
{
...
}
static int
nmdm_param(struct tty *tp, struct termios *t)
{
...
}
static int
nmdm_modem(struct tty *tp, int sigon, int sigoff)
{
...
}
static int
nmdm_modevent(module_t mod __unused, int event, void *arg __unused)
{
...
}
DEV_MODULE(nmdm, nmdm_modevent, NULL);
Example 6-1 is provided as a convenience; as I go through the code for nmdm(4) you can refer to it to see how nmdm(4)’s functions and structures are laid out.
To make things easier to understand, I’ll detail the functions and structures in nmdm(4) in the order I would’ve written them (instead of in the order they appear). To that end, we’ll begin with the module event handler.
nmdm_modevent Function
The nmdm_modevent function is the module event handler for nmdm(4). Here is its function definition:
static int
nmdm_modevent(module_t mod __unused, int event, void *arg __unused)
{
static eventhandler_tag tag;
switch (event) {
case MOD_LOAD:
tag =EVENTHANDLER_REGISTER(
dev_clone,
nmdm_clone, 0,
1000);
if (tag == NULL)
return (ENOMEM);
break;
case MOD_SHUTDOWN:
break;
case MOD_UNLOAD:
if (nmdm_count != 0)
return (EBUSY);
EVENTHANDLER_DEREGISTER(dev_clone, tag);
break;
default:
return (EOPNOTSUPP);
}
return (0);
}
On module load, this function registers the function
nmdm_clone with the event handler
dev_clone.
NOTE
The dev_clone event handler was described in Table 5-1 in Don’t Panic.
Recall that functions registered with dev_clone are called when a solicited item under /dev does not exist. So when a nmdm(4) device node is accessed for the first time, nmdm_clone will be called to create the device node on the fly. Interestingly, this on-the-fly device creation lets one create an unlimited number of nmdm(4) device nodes.
On module unload, this function begins by checking the value of nmdm_count.
NOTE
The variable nmdm_count is declared near the beginning of Example 6-1 as an integer initialized to 0.
nmdm_count counts the number of active nmdm(4) device nodes. If it equals 0, nmdm_clone is removed from the event handler dev_clone; otherwise, EBUSY (which stands for error: device busy) is
returned.
nmdm_clone Function
As mentioned in the previous section, nmdm_clone creates nmdm(4) device nodes on the fly. Note that all nmdm(4) device nodes are created in pairs named nmdm%lu%c, where %lu is the unit number and %c is either A or B. Here is the function definition for nmdm_clone:
static void
nmdm_clone(void *arg, struct ucred *cred, char *name, int len,
struct cdev **dev)
{
unsigned long unit;
char *end;
struct nmdm_softc *ns;
if (*dev != NULL)
return;
if (strncmp(name, "nmdm", 4) != 0)
return;
/* Device name must be "nmdm%lu%c", where %c is "A" or "B". */
name += 4;
unit =strtoul(name, &end, 10);
if (unit == ULONG_MAX || name == end)
return;
if ((end[0] != 'A' && end[0] != 'B') || end[1] != '\0')
return;
ns =nmdm_alloc(unit);
if (end[0] == 'A')
*dev = ns->ns_partA.np_tty->t_dev;
else
*dev = ns->ns_partB.np_tty->t_dev;
}
This function first checks the value of *dev (which is a character device pointer). If *dev does not equal NULL, which implies that a device node already exists, nmdm_clone exits (because no nodes need to be created). Next, nmdm_clone
ensures that the first four characters in name are equal to nmdm; otherwise it exits (because the solicited device node is for another driver). Then the fifth character in name, which should be a unit number, is
converted to an unsigned long and stored in unit. The following
if statement checks that the conversion was a success. Afterward, nmdm_clone
ensures that following the unit number (in name) is the letter A or B; otherwise it exits. Now, having confirmed that the solicited device node is indeed for this driver,
nmdm_alloc is called to actually create the device nodes. Finally, *dev is set to the solicited device node (either
nmdm%luA or
nmdm%luB).
Note that since nmdm_clone is registered with dev_clone, its function prototype must conform to the type expected by dev_clone, which is defined in <sys/conf.h>.
nmdm_alloc Function
As mentioned in the previous section, nmdm_alloc actually creates nmdm(4)’s device nodes. Before I describe this function, an explanation of nmdm_class is needed.
NOTE
The data structure nmdm_class is declared near the beginning of Example 6-1 as a TTY device switch table.
static struct ttydevsw nmdm_class = {
.tsw_flags =TF_NOPREFIX,
.tsw_outwakeup = nmdm_outwakeup,
.tsw_inwakeup = nmdm_inwakeup,
.tsw_param = nmdm_param,
.tsw_modem = nmdm_modem
};
The flag TF_NOPREFIX means don’t prefix tty to the device name. The other definitions are the operations that nmdm_class supports. These operations will be described as we encounter them.
Now that you’re familiar with nmdm_class, let’s walk through nmdm_alloc.
static struct nmdm_softc *
nmdm_alloc(unsigned long unit)
{
struct nmdm_softc *ns;
atomic_add_int(&nmdm_count, 1);
ns =malloc(sizeof(*ns), M_NMDM, M_WAITOK | M_ZERO);
mtx_init(&ns->ns_mtx, "nmdm", NULL, MTX_DEF);
/* Connect the pairs together. */
ns->ns_partA.np_other = &ns->ns_partB;
TASK_INIT(&ns->ns_partA.np_task, 0, nmdm_task_tty, &ns->ns_partA);
callout_init_mtx(&ns->ns_partA.np_callout, &ns->ns_mtx, 0);
ns->ns_partB.np_other = &ns->ns_partA;
TASK_INIT(&ns->ns_partB.np_task, 0, nmdm_task_tty, &ns->ns_partB);
callout_init_mtx(&ns->ns_partB.np_callout, &ns->ns_mtx, 0);
/* Create device nodes. */
ns->ns_partA.np_tty = tty_alloc_mutex(&nmdm_class, &ns->ns_partA,
&ns->ns_mtx);
tty_makedev(ns->ns_partA.np_tty, NULL, "nmdm%luA", unit);
ns->ns_partB.np_tty = tty_alloc_mutex(&nmdm_class, &ns->ns_partB,
&ns->ns_mtx);
tty_makedev(ns->ns_partB.np_tty, NULL, "nmdm%luB", unit);
return (ns);
}
This function can be split into four parts. The first increments nmdm_count by one via the atomic_add_int function. As its name implies, atomic_add_int is atomic. Consequently, we don’t need a lock to protect nmdm_count when we increment it.
The second part allocates memory for a new nmdm_softc structure. After that, its mutex is
initialized. Besides a mutex, nmdm_softc contains two additional member variables: ns_partA and ns_partB. These variables are nmdm_part structures and will maintain data relating to nmdm%luA or nmdm%luB.
NOTE
struct nmdm_softc is defined near the beginning of Example 6-1.
The third part
connects the member variables ns_partA and ns_partB, so that given ns_partA we can find ns_partB, and vice versa. The third part also initializes ns_partA’s and ns_partB’s
task and
callout structures.
Finally, the fourth part creates nmdm(4)’s device nodes (that is, nmdm%luA and nmdm%luB).
nmdm_outwakeup Function
The nmdm_outwakeup function is defined in nmdm_class as the tsw_outwakeup operation. It is executed when output from nmdm%luA or nmdm%luB is available. Here is its function definition:
static void
nmdm_outwakeup(struct tty *tp)
{
struct nmdm_part *np = tty_softc(tp);
/* We can transmit again, so wake up our side. */
taskqueue_enqueue(
taskqueue_swi,
&np->np_task);
}
This function queues ns_partA’s or ns_partB’s
task structure on
taskqueue_swi (that is to say, it defers processing the output from nmdm%luA and nmdm%luB).
nmdm_task_tty Function
The nmdm_task_tty function transfers data from nmdm%luA to nmdm%luB, and vice versa. This function is queued on taskqueue_swi by nmdm_outwakeup (for verification, see the third argument to TASK_INIT in nmdm_alloc). Here is its function definition:
static void
nmdm_task_tty(void *arg, int pending __unused)
{
struct tty *tp, *otp;
struct nmdm_part *np = arg;
char c;
tp = np->np_tty;
tty_lock(tp);
otp = np->np_other->np_tty;
KASSERT(otp != NULL, ("nmdm_task_tty: null otp"));
KASSERT(otp != tp, ("nmdm_task_tty: otp == tp"));
if (np->np_other->np_dcd) {
if (!tty_opened(tp)) {
np->np_other->np_dcd = 0;
ttydisc_modem(otp, 0);
}
} else {
if (tty_opened(tp)) {
np->np_other->np_dcd = 1;
ttydisc_modem(otp, 1);
}
}
while (ttydisc_rint_poll(otp) > 0) {
if (np->np_rate && !np->np_quota)
break;
if (ttydisc_getc(tp, &c, 1) != 1)
break;
np->np_quota--;
ttydisc_rint(otp, c, 0);
}
ttydisc_rint_done(otp);
tty_unlock(tp);
}
NOTE
In this function’s explanation, “our TTY” refers to the TTY device (that is, nmdm%luA or nmdm%luB) that queued this function on taskqueue_swi.
This function is composed of two parts. The first changes the connection state between the two TTYs to match the status of our TTY. If our TTY is closed and the other TTY’s Data Carrier Detect (DCD) flag is
on, we
turn off that flag and
switch off their carrier signal. On the other hand, if our TTY has been
opened and the other TTY’s DCD flag is
off, we turn on that flag and switch on their carrier signal. In short, this part ensures that if our TTY is closed (that is, there is no data to transfer), the other TTY will not have a carrier signal, and if our TTY has been opened (that is, there is data to transfer), the other TTY will have a carrier signal. A carrier signal indicates a connection. In other words, loss of the carrier equates to termination of the connection.
The second part transfers data from our TTY’s output queue to the other TTY’s input queue. This part first polls the other TTY to determine whether it can accept data. Then one character is
removed from our TTY’s output queue and
placed in the other TTY’s input queue. These steps are repeated until the transfer is complete.
nmdm_inwakeup Function
The nmdm_inwakeup function is defined in nmdm_class as the tsw_inwakeup operation. It is called when input for nmdm%luA or nmdm%luB can be received again. That is, when nmdm%luA’s or nmdm%luB’s input queue is full and then space becomes available, this function is executed. Here is its function definition:
static void
nmdm_inwakeup(struct tty *tp)
{
struct nmdm_part *np = tty_softc(tp);
/* We can receive again, so wake up the other side. */
taskqueue_enqueue(
taskqueue_swi,
&np->np_other->np_task);
}
NOTE
In this function’s explanation, “our TTY” refers to the TTY device (that is, nmdm%luA or nmdm%luB) that executed this function.
This function queues the other TTY’s
task structure on
taskqueue_swi. In other words, when input for our TTY can be received again, our TTY tells the other TTY to transfer data to it.
nmdm_modem Function
The nmdm_modem function is defined in nmdm_class as the tsw_modem operation. This function sets or gets the modem control line state. Here is its function definition:
static int
nmdm_modem(struct tty *tp, int sigon, int sigoff)
{
struct nmdm_part *np = tty_softc(tp);
int i = 0;
/* Set modem control lines. */
if (sigon || sigoff) {
if (sigon & SER_DTR)
np->np_other->np_dcd = 1;
if (sigoff & SER_DTR)
np->np_other->np_dcd = 0;
ttydisc_modem(np->np_other->np_tty, np->np_other->np_dcd);
return (0);
/* Get state of modem control lines. */
} else {
if (np->np_dcd)
i |= SER_DCD;
if (np->np_other->np_dcd)
i |= SER_DTR;
return (i);
}
}
NOTE
In this function’s explanation, “our TTY” refers to the TTY device (that is, nmdm%luA or nmdm%luB) that executed this function.
This function sets the modem control lines when the sigon (signal on) or the sigoff (signal off) argument is nonzero. If sigon
contains the Data Terminal Ready (DTR) flag, the other TTY’s DCD flag is
turned on. If sigoff
contains the DTR flag, the other TTY’s DCD flag is
turned off. The other TTY’s carrier signal is
turned on or off alongside its DCD flag.
If the preceding discussion didn’t make any sense to you, this should help: A null modem connects the DTR output of each serial port to the DCD input of the other. The DTR output is kept off until a program accesses the serial port and turns it on; the other serial port will sense this as its DCD input turning on. Thus, the DCD input is used to detect the readiness of the other side. This is why when our TTY’s DTR is sigon’d or sigoff’d, the other TTY’s DCD flag and carrier signal are also turned on or off.
This function gets the modem control line state when sigon and sigoff are 0. If our TTY’s DCD flag is on, SER_DCD is
returned. If the other TTY’s DCD flag is
on, indicating that our TTY’s DTR flag is on, SER_DTR is
returned.
nmdm_param Function
The nmdm_param function is defined in nmdm_class as the tsw_param operation. This function sets up nmdm_task_tty to be executed at regular intervals. That is, it sets nmdm%luA to periodically transfer data to nmdm%luB, and vice versa. This periodic data transfer requires flow control to prevent one side from overrunning the other with data. Flow control works by halting the sender when the receiver can’t keep up.
Here is the function definition for nmdm_param:
static int
nmdm_param(struct tty *tp, struct termios *t)
{
struct nmdm_part *np = tty_softc(tp);
struct tty *otp;
int bpc, rate, speed, i;
otp = np->np_other->np_tty;
if (!((t->c_cflag | otp->t_termios.c_cflag) & CDSR_OFLOW)) {
np->np_rate = 0;
np->np_other->np_rate = 0;
return (0);
}
bpc = imax(bits_per_char(t), bits_per_char(&otp->t_termios));
for (i = 0; i < 2; i++) {
/* Use the slower of their transmit or our receive rate. */
speed = imin(otp->t_termios.c_ospeed, t->c_ispeed);
if (speed == 0) {
np->np_rate = 0;
np->np_other->np_rate = 0;
return (0);
}
speed <<= QS; /* bits per second, scaled. */
speed /= bpc; /* char per second, scaled. */
rate = (hz << QS) / speed; /* hz per callout. */
if (rate == 0)
rate = 1;
speed *= rate;
speed /= hz; /* (char/sec)/tick, scaled. */
np->np_credits = speed;
np->np_rate =rate;
callout_reset(&np->np_callout,rate,
nmdm_timeout, np);
/* Swap pointers for second pass--to update the other end. */
np = np->np_other;
t = &otp->t_termios;
otp = tp;
}
return (0);
}
This function can be split into three parts. The first determines whether flow control is disabled. If it is, ns_partA’s and ns_partB’s np_rate variable is zeroed and nmdm_param exits. The np_rate variable is the rate at which nmdm_task_tty will be executed. This rate can differ for nmdm%luA and nmdm%luB.
The second part calculates the value for np_rate. This calculation takes into consideration the
speed of nmdm%luA and nmdm%luB and the
number of bits per character. The second part also determines the
maximum number of characters to transfer per execution of nmdm_task_tty.
Lastly, the third part causes nmdm_timeout to execute one time after
rate / hz seconds. The nmdm_timeout function queues nmdm_task_tty on taskqueue_swi.
The second and third parts are executed twice, once for nmdm%luA and once for nmdm%luB.
nmdm_timeout Function
As indicated in the previous section, the nmdm_timeout function queues nmdm_task_tty on taskqueue_swi at regular intervals. Here is its function definition:
static void
nmdm_timeout(void *arg)
{
struct nmdm_part *np = arg;
if (np->np_rate == 0)
return;
/*
* Do a simple Floyd-Steinberg dither to avoid FP math.
* Wipe out unused quota from last tick.
*/
np->np_accumulator += np->np_credits;
np->np_quota =np->np_accumulator >> QS;
np->np_accumulator &= ((1 << QS) - 1);
taskqueue_enqueue(
taskqueue_swi, &np->np_task);
callout_reset(&np->np_callout,
np->np_rate,
nmdm_timeout, np);
}
This function first checks the value of np_rate. If it equals 0, nmdm_timeout exits. Next, ns_partA’s or ns_partB’s np_quota variable is assigned the
maximum number of characters to transfer (if you return to nmdm_task_tty Function in nmdm_outwakeup Function, it should be obvious how np_quota is used). Once this is done, nmdm_task_tty is
queued on
taskqueue_swi and
nmdm_timeout is
rescheduled to execute after
np_rate / hz seconds.
The nmdm_param and nmdm_timeout functions are used to emulate the TTYs’ baud rate. Without these two functions, data transfers would be slower.
bits_per_char Function
The bits_per_char function returns the number of bits used to represent a single character for a given TTY. This function is used only in nmdm_param. Here is its function definition:
static int
bits_per_char(struct termios *t)
{
int bits;
bits = 1; /* start bit. */
switch (t->c_cflag & CSIZE) {
case CS5:
bits += 5;
break;
case CS6:
bits += 6;
break;
case CS7:
bits += 7;
break;
case CS8:
bits += 8;
break;
}
bits++; /* stop bit. */
if (t->c_cflag & PARENB)
bits++;
if (t->c_cflag & CSTOPB)
bits++;
return (bits);
}
Notice that the return value takes into account the
variable character size,
start bit,
stop bit,
parity enabled bit, and
second stop bit.
Don’t Panic
Now that we’ve walked through nmdm(4), let’s give it a try:
$ sudo kldload ./nmdm.ko
$ sudo /usr/libexec/getty std.9600 nmdm0A &
[1] 936
$ sudo cu -l /dev/nmdm0B
Connected
FreeBSD/i386 (wintermute.phub.net.cable.rogers.com) (nmdm0A)
login:
Excellent. We’re able to connect to nmdm0A, which is running getty(8), from nmdm0B.
Conclusion
This chapter described the entire code base of nmdm(4), the virtual null modem terminal driver. If you noticed the complete lack of locking in this driver and are alarmed, don’t be. The ns_mtx mutex, which gets initialized in nmdm_alloc, is implicitly acquired by the TTY subsystem before nmdm_outwakeup, nmdm_inwakeup, nmdm_modem, and nmdm_param are called. In short, every operation between nmdm%luA and nmdm%luB is serialized.
Chapter 7. Newbus and Resource Allocation
Until now, we’ve examined only pseudo-devices, which provide a superb introduction to driver writing. However, most drivers need to interact with real hardware. This chapter shows you how to write drivers that do just that.
I’ll start by introducing Newbus, which is the infrastructure used in FreeBSD to manage the hardware devices on the system (McKusick and Neville-Neil, 2005). I’ll then describe the basics of a Newbus driver, and I’ll conclude this chapter by talking about hardware resource allocation.
Autoconfiguration and Newbus Drivers
Autoconfiguration is the procedure carried out by FreeBSD to enable the hardware devices on a machine (McKusick and Neville-Neil, 2005). It works by systematically probing a machine’s I/O buses in order to identify their child devices. For each identified device, an appropriate Newbus driver is assigned to configure and initialize it. Note that it’s possible for a device to be unidentifiable or unsupported. As a result, no Newbus driver will be assigned.
A Newbus driver is any driver in FreeBSD that controls a device that is bound to an I/O bus (that is, roughly every driver that is not a pseudo-device driver).
In general, three components are common to all Newbus drivers:
The device_foo functions
A device method table
A DRIVER_MODULE macro call
device_foo Functions
The device_foo functions are, more or less, the operations executed by a Newbus driver during autoconfiguration. Table 7-1 briefly introduces each device_foo function.
Table 7-1. device_foo Functions
Function | Description |
---|---|
device_identify | Add new device to I/O bus |
device_probe | Probe for specific device(s) |
device_attach | Attach to device |
device_detach | Detach from device |
device_shutdown | Shut down device |
device_suspend | Device suspend requested |
device_resume | Resume has occurred |
The device_identify function adds a new device (instance) to an I/O bus. This function is used only by buses that cannot directly identify their children. Recall that autoconfiguration begins by identifying the child devices on each I/O bus. Modern buses can directly identify the devices that are connected to them. Older buses, such as ISA, have to use the device_identify routine provided by their associated drivers to identify their child devices (McKusick and Neville-Neil, 2005). You’ll learn how to associate a driver with an I/O bus shortly.
All identified child devices are passed to every Newbus driver’s device_probe function. A device_probe function tells the kernel whether its driver can handle the identified device.
Note that there may be more than one driver that can handle an identified child device. Thus, device_probe’s return value is used to specify how well its driver matches the identified device. The device_probe function that returns the highest value denotes the best Newbus driver for the identified device. The following excerpt from <sys/bus.h> shows the constants used to indicate success (that is, a match):
#define BUS_PROBE_SPECIFIC 0 /* Only I can use this device. */
#define BUS_PROBE_VENDOR (-10) /* Vendor-supplied driver. */
#define BUS_PROBE_DEFAULT (-20) /* Base OS default driver. */
#define BUS_PROBE_LOW_PRIORITY (-40) /* Older, less desirable driver. */
#define BUS_PROBE_GENERIC (-100) /* Generic driver for device. */
#define BUS_PROBE_HOOVER (-500) /* Driver for all devices on bus. */
#define BUS_PROBE_NOWILDCARD (-2000000000) /* No wildcard matches. */
As you can see, success codes are values less than or equal to zero. The standard UNIX error codes (that is, positive values) are used as failure codes.
Once the best driver has been found to handle a device, its device_attach function is called. A device_attach function initializes a device and any essential software (for example, device nodes).
The device_detach function disconnects a driver from a device. This function should set the device to a sane state and release any resources that were allocated during device_attach.
A Newbus driver’s device_shutdown, device_suspend, and device_resume functions are called when the system is shut down, when its device is suspended, or when its device returns from suspension, respectively. These functions let a driver manage its device as these events occur.
Device Method Table
A device method table, device_method_t, specifies which device_foo functions a Newbus driver implements. It is defined in the <sys/bus.h> header.
Here is an example device method table for a fictitious PCI device:
static device_method_t foo_pci_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, foo_pci_probe),
DEVMETHOD(device_attach, foo_pci_attach),
DEVMETHOD(device_detach, foo_pci_detach),
{ 0, 0 }
};
As you can see, not every device_foo function has to be defined. If a device_foo function is undefined, the corresponding operation is unsupported.
Unsurprisingly, the device_probe and device_attach functions must be defined for every Newbus driver. For drivers on older buses, the device_identify function must also be defined.
DRIVER_MODULE Macro
The DRIVER_MODULE macro registers a Newbus driver with the system. This macro is defined in the <sys/bus.h> header. Here is its function prototype:
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
DRIVER_MODULE(name, busname, driver_t driver, devclass_t devclass,
modeventhand_t evh, void *arg);
The arguments expected by this macro are as follows.
name
The name argument is used to identify the driver.
busname
The busname argument specifies the driver’s I/O bus (for example, isa, pci, usb, and so on).
driver
The driver argument expects a filled-out driver_t structure. This argument is best understood with an example:
static driver_t foo_pci_driver = {
"foo_pci",
foo_pci_methods,
sizeof(struct foo_pci_softc)
};
Here, "foo_pci" is this example driver’s official name,
foo_pci_methods is its device method table, and
sizeof(struct foo_pci_softc) is the size of its software context.
devclass
The devclass argument expects an uninitialized devclass_t variable, which will be used by the kernel for internal bookkeeping.
evh
The evh argument denotes an optional module event handler. Generally, we’ll always set evh to 0, because DRIVER_MODULE supplies its own module event handler.
arg
The arg argument is the void * argument for the module event handler specified by evh. If evh is set to 0, arg must be too.
Tying Everything Together
You now know enough to write your first Newbus driver. Example 7-1 is a simple Newbus driver (based on code written by Murray Stokely) for a fictitious PCI device.
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 7-1. foo_pci.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h> struct foo_pci_softc {
device_t device;
struct cdev *cdev;
};
static d_open_t foo_pci_open;
static d_close_t foo_pci_close;
static d_read_t foo_pci_read;
static d_write_t foo_pci_write; static struct cdevsw foo_pci_cdevsw = {
.d_version = D_VERSION,
.d_open = foo_pci_open,
.d_close = foo_pci_close,
.d_read = foo_pci_read,
.d_write = foo_pci_write,
.d_name = "foo_pci"
}; static devclass_t foo_pci_devclass;
static int
foo_pci_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct foo_pci_softc *sc;
sc = dev->si_drv1;
device_printf(sc->device, "opened successfully\n");
return (0);
}
static int
foo_pci_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
struct foo_pci_softc *sc;
sc = dev->si_drv1;
device_printf(sc->device, "closed\n");
return (0);
}
static int
foo_pci_read(struct cdev *dev, struct uio *uio, int ioflag)
{
struct foo_pci_softc *sc;
sc = dev->si_drv1;
device_printf(sc->device, "read request = %dB\n", uio->uio_resid);
return (0);
}
static int
foo_pci_write(struct cdev *dev, struct uio *uio, int ioflag)
{
struct foo_pci_softc *sc;
sc = dev->si_drv1;
device_printf(sc->device, "write request = %dB\n", uio->uio_resid);
return (0);
}
static struct _pcsid {
uint32_t type;
const char *desc;
} pci_ids[] = {
{ 0x1234abcd, "RED PCI Widget" },
{ 0x4321fedc, "BLU PCI Widget" },
{ 0x00000000, NULL }
};
static int
foo_pci_probe(device_t dev)
{
uint32_t type = pci_get_devid(dev);
struct _pcsid *ep = pci_ids;
while (ep->type && ep->type != type)
ep++;
if (ep->desc) {
device_set_desc(dev, ep->desc);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
foo_pci_attach(device_t dev)
{
struct foo_pci_softc *sc = device_get_softc(dev);
int unit = device_get_unit(dev);
sc->device = dev;
sc->cdev = make_dev(&foo_pci_cdevsw, unit, UID_ROOT, GID_WHEEL,
0600, "foo_pci%d", unit);
sc->cdev->si_drv1 = sc;
return (0);
}
static int
foo_pci_detach(device_t dev)
{
struct foo_pci_softc *sc = device_get_softc(dev);
destroy_dev(sc->cdev);
return (0);
}
static device_method_t foo_pci_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, foo_pci_probe),
DEVMETHOD(device_attach, foo_pci_attach),
DEVMETHOD(device_detach, foo_pci_detach),
{ 0, 0 }
};
static driver_t foo_pci_driver = {
"foo_pci",
foo_pci_methods,
sizeof(struct foo_pci_softc)
}; DRIVER_MODULE(foo_pci, pci, foo_pci_driver,
foo_pci_devclass, 0, 0);
This driver begins by defining its software context, which will maintain a
pointer to its device and the
cdev returned by the
make_dev call.
Next, its character device switch table is defined. This table contains four d_foo functions named foo_pci_open, foo_pci_close, foo_pci_read, and foo_pci_write. I’ll describe these functions in d_foo Functions in d_foo Functions.
Then a devclass_t variable is declared. This variable is passed to the
DRIVER_MODULE macro as its
devclass argument.
Finally, the d_foo and device_foo functions are defined. These functions are described in the order they would execute.
foo_pci_probe Function
The foo_pci_probe function is the device_probe implementation for this driver. Before I walk through this function, a description of the pci_ids array (found around the middle of Example 7-1) is needed.
static struct _pcsid {
uint32_t type;
const char *desc;
} pci_ids[] = {
{ 0x1234abcd, "RED PCI Widget" },
{ 0x4321fedc, "BLU PCI Widget" },
{ 0x00000000, NULL }
};
This array is composed of three _pcsid structures. Each _pcsid structure contains a PCI ID and a
description of the PCI device. As you might have guessed, pci_ids lists the devices that Example 7-1 supports.
Now that I’ve described pci_ids, let’s walk through foo_pci_probe.
static int
foo_pci_probe(device_tdev)
{
uint32_t type =pci_get_devid(dev);
struct _pcsid *ep =pci_ids;
while (ep->type && ep->type != type)
ep++;
if (ep->desc) {
device_set_desc(dev, ep->desc);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
Here, dev describes an identified device found on the PCI bus. So this function begins by
obtaining the PCI ID of dev. Then it
determines if dev’s PCI ID is listed in
pci_ids. If it is, dev’s verbose description is
set and the success code BUS_PROBE_DEFAULT is
returned.
NOTE
The verbose description is printed to the system console when foo_pci_attach executes.
foo_pci_attach Function
The foo_pci_attach function is the device_attach implementation for this driver. Here is its function definition (again):
static int
foo_pci_attach(device_tdev)
{
struct foo_pci_softc *sc =device_get_softc(dev);
int unit =device_get_unit(dev);
sc->device =dev;
sc->cdev =make_dev(&foo_pci_cdevsw, unit, UID_ROOT, GID_WHEEL,
0600, "foo_pci%d", unit);
sc->cdev->si_drv1 =sc;
return (0);
}
Here, dev describes a device under this driver’s control. Thus, this function starts by getting dev’s
software context and
unit number. Then a character device node is
created and the variables sc->device and sc->cdev->si_drv1 are set to
dev and
sc, respectively.
NOTE
The d_foo functions (described next) use sc->device and cdev->si_drv1 to gain access to dev and sc.
d_foo Functions
Because every d_foo function in Example 7-1 just prints a debug message (that is to say, they’re all basically the same), I’m only going to walk through one of them: foo_pci_open.
static int
foo_pci_open(struct cdev*dev, int oflags, int devtype, struct thread *td)
{
struct foo_pci_softc *sc;
sc = dev->si_drv1;
device_printf(sc->device, "opened successfully\n");
return (0);
}
Here, dev is the cdev returned by the make_dev call in foo_pci_attach. So, this function first
obtains its software context. Then it
prints a debug message.
foo_pci_detach Function
The foo_pci_detach function is the device_detach implementation for this driver. Here is its function definition (again):
static int
foo_pci_detach(device_tdev)
{
struct foo_pci_softc *sc =device_get_softc(dev);
destroy_dev(sc->cdev);
return (0);
}
Here, dev describes a device under this driver’s control. Thus, this function simply obtains dev’s
software context to
destroy its device node.
Don’t Panic
Now that we’ve discussed Example 7-1, let’s give it a try:
$ sudo kldload ./foo_pci.ko
$ kldstat
Id Refs Address Size Name
1 3 0xc0400000 c9f490 kernel
2 1 0xc3af0000 2000 foo_pci.ko
$ ls -l /dev/foo*
ls: /dev/foo*:No such file or directory
Of course, it fails miserably, because foo_pci_probe is probing for fictitious PCI devices. Before concluding this chapter, one additional topic bears mentioning.
Hardware Resource Management
As part of configuring and operating devices, a driver might need to manage hardware resources, such as interrupt-request lines (IRQs), I/O ports, or I/O memory (McKusick and Neville-Neil, 2005). Naturally, Newbus includes several functions for doing just that.
#include <sys/param.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
struct resource *
bus_alloc_resource(device_t dev, int type, int *rid, u_long start,
u_long end, u_long count, u_int flags);
struct resource *
bus_alloc_resource_any(device_t dev, int type, int *rid,
u_int flags);
int
bus_activate_resource(device_t dev, int type, int rid,
struct resource *r);
int
bus_deactivate_resource(device_t dev, int type, int rid,
struct resource *r);
int
bus_release_resource(device_t dev, int type, int rid,
struct resource *r);
The bus_alloc_resource function allocates hardware resources for a specific device to use. If successful, a struct resource pointer is returned; otherwise, NULL is returned. This function is normally called during device_attach. If it is called during device_probe, all allocated resources must be released (via bus_release_resource) before returning. Most of the arguments for bus_alloc_resource are common to the other hardware resource management functions. These arguments are described in the next few paragraphs.
The dev argument is the device that requires ownership of the hardware resource(s). Before allocation, resources are owned by the parent bus.
The type argument represents the type of resource dev wants allocated. Valid values for this argument are listed in Table 7-2.
Table 7-2. Symbolic Constants for Hardware Resources
Constant | Description |
---|---|
SYS_RES_IRQ | Interrupt-request line |
SYS_RES_IOPORT | I/O port |
SYS_RES_MEMORY | I/O memory |
The rid argument expects a resource ID (RID). If bus_alloc_resource is successful, a RID is returned in rid that may differ from what you passed. You’ll learn more about RIDs later.
The start and end arguments are the start and end addresses of the hardware resource(s). To employ the default bus values, simply pass 0ul as start and ˜0ul as end.
The count argument denotes the size of the hardware resource(s). If you used the default bus values for start and end, count is used only if it is larger than the default bus value.
The flags argument details the characteristics of the hardware resource. Valid values for this argument are listed in Table 7-3.
Table 7-3. bus_alloc_resource Symbolic Constants
Constant | Description |
---|---|
RF_ALLOCATED | Allocate hardware resource, but don’t activate it |
RF_ACTIVE | Allocate hardware resource and activate resource automatically |
RF_SHAREABLE | Hardware resource permits contemporaneous sharing; you should always set this flag, unless the resource cannot be shared |
RF_TIMESHARE | Hardware resource permits time-division sharing |
The bus_alloc_resource_any function is a convenience wrapper for bus_alloc_resource that sets start, end, and count to their default bus values.
The bus_activate_resource function activates a previously allocated hardware resource. Naturally, resources must be activated before they can be used. Most drivers simply pass RF_ACTIVE to bus_alloc_resource or bus_alloc_resource_any to avoid calling bus_activate_resource.
The bus_deactivate_resource function deactivates a hardware resource. This function is primarily used in bus drivers (so we’ll never call it).
The bus_release_resource function releases a previously allocated hardware resource. Of course, the resource cannot be in use on release. If successful, 0 is returned; otherwise, the kernel panics.
NOTE
We’ll cover an example that employs IRQs in Chapter 8 and Chapter 9, and I’ll go over an example that requires I/O ports and I/O memory in Chapter 10 and Chapter 11.
Conclusion
This chapter introduced you to the basics of Newbus driver development— working with real hardware. The remainder of this book builds upon the concepts described here to complete your understanding of Newbus.
Chapter 8. Interrupt Handling
Hardware devices often have to perform (or deal with) external events, such as spinning disk platters, winding tapes, waiting for I/O, and so on. Most of these external events occur in a timeframe that is much slower than the processor’s—that is, if the processor were to wait for the completion (or arrival) of these events, it would be idle for some time. To avoid wasting the processor’s valuable time, interrupts are employed. An interrupt is simply a signal that a hardware device can send when it wants the processor’s attention (Corbet et al., 2005). For the most part, a driver only needs to register a handler function to service its device’s interrupts.
Registering an Interrupt Handler
The following functions, declared in <sys/bus.h>, register or tear down an interrupt handler:
#include <sys/param.h>
#include <sys/bus.h>
int
bus_setup_intr(device_t dev, struct resource *r, int flags,
driver_filter_t filter, driver_intr_t ithread, void *arg,
void **cookiep);
int
bus_teardown_intr(device_t dev, struct resource *r, void *cookiep);
The bus_setup_intr function registers an interrupt handler with an IRQ. This IRQ must be allocated beforehand with bus_alloc_resource, as described in Hardware Resource Management in Don’t Panic.
The bus_setup_intr function is normally called during device_attach. The arguments for this function are described in the next few paragraphs.
The dev argument is the device whose interrupts are to be handled. This device must have an IRQ.
The r argument demands the return value from the successful bus_alloc_resource call that assigned an IRQ for dev.
The flags argument classifies the interrupt handler and/or the interrupt. Valid values for this argument are defined in the intr_type enumeration, found in <sys/bus.h>. Table 8-1 describes the more commonly used values.
Table 8-1. bus_setup_intr Symbolic Constants
Constant | Description |
---|---|
INTR_MPSAFE | Indicates that the interrupt handler is multiprocessor safe and does not need to be protected by Giant—that is, any race conditions are to be handled by the interrupt handler itself; contemporary code should always pass this flag |
INTR_ENTROPY | Indicates that the interrupt is a good source of entropy and may be employed by the entropy device /dev/random |
The filter and ithread arguments specify the filter and ithread routines for the interrupt handler. For now, don’t worry about these arguments; I’ll discuss them in the following section.
The arg argument is the sole argument that gets passed to the interrupt handler. Generally, you’ll always set arg to dev’s software context.
The cookiep argument expects a pointer to void *. If bus_setup_intr is successful, a cookie is returned in cookiep; this cookie is needed to destroy the interrupt handler.
As you would expect, the bus_teardown_intr function tears down an interrupt handler.
Interrupt Handlers in FreeBSD
Now that you know how to register an interrupt handler, let’s discuss how interrupt handlers are implemented.
In FreeBSD, interrupt handlers are composed of a filter routine, an ithread routine, or both. A filter routine executes in primary interrupt context (that is, it does not have its own context). Thus, it cannot block or context switch, and it can use only spin mutexes for synchronization. Due to these constraints, filter routines are typically used only with devices that require a nonpreemptive interrupt handler.
A filter routine may either completely handle an interrupt or defer the computationally expensive work to its associated ithread routine, assuming it has one. Table 8-2 details the values that a filter routine can return.
Table 8-2. Filter Routine Return Values
Constant | Description |
---|---|
FILTER_STRAY | Indicates that the filter routine can’t handle this interrupt; this value is equivalent to an error code. |
FILTER_HANDLED | Indicates that the interrupt has been completely handled; this value is equivalent to a success code. |
FILTER_SCHEDULE_THREAD | Schedules the ithread routine to execute; this value can be returned if and only if the filter routine has an associated ithread routine. |
An ithread routine, unlike a filter routine, executes in its own thread context. You can do whatever you want in an ithread routine, except voluntarily context switch (that is, sleep) or wait on a condition variable. Because filter routines are nonpreemptive, most interrupt handlers in FreeBSD are just ithread routines.
Implementing an Interrupt Handler
Example 8-1 is a contrived Newbus driver designed to demonstrate interrupt handlers. Example 8-1 sets up an interrupt handler on the parallel port; on read, it sleeps until it receives an interrupt.
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 8-1. pint.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/ppbus/ppbconf.h>
#include "ppbus_if.h"
#include <dev/ppbus/ppbio.h>
#define PINT_NAME "pint"
#define BUFFER_SIZE 256
struct pint_data {
int sc_irq_rid;
struct resource *sc_irq_resource;
void *sc_irq_cookie;
device_t sc_device;
struct cdev *sc_cdev;
short sc_state;
#define PINT_OPEN 0x01
char *sc_buffer;
int sc_length;
};
static d_open_t pint_open;
static d_close_t pint_close;
static d_read_t pint_read;
static d_write_t pint_write;
static struct cdevsw pint_cdevsw = {
.d_version = D_VERSION,
.d_open = pint_open,
.d_close = pint_close,
.d_read = pint_read,
.d_write = pint_write,
.d_name = PINT_NAME
};
static devclass_t pint_devclass;
static int
pint_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
device_t ppbus = device_get_parent(pint_device);
int error;
ppb_lock(ppbus);
if (sc->sc_state) {
ppb_unlock(ppbus);
return (EBUSY);
} else
sc->sc_state |= PINT_OPEN;
error = ppb_request_bus(ppbus, pint_device, PPB_WAIT | PPB_INTR);
if (error) {
sc->sc_state = 0;
ppb_unlock(ppbus);
return (error);
}
ppb_wctr(ppbus, 0);
ppb_wctr(ppbus, IRQENABLE);
ppb_unlock(ppbus);
return (0);
}
static int
pint_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
device_t ppbus = device_get_parent(pint_device);
ppb_lock(ppbus);
ppb_wctr(ppbus, 0);
ppb_release_bus(ppbus, pint_device);
sc->sc_state = 0;
ppb_unlock(ppbus);
return (0);
}
static int
pint_write(struct cdev *dev, struct uio *uio, int ioflag)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
int amount, error = 0;
amount = MIN(uio->uio_resid,
(BUFFER_SIZE - 1 - uio->uio_offset > 0) ?
BUFFER_SIZE - 1 - uio->uio_offset : 0);
if (amount == 0)
return (error);
error = uiomove(sc->sc_buffer, amount, uio);
if (error) {
device_printf(pint_device, "write failed\n");
return (error);
}
sc->sc_buffer[amount] = '\0';
sc->sc_length = amount;
return (error);
}
static int
pint_read(struct cdev *dev, struct uio *uio, int ioflag)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
device_t ppbus = device_get_parent(pint_device);
int amount, error = 0;
ppb_lock(ppbus);
error = ppb_sleep(ppbus, pint_device, PPBPRI | PCATCH, PINT_NAME, 0);
ppb_unlock(ppbus);
if (error)
return (error);
amount = MIN(uio->uio_resid,
(sc->sc_length - uio->uio_offset > 0) ?
sc->sc_length - uio->uio_offset : 0);
error = uiomove(sc->sc_buffer + uio->uio_offset, amount, uio);
if (error)
device_printf(pint_device, "read failed\n");
return (error);
}
static void
pint_intr(void *arg)
{
struct pint_data *sc = arg;
device_t pint_device = sc->sc_device;
#ifdef INVARIANTS
device_t ppbus = device_get_parent(pint_device);
ppb_assert_locked(ppbus);
#endif
wakeup(pint_device);
}
static void
pint_identify(driver_t *driver, device_t parent)
{
device_t dev;
dev = device_find_child(parent, PINT_NAME, −1);
if (!dev)
BUS_ADD_CHILD(parent, 0, PINT_NAME, −1);
}
static int
pint_probe(device_t dev)
{
/* probe() is always OK. */
device_set_desc(dev, "Interrupt Handler Example");
return (BUS_PROBE_SPECIFIC);
}
static int
pint_attach(device_t dev)
{
struct pint_data *sc = device_get_softc(dev);
int error, unit = device_get_unit(dev);
/* Declare our interrupt handler. */
sc->sc_irq_rid = 0;
sc->sc_irq_resource = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irq_rid, RF_ACTIVE | RF_SHAREABLE);
/* Interrupts are mandatory. */
if (!sc->sc_irq_resource) {
device_printf(dev,
"unable to allocate interrupt resource\n");
return (ENXIO);
}
/* Register our interrupt handler. */
error = bus_setup_intr(dev, sc->sc_irq_resource,
INTR_TYPE_TTY | INTR_MPSAFE, NULL, pint_intr,
sc, &sc->sc_irq_cookie);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
sc->sc_irq_resource);
device_printf(dev, "unable to register interrupt handler\n");
return (error);
}
sc->sc_buffer = malloc(BUFFER_SIZE, M_DEVBUF, M_WAITOK);
sc->sc_device = dev;
sc->sc_cdev = make_dev(&pint_cdevsw, unit, UID_ROOT, GID_WHEEL, 0600,
PINT_NAME "%d", unit);
sc->sc_cdev->si_drv1 = sc;
return (0);
}
static int
pint_detach(device_t dev)
{
struct pint_data *sc = device_get_softc(dev);
destroy_dev(sc->sc_cdev);
bus_teardown_intr(dev, sc->sc_irq_resource, sc->sc_irq_cookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
sc->sc_irq_resource);
free(sc->sc_buffer, M_DEVBUF);
return (0);
}
static device_method_t pint_methods[] = {
/* Device interface. */
DEVMETHOD(device_identify, pint_identify),
DEVMETHOD(device_probe, pint_probe),
DEVMETHOD(device_attach, pint_attach),
DEVMETHOD(device_detach, pint_detach),
{ 0, 0 }
};
static driver_t pint_driver = {
PINT_NAME,
pint_methods,
sizeof(struct pint_data)
};
DRIVER_MODULE(pint, ppbus, pint_driver, pint_devclass, 0, 0);
MODULE_DEPEND(pint, ppbus, 1, 1, 1);
To make things easier to understand, I’ll describe the functions in Example 8-1 in the order they were written, instead of in the order they appear. To that end, I’ll begin with the pint_identify function.
pint_identify Function
The pint_identify function is the device_identify implementation for this driver. Logically, this function is required because the parallel port cannot identify its children unaided.
Here is the function definition for pint_identify (again):
static void
pint_identify(driver_t *driver, device_t parent)
{
device_t dev;
dev =device_find_child(parent,
PINT_NAME, −1);
if (!dev)
BUS_ADD_CHILD(parent, 0, PINT_NAME, −1);
}
This function first determines whether the parallel port has (ever) identified a child device named
PINT_NAME. If it has not, then pint_identify
adds PINT_NAME to the parallel port’s list of identified children.
pint_probe Function
The pint_probe function is the device_probe implementation for this driver. Here is its function definition (again):
static int
pint_probe(device_t dev)
{
/* probe() is always OK. */
device_set_desc(dev, "Interrupt Handler Example");
return (BUS_PROBE_SPECIFIC);
}
As you can see, this function always returns the success code BUS_PROBE_SPECIFIC, so Example 8-1 attaches to every device it probes. This may seem erroneous, but it is the correct behavior, as devices identified by a device_identify routine, using BUS_ADD_CHILD, are probed only by drivers with the same name. In this case, the identified device and driver name is PINT_NAME.
pint_attach Function
The pint_attach function is the device_attach implementation for this driver. Here is its function definition (again):
static int
pint_attach(device_t dev)
{
struct pint_data *sc = device_get_softc(dev);
int error, unit = device_get_unit(dev);
/* Declare our interrupt handler. */
sc->sc_irq_rid = 0;
sc->sc_irq_resource =bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irq_rid, RF_ACTIVE | RF_SHAREABLE);
/* Interrupts are mandatory. */
if (!sc->sc_irq_resource) {
device_printf(dev,
"unable to allocate interrupt resource\n");
return (ENXIO);
}
/* Register our interrupt handler. */
error =bus_setup_intr(dev, sc->sc_irq_resource,
INTR_TYPE_TTY | INTR_MPSAFE, NULL,pint_intr,
sc, &sc->sc_irq_cookie);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
sc->sc_irq_resource);
device_printf(dev, "unable to register interrupt handler\n");
return (error);
}
sc->sc_buffer =malloc(BUFFER_SIZE, M_DEVBUF, M_WAITOK);
sc->sc_device = dev;
sc->sc_cdev =make_dev(&pint_cdevsw, unit, UID_ROOT, GID_WHEEL,
0600, PINT_NAME "%d", unit);
sc->sc_cdev->si_drv1 = sc;
return (0);
}
This function first allocates an IRQ. If unsuccessful, the error code ENXIO (which stands for error: device not configured) is
returned. Next, the
pint_intr function is
set up as the interrupt handler for dev (in this case, the interrupt handler is just an ithread routine). Afterward, a buffer of BUFFER_SIZE bytes is
allocated. Then sc->sc_device is
set to dev, Example 8-1’s character device node is
created, and a pointer to the software context (sc) is
saved in sc->sc_cdev->si_drv1.
pint_detach Function
The pint_detach function is the device_detach implementation for this driver. Here is its function definition (again):
static int
pint_detach(device_t dev)
{
struct pint_data *sc = device_get_softc(dev);
destroy_dev(sc->sc_cdev);
bus_teardown_intr(dev, sc->sc_irq_resource, sc->sc_irq_cookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
sc->sc_irq_resource);
free(sc->sc_buffer, M_DEVBUF);
return (0);
}
This function starts by destroying Example 8-1’s device node. Once this is done, it
tears down dev’s interrupt handler,
releases dev’s IRQ, and
frees the allocated memory.
pint_open Function
The pint_open function is defined in pint_cdevsw (that is, Example 8-1’s character device switch table) as the d_open operation. Recall that d_open operations prepare the device for I/O.
