Table of Contents
Embedded Linux Projects Using Yocto Project Cookbook
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
What this book covers
What you need for this book
Who this book is for
Sections
Getting ready
How to do it…
How it works…
There's more…
See also
Conventions
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
Introduction
Setting up the host system
Getting ready
How to do it...
How it works...
There's more...
See also
Installing Poky
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a build directory
How to do it...
How it works...
There's more...
Building your first image
Getting ready
How to do it...
How it works...
There's more...
Explaining the Freescale Yocto ecosystem
Getting ready
How to do it...
How it works...
There's more...
See also
Installing support for Freescale hardware
Getting ready
How to do it...
How it works...
There's more...
See also
Building Wandboard images
How to do it...
How it works...
See also
Troubleshooting your Wandboard's first boot
Getting ready
How to do it...
There's more...
Configuring network booting for a development setup
Getting ready
Installing a TFTP server
Installing an NFS server
How to do it...
Sharing downloads
Getting ready
How to do it...
Sharing the shared state cache
How to do it...
There's more...
Setting up a package feed
Getting ready
Versioning packages
How to do it...
See also
Using build history
How to do it...
How it works...
Looking at the build history
There's more...
Working with build statistics
How to do it...
How it works...
There's more...
Debugging the build system
Getting ready
Finding recipes
Dumping BitBake's environment
Using the development shell
How to do it...
Task log and run files
Adding logging to recipes
Looking at dependencies
Debugging BitBake
Error reporting tool
There's more...
Introduction
Creating a custom BSP layer
How to do it...
How it works...
There's more...
Adding a new machine
Adding a custom device tree to the Linux kernel
Adding a custom U-Boot machine
Adding a custom formfactor file
Introducing system development workflows
How to do it...
How it works...
External development
Working directory development
External source development
Adding a custom kernel and bootloader
Getting Ready
Finding the Linux kernel source
Finding the U-Boot source
Developing using a Git repository fork
How to do it...
How it works...
Building the U-Boot bootloader
How to do it...
How it works...
External development
How it works…
External source development
Working directory development
Explaining Yocto's Linux kernel support
How to do it...
How it works...
See also
Describing Linux's build system
How to do it...
How it works...
There's more...
Configuring the Linux kernel
Getting ready
How to do it...
There's more...
Using configuration fragments
Building the Linux kernel
How to do it...
How it works...
External development
External source development
Working directory development
Building external kernel modules
Getting ready
How to do it...
There's more...
Debugging the Linux kernel and modules
How to do it...
How it works...
There's more...
Using dynamic debug
Rate-limiting debug messages
See also
Debugging the Linux kernel booting process
How to do it...
How it works...
Dumping the kernel's printk buffer from the bootloader
There's more...
Using the kernel function tracing system
Getting ready...
How to do it...
How it works...
There's more...
Filtering function traces
Enabling trace options
Using the function tracer on oops
Getting a stack trace for a given function
Configuring the function tracer at boot
See also
Managing the device tree
Getting ready
How to do it...
How it works...
The compatible property
The Wandboard device tree file
Defining buses and memory-addressable devices
There's more...
Modifying and compiling the device tree in Yocto
See also
Debugging device tree issues
How to do it...
How it works...
Looking at the device tree from U-Boot
Looking at the device tree from the Linux kernel
Introduction
Exploring an image's contents
Getting ready
How to do it...
How it works...
Adding a new software layer
Getting ready
How to do it...
How it works...
There's more...
Selecting a specific package version and providers
How to do it...
How do we select which provider to use?
How do we select which version to use?
How do we select which version not to use?
Adding supported packages
Getting ready
How to do it...
How it works...
There's more...
Configuring packages
Adding new packages
Getting ready
How to do it...
How it works...
Package licensing
Fetching package contents
Specifying task overrides
Configuring packages
Splitting into several packages
Setting machine-specific variables
Adding data, scripts, or configuration files
How to do it...
Managing users and groups
Getting ready
How to do it...
There's more...
Using the sysvinit initialization manager
Getting ready
How to do it...
Using the systemd initialization manager
Getting ready
How to do it...
There's more...
Installing systemd unit files
Installing package-installation scripts
Getting ready
How to do it...
How it works...
Reducing the Linux kernel image size
How to do it...
How it works...
Reducing the root filesystem image size
How to do it...
How it works...
Releasing software
Getting ready
How to do it...
There's more…
See also
Analyzing your system for compliance
How to do it...
There's more
Working with open source and proprietary code
How to do it...
How it works...
The U-Boot bootloader
The Linux kernel
Glibc
BusyBox
The Qt framework
The X Windows system
There's more...
See also
Introduction
Introducing toolchains
Getting ready
How to do it...
Preparing and using an SDK
Getting ready
How to do it...
Using the Application Development Toolkit
Getting ready
How to do it...
How it works...
Using the Eclipse IDE
Getting ready
How to do it...
There's more...
See also
Developing GTK+ applications
Getting ready
How to do it...
There's more...
Using the Qt Creator IDE
Getting ready
How to do it...
Developing Qt applications
Getting ready
How to do it...
There's more...
Describing workflows for application development
How to do it...
How it works...
External development
Working directory development
External source development
Working with GNU make
How to do it...
See also
Working with the GNU build system
Getting ready
How to do it...
See also
Working with the CMake build system
Getting ready
How to do it...
See also
Working with the SCons builder
Getting ready
How to do it...
See also
Developing with libraries
Getting ready
Building a static library
Building a shared dynamic library
How to do it...
How it works...
There's more...
See also
Working with the Linux framebuffer
Getting ready
How to do it...
How it works...
There's more...
See also
Using the X Windows system
Getting ready
How to do it...
There's more...
See also
Using Wayland
Getting ready
How to do it...
There's more...
See also
Adding Python applications
Getting ready
How to do it...
There's more...
Integrating the Oracle Java Runtime Environment
Getting ready
How to do it...
There's more...
Integrating the Open Java Development Kit
Getting ready
How to do it...
How it works...
There's more...
See also
Integrating Java applications
Getting ready
How to do it...
How it works...
There's more...
5. Debugging, Tracing, and Profiling
Introduction
Analyzing core dumps
Getting ready
How to do it...
How it works...
See also
Native GDB debugging
Getting ready
How to do it...
There's more...
See also
Cross GDB debugging
Getting ready
How to do it...
How it works...
Using strace for application debugging
Getting ready
How to do it...
How it works...
See also
Using the kernel's performance counters
Getting ready
How to do it...
How it works...
There's more...
See also
Using static kernel tracing
Getting ready
How to do it...
How it works...
There's more...
See also
Using dynamic kernel tracing
Getting ready
How to do it...
There's more...
See also
Using dynamic kernel events
Getting ready
How to do it...
How it works...
There's more...
Exploring Yocto's tracing and profiling tools
Getting ready
How to do it...
There's more...
Tracing and profiling with perf
Getting ready
How to do it...
How it works...
Reading tracing data
There's more...
Profile charts
Using perf as strace substitute
See also
Using SystemTap
Getting ready
How to do it...
How it works...
See also
Using OProfile
Getting ready
How to do it...
How it works...
There's more...
See also
Using LTTng
Getting ready
How to do it...
How it works...
Extending application profiling
There's more...
See also
Using blktrace
Getting ready
How to do it...
How it works...
There's more...
Embedded Linux Projects Using Yocto Project Cookbook
Embedded Linux Projects Using Yocto Project Cookbook
Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: March 2015
Production reference: 1240315
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78439-518-6
Cover image by Alex González (<alex@lindusphoto.com>)
Credits
Author
Alex González
Reviewers
Burt Janz
Dave (Jing) Tian
Javier Viguera
Commissioning Editor
Nadeem N. Bagban
Acquisition Editor
Owen Roberts
Content Development Editor
Natasha DSouza
Technical Editor
Prajakta Mhatre
Copy Editors
Puja Lalwani
Aditya Nair
Vikrant Phadke
Project Coordinator
Rashi Khivansara
Proofreaders
Simran Bhogal
Clyde Jenkins
Indexer
Tejal Soni
Production Coordinator
Alwin Roy
Cover Work
Alwin Roy
Foreword
If we look back at the last 15 years of the field of embedded systems, we will see that everything has changed radically. Embedded systems have become more and more powerful and have gained new functionalities. Today, you can find "embedded" quad-core systems with 1 GB of RAM and several GBs of storage, comparable to a few-years-old desktop computer. Nowadays, it is not unusual that the requirements of an embedded system are low consumption, graphic acceleration, multimedia capabilities, sufficient storage, and so on.
On the software side, if we look back again at those 15 years, we will notice that most of the Linux-running embedded systems at that time were in-house developments built from the ground up. Their main functionality was to boot the device and run the specific application (usually not graphical) the device was designed for. A typical system from those days contained a minimal Linux kernel, a small C library (uclibc), BusyBox as the base user space, and then the specific application or set of applications.
As the hardware became more powerful and gained more functionalities, the requirements of the software also increased. With embedded systems becoming powerful enough to run distributions that were considered mostly for desktops (such as Debian or Ubuntu), it's no longer as easy as building a minimal set of software packages (uclibc, BusyBox, and a command-line application) anymore. You now have to choose between different windowing systems (X11, Wayland, and so on) and different graphic libraries (Qt, GTK, and so on). Maybe your hardware has dedicated units for video processing (VPU) or graphics processing (GPU) and is running its own firmware, and so on.
All of this extra difficulty is what makes an embedded software engineer look for new tools that ease their work and speed up the development. This is the context where different Linux build systems began to appear.
The first build system to show up was Buildroot. It has its roots in the uClibc project. The initial goal of Buildroot was to build a root filesystem based on the uclibc library for testing purposes. Buildroot is based on a Makefile's structure, kconfig as the configuration tool, and patches that apply to the different software packages before being built. These days, Buildroot supports multiple architectures, and apart from root filesystem images, it also can build kernel and bootloader images.
A bit later, OpenEmbedded was born. Its goal is a bit different because it is defined as a Linux distribution builder. OpenEmbedded is based on recipes interpreted by the BitBake build engine. BitBake in turn is a tool derived from portage (Gentoo's distribution package manager). An interesting feature about OpenEmbedded is that the recipes can specify dependencies between packages, and later on, BitBake parses all the recipes and creates a queue of tasks in the correct order to fulfill the dependencies. Two examples of distributions created with OpenEmbedded are Angstrom and OpenMoko.