Here is the function definition for pint_open (again):
static int
pint_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
device_t ppbus = device_get_parent(pint_device);
int error;
ppb_lock(ppbus);
if (sc->sc_state) {
ppb_unlock(ppbus);
return (EBUSY);
} else
sc->sc_state |= PINT_OPEN;
error =ppb_request_bus(ppbus, pint_device, PPB_WAIT | PPB_INTR);
if (error) {
sc->sc_state = 0;
ppb_unlock(ppbus);
return (error);
}
ppb_wctr(ppbus, 0);
ppb_wctr(ppbus, IRQENABLE);
ppb_unlock(ppbus);
return (0);
}
This function first acquires the parallel port mutex. Then the value of sc->sc_state is
examined. If it does not equal 0, which indicates that another process has opened the device, the error code EBUSY is
returned; otherwise, pint_open
“opens” the device. Opening the device, in this case, means setting sc->sc_state to PINT_OPEN. Afterward, the ppb_request_bus function is
called to mark pint_device as the owner of the parallel port. Naturally, pint_device is our device (that is, it points to dev from pint_attach).
NOTE
Owning the parallel port lets a device transfer data to and from it.
Finally, before enabling interrupts, pint_open
clears the parallel port’s control register.
pint_close Function
The pint_close function is defined in pint_cdevsw as the d_close operation. Here is its function definition (again):
static int
pint_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
device_t ppbus = device_get_parent(pint_device);
ppb_lock(ppbus);
ppb_wctr(ppbus, 0);
ppb_release_bus(ppbus, pint_device);
sc->sc_state = 0;
ppb_unlock(ppbus);
return (0);
}
This function first acquires the parallel port mutex. Then interrupts on the parallel port are
disabled (for all intents and purposes, clearing the control register, which is what the above code does, disables interrupts). Next, the ppb_release_bus function is
called to relinquish ownership of the parallel port. Finally, sc->sc_state is
zeroed, so that another process can open this device.
pint_write Function
The pint_write function is defined in pint_cdevsw as the d_write operation. This function acquires a character string from user space and stores it.
Here is the function definition for pint_write (again):
static int
pint_write(struct cdev *dev, struct uio *uio, int ioflag)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
int amount, error = 0;
amount = MIN(uio->uio_resid,
(BUFFER_SIZE - 1 - uio->uio_offset > 0) ?
BUFFER_SIZE - 1 - uio->uio_offset : 0);
if (amount == 0)
return (error);
error = uiomove(sc->sc_buffer, amount, uio);
if (error) {
device_printf(pint_device, "write failed\n");
return (error);
}
sc->sc_buffer[amount] = '\0';
sc->sc_length = amount;
return (error);
}
This function is fundamentally identical to the echo_write function described in echo_write Function. Consequently, I won’t walk through it again here.
pint_read Function
The pint_read function is defined in pint_cdevsw as the d_read operation. This function sleeps on entry. It also returns the stored character string to user space.
Here is the function definition for pint_read (again):
static int
pint_read(struct cdev *dev, struct uio *uio, int ioflag)
{
struct pint_data *sc = dev->si_drv1;
device_t pint_device = sc->sc_device;
device_t ppbus = device_get_parent(pint_device);
int amount, error = 0;
ppb_lock(ppbus);
error =ppb_sleep(ppbus,
pint_device, PPBPRI | PCATCH,
PINT_NAME, 0);
ppb_unlock(ppbus);
if (error)
return (error);
amount = MIN(uio->uio_resid,
(sc->sc_length - uio->uio_offset > 0) ?
sc->sc_length - uio->uio_offset : 0);
error = uiomove(sc->sc_buffer + uio->uio_offset, amount, uio);
if (error)
device_printf(pint_device, "read failed\n");
return (error);
}
This function begins by acquiring the parallel port mutex. Then it
sleeps on the channel
pint_device.
NOTE
The ppb_sleep function releases the parallel port mutex before sleeping. Of course, it also reacquires the parallel port mutex before returning to its caller.
The remnants of this function are basically identical to the echo_read function described in echo_read Function, so we won’t discuss them again here.
pint_intr Function
The pint_intr function is the interrupt handler for Example 8-1. Here is its function definition (again):
static void
pint_intr(void *arg)
{
struct pint_data *sc = arg;
device_t pint_device = sc->sc_device;
#ifdef INVARIANTS
device_t ppbus = device_get_parent(pint_device);
ppb_assert_locked(ppbus);
#endif
wakeup(pint_device);
}
As you can see, this function simply wakes up every thread sleeping on pint_device.
NOTE
Parallel port interrupt handlers are unique, because they get invoked with the parallel port mutex already held. Conversely, normal interrupt handlers need to explicitly acquire their own locks.
Don’t Panic
Now that we’ve walked through Example 8-1, let’s give it a try:
$ sudo kldload ./pint.ko
$ su
Password:
echo "DON'T PANIC" > /dev/pint0
cat /dev/pint0 &
[1] 954
ps | head -n 1 && ps | grep "cat"
PID TT STAT TIME COMMAND
954 v1 I 0:00.03 cat /dev/pint0
Apparently it works. But how do we generate an interrupt to test our interrupt handler?
Generating Interrupts on the Parallel Port
Once interrupts are enabled, the parallel port generates an interrupt whenever the electrical signal at pin 10, dubbed the ACK bit, changes from low to high (Corbet et al., 2005).
To toggle the electrical signal at pin 10, I connected pin 10 to pin 9 (using a resistor) and then I executed the program shown in Example 8-2.
Example 8-2. tint.c
#include <sys/types.h>
#include <machine/cpufunc.h>
#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> #define BASE_ADDRESS 0x378
int
main(int argc, char *argv[])
{
int fd;
fd = open("/dev/io", O_RDWR);
if (fd < 0)
err(1, "open(/dev/io)");
outb(BASE_ADDRESS, 0x00);
outb(BASE_ADDRESS, 0xff);
outb(BASE_ADDRESS, 0x00);
close(fd);
return (0);
}
Here, BASE_ADDRESS denotes the base address of the parallel port. On most contemporary PCs, 0x378 is the base address of the parallel port. However, you can check your machine’s BIOS to be sure.
This program changes the electrical signal at pin 9 of the parallel port from low to
high.
NOTE
If you’re curious, pin 9 is the most significant bit of the parallel data byte (Corbet et al., 2005).
Here are the results from executing Example 8-2:
echo "DON'T PANIC" > /dev/pint0
cat /dev/pint0 &
[1] 1056
./tint
DON'T PANIC
Conclusion
This chapter focused primarily on implementing an interrupt handler. In Chapter 9, we’ll build upon the concepts and code described here to write a nontrivial, interrupt-driven driver.
Chapter 9. Case Study: Parallel Port Printer Driver
This chapter is the second case study in this book. In this chapter, we’ll go through lpt(4), the parallel port printer driver. lpt(4), by default, is configured to be interrupt-driven, which gives us an opportunity to go through a nontrivial interrupt handler. Aside from this, I chose to profile lpt(4) because it uses almost every topic described in the previous chapters. It’s also relatively short.
NOTE
To improve readability, some of the variables and functions presented in this chapter have been renamed and restructured from their counterparts in the FreeBSD source.
Code Analysis
Example 9-1 provides a terse, source-level overview of lpt(4).
Example 9-1. lpt.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/syslog.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/ppbus/ppbconf.h>
#include "ppbus_if.h"
#include <dev/ppbus/ppbio.h>
#include <dev/ppbus/ppb_1284.h>
#include <dev/ppbus/lpt.h>
#include <dev/ppbus/lptio.h>
#define LPT_NAME "lpt" /* official driver name. */
#define LPT_INIT_READY 4 /* wait up to 4 seconds. */
#define LPT_PRI (PZERO + 8) /* priority. */
#define BUF_SIZE 1024 /* sc_buf size. */
#define BUF_STAT_SIZE 32 /* sc_buf_stat size. */
struct lpt_data {
short sc_state;
char sc_primed;
struct callout sc_callout;
u_char sc_ticks;
int sc_irq_rid;
struct resource *sc_irq_resource;
void *sc_irq_cookie;
u_short sc_irq_status;
void *sc_buf;
void *sc_buf_stat;
char *sc_cp;
device_t sc_dev;
struct cdev *sc_cdev;
struct cdev *sc_cdev_bypass;
char sc_flags;
u_char sc_control;
short sc_transfer_count;
};
/* bits for sc_state. */
#define LP_OPEN (1 << 0) /* device is open. */
#define LP_ERROR (1 << 2) /* error received from printer. */
#define LP_BUSY (1 << 3) /* printer is busy writing. */
#define LP_TIMEOUT (1 << 5) /* timeout enabled. */
#define LP_INIT (1 << 6) /* initializing in lpt_open. */
#define LP_INTERRUPTED (1 << 7) /* write call was interrupted. */
#define LP_HAVEBUS (1 << 8) /* driver owns the bus. */
/* bits for sc_ticks. */
#define LP_TOUT_INIT 10 /* initial timeout: 1/10 sec. */
#define LP_TOUT_MAX 1 /* max timeout: 1/1 sec. */
/* bits for sc_irq_status. */
#define LP_HAS_IRQ 0x01 /* we have an IRQ available. */
#define LP_USE_IRQ 0x02 /* our IRQ is in use. */
#define LP_ENABLE_IRQ 0x04 /* enable our IRQ on open. */
#define LP_ENABLE_EXT 0x10 /* enable extended mode. */
/* bits for sc_flags. */
#define LP_NO_PRIME 0x10 /* don't prime the printer. */
#define LP_PRIME_OPEN 0x20 /* prime on every open. */
#define LP_AUTO_LF 0x40 /* automatic line feed. */
#define LP_BYPASS 0x80 /* bypass printer ready checks. */
/* masks to interrogate printer status. */
#define LP_READY_MASK (LPS_NERR | LPS_SEL | LPS_OUT | LPS_NBSY)
#define LP_READY (LPS_NERR | LPS_SEL | LPS_NBSY)
/* used in polling code. */
#define LPS_INVERT (LPS_NERR | LPS_SEL | LPS_NACK | LPS_NBSY)
#define LPS_MASK (LPS_NERR | LPS_SEL | LPS_OUT | LPS_NACK | LPS_NBSY)
#define NOT_READY(bus) ((ppb_rstr(bus) ^ LPS_INVERT) & LPS_MASK)
#define MAX_SPIN 20 /* wait up to 20 usec. */
#define MAX_SLEEP (hz * 5) /* timeout while waiting. */
static d_open_t lpt_open;
static d_close_t lpt_close;
static d_read_t lpt_read;
static d_write_t lpt_write;
static d_ioctl_t lpt_ioctl;
static struct cdevsw lpt_cdevsw = {
.d_version = D_VERSION,
.d_open = lpt_open,
.d_close = lpt_close,
.d_read = lpt_read,
.d_write = lpt_write,
.d_ioctl = lpt_ioctl,
.d_name = LPT_NAME
};
static devclass_t lpt_devclass;
static void
lpt_identify(driver_t *driver, device_t parent)
{
...
}
static int
lpt_request_ppbus(device_t dev, int how)
{
...
}
static int
lpt_release_ppbus(device_t dev)
{
...
}
static int
lpt_port_test(device_t ppbus, u_char data, u_char mask)
{
...
}
static int
lpt_detect(device_t dev)
{
...
}
static int
lpt_probe(device_t dev)
{
...
}
static void
lpt_intr(void *arg)
{
...
}
static int
lpt_attach(device_t dev)
{
...
}
static int
lpt_detach(device_t dev)
{
...
}
static void
lpt_timeout(void *arg)
{
...
}
static int
lpt_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
...
}
static int
lpt_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
...
}
static int
lpt_read(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
lpt_push_bytes(struct lpt_data *sc)
{
...
}
static int
lpt_write(struct cdev *dev, struct uio *uio, int ioflag)
{
...
}
static int
lpt_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
...
}
static device_method_t lpt_methods[] = {
DEVMETHOD(device_identify, lpt_identify),
DEVMETHOD(device_probe, lpt_probe),
DEVMETHOD(device_attach, lpt_attach),
DEVMETHOD(device_detach, lpt_detach),
{ 0, 0 }
};
static driver_t lpt_driver = {
LPT_NAME,
lpt_methods,
sizeof(struct lpt_data)
};
DRIVER_MODULE(lpt, ppbus, lpt_driver, lpt_devclass, 0, 0);
MODULE_DEPEND(lpt, ppbus, 1, 1, 1);
Example 9-1 is provided as a convenience; as I go through the code for lpt(4) you can refer to it to see how lpt(4)’s functions and structures are laid out.
To make things easier to follow, I’ll analyze the functions in lpt(4) in the approximate order they would execute in (rather than in the order they appear). To that end, I’ll begin with the lpt_identify function.
lpt_identify Function
The lpt_identify function is the device_identify implementation for lpt(4). Logically, this function is required because the parallel port cannot identify its children unaided.
Here is the function definition for lpt_identify:
static void
lpt_identify(driver_t *driver, device_t parent)
{
device_t dev;
dev =device_find_child(parent,
LPT_NAME, −1);
if (!dev)
BUS_ADD_CHILD(parent, 0, LPT_NAME, −1);
}
This function first determines whether the parallel port has (ever) identified a child device named
LPT_NAME. If it has not, then lpt_identify
adds LPT_NAME to the parallel port’s list of identified children.
lpt_probe Function
The lpt_probe function is the device_probe implementation for lpt(4). Here is its function definition:
static int
lpt_probe(device_t dev)
{
if (!lpt_detect(dev))
return (ENXIO);
device_set_desc(dev, "Printer");
return (BUS_PROBE_SPECIFIC);
}
This function simply calls lpt_detect to detect (that is, probe for) the presence of a printer.
lpt_detect Function
As mentioned in the previous section, lpt_detect detects the presence of a printer. It works by writing to the parallel port’s data register. If a printer is present, it can read back the value just written.
Here is the function definition for lpt_detect:
static int
lpt_detect(device_t dev)
{
device_t ppbus = device_get_parent(dev);
static u_char test[18] = {
0x55, /* alternating zeros. */
0xaa, /* alternating ones. */
0xfe, 0xfd, 0xfb, 0xf7,
0xef, 0xdf, 0xbf, 0x7f, /* walking zero. */
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80 /* walking one. */
};
int i, error, success = 1; /* assume success. */
ppb_lock(ppbus);
error =lpt_request_ppbus(dev, PPB_DONTWAIT);
if (error) {
ppb_unlock(ppbus);
device_printf(dev, "cannot allocate ppbus (%d)!\n", error);
return (0);
}
for (i = 0; i < 18; i++)
if (!lpt_port_test(ppbus, test[i], 0xff)) {
success = 0;
break;
}
ppb_wdtr(ppbus, 0);
ppb_wctr(ppbus, 0);
lpt_release_ppbus(dev);
ppb_unlock(ppbus);
return (success);
}
This function first acquires the parallel port mutex. Next, lpt(4) is
assigned ownership of the parallel port. Then
lpt_port_test is called to write to and read from the parallel port’s data register. The values written to this 8-bit register are housed in
test[] and are designed to toggle all 8 bits.
Once this is done, the parallel port’s data and
control registers are cleared, ownership of the parallel port is
relinquished, and the parallel port mutex is
released.
lpt_port_test Function
The lpt_port_test function is called by lpt_detect to determine whether a printer is present. Here is its function definition:
static int
lpt_port_test(device_t ppbus,u_char data, u_char mask)
{
int temp, timeout = 10000;
data &= mask;
ppb_wdtr(ppbus, data);
do {
DELAY(10);
temp =ppb_rdtr(ppbus) & mask;
} while (temp != data && --timeout);
return (temp == data);
}
This function takes an 8-bit value and
writes it to the parallel port’s data register. Then it
reads from that register and
returns whether the value written and read match.
lpt_attach Function
The lpt_attach function is the device_attach implementation for lpt(4). Here is its function definition:
static int
lpt_attach(device_t dev)
{
device_t ppbus = device_get_parent(dev);
struct lpt_data *sc = device_get_softc(dev);
int error, unit = device_get_unit(dev);
sc->sc_primed = 0;
ppb_init_callout(ppbus, &sc->sc_callout, 0);
ppb_lock(ppbus);
error = lpt_request_ppbus(dev, PPB_DONTWAIT);
if (error) {
ppb_unlock(ppbus);
device_printf(dev, "cannot allocate ppbus (%d)!\n", error);
return (0);
}
ppb_wctr(ppbus, LPC_NINIT);
lpt_release_ppbus(dev);
ppb_unlock(ppbus);
/* Declare our interrupt handler. */
sc->sc_irq_rid = 0;
sc->sc_irq_resource = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irq_rid, RF_ACTIVE | RF_SHAREABLE);
/* Register our interrupt handler. */
if (sc->sc_irq_resource) {
error = bus_setup_intr(dev, sc->sc_irq_resource,
INTR_TYPE_TTY | INTR_MPSAFE, NULL,lpt_intr,
sc, &sc->sc_irq_cookie);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ,
sc->sc_irq_rid, sc->sc_irq_resource);
device_printf(dev,
"unable to register interrupt handler\n");
return (error);
}
sc->sc_irq_status = LP_HAS_IRQ | LP_USE_IRQ | LP_ENABLE_IRQ;
device_printf(dev, "interrupt-driven port\n");
} else {
sc->sc_irq_status = 0;
device_printf(dev, "polled port\n");
}
sc->sc_buf = malloc(BUF_SIZE, M_DEVBUF, M_WAITOK);
sc->sc_buf_stat = malloc(BUF_STAT_SIZE, M_DEVBUF, M_WAITOK);
sc->sc_dev = dev;
sc->sc_cdev = make_dev(&lpt_cdevsw, unit, UID_ROOT, GID_WHEEL, 0600,
LPT_NAME "%d", unit);
sc->sc_cdev->si_drv1 = sc;
sc->sc_cdev->si_drv2 = 0;
sc->sc_cdev_bypass = make_dev(&lpt_cdevsw, unit, UID_ROOT, GID_WHEEL,
0600, LPT_NAME "%d.ctl", unit);
sc->sc_cdev_bypass->si_drv1 = sc;
sc->sc_cdev_bypass->si_drv2 = (void *)LP_BYPASS;
return (0);
}
This function can be split into five parts. The first sets sc->sc_primed to 0 to indicate that the printer needs to be primed. It also
initializes lpt(4)’s callout structure. The second part essentially
changes the electrical signal at pin 16, dubbed nINIT, from high to low causing the printer to initiate an internal reset.
NOTE
As most signals are active high, the n in nINIT denotes that the signal is active low.
The third part registers the function lpt_intr as the interrupt handler. If successful, the variable sc->sc_irq_status is
assigned LP_HAS_IRQ, LP_USE_IRQ, and LP_ENABLE_IRQ to indicate that the printer is interrupt-driven. The fourth part allocates memory for two buffers:
sc->sc_buf (which will maintain the data to be printed) and
sc->sc_buf_stat (which will maintain the printer’s status). Finally, the fifth part creates lpt(4)’s device nodes: lpt%d and lpt%d.ctl, where %d is the unit number. Note that lpt%d.ctl contains the
LP_BYPASS flag, while lpt%d does not. In the d_foo functions, LP_BYPASS is used to tell lpt%d.ctl from lpt%d. As you’ll see, the lpt%d device node represents the printer, while lpt%d.ctl is used solely to change the printer’s mode of operation (via lpt(4)’s d_ioctl routine).
lpt_detach Function
The lpt_detach function is the device_detach implementation for lpt(4). Here is its function definition:
static int
lpt_detach(device_t dev)
{
device_t ppbus = device_get_parent(dev);
struct lpt_data *sc = device_get_softc(dev);
destroy_dev(sc->sc_cdev_bypass);
destroy_dev(sc->sc_cdev);
ppb_lock(ppbus);
lpt_release_ppbus(dev);
ppb_unlock(ppbus);
callout_drain(&sc->sc_callout);
if (sc->sc_irq_resource) {
bus_teardown_intr(dev, sc->sc_irq_resource,
sc->sc_irq_cookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
sc->sc_irq_resource);
}
free(sc->sc_buf_stat, M_DEVBUF);
free(sc->sc_buf, M_DEVBUF);
return (0);
}
This function begins by
destroying lpt(4)’s device nodes. Once this is done, it
relinquishes ownership of the parallel port,
drains lpt(4)’s callout function,
tears down lpt(4)’s interrupt handler,
releases lpt(4)’s IRQ, and
frees the allocated memory.
lpt_open Function
The lpt_open function is defined in lpt_cdevsw (that is, lpt(4)’s character device switch table) as the d_open operation. Recall that d_open operations prepare the device for I/O.
Here is the function definition for lpt_open:
static int
lpt_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct lpt_data *sc = dev->si_drv1;
device_t lpt_dev = sc->sc_dev;
device_t ppbus = device_get_parent(lpt_dev);
int try, error;
if (!sc)
return (ENXIO);
ppb_lock(ppbus);
if (sc->sc_state) {
ppb_unlock(ppbus);
return (EBUSY);
} else
sc->sc_state |= LP_INIT;
sc->sc_flags = (uintptr_t)dev->si_drv2;
if (sc->sc_flags & LP_BYPASS) {
sc->sc_state = LP_OPEN;
ppb_unlock(ppbus);
return (0);
}
error = lpt_request_ppbus(lpt_dev, PPB_WAIT | PPB_INTR);
if (error) {
sc->sc_state = 0;
ppb_unlock(ppbus);
return (error);
}
/* Use our IRQ? */
if (sc->sc_irq_status & LP_ENABLE_IRQ)
sc->sc_irq_status |= LP_USE_IRQ;
else
sc->sc_irq_status &= ˜LP_USE_IRQ;
/* Reset printer. */
if ((sc->sc_flags & LP_NO_PRIME) == 0)
if ((sc->sc_flags & LP_PRIME_OPEN) || sc->sc_primed == 0) {
ppb_wctr(ppbus, 0);
sc->sc_primed++;
DELAY(500);
}
ppb_wctr(ppbus, LPC_SEL | LPC_NINIT);
/* Wait until ready--printer should be running diagnostics. */
try = 0;
do {
/* Give up? */
if (try++ >= (LPT_INIT_READY * 4)) {
lpt_release_ppbus(lpt_dev);
sc->sc_state = 0;
ppb_unlock(ppbus);
return (EBUSY);
}
/* Wait 1/4 second. Give up if we get a signal. */
if (ppb_sleep(ppbus, lpt_dev, LPT_PRI | PCATCH, "lpt_open",
hz / 4) != EWOULDBLOCK) {
lpt_release_ppbus(lpt_dev);
sc->sc_state = 0;
ppb_unlock(ppbus);
return (EBUSY);
}
}while ((ppb_rstr(ppbus) & LP_READY_MASK) != LP_READY);
sc->sc_control = LPC_SEL | LPC_NINIT;
if (sc->sc_flags & LP_AUTO_LF)
sc->sc_control |= LPC_AUTOL;
if (sc->sc_irq_status & LP_USE_IRQ)
sc->sc_control |= LPC_ENA;
ppb_wctr(ppbus, sc->sc_control);
sc->sc_state &= ˜LP_INIT;
sc->sc_state |= LP_OPEN;
sc->sc_transfer_count = 0;
if (sc->sc_irq_status & LP_USE_IRQ) {
sc->sc_state |= LP_TIMEOUT;
sc->sc_ticks = hz / LP_TOUT_INIT;
callout_reset(&sc->sc_callout, sc->sc_ticks,
lpt_timeout, sc);
}
lpt_release_ppbus(lpt_dev);
ppb_unlock(ppbus);
return (0);
}
This function can be split into six parts. The first checks the value of sc->sc_state. If it does not equal 0, which implies that another process has opened the printer, the error code EBUSY is returned; otherwise, sc->sc_state is assigned LP_INIT. The second part
checks the value of dev->si_drv2.
If it contains the LP_BYPASS flag, which indicates that the device node is lpt%d.ctl, sc->sc_state is set to LP_OPEN and lpt_open exits. Recall that lpt%d.ctl is used solely to change the printer’s mode of operation, hence the minute amount of preparatory work. The third part primes the printer and then
selects and resets the printer (a printer prepares to receive data when it’s selected, which occurs when the electrical signal at pin 17, dubbed nSELIN, changes from high to low). The fourth part
waits for the printer to
finish its internal reset. The fifth part
selects and resets the printer,
enables automatic line feed if requested,[8] and
enables interrupts if the printer is interrupt-driven. The fifth part also assigns LP_OPEN to sc->sc_state and zeroes the variable sc->sc_transfer_count.
NOTE
Automatic line feed is enabled when the electrical signal at pin 14, dubbed nAUTOF, changes from high to low. As you would expect, this causes the printer to automatically insert a line feed after each line.
Finally, the sixth part causes lpt_timeout to execute one time after sc->sc_ticks / hz seconds. The lpt_timeout function is used alongside the interrupt handler lpt_intr. I’ll discuss these functions shortly.
lpt_read Function
The lpt_read function retrieves the printer’s status. Users can get the printer’s status by applying the cat(1) command to the device node lpt%d.
Here is the function definition for lpt_read:
static int
lpt_read(struct cdev *dev, struct uio *uio, int ioflag)
{
struct lpt_data *sc = dev->si_drv1;
device_t lpt_dev = sc->sc_dev;
device_t ppbus = device_get_parent(lpt_dev);
int num, error = 0;
if (sc->sc_flags & LP_BYPASS)
return (EPERM);
ppb_lock(ppbus);
error =ppb_1284_negociate(ppbus,
PPB_NIBBLE, 0);
if (error) {
ppb_unlock(ppbus);
return (error);
}
num = 0;
while (uio->uio_resid) {
error =ppb_1284_read(ppbus, PPB_NIBBLE,
sc->sc_buf_stat,
min(BUF_STAT_SIZE, uio->uio_resid),&num);
if (error)
goto end_read;
if (!num)
goto end_read;
ppb_unlock(ppbus);
error =uiomove(
sc->sc_buf_stat, num,
uio);
ppb_lock(ppbus);
if (error)
goto end_read;
}
end_read:
ppb_1284_terminate(ppbus);
ppb_unlock(ppbus);
return (error);
}
This function first checks the value of sc->sc_flags. If it contains the LP_BYPASS flag, which indicates that the device node is lpt%d.ctl, the error code EPERM (which stands for error: operation not permitted) is returned. Next, the function
ppb_1284_negociate is called to put the parallel port interface into
nibble mode.
NOTE
Nibble mode is the most common way to retrieve data from a printer. Normally, pins 10, 11, 12, 13, and 15 are used by the printer as external status indicators; however, in nibble mode these pins are used to send data to the host (4 bits at a time).
The remainder of this function transfers data from the printer to user space. The data in this case is the printer’s status. Here, ppb_1284_read transfers data from the printer to
kernel space. The number of bytes transferred is saved in
num. If num
equals 0, lpt_read exits. The
uiomove function then moves the data from
kernel space to
user space.
lpt_write Function
The lpt_write function acquires data from user space and stores it in sc->sc_buf. This data is then sent to the printer to be printed.
Here is the function definition for lpt_write:
static int
lpt_write(struct cdev *dev, struct uio *uio, int ioflag)
{
struct lpt_data *sc = dev->si_drv1;
device_t lpt_dev = sc->sc_dev;
device_t ppbus = device_get_parent(lpt_dev);
register unsigned num;
int error;
if (sc->sc_flags & LP_BYPASS)
return (EPERM);
ppb_lock(ppbus);
error = lpt_request_ppbus(lpt_dev, PPB_WAIT | PPB_INTR);
if (error) {
ppb_unlock(ppbus);
return (error);
}
sc->sc_state &= ˜LP_INTERRUPTED;
while ((num = min(BUF_SIZE, uio->uio_resid))) {
sc->sc_cp = sc->sc_buf;
ppb_unlock(ppbus);
error =uiomove(sc->sc_cp, num, uio);
ppb_lock(ppbus);
if (error)
break;
sc->sc_transfer_count = num;
if (sc->sc_irq_status & LP_ENABLE_EXT) {
error =ppb_write(ppbus, sc->sc_cp,
sc->sc_transfer_count, 0);
switch (error) {
case 0:
sc->sc_transfer_count = 0;
break;
case EINTR:
sc->sc_state |= LP_INTERRUPTED;
ppb_unlock(ppbus);
return (error);
case EINVAL:
log(LOG_NOTICE,
"%s: extended mode not available\n",
device_get_nameunit(lpt_dev));
break;
default:
ppb_unlock(ppbus);
return (error);
}
} else while ((sc->sc_transfer_count > 0) &&
(sc->sc_irq_status & LP_USE_IRQ)) {
if (!(sc->sc_state & LP_BUSY))
lpt_intr(sc);
if (sc->sc_state & LP_BUSY) {
error =ppb_sleep(ppbus, lpt_dev,
LPT_PRI | PCATCH, "lpt_write", 0);
if (error) {
sc->sc_state |= LP_INTERRUPTED;
ppb_unlock(ppbus);
return (error);
}
}
}
if (!(sc->sc_irq_status & LP_USE_IRQ) &&
(sc->sc_transfer_count)) {
error =lpt_push_bytes(sc);
if (error) {
ppb_unlock(ppbus);
return (error);
}
}
}
lpt_release_ppbus(lpt_dev);
ppb_unlock(ppbus);
return (error);
}
Like lpt_read, this function starts by checking the value of sc->sc_flags. If it contains the LP_BYPASS flag, the error code EPERM is returned. Next, the LP_INTERRUPTED flag is removed from sc->sc_state (as you’ll see, LP_INTERRUPTED is added to sc->sc_state whenever a write operation is interrupted). The following while loop contains the bulk of lpt_write. Note that its
expression determines the amount of data to
copy from user space to kernel space. This amount is saved in
sc->sc_transfer_count, which is decremented each time a byte is sent to the printer.
Now, there are three ways to transfer data from kernel space to the printer. First, if extended mode is enabled, lpt_write can
write directly to the printer.
NOTE
Extended mode refers to either Enhanced Parallel Port (EPP) or Extended Capabilities Port (ECP) mode. EPP and ECP modes are designed to transmit data faster and with less CPU overhead than normal parallel port communications. Most parallel ports support one or both of these modes.
Second, if the printer is interrupt-driven and the LP_BUSY flag is cleared in sc->sc_state, lpt_write can call
lpt_intr to transfer data to the printer. Looking at the function definition for lpt_intr in the following section, you’ll see that LP_BUSY is set during lpt_intr’s execution, and that LP_BUSY is not cleared until sc->sc_transfer_count is 0. This prevents lpt_write from issuing another interrupt-driven transfer until the current one completes, which is why lpt_write
sleeps.
Finally, if the first and second options are unavailable, lpt_write can issue a polled transfer by calling lpt_push_bytes, which is described in lpt_push_bytes Function in lpt_close Function.
lpt_intr Function
The lpt_intr function is lpt(4)’s interrupt handler. This function transfers 1 byte from sc->sc_buf to the printer and then it exits. When the printer is ready for another byte, it will send an interrupt. Note that in lpt_intr, sc->sc_buf is accessed via sc->sc_cp.
Here is the function definition for lpt_intr:
static void
lpt_intr(void *arg)
{
struct lpt_data *sc = arg;
device_t lpt_dev = sc->sc_dev;
device_t ppbus = device_get_parent(lpt_dev);
int i, status = 0;
for (i = 0; i < 100 &&
((status = ppb_rstr(ppbus)) & LP_READY_MASK) != LP_READY; i++)
; /* nothing. */
if ((status & LP_READY_MASK) == LP_READY) {
sc->sc_state = (sc->sc_state | LP_BUSY) & ˜LP_ERROR;
sc->sc_ticks = hz / LP_TOUT_INIT;
if (sc->sc_transfer_count) {
ppb_wdtr(ppbus, *sc->sc_cp++);
ppb_wctr(ppbus, sc->sc_control | LPC_STB);
ppb_wctr(ppbus, sc->sc_control);
if (--(sc->sc_transfer_count) > 0)
return;
}
sc->sc_state &= ˜LP_BUSY;
if (!(sc->sc_state & LP_INTERRUPTED))
wakeup(lpt_dev);
return;
} else {
if (((status & (LPS_NERR | LPS_OUT)) != LPS_NERR) &&
(sc->sc_state & LP_OPEN))
sc->sc_state |= LP_ERROR;
}
}
This function first checks ad nauseam that the printer is online and ready for output. If it is, the
LP_BUSY flag is added to sc->sc_state and the LP_ERROR flag, which denotes a printer error, is removed. Next, sc->sc_ticks is
reset. Then 1 byte from sc->sc_buf is
written to the parallel port’s data register and subsequently
sent to the printer (data on the parallel port interface is sent to the printer when the electrical signal at pin 1, dubbed nSTROBE, changes from high to low). If there is more data to send (that is, sc->sc_transfer_count is greater than 0), lpt_intr
exits, because it is protocol to wait for an interrupt before sending another byte. If there is no more data to send, LP_BUSY is
cleared from sc->sc_state and lpt_write is
woken up.
lpt_timeout Function
The lpt_timeout function is the callout function for lpt(4). It is designed to deal with missed or unhandled interrupts. Here is its function definition:
static void
lpt_timeout(void *arg)
{
struct lpt_data *sc = arg;
device_t lpt_dev = sc->sc_dev;
if (sc->sc_state & LP_OPEN) {
sc->sc_ticks++;
if (sc->sc_ticks > hz / LP_TOUT_MAX)
sc->sc_ticks = hz / LP_TOUT_MAX;
callout_reset(&sc->sc_callout, sc->sc_ticks,
lpt_timeout, sc);
} else
sc->sc_state &= ˜LP_TIMEOUT;
if (sc->sc_state & LP_ERROR)
sc->sc_state &= ˜LP_ERROR;
if (sc->sc_transfer_count)
lpt_intr(sc);
else {
sc->sc_state &= ˜LP_BUSY;
wakeup(lpt_dev);
}
}
This function first checks whether lpt%d is open. If so, lpt_timeout
reschedules itself to execute. Next, LP_ERROR is
removed from sc->sc_state. Now if lpt(4) has
missed an interrupt,
lpt_intr is called to restart transferring data to the printer.
Note that without the if block at , lpt(4) would hang waiting for an interrupt that’s been sent and lost.
lpt_push_bytes Function
The lpt_push_bytes function uses polling to transfer data to the printer. This function is called (by lpt_write) only if extended mode is disabled and the printer is not interrupt-driven.
Here is the function definition for lpt_push_bytes:
static int
lpt_push_bytes(struct lpt_data *sc)
{
device_t lpt_dev = sc->sc_dev;
device_t ppbus = device_get_parent(lpt_dev);
int error, spin, tick;
char ch;
while (sc->sc_transfer_count > 0) {
ch = *sc->sc_cp;
sc->sc_cp++;
sc->sc_transfer_count--;
for (spin = 0; NOT_READY(ppbus) && spin < MAX_SPIN; spin++)
DELAY(1);
if (spin >= MAX_SPIN) {
tick = 0;
while (NOT_READY(ppbus)) {
tick = tick + tick + 1;
if (tick > MAX_SLEEP)
tick = MAX_SLEEP;
error =ppb_sleep(ppbus, lpt_dev, LPT_PRI,
"lpt_poll", tick);
if (error != EWOULDBLOCK)
return (error);
}
}
ppb_wdtr(ppbus, ch);
ppb_wctr(ppbus, sc->sc_control | LPC_STB);
ppb_wctr(ppbus, sc->sc_control);
}
return (0);
}
This function first verifies that there is data to transfer. Then it
polls the printer to see if it is online and ready for output. If the printer is not ready, lpt_push_bytes
sleeps for a short period of time and then repolls the printer when it wakes up. This cycle of sleeping and polling is repeated until the printer is ready. If the printer is ready, 1 byte from sc->sc_buf is
written to the parallel port’s data register and then
sent to the printer. This entire process is repeated until all of the data in sc->sc_buf is transferred.
lpt_close Function
The lpt_close function is defined in lpt_cdevsw as the d_close operation. Here is its function definition:
static int
lpt_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
struct lpt_data *sc = dev->si_drv1;
device_t lpt_dev = sc->sc_dev;
device_t ppbus = device_get_parent(lpt_dev);
int error;
ppb_lock(ppbus);
if (sc->sc_flags & LP_BYPASS)
goto end_close;
error = lpt_request_ppbus(lpt_dev, PPB_WAIT | PPB_INTR);
if (error) {
ppb_unlock(ppbus);
return (error);
}
if (!(sc->sc_state & LP_INTERRUPTED) &&
(sc->sc_irq_status & LP_USE_IRQ))
while ((ppb_rstr(ppbus) & LP_READY_MASK) != LP_READY ||
sc->sc_transfer_count)
if (ppb_sleep(ppbus, lpt_dev, LPT_PRI | PCATCH,
"lpt_close", hz) != EWOULDBLOCK)
break;
sc->sc_state &= ˜LP_OPEN;
callout_stop(&sc->sc_callout);
ppb_wctr(ppbus, LPC_NINIT);
lpt_release_ppbus(lpt_dev);end_close:
sc->sc_state = 0;
sc->sc_transfer_count = 0;
ppb_unlock(ppbus);
return (0);
}
Like lpt_read and lpt_write, this function first checks the value of sc->sc_flags. If it contains the LP_BYPASS flag, lpt_close jumps to
end_close. Next, lpt(4) is assigned ownership of the parallel port. The following
if block ensures that if there is
still data to transfer and the printer is
interrupt-driven, the transfer is completed before closing lpt%d. Then, LP_OPEN is
removed from sc->sc_state, lpt_timeout is
stopped, the printer is
reset, and ownership of the parallel port is relinquished. Lastly,
sc->sc_state and
sc->sc_transfer_count are zeroed.
lpt_ioctl Function
The lpt_ioctl function is defined in lpt_cdevsw as the d_ioctl operation. Before I describe this function, an explanation of its ioctl command, LPT_IRQ, is needed. LPT_IRQ is defined in the <dev/ppbus/lptio.h> header as follows:
#define LPT_IRQ _IOW('p', 1,long)
As you can see, LPT_IRQ requires a long int value.
static int
lpt_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
struct lpt_data *sc = dev->si_drv1;
device_t lpt_dev = sc->sc_dev;
device_t ppbus = device_get_parent(lpt_dev);
u_short old_irq_status;
int error = 0;
switch (cmd) {
case LPT_IRQ:
ppb_lock(ppbus);
if (sc->sc_irq_status & LP_HAS_IRQ) {
old_irq_status = sc->sc_irq_status;
switch (*(int *)data) {
case 0:
sc->sc_irq_status &= ˜LP_ENABLE_IRQ;
break;
case 1:
sc->sc_irq_status &= ˜LP_ENABLE_EXT;
sc->sc_irq_status |= LP_ENABLE_IRQ;
break;
case 2:
sc->sc_irq_status &= ˜LP_ENABLE_IRQ;
sc->sc_irq_status |= LP_ENABLE_EXT;
break;
case 3:
sc->sc_irq_status &= ˜LP_ENABLE_EXT;
break;
default:
break;
}
if (old_irq_status != sc->sc_irq_status)
log(LOG_NOTICE,
"%s: switched to %s %s mode\n",
device_get_nameunit(lpt_dev),
(sc->sc_irq_status & LP_ENABLE_IRQ) ?
"interrupt-driven" : "polled",
(sc->sc_irq_status & LP_ENABLE_EXT) ?
"extended" : "standard");
} else
error = EOPNOTSUPP;
ppb_unlock(ppbus);
break;
default:
error = ENODEV;
break;
}
return (error);
}
Based on the argument given to
LPT_IRQ, lpt_ioctl either
disables interrupt-driven mode (which enables polled mode),
enables interrupt-driven mode,
enables extended mode, or
disables extended mode (which enables standard mode). Note that interrupt-driven mode and extended mode conflict with each other, so if one is enabled, the other is disabled.
NOTE
To run this function, you’d use the lptcontrol(8) utility, whose source code I suggest you take a quick look at.
lpt_request_ppbus Function
The lpt_request_ppbus function sets lpt(4) as the owner of the parallel port. Recall that owning the parallel port lets a device (such as lpt%d) transfer data to and from it.
Here is the function definition for lpt_request_ppbus:
static int
lpt_request_ppbus(device_t dev, int how)
{
device_t ppbus = device_get_parent(dev);
struct lpt_data *sc = device_get_softc(dev);
int error;
ppb_assert_locked(ppbus);
if (sc->sc_state & LP_HAVEBUS)
return (0);
error =ppb_request_bus(ppbus, dev, how);
if (!error)
sc->sc_state |= LP_HAVEBUS;
return (error);
}
This function begins by checking the value of sc->sc_state. If it contains LP_HAVEBUS, which indicates that lpt(4) currently owns the parallel port, lpt_request_ppbus
exits. Otherwise,
ppb_request_bus is called to set lpt(4) as the owner of the parallel port and sc->sc_state is
assigned LP_HAVEBUS.
lpt_release_ppbus Function
The lpt_release_ppbus function causes lpt(4) to relinquish ownership of the parallel port. Here is its function definition:
static int
lpt_release_ppbus(device_t dev)
{
device_t ppbus = device_get_parent(dev);
struct lpt_data *sc = device_get_softc(dev);
int error = 0;
ppb_assert_locked(ppbus);
if (sc->sc_state & LP_HAVEBUS) {
error =ppb_release_bus(ppbus, dev);
if (!error)
sc->sc_state &= ˜LP_HAVEBUS;
}
return (error);
}
This function first verifies that lpt(4) currently owns the parallel port. Next, it calls
ppb_release_bus to relinquish ownership of the parallel port. Then LP_HAVEBUS is
removed from sc->sc_state.
[8] Curiously enough, it’s currently impossible to request automatic line feed.
Conclusion
This chapter described the entire code base of lpt(4), the parallel port printer driver.
Chapter 10. Managing and Using Resources
In Chapter 7 we discussed how to allocate IRQs, I/O ports, and I/O memory. Chapter 8 focused on using IRQs for interrupt handling. This chapter details how to use I/O ports for port-mapped I/O (PMIO) and I/O memory for memory-mapped I/O (MMIO). Before I describe PMIO and MMIO, some background on I/O ports and I/O memory is needed.
I/O Ports and I/O Memory
Every peripheral device is controlled by reading from and writing to its registers (Corbet et al., 2005), which are mapped to either I/O ports or I/O memory. The use of I/O ports or I/O memory is device and architecture dependent. For example, on the i386, most ISA devices will map their registers to I/O ports; however, PCI devices tend to map their registers to I/O memory. As you may have guessed, reading and writing to a device’s registers, which are mapped to either I/O ports or I/O memory, is called PMIO or MMIO.
Reading from I/O Ports and I/O Memory
After a driver has called bus_alloc_resource to allocate the range of I/O ports or I/O memory it needs, it can read from those I/O regions using one of the following functions:
#include <sys/bus.h>
#include <machine/bus.h>
u_int8_t
bus_read_1(struct resource *r, bus_size_t offset);
u_int16_t
bus_read_2(struct resource *r, bus_size_t offset);
u_int32_t
bus_read_4(struct resource *r, bus_size_t offset);
u_int64_t
bus_read_8(struct resource *r, bus_size_t offset);
void
bus_read_multi_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_read_multi_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_read_multi_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_read_multi_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
void
bus_read_region_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_read_region_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_read_region_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_read_region_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
The bus_read_N functions (where N is 1, 2, 4, or 8) read N bytes from an offset in r (where r is the return value from a successful bus_alloc_resource call that allocated an I/O region).
The bus_read_multi_N functions read N bytes from an offset in r, count times, and store the reads into datap. In short, bus_read_multi_N reads from the same location multiple times.
The bus_read_region_N functions read count N-byte values starting from an offset in r, and store the reads into datap. In other words, bus_read_region_N reads consecutive N-byte values from an I/O region (that is, an array).