Another OpenEmbedded-based distribution was Poky Linux. This has special importance because it's the way that leads to Yocto. The Yocto Project is an open source project whose goal is to provide the tools that help build Linux-based embedded systems. Under the umbrella of the Yocto Project, there are multiple software projects, such as Poky, the BitBake build engine, and even OpenEmbedded-Core. These are probably the main projects, but by no means, the only projects. In this new phase, Poky (the former Linux distribution) became the reference system of the Yocto Project, being the build system of the Yocto Project these days and using the BitBake build engine and OpenEmbedded-Core metadata (recipes, classes, and configuration files) underneath. This is the reason people tend to confuse the Yocto Project with the Poky build system.
Poky is a nearly complete solution for embedded software engineering teams. It allows you to create a distribution for your hardware. It also allows you to create a software development kit (SDK) tailored for your distribution. This SDK may be used by other engineers in a team to compile the user-space applications that will later run on your Linux system. The price to pay for the functionality Poky provides is a steep learning curve compared to other build systems.
Alex González's contribution with Embedded Linux Projects Using Yocto Project Cookbook is of great help to overcome that steep learning curve. The practical focus of this book and its structure in the form of short recipes help you resolve specific problems that you may find along the way when building an embedded product.
So please enjoy and learn from this book. In return for the invested time, you will get deeper knowledge of embedded system development with the help of the Yocto Project.
Javier Viguera
Embedded Software Engineer at Digi International
About the Author
Alex González is software engineering supervisor at Digi International and one of the maintainers of the Digi Embedded Yocto distribution.
He started working professionally with embedded systems in 1999 and the Linux kernel in 2004, designing products for voice and video over IP networks, and followed his interests into machine-to-machine (M2M) technologies and the Internet of Things.
Born and raised in Bilbao, Spain, Alex has his second home in the UK, where he lived for over 10 years and received his MSc in communication systems from the University of Portsmouth. He currently lives in La Rioja, where he enjoys photography and a good Riojan wine.
I would like to thank the Yocto and OpenEmbedded communities, whose dedication keeps the Yocto project running, and the people involved with the Freescale BSP community layer, whose work is the basis for this book.
I would also like to thank my family, for the time, space, and support that made this possible, and especially my mum for showing me how to be brave—gracias Ama por enseñarme a ser valiente.
About the Reviewers
Burt Janz has been involved with computing systems since he assembled his first microcomputer in the US Navy in 1975. Starting with the development of device drivers and low-level interfaces on *NIX systems in the early 1980s, he has been creating complex software products for over 30 years. His expertise includes the design and implementation of low-level operating system internals and device drivers, complex applications for embedded and handheld devices, and government- and enterprise-level systems.
A graduate of Franklin Pierce College in 1988 (BSCS with high honors), Burt was an adjunct professor at Daniel Webster College for 11 years in their evening-based continuing education program, while developing embedded and enterprise-level software during the day. His curricula of instruction included courses ranging from a basic introduction to computers and programming languages (C, C++, and Java), networking theory and network programming, database theory, and schema design to artificial intelligence systems. Along the way, Burt has written magazine articles and other technical commentaries. He was also involved in one of the first over-the-counter Linux distributions, Yggdrasil, in 1994.
Burt has designed complete embedded and enterprise-level software systems as a lead architect and has led teams from the requirements and design phases of new products to the phases of completion and delivery to customers. He has experience with x86, 68xxx, PPC, ARM, and SPARC processors. He continues to write kernel threads and kmods, open firmware device trees, drivers for new and proprietary hardware, FPGA I/P core interfaces, applications, libraries, and boot manager code.
He can be contacted directly by e-mail at <bhjanz@ccsneinc.com> or <burt.janz@gmail.com> or via LinkedIn.
Dave (Jing) Tian is a graduate research fellow and PhD student in the Computer and Information Science and Engineering (CISE) Department at the University of Florida. He is a founding member of the SENSEI center. His research direction involves system security, embedded system security, trusted computing, and static code analysis for security and virtualization. He is interested in Linux kernel hacking and compiler hacking. He also spent a year on AI and machine learning and taught Python and operating systems in the University of Oregon. Before that, he worked as a software developer in the LCP (Linux Control Platform) group in Alcatel-Lucent (formerly, Lucent Technologies) for approximately 4 years. This role was associated with research and development. He holds BS and ME degrees in electronics engineering from China.
He can be contacted directly by e-mail at <root@davejingtian.org> or you can visit his website at http://davejingtian.org.
Thanks to the author of this book, who has done a good job for embedded Linux and Yocto, and thanks to the editors of the book, who made it perfect and offered the opportunity to review such a nice book.
Javier Viguera has been a Linux fan since the mid-1990s, when he managed to install a Slackware distribution in his home computer from a set of floppy disks. This was a milestone because it allowed him to manage his programming practice comfortably at home instead of fighting for a 2-hour slot in the university's computer lab.
With a master's degree in telecommunications engineering and a bachelor's degree in computer science, he is currently working at Digi International as an embedded software engineer. He is one of the maintainers of the former Digi Embedded Linux, now Digi Embedded Yocto, distributions.
Javier lives in La Rioja, Spain. In his spare time, he likes to see good, classic movies, but you can also find him looking at the sky, as he is a fan of planes and aviation. He still dreams of getting a private pilot license.
www.PacktPub.com
Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
https://www2.packtpub.com/books/subscription/packtlib
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.
Preface
The Linux kernel is at the heart of a large number of embedded products being designed today. Over the last 10 years, this operating system has developed from dominating the server market to being the most used operating system in embedded systems, even those with real-time requirements. On the way, Linux has evolved, and the embedded industry has realized it has some key and unique characteristics:
All of these make it a very compelling choice for embedded development.
But at the same time, an embedded Linux product is not only the Linux kernel. Companies need to build an embedded system over the operating system, and that's where embedded Linux was finding it difficult to make its place—until Yocto arrived.
The Yocto Project brings all the benefits of Linux into the development of embedded systems. It provides a standard build system that allows you to develop embedded products in a quick, reliable, and controlled way. Just as Linux has its strong points for embedded development, Yocto has its own too:
With the Yocto Project's 6-month stable release process, package management updates, and flexibility, you will be able to focus on your embedded application, knowing that you are building it on top of a trusted system. You will speed up your development cycles and produce outstanding products.
But Yocto is a new technology, and developers need to adapt to it. This books aims to provide a practical guide for readers with basic knowledge of Linux and Yocto to develop a production-ready industrial system based on the ARM architecture.
What this book covers
Chapter 1, The Build System, describes the use of the Poky build system and extends it with the Freescale BSP community layer. It also describes common build system configurations and features used to optimize the building of target images.
Chapter 2, The BSP Layer, guides you through the customization of the BSP for your own product. It then explains how to configure, modify, build, and debug the U-Boot bootloader, the Linux kernel, and its device tree.
Chapter 3, The Software Layer, describes the process of creating a new software layer to hold new applications, services, or modifications to existing packages, as well as discussing a release process for license compliance.
Chapter 4, Application Development, starts with toolchains and the Application Development Toolkit (ADT), and deals with application development in detail, including development environments such as Eclipse and Qt creator.
Chapter 5, Debugging, Tracing, and Profiling, discusses debugging tools and techniques, and explores the tracing functionalities offered by the Linux kernel, along with some of the user-space-tracing and profiling tools that make use of them.
What you need for this book
This book assumes some basic working knowledge with GNU/Linux systems; applications such as the bash shell and derivatives; as well as standard tools such as grep, patch, diff, and so on. The examples have been tested with an Ubuntu 14.04 LTS system, but any Linux distribution supported by the Yocto Project can be used.
This is not meant to be an introductory book to the Yocto project, and reading an introductory book, such as Embedded Linux Development with Yocto Project by Otavio Salvador and Daiane Angolini, also from Packt Publishing, is recommended.
This book is structured to follow the usual development workflow of an embedded Linux product, but chapters or even single recipes can be read independently.
The recipes take a practical hands-on approach using a Freescale i.MX6-based system, the wandboard-quad, as base hardware. However, any other piece of i.MX-based hardware can be used to follow the examples.
Who this book is for
This book is the ideal way for embedded developers learning about embedded Linux and the Yocto Project to become proficient and broaden their knowledge with examples that are immediately applicable to embedded developments.
Experienced embedded Yocto developers will find new insights into working methodologies and ARM-specific development competence.
Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, How it works, There's more, and See also).
To give clear instructions on how to complete a recipe, we use these sections:
Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe.
How to do it…
This section contains the steps required to follow the recipe.
How it works…
This section usually consists of a detailed explanation of what happened in the previous section.
There's more…
This section consists of additional information about the recipe in order to make you more knowledgeable about the recipe.
See also
This section provides helpful links to other useful information for the recipe.
Conventions
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can add a list of packages to exclude from cleaning by adding them to the RM_WORK_EXCLUDE variable."
A block of code is set as follows:
SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
SRC_URI = "file://helloworld.c"
DEPENDS = "lttng-ust"
S = "${WORKDIR}"
Any command-line input or output is written as follows:
$ ls sources/meta-fsl*/conf/machine/*.conf
New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Build the project by navigating to Project | Build Project."
Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code
You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
The example code in the book can be accessed through several GitHub repositories at https://github.com/yoctocookbook. Follow the instructions on GitHub to obtain a copy of the source in your computer.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.
Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.
Questions
If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.
Chapter 1. The Build System
In this chapter, we will cover the following recipes:
Introduction
The Yocto project (http://www.yoctoproject.org/) is an embedded Linux distribution builder that makes use of several other open source projects.
The Yocto project provides a reference build system for embedded Linux, called Poky, which has the BitBake and OpenEmbedded-Core (OE-Core) projects at its base. The purpose of Poky is to build the components needed for an embedded Linux product, namely:
With these, the Yocto project covers the needs of both system and application developers. When the Yocto project is used as an integration environment for bootloaders, the Linux kernel, and user space applications, we refer to it as system development.
For application development, the Yocto project builds SDKs that enable the development of applications independently of the Yocto build system.
The Yocto project makes a new release every six months. The latest release at the time of this writing is Yocto 1.7.1 Dizzy, and all the examples in this book refer to the 1.7.1 release.
A Yocto release comprises the following components:
The Yocto 1.7.1 release is available to download from http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/.
Setting up the host system
This recipe will explain how to set up a host Linux system to use the Yocto project.
Getting ready
The recommended way to develop an embedded Linux system is using a native Linux workstation. Development work using virtual machines is discouraged, although they may be used for demo and test purposes.
Yocto builds all the components mentioned before from scratch, including the cross-compilation toolchain and the native tools it needs, so the Yocto build process is demanding in terms of processing power and both hard drive space and I/O.
Although Yocto will work fine on machines with lower specifications, for professional developer's workstations, it is recommended to use symmetric multiprocessing (SMP) systems with 8 GB or more system memory and a high capacity, fast hard drive. Build servers can employ distributed compilation, but this is out of the scope of this book. Due to different bottlenecks in the build process, there does not seem to be much improvement above 8 CPUs or around 16 GB RAM.
The first build will also download all the sources from the Internet, so a fast Internet connection is also recommended.
How to do it...
Yocto supports several distributions, and each Yocto release will document a list of the supported ones. Although the use of a supported Linux distribution is strongly advised, Yocto is able to run on any Linux system if it has the following dependencies:
Yocto also provides a way to install the correct version of these tools by either downloading a buildtools-tarball or building one on a supported machine. This allows virtually any Linux distribution to be able to run Yocto, and also makes sure that it will be possible to replicate your Yocto build system in the future. This is important for embedded products with long-term availability requirements.
This book will use the Ubuntu 14.04 Long-Term Stable (LTS) Linux distribution for all examples. Instructions to install on other Linux distributions can be found on the Supported Linux Distributions section of the Yocto Project Development Manual, but the examples will only be tested with Ubuntu 14.04 LTS.
To make sure you have the required package dependencies installed for Yocto and to follow the examples in the book, run the following command from your shell:
$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc- multilib build-essential chrpath socat libsdl1.2-dev xterm make xsltproc docbook-utils fop dblatex xmlto autoconf automake libtool libglib2.0-dev python-gtk2 bsdmainutils screen
Tip
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
The example code in the book can be accessed through several GitHub repositories at https://github.com/yoctocookbook. Follow the instructions on GitHub to obtain a copy of the source in your computer.
How it works...
The preceding command will use apt-get, the Advanced Packaging Tool (APT), command-line tool. It is a frontend of the dpkg package manager that is included in the Ubuntu distribution. It will install all the required packages and their dependencies to support all the features of the Yocto project.
There's more...
If build times are an important factor for you, there are certain steps you can take when preparing your disks to optimize them even further:
noatime,barrier=0,commit=6000.
These changes reduce the data integrity safeguards, but with the separation of the build directories to their own disk, failures would only affect temporary build data, which can be erased and regenerated.
See also
Installing Poky
This recipe will explain how to set up your host Linux system with Poky, the Yocto project reference system.
Getting ready
Poky uses the OpenEmbedded build system, and as such, uses the BitBake tool, a task scheduler written in Python which forked from Gentoo's Portage tool. You can think of BitBake as the make utility in Yocto. It will parse the configuration and recipe metadata, schedule a task list, and run through it.
BitBake is also the command-line interface to Yocto.
Poky and BitBake are two of the open source projects used by Yocto. The Poky project is maintained by the Yocto community. You can download Poky from its Git repository at http://git.yoctoproject.org/cgit/cgit.cgi/poky/.
Development discussions can be followed and contributed to by visiting the development mailing list at https://lists.yoctoproject.org/listinfo/poky.
BitBake, on the other hand, is maintained by both the Yocto and OpenEmbedded communities, as the tool is used by both. BitBake can be downloaded from its Git repository at http://git.openembedded.org/bitbake/.
Development discussions can be followed and contributed to by visiting the development mailing list at http://lists.openembedded.org/mailman/listinfo/bitbake-devel.
The Poky build system only supports virtualized QEMU machines for the following architectures:
Apart from these, it also supports some reference hardware Board Support Packages (BSPs), representative of the architectures just listed. These are those BSPs:
To develop on different hardware, you will need to complement Poky with hardware-specific Yocto layers. This will be covered later on.
How to do it...
The Poky project incorporates a stable BitBake release, so to get started with Yocto, we only need to install Poky in our Linux host system.
Note
Note that you can also install BitBake independently through your distribution's package management system. This is not recommended and can be a source of problems, as BitBake needs to be compatible with the metadata used in Yocto. If you have installed BitBake from your distribution, please remove it.
The current Yocto release is 1.7.1, or Dizzy, so we will install that into our host system. We will use the /opt/yocto folder as the installation path:
$ sudo install -o $(id -u) -g $(id -g) -d /opt/yocto
$ cd /opt/yocto
$ git clone --branch dizzy git://git.yoctoproject.org/poky
How it works...
The previous instructions will use Git (the source code management system command-line tool) to clone the Poky repository, which includes BitBake, into a new poky directory on our current path, and point it to the Dizzy stable branch.
There's more...
Poky contains three metadata directories, meta, meta-yocto, and meta-yocto-bsp, as well as a template metadata layer, meta-skeleton, that can be used as a base for new layers. Poky's three metadata directories are explained here:
Development discussions can be followed and contributed to by visiting the development mailing list at http://lists.openembedded.org/mailman/listinfo/openembedded-core.
See also
Creating a build directory
Before building your first Yocto image, we need to create a build directory for it.
The build process, on a host system as outlined before, can take up to one hour and need around 20 GB of hard drive space for a console-only image. A graphical image, like core-image-sato, can take up to 4 hours for the build process and occupy around 50 GB of space.
How to do it...
The first thing we need to do is create a build directory for our project, where the build output will be generated. Sometimes, the build directory may be referred to as the project directory, but build directory is the appropriate Yocto term.
There is no right way to structure the build directories when you have multiple projects, but a good practice is to have one build directory per architecture or machine type. They can all share a common downloads folders, and even a shared state cache (this will be covered later on), so keeping them separate won't affect the build performance, but it will allow you to develop on multiple projects simultaneously.
To create a build directory, we use the oe-init-build-env script provided by Poky. The script needs to be sourced into your current shell, and it will set up your environment to use the OpenEmbedded/Yocto build system, including adding the BitBake utility to your path. You can specify a build directory to use or it will use build by default. We will use qemuarm for this example.
$ cd /opt/yocto/poky
$ source oe-init-build-env qemuarm
The script will change to the specified directory.
Note
As oe-init-build-env only configures the current shell, you will need to source it on every new shell. But, if you point the script to an existing build directory, it will set up your environment but won't change any of your existing configurations.
Tip
BitBake is designed with a client/server abstraction, so we can also start a memory resident server and connect a client to it. With this setup, loading cache and configuration information each time is avoided, which saves some overhead. To run a memory resident BitBake that will always be available, you can use the oe-init-build-env-memres script as follows:
$ source oe-init-build-env-memres 12345 qemuarm
Here 12345 is the local port to be used.
Do not use both BitBake flavors simultaneously, as this can be a source of problems.
You can then kill the memory resident BitBake by executing the following command:
$ bitbake -m
How it works...
Both scripts call the scripts/oe-setup-builddir script inside the poky directory to create the build directory.
On creation, the build directory contains a conf directory with the following three files:
Note
To start a build from scratch, that's all the build directory needs.
Erasing everything apart from these files will recreate your build from scratch.
$ cd /opt/yocto/poky/qemuarm
$ rm -Rf tmp sstate-cache
There's more...
You can specify a different template configuration file to use when you create your build directory using the TEMPLATECONF variable; for example:
$ TEMPLATECONF=meta-custom/config source oe-init-build-env <build- dir>
The TEMPLATECONF variable needs to refer to a directory containing templates for both local.conf and bblayer.conf, but named local.conf.sample and bblayers.conf.sample.
For our purposes, we can use the unmodified default project configuration files.
Building your first image
Before building our first image, we need to decide what type of image we want to build. This recipe will introduce some of the available Yocto images and provide instructions to build a simple image.
Getting ready
Poky contains a set of default target images. You can list them by executing the following commands:
$ cd /opt/yocto/poky
$ ls meta*/recipes*/images/*.bb
A full description of the different images can be found on the Yocto Project Reference Manual. Typically, these default images are used as a base and customized for your own project needs. The most frequently used base default images are:
You will also find images with the following suffixes:
How to do it...
To build an image, we need to configure the MACHINE we are building it for and pass its name to BitBake. For example, for the qemuarm machine, we would run the following:
$ cd /opt/yocto/poky/qemuarm
$ MACHINE=qemuarm bitbake core-image-minimal
Or we could export the MACHINE variable to the current shell environment with the following:
$ export MACHINE=qemuarm
But the preferred and persistent way to do it is to edit the conf/local.conf configuration file to change the default machine to qemuarm:
- #MACHINE ?= "qemuarm"
+ MACHINE ?= "qemuarm"
Then you can just execute the following:
$ bitbake core-image-minimal
How it works...
When you pass a target recipe to BitBake, it first parses the following configuration files:
And then BitBake parses the target recipe that has been provided and its dependencies. The outcome is a set of interdependent tasks that BitBake will then execute in order.
There's more...
Most developers won't be interested in keeping the whole build output for every package, so it is recommended to configure your project to remove it with the following configuration in your conf/local.conf file:
INHERIT += "rm_work"
But at the same time, configuring it for all packages means that you won't be able to develop or debug them.
You can add a list of packages to exclude from cleaning by adding them to the RM_WORK_EXCLUDE variable. For example, if you are going to do BSP work, a good setting might be:
RM_WORK_EXCLUDE += "linux-yocto u-boot"
Remember that you can use a custom template local.conf.sample configuration file in your own layer to keep these configurations and apply them for all projects so that they can be shared across all developers.
Once the build finishes, you can find the output images on the tmp/deploy/images/qemuarm directory inside your build directory.
By default, images are not erased from the deploy directory, but you can configure your project to remove the previously built version of the same image by adding the following to your conf/local.conf file:
RM_OLD_IMAGE = "1"
You can test run your images on the QEMU emulator by executing this:
$ runqemu qemuarm core-image-minimal
The runqemu script included in Poky's scripts directory is a launch wrapper around the QEMU machine emulator to simplify its usage.
Explaining the Freescale Yocto ecosystem
As we saw, Poky metadata starts with the meta, meta-yocto, and meta-yocto-bsp layers, and it can be expanded by using more layers.
An index of the available OpenEmbedded layers that are compatible with the Yocto project is maintained at http://layers.openembedded.org/.
An embedded product's development usually starts with hardware evaluation using a manufacturer's reference board design. Unless you are working with one of the reference boards already supported by Poky, you will need to extend Poky to support your hardware.
Getting ready
The first thing to do is to select which base hardware your design is going to be based on. We will use a board that is based on a Freescale i.MX6 System on Chip (SoC) as a starting point for our embedded product design.
This recipe gives an overview of the support for Freescale hardware in the Yocto project.