Writing to I/O Ports and I/O Memory
A driver writes to an I/O region using one of the following functions:
#include <sys/bus.h>
#include <machine/bus.h>
void
bus_write_1(struct resource *r, bus_size_t offset,
u_int8_t value);
void
bus_write_2(struct resource *r, bus_size_t offset,
u_int16_t value);
void
bus_write_4(struct resource *r, bus_size_t offset,
u_int32_t value);
void
bus_write_8(struct resource *r, bus_size_t offset,
u_int64_t value);
void
bus_write_multi_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_write_multi_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_write_multi_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_write_multi_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
void
bus_write_region_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_write_region_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_write_region_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_write_region_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
void
bus_set_multi_1(struct resource *r, bus_size_t offset,
u_int8_t value, bus_size_t count);
void
bus_set_multi_2(struct resource *r, bus_size_t offset,
u_int16_t value, bus_size_t count);
void
bus_set_multi_4(struct resource *r, bus_size_t offset,
u_int32_t value, bus_size_t count);
void
bus_set_multi_8(struct resource *r, bus_size_t offset,
u_int64_t value, bus_size_t count);
void
bus_set_region_1(struct resource *r, bus_size_t offset,
u_int8_t value, bus_size_t count);
void
bus_set_region_2(struct resource *r, bus_size_t offset,
u_int16_t value, bus_size_t count);
void
bus_set_region_4(struct resource *r, bus_size_t offset,
u_int32_t value, bus_size_t count);
void
bus_set_region_8(struct resource *r, bus_size_t offset,
u_int64_t value, bus_size_t count);
The bus_write_N functions (where N is 1, 2, 4, or 8) write an N-byte value to an offset in r (where r is the return value from a bus_alloc_resource call that allocated an I/O region).
The bus_write_multi_N functions take count N-byte values from datap and write them to an offset in r. In short, bus_write_multi_N writes multiple values to the same location.
The bus_write_region_N functions take count N-byte values from datap and write them to a region in r, starting at offset. Each successive value is written at an offset of N bytes after the previous value. In short, bus_write_region_N writes consecutive N-byte values to an I/O region (that is, an array).
The bus_set_multi_N functions write an N-byte value to an offset in r, count times. That is, bus_set_multi_N writes the same value to the same location multiple times.
The bus_set_region_N functions write an N-byte value, count times, throughout a region in r, starting at offset. In other words, bus_set_region_N writes the same value consecutively to an I/O region (that is, an array).
Stream Operations
All of the preceding functions handle converting to and from host byte order and bus byte order. In some cases, however, you may need to avoid this conversion. Fortunately, FreeBSD provides the following functions for such an occasion:
#include <sys/bus.h>
#include <machine/bus.h>
u_int8_t
bus_read_stream_1(struct resource *r, bus_size_t offset);
u_int16_t
bus_read_stream_2(struct resource *r, bus_size_t offset);
u_int32_t
bus_read_stream_4(struct resource *r, bus_size_t offset);
u_int64_t
bus_read_stream_8(struct resource *r, bus_size_t offset);
void
bus_read_multi_stream_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_read_multi_stream_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_read_multi_stream_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_read_multi_stream_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
void
bus_read_region_stream_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_read_region_stream_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_read_region_stream_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_read_region_stream_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
void
bus_write_stream_1(struct resource *r, bus_size_t offset,
u_int8_t value);
void
bus_write_stream_2(struct resource *r, bus_size_t offset,
u_int16_t value);
void
bus_write_stream_4(struct resource *r, bus_size_t offset,
u_int32_t value);
void
bus_write_stream_8(struct resource *r, bus_size_t offset,
u_int64_t value);
void
bus_write_multi_stream_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_write_multi_stream_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_write_multi_stream_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_write_multi_stream_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
void
bus_write_region_stream_1(struct resource *r, bus_size_t offset,
u_int8_t *datap, bus_size_t count);
void
bus_write_region_stream_2(struct resource *r, bus_size_t offset,
u_int16_t *datap, bus_size_t count);
void
bus_write_region_stream_4(struct resource *r, bus_size_t offset,
u_int32_t *datap, bus_size_t count);
void
bus_write_region_stream_8(struct resource *r, bus_size_t offset,
u_int64_t *datap, bus_size_t count);
void
bus_set_multi_stream_1(struct resource *r, bus_size_t offset,
u_int8_t value, bus_size_t count);
void
bus_set_multi_stream_2(struct resource *r, bus_size_t offset,
u_int16_t value, bus_size_t count);
void
bus_set_multi_stream_4(struct resource *r, bus_size_t offset,
u_int32_t value, bus_size_t count);
void
bus_set_multi_stream_8(struct resource *r, bus_size_t offset,
u_int64_t value, bus_size_t count);
void
bus_set_region_stream_1(struct resource *r, bus_size_t offset,
u_int8_t value, bus_size_t count);
void
bus_set_region_stream_2(struct resource *r, bus_size_t offset,
u_int16_t value, bus_size_t count);
void
bus_set_region_stream_4(struct resource *r, bus_size_t offset,
u_int32_t value, bus_size_t count);
void
bus_set_region_stream_8(struct resource *r, bus_size_t offset,
u_int64_t value, bus_size_t count);
These functions are identical to their nonstream counterparts, except that they don’t perform any byte order conversions.
Memory Barriers
Sequences of read and write instructions can often be executed more quickly if run in an order that’s different from the program text (Corbet et al., 2005). As a result, modern processors customarily reorder read and write instructions. However, this optimization can foul up drivers performing PMIO and MMIO. To prevent instruction reordering, memory barriers are employed. Memory barriers ensure that all instructions before the barrier conclude before any instruction after the barrier. For PMIO and MMIO operations, the bus_barrier function provides this ability:
#include <sys/bus.h>
#include <machine/bus.h>
void
bus_barrier(struct resource *r, bus_size_t offset, bus_size_t length,
int flags);
The bus_barrier function inserts a memory barrier that enforces the ordering of read or write operations on a region in r, which is described by the offset and length arguments. The flags argument specifies the type of operation to be ordered. Valid values for this argument are shown in Table 10-1.
Table 10-1. bus_barrier Symbolic Constants
Constant	Description
BUS_SPACE_BARRIER_READ | Synchronizes read operations |
BUS_SPACE_BARRIER_WRITE | Synchronizes write operations |
Note that these flags can be ORed to enforce ordering on both read and write operations. An exemplary use of bus_barrier looks something like this:
bus_write_1(r, 0, data0);
bus_barrier(r, 0, 1, BUS_SPACE_BARRIER_WRITE);
bus_write_1(r, 0, data1);
bus_barrier(r, 0, 2, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
data2 = bus_read_1(r, 1);
bus_barrier(r, 1, 1, BUS_SPACE_BARRIER_READ);
data3 = bus_read_1(r, 1);
Here, the calls to bus_barrier guarantee that the writes and reads conclude in the order written.
Tying Everything Together
Example 10-1 is a simple driver for an i-Opener’s LEDs (based on code written by Warner Losh). An i-Opener includes two LEDs that are controlled by bits 0 and 1 of the register located at 0x404c. Hopefully, this example will clarify any misunderstandings you may have about PMIO (and MMIO).
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 10-1. led.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h> #define LED_IO_ADDR 0x404c
#define LED_NUM 2
struct led_softc {
int sc_io_rid;
struct resource *sc_io_resource;
struct cdev *sc_cdev0;
struct cdev *sc_cdev1;
u_int32_t sc_open_mask;
u_int32_t sc_read_mask;
struct mtx sc_mutex;
};
static devclass_t led_devclass;
static d_open_t led_open;
static d_close_t led_close;
static d_read_t led_read;
static d_write_t led_write;
static struct cdevsw led_cdevsw = {
.d_version = D_VERSION,
.d_open = led_open,
.d_close = led_close,
.d_read = led_read,
.d_write = led_write,
.d_name = "led"
};
static int
led_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
if (led >= LED_NUM)
return (ENXIO);
mtx_lock(&sc->sc_mutex);
if (sc->sc_open_mask & (1 << led)) {
mtx_unlock(&sc->sc_mutex);
return (EBUSY);
}
sc->sc_open_mask |= 1 << led;
sc->sc_read_mask |= 1 << led;
mtx_unlock(&sc->sc_mutex);
return (0);
}
static int
led_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
if (led >= LED_NUM)
return (ENXIO);
mtx_lock(&sc->sc_mutex);
sc->sc_open_mask &= ˜(1 << led);
mtx_unlock(&sc->sc_mutex);
return (0);
}
static int
led_read(struct cdev *dev, struct uio *uio, int ioflag)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
u_int8_t ch;
int error;
if (led >= LED_NUM)
return (ENXIO);
mtx_lock(&sc->sc_mutex);
/* No error EOF condition. */
if (!(sc->sc_read_mask & (1 << led))) {
mtx_unlock(&sc->sc_mutex);
return (0);
}
sc->sc_read_mask &= ˜(1 << led);
mtx_unlock(&sc->sc_mutex);
ch = bus_read_1(sc->sc_io_resource, 0);
if (ch & (1 << led))
ch = '1';
else
ch = '0';
error = uiomove(&ch, 1, uio);
return (error);
}
static int
led_write(struct cdev *dev, struct uio *uio, int ioflag)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
u_int8_t ch;
u_int8_t old;
int error;
if (led >= LED_NUM)
return (ENXIO);
error = uiomove(&ch, 1, uio);
if (error)
return (error);
old = bus_read_1(sc->sc_io_resource, 0);
if (ch & 1)
old |= (1 << led);
else
old &= ˜(1 << led);
bus_write_1(sc->sc_io_resource, 0, old);
return (error);
}
static void
led_identify(driver_t *driver, device_t parent)
{
device_t child;
child = device_find_child(parent, "led", −1);
if (!child) {
child = BUS_ADD_CHILD(parent, 0, "led", −1);
bus_set_resource(child, SYS_RES_IOPORT, 0, LED_IO_ADDR, 1);
}
}
static int
led_probe(device_t dev)
{
if (!bus_get_resource_start(dev, SYS_RES_IOPORT, 0))
return (ENXIO);
device_set_desc(dev, "I/O Port Example");
return (BUS_PROBE_SPECIFIC);
}
static int
led_attach(device_t dev)
{
struct led_softc *sc = device_get_softc(dev);
sc->sc_io_rid = 0;
sc->sc_io_resource = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&sc->sc_io_rid, RF_ACTIVE);
if (!sc->sc_io_resource) {
device_printf(dev, "unable to allocate resource\n");
return (ENXIO);
}
sc->sc_open_mask = 0;
sc->sc_read_mask = 0;
mtx_init(&sc->sc_mutex, "led", NULL, MTX_DEF);
sc->sc_cdev0 = make_dev(&led_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644,
"led0");
sc->sc_cdev1 = make_dev(&led_cdevsw, 1, UID_ROOT, GID_WHEEL, 0644,
"led1");
sc->sc_cdev0->si_drv1 = sc;
sc->sc_cdev1->si_drv1 = sc;
return (0);
}
static int
led_detach(device_t dev)
{
struct led_softc *sc = device_get_softc(dev);
destroy_dev(sc->sc_cdev0);
destroy_dev(sc->sc_cdev1);
mtx_destroy(&sc->sc_mutex);
bus_release_resource(dev, SYS_RES_IOPORT, sc->sc_io_rid,
sc->sc_io_resource);
return (0);
}
static device_method_t led_methods[] = {
/* Device interface. */
DEVMETHOD(device_identify, led_identify),
DEVMETHOD(device_probe, led_probe),
DEVMETHOD(device_attach, led_attach),
DEVMETHOD(device_detach, led_detach),
{ 0, 0 }
};
static driver_t led_driver = {
"led",
led_methods,
sizeof(struct led_softc)
};
DRIVER_MODULE(led, isa, led_driver, led_devclass, 0, 0);
Before I describe the functions defined in Example 10-1, note that the constant LED_IO_ADDR is defined as 0x404c and that the constant
LED_NUM is defined as 2.
The following sections describe the functions defined in Example 10-1 in the order they would roughly execute.
led_identify Function
The led_identify function is the device_identify implementation for this driver. This function is required because the ISA bus cannot identify its children unaided. Here is the function definition for led_identify (again):
static void
led_identify(driver_t *driver, device_t parent)
{
device_t child;
child =device_find_child(parent,
"led", −1);
if (!child) {
child =BUS_ADD_CHILD(parent, 0, "led", −1);
bus_set_resource(child, SYS_RES_IOPORT, 0, LED_IO_ADDR, 1);
}
}
This function first determines if the ISA bus has identified a child device named
"led". If it has not, then "led" is
appended to the ISA bus’s catalog of identified children. Afterward,
bus_set_resource is called to specify that I/O port access for "led" starts at LED_IO_ADDR.
led_probe Function
The led_probe function is the device_probe implementation for this driver. Here is its function definition (again):
static int
led_probe(device_t dev)
{
if (!bus_get_resource_start(dev, SYS_RES_IOPORT, 0))
return (ENXIO);
device_set_desc(dev, "I/O Port Example");
return (BUS_PROBE_SPECIFIC);
}
This function first checks if "led" can acquire I/O port access. Afterward, the verbose description of "led" is
set and the success code
BUS_PROBE_SPECIFIC is returned.
led_attach Function
The led_attach function is the device_attach implementation for this driver. Here is its function definition (again):
static int
led_attach(device_t dev)
{
struct led_softc *sc = device_get_softc(dev);
sc->sc_io_rid = 0;
sc->sc_io_resource =bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&sc->sc_io_rid, RF_ACTIVE);
if (!sc->sc_io_resource) {
device_printf(dev, "unable to allocate resource\n");
return (ENXIO);
}
sc->sc_open_mask = 0;
sc->sc_read_mask = 0;
mtx_init(&sc->sc_mutex, "led", NULL, MTX_DEF);
sc->sc_cdev0 =make_dev(&led_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644,
"led0");
sc->sc_cdev1 =make_dev(&led_cdevsw, 1, UID_ROOT, GID_WHEEL, 0644,
"led1");
sc->sc_cdev0->si_drv1 = sc;
sc->sc_cdev1->si_drv1 = sc;
return (0);
}
This function begins by acquiring an I/O port. If unsuccessful, the error code
ENXIO is returned. Then the member variables
sc_open_mask and
sc_read_mask are zeroed; in the d_foo functions, these variables will be protected by
sc_mutex. Finally, led_attach creates a
character device node for each LED.
led_detach Function
The led_detach function is the device_detach implementation for this driver. Here is its function definition (again):
static int
led_detach(device_t dev)
{
struct led_softc *sc = device_get_softc(dev);
destroy_dev(sc->sc_cdev0);
destroy_dev(sc->sc_cdev1);
mtx_destroy(&sc->sc_mutex);
bus_release_resource(dev, SYS_RES_IOPORT, sc->sc_io_rid,
sc->sc_io_resource);
return (0);
}
This function begins by
destroying its device nodes. Once this is done, it
destroys its mutex and
releases its I/O port.
led_open Function
The led_open function is defined in led_cdevsw (that is, the character device switch table) as the d_open operation. Here is its function definition (again):
static int
led_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
if (led >= LED_NUM)
return (ENXIO);
mtx_lock(&sc->sc_mutex);
if (sc->sc_open_mask & (1 << led)) {
mtx_unlock(&sc->sc_mutex);
return (EBUSY);
}
sc->sc_open_mask |= 1 << led;
sc->sc_read_mask |= 1 << led;
mtx_unlock(&sc->sc_mutex);
return (0);
}
This function first stores in led the unit number of the device node being opened. If led is
greater than or equal to LED_NUM, then ENXIO is
returned. Next, the value of sc_open_mask is
examined. If its led bit does not equal 0, which indicates that another process has opened the device, then EBUSY is
returned. Otherwise, sc_open_mask and sc_read_mask are
set to include 1 << led. That is, their led bit will be changed to 1.
led_close Function
The led_close function is defined in led_cdevsw as the d_close operation. Here is its function definition (again):
static int
led_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
if (led >= LED_NUM)
return (ENXIO);
mtx_lock(&sc->sc_mutex);
sc->sc_open_mask &= ˜(1 << led);
mtx_unlock(&sc->sc_mutex);
return (0);
}
As you can see, this function simply clears sc_open_mask’s led bit (which allows another process to open this device).
led_read Function
The led_read function is defined in led_cdevsw as the d_read operation. This function returns one character indicating whether the LED is on (1) or off (0). Here is its function definition (again):
static int
led_read(struct cdev *dev, struct uio *uio, int ioflag)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
u_int8_t ch;
int error;
if (led >= LED_NUM)
return (ENXIO);
mtx_lock(&sc->sc_mutex);
/* No error EOF condition. */
if (!(sc->sc_read_mask & (1 << led))) {
mtx_unlock(&sc->sc_mutex);
return (0);
}
sc->sc_read_mask &= ˜(1 << led);
mtx_unlock(&sc->sc_mutex);
ch = bus_read_1(sc->sc_io_resource, 0);
if (ch & (1 << led))
ch = '1';
else
ch = '0';
error =uiomove(&ch, 1, uio);
return (error);
}
This function first checks that sc_read_mask’s led bit is set; otherwise, it
exits. Next, 1 byte from the LED’s control register is
read into ch. Then ch’s led bit is
isolated and its value is
returned to user space.
led_write Function
The led_write function is defined in led_cdevsw as the d_write operation. This function takes in one character to turn on (1) or off (0) the LED. Here is its function definition (again):
static int
led_write(struct cdev *dev, struct uio *uio, int ioflag)
{
int led = dev2unit(dev) & 0xff;
struct led_softc *sc = dev->si_drv1;
u_int8_t ch;
u_int8_t old;
int error;
if (led >= LED_NUM)
return (ENXIO);
error =uiomove(&ch, 1, uio);
if (error)
return (error);
old = bus_read_1(sc->sc_io_resource, 0);
if (ch & 1)
old |= (1 << led);
else
old &= ˜(1 << led);
bus_write_1(sc->sc_io_resource, 0, old);
return (error);
}
This function first copies one character from user space to ch. Next, 1 byte from the LED’s control register is
read into old. Then, based on the
value from user space, old’s led bit is turned
on or
off. Afterward, old is
written back to the LED’s control register.
Conclusion
This chapter described all of the functions provided by FreeBSD for performing PMIO and MMIO (that is, for accessing a device’s registers). The next chapter discusses using PMIO and MMIO with PCI devices, which are more involved than what’s been shown here.
Chapter 11. Case Study: Intelligent Platform Management Interface Driver
This chapter examines parts of ipmi(4), the Intelligent Platform Management Interface (IPMI) driver. The IPMI specification defines a standard for monitoring and managing system hardware.
NOTE
For our purposes, this description of IPMI is sufficient, as the point of this chapter is to demonstrate how PCI drivers such as ipmi(4) employ PMIO and MMIO.
The code base for ipmi(4) is composed of 10 source files and 1 header file. In this chapter, we’ll walk through one of these files, ipmi_pci.c, which contains code that’s related to the PCI bus.
Code Analysis
Example 11-1 provides a terse, source-level overview of ipmi_pci.c.
Example 11-1. ipmi_pci.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/condvar.h>
#include <sys/eventhandler.h>
#include <sys/selinfo.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ipmi/ipmivars.h>
static struct ipmi_ident {
u_int16_t vendor;
u_int16_t device;
char *description;
} ipmi_identifiers[] = {
{ 0x1028, 0x000d, "Dell PE2650 SMIC interface" },
{ 0, 0, 0 }
};
const char *
ipmi_pci_match(uint16_t vendor, uint16_t device)
{
...
}
static int
ipmi_pci_probe(device_t dev)
{
...
}
static int
ipmi_pci_attach(device_t dev)
{
...
}
static device_method_t ipmi_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, ipmi_pci_probe),
DEVMETHOD(device_attach, ipmi_pci_attach),
DEVMETHOD(device_detach, ipmi_detach),
{ 0, 0 }
};
static driver_t ipmi_pci_driver = {
"ipmi",
ipmi_methods,
sizeof(struct ipmi_softc)
}; DRIVER_MODULE(ipmi_pci, pci, ipmi_pci_driver, ipmi_devclass, 0, 0);
static int
ipmi2_pci_probe(device_t dev)
{
...
}
static int
ipmi2_pci_attach(device_t dev)
{
...
}
static device_method_t ipmi2_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, ipmi2_pci_probe),
DEVMETHOD(device_attach, ipmi2_pci_attach),
DEVMETHOD(device_detach, ipmi_detach),
{ 0, 0 }
};
static driver_t ipmi2_pci_driver = {
"ipmi",
ipmi2_methods,
sizeof(struct ipmi_softc)
}; DRIVER_MODULE(ipmi2_pci, pci, ipmi2_pci_driver, ipmi_devclass, 0, 0);
Before I describe the functions in Example 11-1, note that it contains two
DRIVER_MODULE calls. In other words, Example 11-1 declares two Newbus drivers; each designed to handle a distinct group of devices (as you’ll soon see).
Now let’s discuss the functions found in Example 11-1.
ipmi_pci_probe Function
The ipmi_pci_probe function is the device_probe implementation for the first Newbus driver found in Example 11-1. Here is its function definition:
static int
ipmi_pci_probe(device_tdev)
{
const char *desc;
if (ipmi_attached)
return (ENXIO);
desc =ipmi_pci_match(pci_get_vendor(dev), pci_get_device(dev));
if (desc != NULL) {
device_set_desc(dev, desc);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
This function first checks the value of the global variable ipmi_attached. If it is nonzero, which signifies that ipmi(4) is currently in use, the error code
ENXIO is returned; otherwise,
ipmi_pci_match is called to determine whether this driver can handle
dev.
ipmi_pci_match Function
The ipmi_pci_match function takes in a PCI Vendor ID/Device ID (VID/DID) pair and verifies whether it recognizes those IDs. Before I define (and subsequently walk through) this function, a description of the ipmi_identifiers array is needed. This array is defined near the beginning of Example 11-1 like so:
static struct ipmi_ident {
u_int16_t vendor;
u_int16_t device;
char *description;
} ipmi_identifiers[] = {
{ 0x1028, 0x000d, "Dell PE2650 SMIC interface" },
{ 0, 0, 0 }
};
As you can see, the ipmi_identifiers array is composed of ipmi_ident structures. Each ipmi_ident structure includes a
VID/DID pair and a
description of the PCI device. As you may have guessed, ipmi_identifiers lists the devices that the first Newbus driver in Example 11-1 supports.
Now that we’ve discussed ipmi_identifiers, let’s walk through ipmi_pci_match.
const char *
ipmi_pci_match(uint16_t vendor, uint16_t device)
{
struct ipmi_ident *m;
for (m = ipmi_identifiers; m->vendor != 0; m++)
if (m->vendor == vendor && m->device == device)
return (m->description);
return (NULL);
}
This function determines whether a specific VID/DID pair is listed in
ipmi_identifiers. If so, its
description is returned.
ipmi_pci_attach Function
The ipmi_pci_attach function is the device_attach implementation for the first Newbus driver found in Example 11-1. Here is its function definition:
static int
ipmi_pci_attach(device_t dev)
{
struct ipmi_softc *sc = device_get_softc(dev);
struct ipmi_get_info info;
const char *mode;
int error, type;
if (!ipmi_smbios_identify(&info))
return (ENXIO);
sc->ipmi_dev = dev;
switch (info.iface_type) {
case KCS_MODE:
mode = "KCS";
break;
case SMIC_MODE:
mode = "SMIC";
break;
case BT_MODE:
device_printf(dev, "BT mode is unsupported\n");
return (ENXIO);
default:
device_printf(dev, "No IPMI interface found\n");
return (ENXIO);
}
device_printf(dev,
"%s mode found at %s 0x%jx alignment 0x%x on %s\n",
mode,
info.io_mode ? "I/O port" : "I/O memory",
(uintmax_t)info.address,
info.offset,
device_get_name(device_get_parent(dev)));
if (info.io_mode)
type = SYS_RES_IOPORT;
else
type = SYS_RES_MEMORY;
sc->ipmi_io_rid =PCIR_BAR(0);
sc->ipmi_io_res[0] = bus_alloc_resource_any(dev, type,
&sc->ipmi_io_rid, RF_ACTIVE);
sc->ipmi_io_type = type;
sc->ipmi_io_spacing = info.offset;
if (sc->ipmi_io_res[0] == NULL) {
device_printf(dev, "could not configure PCI I/O resource\n");
return (ENXIO);
}
sc->ipmi_irq_rid = 0;
sc->ipmi_irq_res =bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->ipmi_irq_rid, RF_SHAREABLE | RF_ACTIVE);
switch (info.iface_type) {
case KCS_MODE:
error =ipmi_kcs_attach(sc);
if (error)
goto bad;
break;
case SMIC_MODE:
error =ipmi_smic_attach(sc);
if (error)
goto bad;
break;
}
error =ipmi_attach(dev);
if (error)
goto bad;
return (0);
bad:
ipmi_release_resources(dev);
return (error);
}
This function begins by retrieving the IPMI data structure stored in the computer’s System Management BIOS (SMBIOS), which is responsible for maintaining hardware configuration information.
Based on the SMBIOS data, ipmi_pci_attach determines ipmi(4)’s mode of operation and whether it requires
I/O port or
I/O memory access. Currently, ipmi(4) supports only Keyboard Controller Style (KCS) and Server Management Interface Chip (SMIC) modes. These modes dictate how IPMI messages are transferred. For our purposes, you won’t need to understand the specifics of either mode.
The next block of code acquires I/O region access for ipmi(4). Before I describe this code, some background on PCI devices is needed. After bootup, PCI devices can remap their device registers to a different location, thus avoiding address conflicts with other devices. Because of this, PCI devices store the size and current location of their I/O-mapped registers in their base address registers (BARs). Thus, this block of code first calls PCIR_BAR(0) to get the address of the first BAR. Then it passes that address as the
rid argument to bus_alloc_resource_any, thereby acquiring I/O access to the device’s registers.
NOTE
To be accurate, the PCIR_BAR(x) macro returns the RID of the xth BAR.
The remainder of ipmi_pci_attach acquires an IRQ, starts up
KCS or
SMIC mode, and calls
ipmi_attach to finish initializing the device.
ipmi2_pci_probe Function
The ipmi2_pci_probe function is the device_probe implementation for the second Newbus driver found in Example 11-1. Here is its function definition:
static int
ipmi2_pci_probe(device_t dev)
{
if (pci_get_class(dev) == PCIC_SERIALBUS &&
pci_get_subclass(dev) ==PCIS_SERIALBUS_IPMI) {
device_set_desc(dev, "IPMI System Interface");
return (BUS_PROBE_GENERIC);
}
return (ENXIO);
}
This function determines if dev is a generic IPMI device on the PCI bus. If so, its verbose description is
set, and the success code
BUS_PROBE_GENERIC is returned. In short, this driver handles any standard IPMI device on the PCI bus.
As you may have guessed, the first Newbus driver is a hack (that is to say, a workaround) for the Dell PE2650, because it does not adhere to the IPMI specification.
ipmi2_pci_attach Function
The ipmi2_pci_attach function is the device_attach implementation for the second Newbus driver found in Example 11-1. Here is its function definition:
static int
ipmi2_pci_attach(device_t dev)
{
struct ipmi_softc *sc = device_get_softc(dev);
int error, iface, type;
sc->ipmi_dev = dev;
switch (pci_get_progif(dev)) {
case PCIP_SERIALBUS_IPMI_SMIC:
iface = SMIC_MODE;
break;
case PCIP_SERIALBUS_IPMI_KCS:
iface = KCS_MODE;
break;
case PCIP_SERIALBUS_IPMI_BT:
device_printf(dev, "BT interface is unsupported\n");
return (ENXIO);
default:
device_printf(dev, "unsupported interface: %d\n",
pci_get_progif(dev));
return (ENXIO);
}
sc->ipmi_io_rid =PCIR_BAR(0);
if (PCI_BAR_IO(pci_read_config(dev, PCIR_BAR(0), 4)))
type = SYS_RES_IOPORT;
else
type = SYS_RES_MEMORY;
sc->ipmi_io_type = type;
sc->ipmi_io_spacing = 1;
sc->ipmi_io_res[0] =bus_alloc_resource_any(dev, type,
&sc->ipmi_io_rid, RF_ACTIVE);
if (sc->ipmi_io_res[0] == NULL) {
device_printf(dev, "could not configure PCI I/O resource\n");
return (ENXIO);
}
sc->ipmi_irq_rid = 0;
sc->ipmi_irq_res =bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->ipmi_irq_rid, RF_SHAREABLE | RF_ACTIVE);
switch (iface) {
case KCS_MODE:
device_printf(dev, "using KCS interface\n");
if (!ipmi_kcs_probe_align(sc)) {
device_printf(dev,
"unable to determine alignment\n");
error = ENXIO;
goto bad;
}
error =ipmi_kcs_attach(sc);
if (error)
goto bad;
break;
case SMIC_MODE:
device_printf(dev, "using SMIC interface\n");
error =ipmi_smic_attach(sc);
if (error)
goto bad;
break;
}
error =ipmi_attach(dev);
if (error)
goto bad;
return (0);
bad:
ipmi_release_resources(dev);
return (error);
}
This function begins by examining dev’s programming interface to determine ipmi(4)’s mode of operation (either SMIC or KCS). Then
PCIR_BAR(0) is called to obtain the address of the first BAR. From this BAR, ipmi2_pci_attach
identifies whether ipmi(4) requires
I/O port or
I/O memory access before
acquiring it. Lastly, ipmi2_pci_attach
obtains an IRQ, starts up
KCS or
SMIC mode, and calls
ipmi_attach to finish initializing dev.
Conclusion
This chapter examined the PCI code base for ipmi(4) and introduced two fundamentals. First, a single source file can contain more than one driver. Second, to acquire I/O region access, PCI drivers must first call PCIR_BAR.
Chapter 12. Direct Memory Access
Direct Memory Access (DMA) is a feature of modern processors that lets a device transfer data to and from main memory independently of the CPU. With DMA, the CPU merely initiates the data transfer (that is to say, it does not complete it), and then the device (or a separate DMA controller) actually moves the data. Because of this, DMA tends to provide higher system performance as the CPU is free to perform other tasks during the data transfer.
NOTE
There is some overhead in performing DMA. Accordingly, only devices that move large amounts of data (for example, storage devices) use DMA. You wouldn’t use DMA just to transfer one or two bytes of data.
Implementing DMA
Unlike with previous topics, I’m going to take a holistic approach here. Namely, I’m going to show an example first, and then I’ll describe the DMA family of functions.
The following pseudocode is a device_attach routine for a fictitious device that uses DMA.
static int
foo_attach(device_t dev)
{
struct foo_softc *sc = device_get_softc(dev);
int error;
bzero(sc, sizeof(*sc));
if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filter */
NULL, /* filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&sc->foo_parent_dma_tag)) {
device_printf(dev, "Cannot allocate parent DMA tag!\n");
return (ENOMEM);
}
if (bus_dma_tag_create(sc->foo_parent_dma_tag,/* parent */
1, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filter */
NULL, /* filterarg */
MAX_BAZ_SIZE, /* maxsize */
MAX_BAZ_SCATTER, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&sc->foo_baz_dma_tag)) {
device_printf(dev, "Cannot allocate baz DMA tag!\n");
return (ENOMEM);
}
if (bus_dmamap_create(sc->foo_baz_dma_tag, /* DMA tag */
0, /* flags */
&sc->foo_baz_dma_map)) {
device_printf(dev, "Cannot allocate baz DMA map!\n");
return (ENOMEM);
}
bzero(sc->foo_baz_buf, BAZ_BUF_SIZE);
error =bus_dmamap_load(sc->foo_baz_dma_tag, /* DMA tag */
sc->foo_baz_dma_map, /* DMA map */
sc->foo_baz_buf, /* buffer */
BAZ_BUF_SIZE, /* buffersize */
foo_callback, /* callback */
&sc->foo_baz_busaddr, /* callbackarg */
BUS_DMA_NOWAIT); /* flags */
if (error || sc->foo_baz_busaddr == 0) {
device_printf(dev, "Cannot map baz DMA memory!\n");
return (ENOMEM);
}
...
}
This pseudocode begins by calling bus_dma_tag_create to create a DMA tag named
foo_parent_dma_tag. At heart, DMA tags describe the characteristics and restrictions of DMA transactions.
Next, bus_dma_tag_create is called again. Notice that foo_parent_dma_tag is this call’s first argument. See, DMA tags can inherit the characteristics and restrictions of other tags. Of course, child tags cannot loosen the restrictions set up by their parents. Consequently, the DMA tag
foo_baz_dma_tag is a “draconian” version of foo_parent_dma_tag.
The next statement, bus_dmamap_create, creates a DMA map named foo_baz_dma_map. Loosely speaking, DMA maps represent memory areas that have been allocated according to the properties of a DMA tag and are within device visible address space.
Finally, bus_dmamap_load loads the buffer
foo_baz_buf into the device visible address associated with the DMA map
foo_baz_dma_map.
NOTE
Any arbitrary buffer can be used for DMA. However, buffers are inaccessible to devices until they’ve been loaded (or mapped) into a device visible address (that is, a DMA map).
Note that bus_dmamap_load requires a callback function, which typically looks something like this:
static voidfoo_callback(void
*arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error)
return;
*(bus_addr_t *)arg =
segs[0].ds_addr;
}
Here, arg dereferences to the sixth argument passed to bus_dmamap_load, which was foo_baz_busaddr.
This callback function executes after the buffer-load operation completes. If successful, the address where the buffer was loaded is returned in
arg. If unsuccessful,
foo_callback does
nothing.
Initiating a DMA Data Transfer
Assuming the buffer-load operation completed successfully, one can initiate a DMA data transfer with something like this:
NOTE
Most devices just require the device visible address of a buffer to be written to a specific register to start a DMA data transfer.
bus_write_4(sc->foo_io_resource,
FOO_BAZ,
sc->foo_baz_busaddr);
Here, the device visible address of a buffer is
written to a
device register. Recall that the foo_callback function described in the previous section returns in
foo_baz_busaddr the device visible address of foo_baz_buf.
Dismantling DMA
Now that you know how to implement DMA, I’ll demonstrate how to dismantle it.
static int
foo_detach(device_t dev)
{
struct foo_softc *sc = device_get_softc(dev);
if (sc->foo_baz_busaddr != 0)
bus_dmamap_unload(sc->foo_baz_dma_tag, sc->foo_baz_dma_map);
if (sc->foo_baz_dma_map != NULL)
bus_dmamap_destroy(sc->foo_baz_dma_tag, sc->foo_baz_dma_map);
if (sc->foo_baz_dma_tag != NULL)
bus_dma_tag_destroy(sc->foo_baz_dma_tag);
if (sc->foo_parent_dma_tag != NULL)
bus_dma_tag_destroy(sc->foo_parent_dma_tag);
...
}
As you can see, this pseudocode simply tears down everything in the opposite order that it was built up.
Now, let’s discuss in detail the different functions encountered here and in the previous two sections.
Creating DMA Tags
As mentioned earlier, DMA tags describe the characteristics and restrictions of DMA transactions and are created by using the bus_dma_tag_create function.
#include <machine/bus.h>
int
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
bus_dma_filter_t *filtfunc, void *filtfuncarg, bus_size_t maxsize,
int nsegments, bus_size_t maxsegsz, int flags,
bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat);
Here, the parent argument identifies the parent DMA tag. To create a top-level DMA tag, pass bus_get_dma_tag(device_t dev) as parent.
The alignment argument denotes the physical alignment, in bytes, of each DMA segment. Recall that DMA maps represent memory areas that have been allocated according to the properties of a DMA tag. These memory areas are known as DMA segments. If you return to the foo_callback function described in Implementing DMA in Implementing DMA, you’ll see that arg is actually assigned the address of a DMA segment.
The alignment argument must be 1, which denotes no specific alignment, or a power of two. As an example, drivers that require DMA buffers to begin on a multiple of 4KB would pass 4096 as alignment.
The boundary argument specifies the physical address boundaries that cannot be crossed by each DMA segment; that is, they cannot cross any multiple of boundary. This argument must be 0, which indicates no boundary restrictions, or a power of two.
The lowaddr and highaddr arguments outline the address range that cannot be employed for DMA. For example, devices incapable of DMA above 4GB would have 0xFFFFFFFF as lowaddr and BUS_SPACE_MAXADDR as highaddr.
NOTE
0xFFFFFFFF equals 4GB, and the constant BUS_SPACE_MAXADDR signifies the maximum addressable memory for your architecture.
The filtfunc and filtfuncarg arguments denote an optional callback function and its first argument, respectively. This function is executed for every attempt to load (or map) a DMA buffer between lowaddr and highaddr. If there’s a device-accessible region between lowaddr and highaddr, filtfunc is supposed to tell the system. Here is the function prototype for filtfunc:
int filtfunc(void *filtfuncarg, bus_addr_taddr)
This function must return 0 if the address addr is device-accessible or a nonzero value if it’s inaccessible.
If filtfunc and filtfuncarg are NULL, the entire address range from lowaddr to highaddr is considered inaccessible.
The maxsize argument denotes the maximum amount of memory, in bytes, that may be allocated for a single DMA map.
The nsegments argument specifies the number of scatter/gather segments allowed in a single DMA map. A scatter/gather segment is simply a memory page. The name comes from the fact that when you take a set of physically discontinuous pages and virtually assemble them into a single contiguous buffer, you must “scatter” your writes and “gather” your reads. Some devices require blocks of contiguous memory; however sometimes a large enough block is not available. So the kernel “tricks” the device by using a buffer composed of scatter/gather segments. Every DMA segment is a scatter/gather segment.
The nsegments argument may be BUS_SPACE_UNRESTRICTED, which indicates no number restriction. DMA tags made with BUS_SPACE_UNRESTRICTED cannot create DMA maps; they can only be parent tags, because the system cannot support DMA maps composed of an unlimited number of scatter/gather segments.
The maxsegsz argument denotes the maximum size, in bytes, of an individual DMA segment within a single DMA map.
The flags argument modifies bus_dma_tag_create’s behavior. Table 12-1 displays its only valid value.
Table 12-1. bus_dma_tag_create Symbolic Constants
Constant | Description |
---|---|
BUS_DMA_ALLOCNOW | Preallocates enough resources to handle at least one buffer-load operation; if sufficient resources are unavailable, ENOMEM is returned. |
The lockfunc and lockfuncarg arguments denote an optional callback function and its first argument, respectively. Remember how bus_dmamap_load requires a callback function? Well, lockfunc executes right before and after that function to acquire and release any necessary synchronization primitives. Here is lockfunc’s function prototype:
void lockfunc(void *lockfuncarg, bus_dma_lock_op_top)
When lockfunc executes, op contains either BUS_DMA_LOCK or BUS_DMA_UNLOCK. That is, op dictates what lock operation to perform.
The dmat argument expects a pointer to bus_dma_tag_t; assuming bus_dma_tag_create is successful, this pointer will store the resulting DMA tag.
Tearing Down DMA Tags
DMA tags are torn down by the bus_dma_tag_destroy function.
#include <machine/bus.h>
int
bus_dma_tag_destroy(bus_dma_tag_t dmat);
This function returns EBUSY if there are any DMA maps still associated with dmat.
DMA Map Management Routines, Part 1
As mentioned earlier, DMA maps represent memory areas (that is to say, DMA segments) that have been allocated according to the properties of a DMA tag and are within device visible address space.
DMA maps can be managed with the following functions:
#include <machine/bus.h>
int
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp);
int
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map);
The bus_dmamap_create function creates a DMA map based on the DMA tag dmat and stores the result in mapp. The flags argument modifies bus_dmamap_create’s behavior. Table 12-2 displays its only valid value.
Table 12-2. bus_dmamap_create Symbolic Constants
Constant | Description |
---|---|
BUS_DMA_COHERENT | Causes cache synchronization operations to be as cheap as possible for your DMA buffers; this flag is implemented only on sparc64. |
The bus_dmamap_destroy function tears down the DMA map map. The dmat argument is the DMA tag that map was based on.
Loading (DMA) Buffers into DMA Maps
The FreeBSD kernel provides four functions for loading a buffer into the device visible address associated with a DMA map:
bus_dmamap_load
bus_dmamap_load_mbuf
bus_dmamap_load_mbuf_sg
bus_dmamap_load_uio
Before I describe these functions, an explanation of bus_dma_segment structures is needed.
bus_dma_segment Structures
A bus_dma_segment structure describes a single DMA segment.
typedef struct bus_dma_segment {
bus_addr_tds_addr;
bus_size_tds_len;
} bus_dma_segment_t;
The ds_addr field contains its device visible address and
ds_len contains its length.
bus_dmamap_load Function
We first discussed the bus_dmamap_load function in Implementing DMA in Implementing DMA.
#include <machine/bus.h>
int
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
bus_size_t buflen, bus_dmamap_callback_t *callback,
void *callbackarg, int flags);
This function loads the buffer buf into the device visible address associated with the DMA map map. The dmat argument is the DMA tag that map is based on. The buflen argument is the number of bytes from buf to load. bus_dmamap_load returns immediately and never blocks for any reason.
The callback and callbackarg arguments denote a callback function and its first argument, respectively. callback executes after the buffer-load operation completes. If resources are lacking, the buffer-load operation and callback will be deferred. If bus_dmamap_load returns EINPROGRESS, this has occurred. Here is callback’s function prototype:
void callback(void *callbackarg, bus_dma_segment_t*segs, int
nseg, int
error)
When callback executes, error discloses the success (0) or failure (EFBIG) of the buffer-load operation (the error code EFBIG stands for error: file too large). The
segs argument is the array of DMA segments that buf has been loaded into;
nseg is this array’s size.
The following pseudocode is an example callback function:
static void
foo_callback(void *callbackarg, bus_dma_segment_t *segs, int nseg, int error)
{
struct foo_softc *sc = callbackarg;
int i;
if (error)
return;
sc->sg_num = nseg;
for (i = 0; i < nseg; i++)
sc->sg_addr[i] =segs[i].ds_addr;
}
This function iterates through segs to return the
device visible address of each DMA segment that buf has been loaded into.
NOTE
If buf can fit into one DMA segment, the foo_callback function described in Implementing DMA in Implementing DMA may be used as callback.
The flags argument modifies bus_dmamap_load’s behavior. Valid values for this argument are shown in Table 12-3.
Table 12-3. bus_dmamap_load Symbolic Constants
Constant | Description |
---|---|
BUS_DMA_NOWAIT | If memory resources are lacking, the buffer-load operation and callback will not be deferred. |
BUS_DMA_NOCACHE | Prevents caching the DMA buffer, thereby causing all DMA transactions to be executed without reordering; this flag is implemented only on sparc64. |
bus_dmamap_load_mbuf Function
The bus_dmamap_load_mbuf function is a variant of bus_dmamap_load that loads mbuf chains (you’ll learn about mbuf chains in Chapter 16).
#include <machine/bus.h>
int
bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *mbuf, bus_dmamap_callback2_t *callback2,
void *callbackarg, int flags);
Most of these arguments are identical to their bus_dmamap_load counterparts except for:
The mbuf argument, which expects an mbuf chain
The callback2 argument, which requires a different callback function
The flags argument, which implicitly sets BUS_DMA_NOWAIT
Here is callback2’s function prototype:
void callback2(void *callbackarg, bus_dma_segment_t *segs, int nseg,
bus_size_tmapsize, int error)
callback2 is like callback, but it returns the amount of data loaded.
bus_dmamap_load_mbuf_sg Function
The bus_dmamap_load_mbuf_sg function is an alternative to bus_dmamap_load_mbuf that does not use callback2.
#include <machine/bus.h>
int
bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *mbuf, bus_dma_segment_t*segs, int
*nseg, int flags);
As you can see, this function directly and immediately returns segs and
nseg.
bus_dmamap_load_uio Function
The bus_dmamap_load_uio function is identical to bus_dmamap_load_mbuf except that it loads the buffers from within a uio structure.
#include <machine/bus.h>
int
bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map,
struct uio *uio, bus_dmamap_callback2_t *callback2,
void *callbackarg, int flags);
bus_dmamap_unload Function
The bus_dmamap_unload function unloads the buffers from a DMA map.
#include <machine/bus.h>
void
bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map);
DMA Map Management Routines, Part 2
This section describes an alternative set of functions used to manage DMA maps.
#include <machine/bus.h>
int
bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags,
bus_dmamap_t *mapp);
void
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map);
The bus_dmamem_alloc function creates a DMA map based on the DMA tag dmat and stores the result in mapp. This function also allocates maxsize bytes of contiguous memory (where maxsize is defined by dmat). The address of this memory is returned in vaddr. As you’ll soon see, this contiguous memory will eventually become your DMA buffer. The flags argument modifies bus_dmamem_alloc’s behavior. Valid values for this argument are shown in Table 12-4.
Table 12-4. bus_dmamem_alloc Symbolic Constants
Constant | Description |
---|---|
BUS_DMA_ZERO | Causes the allocated memory to be set to zero |
BUS_DMA_NOWAIT | Causes bus_dmamem_alloc to return ENOMEM if the allocation cannot be immediately fulfilled due to resource shortage |
BUS_DMA_WAITOK | Indicates that it is okay to wait for resources; if the allocation cannot be immediately fulfilled, the current process is put to sleep to wait for resources to become available. |
BUS_DMA_COHERENT | Causes cache synchronization operations to be as cheap as possible for your DMA buffer; this flag is implemented only on arm and sparc64. |
BUS_DMA_NOCACHE | Prevents caching the DMA buffer, thereby causing all DMA transactions to be executed without reordering; this flag is implemented only on amd64 and i386. |
NOTE
bus_dmamem_alloc is used when you require a physically contiguous DMA buffer.
The bus_dmamem_free function releases the memory at vaddr that was previously allocated by bus_dmamem_alloc. Then it tears down the DMA map map.
A Straightforward Example
The following pseudocode is a device_attach routine for a fictitious device that requires DMA. This pseudocode should demonstrate how to use bus_dmamem_alloc.
static int
foo_attach(device_t dev)
{
struct foo_softc *sc = device_get_softc(dev);
int size = BAZ_SIZE;
int error;
bzero(sc, sizeof(*sc));
if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filter */
NULL, /* filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&sc->foo_parent_dma_tag)) {
device_printf(dev, "Cannot allocate parent DMA tag!\n");
return (ENOMEM);
}
if (bus_dma_tag_create(sc->foo_parent_dma_tag, /* parent */
64, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filter */
NULL, /* filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&sc->foo_baz_dma_tag)) {
device_printf(dev, "Cannot allocate baz DMA tag!\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->foo_baz_dma_tag, /* DMA tag */
(void **)&sc->foo_baz_buf, /* vaddr */
BUS_DMA_NOWAIT, /* flags */
&sc->foo_baz_dma_map)) {
device_printf(dev, "Cannot allocate baz DMA memory!\n");
return (ENOMEM);
}
bzero(sc->foo_baz_buf, size);
error =bus_dmamap_load(sc->foo_baz_dma_tag, /* DMA tag */
sc->foo_baz_dma_map, /* DMA map */
sc->foo_baz_buf, /* buffer */
size, /* buffersize */
foo_callback, /* callback */
&sc->foo_baz_busaddr, /* callbackarg */
BUS_DMA_NOWAIT); /* flags */
if (error || sc->foo_baz_busaddr == 0) {
device_printf(dev, "Cannot map baz DMA memory!\n");
return (ENOMEM);
}
...
}
Although bus_dmamem_alloc allocates
memory and creates a
DMA map,
loading that
memory into the
DMA map still needs to occur.
Also, since bus_dmamem_alloc allocates contiguous memory, the nsegments argument must be 1. Likewise, the
maxsize and
maxsegsz arguments must be identical.
Lastly, since nsegments is 1, callback can be the foo_callback function shown in Implementing DMA in Implementing DMA.
Synchronizing DMA Buffers
DMA buffers must be synchronized after each write completed by the CPU/driver or a device. The exact reason why is beyond the scope of this book. But it’s basically done to ensure that the CPU/driver and device have a consistent view of the DMA buffer.
DMA buffers are synchronized with the bus_dmamap_sync function.
#include <machine/bus.h>
void
bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op);
This function synchronizes the DMA buffer currently loaded in the DMA map map. The dmat argument is the DMA tag that map is based on. The op argument identifies the type of synchronization operation to perform. Valid values for this argument are shown in Table 12-5.
Table 12-5. bus_dmamap_sync Symbolic Constant
Constant | Description |
---|---|
BUS_DMASYNC_PREWRITE | Used to synchronize after the CPU/driver writes to the DMA buffer |
BUS_DMASYNC_POSTREAD | Used to synchronize after a device writes to the DMA buffer |
Conclusion
This chapter detailed FreeBSD’s DMA management routines. These routines are primarily used by storage and network drivers, which are discussed in Chapter 13, Chapter 16, and Chapter 17.
Chapter 13. Storage Drivers
In FreeBSD, storage drivers provide access to devices that transfer randomly accessible data in blocks (such as disk drives, flash memory, and so on). A block is a fixed-size chunk of data (Corbet et al., 2005). In this chapter I’ll discuss how to manage devices that employ block-centric I/O. To that end, some familiarity with disk and bio structures is needed, so that is where we’ll start.
disk Structures
A disk structure is the kernel’s representation of an individual disk-like storage device. It is defined in the <geom/geom_disk.h> header as follows:
struct disk {
/* GEOM Private Data */
struct g_geom *d_geom;
struct devstat *d_devstat;
int d_destroyed;
/* Shared Objects */
struct bio_queue_head *d_queue;
struct mtx *d_lock;
/* Descriptive Fields */
const char *d_name;
u_int d_unit;
u_int d_flags;
/* Storage Device Methods */
disk_open_t *d_open;
disk_close_t *d_close;
disk_strategy_t *d_strategy;
disk_ioctl_t *d_ioctl;
dumper_t *d_dump;
/* Mandatory Media Properties */
u_int d_sectorsize;
off_t d_mediasize;
u_int d_maxsize;
/* Optional Media Properties */
u_int d_fwsectors;
u_int d_fwheads;
u_int d_stripesize;
u_int d_stripeoffset;
char d_ident[DISK_IDENT_SIZE];
/* Driver Private Data */
void *d_drv1;
};
Many of the fields in struct disk must be initialized by a storage driver. These fields are described in the following sections.
Descriptive Fields
The d_name and d_unit fields specify the storage device’s name and unit number, respectively. These fields must be defined in every disk structure.
The d_flags field further qualifies the storage device’s characteristics. Valid values for this field are shown in Table 13-1.
Table 13-1. disk Structure Symbolic Constants
Constant | Description |
---|---|
DISKFLAG_NEEDSGIANT | Indicates that the storage device needs to be protected by Giant |
DISKFLAG_CANDELETE | Indicates that the storage device wants to be notified when a block is no longer required so that it can perform some special handling (for example, drivers for solid-state drives that support the TRIM command employ this flag) |
DISKFLAG_CANFLUSHCACHE | Indicates that the storage device can flush its local write cache |
The d_flags field is optional and may be undefined.
Storage Device Methods
The d_open field identifies the storage device’s open routine. If no function is provided, open will always succeed.
The d_close field identifies the storage device’s close routine. If no function is provided, close will always succeed. The d_close routine should always terminate anything set up by the d_open routine.
The d_strategy field identifies the storage device’s strategy routine. Strategy routines are called to process block-centric reads, writes, and other I/O operations. Accordingly, d_strategy must be defined in every disk structure. I’ll discuss block-centric I/O and strategy routines in greater detail later.
The d_ioctl field identifies the storage device’s ioctl routine. This field is optional and may be undefined.
The d_dump field identifies the storage device’s dump routine. Dump routines are called after a kernel panic to record the contents of physical memory to a storage device. Note that d_dump is optional and may be undefined.
Mandatory Media Properties
The d_sectorsize and d_mediasize fields specify the storage device’s sector and media size in bytes, respectively. These fields must be defined in every disk structure.
The d_maxsize field denotes the maximum size in bytes that an I/O operation, for the storage device, can be. This field must be defined in every disk structure.
Note that you can safely modify the values for d_sectorsize, d_mediasize, and d_maxsize in the d_open routine.
Optional Media Properties
The d_fwsectors and d_fwheads fields identify the number of sectors and heads on the storage device. These fields are optional and may be undefined; however, certain platforms require these fields for disk partitioning.
The d_stripesize field specifies the width of any natural request boundaries for the storage device (for example, the size of a stripe on a RAID-5 unit), and the d_stripeoffset field represents the location or offset to the first stripe. These fields are optional and may be undefined. For more on d_stripesize and d_stripeoffset, see /sys/geom/notes.
The d_ident field denotes the storage device’s serial number. This field is optional and may be undefined, but it’s good practice to define it.
Note that you can safely modify the abovementioned fields in the d_open routine.
Driver Private Data
The d_drv1 field may be used by the storage driver to house data. Typically, d_drv1 will contain a pointer to the storage driver’s softc structure.
disk Structure Management Routines
The FreeBSD kernel provides the following functions for working with disk structures:
#include <geom/geom_disk.h>
struct disk *
disk_alloc(void);
void
disk_create(struct disk *disk, int version);
void
disk_destroy(struct disk *disk);
A disk structure is a dynamically allocated structure that’s owned by the kernel. That is, you cannot allocate a struct disk on your own. Instead, you must call disk_alloc.
Allocating a disk structure does not make the storage device available to the system. To do that, you must initialize the structure (by defining the necessary fields) and then call disk_create. The version argument must always be DISK_VERSION.
Note that as soon as disk_create returns, the device is “live” and its routines can be called at any time. Therefore, you should call disk_create only when your driver is completely ready to handle any operation.
When a disk structure is no longer needed, it should be freed with disk_destroy. You can destroy an opened disk structure. Of course, you’ll need to free any resources that were allocated during d_open afterward, as d_close can no longer be called.
Block I/O Structures
A bio structure represents a block-centric I/O request. Loosely speaking, when the kernel needs to transfer some data to or from a storage device, it puts together a bio structure to describe that operation; then it passes that structure to the appropriate driver.
struct bio is defined in the <sys/bio.h> header as follows:
struct bio {
uint8_t bio_cmd; /* I/O operation. */
uint8_t bio_flags; /* General flags. */
uint8_t bio_cflags; /* Private use by the consumer. */
uint8_t bio_pflags; /* Private use by the provider. */
struct cdev *bio_dev; /* Device to perform I/O on. */
struct disk *bio_disk; /* Disk structure. */
off_t bio_offset; /* Requested position in file. */
long bio_bcount; /* Number of (valid) bytes. */
caddr_t bio_data; /* Data. */
int bio_error; /* Error number for BIO_ERROR. */
long bio_resid; /* Remaining I/O (in bytes). */
void (*bio_done)(struct bio *); /* biodone() handler function. */
void *bio_driver1; /* Private use by the provider. */
void *bio_driver2; /* Private use by the provider. */
void *bio_caller1; /* Private use by the consumer. */
void *bio_caller2; /* Private use by the consumer. */
TAILQ_ENTRY(bio) bio_queue; /* bioq linkage. */
const char *bio_attribute; /* For BIO_[GS]ETATTR. */
struct g_consumer *bio_from; /* GEOM linkage. */
struct g_provider *bio_to; /* GEOM linkage. */
off_t bio_length; /* Like bio_bcount. */
off_t bio_completed; /* Opposite of bio_resid. */
u_int bio_children; /* Number of spawned bios. */
u_int bio_inbed; /* Number of children home. */
struct bio *bio_parent; /* Parent pointer. */
struct bintime bio_t0; /* Time I/O request started. */
bio_task_t *bio_task; /* bio_taskqueue() handler function. */
void *bio_task_arg; /* bio_task's argument. */
void *bio_classifier1; /* Classifier tag. */
void *bio_classifier2; /* Classifier tag. */
daddr_t bio_pblkno; /* Physical block number. */
};
/* Bits for bio_cmd. */
#define BIO_READ 0x01
#define BIO_WRITE 0x02
#define BIO_DELETE 0x04
#define BIO_GETATTR 0x08
#define BIO_FLUSH 0x10
#define BIO_CMD0 0x20 /* For local hacks. */
#define BIO_CMD1 0x40 /* For local hacks. */
#define BIO_CMD2 0x80 /* For local hacks. */
/* Bits for bio_flags. */
#define BIO_ERROR 0x01
#define BIO_DONE 0x02
#define BIO_ONQUEUE 0x04
We’ll examine struct bio in greater detail later. In the interim, you just need to remember that strategy routines are called to process newly received bio structures.
Block I/O Queues
All storage drivers maintain a block I/O queue to house any pending block-centric I/O requests. Generally speaking, these requests are stored in increasing or decreasing device-offset order so that when they are processed, the disk head will move in a single direction (instead of bouncing around) to maximize performance.
The FreeBSD kernel provides the following functions for working with block I/O queues:
#include <sys/bio.h>
void
bioq_init(struct bio_queue_head *head);
void
bioq_disksort(struct bio_queue_head *head, struct bio *bp);
struct bio *
bioq_first(struct bio_queue_head *head);
struct bio *
bioq_takefirst(struct bio_queue_head *head);
void
bioq_insert_head(struct bio_queue_head *head, struct bio *bp);
void
bioq_insert_tail(struct bio_queue_head *head, struct bio *bp);
void
bioq_remove(struct bio_queue_head *head, struct bio *bp);
void
bioq_flush(struct bio_queue_head *head, struct devstat *stp, int error);
A block I/O queue is a statically allocated structure that’s owned by the driver. To initialize a block I/O queue, you must call bioq_init.
To perform an ordered insertion, call bioq_disksort. To return the head of the queue (that is, the next request to process), use bioq_first. Lastly, to return and remove the head of the queue, call bioq_takefirst.
The abovementioned functions are the main methods for managing a block I/O queue. If a queue is manipulated using only these functions, it will contain at most one inversion point (that is, two sorted sequences).
The bioq_insert_head function inserts a request at the head of the queue. Additionally, it creates a “barrier” so that all subsequent insertions performed using bioq_disksort will end up after this request.
The bioq_insert_tail function is similar to bioq_insert_head, but it inserts the request at the end of the queue. Note that bioq_insert_tail also creates a barrier.
Generally speaking, you’d utilize a barrier to ensure that all preceding requests are serviced before continuing.
The bioq_remove function removes a request from the queue. If bioq_remove is invoked on the head of the queue, its effect is identical to bioq_takefirst.
If a block I/O queue is manipulated using bioq_insert_head, bioq_insert_tail, or bioq_remove, it may contain multiple inversion points.
The bioq_flush function expunges all of the queued requests and causes them to return the error code error.
NOTE
For storage devices that incorporate request scheduling (such as SATA Native Command Queuing, SCSI Tagged Command Queuing, and so on), bioq_disksort is essentially pointless, as the devices will (re)sort the requests internally. In those cases, a straightforward FIFO block I/O queue that uses bioq_insert_tail will suffice.
Tying Everything Together
Now that you’ve gained some familiarity with disk and bio structures, let’s dissect a real-world storage driver.
Example 13-1 is the storage driver for Atmel’s AT45D series of DataFlash chips. DataFlash is Atmel’s serial interface for flash memory, employed on the Serial Peripheral Interface (SPI) bus. In short, Example 13-1 is a storage driver for flash memory on the SPI bus.
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 13-1. at45d.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <geom/geom_disk.h>
#include <dev/spibus/spi.h>
#include "spibus_if.h"
#define MANUFACTURER_ID 0x9f
#define STATUS_REGISTER_READ 0xd7
#define CONTINUOUS_ARRAY_READ_HF 0x0b
#define PROGRAM_THROUGH_BUFFER 0x82
struct at45d_softc {
device_t at45d_dev;
struct mtx at45d_mtx;
struct intr_config_hook at45d_ich;
struct disk *at45d_disk;
struct bio_queue_head at45d_bioq;
struct proc *at45d_proc;
};
static devclass_t at45d_devclass;
static void at45d_delayed_attach(void *);
static void at45d_task(void *);
static void at45d_strategy(struct bio *);
static int at45d_probe(device_t dev)
{
device_set_desc(dev, "AT45 flash family");
return (BUS_PROBE_SPECIFIC);
}
static int
at45d_attach(device_t dev)
{
struct at45d_softc *sc = device_get_softc(dev);
int error;
sc->at45d_dev = dev;
mtx_init(&sc->at45d_mtx, device_get_nameunit(dev), "at45d", MTX_DEF);
sc->at45d_ich.ich_func = at45d_delayed_attach;
sc->at45d_ich.ich_arg = sc;
error = config_intrhook_establish(&sc->at45d_ich);
if (error)
device_printf(dev, "config_intrhook_establish() failed!\n");
return (0);
}
static int at45d_detach(device_t dev)
{
return (EIO);
}
static int
at45d_get_info(device_t dev, uint8_t *r)
{
struct spi_command cmd;
uint8_t tx_buf[8], rx_buf[8];
int error;
memset(&cmd, 0, sizeof(cmd));
memset(tx_buf, 0, sizeof(tx_buf));
memset(rx_buf, 0, sizeof(rx_buf));
tx_buf[0] = MANUFACTURER_ID;
cmd.tx_cmd = &tx_buf[0];
cmd.rx_cmd = &rx_buf[0];
cmd.tx_cmd_sz = 5;
cmd.rx_cmd_sz = 5;
error = SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);
if (error)
return (error);
memcpy(r, &rx_buf[1], 4);
return (0);
}
static uint8_t
at45d_get_status(device_t dev)
{
struct spi_command cmd;
uint8_t tx_buf[8], rx_buf[8];
memset(&cmd, 0, sizeof(cmd));
memset(tx_buf, 0, sizeof(tx_buf));
memset(rx_buf, 0, sizeof(rx_buf));
tx_buf[0] = STATUS_REGISTER_READ;
cmd.tx_cmd = &tx_buf[0];
cmd.rx_cmd = &rx_buf[0];
cmd.tx_cmd_sz = 2;
cmd.rx_cmd_sz = 2;
SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);
return (rx_buf[1]);
}
static void
at45d_wait_for_device_ready(device_t dev)
{
while ((at45d_get_status(dev) & 0x80) == 0)
continue;
}
static void
at45d_delayed_attach(void *arg)
{
struct at45d_softc *sc = arg;
uint8_t buf[4];
at45d_get_info(sc->at45d_dev, buf);
at45d_wait_for_device_ready(sc->at45d_dev);
sc->at45d_disk = disk_alloc();
sc->at45d_disk->d_name = "at45d";
sc->at45d_disk->d_unit = device_get_unit(sc->at45d_dev);
sc->at45d_disk->d_strategy = at45d_strategy;
sc->at45d_disk->d_sectorsize = 1056;
sc->at45d_disk->d_mediasize = 8192 * 1056;
sc->at45d_disk->d_maxsize = DFLTPHYS;
sc->at45d_disk->d_drv1 = sc;
bioq_init(&sc->at45d_bioq);
kproc_create(&at45d_task, sc, &sc->at45d_proc, 0, 0, "at45d");
disk_create(sc->at45d_disk, DISK_VERSION);
config_intrhook_disestablish(&sc->at45d_ich);
}
static void
at45d_strategy(struct bio *bp)
{
struct at45d_softc *sc = bp->bio_disk->d_drv1;
mtx_lock(&sc->at45d_mtx);
bioq_disksort(&sc->at45d_bioq, bp);
wakeup(sc);
mtx_unlock(&sc->at45d_mtx);
}
static void
at45d_task(void *arg)
{
struct at45d_softc *sc = arg;
struct bio *bp;
struct spi_command cmd;
uint8_t tx_buf[8], rx_buf[8];
int ss = sc->at45d_disk->d_sectorsize;
daddr_t block, end;
char *vaddr;
for (;;) {
mtx_lock(&sc->at45d_mtx);
do {
bp = bioq_first(&sc->at45d_bioq);
if (bp == NULL)
mtx_sleep(sc, &sc->at45d_mtx, PRIBIO,
"at45d", 0);
} while (bp == NULL);
bioq_remove(&sc->at45d_bioq, bp);
mtx_unlock(&sc->at45d_mtx);
end = bp->bio_pblkno + (bp->bio_bcount / ss);
for (block = bp->bio_pblkno; block < end; block++) {
vaddr = bp->bio_data + (block - bp->bio_pblkno) * ss;
if (bp->bio_cmd == BIO_READ) {
tx_buf[0] = CONTINUOUS_ARRAY_READ_HF;
cmd.tx_cmd_sz = 5;
cmd.rx_cmd_sz = 5;
} else {
tx_buf[0] = PROGRAM_THROUGH_BUFFER;
cmd.tx_cmd_sz = 4;
cmd.rx_cmd_sz = 4;
}
/* FIXME: This works only on certain devices. */
tx_buf[1] = ((block >> 5) & 0xff);
tx_buf[2] = ((block << 3) & 0xf8);
tx_buf[3] = 0;
tx_buf[4] = 0;
cmd.tx_cmd = &tx_buf[0];
cmd.rx_cmd = &rx_buf[0];
cmd.tx_data = vaddr;
cmd.rx_data = vaddr;
cmd.tx_data_sz = ss;
cmd.rx_data_sz = ss;
SPIBUS_TRANSFER(device_get_parent(sc->at45d_dev),
sc->at45d_dev, &cmd);
}
biodone(bp);
}
}
static device_method_t at45d_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, at45d_probe),
DEVMETHOD(device_attach, at45d_attach),
DEVMETHOD(device_detach, at45d_detach),
{ 0, 0 }
};
static driver_t at45d_driver = {
"at45d",
at45d_methods,
sizeof(struct at45d_softc)
};
DRIVER_MODULE(at45d, spibus, at45d_driver, at45d_devclass, 0, 0);
The following sections describe the functions defined in Example 13-1 roughly in the order they would execute.
Incidentally, because at45d_probe and
at45d_detach are extremely rudimentary and because you’ve seen similar code elsewhere, I’ll omit discussing them.
at45d_attach Function
The at45d_attach function is the device_attach implementation for this storage driver. Here is its function definition (again):
static int
at45d_attach(device_t dev)
{
struct at45d_softc *sc = device_get_softc(dev);
int error;
sc->at45d_dev = dev;
mtx_init(&sc->at45d_mtx, device_get_nameunit(dev), "at45d",
MTX_DEF);
sc->at45d_ich.ich_func =at45d_delayed_attach;
sc->at45d_ich.ich_arg = sc;
error =config_intrhook_establish(&sc->at45d_ich);
if (error)
device_printf(dev, "config_intrhook_establish() failed!\n");
return (0);
}
This function first initializes the mutex at45d_mtx, which will protect at45d’s block I/O queue. Then it
schedules
at45d_delayed_attach to execute when interrupts are enabled.
NOTE
During the initial autoconfiguration phase (that is, right after the system boots), interrupts are disabled. However, some drivers (such as at45d) require interrupts for device initialization. In those cases, you’d use config_intrhook_establish, which schedules a function to execute as soon as interrupts are enabled but before root is mounted; if the system has already passed this point, the function is called immediately.
at45d_delayed_attach Function
The at45d_delayed_attach function is, loosely speaking, the second half of at45d_attach. That is, it completes the device’s initialization. Here is its function definition (again):
static void
at45d_delayed_attach(void *arg)
{
struct at45d_softc *sc = arg;
uint8_t buf[4];
at45d_get_info(sc->at45d_dev, buf);
at45d_wait_for_device_ready(sc->at45d_dev);
sc->at45d_disk =disk_alloc();
sc->at45d_disk->d_name = "at45d";
sc->at45d_disk->d_unit = device_get_unit(sc->at45d_dev);
sc->at45d_disk->d_strategy = at45d_strategy;
sc->at45d_disk->d_sectorsize = 1056;
sc->at45d_disk->d_mediasize = 8192 * 1056;
sc->at45d_disk->d_maxsize = DFLTPHYS;
sc->at45d_disk->d_drv1 = sc;
bioq_init(&sc->at45d_bioq);
kproc_create(
&at45d_task, sc, &sc->at45d_proc, 0, 0, "at45d");
disk_create(sc->at45d_disk, DISK_VERSION);
config_intrhook_disestablish(&sc->at45d_ich);
}
This function can be split into multiple parts. The first gets the device’s manufacturer ID. Then at45d_delayed_attach
hangs until the device is ready. These two actions require interrupts to be enabled.
The second part allocates and defines at45d’s disk structure,
initializes at45d’s block I/O queue, and
creates a new kernel process (to execute the
at45d_task function).
Finally, at45d’s device node is created, and at45d_delayed_attach is
torn down.
NOTE
During the boot process—before root is mounted—the system stalls until every function scheduled via config_intrhook_establish completes and tears itself down. In other words, if at45d_delayed_attach didn’t call config_intrhook_disestablish, the system would hang.
at45d_get_info Function
The at45d_get_info function gets the storage device’s manufacturer ID. Here is its function definition (again):
static int
at45d_get_info(device_t dev, uint8_t *r)
{
struct spi_command cmd;
uint8_t tx_buf[8], rx_buf[8];
int error;
memset(&cmd, 0, sizeof(cmd));
memset(tx_buf, 0, sizeof(tx_buf));
memset(rx_buf, 0, sizeof(rx_buf));
tx_buf[0] = MANUFACTURER_ID;
cmd.tx_cmd = &tx_buf[0];
cmd.rx_cmd = &rx_buf[0];
cmd.tx_cmd_sz = 5;
cmd.rx_cmd_sz = 5;
error =SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);
if (error)
return (error);
memcpy(r, &rx_buf[1], 4);
return (0);
}
This function begins by zeroing its transmit and
receive buffers.
NOTE
Every SPI data transfer is a full-duplex data transmission. That is, it always requires a transmit and receive buffer, because the master and slave both transmit data—even if the data to be sent is meaningless or garbage, it’s still transferred.
The remainder of this function places MANUFACTURER_ID in the transmit buffer, sets up the spi_command structure (which denotes the
transmit and
receive buffers and their
data lengths),
initiates the data transfer, and finally
returns the manufacturer ID to the caller.
at45d_wait_for_device_ready Function
The at45d_wait_for_device_ready function “spins” until the storage device is ready. Here is its function definition (again):
static void
at45d_wait_for_device_ready(device_t dev)
{
while ((at45d_get_status(dev) & 0x80) == 0)
continue;
}
This function continually calls at45d_get_status until 0x80, which designates that the device is not busy and is ready to accept the next command, is returned.
at45d_get_status Function
The at45d_get_status function gets the storage device’s status. Here is its function definition (again):
static uint8_t
at45d_get_status(device_t dev)
{
struct spi_command cmd;
uint8_t tx_buf[8], rx_buf[8];
memset(&cmd, 0, sizeof(cmd));
memset(tx_buf, 0, sizeof(tx_buf));
memset(rx_buf, 0, sizeof(rx_buf));
tx_buf[0] = STATUS_REGISTER_READ;
cmd.tx_cmd = &tx_buf[0];
cmd.rx_cmd = &rx_buf[0];
cmd.tx_cmd_sz = 2;
cmd.rx_cmd_sz = 2;
SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd);
return (rx_buf[1]);
}
As you can see, this function is nearly identical to the at45d_get_info function, except that it employs a different command. As such, I’ll omit walking through it.
at45d_strategy Function
The at45d_strategy function is defined in at45d_delayed_attach as the d_strategy routine; it is executed anytime at45d receives a bio structure. Here is its function definition (again):
static void
at45d_strategy(struct bio *bp)
{
struct at45d_softc *sc = bp->bio_disk->d_drv1;
mtx_lock(&sc->at45d_mtx);
bioq_disksort(&sc->at45d_bioq, bp);
wakeup(sc);
mtx_unlock(&sc->at45d_mtx);
}
This function simply takes a bio structure and
adds it to at45d’s block I/O queue. Then it
gets at45d_task to actually process the bio structure(s).
NOTE
Most strategy routines do something similar. That is to say, they don’t actually process the bio structures; they only place them on the block I/O queue, and another function or thread sees to them.
at45d_task Function
As mentioned in the previous section, the at45d_task function processes the bio structures on at45d’s block I/O queue. Here is its function definition (again):
static void
at45d_task(void *arg)
{
struct at45d_softc *sc = arg;
struct bio *bp;
struct spi_command cmd;
uint8_t tx_buf[8], rx_buf[8];
int ss = sc->at45d_disk->d_sectorsize;
daddr_t block, end;
char *vaddr;
for (;;) {
mtx_lock(&sc->at45d_mtx);
do {
bp =bioq_first(&sc->at45d_bioq);
if (bp == NULL)
mtx_sleep(sc, &sc->at45d_mtx, PRIBIO,
"at45d", 0);
} while (bp == NULL);
bioq_remove(&sc->at45d_bioq, bp);
mtx_unlock(&sc->at45d_mtx);
end = bp->bio_pblkno + (bp->bio_bcount / ss);
for (block = bp->bio_pblkno; block < end; block++) {
vaddr = bp->bio_data +
(block - bp->bio_pblkno) * ss;
if (bp->bio_cmd == BIO_READ) {
tx_buf[0] = CONTINUOUS_ARRAY_READ_HF;
cmd.tx_cmd_sz = 5;
cmd.rx_cmd_sz = 5;
} else {
tx_buf[0] = PROGRAM_THROUGH_BUFFER;
cmd.tx_cmd_sz = 4;
cmd.rx_cmd_sz = 4;
}
/* FIXME: This works only on certain devices. */
tx_buf[1] = ((block >> 5) & 0xff);
tx_buf[2] = ((block << 3) & 0xf8);
tx_buf[3] = 0;
tx_buf[4] = 0;
cmd.tx_cmd = &tx_buf[0];
cmd.rx_cmd = &rx_buf[0];
cmd.tx_data = vaddr;
cmd.rx_data = vaddr;
cmd.tx_data_sz = ss;
cmd.rx_data_sz = ss;
SPIBUS_TRANSFER(device_get_parent(sc->at45d_dev),
sc->at45d_dev, &cmd);
}
biodone(bp);
}
}
This function can be split into four parts. The first determines whether at45d’s block I/O queue is empty. If so, at45d_task
sleeps; otherwise, it
acquires (and removes) the head of the queue. The second part determines whether the block-centric I/O request is a
read or a
write.
NOTE
Block-centric I/O requests are seen from the driver’s point of view. So, BIO_READ means reading from the device.
The second part also calculates the offset in bio_data (that is, the location in main memory) to read from or write to. This is crucial because each I/O operation transmits 1 block of data, not 1 byte (that is, the abovementioned offset is a multiple of 1 block).
In case you have trouble following the offset calculation, here is a brief description of each variable involved: The ss variable is the device’s sector size. The bio_pblkno variable is the first block of device memory to read from or write to, end is the last block, and block is the current block at45d_task is working with.
The third part sets up the spi_command structure and initiates the data transfer. Finally, the fourth part
tells the kernel that the block-centric I/O request bp has been serviced.
Block I/O Completion Routines
As seen in the previous section, after processing a block-centric I/O request, you must inform the kernel with:
#include <sys/bio.h>
void
biodone(struct bio *bp);
void
biofinish(struct bio *bp, struct devstat *stat, int error);
The biodone function tells the kernel that the block-centric I/O request bp has been serviced successfully.
The biofinish function is identical to biodone, except that it sets bp to return the error code error (that is to say, biofinish can tell the kernel that bp was invalid, successful, or unsuccessful).
NOTE
Typically, the stat argument is set to NULL. For more on struct devstat, see the devstat(9) manual page (though it’s somewhat antiquated).
Conclusion
This chapter focused on implementing and understanding storage drivers. You learned how to manage both disk and bio structures and studied a real-world storage driver.
Chapter 14. Common Access Method
Common Access Method (CAM) is an ANSI standard. Although primarily used for SCSI, CAM is a method for separating host bus adapter (HBA) drivers from storage drivers. HBAs are devices (that is, a card or integrated circuit) that connect the host to other devices. For example, USB HBAs allow the host to communicate with USB devices.
By separating HBA drivers from storage drivers, CAM reduces the complexity of individual drivers. Furthermore, this separation enables storage drivers (such as CD-ROM and tape drivers) to control their devices on anyI/O bus (such as IDE, SCSI, and so on) as long as an appropriate HBA driver is available. In other words, CAM modularizes HBA and storage drivers.
In CAM vernacular, HBA drivers are known as software interface modules (SIMs), and storage drivers are known as peripheral modules. Incidentally, the storage drivers discussed in Chapter 13 are not under CAM. To avoid confusion, I’ll refer to storage drivers under CAM as peripheral modules from now on.
The FreeBSD CAM implementation contains SIMs for SCSI Parallel Interface (SPI), Fibre Channel (FC), USB Mass Storage (UMASS), FireWire (IEEE 1394), and Advanced Technology Attachment Packet Interface (ATAPI). It has peripheral modules for disks (da), CD-ROMs (cd), tapes (sa), tape changers (ch), processor type devices (pt), and enclosure services (ses). Also, it provides a “pass-through” interface that allows user applications to send I/O requests directly to any CAM-controlled device (McKusick and Neville-Neil, 2005). This interface is, fundamentally, a SIM (as you’ll soon see).
In this chapter you’ll learn how to manage HBAs using CAM. Of course, before you can do that, you’ll need to know how CAM interfaces peripheral modules with SIMs. Because peripheral modules are just storage drivers with some CAM-related code, they’re only briefly discussed in this chapter.
How CAM Works
CAM is most easily understood by tracing an I/O request through it.
In Figure 14-1,[9] the kernel passes a block-centric I/O request to the da(4) peripheral module. As you would expect, this causes da(4)’s strategy routine (dastrategy) to execute.
Figure 14-1. The path of an I/O request through the CAM subsystem
The dastrategy function gets the block-centric I/O request and inserts it on the appropriate block I/O queue via bioq_disksort. It concludes by calling the xpt_schedule function. (The da(4) peripheral module supports every SCSI disk. Consequently, it manages multiple block I/O queues.)
The xpt_schedule function, by and large, schedules a peripheral module to receive a CAM Control Block (CCB). A CCB describes the location (or path) to the target device (that is, the intended recipient of the I/O request). The xpt_schedule function concludes by calling the xpt_run_dev_allocq function. (Note that my definition of CCB isn’t complete. I’ll expand this definition throughout this chapter.)
The xpt_run_dev_allocq function allocates and constructs a CCB. Afterward, it calls the peripheral module’s start routine (dastart in this example).
The dastart function takes the first block-centric I/O request off the appropriate block I/O queue and converts that into a SCSI command. This command is stored in the CCB constructed by xpt_run_dev_allocq. The dastart function ends by calling the xpt_action function.
The xpt_action function uses the path information stored in the CCB to determine the SIM to which the SCSI command should be sent. It then calls that SIM’s action routine (ahc_action in this case).
NOTE
A SIM was pseudo-randomly chosen for this example, so the fact that it’s ahc(4) is irrelevant.
The ahc_action function gets the CCB and translates the SCSI command into a hardware-specific command. This hardware-specific command is then passed to the device to be executed. Afterward, ahc_action returns back to the caller of dastrategy.
As soon as the device completes the hardware-specific command (which may involve DMA), it sends an interrupt, which causes ahc(4)’s done routine (ahc_done) to execute.
The ahc_done function appends the completion status (that is, successful or unsuccessful) to the CCB related to the completed hardware-specific command. It then calls the xpt_done function.
The xpt_done function gets the completed CCB and sets it up for processing by camisr, the CAM interrupt service routine. It then schedules camisr to run.
Loosely speaking, the camisr function carries out some “housekeeping” on the CCB. It ends by calling the CCB’s specified completion function (dadone in this example).
The dadone function, more or less, tells the kernel that the block-centric I/O request has been serviced by calling biodone.
[9] Figure 14-1 is adapted from The Design and Implementation of the FreeBSD Operating System by Marshall Kirk McKusick and George V. Neville-Neil (Addison-Wesley, 2005).
A (Somewhat) Simple Example
Now that you’re familiar with the CAM subsystem, let’s work through some code. After that, I’ll detail the different CAM-related functions.
Example 14-1 is a SIM for a pseudo-HBA (taken from the mfi(4) code base).
NOTE
Take a quick look at this code and try to discern some of its structure. If you don’t understand all of it, don’t worry; an explanation follows.
Example 14-1. mfi_cam.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/selinfo.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <machine/md_var.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/mfi/mfireg.h>
#include <dev/mfi/mfi_ioctl.h>
#include <dev/mfi/mfivar.h>
#define ccb_mfip_ptr sim_priv.entries[0].ptr
struct mfip {
device_t dev;
struct mfi_softc *mfi;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
};
static devclass_t mfip_devclass;
static void mfip_action(struct cam_sim *, union ccb *);
static void mfip_poll(struct cam_sim *);
static struct mfi_command * mfip_start(void *);
static void mfip_done(struct mfi_command *);
static int mfip_probe(device_t dev)
{
device_set_desc(dev, "SCSI pass-through bus");
return (BUS_PROBE_SPECIFIC);
}
static int
mfip_attach(device_t dev)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
mfi = device_get_softc(device_get_parent(dev));
sc->dev = dev;
sc->mfi = mfi;
mfi->mfi_cam_start = mfip_start;
if ((sc->devq = cam_simq_alloc(MFI_SCSI_MAX_CMDS)) == NULL)
return (ENOMEM);
sc->sim = cam_sim_alloc(mfip_action, mfip_poll, "mfi", sc,
device_get_unit(dev), &mfi->mfi_io_lock, 1, MFI_SCSI_MAX_CMDS,
sc->devq);
if (sc->sim == NULL) {
cam_simq_free(sc->devq);
device_printf(dev, "cannot allocate CAM SIM\n");
return (EINVAL);
}
mtx_lock(&mfi->mfi_io_lock);
if (xpt_bus_register(sc->sim, dev, 0) != 0) {
device_printf(dev,
"cannot register SCSI pass-through bus\n");
cam_sim_free(sc->sim, FALSE);
cam_simq_free(sc->devq);
mtx_unlock(&mfi->mfi_io_lock);
return (EINVAL);
}
mtx_unlock(&mfi->mfi_io_lock);
return (0);
}
static int
mfip_detach(device_t dev)
{
struct mfip *sc;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
if (sc->sim != NULL) {
mtx_lock(&sc->mfi->mfi_io_lock);
xpt_bus_deregister(cam_sim_path(sc->sim));
cam_sim_free(sc->sim, FALSE);
mtx_unlock(&sc->mfi->mfi_io_lock);
}
if (sc->devq != NULL)
cam_simq_free(sc->devq);
return (0);
}
static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = cam_sim_softc(sim);
mfi = sc->mfi;
mtx_assert(&mfi->mfi_io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi;
cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE | PI_TAG_ABLE | PI_WIDE_16;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
cpi->max_target = MFI_SCSI_MAX_TARGETS;
cpi->max_lun = MFI_SCSI_MAX_LUNS;
cpi->initiator_id = MFI_SCSI_INITIATOR_ID;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_RESET_DEV:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings_sas *sas;
ccb->cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_2;
ccb->cts.transport = XPORT_SAS;
ccb->cts.transport_version = 0;
sas = &ccb->cts.xport_specific.sas;
sas->valid &= ˜CTS_SAS_VALID_SPEED;
sas->bitrate = 150000;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
case XPT_SCSI_IO:
{
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
ccb_h->status = CAM_REQ_INPROG;
if (csio->cdb_len > MFI_SCSI_MAX_CDB_LEN) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (ccb_h->flags & CAM_DATA_PHYS) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
if (ccb_h->flags & CAM_SCATTER_VALID) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
}
ccb_h->ccb_mfip_ptr = sc;
TAILQ_INSERT_TAIL(&mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
mfi_startio(mfi);
return;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void
mfip_poll(struct cam_sim *sim)
{
return;
}
static struct mfi_command *
mfip_start(void *data)
{
union ccb *ccb = data;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
struct mfip *sc;
struct mfi_command *cm;
struct mfi_pass_frame *pt;
sc = ccb_h->ccb_mfip_ptr;
if ((cm = mfi_dequeue_free(sc->mfi)) == NULL)
return (NULL);
pt = &cm->cm_frame->pass;
pt->header.cmd = MFI_CMD_PD_SCSI_IO;
pt->header.cmd_status = 0;
pt->header.scsi_status = 0;
pt->header.target_id = ccb_h->target_id;
pt->header.lun_id = ccb_h->target_lun;
pt->header.flags = 0;
pt->header.timeout = 0;
pt->header.data_len = csio->dxfer_len;
pt->header.sense_len = MFI_SENSE_LEN;
pt->header.cdb_len = csio->cdb_len;
pt->sense_addr_lo = cm->cm_sense_busaddr;
pt->sense_addr_hi = 0;
if (ccb_h->flags & CAM_CDB_POINTER)
bcopy(csio->cdb_io.cdb_ptr, &pt->cdb[0], csio->cdb_len);
else
bcopy(csio->cdb_io.cdb_bytes, &pt->cdb[0], csio->cdb_len);
cm->cm_complete = mfip_done;
cm->cm_private = ccb;
cm->cm_sg = &pt->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_data = csio->data_ptr;
cm->cm_len = csio->dxfer_len;
switch (ccb_h->flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
cm->cm_flags = MFI_CMD_DATAIN;
break;
case CAM_DIR_OUT:
cm->cm_flags = MFI_CMD_DATAOUT;
break;
case CAM_DIR_NONE:
default:
cm->cm_data = NULL;
cm->cm_len = 0;
cm->cm_flags = 0;
break;
}
TAILQ_REMOVE(&sc->mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
return (cm);
}
static void
mfip_done(struct mfi_command *cm)
{
union ccb *ccb = cm->cm_private;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
struct mfip *sc;
struct mfi_pass_frame *pt;
sc = ccb_h->ccb_mfip_ptr;
pt = &cm->cm_frame->pass;
switch (pt->header.cmd_status) {
case MFI_STAT_OK:
{
uint8_t command, device;
ccb_h->status = CAM_REQ_CMP;
csio->scsi_status = pt->header.scsi_status;
if (ccb_h->flags & CAM_CDB_POINTER)
command = ccb->csio.cdb_io.cdb_ptr[0];
else
command = ccb->csio.cdb_io.cdb_bytes[0];
if (command == INQUIRY) {
device = ccb->csio.data_ptr[0] & 0x1f;
if ((device == T_DIRECT) || (device == T_PROCESSOR))
csio->data_ptr[0] =
(device & 0xe0) | T_NODEVICE;
}
break;
}
case MFI_STAT_SCSI_DONE_WITH_ERROR:
{
int sense_len;
ccb_h->status = CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
csio->scsi_status = pt->header.scsi_status;
sense_len = min(pt->header.sense_len,
sizeof(struct scsi_sense_data));
bzero(&csio->sense_data, sizeof(struct scsi_sense_data));
bcopy(&cm->cm_sense->data[0], &csio->sense_data, sense_len);
break;
}
case MFI_STAT_DEVICE_NOT_FOUND:
ccb_h->status = CAM_SEL_TIMEOUT;
break;
case MFI_STAT_SCSI_IO_FAILED:
ccb_h->status = CAM_REQ_CMP_ERR;
csio->scsi_status = pt->header.scsi_status;
break;
default:
ccb_h->status = CAM_REQ_CMP_ERR;
csio->scsi_status = pt->header.scsi_status;
break;
}
mfi_release_command(cm);
xpt_done(ccb);
}
static device_method_t mfip_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, mfip_probe),
DEVMETHOD(device_attach, mfip_attach),
DEVMETHOD(device_detach, mfip_detach),
{ 0, 0 }
};
static driver_t mfip_driver = {
"mfip",
mfip_methods,
sizeof(struct mfip)
};
DRIVER_MODULE(mfip, mfi, mfip_driver, mfip_devclass, 0, 0);
MODULE_DEPEND(mfip, cam, 1, 1, 1);
MODULE_DEPEND(mfip, mfi, 1, 1, 1);
The following sections describe the functions defined in Example 14-1 roughly in the order they would execute.
As an aside, because mfip_probe is extremely rudimentary and because we’ve examined similar code elsewhere, I’ll omit discussing it.
mfip_attach Function
The mfip_attach function is the device_attach implementation for this driver. Here is its function definition (again):
static int
mfip_attach(device_t dev)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
mfi = device_get_softc(device_get_parent(dev));
sc->dev = dev;
sc->mfi = mfi;
mfi->mfi_cam_start = mfip_start;
if ((sc->devq =cam_simq_alloc(MFI_SCSI_MAX_CMDS)) == NULL)
return (ENOMEM);
sc->sim =cam_sim_alloc(mfip_action, mfip_poll, "mfi", sc,
device_get_unit(dev), &mfi->mfi_io_lock, 1, MFI_SCSI_MAX_CMDS,
sc->devq);
if (sc->sim == NULL) {
cam_simq_free(sc->devq);
device_printf(dev, "cannot allocate CAM SIM\n");
return (EINVAL);
}
mtx_lock(&mfi->mfi_io_lock);
if (xpt_bus_register(sc->sim, dev, 0) != 0) {
device_printf(dev,
"cannot register SCSI pass-through bus\n");
cam_sim_free(sc->sim, FALSE);
cam_simq_free(sc->devq);
mtx_unlock(&mfi->mfi_io_lock);
return (EINVAL);
}
mtx_unlock(&mfi->mfi_io_lock);
return (0);
}
This function first calls cam_simq_alloc to allocate a SIM queue. Loosely speaking, SIM queues ensure that HBAs cannot be swamped by I/O requests. See, I/O requests from peripheral modules are housed on SIM queues to await service. When a queue becomes full, any additional requests are rejected.
Next, cam_sim_alloc is called to allocate a SIM (or bus) descriptor. Note that if an HBA implements multiple buses (or channels), each bus requires its own descriptor.
Finally, xpt_bus_register takes the descriptor returned by cam_sim_alloc and registers it with the CAM subsystem.
mfip_detach Function
The mfip_detach function is the device_detach implementation for this driver. Here is its function definition (again):
static int
mfip_detach(device_t dev)
{
struct mfip *sc;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
if (sc->sim != NULL) {
mtx_lock(&sc->mfi->mfi_io_lock);
xpt_bus_deregister(cam_sim_path(sc->sim));
cam_sim_free(sc->sim, FALSE);
mtx_unlock(&sc->mfi->mfi_io_lock);
}
if (sc->devq != NULL)
cam_simq_free(sc->devq);
return (0);
}
This function starts by deregistering and
freeing its SIM descriptor. Afterward, its SIM queue is
freed.
mfip_action Function
The mfip_action function is defined in mfip_attach as the action routine (for verification, see the first argument to cam_sim_alloc). Action routines are executed every time a SIM receives a CCB.
NOTE
Recall that a CCB houses an I/O request (or command) to perform along with the identity of the target device (that is, the intended recipient of the I/O request).