How to do it...
The SoC manufacturer (in this case, Freescale) has a range of reference design boards for purchase, as well as official Yocto-based software releases. Similarly, other manufacturers that use Freescale's SoCs offer reference design boards and their own Yocto-based software releases.
Selecting the appropriate hardware to base your design on is one of the most important design decisions for an embedded product. Depending on your product needs, you will decide to either:
Most of the times, a production-ready board will not match the specific requirements of an professional embedded system, and the process of designing a complete carrier board using Freescale's SoC would be too time consuming. So, using an appropriate module that already solves the most technically challenging design aspects is a common choice.
Some of the characteristics that are important to consider are:
The Yocto community layers that support Freescale-based boards are called meta-fsl-arm and meta-fsl-arm-extras. The selection of boards that are supported on meta-fsl-arm is limited to Freescale reference designs, which would be the starting point if you are considering designing your own carrier board around Freescale's SoC. Boards from other vendors are maintained on the meta-fsl-arm-extras layer.
There are other embedded manufacturers that use meta-fsl-arm, but they have not integrated their boards in the meta-fsl-arm-extras community layer. These manufacturers will keep their own BSP layers, which depend on meta-fsl-arm, with specific support for their hardware. An example of this is Digi International and its ConnectCore 6 module, which is based on the i.MX6 SoC.
How it works...
To understand Freescale Yocto ecosystem, we need to start with the Freescale community BSP, comprising the meta-fsl-arm layer with support for Freescale reference boards, and its companion, meta-fsl-arm-extra, with support for boards from other vendors, and its differences with the official Freescale Yocto releases that Freescale offers for their reference designs.
There are some key differences between the community and Freescale Yocto releases:
Freescale's engineering works very closely with the Freescale BSP community to make sure that all development in their official releases is integrated in the community layer in a reliable and quick manner.
Usually, the best option is to use the Freescale BSP community release but stay with the U-Boot and Linux kernel versions that were released as part of the manufacturer's stable BSP release.
This effectively means that you get the latest updates to the Linux kernel and U-Boot from the manufacturer while simultaneously getting the latest updates to the root filesystem from the community, extending the lifetime of your product, and making sure you are up to date with applications, bug fixes, and security updates.
This takes advantage of the manufacturer's QA process for the system components that are closer to the hardware, and makes it possible to use the manufacturer's support while simultaneously getting user space updates from the community. The Freescale BSP community is also very responsive and active, so problems can usually be worked on with them to benefit all parts.
There's more...
The Freescale BSP community extends Poky with the following layers:
Development discussions can be followed and contributed to by visiting the development mailing list at https://lists.yoctoproject.org/listinfo/meta-freescale.
The meta-fsl-arm layer pulls both the Linux kernel and the U-Boot source from Freescale's repositories using the following links:
Other Linux kernel and U-Boot versions are available, but keeping the manufacturer's supported version is recommended.
The meta-fsl-arm layer includes Freescale's proprietary binaries to enable some hardware features – most notably its hardware graphics, multimedia, and encryption capabilities. To make use of these capabilities, the end user needs to accept Freescale's End-User License Agreement (EULA), which is included in the meta-fsl-arm layer. To accept the license, the following line needs to be added to the project's conf/local.conf configuration file:
ACCEPT_FSL_EULA = "1"
Freescale uses another layer on top of the layers above for their official software releases: meta-fsl-bsp-release.
See also
Installing support for Freescale hardware
In this recipe, we will install the community Freescale BSP Yocto release that adds support for Freescale hardware to our Yocto installation.
Getting ready
With so many layers, manually cloning each of them and adding them to your project's conf/bblayers.conf file is cumbersome. The community is using the repo tool developed by Google for their community Android to ease the installation of Yocto.
To install repo in your host system, type in the following commands:
$ sudo curl http://commondatastorage.googleapis.com/git-repo- downloads/repo > /usr/local/sbin/repo
$ sudo chmod a+x /usr/local/sbin/repo
The repo tool is a Python utility that parses an XML file, called manifest, with a list of Git repositories. The repo tool is then used to manage those repositories as a whole.
How to do it...
For example, we will use repo to download all the repositories listed in the previous recipe to our host system. For that, we will point it to the Freescale community BSP manifest for the Dizzy release:
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<default sync-j="4" revision="master"/>
<remote fetch="git://git.yoctoproject.org" name="yocto"/>
<remote fetch="git://github.com/Freescale" name="freescale"/>
<remote fetch="git://git.openembedded.org" name="oe"/>
<project remote="yocto" revision="dizzy" name="poky" path="sources/poky"/>
<project remote="yocto" revision="dizzy" name="meta-fsl-arm" path="sources/meta-fsl-arm"/>
<project remote="oe" revision="dizzy" name="meta-openembedded" path="sources/meta-openembedded"/>
<project remote="freescale" revision="dizzy" name="fsl- community-bsp-base" path="sources/base">
<copyfile dest="README" src="README"/>
<copyfile dest="setup-environment" src="setup- environment"/>
</project>
<project remote="freescale" revision="dizzy" name="meta-fsl-arm- extra" path="sources/meta-fsl-arm-extra"/>
<project remote="freescale" revision="dizzy" name="meta-fsl- demos" path="sources/meta-fsl-demos"/>
<project remote="freescale" revision="dizzy" name="Documentation" path="sources/Documentation"/>
</manifest>
The manifest file shows all the installation paths and repository sources for the different components that are going to be installed.
How it works...
The manifest file is a list of the different layers that are needed for the Freescale community BSP release. We can now use repo to install it. Run the following:
$ mkdir /opt/yocto/fsl-community-bsp
$ cd /opt/yocto/fsl-community-bsp
$ repo init -u https://github.com/Freescale/fsl-community-bsp- platform -b dizzy
$ repo sync
You can optionally pass a -jN argument to sync if you have a multicore machine for multithreaded operations; for example, you could pass repo sync -j8 in an 8-core host system.
There's more...
To list the hardware boards supported by the different layers, we may run:
$ ls sources/meta-fsl*/conf/machine/*.conf
And to list the newly introduced target images, use the following:
$ ls sources/meta-fsl*/recipes*/images/*.bb
The community Freescale BSP release introduces the following new target images:
See also
Building Wandboard images
Building images for one of the supported boards (for example, Wandboard Quad) follows the same process we described earlier for the QEMU machines, with the exception of using the setup-environment script, which is a wrapper around oe-init-build-env.
How to do it...
To build an image for the wandboard-quad machine, use the following commands:
$ cd /opt/yocto/fsl-community-bsp
$ mkdir -p wandboard-quad
$ MACHINE=wandboard-quad source setup-environment wandboard-quad
$ bitbake core-image-minimal
Note
The current version of the setup-environment script only works if the build directory is under the installation folder; in our case, /opt/yocto/fsl-community-bsp.
How it works...
The setup-environment script will create a build directory, set up the MACHINE variable, and prompt you to accept the Freescale EULA as described earlier. Your conf/local.conf configuration file will be updated both with the specified machine and the EULA acceptance variable.
Note
Remember that if you close your terminal session, you will need to set up the environment again before being able to use BitBake. You can safely rerun the setup-environment script as seen previously, as it will not touch an existing conf/local.conf file. Run the following:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
The resulting image, core-image-minimal.sdcard, which is created inside the build directory, can be programmed into a microSD card, inserted into the primary slot in the Wandboard CPU board, and booted using the following commands:
$ cd /opt/yocto/fsl-community-bsp/wandboard- quad/tmp/deploy/images/wandboard-quad/
$ sudo dd if=core-image-minimal.sdcard of=/dev/sdN bs=1M && sync
Here, /dev/sdN corresponds to the device node assigned to the microSD card in your host system.
Tip
Be careful when running the dd command, as it could harm your machine. You need to be absolutely sure that the sdN device corresponds to your microSD card and not a drive on your development machine.
See also
Troubleshooting your Wandboard's first boot
If you have problems booting your image, follow this recipe to troubleshoot.
Getting ready
Bus 002 Device 006: ID 15a2:0054 Freescale Semiconductor, Inc. i.MX6Q SystemOnChip in RecoveryMode
If you don't see this, try a different power supply. It should be 5V, 10W.
$ minicom -D /dev/ttyS0 -b 115200
Note
You will need to add your user to the dialout group, or try to run the command as sudo. This should open a 115200 8N1 serial connection. The serial device may vary in your Linux host. For example, a USB-to-serial adapter may be detected as /dev/ttyUSB0. Also, make sure both hardware and software flow control are disabled.
How to do it...
Make sure you have a DHCP server running on the test network where the target is.
You can use a packet sniffer like Wireshark to capture a network trace on your Linux host and filter packages like the bootp protocol. At the least, you should see some broadcasts from your target, and if you use an Ethernet hub, you should also see the DHCP replies.
Optionally, you can log in to your DHCP server and check the logs to see if a new IP address has been assigned. If you see an IP address being assigned, you might want to consider adding an SSH server, like Dropbear, to your core-image-minimal image so that you can establish a network connection with the target. You can do this by adding the following line to the conf/local.conf configuration file:
IMAGE_INSTALL_append = " dropbear"
Note the space after the initial quote.
After building and reprogramming, you can then start an SSH session to the Wandboard from your Linux host with:
$ ssh root@<ip_address>
The connection should automatically log in without a password prompt.
These steps will have your Wandboard start booting, and you should have some output in your serial connection.
There's more...
If everything else fails, you can verify the position of the bootloader on your microSD card. You can dump the contents of the first blocks of your microSD card with:
$ sudo dd if=/dev/sdN of=/tmp/sdcard.img count=10
You should see a U-Boot header at offset 0x400. That's the offset where the i.MX6 boot ROM will be looking for the bootloader when bootstrapped to boot from the microSD interface. Use the following commands:
$ head /tmp/sdcard.img | hexdump
0000400 00d1 4020 0000 1780 0000 0000 f42c 177f
You can recognize the U-Boot header by dumping the U-Boot image from your build. Run the following commands:
$ head u-boot-wandboard-quad.imx | hexdump
0000000 00d1 4020 0000 1780 0000 0000 f42c 177f
Configuring network booting for a development setup
Most professional i.MX6 boards will have an internal embedded MMC (eMMC) flash memory, and that would be the recommended way to boot firmware. The Wandboard is not really a product meant for professional use, so it does not have one. But neither the eMMC nor the microSD card are ideal for development work, as any system change would involve a reprogramming of the firmware image.