Fundamentally, mfip_action is akin to the ahc_action function shown in Figure 14-1. Here is its function definition (again):
static void
mfip_action(struct cam_sim *sim,union ccb *ccb)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = cam_sim_softc(sim);
mfi = sc->mfi;
mtx_assert(&mfi->mfi_io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi;
cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE | PI_TAG_ABLE | PI_WIDE_16;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
cpi->max_target = MFI_SCSI_MAX_TARGETS;
cpi->max_lun = MFI_SCSI_MAX_LUNS;
cpi->initiator_id = MFI_SCSI_INITIATOR_ID;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_RESET_DEV:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings_sas *sas;
ccb->cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_2;
ccb->cts.transport = XPORT_SAS;
ccb->cts.transport_version = 0;
sas = &ccb->cts.xport_specific.sas;
sas->valid &= ˜CTS_SAS_VALID_SPEED;
sas->bitrate = 150000;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
case XPT_SCSI_IO:
{
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
ccb_h->status = CAM_REQ_INPROG;
if (csio->cdb_len > MFI_SCSI_MAX_CDB_LEN) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (ccb_h->flags & CAM_DATA_PHYS) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
if (ccb_h->flags & CAM_SCATTER_VALID) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
}
ccb_h->ccb_mfip_ptr = sc;
TAILQ_INSERT_TAIL(&mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
mfi_startio(mfi);
return;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
Most action routines simply take a CCB and
branch according to the ccb_h.func_code variable, which denotes the I/O operation to perform.
For now, I’m going to focus on the structure of mfip_action and avoid its specifics. An in-depth explanation of mfip_action appears in Action Routines in xpt_bus_register Function.
As you can see, this function can perform one of six I/O operations: it can return the SIM and HBA properties, reset a
bus or
device,
get or
set the transfer settings, or
issue a SCSI command to a device.
mfip_poll Function
The mfip_poll function is defined in mfip_attach as the poll routine (for verification, see the second argument to cam_sim_alloc). Customarily, poll routines wrap a SIM’s interrupt handler. See, when interrupts are unavailable (for example, after a kernel panic) the CAM subsystem will use poll routines to run its interrupt handlers.
The following is the function definition for mfip_poll (again):
static void
mfip_poll(struct cam_sim *sim)
{
return;
}
Because this SIM does not implement an interrupt handler, mfip_poll just returns.
mfip_start Function
The mfip_start function transforms a SCSI command into a hardware-specific command. This function is called exclusively by mfi_startio.
NOTE
The mfi_startio function is defined in mfi.c (which is not described in this book). mfi_startio is called by mfip_action (described in mfip_action Function in mfip_action Function) to issue a SCSI command to a device.
Here is the function definition for mfip_start (again):
static struct mfi_command *
mfip_start(void *data)
{
union ccb *ccb = data;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
struct mfip *sc;
struct mfi_command *cm;
struct mfi_pass_frame *pt;
sc = ccb_h->ccb_mfip_ptr;
if ((cm = mfi_dequeue_free(sc->mfi)) == NULL)
return (NULL);
pt = &cm->cm_frame->pass;
pt->header.cmd = MFI_CMD_PD_SCSI_IO;
pt->header.cmd_status = 0;
pt->header.scsi_status = 0;
pt->header.target_id = ccb_h->target_id;
pt->header.lun_id = ccb_h->target_lun;
pt->header.flags = 0;
pt->header.timeout = 0;
pt->header.data_len = csio->dxfer_len;
pt->header.sense_len = MFI_SENSE_LEN;
pt->header.cdb_len = csio->cdb_len;
pt->sense_addr_lo = cm->cm_sense_busaddr;
pt->sense_addr_hi = 0;
if (ccb_h->flags & CAM_CDB_POINTER)
bcopy(csio->cdb_io.cdb_ptr, &pt->cdb[0], csio->cdb_len);
else
bcopy(csio->cdb_io.cdb_bytes, &pt->cdb[0], csio->cdb_len);
cm->cm_complete =mfip_done;
cm->cm_private = ccb;
cm->cm_sg = &pt->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_data = csio->data_ptr;
cm->cm_len = csio->dxfer_len;
switch (ccb_h->flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
cm->cm_flags = MFI_CMD_DATAIN;
break;
case CAM_DIR_OUT:
cm->cm_flags = MFI_CMD_DATAOUT;
break;
case CAM_DIR_NONE:
default:
cm->cm_data = NULL;
cm->cm_len = 0;
cm->cm_flags = 0;
break;
}
TAILQ_REMOVE(&sc->mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
return (cm);
}
As you can see, this function is fairly straightforward—it’s just a bunch of assignments. Until we’ve examined struct ccb_scsiio and struct ccb_hdr, which occurs in XPT_SCSI_IO in XPT_SCSI_IO, I’m going to postpone walking through this function.
Note that mfip_done is set as the done routine for the hardware-specific command.
mfip_done Function
As implied previously, the mfip_done function is the done routine for this SIM. It is executed by mfi_intr immediately after a device completes a hardware-specific command.
NOTE
The mfi_intr function is mfi(4)’s interrupt handler. It is defined in mfi.c.
Fundamentally, mfip_done is akin to the ahc_done function shown in Figure 14-1. Here is its function definition (again):
static void
mfip_done(struct mfi_command *cm)
{
union ccb *ccb = cm->cm_private;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
struct mfip *sc;
struct mfi_pass_frame *pt;
sc = ccb_h->ccb_mfip_ptr;
pt = &cm->cm_frame->pass;
switch (pt->header.cmd_status) {
case MFI_STAT_OK:
{
uint8_t command, device;
ccb_h->status = CAM_REQ_CMP;
csio->scsi_status = pt->header.scsi_status;
if (ccb_h->flags & CAM_CDB_POINTER)
command = ccb->csio.cdb_io.cdb_ptr[0];
else
command = ccb->csio.cdb_io.cdb_bytes[0];
if (command == INQUIRY) {
device = ccb->csio.data_ptr[0] & 0x1f;
if ((device == T_DIRECT) || (device == T_PROCESSOR))
csio->data_ptr[0] =
(device & 0xe0) | T_NODEVICE;
}
break;
}
case MFI_STAT_SCSI_DONE_WITH_ERROR:
{
int sense_len;
ccb_h->status = CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
csio->scsi_status = pt->header.scsi_status;
sense_len = min(pt->header.sense_len,
sizeof(struct scsi_sense_data));
bzero(&csio->sense_data, sizeof(struct scsi_sense_data));
bcopy(&cm->cm_sense->data[0], &csio->sense_data, sense_len);
break;
}
case MFI_STAT_DEVICE_NOT_FOUND:
ccb_h->status = CAM_SEL_TIMEOUT;
break;
case MFI_STAT_SCSI_IO_FAILED:
ccb_h->status = CAM_REQ_CMP_ERR;
csio->scsi_status = pt->header.scsi_status;
break;
default:
ccb_h->status = CAM_REQ_CMP_ERR;
csio->scsi_status = pt->header.scsi_status;
break;
}
mfi_release_command(cm);
xpt_done(ccb);
}
Commonly, done routines take a hardware-specific command and append the completion status (that is, successful or unsuccessful) to its associated
CCB. Once this is done,
xpt_done is called to process the completed CCB.
NOTE
The mfi(4) code base uses DMA to acquire the completion status from a device.
Now that you’re familiar with Example 14-1, I’ll expound on the different functions, structures, and constructs it employs.
SIM Registration Routines
As alluded to previously, registering a SIM with the CAM subsystem involves three functions:
cam_simq_alloc
cam_sim_alloc
xpt_bus_register
cam_simq_alloc Function
The cam_simq_alloc function allocates a SIM queue.
#include <cam/cam_sim.h>
#include <cam/cam_queue.h>
struct cam_devq *
cam_simq_alloc(u_int32_t max_sim_transactions);
Here, max_sim_transactions denotes the size of the SIM queue. Normally, it is calculated like so:
max_sim_transactions = number_of_supported_devices *
number_of_commands_that_can_be_concurrently_processed_per_device;
cam_sim_alloc Function
The cam_sim_alloc function allocates a SIM (or bus) descriptor.
NOTE
If an HBA implements multiple buses (or channels), each bus requires its own descriptor.
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <cam/cam_sim.h>
#include <cam/cam_queue.h>
struct cam_sim *
cam_sim_alloc(sim_action_func sim_action, sim_poll_func sim_poll,
const char *sim_name, void *softc, u_int32_t unit, struct mtx *mtx,
int max_dev_transactions, int max_tagged_dev_transactions,
struct cam_devq *queue);
Because the first six arguments to cam_sim_alloc are fairly obvious—they’re exactly what their name implies—I’ll omit discussing them.
The max_dev_transactions argument specifies the maximum number of concurrent transactions per device. This argument applies only to devices that do not support SCSI Tagged Command Queuing (SCSI TCQ). Generally, max_dev_transactions is always set to 1.
The max_tagged_dev_transactions argument is identical to max_dev_transactions, but it applies only to devices that support SCSI TCQ.
The queue argument expects a pointer to a SIM queue (that is, cam_simq_alloc’s return value).
xpt_bus_register Function
The xpt_bus_register function registers a SIM with the CAM subsystem.
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
int32_t
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
Here, sim specifies the SIM to register (that is, cam_sim_alloc’s return value) and bus denotes its bus number. The parent argument is currently unused.
NOTE
If an HBA implements multiple buses (or channels), each bus needs its own unique bus number.
Action Routines
As mentioned previously, action routines are executed every time a SIM receives a CCB. You can think of action routines like the “main function” for a SIM.
Here is the function prototype for an action routine (taken from the <cam/cam_sim.h> header):
typedef void (*sim_action_func)(struct cam_sim *sim, union ccb *ccb);
Recall that action routines switch according to the ccb->ccb_h.func_code variable, which contains a constant that symbolizes the I/O operation to perform. For the rest of this chapter, I’ll detail the most common constants/operations.
NOTE
For the complete list of constants/operations, see the xpt_opcode enumeration defined in the <cam/cam_ccb.h> header.
XPT_PATH_INQ
The XPT_PATH_INQ constant specifies a path inquiry operation, which returns the SIM and HBA properties. Action routines that are passed XPT_PATH_INQ simply fill in a ccb_pathinq structure and then return.
struct ccb_pathinq is defined in the <cam/cam_ccb.h> header as follows:
struct ccb_pathinq {
struct ccb_hdr ccb_h; /* Header information fields. */
u_int8_t version_num; /* Version number. */
u_int8_t hba_inquiry; /* Imitate INQ byte 7. */
u_int8_t target_sprt; /* Target mode support flags. */
u_int8_t hba_misc; /* Miscellaneous HBA features. */
u_int16_t hba_eng_cnt; /* HBA engine count. */
u_int8_t vuhba_flags[VUHBALEN]; /* Vendor unique capabilities. */
u_int32_t max_target; /* Maximum supported targets. */
u_int32_t max_lun; /* Maximum supported LUN. */
u_int32_t async_flags; /* Asynchronous handler flags. */
path_id_t hpath_id; /* Highest path ID in the subsystem. */
target_id_t initiator_id; /* HBA ID on the bus. */
char sim_vid[SIM_IDLEN]; /* SIM vendor ID. */
char hba_vid[HBA_IDLEN]; /* HBA vendor ID. */
char dev_name[DEV_IDLEN]; /* SIM device name. */
u_int32_t unit_number; /* SIM unit number. */
u_int32_t bus_id; /* SIM bus ID. */
u_int32_t base_transfer_speed; /* Base bus speed in KB/sec. */
cam_proto protocol; /* CAM protocol. */
u_int protocol_version; /* CAM protocol version. */
cam_xport transport; /* Transport (e.g., FC, USB). */
u_int transport_version; /* Transport version. */
union {
struct ccb_pathinq_settings_spi spi;
struct ccb_pathinq_settings_fc fc;
struct ccb_pathinq_settings_sas sas;
char ccb_pathinq_settings_opaque[PATHINQ_SETTINGS_SIZE];
} xport_specific;
u_int maxio; /* Maximum supported I/O size (in bytes). */
};
Here is an example XPT_PATH_INQ operation (taken from Example 14-1):
static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = cam_sim_softc(sim);
mfi = sc->mfi;
mtx_assert(&mfi->mfi_io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi;
cpi =&ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE | PI_TAG_ABLE | PI_WIDE_16;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
cpi->max_target = MFI_SCSI_MAX_TARGETS;
cpi->max_lun = MFI_SCSI_MAX_LUNS;
cpi->initiator_id = MFI_SCSI_INITIATOR_ID;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->ccb_h.status =
CAM_REQ_CMP;
break;
}
...
default:
ccb->ccb_h.status =
CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
Notice that the ccb_pathinq structure is provided by the CCB. Moreover, notice that the
success or
failure of any operation is returned in
ccb_h.status.
XPT_RESET_BUS
The XPT_RESET_BUS constant specifies a bus reset operation. As you’d expect, XPT_RESET_BUS is horrifically hardware specific. Here is a minimalist implementation (taken from Example 14-1):
static void
mfip_action(struct cam_sim*sim, union ccb *ccb)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = cam_sim_softc(sim);
mfi = sc->mfi;
mtx_assert(&mfi->mfi_io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
...
case XPT_RESET_BUS:
ccb->ccb_h.status =CAM_REQ_CMP;
break;
...
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
Here, sim is the bus to reset. Unsurprisingly, minimalist implementations forgo any “real” work and simply return
success.
Many SIMs use a minimalist implementation. A “proper” implementation is out of the scope of this book.
XPT_GET_TRAN_SETTINGS
The XPT_GET_TRAN_SETTINGS constant denotes an I/O operation that returns the current transfer settings or the user-defined upper limits. Action routines that are passed XPT_GET_TRAN_SETTINGS simply fill in a ccb_trans_settings structure and then return.
struct ccb_trans_settings is defined in <cam/cam_ccb.h> like so:
typedef enum {
CTS_TYPE_CURRENT_SETTINGS, /* Current transfer settings. */
CTS_TYPE_USER_SETTINGS /* User-defined upper limits. */
} cts_type;
struct ccb_trans_settings {
struct ccb_hdr ccb_h; /* Header information fields. */
cts_type type; /* Current or user settings? */
cam_proto protocol; /* CAM protocol. */
u_int protocol_version; /* CAM protocol version. */
cam_xport transport; /* Transport (e.g., FC, USB). */
u_int transport_version; /* Transport version. */
union {
u_int valid; /* Which field(s) to honor. */
struct ccb_trans_settings_scsi scsi;
} proto_specific;
union {
u_int valid; /* Which field(s) to honor. */
struct ccb_trans_settings_spi spi;
struct ccb_trans_settings_fc fc;
struct ccb_trans_settings_sas sas;
struct ccb_trans_settings_ata ata;
struct ccb_trans_settings_sata sata;
} xport_specific;
};
As you can see, ccb_trans_settings marshals a protocol structure and five
transport-specific structures. These structures are defined in <cam/cam_ccb.h> like so:
struct ccb_trans_settings_scsi {
u_int valid; /* Which field(s) to honor. */
#define CTS_SCSI_VALID_TQ 0x01
u_int flags;
#define CTS_SCSI_FLAGS_TAG_ENB 0x01
};
struct ccb_trans_settings_spi {
u_int valid; /* Which field(s) to honor. */
#define CTS_SPI_VALID_SYNC_RATE 0x01
#define CTS_SPI_VALID_SYNC_OFFSET 0x02
#define CTS_SPI_VALID_BUS_WIDTH 0x04
#define CTS_SPI_VALID_DISC 0x08
#define CTS_SPI_VALID_PPR_OPTIONS 0x10
u_int flags;
#define CTS_SPI_FLAGS_DISC_ENB 0x01
u_int sync_period; /* Sync period. */
u_int sync_offset; /* Sync offset. */
u_int bus_width; /* Bus width. */
u_int ppr_options; /* Parallel protocol request. */
};
struct ccb_trans_settings_fc {
u_int valid; /* Which field(s) to honor. */
#define CTS_FC_VALID_WWNN 0x8000
#define CTS_FC_VALID_WWPN 0x4000
#define CTS_FC_VALID_PORT 0x2000
#define CTS_FC_VALID_SPEED 0x1000
u_int64_t wwnn; /* World wide node name. */
u_int64_t wwpn; /* World wide port name. */
u_int32_t port; /* 24-bit port ID (if known). */
u_int32_t bitrate; /* Mbps. */
};
struct ccb_trans_settings_sas {
u_int valid; /* Which field(s) to honor. */
#define CTS_SAS_VALID_SPEED 0x1000
u_int32_t bitrate; /* Mbps. */
};
struct ccb_trans_settings_ata {
u_int valid; /* Which field(s) to honor. */
#define CTS_ATA_VALID_MODE 0x01
#define CTS_ATA_VALID_BYTECOUNT 0x02
#define CTS_ATA_VALID_ATAPI 0x20
int mode; /* Mode. */
u_int bytecount; /* PIO transaction length. */
u_int atapi; /* ATAPI CDB length. */
};
struct ccb_trans_settings_sata {
u_int valid; /* Which field(s) to honor. */
#define CTS_SATA_VALID_MODE 0x01
#define CTS_SATA_VALID_BYTECOUNT 0x02
#define CTS_SATA_VALID_REVISION 0x04
#define CTS_SATA_VALID_PM 0x08
#define CTS_SATA_VALID_TAGS 0x10
#define CTS_SATA_VALID_ATAPI 0x20
#define CTS_SATA_VALID_CAPS 0x40
int mode; /* Legacy PATA mode. */
u_int bytecount; /* PIO transaction length. */
int revision; /* SATA revision. */
u_int pm_present; /* PM is present (XPT->SIM). */
u_int tags; /* Number of allowed tags. */
u_int atapi; /* ATAPI CDB length. */
u_int caps; /* Host and device SATA caps. */
#define CTS_SATA_CAPS_H 0x0000ffff
#define CTS_SATA_CAPS_H_PMREQ 0x00000001
#define CTS_SATA_CAPS_H_APST 0x00000002
#define CTS_SATA_CAPS_H_DMAAA 0x00000010
#define CTS_SATA_CAPS_D 0xffff0000
#define CTS_SATA_CAPS_D_PMREQ 0x00010000
#define CTS_SATA_CAPS_D_APST 0x00020000
};
Here is an example XPT_GET_TRAN_SETTINGS operation (taken from Example 14-1):
static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = cam_sim_softc(sim);
mfi = sc->mfi;
mtx_assert(&mfi->mfi_io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
...
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings_sas *sas;
ccb->
cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_2;
ccb->cts.transport = XPORT_SAS;
ccb->cts.transport_version = 0;
sas = &ccb->cts.xport_specific.sas;
sas->valid &= ˜CTS_SAS_VALID_SPEED;
sas->bitrate = 150000;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
...
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
Notice that the ccb_trans_settings structure is provided by the
CCB. Naturally, only the fields applicable to the HBA are filled in.
XPT_SET_TRAN_SETTINGS
As you’d expect, XPT_SET_TRAN_SETTINGS is the opposite of XPT_GET_TRAN_SETTINGS. That is, XPT_SET_TRAN_SETTINGS changes the current transfer settings based on a ccb_trans_settings structure. Unsurprisingly, not all SIMs support this operation. For example:
static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = cam_sim_softc(sim);
mfi = sc->mfi;
mtx_assert(&mfi->mfi_io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
...
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status =CAM_FUNC_NOTAVAIL;
break;
...
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
This function states that XPT_SET_TRAN_SETTINGS is not available. Note that a “proper” implementation is hardware specific and not covered in this book.
XPT_SCSI_IO
The XPT_SCSI_IO constant denotes an I/O operation that issues a SCSI command to a device. The particulars of this SCSI command are stored in two structures: ccb_scsiio and ccb_hdr.
struct ccb_scsiio is defined in <cam/cam_ccb.h> like so:
struct ccb_scsiio {
struct ccb_hdr ccb_h; /* Header information fields. */
union ccb *next_ccb; /* Next CCB to process. */
u_int8_t *req_map; /* Mapping information. */
u_int8_t *data_ptr; /* Data buffer or S/G list. */
u_int32_t dxfer_len; /* Length of data to transfer. */
/* Sense information (used if the command returns an error). */
struct scsi_sense_data sense_data;
u_int8_t sense_len; /* Sense information length. */
u_int8_t cdb_len; /* SCSI command length. */
u_int16_t sglist_cnt; /* Number of S/G segments. */
u_int8_t scsi_status; /* SCSI status (returned by device). */
u_int8_t sense_resid; /* Residual sense information length. */
u_int32_t resid; /* Residual data length. */
cdb_t cdb_io; /* SCSI command. */
u_int8_t *msg_ptr; /* Message. */
u_int16_t msg_len; /* Message length. */
u_int8_t tag_action; /* Tag action? */
/*
* tag_action should be the constant below to send a non-tagged
* transaction or one of the constants in scsi_message.h.
*/
#define CAM_TAG_ACTION_NONE 0x00
u_int tag_id; /* Tag ID (from initiator). */
u_int init_id; /* Initiator ID. */
};
struct ccb_hdr is also defined in <cam/cam_ccb.h>, like so:
struct ccb_hdr {
cam_pinfo pinfo; /* Priority scheduling. */
camq_entry xpt_links; /* Transport layer links. */
camq_entry sim_links; /* SIM layer links. */
camq_entry periph_links; /* Peripheral layer links. */
u_int32_t retry_count; /* Retry count. */
/* Pointer to peripheral module done routine. */
void (*cbfcnp)(struct cam_periph *, union ccb *);
xpt_opcode func_code; /* I/O operation to perform. */
u_int32_tstatus; /* Completion status. */
struct cam_path *path; /* Path for this CCB. */
path_id_t path_id; /* Path ID for the request. */
target_id_t target_id; /* Target device ID. */
lun_id_t target_lun; /* Target logical unit number. */
u_int32_t flags; /* CCB flags. */
ccb_ppriv_area periph_priv; /* Private use by peripheral. */
ccb_spriv_area sim_priv; /* Private use by SIM. */
u_int32_t timeout; /* Timeout value. */
/* Deprecated. Don't use! */
struct callout_handle timeout_ch;
};
struct ccb_hdr should seem familiar—it’s used to return the completion status in every I/O operation.
The following is an example XPT_SCSI_IO operation (taken from Example 14-1):
#define ccb_mfip_ptr sim_priv.entries[0].ptr
...
static void
mfip_action(struct cam_sim *sim, union ccb *ccb)
{
struct mfip *sc;
struct mfi_softc *mfi;
sc = cam_sim_softc(sim);
mfi = sc->mfi;
mtx_assert(&mfi->mfi_io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
...
case XPT_SCSI_IO:
{
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
ccb_h->status = CAM_REQ_INPROG;
if (csio->cdb_len > MFI_SCSI_MAX_CDB_LEN) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (ccb_h->flags & CAM_DATA_PHYS) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
if (ccb_h->flags & CAM_SCATTER_VALID) {
ccb_h->status = CAM_REQ_INVALID;
break;
}
}
ccb_h->ccb_mfip_ptr = sc;
TAILQ_INSERT_TAIL(&mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
mfi_startio(mfi);
return;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
This operation begins by checking that the SCSI command length is acceptable. Then it determines whether the SCSI command uses
physical addresses or
scatter/gather segments to
transfer data. If either is used, this operation
exits (as it’s received invalid arguments). Then ccb_h->ccb_mfip_ptr is
set to the software context and mfi_startio is
called.
NOTE
The mfi_startio function is what actually issues the SCSI command.
Recall from mfip_start Function in mfip_poll Function that mfi_startio calls mfip_start to transform the SCSI command into a hardware-specific command.
static struct mfi_command *
mfip_start(void *data)
{
union ccb *ccb = data;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
struct mfip *sc;
struct mfi_command *cm;
struct mfi_pass_frame *pt;
sc = ccb_h->ccb_mfip_ptr;
if ((cm = mfi_dequeue_free(sc->mfi)) == NULL)
return (NULL);
pt = &cm->cm_frame->pass;
pt->header.cmd = MFI_CMD_PD_SCSI_IO;
pt->header.cmd_status = 0;
pt->header.scsi_status = 0;
pt->header.target_id =ccb_h->target_id;
pt->header.lun_id =ccb_h->target_lun;
pt->header.flags = 0;
pt->header.timeout = 0;
pt->header.data_len = csio->dxfer_len;
pt->header.sense_len = MFI_SENSE_LEN;
pt->header.cdb_len = csio->cdb_len;
pt->sense_addr_lo = cm->cm_sense_busaddr;
pt->sense_addr_hi = 0;
if (ccb_h->flags & CAM_CDB_POINTER)
bcopy(csio->cdb_io.cdb_ptr, &pt->cdb[0],
csio->cdb_len);
else
bcopy(csio->cdb_io.cdb_bytes, &pt->cdb[0], csio->cdb_len);
cm->cm_complete = mfip_done;
cm->cm_private = ccb;
cm->cm_sg = &pt->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_data =csio->data_ptr;
cm->cm_len =csio->dxfer_len;
switch (ccb_h->flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
cm->cm_flags = MFI_CMD_DATAIN;
break;
case CAM_DIR_OUT:
cm->cm_flags = MFI_CMD_DATAOUT;
break;
case CAM_DIR_NONE:
default:
cm->cm_data = NULL;
cm->cm_len = 0;
cm->cm_flags = 0;
break;
}
TAILQ_REMOVE(&sc->mfi->mfi_cam_ccbq, ccb_h, sim_links.tqe);
return (cm);
}
Notice that struct ccb_hdr lists the target’s device ID and
logical unit number. It also lists whether the SCSI command transfers data
in,
out, or
nothing. Note that XPT_SCSI_IO operations are seen from the SIM’s point of view. Therefore, “in” means from the device, and “out” means to the device.
The ccb_scsiio structure maintains the data to transfer and its
length. It also maintains the SCSI command (through a
pointer or a
buffer) and the command’s
length.
NOTE
Once more, the hardware-specific command constructed above is issued to the target device via mfi_startio.
Recall that as soon as a device completes a hardware-specific command, it sends an interrupt, which causes the done routine (mfip_done in this case) to execute.
static void
mfip_done(struct mfi_command *cm)
{
union ccb *ccb = cm->cm_private;
struct ccb_hdr *ccb_h = &ccb->ccb_h;
struct ccb_scsiio *csio = &ccb->csio;
struct mfip *sc;
struct mfi_pass_frame *pt;
sc = ccb_h->ccb_mfip_ptr;
pt = &cm->cm_frame->pass;
switch (pt->header.cmd_status) {
case MFI_STAT_OK:
{
uint8_t command, device;
ccb_h->status = CAM_REQ_CMP;
csio->scsi_status = pt->header.scsi_status;
if (ccb_h->flags & CAM_CDB_POINTER)
command = ccb->csio.cdb_io.cdb_ptr[0];
else
command = ccb->csio.cdb_io.cdb_bytes[0];
if (command == INQUIRY) {
device = ccb->csio.data_ptr[0] & 0x1f;
if ((device == T_DIRECT) || (device == T_PROCESSOR))
csio->data_ptr[0] =
(device & 0xe0) | T_NODEVICE;
}
break;
}
case MFI_STAT_SCSI_DONE_WITH_ERROR:
{
int sense_len;
ccb_h->status = CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
csio->scsi_status = pt->header.scsi_status;
sense_len = min(pt->header.sense_len,
sizeof(struct scsi_sense_data));
bzero(&csio->sense_data, sizeof(struct scsi_sense_data));
bcopy(
&cm->cm_sense->data[0],
&csio->sense_data,
sense_len);
break;
}
case MFI_STAT_DEVICE_NOT_FOUND:
ccb_h->status = CAM_SEL_TIMEOUT;
break;
case MFI_STAT_SCSI_IO_FAILED:
ccb_h->status = CAM_REQ_CMP_ERR;
csio->scsi_status = pt->header.scsi_status;
break;
default:
ccb_h->status = CAM_REQ_CMP_ERR;
csio->scsi_status = pt->header.scsi_status;
break;
}
mfi_release_command(cm);
xpt_done(ccb);
}
Notice that if the hardware-specific command returns an error, the
error information (or sense data) is
copied to the ccb_scsiio structure’s
sense_data field.
At this point in the game, the unexplained parts of this function should be obvious.
XPT_RESET_DEV
The XPT_RESET_DEV constant specifies a device reset operation. Unsurprisingly, XPT_RESET_DEV is fairly hardware specific. Here is a simple XPT_RESET_DEV operation (taken from bt.c):
NOTE
The bt.c source file is part of the bt(4) code base.
static void
btaction(struct cam_sim *sim, union ccb *ccb)
{
struct bt_softc *bt;
bt = (struct bt_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
case XPT_RESET_DEV:
/* FALLTHROUGH */
case XPT_SCSI_IO:
{
...
Given that a hardware-specific command must be issued to reset this device, XPT_RESET_DEV simply cascades into XPT_SCSI_IO.
While not shown here, it should be stressed that all operations conclude by appending their completion status to their CCB and then calling xpt_done(ccb).
Conclusion
This chapter concentrated heavily on HBA drivers, or SIMs, because they’re the most commonly written CAM-related driver. Of course, there’s more to CAM than what’s been shown here. You could conceivably write an entire book on CAM!
Chapter 15. USB Drivers
Universal Serial Bus (USB) is a connection protocol between a host controller (such as a personal computer) and a peripheral device. It was designed to replace a wide range of slow buses—the parallel port, serial port, and PS/2 connector—with a single bus that all devices could connect to (Corbet et al., 2005).
As described in the official USB documentation, available at http://www.usb.org/developers/, USB devices are hideously complex. Fortunately, FreeBSD provides a USB module to handle most of the complexity. This chapter describes the interactions between the USB module and drivers. But first, some background on USB devices is needed.
About USB Devices
Communication between a USB host controller and a USB device occurs through a pipe (Orwick and Smith, 2007). A pipe connects the host controller to an endpoint on a device. USB devices can have up to 32 endpoints. Each endpoint performs a specific communication-related operation for a device, such as receiving commands or transferring data. An endpoint can be one of four types:
Control
Interrupt
Bulk
Isochronous
Control endpoints are used to send and receive information of a control nature (Oney, 2003). They are commonly used for configuring the device, issuing device commands, retrieving device information, and so on. Control transactions are guaranteed to succeed by the USB protocol. All USB devices have a control endpoint named endpoint 0.
Interrupt endpoints transfer small amounts of data at a fixed rate. See, USB devices cannot interrupt their host in the traditional sense—they don’t have an asynchronous interrupt. Instead, USB devices provide interrupt endpoints, which are polled periodically. These endpoints are the main transport method for USB keyboards and mice (Corbet et al., 2005). Interrupt transactions are guaranteed to succeed by the USB protocol.
Bulk endpoints transfer large amounts of data. Bulk transactions are lossless. However, they are not guaranteed by the USB protocol to complete in a specific amount of time. Bulk endpoints are common on printers, mass storage devices, and network devices.
Isochronous endpoints periodically transfer large amounts of data. Isochronous transactions can be lossy. As such, these endpoints are used in devices that can handle data loss but rely on keeping a constant stream of data flowing, such as audio and video devices (Corbet et al., 2005).
More About USB Devices
The endpoints on a USB device are grouped into interfaces. For example, a USB speaker might define one group of endpoints as the interface for the buttons and another group of endpoints as the interface for the audio stream.
All interfaces have one or more alternate settings. An alternate setting defines the parameters of the interface. For example, a lossy audio stream interface may have several alternate settings that provide increasing levels of audio quality at the cost of additional bandwidth. Naturally, only one alternate setting can be active at a time.
NOTE
The term “alternate setting” is kind of a misnomer, as the default interface setting is the first alternate setting.
Figure 15-1 depicts the relationship between endpoints, interfaces, and alternate settings.[10]
Figure 15-1. An example USB device layout
As you can see, an endpoint cannot be shared among interfaces, but it can be used in multiple alternate settings within one interface. Also, each alternate setting can have a different number of endpoints. Note that endpoint 0, the default control endpoint, is not part of any interface.
A group of interfaces is known as a device configuration, or simply a configuration.
[10] Figure 15-1 is adapted from Developing Drivers with the Windows Driver Foundation by Penny Orwick and Guy Smith (Microsoft Press, 2007).
USB Configuration Structures
In FreeBSD, usb_config structures are used to find and communicate with individual endpoints. struct usb_config is defined in the <dev/usb/usbdi.h> header as follows:
struct usb_config {
/* USB Module Private Data */
enum usb_hc_mode usb_mode;
/* Mandatory Fields */
uint8_t type;
uint8_t endpoint;
uint8_t direction;
usb_callback_t *callback;
usb_frlength_t bufsize;
/* Optional Fields */
usb_timeout_t timeout;
usb_timeout_t interval;
usb_frcount_t frames;
uint8_t ep_index;
uint8_t if_index;
/* USB Transfer Flags */
struct usb_xfer_flags flags;
};
Many of the fields in struct usb_config must be initialized by a USB driver. These fields are described in the following sections.
Mandatory Fields
The type field specifies the endpoint type. Valid values for this field are UE_CONTROL, UE_BULK, UE_INTERRUPT, and UE_ISOCHRONOUS.
The endpoint field specifies the endpoint number. A value of UE_ADDR_ANY suggests that the endpoint number is unimportant—the other fields are used to find the correct endpoint.
The direction field specifies the endpoint direction. Valid values for this field are shown in Table 15-1.
Table 15-1. USB Endpoint Direction Symbolic Constants
Constant | Description |
---|---|
UE_DIR_IN | Stipulates that the endpoint be an IN endpoint; that is, the endpoint transfers data to the host from the device |
UE_DIR_OUT | Stipulates that the endpoint be an OUT endpoint; that is, the endpoint transfers data to the device from the host |
UE_DIR_ANY | Stipulates that the endpoint support bidirectional transfers |
NOTE
The direction of an endpoint is from the host’s perspective.
The callback field denotes a mandatory callback function. This function is executed before and after the endpoint specified by type, endpoint, and direction transfers data. We’ll discuss this function further in USB Transfers (in FreeBSD) in USB Transfers (in FreeBSD).
The bufsize field denotes the buffer size for the endpoint specified by type, endpoint, and direction. As you would expect, bufsize is used for type transactions.
As this section’s heading implies, the preceding fields must be defined in every usb_config structure.
Optional Fields
The timeout field sets the transaction timeout in milliseconds. If timeout is 0 or undefined and type is UE_ISOCHRONOUS, then a timeout of 250 ms will be used.
The interval field’s meaning is based on the value of type. Table 15-2 details interval’s purpose (based on type).
Table 15-2. interval’s Purpose (Based on Endpoint Type)
Endpoint Type | What interval Does |
---|---|
UE_CONTROL | interval sets the transaction delay in milliseconds; in other words, interval milliseconds must pass before a control transaction can occur |
UE_INTERRUPT | interval sets the polling rate in milliseconds; in other words, the host controller will poll the interrupt endpoint every interval milliseconds; if interval is 0 or undefined, then the endpoint’s default polling rate will be used |
UE_BULK | interval does nothing for bulk endpoints |
UE_ISOCHRONOUS | interval does nothing for isochronous endpoints |
The frames field denotes the maximum number of USB frames that the endpoint specified by type, endpoint, and direction supports. In FreeBSD, USB frames are simply “data packets” that travel to or from an endpoint. USB frames are composed of one or more USB packets, which actually contain the data.
The ep_index field demands a non-negative integer. If multiple endpoints are identified by type, endpoint, and direction—which can occur when endpoint is UE_ADDR_ANY—the value of ep_index will be used to select one.
The if_index field specifies the interface number (based on the ifaces argument passed to usbd_transfer_setup, which is described in USB Configuration Structure Management Routines in USB Configuration Structure Management Routines).
USB Transfer Flags
The flags field sets the transactional properties for the endpoint specified by type, endpoint, and direction. This field expects a usb_xfer_flags structure.
struct usb_xfer_flags is defined in the <dev/usb/usbdi.h> header as follows:
struct usb_xfer_flags {
uint8_t force_short_xfer : 1;
uint8_t short_xfer_ok : 1;
uint8_t short_frames_ok : 1;
uint8_t pipe_bof : 1;
uint8_t proxy_buffer : 1;
uint8_t ext_buffer : 1;
uint8_t manual_status : 1;
uint8_t no_pipe_ok : 1;
uint8_t stall_pipe : 1;
};
All of the fields in struct usb_xfer_flags are optional. These fields are 1-bit and function as flags. They are detailed in Table 15-3.
Table 15-3. USB Transfer Flags
NOTE
If you don’t understand some of these descriptions, don’t worry; I’ll expand on them later.
USB Transfers (in FreeBSD)
Recall that callback is executed before and after the endpoint specified by type, endpoint, and direction transfers data. Below is its function prototype:
typedef void (usb_callback_t)(struct usb_xfer *, usb_error_t);
Here, struct usb_xfer * contains the transfer state:
struct usb_xfer {
...
uint8_t usb_state;
/* Set when callback is executed before a data transfer. */
#define USB_ST_SETUP 0
/* Set when callback is executed after a data transfer. */
#define USB_ST_TRANSFERRED 1
/* Set when a transfer error occurs. */
#define USB_ST_ERROR 2
...
};
Generally, you’d use struct usb_xfer * in a switch statement to provide a code block for each transfer state. Some example code should help clarify what I mean.
NOTE
Just concentrate on the structure of this code and ignore what it does.
static void
ulpt_status_callback(struct usb_xfer *transfer, usb_error_t error)
{
struct ulpt_softc *sc = usbd_xfer_softc(transfer);
struct usb_device_request req;
struct usb_page_cache *pc;
uint8_t current_status, new_status;
switch (USB_GET_STATE(transfer)) {
case USB_ST_SETUP:
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = UREQ_GET_PORT_STATUS;
USETW(req.wValue, 0);
req.wIndex[0] = sc->sc_iface_num;
req.wIndex[1] = 0;
USETW(req.wLength, 1);
pc = usbd_xfer_get_frame(transfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
usbd_xfer_set_frame_len(transfer, 0, sizeof(req));
usbd_xfer_set_frame_len(transfer, 1, 1);
usbd_xfer_set_frames(transfer, 2);
usbd_transfer_submit(transfer);
break;
case USB_ST_TRANSFERRED:
pc = usbd_xfer_get_frame(transfer, 1);
usbd_copy_out(pc, 0, ¤t_status, 1);
current_status = (current_status ^ LPS_INVERT) & LPS_MASK;
new_status = current_status & ˜sc->sc_previous_status;
sc->sc_previous_status = current_status;
if (new_status & LPS_NERR)
log(LOG_NOTICE, "%s: output error\n",
device_get_nameunit(sc->sc_dev));
else if (new_status & LPS_SELECT)
log(LOG_NOTICE, "%s: offline\n",
device_get_nameunit(sc->sc_dev));
else if (new_status & LPS_NOPAPER)
log(LOG_NOTICE, "%s: out of paper\n",
device_get_nameunit(sc->sc_dev));
break;
default:
break;
}
}
Notice how struct usb_xfer * is used as the
expression for the switch statement (as you would expect, the macro USB_GET_STATE returns the transfer state).
The constant USB_ST_SETUP is set when callback is executed before a data transfer. This case handles any pre-transfer operations. It always ends with
usbd_transfer_submit, which starts the data transfer.
The constant USB_ST_TRANSFERRED is set when callback is executed after a data transfer. This case performs any post-transfer actions, such as
printing log messages.
USB Configuration Structure Management Routines
The FreeBSD kernel provides the following functions for working with usb_config structures:
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
usb_error_t
usbd_transfer_setup(struct usb_device *udev, const uint8_t *ifaces,
struct usb_xfer **pxfer,
const struct usb_config *setup_start,
uint16_t n_setup, void *priv_sc, struct mtx *priv_mtx);
void
usbd_transfer_unsetup(struct usb_xfer **pxfer,
uint16_t n_setup);
void
usbd_transfer_start(struct usb_xfer *xfer);
void
usbd_transfer_stop(struct usb_xfer *xfer);
void
usbd_transfer_drain(struct usb_xfer *xfer);
The usbd_transfer_setup function takes an array of usb_config structures and sets up an
array of usb_xfer structures. The
n_setup argument denotes the number of elements in the arrays.
NOTE
As you’ll see, a usb_xfer structure is required to initiate a USB data transfer.
The usbd_transfer_unsetup function destroys an array of usb_xfer structures. The
n_setup argument denotes the number of elements in the array.
The usbd_transfer_start function takes a usb_xfer structure and starts a USB transfer (that is, it executes callback with USB_ST_SETUP set).
The usbd_transfer_stop function stops any transfers associated with the xfer argument (that is, it executes callback with USB_ST_ERROR set).
The usbd_transfer_drain function is like usbd_transfer_stop, but it waits for callback to complete before returning.
USB Methods Structure
A usb_fifo_methods structure defines a USB driver’s entry points. You can think of struct usb_fifo_methods as struct cdevsw, but for USB drivers.
struct usb_fifo_methods is defined in the <dev/usb/usbdi.h> header as follows:
struct usb_fifo_methods {
/* Executed Unlocked */
usb_fifo_open_t *f_open;
usb_fifo_close_t *f_close;
usb_fifo_ioctl_t *f_ioctl;
usb_fifo_ioctl_t *f_ioctl_post;
/* Executed With Mutex Locked */
usb_fifo_cmd_t *f_start_read;
usb_fifo_cmd_t *f_stop_read;
usb_fifo_cmd_t *f_start_write;
usb_fifo_cmd_t *f_stop_write;
usb_fifo_filter_t *f_filter_read;
usb_fifo_filter_t *f_filter_write;
const char *basename[4];
const char *postfix[4];
};
The FreeBSD kernel provides the following functions for working with usb_fifo_methods structures:
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
int
usb_fifo_attach(struct usb_device *udev, void *priv_sc,
struct mtx *priv_mtx, struct usb_fifo_methods *pm,
struct usb_fifo_sc *f_sc, uint16_t unit, uint16_t subunit,
uint8_t iface_index, uid_t uid, gid_t gid, int mode);
void
usb_fifo_detach(struct usb_fifo_sc *f_sc);
The usb_fifo_attach function creates a USB device node under /dev. If successful, a magic cookie is saved in f_sc.
The usb_fifo_detach function takes a cookie created by usb_fifo_attach and destroys its associated USB device node.
Tying Everything Together
Now that you’re familiar with the usb_* structures and their management routines, let’s dissect a real-world USB driver.
Example 15-1 provides a terse, source-level overview of ulpt(4), the USB printer driver.
NOTE
To improve readability, some of the variables and functions presented in this section have been renamed and restructured from their counterparts in the FreeBSD source.
Example 15-1. ulpt.c
#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/syslog.h>
#include <sys/fcntl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#define ULPT_BUF_SIZE (1 << 15)
#define ULPT_IFQ_MAX_LEN 2
#define UREQ_GET_PORT_STATUS 0x01
#define UREQ_SOFT_RESET 0x02
#define LPS_NERR 0x08
#define LPS_SELECT 0x10
#define LPS_NOPAPER 0x20
#define LPS_INVERT (LPS_NERR | LPS_SELECT)
#define LPS_MASK (LPS_NERR | LPS_SELECT | LPS_NOPAPER)
enum {
ULPT_BULK_DT_WR,
ULPT_BULK_DT_RD,
ULPT_INTR_DT_RD,
ULPT_N_TRANSFER
};
struct ulpt_softc {
device_t sc_dev;
struct usb_device *sc_usb_device;
struct mtx sc_mutex;
struct usb_callout sc_watchdog;
uint8_t sc_iface_num;
struct usb_xfer *sc_transfer[ULPT_N_TRANSFER];
struct usb_fifo_sc sc_fifo;
struct usb_fifo_sc sc_fifo_no_reset;
int sc_fflags;
struct usb_fifo *sc_fifo_open[2];
uint8_t sc_zero_length_packets;
uint8_t sc_previous_status;
};
static device_probe_t ulpt_probe;
static device_attach_t ulpt_attach;
static device_detach_t ulpt_detach;
static usb_fifo_open_t ulpt_open;
static usb_fifo_open_t unlpt_open;
static usb_fifo_close_t ulpt_close;
static usb_fifo_ioctl_t ulpt_ioctl;
static usb_fifo_cmd_t ulpt_start_read;
static usb_fifo_cmd_t ulpt_stop_read;
static usb_fifo_cmd_t ulpt_start_write;
static usb_fifo_cmd_t ulpt_stop_write;
static void ulpt_reset(struct ulpt_softc *);
static void ulpt_watchdog(void *);
static usb_callback_t ulpt_write_callback;
static usb_callback_t ulpt_read_callback;
static usb_callback_t ulpt_status_callback; static struct usb_fifo_methods ulpt_fifo_methods = {
.f_open = &ulpt_open,
.f_close = &ulpt_close,
.f_ioctl = &ulpt_ioctl,
.f_start_read = &ulpt_start_read,
.f_stop_read = &ulpt_stop_read,
.f_start_write = &ulpt_start_write,
.f_stop_write = &ulpt_stop_write,
.basename[0] = "ulpt"
}; static struct usb_fifo_methods unlpt_fifo_methods = {
.f_open = &unlpt_open,
.f_close = &ulpt_close,
.f_ioctl = &ulpt_ioctl,
.f_start_read = &ulpt_start_read,
.f_stop_read = &ulpt_stop_read,
.f_start_write = &ulpt_start_write,
.f_stop_write = &ulpt_stop_write,
.basename[0] = "unlpt"
};
static const struct usb_config ulpt_config[ULPT_N_TRANSFER] = {
[ULPT_BULK_DT_WR] = {
.callback = &ulpt_write_callback,
.bufsize = ULPT_BUF_SIZE,
.flags = {.pipe_bof = 1, .proxy_buffer = 1},
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT
},
[ULPT_BULK_DT_RD] = {
.callback = &ulpt_read_callback,
.bufsize = ULPT_BUF_SIZE,
.flags = {.short_xfer_ok = 1, .pipe_bof = 1,
.proxy_buffer = 1},
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN
},
[ULPT_INTR_DT_RD] = {
.callback = &ulpt_status_callback,
.bufsize = sizeof(struct usb_device_request) + 1,
.timeout = 1000, /* 1 second. */
.type = UE_CONTROL,
.endpoint = 0x00,
.direction = UE_DIR_ANY
}
};
static int
ulpt_open(struct usb_fifo *fifo, int fflags)
{
...
}
static void
ulpt_reset(struct ulpt_softc *sc)
{
...
}
static int
unlpt_open(struct usb_fifo *fifo, int fflags)
{
...
}
static void
ulpt_close(struct usb_fifo *fifo, int fflags)
{
...
}
static int
ulpt_ioctl(struct usb_fifo *fifo, u_long cmd, void *data, int fflags)
{
...
}
static void
ulpt_watchdog(void *arg)
{
...
}
static void
ulpt_start_read(struct usb_fifo *fifo)
{
...
}
static void
ulpt_stop_read(struct usb_fifo *fifo)
{
...
}
static void
ulpt_start_write(struct usb_fifo *fifo)
{
...
}
static void
ulpt_stop_write(struct usb_fifo *fifo)
{
...
}
static void
ulpt_write_callback(struct usb_xfer *transfer, usb_error_t error)
{
...
}
static void
ulpt_read_callback(struct usb_xfer *transfer, usb_error_t error)
{
...
}
static void
ulpt_status_callback(struct usb_xfer *transfer, usb_error_t error)
{
...
}
static int
ulpt_probe(device_t dev)
{
...
}
static int
ulpt_attach(device_t dev)
{
...
}
static int
ulpt_detach(device_t dev)
{
...
}
static device_method_t ulpt_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, ulpt_probe),
DEVMETHOD(device_attach, ulpt_attach),
DEVMETHOD(device_detach, ulpt_detach),
{ 0, 0 }
};
static driver_t ulpt_driver = {
"ulpt",
ulpt_methods,
sizeof(struct ulpt_softc)
};
static devclass_t ulpt_devclass;
DRIVER_MODULE(ulpt, uhub, ulpt_driver, ulpt_devclass, 0, 0);
MODULE_DEPEND(ulpt, usb, 1, 1, 1);
MODULE_DEPEND(ulpt, ucom, 1, 1, 1);
Note that Example 15-1 defines three usb_config structures. Therefore, ulpt(4) communicates with three endpoints: a bulk OUT, a
bulk IN, and the
default control endpoint.
Also, note that Example 15-1 defines two
usb_fifo_methods structures. So, ulpt(4) provides two device nodes:
ulpt%d and
unlpt%d (where %d is the unit number). As you’ll see, the ulpt%d device node resets the printer when opened, whereas unlpt%d does not.
Now, let’s discuss the functions found in Example 15-1.
ulpt_probe Function
The ulpt_probe function is the device_probe implementation for ulpt(4). Here is its function definition:
static int
ulpt_probe(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if ((uaa->info.bInterfaceClass == UICLASS_PRINTER) &&
(uaa->info.bInterfaceSubClass == UISUBCLASS_PRINTER) &&
((uaa->info.bInterfaceProtocol == UIPROTO_PRINTER_UNI) ||
(uaa->info.bInterfaceProtocol == UIPROTO_PRINTER_BI) ||
(uaa->info.bInterfaceProtocol == UIPROTO_PRINTER_1284)))
return (BUS_PROBE_SPECIFIC);
return (ENXIO);
}
This function first ensures that the USB host controller is in host mode, which is needed to initiate data transfers. Then ulpt_probe
determines whether dev is a USB printer.
Incidentally, struct usb_attach_arg contains the printer’s instance variables.
ulpt_attach Function
The ulpt_attach function is the device_attach implementation for ulpt(4). Here is its function definition:
static int
ulpt_attach(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct ulpt_softc *sc = device_get_softc(dev);
struct usb_interface_descriptor *idesc;
struct usb_config_descriptor *cdesc;
uint8_t alt_index, iface_index = uaa->info.bIfaceIndex;
int error, unit = device_get_unit(dev);
sc->sc_dev = dev;
sc->sc_usb_device = uaa->device;
device_set_usb_desc(dev);
mtx_init(&sc->sc_mutex, "ulpt", NULL, MTX_DEF | MTX_RECURSE);
usb_callout_init_mtx(&sc->sc_watchdog, &sc->sc_mutex, 0);
idesc = usbd_get_interface_descriptor(uaa->iface);
alt_index = −1;
for (;;) {
if (idesc == NULL)
break;
if ((idesc->bDescriptorType == UDESC_INTERFACE) &&
(idesc->bLength >= sizeof(*idesc))) {
if (idesc->bInterfaceNumber !=uaa->info.bIfaceNum)
break;
else {
alt_index++;
if ((idesc->bInterfaceClass ==
UICLASS_PRINTER) &&
(idesc->bInterfaceSubClass ==
UISUBCLASS_PRINTER) &&
(idesc->bInterfaceProtocol ==
UIPROTO_PRINTER_BI))
goto found;
}
}
cdesc = usbd_get_config_descriptor(uaa->device);
idesc = (void *)usb_desc_foreach(cdesc, (void *)idesc);
}
goto detach;
found:
if (alt_index) {
error =usbd_set_alt_interface_index(uaa->device,
iface_index, alt_index);
if (error)
goto detach;
}
sc->sc_iface_num = idesc->bInterfaceNumber;
error =usbd_transfer_setup(uaa->device, &iface_index,
sc->sc_transfer, ulpt_config, ULPT_N_TRANSFER, sc,
&sc->sc_mutex);
if (error)
goto detach;
device_printf(dev, "using bi-directional mode\n");
error =usb_fifo_attach(uaa->device, sc, &sc->sc_mutex,
&ulpt_fifo_methods, &sc->sc_fifo, unit, −1,
iface_index, UID_ROOT, GID_OPERATOR, 0644);
if (error)
goto detach;
error =usb_fifo_attach(uaa->device, sc, &sc->sc_mutex,
&unlpt_fifo_methods, &sc->sc_fifo_no_reset, unit, −1,
iface_index, UID_ROOT, GID_OPERATOR, 0644);
if (error)
goto detach;
mtx_lock(&sc->sc_mutex);
ulpt_watchdog(sc);
mtx_unlock(&sc->sc_mutex);
return (0);
detach:
ulpt_detach(dev);
return (ENOMEM);
}
This function can be split into three parts. The first sets the verbose description of dev by calling device_set_usb_desc(dev). Then it
initializes ulpt(4)’s callout structure.
NOTE
All USB devices contain a textual description of themselves, which is why device_set_usb_desc just takes a device_t argument.
The second part essentially iterates through the alternate settings for interface number
uaa->info.bIfaceNum, until the alternate setting that supports
bidirectional mode is found. If the alternate setting that supports bi-directional mode is not alternate setting 0, then
usbd_set_alt_interface_index is called to instate this alternate setting. Alternate setting 0 does not need to be instated, because it’s used by default.
Finally, the third part initializes the USB transfers,
creates ulpt(4)’s device nodes, and calls
ulpt_watchdog (which we’ll walk through in ulpt_watchdog Function in ulpt_watchdog Function).
ulpt_detach Function
The ulpt_detach function is the device_detach implementation for ulpt(4). Here is its function definition:
static int
ulpt_detach(device_t dev)
{
struct ulpt_softc *sc = device_get_softc(dev);
usb_fifo_detach(&sc->sc_fifo);
usb_fifo_detach(&sc->sc_fifo_no_reset);
mtx_lock(&sc->sc_mutex);
usb_callout_stop(&sc->sc_watchdog);
mtx_unlock(&sc->sc_mutex);
usbd_transfer_unsetup(sc->sc_transfer, ULPT_N_TRANSFER);
usb_callout_drain(&sc->sc_watchdog);
mtx_destroy(&sc->sc_mutex);
return (0);
}
This function starts by
destroying its device nodes. Then it
stops the callout function,
tears down the USB transfers,
drains the callout function, and
destroys its mutex.
ulpt_open Function
The ulpt_open function is the ulpt%d device node’s open routine. Here is its function definition:
static int
ulpt_open(struct usb_fifo *fifo, int fflags)
{
struct ulpt_softc *sc = usb_fifo_softc(fifo);
if (sc->sc_fflags == 0)
ulpt_reset(sc);
return (unlpt_open(fifo, fflags));
}
This function first calls ulpt_reset to reset the printer. Then
unlpt_open is called to (actually) open the printer.
ulpt_reset Function
As mentioned in the previous section, the ulpt_reset function resets the printer. Here is its function definition:
static void
ulpt_reset(struct ulpt_softc *sc)
{
struct usb_device_request req;
int error;
req.bRequest =UREQ_SOFT_RESET;
USETW(req.wValue, 0);
USETW(req.wIndex, sc->sc_iface_num);
USETW(req.wLength, 0);
mtx_lock(&sc->sc_mutex);
req.bmRequestType =UT_WRITE_CLASS_OTHER;
error =usbd_do_request_flags(sc->sc_usb_device, &sc->sc_mutex,
&req, NULL, 0, NULL, 2 * USB_MS_HZ);
if (error) {
req.bmRequestType =UT_WRITE_CLASS_INTERFACE;
usbd_do_request_flags(sc->sc_usb_device, &sc->sc_mutex,
&req, NULL, 0, NULL, 2 * USB_MS_HZ);
}
mtx_unlock(&sc->sc_mutex);
}
This function starts by defining a usb_device_request structure to
reset the printer. It then
transmits the reset request to the printer.
Note that some printers typify a reset request as UT_WRITE_CLASS_OTHER and some typify it as
UT_WRITE_CLASS_INTERFACE. Thus, ulpt_reset transmits the reset request a
second time if the first request
fails.
unlpt_open Function
The unlpt_open function is the unlpt%d device node’s open routine. Here is its function definition:
NOTE
You’ll recall that this function is also called at the end of ulpt_open.
static int
unlpt_open(struct usb_fifo *fifo, int fflags)
{
struct ulpt_softc *sc = usb_fifo_softc(fifo);
int error;
if (sc->sc_fflags & fflags)
return (EBUSY);
if (fflags & FREAD) {
mtx_lock(&sc->sc_mutex);
usbd_xfer_set_stall(sc->sc_transfer[ULPT_BULK_DT_RD]);
mtx_unlock(&sc->sc_mutex);
error =usb_fifo_alloc_buffer(fifo,
usbd_xfer_max_len(sc->sc_transfer[ULPT_BULK_DT_RD]),
ULPT_IFQ_MAX_LEN);
if (error)
return (ENOMEM);
sc->sc_fifo_open[USB_FIFO_RX] = fifo;
}
if (fflags & FWRITE) {
mtx_lock(&sc->sc_mutex);
usbd_xfer_set_stall(sc->sc_transfer[ULPT_BULK_DT_WR]);
mtx_unlock(&sc->sc_mutex);
error =usb_fifo_alloc_buffer(fifo,
usbd_xfer_max_len(sc->sc_transfer[ULPT_BULK_DT_WR]),
ULPT_IFQ_MAX_LEN);
if (error)
return (ENOMEM);
sc->sc_fifo_open[USB_FIFO_TX] = fifo;
}
sc->sc_fflags |= fflags & (FREAD | FWRITE);
return (0);
}
This function first tests the value of sc->sc_fflags. If it does not equal 0, which implies that another process has opened the printer, the error code EBUSY is returned. Next, unlpt_open determines whether we’re opening the printer to
read from or
write to it—the answer is
stored in sc->sc_fflags. Then, a clear-stall request is
issued to the appropriate endpoint.
NOTE
Any errors that a USB device detects in its own functionality, not counting transmission errors, cause the device to “stall” the endpoint for its current transaction (Oney, 2003). Control endpoints clear their stalls automatically, but other endpoint types require a clear-stall request. Naturally, stalled endpoints cannot perform any transactions.
Next, memory for the read or write is
allocated. Afterward, the fifo argument is
stored in sc->sc_fifo_open.
ulpt_close Function
The ulpt_close function is the close routine for ulpt%d and unlpt%d. Here is its function definition:
static void
ulpt_close(struct usb_fifo *fifo, int fflags)
{
struct ulpt_softc *sc = usb_fifo_softc(fifo);
sc->sc_fflags &= ˜(fflags & (FREAD | FWRITE));
if (fflags & (FREAD | FWRITE))
usb_fifo_free_buffer(fifo);
}
This function starts by clearing sc->sc_fflags. Then it
releases the memory allocated in unlpt_open.
ulpt_ioctl Function
The ulpt_ioctl function is the ioctl routine for ulpt%d and unlpt%d. Here is its function definition:
static int
ulpt_ioctl(struct usb_fifo *fifo, u_long cmd, void *data, int fflags)
{
return (ENODEV);
}
As you can see, ulpt(4) does not support ioctl.
ulpt_watchdog Function
The ulpt_watchdog function periodically checks the printer’s status. Here is its function definition:
NOTE
You’ll recall that this function is called at the end of ulpt_attach.
static void
ulpt_watchdog(void *arg)
{
struct ulpt_softc *sc = arg;
mtx_assert(&sc->sc_mutex, MA_OWNED);
if (sc->sc_fflags == 0)
usbd_transfer_start(sc->sc_transfer[
ULPT_INTR_DT_RD]);
usb_callout_reset(&sc->sc_watchdog,
hz,
&ulpt_watchdog, sc);
}
This function first ensures that the printer is not open. Then it
starts a transaction with the
default control endpoint (to retrieve the printer’s status). Recall that
usbd_transfer_start just executes a callback. In this case, that callback is ulpt_status_callback (for confirmation, see the third usb_config structure in Example 15-1). Finally,
ulpt_watchdog is
rescheduled to execute after
1 second.
ulpt_start_read Function
The ulpt_start_read function is executed when a process reads from ulpt%d or unlpt%d (for verification, see their usb_fifo_methods structures). Here is its function definition:
static void
ulpt_start_read(struct usb_fifo *fifo)
{
struct ulpt_softc *sc = usb_fifo_softc(fifo);
usbd_transfer_start(sc->sc_transfer[
ULPT_BULK_DT_RD]);
}
This function simply starts a transaction with the printer’s
bulk IN endpoint. Note that the callback for a bulk IN endpoint is ulpt_read_callback (for confirmation, see the second usb_config structure in Example 15-1).
ulpt_stop_read Function
The ulpt_stop_read function is called when a process stops reading from ulpt%d or unlpt%d. Here is its function definition:
static void
ulpt_stop_read(struct usb_fifo *fifo)
{
struct ulpt_softc *sc = usb_fifo_softc(fifo);
usbd_transfer_stop(sc->sc_transfer[
ULPT_BULK_DT_RD]);
}
This function stops any transactions associated with the printer’s
bulk IN endpoint.
ulpt_start_write Function
The ulpt_start_write function is executed when a process writes to ulpt%d or unlpt%d. Here is its function definition:
static void
ulpt_start_write(struct usb_fifo *fifo)
{
struct ulpt_softc *sc = usb_fifo_softc(fifo);
usbd_transfer_start(sc->sc_transfer[
ULPT_BULK_DT_WR]);
}
This function simply starts a transaction with the printer’s
bulk OUT endpoint. Note that the callback for a bulk OUT endpoint is ulpt_write_callback (for confirmation, see the first usb_config structure in Example 15-1).
ulpt_stop_write Function
The ulpt_stop_write function is executed when a process stops writing to ulpt%d or unlpt%d. Here is its function definition:
static void
ulpt_stop_write(struct usb_fifo *fifo)
{
struct ulpt_softc *sc = usb_fifo_softc(fifo);
usbd_transfer_stop(sc->sc_transfer[
ULPT_BULK_DT_WR]);
}
This function stops any transactions associated with the printer’s
bulk OUT endpoint.
ulpt_write_callback Function
The ulpt_write_callback function transfers data from user space to the printer (to be printed). Recall that this function is the callback for a bulk OUT endpoint, so it’s executed before and after a bulk OUT transfers data.
The following is the function definition for ulpt_write_callback:
static void
ulpt_write_callback(struct usb_xfer *transfer, usb_error_t error)
{
struct ulpt_softc *sc = usbd_xfer_softc(transfer);
struct usb_fifo *fifo = sc->sc_fifo_open[USB_FIFO_TX];
struct usb_page_cache *pc;
int actual, max;
usbd_xfer_status(transfer, &actual, NULL, NULL, NULL);
if (fifo == NULL)
return;
switch (USB_GET_STATE(transfer)) {
case USB_ST_SETUP:
case USB_ST_TRANSFERRED:
setup:
pc = usbd_xfer_get_frame(transfer, 0);
max = usbd_xfer_max_len(transfer);
if (usb_fifo_get_data(
fifo,
pc, 0,
max,
&actual, 0)) {
usbd_xfer_set_frame_len(transfer, 0,
actual);
usbd_transfer_submit(transfer);
}
break;
default:
if (error != USB_ERR_CANCELLED) {
/* Issue a clear-stall request. */
usbd_xfer_set_stall(transfer);
goto setup;
}
break;
}
}
This function first copies foo bytes from
user space to
kernel space. At most,
max bytes of data are copied. The number of bytes actually copied is returned in
actual. Next, the
transfer length is
set. Then, the data copied from user space is
sent to the printer.
NOTE
In the preceding paragraph, foo is a placeholder, because I don’t know how many bytes are copied until usb_fifo_get_data returns.
Note that the USB_ST_SETUP case and the
USB_ST_TRANSFERRED case are identical. This is because you can print more data than the maximum transfer length. Thus, this function “loops” until all the data is sent.
ulpt_read_callback Function
The ulpt_read_callback function gets data from the printer. Recall that this function is the callback for a bulk IN endpoint, so it’s executed before and after a bulk IN transfers data.
The following is the function definition for ulpt_read_callback:
static void
ulpt_read_callback(struct usb_xfer *transfer, usb_error_t error)
{
struct ulpt_softc *sc = usbd_xfer_softc(transfer);
struct usb_fifo *fifo = sc->sc_fifo_open[USB_FIFO_RX];
struct usb_page_cache *pc;
int actual, max;
usbd_xfer_status(transfer, &actual, NULL, NULL, NULL);
if (fifo == NULL)
return;
switch (USB_GET_STATE(transfer)) {
case USB_ST_TRANSFERRED:
if (actual == 0) {
if (sc->sc_zero_length_packets == 4)
/* Throttle transfers. */
usbd_xfer_set_interval(transfer, 500);
else
sc->sc_zero_length_packets++;
} else {
/* Disable throttling. */
usbd_xfer_set_interval(transfer, 0);
sc->sc_zero_length_packets = 0;
}
pc = usbd_xfer_get_frame(transfer, 0);
usb_fifo_put_data(
fifo,
pc, 0, actual, 1);
/* FALLTHROUGH */
case USB_ST_SETUP:
setup:
if (usb_fifo_put_bytes_max(fifo) != 0) {
max = usbd_xfer_max_len(transfer);
usbd_xfer_set_frame_len(transfer, 0, max);
usbd_transfer_submit(transfer);
}
break;
default:
/* Disable throttling. */
usbd_xfer_set_interval(transfer, 0);
sc->sc_zero_length_packets = 0;
if (error != USB_ERR_CANCELLED) {
/* Issue a clear-stall request. */
usbd_xfer_set_stall(transfer);
goto setup;
}
break;
}
}
This function first ensures that there’s room in user space for the printer’s data. Next, the maximum transfer length is
specified. Then data from the printer is
retrieved.
After a transfer is complete, the printer’s data is
copied from
kernel space to
user space. Note that if
nothing is returned
four times in a row, transfer throttling is
enabled.
NOTE
Some USB devices cannot handle multiple rapid transfer requests, so staggering or throttling of transfers is required.
ulpt_status_callback Function
The ulpt_status_callback function returns the printer’s current status. Recall that this function is the callback for the default control endpoint, so it’s executed before and after any transactions with endpoint 0.
The following is the function definition for ulpt_status_callback:
static void
ulpt_status_callback(struct usb_xfer *transfer, usb_error_t error)
{
struct ulpt_softc *sc = usbd_xfer_softc(transfer);
struct usb_device_request req;
struct usb_page_cache *pc;
uint8_t current_status, new_status;
switch (USB_GET_STATE(transfer)) {
case USB_ST_SETUP:
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest =UREQ_GET_PORT_STATUS;
USETW(req.wValue, 0);
req.wIndex[0] = sc->sc_iface_num;
req.wIndex[1] = 0;
USETW(req.wLength, 1);
pc = usbd_xfer_get_frame(transfer, 0);
usbd_copy_in(
pc, 0,
&req, sizeof(req));
usbd_xfer_set_frame_len(transfer, 0, sizeof(req));
usbd_xfer_set_frame_len(transfer, 1, 1);
usbd_xfer_set_frames(transfer,2);
usbd_transfer_submit(transfer);
break;
case USB_ST_TRANSFERRED:
pc = usbd_xfer_get_frame(transfer, 1);
usbd_copy_out(pc, 0, ¤t_status, 1);
current_status = (current_status ^ LPS_INVERT) & LPS_MASK;
new_status = current_status & ˜sc->sc_previous_status;
sc->sc_previous_status = current_status;
if (new_status & LPS_NERR)
log(LOG_NOTICE, "%s: output error\n",
device_get_nameunit(sc->sc_dev));
else if (new_status & LPS_SELECT)
log(LOG_NOTICE, "%s: offline\n",
device_get_nameunit(sc->sc_dev));
else if (new_status & LPS_NOPAPER)
log(LOG_NOTICE, "%s: out of paper\n",
device_get_nameunit(sc->sc_dev));
break;
default:
break;
}
}
This function first constructs a get status request. It then
plunks the
request into a
DMA buffer. Shortly afterward, the request is
sent to the printer. Interestingly, this transaction involves
two USB frames. The
first contains the get status request. The
second will hold the printer’s status.
After a transaction is complete, the printer’s status is
plucked from the DMA buffer.
The remainder of this function should be self-explanatory.
Conclusion
This chapter was basically a primer on USB devices and drivers. For more information, see the official documentation, available at http://www.usb.org/developers/.
Chapter 16. Network Drivers, Part 1: Data Structures
Network devices, or interfaces, transmit and receive data packets that are driven by the network subsystem (Corbet et al., 2005). In this chapter, we’ll examine the data structures used to manage these devices: ifnet, ifmedia, and mbuf. You’ll then learn about Message Signaled Interrupts, which are an alternative to traditional interrupts and are commonly used by network devices.
NOTE
To keep things simple, we’ll examine only Ethernet drivers. Also, I won’t provide a discussion on general networking concepts.
Network Interface Structures
An ifnet structure is the kernel’s representation of an individual network interface. It is defined in the <net/if_var.h> header as follows:
struct ifnet {
void *if_softc; /* Driver private data. */
void *if_l2com; /* Protocol bits. */
struct vnet *if_vnet; /* Network stack instance. */
TAILQ_ENTRY(ifnet) if_link; /* ifnet linkage. */
char if_xname[IFNAMSIZ]; /* External name. */
const char *if_dname; /* Driver name. */
int if_dunit; /* Unit number or IF_DUNIT_NONE. */
u_int if_refcount; /* Reference count. */
/*
* Linked list containing every address associated with
* this interface.
*/
struct ifaddrhead if_addrhead;
int if_pcount; /* Number of promiscuous listeners. */
struct carp_if *if_carp; /* CARP interface. */
struct bpf_if *if_bpf; /* Packet filter. */
u_short if_index; /* Numeric abbreviation for interface. */
short if_timer; /* Time until if_watchdog is called. */
struct ifvlantrunk *if_vlantrunk; /* 802.1Q data. */
int if_flags; /* Flags (e.g., up, down, broadcast). */
int if_capabilities;/* Interface features and capabilities. */
int if_capenable; /* Enabled features and capabilities. */
void *if_linkmib; /* Link specific MIB data. */
size_t if_linkmiblen; /* Length of above. */
struct if_data if_data; /* Interface information. */
struct ifmultihead if_multiaddrs; /* Multicast addresses. */
int if_amcount; /* Number of multicast requests. */
/* Interface methods. */
int (*if_output)
(struct ifnet *, struct mbuf *, struct sockaddr *,
struct route *);
void (*if_input)
(struct ifnet *, struct mbuf *);
void (*if_start)
(struct ifnet *);
int (*if_ioctl)
(struct ifnet *, u_long, caddr_t);
void (*if_watchdog)
(struct ifnet *);
void (*if_init)
(void *);
int (*if_resolvemulti)
(struct ifnet *, struct sockaddr **, struct sockaddr *);
void (*if_qflush)
(struct ifnet *);
int (*if_transmit)
(struct ifnet *, struct mbuf *);
void (*if_reassign)
(struct ifnet *, struct vnet *, char *);
struct vnet *if_home_vnet; /* Where we originate from. */
struct ifaddr *if_addr; /* Link level address. */
void *if_llsoftc; /* Link level softc. */
int if_drv_flags; /* Driver managed status flags. */
struct ifaltqif_snd; /* Output queue, includes altq. */
const u_int8_t *if_broadcastaddr; /* Link level broadcast addr. */
void *if_bridge; /* Bridge glue. */
struct label *if_label; /* Interface MAC label. */
/* Only used by IPv6. */
struct ifprefixhead if_prefixhead;
void *if_afdata[AF_MAX];
int if_afdata_initialized;
struct rwlock if_afdata_lock;
struct task if_linktask;
struct mtx if_addr_mtx;
LIST_ENTRY(ifnet) if_clones; /* Clone interfaces. */
TAILQ_HEAD(, ifg_list) if_groups; /* Linked list of groups. */
void *if_pf_kif; /* pf(4) glue. */
void *if_lagg; /* lagg(4) glue. */
u_char if_alloctype; /* Type (e.g., Ethernet). */
/* Spare fields. */
char if_cspare[3]; /* Spare characters. */
char *if_description; /* Interface description. */
void *if_pspare[7]; /* Spare pointers. */
int if_ispare[4]; /* Spare integers. */
};
I’ll demonstrate how struct ifnet is used in Hello, world! in Hello, world!. For now, let’s look at its method fields.
The if_init field identifies the interface’s init routine. Init routines are called to initialize their interface.
The if_ioctl field identifies the interface’s ioctl routine. Characteristically, ioctl routines are used to configure their interface (for example, for setting the maximum transmission unit).
The if_input field identifies the interface’s input routine. An interface sends an interrupt whenever it receives a packet. Its driver-defined interrupt handler then calls its input routine to process the packet. Note that this is a departure from the norm. Input routines are called by a driver, while the other routines are called by the network stack. The if_input field generally points to a link layer routine (for example, ether_input) rather than a driver-defined routine.
NOTE
Obviously, link layer routines are kernel defined. Method fields that expect a link layer routine should be defined by an *ifattach function (such as ether_ifattach), not directly by a driver. *ifattach functions are described in Network Interface Structure Management Routines in Network Interface Structure Management Routines.
The if_output field identifies the interface’s output routine. Output routines are called by the network stack to prepare an upper-layer packet for transmission. Every output routine ends by calling its interface’s
transmit routine. If an interface lacks a transmit routine, its
start routine is called instead. Typically, when a network driver defines a transmit routine, its start routine is undefined, and vice versa. The if_output field generally points to a link layer routine (for example, ether_output) rather than a driver-defined routine.
The if_start field identifies the interface’s start routine. Before I describe start routines, it’s important to discuss
send queues. Send queues are filled by output routines. Start routines remove one packet from their send queue and deposit it in their interface’s transmit ring. They repeat this process until the send queue is empty or the transmit ring is full. Transmit rings are simply ring buffers used for transmission. Network interfaces use ring buffers for transmission and reception.
The if_transmit field identifies the interface’s transmit routine. Transmit routines are an alternative to start routines. Transmit routines maintain their own send queues. That is, they forego the
predefined send queue, and output routines push packets directly to them. Transmit routines can maintain multiple send queues, which makes them ideal for interfaces with multiple transmit rings.
The if_qflush field identifies the interface’s qflush routine. Qflush routines are called to flush the send queues of transmit routines. Every transmit routine must have a corresponding qflush routine.
The if_resolvemulti field identifies the interface’s resolvemulti routine. Resolvemulti routines are called to resolve a network layer address into a link layer address when registering a multicast address with their interface. The if_resolvemulti field generally points to a link layer routine (for example, ether_resolvemulti) rather than a driver-defined routine.
The if_reassign field identifies the interface’s reassign routine. Reassign routines are called before their interface is moved to another virtual network stack (vnet). They perform any tasks necessary before the move. The if_reassign field generally points to a link layer routine (for example, ether_reassign) rather than a driver-defined routine.
The if_watchdog field is deprecated and must not be defined. In FreeBSD version 9, if_watchdog will be removed.
Network Interface Structure Management Routines
The FreeBSD kernel provides the following functions for working with ifnet structures:
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
struct ifnet *
if_alloc(u_chartype);
void
if_initname(struct ifnet*ifp, const char
*name, int
unit);
void
if_attach(struct ifnet *ifp);
void
if_detach(struct ifnet *ifp);
void
if_free(struct ifnet *ifp);
An ifnet structure is a dynamically allocated structure that’s owned by the kernel. That is, you cannot allocate a struct ifnet on your own. Instead, you must call if_alloc. The type argument is the interface type (for example, Ethernet devices are IFT_ETHER). Symbolic constants for every interface type can be found in the <net/if_types.h> header.
Allocating an ifnet structure does not make the interface available to the system. To do that, you must initialize the structure (by defining the necessary fields) and then call if_attach.
The if_initname function is a convenient function for setting an interface’s
name and
unit number. (Needless to say, this function is used before if_attach.)
When an ifnet structure is no longer needed, it should be deactivated with if_detach, after which it can be freed with if_free.
ether_ifattach Function
The ether_ifattach function is a variant of if_attach that’s used for Ethernet devices.
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/ethernet.h>
void
ether_ifattach(struct ifnet *ifp, const u_int8_t *lla);
This function is defined in the /sys/net/if_ethersubr.c source file as follows:
void
ether_ifattach(struct ifnet*ifp, const u_int8_t
*lla)
{
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
int i;
ifp->if_addrlen = ETHER_ADDR_LEN;
ifp->if_hdrlen = ETHER_HDR_LEN;
if_attach(ifp);
ifp->if_mtu = ETHERMTU;
ifp->if_output = ether_output;
ifp->if_input = ether_input;
ifp->if_resolvemulti = ether_resolvemulti;
#ifdef VIMAGE
ifp->if_reassign = ether_reassign;
#endif
if (ifp->if_baudrate == 0)
ifp->if_baudrate = IF_Mbps(10);
ifp->if_broadcastaddr = etherbroadcastaddr;
ifa = ifp->if_addr;
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
sdl->sdl_type = IFT_ETHER;
sdl->sdl_alen = ifp->if_addrlen;
bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
if (ng_ether_attach_p != NULL)
(*ng_ether_attach_p)(ifp);
/* Print Ethernet MAC address (if lla is nonzero). */
for (i = 0; i < ifp->if_addrlen; i++)
if (lla[i] != 0)
break;
if (i != ifp->if_addrlen)
if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
}
This function takes an ifnet structure, ifp, and a link layer address,
lla, and sets up ifp for an Ethernet device.
As you can see, it assigns certain values to ifp, including assigning the appropriate link layer routine to if_output,
if_input,
if_resolvemulti, and
if_reassign.
ether_ifdetach Function
The ether_ifdetach function is a variant of if_detach that’s used for Ethernet devices.
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/ethernet.h>
void
ether_ifdetach(struct ifnet *ifp);
This function is used to deactivate an ifnet structure set up by ether_ifattach.
Network Interface Media Structures
An ifmedia structure catalogs every media type that is supported by a network interface (for example, 100BASE-TX, 1000BASE-SX, and so on). It is defined in the <net/if_media.h> header as follows:
struct ifmedia {
int ifm_mask; /* Mask of bits to ignore. */
int ifm_media; /* User-set media word. */
struct ifmedia_entry *ifm_cur; /* Currently selected media. */
/*
* Linked list containing every media type supported by
* an interface.
*/
LIST_HEAD(, ifmedia_entry) ifm_list;
ifm_change_cb_t ifm_change; /* Media change callback. */
ifm_stat_cb_t ifm_status; /* Media status callback. */
};
Network Interface Media Structure Management Routines
The FreeBSD kernel provides the following functions for working with ifmedia structures:
#include <net/if.h>
#include <net/if_media.h>
void
ifmedia_init(struct ifmedia *ifm, intdontcare_mask,
ifm_change_cb_tchange_callback, ifm_stat_cb_t
status_callback);
void
ifmedia_add(struct ifmedia*ifm, int
mword, int
data, void
*aux);
void
ifmedia_set(struct ifmedia*ifm, int
mword);
void
ifmedia_removeall(struct ifmedia*ifm);
An ifmedia structure is a statically allocated structure that’s owned by a network driver. To initialize an ifmedia structure, you must call ifmedia_init.
The dontcare_mask argument marks the bits in
mword that can be ignored. Usually, dontcare_mask is set to 0.
The change_callback argument denotes a callback function. This function is executed to change the media type or media options. Here is its function prototype:
typedef int (*ifm_change_cb_t)(struct ifnet *ifp);
NOTE
Users can change an interface’s media type or media options with ifconfig(8).
The status_callback argument denotes a callback function. This function is executed to return the media status. Here is its function prototype:
typedef void (*ifm_stat_cb_t)(struct ifnet *ifp, struct ifmediareq *req);
NOTE
Users can query an interface’s media status with ifconfig(8).
The ifmedia_add function adds a media type to ifm. The
mword argument is a 32-bit “word” that identifies the media type. Valid values for mword are defined in <net/if_media.h>.
Here are the mword values for Ethernet devices:
#define IFM_ETHER 0x00000020
#define IFM_10_T 3 /* 10BASE-T, RJ45. */
#define IFM_10_2 4 /* 10BASE2, thin Ethernet. */
#define IFM_10_5 5 /* 10BASE5, thick Ethernet. */
#define IFM_100_TX 6 /* 100BASE-TX, RJ45. */
#define IFM_100_FX 7 /* 100BASE-FX, fiber. */
#define IFM_100_T4 8 /* 100BASE-T4. */
#define IFM_100_VG 9 /* 100VG-AnyLAN. */
#define IFM_100_T2 10 /* 100BASE-T2. */
#define IFM_1000_SX 11 /* 1000BASE-SX, multimode fiber. */
#define IFM_10_STP 12 /* 10BASE-T, shielded twisted-pair. */
#define IFM_10_FL 13 /* 10BASE-FL, fiber. */
#define IFM_1000_LX 14 /* 1000BASE-LX, single-mode fiber. */
#define IFM_1000_CX 15 /* 1000BASE-CX, shielded twisted-pair. */
#define IFM_1000_T 16 /* 1000BASE-T. */
#define IFM_HPNA_1 17 /* HomePNA 1.0 (1Mb/s). */
#define IFM_10G_LR 18 /* 10GBASE-LR, single-mode fiber. */
#define IFM_10G_SR 19 /* 10GBASE-SR, multimode fiber. */
#define IFM_10G_CX4 20 /* 10GBASE-CX4. */
#define IFM_2500_SX 21 /* 2500BASE-SX, multimode fiber. */
#define IFM_10G_TWINAX 22 /* 10GBASE, Twinax. */
#define IFM_10G_TWINAX_LONG 23 /* 10GBASE, Twinax long. */
#define IFM_10G_LRM 24 /* 10GBASE-LRM, multimode fiber. */
#define IFM_UNKNOWN 25 /* Undefined. */
#define IFM_10G_T 26 /* 10GBASE-T, RJ45. */
#define IFM_AUTO 0 /* Automatically select media. */
#define IFM_MANUAL 1 /* Manually select media. */
#define IFM_NONE 2 /* Unselect all media. */
/* Shared options. */
#define IFM_FDX 0x00100000 /* Force full-duplex. */
#define IFM_HDX 0x00200000 /* Force half-duplex. */
#define IFM_FLOW 0x00400000 /* Enable hardware flow control.*/
#define IFM_FLAG0 0x01000000 /* Driver-defined flag. */
#define IFM_FLAG1 0x02000000 /* Driver-defined flag. */
#define IFM_FLAG2 0x04000000 /* Driver-defined flag. */
#define IFM_LOOP 0x08000000 /* Put hardware in loopback. */
As an example, the mword value for 100BASE-TX is the following:
IFM_ETHER | IFM_100_TX
Table 16-1 describes how each bit in mword is used. It also displays the bitmasks that can be passed to dontcare_mask to ignore those bits.
Table 16-1. Bit-by-Bit Breakdown of mword
Bits | Purpose of Bits | Mask to Ignore Bits |
---|---|---|
00–04 | Denotes the media type variant (for example, 100BASE-TX) | IFM_TMASK |
05–07 | Denotes the media type (for example, Ethernet) | IFM_NMASK |
08–15 | Denotes the media type specific options | IFM_OMASK |
16–18 | Denotes the media type mode (for multimode media only) | IFM_MMASK |
19 | Reserved for future use | n/a |
20–27 | Denotes the shared options (for example, force full-duplex) | IFM_GMASK |
28–31 | Denotes the mword instance | IFM_IMASK |
The data and
aux arguments allow drivers to provide metadata about mword. Because drivers typically have no metadata to provide, data and aux are frequently set to 0 and NULL, respectively.
The ifmedia_set function sets the default media type for
ifm. This function is used only during device initialization.
The ifmedia_removeall function takes an ifmedia structure and removes every media type from it.
Hello, world!
Now that you’re familiar with the if* structures and their management routines, let’s go through an example. The following function, named em_setup_interface and defined in /sys/dev/e1000/if_em.c, sets up em(4)’s ifnet and ifmedia structures. (The em(4) driver is for Intel’s PCI Gigabit Ethernet adapters.)
static int
em_setup_interface(device_t dev, struct adapter *adapter)
{
struct ifnet *ifp;
ifp =adapter->ifp =
if_alloc(
IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure\n");
return (-1);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_init = em_init;
ifp->if_softc = adapter;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = em_ioctl;
ifp->if_start = em_start;
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
IFQ_SET_READY(&ifp->if_snd);
ether_ifattach(ifp, adapter->hw.mac.addr);
ifp->if_capabilities = ifp->if_capenable = 0;
/* Enable checksum offload. */
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
/* Enable TCP segmentation offload. */
ifp->if_capabilities |= IFCAP_TSO4;
ifp->if_capenable |= IFCAP_TSO4;
/* Enable VLAN support. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
/* Interface can filter VLAN tags. */
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Enable Wake-on-LAN (WOL) via magic packet? */
if (adapter->wol) {
ifp->if_capabilities |= IFCAP_WOL;
ifp->if_capenable |= IFCAP_WOL_MAGIC;
}
ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
em_media_status);
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
{
u_char fiber_type = IFM_1000_SX;
ifmedia_add(&adapter->media,
IFM_ETHER | fiber_type, 0, NULL);
ifmedia_add(&adapter->media,
IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
} else {
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
if (adapter->hw.phy.type != e1000_phy_ife) {
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
}
}
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
return (0);
}
This function can be split into three parts. The first allocates an
Ethernet-specific ifnet structure and stores it in
adapter->ifp. Then adapter->ifp is defined and
activated. (Here, adapter is the name for em(4)’s softc structure.)
The second part outlines and
enables the interface’s features, such as
Wake-on-LAN (WOL). (WOL is an Ethernet standard that allows a computer to be turned on, or woken up, by a network message.)
The third part initializes an ifmedia structure,
adds the interface’s supported media to it, and
defines the default media type as automatically select the best media.
NOTE
Of course, em_setup_interface is called during em(4)’s device_attach routine.
mbuf Structures
An mbuf structure is a memory buffer for network data. Commonly, this data spans multiple mbuf structures, which are arranged into a linked list known as an mbuf chain.
struct mbuf is defined in the <sys/mbuf.h> header as follows:
struct mbuf {
struct m_hdr m_hdr;
union {
struct {
struct pkthdr MH_pkthdr;
union {
struct m_ext MH_ext;
char MH_databuf[MHLEN];
} MH_dat;
} MH;
char M_databuf[MLEN];
} M_dat;
};
Every mbuf structure contains a buffer for data and a
header, which looks like this:
struct m_hdr {
struct mbuf *mh_next; /* Next mbuf in chain. */
struct mbuf *mh_nextpkt; /* Next chain in queue/record. */
caddr_t mh_data; /* Location of data. */
int mh_len; /* Data length. */
int mh_flags; /* Flags. */
short mh_type; /* Data type. */
uint8_t pad[M_HDR_PAD]; /* Padding for word alignment. */
};
We’ll walk through an example that uses mbufs in Chapter 17. For more on mbufs, see the mbuf(9) manual page.
Message Signaled Interrupts
Message Signaled Interrupts (MSI) and Extended Message Signaled Interrupts (MSI-X) are alternative ways to send interrupts. Traditionally, devices include an interrupt pin that they assert in order to generate an interrupt, but MSI- and MSI-X-enabled devices send some data, known as an MSI message or MSI-X message, to a particular memory address in order to generate an interrupt. MSI- and MSI-X-enabled devices can define multiple unique messages. Subsequently, drivers can define multiple unique interrupt handlers. In other words, MSI- and MSI-X-enabled devices can issue different interrupts, with each interrupt specifying a different condition or task. MSI- and MSI-X-enabled devices can define up to 32 and 2,048 unique messages, respectively. (MSI and MSI-X are not exclusive to network devices. They are, however, exclusive to PCI and PCIe devices.)
Implementing MSI
Unlike with previous topics, I’m going to take a holistic approach here. Namely, I’m going to show an example first, and then I’ll describe the MSI family of functions.
The following function, named ciss_setup_msix and defined in /sys/dev/ciss/ciss.c, sets up MSI for the ciss(4) driver.
NOTE
This function was chosen solely because it’s simple. The fact that it’s from ciss(4) is irrelevant.
static int
ciss_setup_msix(struct ciss_softc *sc)
{
int i, count, error;
i = ciss_lookup(sc->ciss_dev);
if (ciss_vendor_data[i].flags & CISS_BOARD_NOMSI)
return (EINVAL);
count =pci_msix_count(sc->ciss_dev);
if (count < CISS_MSI_COUNT) {
count =pci_msi_count(sc->ciss_dev);
if (count < CISS_MSI_COUNT)
return (EINVAL);
}
count = MIN(count, CISS_MSI_COUNT);
error =pci_alloc_msix(sc->ciss_dev, &count);
if (error) {
error =pci_alloc_msi(sc->ciss_dev, &count);
if (error)
return (EINVAL);
}
sc->ciss_msi = count;
for (i = 0; i < count; i++)
sc->ciss_irq_rid[i] = i + 1;
return (0);
}
This function is composed of four parts. The first ensures that the device actually supports MSI.
The second part determines the number of unique MSI-X or
MSI messages the device maintains, and stores the answer in count.
The third part allocates count MSI-X or
MSI vectors, which connect each message to a SYS_RES_IRQ resource with a rid of 1 through count. Thus, in order to assign an interrupt handler to the eighth message, you’d call bus_alloc_resource_any (to allocate a SYS_RES_IRQ resource) and pass 8 as the rid argument. Then you’d call bus_setup_intr as usual.
Lastly, the fourth part saves the rid of each MSI-X or MSI message in the ciss_irq_rid array.
Naturally, this function is called during ciss(4)’s device_attach routine, like so:
...
/*
* Use MSI/MSI-X?
*/
sc->ciss_irq_rid[0] = 0;
if (method == CISS_TRANSPORT_METHOD_PERF) {
ciss_printf(sc, "Performant Transport\n");
if (ciss_force_interrupt != 1 &&ciss_setup_msix(sc) == 0)
intr = ciss_perf_msi_intr;
else
intr = ciss_perf_intr;
sc->ciss_interrupt_mask =
CISS_TL_PERF_INTR_OPQ | CISS_TL_PERF_INTR_MSI;
} else {
ciss_printf(sc, "Simple Transport\n");
if (ciss_force_interrupt == 2)
ciss_setup_msix(sc);
sc->ciss_perf = NULL;
intr = ciss_intr;
sc->ciss_interrupt_mask = sqmask;
}
/*
* Disable interrupts.
*/
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
/*
* Set up the interrupt handler.
*/
sc->ciss_irq_resource =bus_alloc_resource_any(sc->ciss_dev,
SYS_RES_IRQ,&sc->ciss_irq_rid[0], RF_ACTIVE | RF_SHAREABLE);
if (sc->ciss_irq_resource == NULL) {
ciss_printf(sc, "cannot allocate interrupt resource\n");
return (ENXIO);
}
error = bus_setup_intr(sc->ciss_dev, sc->ciss_irq_resource,
INTR_TYPE_CAM | INTR_MPSAFE, NULL, intr, sc, &sc->ciss_intr);
if (error) {
ciss_printf(sc, "cannot set up interrupt\n");
return (ENXIO);
}
...
Notice how MSI is
set up before
acquiring an IRQ. Additionally, notice how the
rid argument is ciss_irq_rid.
NOTE
As of this writing, ciss(4) supports only the first MSI-X or MSI message.
MSI Management Routines
The FreeBSD kernel provides the following functions for working with MSI:
#include <dev/pci/pcivar.h>
int
pci_msix_count(device_t dev);
int
pci_msi_count(device_t dev);
int
pci_alloc_msix(device_t dev, int *count);
int
pci_alloc_msi(device_t dev, int *count);
int
pci_release_msi(device_t dev);
The pci_msix_count and pci_msi_count functions return the number of unique MSI-X or MSI messages maintained by the device dev.
The pci_alloc_msix and pci_alloc_msi functions allocate count MSI-X or MSI vectors based on dev. If there are not enough free vectors, fewer than count vectors will be allocated. Upon a successful return, count will contain the number of vectors allocated. (MSI-X and MSI vectors were described in Implementing MSI in Message Signaled Interrupts.)