Getting ready
The ideal setup for development work is to use both TFTP and NFS servers in your host system and to only store the U-Boot bootloader in either the eMMC or a microSD card. With this setup, the bootloader will fetch the Linux kernel from the TFTP server and the kernel will mount the root filesystem from the NFS server. Changes to either the kernel or the root filesystem are available without the need to reprogram. Only bootloader development work would need you to reprogram the physical media.
Installing a TFTP server
If you are not already running a TFTP server, follow the next steps to install and configure a TFTP server on your Ubuntu 14.04 host:
$ sudo apt-get install tftpd-hpa
The tftpd-hpa configuration file is installed in /etc/default/tftpd-hpa. By default, it uses /var/lib/tftpboot as the root TFTP folder. Change the folder permissions to make it accessible to all users using the following command:
$ sudo chmod 1777 /var/lib/tftpboot
Now copy the Linux kernel and device tree from your build directory as follows:
$ cd /opt/yocto/fsl-community-bsp/wandboard- quad/tmp/deploy/images/wandboard-quad/
$ cp zImage-wandboard-quad.bin zImage-imx6q-wandboard.dtb /var/lib/tftpboot
Installing an NFS server
If you are not already running an NFS server, follow the next steps to install and configure one on your Ubuntu 14.04 host:
$ sudo apt-get install nfs-kernel-server
We will use the /nfsroot directory as the root for the NFS server, so we will "untar" the target's root filesystem from our Yocto build directory in there:
$ sudo mkdir /nfsroot
$ cd /nfsroot
$ sudo tar xvf /opt/yocto/fsl-community-bsp/wandboard- quad/tmp/deploy/images/wandboard-quad/core-image-minimal-wandboard- quad.tar.bz2
Next, we will configure the NFS server to export the /nfsroot folder:
/etc/exports:
/nfsroot/ *(rw,no_root_squash,async,no_subtree_check)
We will then restart the NFS server for the configuration changes to take effect:
$ sudo service nfs-kernel-server restart
How to do it...
Boot the Wandboard and stop at the U-Boot prompt by pressing any key on the serial console. Then run through the following steps:
> dhcp
Alternatively, you can configure a static IP address with:
> setenv ipaddr <static_ip>
> setenv serverip <host_ip>
> setenv nfsroot /nfsroot
> setenv image zImage-wandboard-quad.bin
> setenv fdt_file zImage-imx6q-wandboard.dtb
> setenv ip_dyn no
> saveenv
> run netboot
The Linux kernel and device tree will be fetched from the TFTP server, and the root filesystem will be mounted by the kernel from the NFS share after getting a DHCP address from your network (unless using static IP addresses).
You should be able to log in with the root user without a password prompt.
Sharing downloads
You will usually work on several projects simultaneously, probably for different hardware platforms or different target images. In such cases, it is important to optimize the build times by sharing downloads.
Getting ready
The build system runs a search for downloaded sources in a number of places:
If a package source is not found in any of the these four, the package build will fail with an error. Build warnings are also issued when upstream fetching fails and mirrors are tried, so that the upstream problem can be looked at.
The Yocto project maintains a set of mirrors to isolate the build system from problems with the upstream servers. However, when adding external layers, you could be adding support for packages that are not in the Yocto project's mirror servers, or other configured mirrors, so it is recommended that you keep a local premirror to avoid problems with source availability.
The default Poky setting for a new project is to store the downloaded package sources on the current build directory. This is the first place the build system will run a search for source downloads. This setting can be configured in your project's conf/local.conf file with the DL_DIR configuration variable.
How to do it...
To optimize the build time, it is recommended to keep a shared downloads directory between all your projects. The setup-environment script of the meta-fsl-arm layer changes the default DL_DIR to the fsl-community-bsp directory created by the repo tool. With this setup, the downloads folder will already be shared between all the projects in your host system. It is configured as:
DL_DIR ?= "${BSPDIR}/downloads/"
A more scalable setup (for instance, for teams that are remotely distributed) is to configure a premirror. For example, adding the following to your conf/local.conf file:
INHERIT += "own-mirrors"
SOURCE_MIRROR_URL = "http://example.com/my-source-mirror"
A usual setup is to have a build server serve its downloads directory. The build server can be configured to prepare tarballs of the Git directories to avoid having to perform Git operations from upstream servers. This setting in your conf/local.conf file will affect the build performance, but this is usually acceptable in a build server. Add the following:
BB_GENERATE_MIRROR_TARBALLS = "1"
An advantage of this setup is that the build server's downloads folder can also be backed up to guarantee source availability for your products in the future. This is especially important in embedded products with long-term availability requirements.
In order to test this setup, you may check to see whether a build is possible just by using the premirrors with the following:
BB_FETCH_PREMIRRORONLY = "1"
This setting in your conf/local.conf file can also be distributed across the team with the TEMPLATECONF variable during the project's creation.
Sharing the shared state cache
The Yocto project builds everything from source. When you create a new project, only the configuration files are created. The build process then compiles everything from scratch, including the cross-compilation toolchain and some native tools important for the build.
This process can take a long time, and the Yocto project implements a shared state cache mechanism that is used for incremental builds with the aim to build only the strictly necessary components for a given change.
For this to work, the build system calculates a checksum of the given input data to a task. If the input data changes, the task needs to be rebuilt. In simplistic terms, the build process generates a run script for each task that can be checksummed and compared. It also keeps track of a task's output, so that it can be reused.
A package recipe can modify the shared state caching to a task; for example, to always force a rebuild by marking it as nostamp. A more in-depth explanation of the shared state cache mechanism can be found in the Yocto Project Reference Manual at http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html.
How to do it...
By default, the build system will use a shared state cache directory called sstate-cache on your build directory to store the cached data. This can be changed with the SSTATE_DIR configuration variable in your conf/local.conf file. The cached data is stored in directories named with the first two characters of the hash. Inside, the filenames contain the whole task checksum, so the cache validity can be ascertained just by looking at the filename. The build process set scene tasks will evaluate the cached data and use it to accelerate the build if valid.
When you want to start a build from a clean state, you need to remove both the sstate-cache directory and the tmp directory.
You can also instruct BitBake to ignore the shared state cache by using the --no-setscene argument when running it.
It's a good practice to keep backups of clean shared state caches (for example, from a build server), which can be used in case of shared state cache corruption.
There's more...
Sharing a shared state cache is possible; however, it needs to be approached with care. Not all changes are detected by the shared state cache implementation, and when this happens, some or all of the cache needs to be invalidated. This can cause problems when the state cache is being shared.
The recommendation in this case depends on the use case. Developers working on Yocto metadata should keep the shared state cache as default, separated per project.
However, validation and testing engineers, kernel and bootloader developers, and application developers would probably benefit from a well-maintained shared state cache.
To configure an NFS share drive to be shared among the development team to speed up the builds, you can add the following to your conf/local.conf configuration file:
SSTATE_MIRRORS ?= "\
file://.* file:///nfs/local/mount/sstate/PATH"
The expression PATH in this example will get substituted by the build system with a directory named with the hash's first two characters.
Setting up a package feed
An embedded system project seldom has the need to introduce changes to the Yocto build system. Most of the time and effort is spent in application development, followed by a lesser amount in maybe kernel and bootloader development.
As such, a whole system rebuild is probably done very few times. A new project is usually built from a prebuilt shared state cache, and application development work only needs to be done to perform full or incremental builds of a handful of packages.
Once the packages are built, they need to be installed on the target system for testing. Emulated machines are fine for application development, but most hardware-related work needs to be done on embedded hardware.
Getting ready
An option is to manually copy the build binaries to the target's root filesystem, either copying it to the NFS share on the host system the target is mounting its root filesystem from (as explained in the Configuring network booting for a development setup recipe earlier) or using any other method like SCP, FTP, or even a microSD card.
This method is also used by IDEs like Eclipse when debugging an application you are working on. However, this method does not scale well when you need to install several packages and dependencies.
The next option would be to copy the packaged binaries (that is, the RPM, deb, or ipk packages) to the target's filesystem and then use the target's package management system to install them. For this to work, your target's filesystem needs to be built with package management tools. Doing this is as easy as adding the package-management feature to your root filesystem; for example, you may add the following line to your project's conf/local.conf file:
EXTRA_IMAGE_FEATURES += "package-management"
So for an RPM package, you will copy it to the target and use the rpm or smart utilities to install it. The smart package management tool is GPL licensed and can work with a variety of package formats.
However, the most optimized way to do this is to convert your host system package's output directory into a package feed. For example, if you are using the default RPM package format, you may convert tmp/deploy/rpm in your build directory into a package feed that your target can use to update.
For this to work, you need to configure an HTTP server on your computer that serves the packages.
Versioning packages
You also need to make sure that the generated packages are correctly versioned, and that means updating the recipe revision, PR, with every change. It is possible to do this manually, but the recommended—and compulsory way if you want to use package feeds—is to use a PR server.
However, the PR server is not enabled by default. The packages generated without a PR server are consistent with each other but offer no update guarantees for a system that is already running.
The simplest PR server configuration is to run it locally on your host system. To do this, you add the following to your conf/local.conf file:
PRSERV_HOST = "localhost:0"
With this setup, update coherency is guaranteed for your feed.
If you want to share your feed with other developers, or you are configuring a build server or package server, you would run a single instance of the PR server by running the following command:
$ bitbake-prserv --host <server_ip> --port <port> --start
And you will update the project's build configuration to use the centralized PR server, editing conf/local.conf as follows:
PRSERV_HOST = "<server_ip>:<port>"
Also, if you are using a shared state cache as described before, all of the contributors to the shared state cache need to use the same PR server.
Once the feed's integrity is guaranteed, we need to configure an HTTP server to serve the feed.
How to do it...
We will use lighttpd for this example, as it is lightweight and easy to configure. Follow these steps:
$ sudo apt-get install lighttpd
$ sudo mkdir /var/www/wandboard-quad
$ sudo ln -s /opt/yocto/fsl-community-bsp/wandboard- quad/tmp/deploy/rpm /var/www/wandboard-quad/rpm
Next, reload the configuration as follows:
$ sudo service lighttpd reload
$ bitbake package-index
smart channel --add all type=rpm-md \ baseurl=http://<server_ip>/wandboard-quad/rpm/all
smart channel --add wandboard_quad type=rpm-md \ baseurl=http://<server_ip>/wandboard-quad/rpm/wandboard_quad
smart channel --add cortexa9hf_vfp_neon type=rpm-md \ baseurl=http://<server_ip>/wandboard- quad/rpm/cortexa9hf_vfp_neon
smart update
smart query <package_name>
smart install <package_name>
To make this change persistent in the target's root filesystem, we can configure the package feeds at compilation time by using the PACKAGE_FEED_URIS variable in conf/local.conf as follows:
PACKAGE_FEED_URIS = "http://<server_ip>/wandboard-quad"
See also
Using build history
When maintaining software for an embedded product, you need a way to know what has changed and how it is going to affect your product.