The pci_release_msi function releases the MSI-X or MSI vectors that were allocated by pci_alloc_msix or pci_alloc_msi.
Conclusion
This chapter examined ifnet, ifmedia, and mbuf structures, as well as MSI and MSI-X. In Chapter 17, you’ll use this information to analyze a network driver.
Chapter 17. Network Drivers, Part 2: Packet Reception and Transmission
This chapter examines the packet reception and transmission components of em(4). Predictably, em(4) uses both mbufs and MSI for packet reception and transmission.
Packet Reception
When an interface receives a packet, it sends an interrupt. Naturally, this causes its interrupt handler to execute. For example, here is what executes in em(4):
static void
em_msix_rx(void*arg)
{
struct rx_ring *rxr = arg;
struct adapter *adapter = rxr->adapter;
bool more;
++rxr->rx_irq;
more =em_rxeof(rxr,
adapter->rx_process_limit, NULL);
if (more)
taskqueue_enqueue(rxr->tq, &rxr->rx_task);
else
E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
}
This function takes a pointer to a ring buffer that contains one or more received packets, and calls
em_rxeof to process those packets. If there are more than
rx_process_limit packets, a task structure is
queued; otherwise, this interrupt is
reenabled. I’ll discuss the task structure and its associated function in em_handle_rx Function in em_handle_rx Function.
em_rxeof Function
As mentioned previously, em_rxeof processes received packets. Its function definition is listed below, but because this function is fairly long and involved, I’ll introduce it in parts. Here is the first part:
static bool
em_rxeof(struct rx_ring *rxr, int count, int *done)
{
struct adapter *adapter = rxr->adapter;
struct ifnet *ifp = adapter->ifp;
struct e1000_rx_desc *cur;
struct mbuf *mp, *sendmp;
u8 status = 0;
u16 len;
int i, processed, rxdone = 0;
bool eop;
EM_RX_LOCK(rxr);
for (i = rxr->next_to_check, processed = 0; count != 0;) {
if ((ifp->if_drv_flags &
IFF_DRV_RUNNING) == 0)
break;
bus_dmamap_sync(rxr->rxdma.dma_tag,
rxr->rxdma.dma_map,
BUS_DMASYNC_POSTREAD);
mp = sendmp = NULL;
cur =&rxr->rx_base[i];
status = cur->status;
if ((status &E1000_RXD_STAT_DD) == 0)
break;
len = le16toh(cur->length);
eop = (status &E1000_RXD_STAT_EOP) != 0;
if ((cur->errors &E1000_RXD_ERR_FRAME_ERR_MASK) ||
(rxr->discard == TRUE)) {
++ifp->if_ierrors;
++rxr->rx_discarded;
if (!eop)
rxr->discard = TRUE;
else
rxr->discard = FALSE;
em_rx_discard(rxr, i);
goto next_desc;
}
...
This function’s execution is contained primarily within a for loop. This loop begins by
verifying that the
interface is up and running. Then it
synchronizes the DMA buffer currently loaded in
rxr->rxdma.dma_map, which is
rxr->rx_base.
The buffer rxr->rx_base[i] contains a descriptor that describes a received packet. When a packet spans multiple mbufs, rxr->rx_base[i] describes one mbuf in the chain.
If rxr->rx_base[i] lacks the E1000_RXD_STAT_DD flag, the for loop exits. (The E1000_RXD_STAT_DD flag stands for receive descriptor status: descriptor done. We’ll see its effects shortly.)
If rxr->rx_base[i] describes the last mbuf in the chain, the Boolean variable eop, which stands for end of packet, is set to TRUE. (Needless to say, when a packet requires only one mbuf, that mbuf is still the last mbuf in the chain.)
If the packet described by rxr->rx_base[i] contains any errors, it is
discarded. Note that I use the word packet, not mbuf, here, because every mbuf in the packet is discarded.
Now let’s look at the next part of em_rxeof:
...
mp = rxr->rx_buffers[i].m_head;
mp->m_len =len;
rxr->rx_buffers[i].m_head = NULL;
if (rxr->fmp == NULL) {
mp->m_pkthdr.len = len;
rxr->fmp =
rxr->lmp = mp;
} else {
mp->m_flags &= ˜M_PKTHDR;
rxr->lmp->m_next = mp;
rxr->lmp = mp;
rxr->fmp->m_pkthdr.len += len;
}
...
Here, rxr->fmp and
rxr->lmp point to the first and last mbuf in the chain,
mp is the mbuf described by rxr->rx_base[i], and
len is mp’s length.
So, this part simply identifies whether mp is the first mbuf in the chain. If it is not, then mp is
linked into the chain.
Here is the next part of em_rxeof:
...
if (eop) {
--count;
sendmp =
rxr->fmp;
sendmp->m_pkthdr.rcvif = ifp;
++ifp->if_ipackets;
em_receive_checksum(cur, sendmp);
#ifndef __NO_STRICT_ALIGNMENT
if (adapter->max_frame_size >
(MCLBYTES - ETHER_ALIGN) &&
em_fixup_rx(rxr) != 0)
goto skip;
#endif
if (status & E1000_RXD_STAT_VP) {
sendmp->m_pkthdr.ether_vtag =
le16toh(cur->special) &
E1000_RXD_SPC_VLAN_MASK;
sendmp->m_flags |= M_VLANTAG;
}
#ifndef __NO_STRICT_ALIGNMENT
skip:
#endif
rxr->fmp =
rxr->lmp =
NULL;
}
...
If mp is the last mbuf in the chain,
sendmp is set to the
first mbuf in the chain, and the header checksum is
verified.
If our architecture requires strict alignment and
jumbo frames are enabled, em_rxeof
aligns the mbuf chain. (Jumbo frames are Ethernet packets with more than 1500 bytes of data.)
This part concludes by setting rxr->fmp and
rxr->lmp to
NULL. Here is the next part of em_rxeof:
...
next_desc:
cur->status = 0;
++rxdone;
++processed;
if (++i == adapter->num_rx_desc)
i = 0;
if (sendmp != NULL) {
rxr->next_to_check = i;
EM_RX_UNLOCK(rxr);
(*ifp->if_input)(ifp,
sendmp);
EM_RX_LOCK(rxr);
i = rxr->next_to_check;
}
if (processed == 8) {
em_refresh_mbufs(rxr, i);
processed = 0;
}
} /* The end of the for loop. */
...
Here, i is incremented so that em_rxeof can get to the next mbuf in the ring. Then,
if sendmp points to an mbuf chain, em(4)’s input routine is
executed to send that
chain to the upper layers. Afterward, new mbufs are
allocated for em(4).
NOTE
When an mbuf chain is sent to the upper layers, drivers must not access those mbufs anymore. For all intents and purposes, those mbufs have been freed.
To sum up, this for loop simply links together every mbuf in a received packet and then sends that to the upper layers. This continues until every packet in the ring has been processed or rx_process_limit is hit (rx_process_limit was described in Packet Reception in Packet Reception).
Here is the final part of em_rxeof:
...
if (e1000_rx_unrefreshed(rxr))
em_refresh_mbufs(rxr, i);
rxr->next_to_check = i;
if (done != NULL)
*done = rxdone;
EM_RX_UNLOCK(rxr);
return ((status & E1000_RXD_STAT_DD) ? TRUE : FALSE);
}
If there are more packets to process, em_rxeof returns TRUE.
em_handle_rx Function
Recall that when em_rxeof returns TRUE, em_msix_rx queues a task structure (em_msix_rx was discussed in Packet Reception in Packet Reception).
Here is that task structure’s function:
static void
em_handle_rx(void *context, int pending)
{
struct rx_ring *rxr = context;
struct adapter *adapter = rxr->adapter;
bool more;
more =em_rxeof(rxr, adapter->rx_process_limit, NULL);
if (more)
taskqueue_enqueue(rxr->tq, &rxr->rx_task);
else
E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
}
This function is nearly identical to em_msix_rx. When there are more packets to process, em_rxeof just gets called again.
Packet Transmission
To transmit a packet, the network stack calls a driver’s output routine. All output routines end by calling their interface’s transmit or start routine. Here is em(4)’s start routine:
static void
em_start(struct ifnet *ifp)
{
struct adapter *adapter = ifp->if_softc;
struct tx_ring *txr = adapter->tx_rings;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
EM_TX_LOCK(txr);
em_start_locked(ifp, txr);
EM_TX_UNLOCK(txr);
}
}
This start routine acquires a lock and then calls
em_start_locked.
em_start_locked Function
The em_start_locked function is defined as follows:
static void
em_start_locked(struct ifnet *ifp, struct tx_ring *txr)
{
struct adapter *adapter = ifp->if_softc;
struct mbuf *m_head;
EM_TX_LOCK_ASSERT(txr);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (!adapter->link_active)
return;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)
em_txeof(txr);
if (txr->tx_avail < EM_MAX_SCATTER) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(
&ifp->if_snd,
m_head);
if (m_head == NULL)
break;
if (em_xmit(txr, &m_head)) {
if (m_head == NULL)
break;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
ETHER_BPF_MTAP(ifp, m_head);
txr->watchdog_time = ticks;
txr->queue_status = EM_QUEUE_WORKING;
}
}
This function removes one
mbuf from em(4)’s
send queue and
transmits it to the interface. This repeats until the send queue is
empty. (Send queues, as mentioned in Chapter 16, are populated by output routines.)
NOTE
The em_xmit function, which actually transmits the mbufs to the interface, is not detailed in this book, because of its length. It is fairly straightforward, though, so you shouldn’t have any trouble with it.
If the number of available transmit descriptors is less than or equal to EM_TX_CLEANUP_THRESHOLD,
em_txeof is called to reclaim the used descriptors. (A transmit descriptor describes an outgoing packet. If a packet spans multiple mbufs, a transmit descriptor describes one mbuf in the chain.)
If the number of available transmit descriptors is less than EM_MAX_SCATTER, transfers are
stopped.
em_txeof Function
The em_txeof function goes through the transmit descriptors and frees the mbufs for packets that have been transmitted. Its function definition is listed below, but because this function is fairly long and involved, I’ll introduce it in parts. Here is the first part:
static bool
em_txeof(struct tx_ring *txr)
{
struct adapter *adapter = txr->adapter;
struct ifnet *ifp = adapter->ifp;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct em_buffer *tx_buffer;
int processed, first, last, done;
EM_TX_LOCK_ASSERT(txr);
if (txr->tx_avail == adapter->num_tx_desc) {
txr->queue_status = EM_QUEUE_IDLE;
return (FALSE);
}
processed = 0;
first = txr->next_to_clean;
tx_desc = &txr->tx_base[first];
tx_buffer = &txr->tx_buffers[first];
last = tx_buffer->next_eop;
eop_desc = &txr->tx_base[last];
if (++last == adapter->num_tx_desc)
last = 0;
done = last;
...
Here, first is the first mbuf in a chain that housed an outgoing packet,
last is the last mbuf in that chain, and
done is the mbuf after last.
NOTE
Recall that transmit descriptors, and subsequently mbufs, are held in a ring buffer.
The variables tx_desc and
tx_buffer are temporary variables for a transmit descriptor and its associated mbuf.
Now let’s look at the next part of em_txeof:
...
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
BUS_DMASYNC_POSTREAD);
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
while (first != done) {
tx_desc->upper.data = 0;
tx_desc->lower.data = 0;
tx_desc->buffer_addr = 0;
++txr->tx_avail;
++processed;
if (tx_buffer->m_head) {
bus_dmamap_unload(txr->txtag,
tx_buffer->map);
m_freem(tx_buffer->m_head);
tx_buffer->m_head = NULL;
}
tx_buffer->next_eop = −1;
txr->watchdog_time = ticks;
if (++first == adapter->num_tx_desc)
first = 0;
tx_buffer = &txr->tx_buffers[first];
tx_desc = &txr->tx_base[first];
}
++ifp->if_opackets;
last = tx_buffer->next_eop;
if (last != −1) {
eop_desc = &txr->tx_base[last];
if (++last == adapter->num_tx_desc)
last = 0;
done = last;
} else
break;
}
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
BUS_DMASYNC_PREWRITE);
...
This while loop iterates through first to last,
freeing their mbufs and
zeroing their transmit descriptors. (em(4) has a finite number of transmit descriptors. Zeroing a descriptor makes it available again.)
This while loop
determines whether another mbuf chain can be freed by this
while loop.
Here is the final part of em_txeof:
...
txr->next_to_clean = first;
if (!processed && ((ticks - txr->watchdog_time) > EM_WATCHDOG))
txr->queue_status = EM_QUEUE_HUNG;
if (txr->tx_avail > EM_MAX_SCATTER)
ifp->if_drv_flags &= ˜IFF_DRV_OACTIVE;
if (txr->tx_avail == adapter->num_tx_desc) {
txr->queue_status = EM_QUEUE_IDLE;
return (FALSE);
}
return (TRUE);
}
If there are more transmit descriptors to reclaim, em_txeof returns TRUE; otherwise, it returns
FALSE.
If the number of available transmit descriptors is greater than EM_MAX_SCATTER, packets
can be transmitted.
Post Packet Transmission
Whenever an interface transmits a packet, it sends an interrupt. Naturally, this causes its interrupt handler to execute. Here is what executes in em(4):
static void
em_msix_tx(void *arg)
{
struct tx_ring *txr = arg;
struct adapter *adapter = txr->adapter;
bool more;
++txr->tx_irq;
EM_TX_LOCK(txr);
more =em_txeof(txr);
EM_TX_UNLOCK(txr);
if (more)
taskqueue_enqueue(txr->tq, &txr->tx_task);
else
E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
}
NOTE
Because of MSI, em(4) can use a different interrupt handler for post packet transmission and packet reception.
This function simply reclaims the used transmit descriptors. If there are more descriptors to reclaim, a task structure is
queued. Here is that task structure’s function:
static void
em_handle_tx(void *context, int pending)
{
struct tx_ring *txr = context;
struct adapter *adapter = txr->adapter;
struct ifnet *ifp = adapter->ifp;
EM_TX_LOCK(txr);
em_txeof(txr);
em_start_locked(ifp, txr);
E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
EM_TX_UNLOCK(txr);
}
This function first reclaims any used transmit descriptors, after which any packets that may have been halted due to a lack of descriptors are
transmitted.
Conclusion
This chapter and Chapter 16 gave a primer on network devices and drivers. If you’re serious about writing network drivers, you should review em(4) in its entirety. I recommend beginning with its device_attach implementation: em_attach.
References
Baldwin, JohnH. “Locking in the Multithreaded FreeBSD Kernel.” Proceedings of the BSDCon 2002 Conference, February 2002.
Corbet, Jonathan, AlessandroRubini, and GregKroah-Hartman. Linux Device Drivers. 3rd ed. Sebastopol, CA: O’Reilly Media, 2005.
Kernighan, BrianW. and Dennis M.Ritchie. The C Programming Language. 2nd ed. Englewood Cliffs, NJ: Prentice Hall PTR, 1988.
Kong, Joseph. Designing BSD Rootkits. San Francisco, CA: No Starch Press, 2007.
McKusick, MarshallKirk and George V.Neville-Neil. The Design and Implementation of the FreeBSD Operating System. Boston, MA: Addison-Wesley Professional, 2005.
Neville-Neil, GeorgeV. “Networking from the Bottom Up: Device Drivers.” Tutorial given at AsiaBSDCon, January 2010.
Oney, Walter. Programming the Microsoft Windows Driver Model. 2nd ed. Redmond, Washington: Microsoft Press, 2003.
Orwick, Penny and GuySmith. Developing Drivers with the Windows Driver Foundation. Redmond, Washington: Microsoft Press, 2007.
Stevens, W.Richard. Advanced Programming in the UNIX Environment. Reading, MA: Addison-Wesley Professional, 1992.
van derLinden, Peter. Expert C Programming. Englewood Cliffs, NJ: Prentice Hall, 1994.
Index
A NOTE ON THE DIGITAL INDEX
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.
Symbols
%eax value, A Simple Synchronization Problem
*ifattach function, Network Interface Structures
*sleep function, Spin Mutexes
0 constant, Callouts
00-04 bit, Network Interface Media Structure Management Routines
05-07 bit, Network Interface Media Structure Management Routines
08-15 bit, Network Interface Media Structure Management Routines
0xFFFFFFFF, Creating DMA Tags
16-18 bit, Network Interface Media Structure Management Routines
19 bit, Network Interface Media Structure Management Routines
20-27 bit, Network Interface Media Structure Management Routines
28-31 bit, Network Interface Media Structure Management Routines
<bsd.kmod.mk> Makefile, Compiling and Loading
<sys/malloc.h> header, MALLOC_DECLARE Macro
<sys/module.h> header, name
_IO macro, ioctl
_IOR macro, ioctl
_IOW macro, ioctl
_IOWR macro, ioctl
_pcsid structures, foo_pci_probe Function
A
access argument, Creating Dynamic sysctls
acpi_sleep_event event handler, unload Function
acpi_wakeup_event event handler, unload Function
action routines, cam_sim_alloc Function, XPT_PATH_INQ, XPT_RESET_BUS, XPT_GET_TRAN_SETTINGS, XPT_GET_TRAN_SETTINGS, XPT_SCSI_IO, XPT_SCSI_IO
XPT_GET_TRAN_SETTINGS constant, XPT_RESET_BUS
XPT_PATH_INQ constant, cam_sim_alloc Function
XPT_RESET_BUS constant, XPT_PATH_INQ
XPT_RESET_DEV constant, XPT_SCSI_IO
XPT_SCSI_IO constant, XPT_SCSI_IO
XPT_SET_TRAN_SETTINGS constant, XPT_GET_TRAN_SETTINGS
Advanced Technology Attachment Packet Interface (ATAPI), Common Access Method
ahc_action function, How CAM Works
ahc_done function, How CAM Works, mfip_start Function
alignment argument, Contiguous Physical Memory Management Routines, Creating DMA Tags
alternate setting, More About USB Devices
arg argument, Creating Dynamic sysctls, DRIVER_MODULE Macro
at45d_attach function, Tying Everything Together
at45d_delayed_attach function, at45d_attach Function
at45d_get_info function, at45d_delayed_attach Function
at45d_get_status function, at45d_get_info Function
at45d_strategy function, at45d_get_status Function
at45d_task function, at45d_get_status Function
ATAPI (Advanced Technology Attachment Packet Interface), Common Access Method
atomic_add_int function, nmdm_alloc Function
autoconfiguration. See Newbus drivers, at45d_task Function
B
bio structure, Driver Private Data
biodone function, at45d_task Function
biofinish function, at45d_task Function
bioq_flush function, Block I/O Queues
bioq_insert_head function, Block I/O Queues
bioq_insert_tail function, Block I/O Queues
bioq_remove function, Block I/O Queues
bio_pblkno variable, at45d_task Function
bits_per_char function, nmdm_timeout Function
block devices, Types of Device Drivers
block drivers, DEV_MODULE Macro
block I/O queues, Block I/O Queues
block I/O structures, Driver Private Data
block, defined, Storage Drivers
block-centric I/O requests, at45d_task Function
boundary argument, Contiguous Physical Memory Management Routines, Creating DMA Tags
bt.c source file, XPT_SCSI_IO
buffers, DMA, Implementing DMA, Tearing Down DMA Tags, bus_dma_segment Structures, bus_dmamap_load Function, bus_dmamap_load Function, bus_dmamap_load_mbuf_sg Function, bus_dmamap_load_mbuf_sg Function
bus_dmamap_load function, bus_dma_segment Structures
bus_dmamap_load_mbuf function, bus_dmamap_load Function
bus_dmamap_load_mbuf_sg function, bus_dmamap_load Function
bus_dmamap_load_uio function, bus_dmamap_load_mbuf_sg Function
bus_dmamap_unload function, bus_dmamap_load_mbuf_sg Function
bus_dma_segment structures, Tearing Down DMA Tags
buflen argument, bus_dmamap_load Function
bufsize field, USB Configuration Structures
bulk endpoints, About USB Devices
busname argument, DRIVER_MODULE Macro
bus_alloc_resource function, Hardware Resource Management, I/O Ports and I/O Memory
bus_deactivate_resource function, Hardware Resource Management
bus_dmamap_create function, Implementing DMA, Tearing Down DMA Tags
bus_dmamap_destroy function, Tearing Down DMA Tags
bus_dmamap_load function, Implementing DMA, bus_dma_segment Structures
bus_dmamap_load_mbuf function, bus_dmamap_load Function
bus_dmamap_load_mbuf_sg function, bus_dmamap_load Function
bus_dmamap_load_uio function, bus_dmamap_load_mbuf_sg Function
bus_dmamap_unload function, bus_dmamap_load_mbuf_sg Function
bus_dmamem_alloc function, bus_dmamap_load_mbuf_sg Function, A Straightforward Example
bus_dmamem_free function, DMA Map Management Routines, Part 2
BUS_DMASYNC_POSTREAD constant, A Straightforward Example
BUS_DMASYNC_PREWRITE constant, A Straightforward Example
BUS_DMA_ALLOCNOW constant, Creating DMA Tags
BUS_DMA_COHERENT constant, Tearing Down DMA Tags, DMA Map Management Routines, Part 2
BUS_DMA_NOCACHE constant, Memory Barriers, bus_dmamap_load Function, DMA Map Management Routines, Part 2
BUS_DMA_NOWAIT constant, bus_dmamap_load Function, DMA Map Management Routines, Part 2
bus_dma_segment structures, Tearing Down DMA Tags
bus_dma_tag_create function, Implementing DMA
bus_dma_tag_destroy function, Creating DMA Tags
BUS_DMA_WAITOK constant, DMA Map Management Routines, Part 2
BUS_DMA_ZERO constant, DMA Map Management Routines, Part 2
BUS_PROBE_SPECIFIC success code, pint_probe Function
bus_read_N functions, Reading from I/O Ports and I/O Memory
bus_release_resource function, Hardware Resource Management
bus_setup_intr function, Registering an Interrupt Handler
BUS_SPACE_BARRIER_READ constant, Memory Barriers
BUS_SPACE_BARRIER_WRITE constant, Memory Barriers
BUS_SPACE_MAXADDR constant, Creating DMA Tags
bus_teardown_intr function, Registering an Interrupt Handler
bus_write_multi_N functions, Writing to I/O Ports and I/O Memory
bus_write_N functions, Writing to I/O Ports and I/O Memory
bus_write_region_N functions, Writing to I/O Ports and I/O Memory
C
callback argument, bus_dma_segment Structures
callback field, USB Configuration Structures
callback2 argument, bus_dmamap_load Function
callback2 function, bus_dmamap_load Function
callbackarg argument, bus_dma_segment Structures
callouts, Callouts
callout_drain function, Callouts
callout_init function, Kernel Event Handlers
callout_init_mtx function, Callouts
CALLOUT_MPSAFE constant, Callouts
callout_reset function, Callouts
CALLOUT_RETURNUNLOCKED constant, Callouts
callout_schedule function, Callouts
CALLOUT_SHAREDLOCK constant, Callouts
callout_stop function, Callouts
CAM (Common Access Method) standard, Common Access Method, A (Somewhat) Simple Example, mfip_attach Function, mfip_detach Function, mfip_detach Function, mfip_action Function, mfip_action Function, mfip_start Function, SIM Registration Routines, SIM Registration Routines, SIM Registration Routines, cam_sim_alloc Function, cam_sim_alloc Function, XPT_PATH_INQ, XPT_RESET_BUS, XPT_RESET_BUS, XPT_RESET_BUS, XPT_GET_TRAN_SETTINGS, XPT_SCSI_IO, XPT_SCSI_IO
action routines, cam_sim_alloc Function, XPT_PATH_INQ, XPT_RESET_BUS, XPT_RESET_BUS, XPT_GET_TRAN_SETTINGS, XPT_SCSI_IO, XPT_SCSI_IO
XPT_GET_TRAN_SETTINGS constant, XPT_RESET_BUS
XPT_PATH_INQ constant, cam_sim_alloc Function
XPT_RESET_BUS constant, XPT_PATH_INQ
XPT_RESET_DEV constant, XPT_SCSI_IO
XPT_SCSI_IO constant, XPT_SCSI_IO
XPT_SET_TRAN_SETTINGS constant, XPT_GET_TRAN_SETTINGS
HBA (host bus adapter) driver example, A (Somewhat) Simple Example, mfip_attach Function, mfip_detach Function, mfip_detach Function, mfip_action Function, mfip_action Function, mfip_start Function
mfip_action function, mfip_detach Function
mfip_attach function, A (Somewhat) Simple Example
mfip_detach function, mfip_attach Function
mfip_done function, mfip_start Function
mfip_poll function, mfip_action Function
mfip_start function, mfip_action Function
overview, Common Access Method
SIM registration routines, SIM Registration Routines, SIM Registration Routines, SIM Registration Routines, cam_sim_alloc Function
cam_simq_alloc function, SIM Registration Routines
cam_sim_alloc function, SIM Registration Routines
xpt_bus_register function, cam_sim_alloc Function
CAM Control Block (CCB), How CAM Works
camisr function, How CAM Works
cam_simq_alloc function, SIM Registration Routines
cam_sim_alloc function, mfip_attach Function, SIM Registration Routines
CCB (CAM Control Block), How CAM Works
ccb_h.func_code variable, mfip_action Function
ccb_pathinq structure, cam_sim_alloc Function, XPT_PATH_INQ
ccb_scsiio structure, XPT_SCSI_IO
ccb_trans_settings structure, XPT_GET_TRAN_SETTINGS
chan argument, Voluntary Context Switching, or Sleeping
change_callback argument, Network Interface Media Structure Management Routines
character devices, Types of Device Drivers
character drivers, Compiling and Loading, d_foo Functions, Character Device Switch Table, Character Device Switch Table, Character Device Switch Table, Mostly Harmless, echo_write Function, echo_read Function, DEV_MODULE Macro, DEV_MODULE Macro
character device switch table, Character Device Switch Table
destroy_dev function, Character Device Switch Table
DEV_MODULE macro, DEV_MODULE Macro
d_foo function, Compiling and Loading
echo_modevent function, echo_read Function
echo_read function, echo_write Function
echo_write function, Mostly Harmless
loading, DEV_MODULE Macro
make_dev function, Character Device Switch Table
ciss_setup_msix function, mbuf Structures
commands for ioctl interface, ioctl
Common Access Method (CAM) standard. See CAM standard, Compiling and Loading
compiling KLDs, Compiling and Loading
condition variables, Condition Variables
configuration structures for USB drivers, USB Configuration Structures, USB Configuration Structures, Optional Fields, USB Transfers (in FreeBSD), USB Transfers (in FreeBSD)
management routines for, USB Transfers (in FreeBSD)
mandatory fields, USB Configuration Structures
optional fields, USB Configuration Structures
transfer flags, Optional Fields
configurations, More About USB Devices
contexts for sysctl interface, Implementing sysctls, Part 1
contigfree function, Tying Everything Together, Contiguous Physical Memory Management Routines
contigmalloc function, Tying Everything Together
contiguous physical memory, Contiguous Physical Memory Management Routines
control endpoints, About USB Devices
cookiep argument, Registering an Interrupt Handler
count argument, Hardware Resource Management
count value, A Simple Synchronization Problem
ctx argument, Creating Dynamic sysctls
cv_broadcastpri function, Condition Variable Management Routines
cv_destroy function, Condition Variable Management Routines
cv_init function, Condition Variable Management Routines
cv_timedwait function, Condition Variable Management Routines
cv_timedwait_sig function, Condition Variable Management Routines
cv_wait_sig function, Condition Variable Management Routines
cv_wait_unlock function, Condition Variable Management Routines
cv_wmesg function, Condition Variable Management Routines
D
d (descriptor) argument, Invoking ioctl
dadone function, How CAM Works
dastart function, How CAM Works
dastrategy function, Common Access Method
data argument, name
Data Carrier Detect (DCD), nmdm_task_tty Function
data transfers for USB drivers, USB Transfer Flags
debug.sleep.test sysctl, load Function
DECLARE_MODULE macro, name, name, name, name, name
data argument, name
name argument, name
order argument, name
sub argument, name
delaying execution, Voluntary Context Switching, or Sleeping, Voluntary Context Switching, or Sleeping, Implementing Sleeps and Condition Variables, sleep_modevent Function, load Function, sleep_thread Function, sleep_thread Function, unload Function, Kernel Event Handlers, Callouts, Callouts, Taskqueues, Taskqueues, Global Taskqueues
callouts, Callouts
event handlers for, unload Function
load function, sleep_modevent Function
sleeping, Voluntary Context Switching, or Sleeping
sleep_modevent function, Implementing Sleeps and Condition Variables
sleep_thread function, load Function
sysctl_debug_sleep_test function, sleep_thread Function
taskqueues, Callouts, Taskqueues, Taskqueues, Global Taskqueues
global, Global Taskqueues
management routines for, Taskqueues
overview, Callouts
unload function, sleep_thread Function
voluntary context switching, Voluntary Context Switching, or Sleeping
descr argument, Creating Dynamic sysctls
descriptive fields for disk structures, disk Structures
descriptor (d argument), Invoking ioctl
destroying tags for DMA, Creating DMA Tags
destroy_dev function, Character Device Switch Table, race_modevent Function
devclass argument, DRIVER_MODULE Macro
device method table, Device Method Table
devices, Building and Running Modules, Building and Running Modules, More About USB Devices, More About USB Devices
configuration of, More About USB Devices
defined, Building and Running Modules
driver types, Building and Running Modules
device_attach function, Autoconfiguration and Newbus Drivers
device_detach function, Autoconfiguration and Newbus Drivers, device_foo Functions
device_foo functions, Autoconfiguration and Newbus Drivers
device_identify function, Autoconfiguration and Newbus Drivers
device_probe function, Autoconfiguration and Newbus Drivers
device_resume function, Autoconfiguration and Newbus Drivers
device_shutdown function, Autoconfiguration and Newbus Drivers
device_suspend function, Autoconfiguration and Newbus Drivers
dev_clone event handler, unload Function, nmdm_modevent Function
DEV_MODULE macro, DEV_MODULE Macro
Direct Memory Access (DMA). See DMA, disk Structures
direction field, USB Configuration Structures
disk structures, disk Structures, disk Structures, Descriptive Fields, Descriptive Fields, Descriptive Fields, Driver Private Data, Driver Private Data
descriptive fields, disk Structures
driver private data, Driver Private Data
management routines for, Driver Private Data
mandatory media properties, Descriptive Fields
optional media properties, Descriptive Fields
storage device methods, Descriptive Fields
DISKFLAG_CANDELETE constant, disk Structures
DISKFLAG_CANFLUSHCACHE constant, disk Structures
DISKFLAG_NEEDSGIANT constant, disk Structures
dismantling transfers using DMA, Implementing DMA
DMA (Direct Memory Access), Direct Memory Access, Implementing DMA, Implementing DMA, Implementing DMA, Creating DMA Tags, Creating DMA Tags, Creating DMA Tags, Tearing Down DMA Tags, Tearing Down DMA Tags, bus_dma_segment Structures, bus_dmamap_load Function, bus_dmamap_load Function, bus_dmamap_load Function, bus_dmamap_load Function, bus_dmamap_load_mbuf_sg Function, bus_dmamap_load_mbuf_sg Function, DMA Map Management Routines, Part 2, DMA Map Management Routines, Part 2, A Straightforward Example
buffers, Tearing Down DMA Tags, bus_dma_segment Structures, bus_dmamap_load Function, bus_dmamap_load Function, bus_dmamap_load Function, bus_dmamap_load_mbuf_sg Function, bus_dmamap_load_mbuf_sg Function, A Straightforward Example
bus_dmamap_load function, bus_dma_segment Structures
bus_dmamap_load_mbuf function, bus_dmamap_load Function
bus_dmamap_load_mbuf_sg function, bus_dmamap_load Function
bus_dmamap_load_uio function, bus_dmamap_load_mbuf_sg Function
bus_dmamap_unload function, bus_dmamap_load_mbuf_sg Function
bus_dma_segment structures, Tearing Down DMA Tags
synchronizing, A Straightforward Example
example using, DMA Map Management Routines, Part 2
maps, Tearing Down DMA Tags, DMA Map Management Routines, Part 2
overview, Direct Memory Access
tags for, Creating DMA Tags, Creating DMA Tags, Creating DMA Tags
creating, Creating DMA Tags
destroying, Creating DMA Tags
transfers using, Implementing DMA, Implementing DMA, Implementing DMA
dismantling, Implementing DMA
initiating, Implementing DMA
dmat argument, Creating DMA Tags, bus_dmamap_load Function, A Straightforward Example
dontcare_mask argument, Network Interface Media Structures
driver argument, DRIVER_MODULE Macro
driver private data, Driver Private Data
DRIVER_MODULE macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro
arg argument, DRIVER_MODULE Macro
busname argument, DRIVER_MODULE Macro
devclass argument, DRIVER_MODULE Macro
driver argument, DRIVER_MODULE Macro
evh argument, DRIVER_MODULE Macro
name argument, DRIVER_MODULE Macro
ds_addr field, bus_dma_segment Structures
dump routines, Storage Device Methods
dynamic node, SYSCTL_CHILDREN Macro
dynamic sysctl, Implementing sysctls, Part 1
d_close field, Descriptive Fields
d_close function, A More Complex Synchronization Problem
d_drv1 field, Driver Private Data
d_flags field, Descriptive Fields
d_foo function, Compiling and Loading, race_modevent Function, foo_pci_attach Function
d_fwheads field, Descriptive Fields
d_fwsectors field, Descriptive Fields
d_ident field, Descriptive Fields
d_ioctl field, Descriptive Fields
d_ioctl function, ioctl, A More Complex Synchronization Problem
d_maxsize field, Descriptive Fields
d_mediasize field, Descriptive Fields
d_open field, Descriptive Fields
d_open function, A More Complex Synchronization Problem
d_sectorsize field, Descriptive Fields
d_strategy field, Descriptive Fields
d_stripesize field, Descriptive Fields
E
ECHO_CLEAR_BUFFER command, Implementing ioctl
echo_ioctl function, echo_ioctl Function
echo_modevent function, echo_read Function, echo_ioctl Function
echo_read function, echo_write Function
ECHO_SET_BUFFER_SIZE command, Implementing ioctl
echo_set_buffer_size function, echo_write Function
echo_write function, Mostly Harmless, Implementing ioctl
ECP (Extended Capabilities Port) mode, lpt_write Function
em(4) driver, Network Drivers, Part 2: Packet Reception and Transmission
em_handle_rx function, em_rxeof Function
em_rxeof function, Packet Reception
em_start_locked function, Packet Transmission
em_txeof function, em_start_locked Function
em_xmit function, em_start_locked Function
end argument, Hardware Resource Management
end of packet (eop), em_rxeof Function
endpoint, About USB Devices
endpoint field, USB Configuration Structures
Enhanced Parallel Port (EPP), lpt_write Function
ENXIO error code, pint_attach Function
eop (end of packet), em_rxeof Function
EPP (Enhanced Parallel Port), lpt_write Function
ep_index field, Optional Fields
ether_ifattach function, Network Interface Structure Management Routines
ether_ifdetach function, ether_ifattach Function
event handlers, unload Function, Taskqueue Management Routines
EVENTHANDLER_DEREGISTER macro, Kernel Event Handlers
EVENTHANDLER_INVOKE macro, Kernel Event Handlers
EVENTHANDLER_PRI_ANY constant, Kernel Event Handlers
EVENTHANDLER_REGISTER macro, Kernel Event Handlers
evh argument, DRIVER_MODULE Macro
exclusive holds, Don’t Panic
Extended Capabilities Port (ECP) mode, lpt_write Function
Extended Message Signaled Interrupts (MSI-X), Message Signaled Interrupts
extended mode, lpt_write Function
ext_buffer flag, USB Transfer Flags
F
Fibre Channel (FC), Common Access Method
filter argument, Registering an Interrupt Handler
filter routine, Registering an Interrupt Handler
FILTER_HANDLED constant, Interrupt Handlers in FreeBSD
FILTER_SCHEDULE_THREAD constant, Interrupt Handlers in FreeBSD
FILTER_STRAY constant, Interrupt Handlers in FreeBSD
filtfunc argument, Creating DMA Tags
filtfunc function, Creating DMA Tags
filtfuncarg argument, Creating DMA Tags
FireWire (IEEE 1394), Common Access Method
flags argument, Memory Management Routines, Registering an Interrupt Handler, Creating DMA Tags
flags field, Optional Fields
flash memory driver example, Tying Everything Together, Tying Everything Together, at45d_attach Function, at45d_delayed_attach Function, at45d_get_info Function, at45d_get_status Function, at45d_get_status Function
at45d_attach function, Tying Everything Together
at45d_delayed_attach function, at45d_attach Function
at45d_get_info function, at45d_delayed_attach Function
at45d_get_status function, at45d_get_info Function
at45d_strategy function, at45d_get_status Function
at45d_task function, at45d_get_status Function
foo bytes, ulpt_write_callback Function
foo lock, Preventing Race Conditions
foo_callback function, bus_dmamap_load Function
foo_pci_attach function, foo_pci_probe Function
foo_pci_detach function, foo_pci_attach Function
foo_pci_probe function, foo_pci_probe Function
force_short_xfer flag, USB Transfer Flags
format argument, Creating Dynamic sysctls
frames field, Optional Fields
free function, Memory Management Routines
G
g (group) argument, ioctl
global taskqueues, Global Taskqueues
H
handler argument, Creating Dynamic sysctls
hardware resource management with Newbus drivers, foo_pci_detach Function
HBA (host bus adapter) driver, A (Somewhat) Simple Example, mfip_attach Function, mfip_detach Function, mfip_detach Function, mfip_action Function, mfip_action Function, mfip_start Function
mfip_action function, mfip_detach Function
mfip_attach function, A (Somewhat) Simple Example
mfip_detach function, mfip_attach Function
mfip_done function, mfip_start Function
mfip_poll function, mfip_action Function
mfip_start function, mfip_action Function
Hello, world! KLD, order
highaddr argument, Creating DMA Tags
host bus adapter (HBA) driver. See HBA driver, Common Access Method
I
i-Opener LEDs driver, Tying Everything Together, Tying Everything Together, led_probe Function, led_probe Function, led_probe Function, led_detach Function, led_close Function, led_close Function, led_read Function
led_attach function, led_probe Function
led_close function, led_close Function
led_detach function, led_probe Function
led_identify function, Tying Everything Together
led_open function, led_detach Function
led_probe function, Tying Everything Together
led_read function, led_close Function
led_write function, led_read Function
I/O (input/output) operations. See also MMIO; PMIO, ioctl, ioctl, ioctl, Implementing ioctl, echo_write Function, echo_ioctl Function, echo_ioctl Function, echo_modevent Function, Invoking ioctl, Implementing sysctls, Part 1, Implementing sysctls, Part 1, Implementing sysctls, Part 1, Creating Dynamic sysctls, Creating Dynamic sysctls, Implementing sysctls, Part 2
ioctl interface, ioctl, ioctl, Implementing ioctl, echo_write Function, echo_ioctl Function, echo_ioctl Function, echo_modevent Function
commands for, ioctl
echo_ioctl function, echo_ioctl Function
echo_modevent function, echo_ioctl Function
echo_set_buffer_size function, echo_write Function
echo_write function, Implementing ioctl
invoking, echo_modevent Function
sysctl interface, Invoking ioctl, Implementing sysctls, Part 1, Implementing sysctls, Part 1, Implementing sysctls, Part 1, Creating Dynamic sysctls, Creating Dynamic sysctls, Implementing sysctls, Part 2
contexts for, Implementing sysctls, Part 1
dynamic sysctl, Implementing sysctls, Part 1
overview, Invoking ioctl
SYSCTL_CHILDREN macro, Creating Dynamic sysctls
sysctl_set_buffer_size function, Implementing sysctls, Part 2
SYSCTL_STATIC_CHILDREN macro, Creating Dynamic sysctls
IEEE 1394 (FireWire), Common Access Method
if* structures, Hello, world!
ifaddr_event event handler, Kernel Event Handlers
ifmedia structure, Network Interface Media Structure Management Routines
ifmedia_add function, Network Interface Media Structure Management Routines
ifmedia_removeall function, Network Interface Media Structure Management Routines
ifmedia_set function, Network Interface Media Structure Management Routines
IFM_GMASK mask, Network Interface Media Structure Management Routines
IFM_IMASK mask, Network Interface Media Structure Management Routines
IFM_MMASK mask, Network Interface Media Structure Management Routines
IFM_NMASK mask, Network Interface Media Structure Management Routines
IFM_OMASK mask, Network Interface Media Structure Management Routines
IFM_TMASK mask, Network Interface Media Structure Management Routines
ifnet structure, Network Drivers, Part 1: Data Structures, Network Interface Structures
ifnet_arrival_event event handler, Kernel Event Handlers
ifnet_departure_event event handler, Kernel Event Handlers
if_clone_event event handler, Kernel Event Handlers
if_index field, Optional Fields
if_init field, Network Interface Structures
if_initname function, Network Interface Structure Management Routines
if_input field, Network Interface Structures
if_ioctl field, Network Interface Structures
if_output field, Network Interface Structures
if_qflush field, Network Interface Structures
if_reassign field, Network Interface Structures
if_resolvemulti field, Network Interface Structures
if_start field, Network Interface Structures
if_transmit field, Network Interface Structures
if_watchdog field, Network Interface Structures
implementing MSI, mbuf Structures
init routines, Network Interface Structures
initiating transfers using DMA, Implementing DMA
input routine, Network Interface Structures
input/output (I/O) operations. See I/O operations, Network Interface Structures
Intel PCI Gigabit Ethernet adapter driver, Network Interface Media Structure Management Routines
Intelligent Platform Management Interface (IPMI) driver. See IPMI driver, Network Interface Media Structure Management Routines
interfaces, Character Drivers, More About USB Devices, Network Drivers, Part 1: Data Structures
interrupt endpoints, About USB Devices
interrupt handlers, Interrupt Handling, Interrupt Handling, Registering an Interrupt Handler, Implementing an Interrupt Handler, Implementing an Interrupt Handler, pint_probe Function, pint_probe Function, pint_probe Function, pint_attach Function, pint_attach Function, pint_open Function, pint_close Function, pint_close Function, pint_read Function, pint_intr Function
examples of, Implementing an Interrupt Handler, Implementing an Interrupt Handler, pint_probe Function, pint_probe Function, pint_attach Function, pint_attach Function, pint_open Function, pint_close Function, pint_close Function, pint_read Function
pint_attach function, pint_probe Function
pint_close function, pint_open Function
pint_detach function, pint_attach Function
pint_identify function, Implementing an Interrupt Handler
pint_intr function, pint_read Function
pint_open function, pint_attach Function
pint_probe function, Implementing an Interrupt Handler
pint_read function, pint_close Function
pint_write function, pint_close Function
on parallel port, pint_intr Function
overview, Interrupt Handling, Registering an Interrupt Handler
registering, Interrupt Handling
interrupt, defined, Interrupt Handling
interrupt-request lines (IRQs), Hardware Resource Management
interval field, Optional Fields
INTR_ENTROPY constant, Registering an Interrupt Handler
INTR_MPSAFE constant, Registering an Interrupt Handler
INVARIANTS option, Memory Management Routines
ioctl commands, ioctl
ioctl interface, ioctl, ioctl, Implementing ioctl, echo_write Function, echo_ioctl Function, echo_ioctl Function, echo_modevent Function
commands for, ioctl
echo_ioctl function, echo_ioctl Function
echo_modevent function, echo_ioctl Function
echo_set_buffer_size function, echo_write Function
echo_write function, Implementing ioctl
invoking, echo_modevent Function
IPMI (Intelligent Platform Management Interface) driver, Code Analysis, ipmi_pci_probe Function, ipmi_pci_attach Function, ipmi_pci_attach Function, ipmi_pci_attach Function, ipmi_pci_attach Function
ipmi2_pci_attach function, ipmi_pci_attach Function
ipmi2_pci_probe function, ipmi_pci_attach Function
ipmi_pci_attach function, ipmi_pci_attach Function
ipmi_pci_match function, ipmi_pci_probe Function
ipmi_pci_probe function, Code Analysis
ipmi2_pci_attach function, ipmi_pci_attach Function
ipmi2_pci_probe function, ipmi_pci_attach Function
ipmi_attached variable, ipmi_pci_probe Function
ipmi_identifiers array, ipmi_pci_probe Function
ipmi_pci_attach function, ipmi_pci_attach Function
ipmi_pci_match function, ipmi_pci_probe Function
ipmi_pci_probe function, Code Analysis
IRQs (interrupt-request lines), foo_pci_detach Function
isochronous endpoints, About USB Devices
ithread argument, Registering an Interrupt Handler
ithread routine, Interrupt Handlers in FreeBSD
K
Keyboard Controller Style (KCS) mode, ipmi_pci_attach Function
KLDs (loadable kernel modules), Types of Device Drivers, name, name, name, name, name, order, Compiling and Loading, Compiling and Loading, d_foo Functions, Character Device Switch Table, Character Device Switch Table, Character Device Switch Table, Mostly Harmless, echo_write Function, echo_read Function, DEV_MODULE Macro, DEV_MODULE Macro, DEV_MODULE Macro, DEV_MODULE Macro
block drivers, DEV_MODULE Macro
character drivers, Compiling and Loading, d_foo Functions, Character Device Switch Table, Character Device Switch Table, Character Device Switch Table, Mostly Harmless, echo_write Function, echo_read Function, DEV_MODULE Macro, DEV_MODULE Macro
character device switch table, Character Device Switch Table
destroy_dev function, Character Device Switch Table
DEV_MODULE macro, DEV_MODULE Macro
d_foo function, Compiling and Loading
echo_modevent function, echo_read Function
echo_read function, echo_write Function
echo_write function, Mostly Harmless
loading, DEV_MODULE Macro
make_dev function, Character Device Switch Table
compiling and loading, Compiling and Loading
DECLARE_MODULE macro, name, name, name, name, name
data argument, name
name argument, name
order argument, name
sub argument, name
Hello, world! example, order
module event handlers, Types of Device Drivers
kldunload -f command, race_modevent Function
L
LED driver, Tying Everything Together, Tying Everything Together, led_probe Function, led_probe Function, led_probe Function, led_detach Function, led_close Function, led_close Function, led_read Function
led_attach function, led_probe Function
led_close function, led_close Function
led_detach function, led_probe Function
led_identify function, Tying Everything Together
led_open function, led_detach Function
led_probe function, Tying Everything Together
led_read function, led_close Function
led_write function, led_read Function
len argument, Creating Dynamic sysctls
load function, sleep_modevent Function
loadable kernel modules (KLDs). See KLDs, sleep_modevent Function
loading, Compiling and Loading, DEV_MODULE Macro, DEV_MODULE Macro
character drivers, DEV_MODULE Macro
KLDs, Compiling and Loading
lockfunc argument, Creating DMA Tags
lockfuncarg argument, Creating DMA Tags
locks, Preventing Race Conditions
longdesc argument, Memory Management Routines
lowaddr argument, Creating DMA Tags
lptcontrol(8) utility, lpt_ioctl Function
lpt_attach function, lpt_detect Function
lpt_close function, lpt_push_bytes Function
lpt_detach function, lpt_attach Function
lpt_detect function, lpt_detect Function
lpt_identify function, Code Analysis
lpt_intr function, lpt_write Function
lpt_ioctl function, lpt_close Function
lpt_open function, lpt_open Function
lpt_port_test function, lpt_detect Function, lpt_detect Function
lpt_probe function, Code Analysis
lpt_push_bytes function, lpt_timeout Function
lpt_read function, lpt_open Function
lpt_release_ppbus function, lpt_ioctl Function
lpt_request_ppbus function, lpt_ioctl Function
lpt_timeout function, lpt_timeout Function
lpt_write function, lpt_read Function
LP_BUSY flag, lpt_intr Function
LP_BYPASS flag, lpt_write Function
M
Makefiles, Compiling and Loading
make_dev function, Character Device Switch Table
malloc function, Memory Management Routines
MALLOC_DECLARE macro, MALLOC_DECLARE Macro
MALLOC_DEFINE macro, Memory Management Routines
malloc_type structures, Memory Management Routines, MALLOC_DECLARE Macro, MALLOC_DECLARE Macro
MALLOC_DECLARE macro, MALLOC_DECLARE Macro
MALLOC_DEFINE macro, Memory Management Routines
management routines, Spin Mutexes, Don’t Panic, Implementing Shared/Exclusive Locks, Condition Variables, Condition Variables, Taskqueues, Tearing Down DMA Tags, bus_dmamap_load_mbuf_sg Function, Driver Private Data, Network Interface Structures, Network Interface Media Structures, MSI Management Routines
for condition variables, Condition Variables
for disk structures, Driver Private Data
for DMA maps, Tearing Down DMA Tags, bus_dmamap_load_mbuf_sg Function
for MSI (Message Signaled Interrupts), MSI Management Routines
for mutex locks, Spin Mutexes
for network interface media structures, Network Interface Media Structures
for network interface structures, Network Interface Structures
for rw (reader/writer) locks, Implementing Shared/Exclusive Locks
for sx (shared/exclusive) locks, Don’t Panic
for taskqueues, Taskqueues
mandatory fields for USB drivers, USB Configuration Structures
mandatory media properties for disk structures, Descriptive Fields
manual_status flag, USB Transfer Flags
maps, DMA, Tearing Down DMA Tags, bus_dmamap_load_mbuf_sg Function
masks, for ignoring bits, Network Interface Media Structure Management Routines
maxsegsz argument, Creating DMA Tags
maxsize argument, Creating DMA Tags
max_dev_transactions argument, SIM Registration Routines, cam_sim_alloc Function
MAX_EVENT constant, Implementing Sleeps and Condition Variables
max_tagged_dev_transactions argument, cam_sim_alloc Function
mbuf argument, bus_dmamap_load Function
mbuf chain, mbuf Structures
mbuf structures, Hello, world!