On a Yocto system, you may need to update a package revision (for instance, to fix a security vulnerability), and you need to make sure what the implications of this change are; for example, in terms of package dependencies and changes to the root filesystem.
Build history enables you to do just that, and we will explore it in this recipe.
How to do it...
To enable build history, add the following to your conf/local.conf file:
INHERIT += "buildhistory"
The following enables information gathering, including dependency graphs:
BUILDHISTORY_COMMIT = "1"
The preceding line of code enables the storage of build history in a local Git repository.
The Git repository location can be set by the BUILDHISTORY_DIR variable, which by default is set to a buildhistory directory on your build directory.
By default, buildhistory tracks changes to packages, images, and SDKs. This is configurable using the BUILDHISTORY_FEATURES variable. For example, to track only image changes, add the following to your conf/local.conf:
BUILDHISTORY_FEATURES = "image"
It can also track specific files and copy them to the buildhistory directory. By default, this includes only /etc/passwd and /etc/groups, but it can be used to track any important files like security certificates. The files need to be added with the BUILDHISTORY_IMAGE_FILES variable in your conf/local.conf file as follows:
BUILDHISTORY_IMAGE_FILES += "/path/to/file"
Build history will slow down the build, increase the build size, and may also grow the Git directory to an unmanageable size. The recommendation is to enable it on a build server for software releases, or in specific cases, such as when updating production software.
How it works...
When enabled, it will keep a record of the changes to each package and image in the form of a Git repository in a way that can be explored and analyzed.
For a package, it records the following information:
For an image, it records the following information:
And for an SDK, it records the following information:
Looking at the build history
Inspecting the Git directory with the build history can be done in several ways:
There's more...
To maintain the build history, it's important to optimize it and avoid it from growing over time. Periodic backups of the build history and clean-ups of older data are important to keep the build history repository at a manageable size.
Once the buildhistory directory has been backed up, the following process will trim it and keep only the most recent history:
$ git rev-parse "HEAD@{1 month ago}" > .git/info/grafts
$ git filter-branch
$ git clone file://${tmpfs}/buildhistory buildhistory.new
$ rm -rf buildhistory
$ mv buildhistory.new buildhistory
Working with build statistics
The build system can collect build information per task and image. The data may be used to identify areas of optimization of build times and bottlenecks, especially when new recipes are added to the system. This recipe will explain how the build statistics work.
How to do it...
To enable the collection of statistics, your project needs to inherit the buildstats class by adding it to USER_CLASSES in your conf/local.conf file. By default, the fsl-community-bsp build project is configured to enable them.
USER_CLASSES ?= "buildstats"
You can configure the location of these statistics with the BUILDSTATS_BASE variable, and by default it is set to the buildstats folder in the tmp directory under the build directory (tmp/buildstats).
The buildstats folder contains a folder per image with the build stats under a timestamp folder. Under it will be a subdirectory per package in your built image, and a build_stats file that contains:
How it works...
The accuracy of the data depends on the download directory, DL_DIR, and the shared state cache directory, SSTATE_DIR, existing on the same partition or volume, so you may need to configure them accordingly if you are planning to use the build data.
An example build-stats file looks like the following:
Host Info: Linux agonzal 3.13.0-35-generic #62-Ubuntu SMP Fri Aug 15 01:58:42 UTC 2014 x86_64 x86_64
Build Started: 1411486841.52
Uncompressed Rootfs size: 6.2M /opt/yocto/fsl-community- bsp/wandboard-quad/tmp/work/wandboard_quad-poky-linux- gnueabi/core-image-minimal/1.0-r0/rootfs
Elapsed time: 2878.26 seconds
CPU usage: 51.5%
EndIOinProgress: 0
EndReadsComp: 0
EndReadsMerged: 55289561
EndSectRead: 65147300
EndSectWrite: 250044353
EndTimeIO: 14415452
EndTimeReads: 10338443
EndTimeWrite: 750935284
EndWTimeIO: 816314180
EndWritesComp: 0
StartIOinProgress: 0
StartReadsComp: 0
StartReadsMerged: 52319544
StartSectRead: 59228240
StartSectWrite: 207536552
StartTimeIO: 13116200
StartTimeReads: 8831854
StartTimeWrite: 3861639688
StartWTimeIO: 3921064032
StartWritesComp: 0
These disk statistics come from the Linux kernel disk I/O stats (https://www.kernel.org/doc/Documentation/iostats.txt). The different elements are explained here:
IOinProgress: This is the total number of I/Os in progress when reading /proc/diskstats
And inside each package, we have a list of tasks; for example, for ncurses-5.9-r15.1, we have the following tasks:
Each one of them contain, in the same format as earlier, the following:
There's more...
You can also obtain a graphical representation of the data using the pybootchartgui.py tool included in the Poky source. From your project's build folder, you can execute the following command to obtain a bootchart.png graphic in /tmp:
$../sources/poky/scripts/pybootchartgui/pybootchartgui.py tmp/buildstats/core-image-minimal-wandboard-quad/ -o /tmp
Debugging the build system
In the last recipe of this chapter, we will explore the different methods available to debug problems with the build system and its metadata.
Getting ready
Let's first introduce some of the usual use cases on a debugging session.
Finding recipes
A good way to check whether a specific package is supported in your current layers is to search for it as follows:
$ find -name "*busybox*"
This will recursively search all layers for the BusyBox pattern. You can limit the search to recipes and append files by executing:
$ find -name "*busybox*.bb*"
Dumping BitBake's environment
When developing or debugging package or image recipes, it is very common to ask BitBake to list its environment both globally and for a specific target, be it a package or image.
To dump the global environment and grep for a variable of interest (for example, DISTRO_FEATURES), use the following command:
$ bitbake -e | grep -w DISTRO_FEATURES
Optionally, to locate the source directory for a specific package recipe like BusyBox, use the following command:
$ bitbake -e busybox | grep ^S=
You could also execute the following command to locate the working directory for a package or image recipe:
$ bitbake -e <target> | grep ^WORKDIR=
Using the development shell
BitBake offers the devshell task to help developers. It is executed with the following command:
$ bitbake -c devshell <target>
It will unpack and patch the source, and open a new terminal (it will autodetect your terminal type or it can be set with OE_TERMINAL) in the target source directory, which has the environment correctly setup.
Note
While in a graphical environment, devshell opens a new terminal or console window, but if we are working on a non-graphical environment, like telnet or SSH, you may need to specify screen as your terminal in your conf/local.conf configuration file as follows:
OE_TERMINAL = "screen"
Inside the devshell, you can run development commands like configure and make or invoke the cross-compiler directly (use the $CC environment variable, which has been set up already).
How to do it...
The starting point for debugging a package build error is the BitBake error message printed on the build process. This will usually point us to the task that failed to build.
To list all the tasks available for a given recipe, with descriptions, we execute the following:
$ bitbake -c listtasks <target>
If you need to recreate the error, you can force a build with the following:
$ bitbake -f <target>
Or you can ask BitBake to force-run only a specific task using the following command:
$ bitbake -c compile -f <target>
Task log and run files
To debug the build errors, BitBake creates two types of useful files per shell task and stores them in a temp folder in the working directory. Taking BusyBox as an example, we would look into:
/opt/yocto/fsl-community-bsp/wandboard-quad/tmp/work/cortexa9hf- vfp-neon-poky-linux-gnueabi/busybox/1.22.1-r32/temp
And find a list of log and run files. The filename format is
log.do_<task>.<pid>
and run.do_<task>.<pid>.
But luckily, we also have symbolic links, without the pid part, that link to the latest version.
The log files will contain the output of the task, and that is usually the only information we need to debug the problem. The run file contains the actual code executed by BitBake to generate the log mentioned before. This is only needed when debugging complex build issues.
Python tasks, on the other hand, do not currently write files as described previously, although it is planned to do so in the future. Python tasks execute internally and log information to the terminal.
Adding logging to recipes
BitBake recipes accept either bash or Python code. Python logging is done through the bb class and uses the standard logging Python library module. It has the following components:
To print debug output from bash in our recipes, we need to use the logging class by executing:
inherit logging
The logging class is inherited by default by all recipes containing base.bbclass, so we don't usually have to inherit it explicitly. We will then have access to the following bash functions, which will output to the log files (not to the console) in the temp directory inside the working directory as described previously:
bbdebug [123] "message"
Tip
The bash functions mentioned here do not log to the console but only to the log files.
Looking at dependencies
You can ask BitBake to print the current and provided versions of packages with the following command:
$ bitbake --show-versions
Another common debugging task is the removal of unwanted dependencies.
To see an overview of pulled-in dependencies, you can use BitBake's verbose output by running this:
$ bitbake -v <target>
To analyze what dependencies are pulled in by a package, we can ask BitBake to create DOT files that describe these dependencies by running the following:
$ bitbake -g <target>
The DOT format is a text description language for graphics that is understood by the GraphViz open source package and all the utilities that use it. DOT files can be visualized or further processed.
You can omit dependencies from the graph to produce more readable output. For example, to omit dependencies from glibc, you would run the following command:
$ bitbake -g <target> -I glibc
Once the preceding commands have been run, we get three files in the current directory:
There is also a pn-buildlist file with a list of packages that would be built by the given target.
To convert the .dot files to postscript files (.ps), you may execute:
$ dot -Tps filename.dot -o outfile.ps
However, the most useful way to display dependency data is to ask BitBake to display it graphically with the dependency explorer, as follows:
$ bitbake -g -u depexp <target>
The result may be seen in the following screenshot:
Debugging BitBake
It is not common to have to debug BitBake itself, but you may find a bug in BitBake and want to explore it by yourself before reporting it to the BitBake community. For such cases, you can ask BitBake to output the debug information at three different levels with the -D flag. To display all the debug information, run the following command:
$ bitbake -DDD <target>
Error reporting tool
Sometimes, you will find a build error on a Yocto recipe that you have not modified. The first place to check for errors is the community itself, but before launching your mail client, head to http://errors.yoctoproject.org.
This is a central database of user-reported errors. Here, you may check whether someone else is experiencing the same problem.
You can submit your own build failure to the database to help the community debug the problem. To do so, you may use the report-error class. Add the following to your conf/local.conf file:
INHERIT += "report-error"
By default, the error information is stored under tmp/log/error-report under the build directory, but you can set a specific location with the ERR_REPORT_DIR variable.
When the error reporting tool is activated, a build error will be captured in a file in the error-report folder. The build output will also print a command to send the error log to the server:
$ send-error-report ${LOG_DIR}/error-report/error-report_${TSTAMP}
When this command is executed, it will report back with a link to the upstream error.
You can set up a local error server, and use that instead by passing a server argument. The error server code and setting up details can be found at http://git.yoctoproject.org/cgit/cgit.cgi/error-report-web/tree/README.
There's more...
Although you can use Linux utilities to parse Yocto's metadata and build output, BitBake lacks a command base UI for common tasks. One project that aims to provide it is bb, which is available at https://github.com/kergoth/bb.
To use it, you need to clone the repository locally by executing the following command:
$ cd /opt/yocto/fsl-community-bsp/sources
$ git clone https://github.com/kergoth/bb.git
Then run the bb/bin/bb init command, which prompts you to add a bash command to your ~/.bash_profile file.
You can either do that or execute it in your current shell as follows:
$ eval "$(/opt/yocto/fsl-community-bsp/sources/bb/bin/bb init -)"
You will first need to set up your environment as usual:
$ cd /opt/yocto/fsl-community-bsp
$ source setup-environment wandboard-quad
Note
Some of the commands only work with a populated work directory, so you may need to remove the rm_work class if you want to use bb.
Some of the tasks that are made easier by the bb utility are:
$ bb contents <target>
$ bb search <pattern>
$ bb show -r <recipe> <variable>
Chapter 2. The BSP Layer
In this chapter, we will cover the following recipes:
Introduction
Once we have our build environment ready with the Yocto project, it's time to think about beginning development work on our embedded Linux project.
Most of the embedded Linux projects require both custom hardware and software. An early task in the development process is to test different hardware reference boards and the selection of one to base our design on. We have chosen the Wandboard, a Freescale i.MX6-based platform, as it is an affordable and open board, which makes it perfect for our needs.
On an embedded project, it is usually a good idea to start working on the software as soon as possible, probably before the hardware prototypes are ready, so that it is possible to start working directly with the reference design.
But at some point, the hardware prototypes will be ready and changes will need to be introduced into Yocto to support the new hardware.
This chapter will explain how to create a BSP layer to contain those hardware-specific changes, as well as show how to work with the U-Boot bootloader and the Linux kernel, components which are likely to take most of the customization work.
Creating a custom BSP layer
These custom changes are kept on a separate Yocto layer, called a Board Support Package (BSP) layer. This separation is best for future updates and patches to the system. A BSP layer can support any number of new machines and any new software feature that is linked to the hardware itself.
How to do it...
By convention, Yocto layer names start with meta, short for metadata. A BSP layer may then add a bsp keyword, and finally a unique name. We will call our layer meta-bsp-custom.
There are several ways to create a new layer:
You can have a look at the meta-skeleton layer in Poky and see that it includes the following elements:
How it works...
We will cover some of the use cases that appear in the available examples in the next few recipes, so for our needs, we will use the yocto-layer tool, which allows us to create a minimal layer.
Open a new terminal and change to the fsl-community-bsp directory. Then set up the environment as follows:
$ source setup-environment wandboard-quad
Note
Note that once the build directory has been created, the MACHINE variable has already been configured in the conf/local.conf file and can be omitted from the command line.
Change to the sources directory and run:
$ yocto-layer create bsp-custom
Note that the yocto-layer tool will add the meta prefix to your layer, so you don't need to. It will prompt a few questions:
Our new layer has the following structure:
meta-bsp-custom/
conf/layer.conf
COPYING.MIT
README
There's more...
The first thing to do is to add this new layer to your project's conf/bblayer.conf file. It is a good idea to add it to your template conf directory's bblayers.conf.sample file too, so that it is correctly appended when creating new projects. The highlighted line in the following code shows the addition of the layer to the conf/bblayers.conf file:
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE', True)) + '/../..')}"
BBFILES ?= ""
BBLAYERS = " \
${BSPDIR}/sources/poky/meta \
${BSPDIR}/sources/poky/meta-yocto \
\
${BSPDIR}/sources/meta-openembedded/meta-oe \
${BSPDIR}/sources/meta-openembedded/meta-multimedia \
\
${BSPDIR}/sources/meta-fsl-arm \
${BSPDIR}/sources/meta-fsl-arm-extra \
${BSPDIR}/sources/meta-fsl-demos \
${BSPDIR}/sources/meta-bsp-custom \
"
Now, BitBake will parse the bblayers.conf file and find the conf/layers.conf file from your layer. In it, we find the following line:
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes-*/*/*.bbappend"
It tells BitBake which directories to parse for recipes and append files. You need to make sure your directory and file hierarchy in this new layer matches the given pattern, or you will need to modify it.
BitBake will also find the following:
BBPATH .= ":${LAYERDIR}"
The BBPATH variable is used to locate the bbclass files and the configuration and files included with the include and require directives. The search finishes with the first match, so it is best to keep filenames unique.
Some other variables we might consider defining in our conf/layer.conf file are:
LAYERDEPENDS_bsp-custom = "fsl-arm"
LAYERVERSION_bsp-custom = "1"
The LAYERDEPENDS literal is a space-separated list of other layers your layer depends on, and the LAYERVERSION literal specifies the version of your layer in case other layers want to add a dependency to a specific version.
The COPYING.MIT file specifies the license for the metadata contained in the layer. The Yocto project is licensed under the MIT license, which is also compatible with the General Public License (GPL). This license applies only to the metadata, as every package included in your build will have its own license.
The README file will need to be modified for your specific layer. It is usual to describe the layer and provide any other layer dependencies and usage instructions.
Adding a new machine
When customizing your BSP, it is usually a good idea to introduce a new machine for your hardware. These are kept under the conf/machine directory in your BSP layer. The usual thing to do is to base it on the reference design. For example, wandboard-quad has the following machine configuration file:
include include/wandboard.inc
SOC_FAMILY = "mx6:mx6q:wandboard"
UBOOT_MACHINE = "wandboard_quad_config"
KERNEL_DEVICETREE = "imx6q-wandboard.dtb"
MACHINE_FEATURES += "bluetooth wifi"
MACHINE_EXTRA_RRECOMMENDS += " \
bcm4329-nvram-config \
bcm4330-nvram-config \
"
A machine based on the Wandboard design could define its own machine configuration file, wandboard-quad-custom.conf, as follows:
include conf/machine/include/wandboard.inc
SOC_FAMILY = "mx6:mx6q:wandboard"
UBOOT_MACHINE = "wandboard_quad_custom_config"
KERNEL_DEVICETREE = "imx6q-wandboard-custom.dtb"
MACHINE_FEATURES += "wifi"
The wandboard.inc file now resides on a different layer, so in order for BitBake to find it, we need to specify the full path from the BBPATH variable in the corresponding layer. This machine defines its own U-Boot configuration file and Linux kernel device tree in addition to defining its own set of machine features.
Adding a custom device tree to the Linux kernel
To add this device tree file to the Linux kernel, we need to add the device tree file to the arch/arm/boot/dts directory under the Linux kernel source and also modify the Linux build system's arch/arm/boot/dts/Makefile file to build it as follows:
dtb-$(CONFIG_ARCH_MXC) += \
+imx6q-wandboard-custom.dtb \
This code uses diff formatting, where the lines with a minus prefix are removed, the ones with a plus sign are added, and the ones without a prefix are left as reference.
Once the patch is prepared, it can be added to the meta-bsp-custom/recipes-kernel/linux/linux-wandboard-3.10.17/ directory and the Linux kernel recipe appended adding a meta-bsp-custom/recipes-kernel/linux/linux-wandboard_3.10.17.bbappend file with the following content:
SRC_URI_append = " file://0001-ARM-dts-Add-wandboard-custom-dts- file.patch"
An example patch that adds a custom device tree to the Linux kernel can be found in the source code that accompanies the book.
Adding a custom U-Boot machine
In the same way, the U-Boot source may be patched to add a new custom machine. Bootloader modifications are not as likely to be needed as kernel modifications though, and most custom platforms will leave the bootloader unchanged. The patch would be added to the meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc-v2014.10/ directory and the U-Boot recipe appended with a meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc_2014.10.bbappend file with the following content:
SRC_URI_append = " file://0001-boards-Add-wandboard-custom.patch"
An example patch that adds a custom machine to U-Boot can be found in the source code that accompanies the book.
Adding a custom formfactor file
Custom platforms can also define their own formfactor file with information that the build system cannot obtain from other sources, such as defining whether a touchscreen is available or defining the screen orientation. These are defined in the recipes-bsp/formfactor/ directory in our meta-bsp-custom layer. For our new machine, we could define a meta-bsp-custom/recipes-bsp/formfactor/formfactor_0.0.bbappend file to include a formfactor file as follows:
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
And the machine-specific meta-bsp-custom/recipes-bsp/formfactor/formfactor/wandboard-quadcustom/machconfig file would be as follows:
HAVE_TOUCHSCREEN=1
Introducing system development workflows
When customizing the software, there are some system development workflows that are commonly used, and we will introduce them in this recipe.
How to do it...
We will see an overview of the following development workflows:
They are all used under different scenarios.
How it works...
Let's understand what the use of each of these development workflows is individually.
External development
In this workflow, we don't use the Yocto build system to build our packages, just a Yocto toolchain and the package's own build system.
The resulting source can be integrated into Yocto in the following ways:
External development is usually the preferred method for U-Boot and Linux kernel development, as they can be easily cross-compiled. Third-party packages in Yocto are also developed in this way.
However, third-party packages can be tricky to cross-compile, and that is just what the Yocto build system makes easy. So, if we are not the main developers of the package and we only want to introduce some fixes or modifications, we can use Yocto to help us. The two workflows explained in the following sections use the Yocto build system.
Working directory development
In this workflow, we use the working directory inside the build directory, tmp/work. As we know, when Yocto builds a package, it uses the working directory to extract, patch, configure, build, and package the source. We can directly modify the source in this directory and use the Yocto system to build it.
This methodology is commonly used when sporadically debugging third-party packages.