media properties for disk structures, Descriptive Fields, Descriptive Fields, Descriptive Fields
mandatory, Descriptive Fields
optional, Descriptive Fields
memory allocation, Allocating Memory, Memory Management Routines, MALLOC_DECLARE Macro, MALLOC_DECLARE Macro, Tying Everything Together, Contiguous Physical Memory Management Routines
contiguous physical memory, Contiguous Physical Memory Management Routines
malloc_type structures, Memory Management Routines, MALLOC_DECLARE Macro, MALLOC_DECLARE Macro
MALLOC_DECLARE macro, MALLOC_DECLARE Macro
MALLOC_DEFINE macro, Memory Management Routines
overview, Allocating Memory
memory barriers, Memory Barriers
memory-mapped I/O (MMIO). See MMIO, mbuf Structures
Message Signaled Interrupts (MSI), mbuf Structures, Message Signaled Interrupts, MSI Management Routines
implementing, mbuf Structures
management routines for, MSI Management Routines
methods structure for USB drivers, USB Configuration Structure Management Routines
mfi(4) code base, mfip_done Function
mfip_action function, mfip_detach Function
mfip_attach function, A (Somewhat) Simple Example
mfip_detach function, mfip_attach Function
mfip_done function, mfip_start Function
mfip_poll function, mfip_action Function
mfip_start function, mfip_action Function
mfi_intr function, mfip_start Function
mfi_startio function, mfip_start Function, XPT_SCSI_IO
MMIO (memory-mapped I/O). See also I/O operations; PMIO, I/O Ports and I/O Memory, Reading from I/O Ports and I/O Memory, Writing to I/O Ports and I/O Memory, Memory Barriers, Memory Barriers
and memory barriers, Memory Barriers
reading from, I/O Ports and I/O Memory
stream operations, Writing to I/O Ports and I/O Memory
writing to, Reading from I/O Ports and I/O Memory
modem drivers. See virtual null modem, Module Event Handler
modeventtype_t argument, Module Event Handler
module event handlers, Types of Device Drivers
MOD_QUIESCE constant, race_modevent Function
MSI (Message Signaled Interrupts), mbuf Structures, mbuf Structures, MSI Management Routines
implementing, mbuf Structures
management routines for, MSI Management Routines
MSI message, Message Signaled Interrupts
MSI-X (Extended Message Signaled Interrupts), mbuf Structures
MSI-X message, Message Signaled Interrupts
msleep_spin function, Voluntary Context Switching, or Sleeping
MTX_DEF constant, Mutex Management Routines
mtx_destroy function, Mutex Management Routines
MTX_DUPOK constant, Mutex Management Routines
mtx_init function, Mutex Management Routines
MTX_NOPROFILE constant, Mutex Management Routines
MTX_NOWITNESS constant, Mutex Management Routines
MTX_QUIET constant, Mutex Management Routines
MTX_RECURSE constant, Mutex Management Routines
MTX_SPIN constant, Mutex Management Routines
mtx_trylock function, Mutex Management Routines
mtx_unlock_spin function, Mutex Management Routines
mutex locks, Mutexes, Spin Mutexes, Spin Mutexes, Sleep Mutexes, Implementing Mutexes
management routines for, Spin Mutexes
race_modevent function, Implementing Mutexes
sleep mutexes, Sleep Mutexes
spin mutexes, Mutexes
mword value, Network Interface Media Structure Management Routines
M_ECHO structure, Tying Everything Together
M_NOWAIT constant, Memory Management Routines, Contiguous Physical Memory Management Routines
M_WAITOK constant, Memory Management Routines, Contiguous Physical Memory Management Routines
M_ZERO constant, Memory Management Routines, Contiguous Physical Memory Management Routines
N
n argument, Defining ioctl Commands
name argument, name, name, Creating Dynamic sysctls, DRIVER_MODULE Macro
description of, Creating Dynamic sysctls
for DECLARE_MODULE macro, name
for DRIVER_MODULE macro, DRIVER_MODULE Macro
network devices, Types of Device Drivers
network drivers, Network Interface Structures, Network Interface Structure Management Routines, Network Interface Structure Management Routines, ether_ifattach Function, Network Interface Media Structures, Network Interface Media Structure Management Routines, Network Interface Media Structure Management Routines, Hello, world!, mbuf Structures, mbuf Structures, MSI Management Routines, Network Drivers, Part 2: Packet Reception and Transmission, Packet Transmission, em_txeof Function, em_txeof Function
example of, Network Interface Media Structure Management Routines
mbuf structures, Hello, world!
MSI (Message Signaled Interrupts), mbuf Structures, mbuf Structures, MSI Management Routines
implementing, mbuf Structures
management routines for, MSI Management Routines
network interface media structures, Network Interface Media Structures
network interface structures, Network Interface Structures, Network Interface Structure Management Routines, Network Interface Structure Management Routines, ether_ifattach Function
ether_ifattach function, Network Interface Structure Management Routines
ether_ifdetach function, ether_ifattach Function
management routines for, Network Interface Structures
packets., Network Drivers, Part 2: Packet Reception and Transmission, Packet Transmission, em_txeof Function, em_txeof Function
post transmitting, em_txeof Function
receiving, Network Drivers, Part 2: Packet Reception and Transmission
transmitting, Packet Transmission
network interface media structures, Network Interface Media Structures
network interface structures, Network Interface Structures, Network Interface Structure Management Routines, Network Interface Structure Management Routines, ether_ifattach Function
ether_ifattach function, Network Interface Structure Management Routines
ether_ifdetach function, ether_ifattach Function
management routines for, Network Interface Structures
Newbus drivers, Newbus and Resource Allocation, Autoconfiguration and Newbus Drivers, Autoconfiguration and Newbus Drivers, Device Method Table, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, foo_pci_probe Function, foo_pci_probe Function, foo_pci_attach Function, foo_pci_attach Function, foo_pci_attach Function, foo_pci_detach Function, foo_pci_detach Function
device method table, Device Method Table
device_foo functions, Autoconfiguration and Newbus Drivers
DRIVER_MODULE macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro, DRIVER_MODULE Macro
arg argument, DRIVER_MODULE Macro
busname argument, DRIVER_MODULE Macro
devclass argument, DRIVER_MODULE Macro
driver argument, DRIVER_MODULE Macro
evh argument, DRIVER_MODULE Macro
name argument, DRIVER_MODULE Macro
example of, foo_pci_probe Function, foo_pci_probe Function, foo_pci_attach Function, foo_pci_attach Function, foo_pci_attach Function, foo_pci_detach Function
d_foo functions, foo_pci_attach Function
foo_pci_attach function, foo_pci_probe Function
foo_pci_detach function, foo_pci_attach Function
foo_pci_probe function, foo_pci_probe Function
loading, foo_pci_detach Function
hardware resource management with, foo_pci_detach Function
overview, Newbus and Resource Allocation
nibble mode, lpt_read Function
nmdm(4) driver, Case Study: Virtual Null Modem, Code Analysis
nmdm_alloc function, nmdm_alloc Function
nmdm_clone function, nmdm_clone Function
nmdm_count variable, nmdm_modevent Function
nmdm_inwakeup function, nmdm_inwakeup Function
nmdm_modem function, nmdm_inwakeup Function
nmdm_modevent function, nmdm_modevent Function
nmdm_outwakeup function, nmdm_alloc Function
nmdm_param function, nmdm_modem Function
nmdm_task_tty function, nmdm_alloc Function
nmdm_timeout function, nmdm_param Function, nmdm_timeout Function
no_pipe_ok flag, USB Transfer Flags
np_rate variable, nmdm_param Function
nsegments argument, Creating DMA Tags
ns_part variables, nmdm_alloc Function
number argument, Creating Dynamic sysctls
O
optional fields for USB drivers, USB Configuration Structures
optional media properties for disk structures, Descriptive Fields
order argument, name
output routines, Network Interface Structures
P
packets, Packet Reception, em_rxeof Function, em_rxeof Function, Packet Transmission, Packet Transmission, em_start_locked Function, em_txeof Function, em_txeof Function
post transmitting, em_txeof Function
receiving, Packet Reception, em_rxeof Function, em_rxeof Function
em_handle_rx function, em_rxeof Function
em_rxeof function, Packet Reception
transmitting, Packet Transmission, Packet Transmission, em_start_locked Function
em_start_locked function, Packet Transmission
em_txeof function, em_start_locked Function
parallel port, pint_intr Function, pint_intr Function, Code Analysis, Code Analysis, lpt_detect Function, lpt_detect Function, lpt_detect Function, lpt_detect Function, lpt_attach Function, lpt_open Function, lpt_open Function, lpt_read Function, lpt_write Function, lpt_timeout Function, lpt_timeout Function, lpt_push_bytes Function, lpt_close Function, lpt_ioctl Function, lpt_ioctl Function
interrupt handlers on, pint_intr Function
printer driver example, Code Analysis, Code Analysis, lpt_detect Function, lpt_detect Function, lpt_detect Function, lpt_detect Function, lpt_attach Function, lpt_open Function, lpt_open Function, lpt_read Function, lpt_write Function, lpt_timeout Function, lpt_timeout Function, lpt_push_bytes Function, lpt_close Function, lpt_ioctl Function, lpt_ioctl Function
lpt_attach function, lpt_detect Function
lpt_close function, lpt_push_bytes Function
lpt_detach function, lpt_attach Function
lpt_detect function, lpt_detect Function
lpt_identify function, Code Analysis
lpt_intr function, lpt_write Function
lpt_ioctl function, lpt_close Function
lpt_open function, lpt_open Function
lpt_port_test function, lpt_detect Function
lpt_probe function, Code Analysis
lpt_push_bytes function, lpt_timeout Function
lpt_read function, lpt_open Function
lpt_release_ppbus function, lpt_ioctl Function
lpt_request_ppbus function, lpt_ioctl Function
lpt_timeout function, lpt_timeout Function
lpt_write function, lpt_read Function
parent argument, Creating Dynamic sysctls, Creating DMA Tags
pause function, Voluntary Context Switching, or Sleeping
PCIR_BAR(x) macro, ipmi_pci_attach Function
pci_alloc_msi function, MSI Management Routines
pci_alloc_msix function, MSI Management Routines
pci_msix_count function, MSI Management Routines
pci_msi_count function, MSI Management Routines
pci_release_msi function, MSI Management Routines
physical memory, contiguous, Tying Everything Together
pint_attach function, pint_probe Function
pint_close function, pint_open Function
pint_detach function, pint_attach Function
pint_identify function, Implementing an Interrupt Handler
pint_intr function, pint_read Function
pint_open function, pint_attach Function
pint_probe function, Implementing an Interrupt Handler
pint_read function, pint_close Function
pint_write function, pint_close Function
pipe, defined, USB Drivers
pipe_bof flag, USB Transfer Flags
PMIO (port-mapped I/O). See also I/O operations; MMIO, I/O Ports and I/O Memory, Reading from I/O Ports and I/O Memory, Writing to I/O Ports and I/O Memory, Memory Barriers, Tying Everything Together, Tying Everything Together, led_probe Function, led_probe Function, led_probe Function, led_probe Function, led_detach Function, led_close Function, led_close Function, led_read Function
and memory barriers, Memory Barriers
i-Opener LEDs driver example, Tying Everything Together, Tying Everything Together, led_probe Function, led_probe Function, led_probe Function, led_detach Function, led_close Function, led_close Function, led_read Function
led_attach function, led_probe Function
led_close function, led_close Function
led_detach function, led_probe Function
led_identify function, Tying Everything Together
led_open function, led_detach Function
led_probe function, Tying Everything Together
led_read function, led_close Function
led_write function, led_read Function
reading from, I/O Ports and I/O Memory
stream operations, Writing to I/O Ports and I/O Memory
writing to, Reading from I/O Ports and I/O Memory
poll routines, mfip_poll Function
port-mapped I/O (PMIO). See PMIO, Kernel Event Handlers
power_profile_change event handler, Kernel Event Handlers
ppb_release_bus function, pint_close Function
ppb_sleep function, pint_read Function
printer driver, Tying Everything Together, ulpt_attach Function, ulpt_attach Function, ulpt_open Function, unlpt_open Function, unlpt_open Function, unlpt_open Function, unlpt_open Function, ulpt_watchdog Function, ulpt_watchdog Function, ulpt_stop_read Function, ulpt_stop_read Function, ulpt_stop_read Function, ulpt_write_callback Function, ulpt_write_callback Function, ulpt_read_callback Function
ulpt_close function, unlpt_open Function
ulpt_detach function, ulpt_attach Function
ulpt_ioctl function, unlpt_open Function
ulpt_open function, ulpt_attach Function
ulpt_probe function, Tying Everything Together
ulpt_read_callback function, ulpt_write_callback Function
ulpt_reset function, ulpt_open Function
ulpt_start_read function, ulpt_watchdog Function
ulpt_start_write function, ulpt_stop_read Function
ulpt_status_callback function, ulpt_read_callback Function
ulpt_stop_read function, ulpt_stop_read Function
ulpt_stop_write function, ulpt_stop_read Function
ulpt_watchdog function, ulpt_watchdog Function
ulpt_write_callback function, ulpt_write_callback Function
unlpt_open function, unlpt_open Function
priority argument, Voluntary Context Switching, or Sleeping
process_exec event handler, Kernel Event Handlers
process_exit event handler, Kernel Event Handlers
process_fork event handler, Kernel Event Handlers
proxy_buffer flag, USB Transfer Flags
pseudo-devices, Types of Device Drivers
pseudocode, Implementing DMA
Q
qflush routines, Network Interface Structures
R
r argument, Registering an Interrupt Handler
race conditions, The Root of the Problem
race_destroy function, race_find Function
race_find function, A More Complex Synchronization Problem
race_ioctl function, race_find Function, Implementing Mutexes
race_ioctl.h header, A More Complex Synchronization Problem
race_ioctl_mtx function, Implementing Mutexes
RACE_IOC_ATTACH operation, race_ioctl Function
RACE_IOC_DETACH operation, race_ioctl Function
RACE_IOC_LIST operation, race_ioctl Function
RACE_IOC_QUERY operation, race_ioctl Function
race_modevent function, race_ioctl Function, Implementing Mutexes
race_new function, A More Complex Synchronization Problem
race_softc structure, A More Complex Synchronization Problem, A More Complex Synchronization Problem, race_find Function, The Root of the Problem
read operations, Defining ioctl Commands
reader/writer (rw) locks, Implementing Shared/Exclusive Locks
readers, defined, Implementing Shared/Exclusive Locks
reading, I/O Ports and I/O Memory, I/O Ports and I/O Memory, I/O Ports and I/O Memory
from MMIO (memory-mapped I/O), I/O Ports and I/O Memory
from PMIO (port-mapped I/O), I/O Ports and I/O Memory
realloc function, Memory Management Routines
reallocf function, Memory Management Routines
reassign routines, Network Interface Structures
receiving packets, Network Drivers, Part 2: Packet Reception and Transmission, Packet Reception, em_rxeof Function, em_rxeof Function
em_handle_rx function, em_rxeof Function
em_rxeof function, Packet Reception
overview, Network Drivers, Part 2: Packet Reception and Transmission
recursing on exclusive locks, avoiding, Condition Variable Management Routines
registering interrupt handlers, Interrupt Handling
resolvemulti routines, Network Interface Structures
RFSTOPPED constant, load Function
RF_ACTIVE constant, Hardware Resource Management
RF_ALLOCATED constant, Hardware Resource Management
RF_SHAREABLE constant, Hardware Resource Management
RF_TIMESHARE constant, Hardware Resource Management
rid argument, Hardware Resource Management
rw (reader/writer) locks, Implementing Shared/Exclusive Locks
rw_destroy function, Reader/Writer Lock Management Routines
rw_init function, Reader/Writer Lock Management Routines
rw_init_flags function, Reader/Writer Lock Management Routines
rw_runlock function, Reader/Writer Lock Management Routines
rw_try_rlock function, Reader/Writer Lock Management Routines
rw_try_wlock function, Reader/Writer Lock Management Routines
rw_wunlock function, Reader/Writer Lock Management Routines
S
sc->sc_state value, pint_open Function, lpt_open Function
scatter/gather segment, Creating DMA Tags
SCSI Parallel Interface (SPI), Common Access Method
sc_open_mask value, led_detach Function
sc_open_mask variable, led_probe Function
sc_read_mask variable, led_probe Function
Server Management Interface Chip (SMIC) mode, ipmi_pci_attach Function
shared holds, Don’t Panic
shared/exclusive (sx) locks. See sx locks, Don’t Panic
shortdesc argument, Memory Management Routines
short_frames_ok flag, USB Transfer Flags
short_xfer_ok flag, USB Transfer Flags
shutdown_final event handler, unload Function, Kernel Event Handlers
shutdown_post_sync event handler, Kernel Event Handlers
shutdown_pre_sync event handler, Kernel Event Handlers
sigoff argument, nmdm_modem Function
sigon argument, nmdm_modem Function
SIM queues, mfip_attach Function
SIM registration routines for CAM (Common Access Method), SIM Registration Routines, SIM Registration Routines, SIM Registration Routines, cam_sim_alloc Function
cam_simq_alloc function, SIM Registration Routines
cam_sim_alloc function, SIM Registration Routines
xpt_bus_register function, cam_sim_alloc Function
SIMs (software interface modules), Common Access Method
size argument, Memory Management Routines
sleep mutexes, Sleep Mutexes
sleeping, Sleep Mutexes, Voluntary Context Switching, or Sleeping, Taskqueue Management Routines
sleep_modevent function, Implementing Sleeps and Condition Variables
sleep_thread function, load Function
SMBIOS (System Management BIOS), ipmi_pci_attach Function
SMIC (Server Management Interface Chip) mode, ipmi_pci_attach Function
software interface modules (SIMs), Common Access Method
SPI (SCSI Parallel Interface), Common Access Method
spin mutexes, Mutexes
spin, defined, The Root of the Problem
spi_command structure, at45d_get_info Function, at45d_task Function
stall_pipe flag, USB Transfer Flags
start argument, Hardware Resource Management
start routines, Network Interface Structures
static node, SYSCTL_STATIC_CHILDREN Macro
status_callback argument, Network Interface Media Structure Management Routines
storage device methods for disk structures, Descriptive Fields
storage drivers, disk Structures, disk Structures, Descriptive Fields, Descriptive Fields, Descriptive Fields, Driver Private Data, Driver Private Data, Driver Private Data, Block I/O Queues, Block I/O Queues, Tying Everything Together, Tying Everything Together, at45d_attach Function, at45d_delayed_attach Function, at45d_get_info Function, at45d_get_status Function, at45d_get_status Function
block I/O queues, Block I/O Queues
block I/O structures, Driver Private Data
disk structures, disk Structures, disk Structures, Descriptive Fields, Descriptive Fields, Descriptive Fields, Driver Private Data, Driver Private Data
descriptive fields, disk Structures
driver private data, Driver Private Data
management routines for, Driver Private Data
mandatory media properties, Descriptive Fields
optional media properties, Descriptive Fields
storage device methods, Descriptive Fields
flash memory driver example, Tying Everything Together, Tying Everything Together, at45d_attach Function, at45d_delayed_attach Function, at45d_get_info Function, at45d_get_status Function, at45d_get_status Function
at45d_attach function, Tying Everything Together
at45d_delayed_attach function, at45d_attach Function
at45d_get_info function, at45d_delayed_attach Function
at45d_get_status function, at45d_get_info Function
at45d_strategy function, at45d_get_status Function
at45d_task function, at45d_get_status Function
strategy routines, Storage Device Methods
stream operations, Writing to I/O Ports and I/O Memory
struct usb_xfer * argument, USB Transfer Flags
sub argument, name
sx (shared/exclusive) locks, Don’t Panic, Shared/Exclusive Lock Management Routines, Condition Variable Management Routines, Avoid Holding Exclusive Locks for Long Periods of Time, Avoid Holding Exclusive Locks for Long Periods of Time
avoid holding exclusive locks for long periods of time, Avoid Holding Exclusive Locks for Long Periods of Time
avoid recursing on exclusive locks, Condition Variable Management Routines
example of, Shared/Exclusive Lock Management Routines
management routines for, Don’t Panic
sx_destroy function, Shared/Exclusive Lock Management Routines
SX_DUPOK constant, Shared/Exclusive Lock Management Routines
sx_init function, Shared/Exclusive Lock Management Routines
sx_init_flags function, Shared/Exclusive Lock Management Routines
SX_NOADAPTIVE constant, Shared/Exclusive Lock Management Routines
SX_NOPROFILE constant, Shared/Exclusive Lock Management Routines
SX_NOWITNESS constant, Shared/Exclusive Lock Management Routines
SX_QUIET constant, Shared/Exclusive Lock Management Routines
SX_RECURSE constant, Shared/Exclusive Lock Management Routines
sx_slock_sig function, Shared/Exclusive Lock Management Routines
sx_unlock function, Shared/Exclusive Lock Management Routines
sx_xlock_sig function, Shared/Exclusive Lock Management Routines
sx_xunlock function, Shared/Exclusive Lock Management Routines
synchronization primitives, Preventing Race Conditions
synchronizing DMA buffers, A Straightforward Example
sysctl contexts, Implementing sysctls, Part 1
sysctl interface, Invoking ioctl, Implementing sysctls, Part 1, Implementing sysctls, Part 1, Implementing sysctls, Part 1, Creating Dynamic sysctls, Creating Dynamic sysctls, Implementing sysctls, Part 2
contexts for, Implementing sysctls, Part 1
dynamic sysctl, Implementing sysctls, Part 1
overview, Invoking ioctl
SYSCTL_CHILDREN macro, Creating Dynamic sysctls
sysctl_set_buffer_size function, Implementing sysctls, Part 2
SYSCTL_STATIC_CHILDREN macro, Creating Dynamic sysctls
SYSCTL_ADD_* macros, Implementing sysctls, Part 1, Creating Dynamic sysctls
SYSCTL_ADD_INT macro, Implementing sysctls, Part 1
SYSCTL_ADD_LONG macro, Implementing sysctls, Part 1
SYSCTL_ADD_NODE macro, Implementing sysctls, Part 1, Implementing sysctls, Part 1, Creating Dynamic sysctls
SYSCTL_ADD_OID macro, Creating Dynamic sysctls
SYSCTL_ADD_PROC macro, Implementing sysctls, Part 1
SYSCTL_ADD_STRING macro, Implementing sysctls, Part 1
SYSCTL_CHILDREN macro, Creating Dynamic sysctls
sysctl_ctx_init function, Implementing sysctls, Part 1
sysctl_debug_sleep_test function, load Function, sleep_thread Function
SYSCTL_HANDLER_ARGS constant, sysctl_set_buffer_size Function
sysctl_set_buffer_size function, Implementing sysctls, Part 2
SYSCTL_STATIC_CHILDREN macro, Creating Dynamic sysctls
sysinit_elem_order enumeration, name
System Management BIOS (SMBIOS), ipmi_pci_attach Function
SYS_RES_IOPORT constant, Hardware Resource Management
SYS_RES_IRQ constant, Hardware Resource Management
SYS_RES_MEMORY constant, Hardware Resource Management
T
t argument, Defining ioctl Commands
tags for DMA, Creating DMA Tags, Creating DMA Tags, Creating DMA Tags
creating, Creating DMA Tags
destroying, Creating DMA Tags
taskqueues, Callouts, Taskqueues, Taskqueues, Global Taskqueues
global, Global Taskqueues
management routines for, Taskqueues
overview, Callouts
taskqueue_drain function, Taskqueue Management Routines
taskqueue_enqueue function, Taskqueue Management Routines
taskqueue_run function, Taskqueue Management Routines
tasks, Taskqueues
TASK_INIT macro, Taskqueue Management Routines
TF_NOPREFIX flag, nmdm_alloc Function
thread synchronization, A Simple Synchronization Problem, A More Complex Synchronization Problem, A More Complex Synchronization Problem, race_find Function, race_find Function, race_ioctl Function, race_modevent Function, race_modevent Function, race_modevent Function, Preventing Race Conditions, Mutexes, Spin Mutexes, Spin Mutexes, Sleep Mutexes, Implementing Mutexes, Don’t Panic, Shared/Exclusive Lock Management Routines, Implementing Shared/Exclusive Locks, Condition Variable Management Routines, Avoid Holding Exclusive Locks for Long Periods of Time, Avoid Holding Exclusive Locks for Long Periods of Time
example of, A More Complex Synchronization Problem, A More Complex Synchronization Problem, race_find Function, race_find Function, race_ioctl Function, race_modevent Function, race_modevent Function
problem in, race_modevent Function
race_destroy function, race_find Function
race_find function, A More Complex Synchronization Problem
race_ioctl function, race_find Function
race_modevent function, race_ioctl Function
race_new function, A More Complex Synchronization Problem
locks, Preventing Race Conditions
mutex locks, Mutexes, Spin Mutexes, Spin Mutexes, Sleep Mutexes, Implementing Mutexes
management routines for, Spin Mutexes
race_modevent function, Implementing Mutexes
sleep mutexes, Sleep Mutexes
spin mutexes, Mutexes
reasons for, A Simple Synchronization Problem
rw (reader/writer) locks, Implementing Shared/Exclusive Locks
sx (shared/exclusive) locks, Don’t Panic, Shared/Exclusive Lock Management Routines, Condition Variable Management Routines, Avoid Holding Exclusive Locks for Long Periods of Time, Avoid Holding Exclusive Locks for Long Periods of Time
avoid holding exclusive locks for long periods of time, Avoid Holding Exclusive Locks for Long Periods of Time
avoid recursing on exclusive locks, Condition Variable Management Routines
example of, Shared/Exclusive Lock Management Routines
management routines for, Don’t Panic
threads, context switches by, Voluntary Context Switching, or Sleeping
timeout field, USB Configuration Structures
timo argument, Voluntary Context Switching, or Sleeping
transfer flags for USB drivers, Optional Fields
transfers using DMA, Implementing DMA
transmit routines, Network Interface Structures
transmitting packets, Packet Transmission, Packet Transmission, em_start_locked Function, em_txeof Function
em_start_locked function, Packet Transmission
em_txeof function, em_start_locked Function
post transmitting, em_txeof Function
tsleep function, Voluntary Context Switching, or Sleeping
TTY device, Prerequisites
tty_alloc_mutex function, Prerequisites
tty_makedev function, Prerequisites
tty_softc function, Prerequisites
tx_buffer variable, em_txeof Function
tx_desc variable, em_txeof Function
type field, USB Configuration Structures
U
UE_BULK endpoint type, Optional Fields
UE_CONTROL endpoint type, Optional Fields
UE_DIR_ANY constant, USB Configuration Structures
UE_DIR_IN constant, USB Configuration Structures
UE_DIR_OUT constant, USB Configuration Structures
UE_INTERRUPT endpoint type, Optional Fields
UE_ISOCHRONOUS endpoint type, Optional Fields
ulpt_close function, unlpt_open Function
ulpt_detach function, ulpt_attach Function
ulpt_ioctl function, unlpt_open Function
ulpt_open function, ulpt_attach Function
ulpt_probe function, Tying Everything Together
ulpt_read_callback function, ulpt_write_callback Function
ulpt_reset function, ulpt_open Function
ulpt_start_read function, ulpt_watchdog Function
ulpt_start_write function, ulpt_stop_read Function
ulpt_status_callback function, ulpt_read_callback Function
ulpt_stop_read function, ulpt_stop_read Function
ulpt_stop_write function, ulpt_stop_read Function
ulpt_watchdog function, ulpt_watchdog Function
ulpt_write_callback function, ulpt_write_callback Function
UMASS (USB Mass Storage), Common Access Method
Universal Serial Bus (USB) drivers. See USB drivers, sleep_modevent Function, sleep_thread Function
unload function, sleep_modevent Function, sleep_thread Function
unlpt_open function, unlpt_open Function
USB (Universal Serial Bus) drivers, USB Drivers, USB Configuration Structures, USB Configuration Structures, Optional Fields, USB Transfer Flags, USB Transfers (in FreeBSD), USB Transfers (in FreeBSD), USB Transfers (in FreeBSD), USB Configuration Structure Management Routines, Tying Everything Together, ulpt_attach Function, ulpt_attach Function, ulpt_open Function, unlpt_open Function, unlpt_open Function, unlpt_open Function, unlpt_open Function, ulpt_watchdog Function, ulpt_watchdog Function, ulpt_stop_read Function, ulpt_stop_read Function, ulpt_stop_read Function, ulpt_write_callback Function, ulpt_write_callback Function, ulpt_read_callback Function
configuration structures, USB Configuration Structures, USB Configuration Structures, Optional Fields, USB Transfers (in FreeBSD), USB Transfers (in FreeBSD)
management routines for, USB Transfers (in FreeBSD)
mandatory fields, USB Configuration Structures
optional fields, USB Configuration Structures
transfer flags, Optional Fields
data transfers, USB Transfer Flags
methods structure, USB Configuration Structure Management Routines
overview, USB Drivers
printer driver example, Tying Everything Together, ulpt_attach Function, ulpt_attach Function, ulpt_open Function, unlpt_open Function, unlpt_open Function, unlpt_open Function, unlpt_open Function, ulpt_watchdog Function, ulpt_watchdog Function, ulpt_stop_read Function, ulpt_stop_read Function, ulpt_stop_read Function, ulpt_write_callback Function, ulpt_write_callback Function, ulpt_read_callback Function
ulpt_close function, unlpt_open Function
ulpt_detach function, ulpt_attach Function
ulpt_ioctl function, unlpt_open Function
ulpt_open function, ulpt_attach Function
ulpt_probe function, Tying Everything Together
ulpt_read_callback function, ulpt_write_callback Function
ulpt_reset function, ulpt_open Function
ulpt_start_read function, ulpt_watchdog Function
ulpt_start_write function, ulpt_stop_read Function
ulpt_status_callback function, ulpt_read_callback Function
ulpt_stop_read function, ulpt_stop_read Function
ulpt_stop_write function, ulpt_stop_read Function
ulpt_watchdog function, ulpt_watchdog Function
ulpt_write_callback function, ulpt_write_callback Function
unlpt_open function, unlpt_open Function
USB frames, Optional Fields
USB Mass Storage (UMASS), Common Access Method
USB packets, Optional Fields
usbd_transfer_drain function, USB Configuration Structure Management Routines
usbd_transfer_setup function, USB Transfers (in FreeBSD)
usbd_transfer_start function, USB Transfers (in FreeBSD)
usbd_transfer_stop function, USB Configuration Structure Management Routines
usb_config structures, More About USB Devices
usb_fifo_attach function, USB Configuration Structure Management Routines
usb_fifo_detach function, USB Configuration Structure Management Routines
usb_fifo_methods structure, USB Configuration Structure Management Routines
USB_ST_SETUP constant, USB Transfers (in FreeBSD)
V
variable declarations, Implementing Sleeps and Condition Variables
virtual null modem, Case Study: Virtual Null Modem, nmdm_modevent Function, nmdm_clone Function, nmdm_alloc Function, nmdm_alloc Function, nmdm_alloc Function, nmdm_inwakeup Function, nmdm_inwakeup Function, nmdm_modem Function, nmdm_timeout Function, nmdm_timeout Function, nmdm_timeout Function, bits_per_char Function
bits_per_char function, nmdm_timeout Function
loading, bits_per_char Function
nmdm_alloc function, nmdm_alloc Function
nmdm_clone function, nmdm_clone Function
nmdm_inwakeup function, nmdm_inwakeup Function
nmdm_modem function, nmdm_inwakeup Function
nmdm_modevent function, nmdm_modevent Function
nmdm_outwakeup function, nmdm_alloc Function
nmdm_param function, nmdm_modem Function
nmdm_task_tty function, nmdm_alloc Function
nmdm_timeout function, nmdm_timeout Function
overview, Case Study: Virtual Null Modem
vm_lowmem event handler, Kernel Event Handlers
voluntary context switching, Voluntary Context Switching, or Sleeping
W
Wake-on-LAN (WOL), Hello, world!
wakeup function, Voluntary Context Switching, or Sleeping
watchdog_list event handler, Kernel Event Handlers
wmesg argument, Voluntary Context Switching, or Sleeping
WOL (Wake-on-LAN), Hello, world!
write operations, Defining ioctl Commands
writing, Reading from I/O Ports and I/O Memory, Reading from I/O Ports and I/O Memory, Reading from I/O Ports and I/O Memory
to MMIO (memory-mapped I/O), Reading from I/O Ports and I/O Memory
to PMIO (port-mapped I/O), Reading from I/O Ports and I/O Memory
X
xpt_action function, How CAM Works
xpt_bus_register function, cam_sim_alloc Function
xpt_done function, How CAM Works
XPT_GET_TRAN_SETTINGS constant, XPT_RESET_BUS
XPT_GET_TRAN_SETTINGS operation, XPT_GET_TRAN_SETTINGS
XPT_PATH_INQ constant, cam_sim_alloc Function
XPT_PATH_INQ operation, XPT_PATH_INQ
XPT_RESET_BUS constant, XPT_PATH_INQ
XPT_RESET_DEV constant, XPT_SCSI_IO
xpt_run_dev_allocq function, How CAM Works
xpt_schedule function, Common Access Method, How CAM Works
XPT_SCSI_IO constant, XPT_SCSI_IO
XPT_SET_TRAN_SETTINGS constant, XPT_GET_TRAN_SETTINGS
About the Author
The author of Designing BSD Rootkits (No Starch Press), Joseph Kong works on information security, operating system theory, reverse code engineering, and vulnerability assessment. Kong is a former system administrator for the City of Toronto.
Colophon
FreeBSD Device Drivers is set in New Baskerville, TheSansMono Condensed, Futura, and Dogma.
This book was printed and bound at United Graphics in Mattoon, Illinois. The paper is 60# Husky Offset, which is certified by the Forest Stewardship Council (FSC). The book uses a layflat binding, which allows it to lie flat when open.
Appendix A. UPDATES
Visit http://nostarch.com/bsddrivers for updates, errata, and other information.
Table of Contents
Who Is This Book For?
Prerequisites
Contents at a Glance
Welcome Aboard!
1. Building and Running Modules
Types of Device Drivers
Loadable Kernel Modules
Module Event Handler
DECLARE_MODULE Macro
name
data
sub
order
Hello, world!
Compiling and Loading
Character Drivers
d_foo Functions
Character Device Switch Table
make_dev and destroy_dev Functions
Mostly Harmless
echo_write Function
echo_read Function
echo_modevent Function
DEV_MODULE Macro
Don’t Panic
Block Drivers Are Gone
Conclusion
Memory Management Routines
malloc_type Structures
MALLOC_DEFINE Macro
MALLOC_DECLARE Macro
Tying Everything Together
Contiguous Physical Memory Management Routines
A Straightforward Example
Conclusion
3. Device Communication and Control
ioctl
Defining ioctl Commands
Implementing ioctl
echo_write Function
echo_set_buffer_size Function
echo_ioctl Function
echo_modevent Function
Don’t Panic
Invoking ioctl
sysctl
Implementing sysctls, Part 1
sysctl Context Management Routines
Creating Dynamic sysctls
SYSCTL_STATIC_CHILDREN Macro
SYSCTL_CHILDREN Macro
Implementing sysctls, Part 2
sysctl_set_buffer_size Function
Don’t Panic
Conclusion
A Simple Synchronization Problem
A More Complex Synchronization Problem
race_new Function
race_find Function
race_destroy Function
race_ioctl Function
race_modevent Function
The Root of the Problem
Preventing Race Conditions
Mutexes
Spin Mutexes
Sleep Mutexes
Mutex Management Routines
Implementing Mutexes
race_modevent Function
Don’t Panic
Shared/Exclusive Locks
Shared/Exclusive Lock Management Routines
Implementing Shared/Exclusive Locks
Reader/Writer Locks
Reader/Writer Lock Management Routines
Condition Variables
Condition Variable Management Routines
General Guidelines
Avoid Recursing on Exclusive Locks
Avoid Holding Exclusive Locks for Long Periods of Time
Conclusion
Voluntary Context Switching, or Sleeping
Implementing Sleeps and Condition Variables
sleep_modevent Function
load Function
sleep_thread Function
sysctl_debug_sleep_test Function
unload Function
Don’t Panic
Kernel Event Handlers
Callouts
Callouts and Race Conditions
Taskqueues
Global Taskqueues
Taskqueue Management Routines
Conclusion
6. Case Study: Virtual Null Modem
Prerequisites
Code Analysis
nmdm_modevent Function
nmdm_clone Function
nmdm_alloc Function
nmdm_outwakeup Function
nmdm_task_tty Function
nmdm_inwakeup Function
nmdm_modem Function
nmdm_param Function
nmdm_timeout Function
bits_per_char Function
Don’t Panic
Conclusion
7. Newbus and Resource Allocation
Autoconfiguration and Newbus Drivers
device_foo Functions
Device Method Table
DRIVER_MODULE Macro
name
busname
driver
devclass
evh
arg
Tying Everything Together
foo_pci_probe Function
foo_pci_attach Function
d_foo Functions
foo_pci_detach Function
Don’t Panic
Hardware Resource Management
Conclusion
Registering an Interrupt Handler
Interrupt Handlers in FreeBSD
Implementing an Interrupt Handler
pint_identify Function
pint_probe Function
pint_attach Function
pint_detach Function
pint_open Function
pint_close Function
pint_write Function
pint_read Function
pint_intr Function
Don’t Panic
Generating Interrupts on the Parallel Port
Conclusion
9. Case Study: Parallel Port Printer Driver
Code Analysis
lpt_identify Function
lpt_probe Function
lpt_detect Function
lpt_port_test Function
lpt_attach Function
lpt_detach Function
lpt_open Function
lpt_read Function
lpt_write Function
lpt_intr Function
lpt_timeout Function
lpt_push_bytes Function
lpt_close Function
lpt_ioctl Function
lpt_request_ppbus Function
lpt_release_ppbus Function
Conclusion
10. Managing and Using Resources
I/O Ports and I/O Memory
Reading from I/O Ports and I/O Memory
Writing to I/O Ports and I/O Memory
Stream Operations
Memory Barriers
Tying Everything Together
led_identify Function
led_probe Function
led_attach Function
led_detach Function
led_open Function
led_close Function
led_read Function
led_write Function
Conclusion
11. Case Study: Intelligent Platform Management Interface Driver
Code Analysis
ipmi_pci_probe Function
ipmi_pci_match Function
ipmi_pci_attach Function
ipmi2_pci_probe Function
ipmi2_pci_attach Function
Conclusion
Implementing DMA
Initiating a DMA Data Transfer
Dismantling DMA
Creating DMA Tags
Tearing Down DMA Tags
DMA Map Management Routines, Part 1
Loading (DMA) Buffers into DMA Maps
bus_dma_segment Structures
bus_dmamap_load Function
bus_dmamap_load_mbuf Function
bus_dmamap_load_mbuf_sg Function
bus_dmamap_load_uio Function
bus_dmamap_unload Function
DMA Map Management Routines, Part 2
A Straightforward Example
Synchronizing DMA Buffers
Conclusion
disk Structures
Descriptive Fields
Storage Device Methods
Mandatory Media Properties
Optional Media Properties
Driver Private Data
disk Structure Management Routines
Block I/O Structures
Block I/O Queues
Tying Everything Together
at45d_attach Function
at45d_delayed_attach Function
at45d_get_info Function
at45d_wait_for_device_ready Function
at45d_get_status Function
at45d_strategy Function
at45d_task Function
Block I/O Completion Routines
Conclusion
How CAM Works
A (Somewhat) Simple Example
mfip_attach Function
mfip_detach Function
mfip_action Function
mfip_poll Function
mfip_start Function
mfip_done Function
SIM Registration Routines
cam_simq_alloc Function
cam_sim_alloc Function
xpt_bus_register Function
Action Routines
XPT_PATH_INQ
XPT_RESET_BUS
XPT_GET_TRAN_SETTINGS
XPT_SET_TRAN_SETTINGS
XPT_SCSI_IO
XPT_RESET_DEV
Conclusion
About USB Devices
More About USB Devices
USB Configuration Structures
Mandatory Fields
Optional Fields
USB Transfer Flags
USB Transfers (in FreeBSD)
USB Configuration Structure Management Routines
USB Methods Structure
Tying Everything Together
ulpt_probe Function
ulpt_attach Function
ulpt_detach Function
ulpt_open Function
ulpt_reset Function
unlpt_open Function
ulpt_close Function
ulpt_ioctl Function
ulpt_watchdog Function
ulpt_start_read Function
ulpt_stop_read Function
ulpt_start_write Function
ulpt_stop_write Function
ulpt_write_callback Function
ulpt_read_callback Function
ulpt_status_callback Function
Conclusion
16. Network Drivers, Part 1: Data Structures
Network Interface Structures
Network Interface Structure Management Routines
ether_ifattach Function
ether_ifdetach Function
Network Interface Media Structures
Network Interface Media Structure Management Routines
Hello, world!
mbuf Structures
Message Signaled Interrupts
Implementing MSI
MSI Management Routines
Conclusion
17. Network Drivers, Part 2: Packet Reception and Transmission
Packet Reception
em_rxeof Function
em_handle_rx Function
Packet Transmission
em_start_locked Function
em_txeof Function
Post Packet Transmission
Conclusion