The workflow is as follows:
$ bitbake -c cleanall <target>
$ bitbake -c patch <target>
$ bitbake -c devshell <target>
$ bitbake -C compile <target>
Note the capital C. This instructs BitBake to run the compile task and all the tasks that follow it. This is the same as running:
$ bitbake -c compile <target>
$ bitbake <target>
$ rpm -i <package>
Optionally, you can also use a package feed as we saw in the Setting up a package feed recipe in Chapter 1, The Build System, in which case you would rebuild the index with the following:
$ bitbake package-index
And then use the smart package management utility on the target to install the package as previously shown.
External source development
In this workflow, we will use the Yocto build system to build an external directory containing the source. This external directory is usually source controlled to help us in our development.
This is the usual methodology to follow for extensive package development once the source has already been integrated with the Yocto build system.
The workflow is as follows:
$ bitbake <target>
Adding a custom kernel and bootloader
Development in U-Boot and the Linux kernel is usually done externally to Yocto, as they are easy to build using a toolchain, like the one provided by Yocto.
The development work is then integrated into Yocto in one of two ways:
Usually a forked Git repository is only needed when the hardware changes are substantial and the work in the Linux kernel and bootloader is going to be extensive. The recommendation is to start with patches, and only use a forked repository when they become difficult to manage.
Getting Ready
The first question when starting work on the Linux kernel and U-Boot modifications is how do you find which of the several available recipes are being used for your build.
Finding the Linux kernel source
To find the Linux kernel source, we might use several methods. As we are aware we are building for a wandboard-quad machine, the first thing to do is find a machine configuration file:
$ cd /opt/yocto/fsl-community-bsp/sources
$ find -name wandboard-quad.conf
./meta-fsl-arm-extra/conf/machine/wandboard-quad.conf
The machine configuration file above in turn includes a wandboard.inc file:
include conf/machine/include/imx-base.inc
include conf/machine/include/tune-cortexa9.inc
PREFERRED_PROVIDER_virtual/kernel ?= "linux-wandboard"
PREFERRED_VERSION_linux-wandboard ?= "3.10.17"
Here we find a Linux kernel recipe being specified as the preferred provider for virtual/kernel. Virtual packages like this are used when a feature or element is provided by more than one recipe. It allows us to choose which of all those recipes will finally be used. Virtual packages will be further explained in the Selecting a specific package versions and providers recipe in Chapter 3, The Software Layer.
We could check the actual output from our previous core-image-minimal build:
$ find tmp/work -name "*linux-wandboard*"
tmp/work/wandboard_quad-poky-linux-gnueabi/linux-wandboard
As the linux-wanboard directory exists in our work folder, we can be sure the recipe has been used.
We can check what the available Linux recipes are with:
$ find -name "*linux*.bb"
We have lots of options, but we can use some of our acquired knowledge to filter them out. Let's exclude the poky and meta-openembedded directories, as we know the BSP support is included in the Freescale community BSP layers:
$ find -path ./poky -prune -o -path ./meta-openembedded -prune -o -name "*linux*.bb"
Finally, we can also use the bitbake-layers script included in Poky:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake-layers show-recipes 'linux*'
Not all those kernels support the Wandboard machine completely, but they all support Freescale ARM machines, so they are useful for comparisons.
Finding the U-Boot source
If we continue to pull the include chain, we have imx-base.inc, which itself includes fsl-default-providers.inc, where we find:
PREFERRED_PROVIDER_u-boot ??= "u-boot-fslc"
PREFERRED_PROVIDER_virtual/bootloader ??= "u-boot-fslc"
So u-boot-fslc is the U-Boot recipe we are looking for.
Developing using a Git repository fork
We will show how to append a recipe to use a forked repository to work from it. We will use the Linux kernel as an example, but the concept works just as well for U-Boot or any other package, although the specifics will change.
We will fork or branch the repository used in the reference design and use it to specify SRC_URI for the recipe.
How to do it...
For this example, I have forked the repository to https://github.com/yoctocookbook/linux, so my recipes-kernel/linux/linux-wandboard_3.10.17.bbappend file would have the following changes:
Copyright Packt Publishing 2015
WANDBOARD_GITHUB_MIRROR = "git://github.com/yoctocookbook/linux.git"
SRCBRANCH = "wandboard_imx_3.10.17_1.0.2_ga-dev"
SRCREV = "${AUTOREV}"
Tip
Note how the URL needs to start with git://. This is so that BitBake can recognize it as a Git source. Now we can clean and build the Linux kernel and the source will be fetched from the forked repository.
How it works...
Let's have a look at the linux-wandboard_3.10.17.bb recipe:
include linux-wandboard.inc
require recipes-kernel/linux/linux-dtb.inc
DEPENDS += "lzop-native bc-native"
Wandboard branch - based on 3.10.17_1.0.2_ga from Freescale git
SRCBRANCH = "wandboard_imx_3.10.17_1.0.2_ga"
SRCREV = "be8d6872b5eb4c94c15dac36b028ce7f60472409"
LOCALVERSION = "-1.0.2-wandboard"
COMPATIBLE_MACHINE = "(wandboard)"
The first interesting thing is the inclusion of both linux-wandboard.inc and linux-dtb.inc. We will look at the first later on, and the other is a class that allows us to compile Linux kernel device trees. We will discuss device trees in the Managing the device tree recipe later in this chapter.
Then it declares two package dependencies, lzop-native and bc-native. The native part tells us that these are used in the host system, so they are used during the Linux kernel build process. The lzop tool is used to create the cpio compressed files needed in the initramfs system, which is a system that boots from a memory-based root filesystem, and bc was introduced to avoid a Perl kernel dependency when generating certain kernel files.
Then it sets the branch and revision, and finally it sets COMPATIBLE_MACHINE to wandboard. We will speak about machine compatibility in the Adding new packages recipe of Chapter 3, The Software Layer.
Let's now have a look at the linux-wandboard.inc include file:
SUMMARY = "Linux kernel for Wandboard"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://COPYING;md5=d7810fab7487fb0aad327b76f1be7cd7"
require recipes-kernel/linux/linux-imx.inc
Put a local version until we have a true SRCREV to point to
SCMVERSION ?= "y"
SRCBRANCH ??= "master"
LOCALVERSION ?= "-${SRCBRANCH}"
Allow override of WANDBOARD_GITHUB_MIRROR to make use of
local repository easier
WANDBOARD_GITHUB_MIRROR ?= "git://github.com/wandboard- org/linux.git"
SRC_URI for wandboard kernel
SRC_URI = "${WANDBOARD_GITHUB_MIRROR};branch=${SRCBRANCH} \
file://defconfig \
"
This is actually the file we were looking for. Initially, it specifies the license for the kernel source and points to it, sets a default branch and local version kernel string, and sets up the SCR_URI variable, which is the place where the source code is fetched from.
It then offers the WANDBOARD_GITHUB_MIRROR variable, which we can modify in our bbappend file.
So the logical setup would be to create a GitHub account and fork the provided wandboard-org Linux repository.
Once the fork is in place, we need to modify the WANDBOARD_GITHUB_MIRROR variable. But as we saw before, the recipe configures a specific revision and branch. We want to develop here, so we want to change this to a new development branch we have created. Let's call it wandboard_imx_3.10.17_1.0.2_ga-dev and set the revision to automatically fetch the newest point in the branch.
Building the U-Boot bootloader
In this recipe, we will go through the several development workflows described previously using the U-Boot bootloader as an example.
How to do it...
We will see how the following development workflows are applied to U-Boot:
How it works...
Let's explain the three workflows, previously mentioned, in detail.
External development
We will use a Yocto toolchain to build the U-Boot source externally from the Yocto build system.
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/toolchain/
Tip
Choose either the 32- or 64-bit version and execute the installation script, accepting the default installation location. It is recommended not to change the default location to avoid relocation issues.
$ bitbake -e u-boot-fslc | grep ^SRC_URI=
SRC_URI="git://github.com/Freescale/u-boot- imx.git;branch=patches-2014.10"
$ cd /opt/yocto/
$ git clone git://github.com/Freescale/u-boot-imx.git
$ cd u-boot-imx
The default branch should be patches-2014.10, but if it's not, you can change it with the following:
$ git checkout -b patches-2014.10 origin/patches-2014.10
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon- poky-linux-gnueabi
$ make wandboard_quad_config
$ unset LDFLAGS CFLAGS CPPFLAGS
$ make CC="${CC}"
Note
You can optionally pass a -jN argument for multithreaded compilation. Here, N is the number of CPU cores.
How it works…
The U-Boot Makefile looks for libgcc using the following command:
PLATFORM_LIBGCC := -L $(shell dirname `$(CC) $(CFLAGS) -print-libgcc- file-name`
) -lgcc
If we don't define CC, the expression does not correctly expand to the location of the libgcc library in the toolchain, as the sysroot option is not passed to the compiler.
Note
Newer versions of U-Boot have already fixed this issue, but we decided to leave the instruction as the following:
$ make CC="${CC}"
That works for older versions of U-Boot too.
Another way to avoid the problem would be to define the USE_PRIVATE_LIBGCC U-Boot configuration variable, but that would use an internal libgcc library to U-Boot, which may not be what we want.
We would then need to copy the image to the target to test our changes, as we will see soon.
External source development
We will use the Yocto build system from a local directory by cloning a local copy of the source used in the reference design and configuring our project to use it as an external source. We will then develop from it, extract the patches, and add them to a bbappend file on our BSP layer.
We will use the U-Boot source cloned in the example beforehand.
To configure our conf/local.conf file to work from the cloned source, modify it as follows:
INHERIT += "externalsrc"
EXTERNALSRC_pn-u-boot-fslc = "/opt/yocto/u-boot-imx"
EXTERNALSRC_BUILD_pn-u-boot-fslc = "/opt/yocto/u-boot-imx"
The EXTERNALSRC variable defines the source location (S), while the EXTERNALSRC_BUILD variable defines the build location (B). This code will also build on the external source location as the u-boot-fslc recipe does not currently support the separation of the source and build directories.
Tip
Remember to remove the aforementioned configuration when trying the working directory development methodology explained next in this recipe.
Now we can build on a new shell with:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake u-boot-fslc
When building from an external source, the expansion of SRCPV fails with an error. Recipes need to be temporarily modified to use static versioning while the external source compilation is enabled. In the case of U-Boot, we would make the following change in the meta-fsl-arm/recipes-bsp/u-boot/u-boot-fslc_2014.10.bb file:
- PV = "v2014.10+git${SRCPV}"
+ PV = "v2014.10"
This uses diff formatting, where the lines with a minus prefix are removed and the ones with a plus sign are added.
An example patch to U-Boot that allows us to perform external source development can be found in the source code that accompanies the book.
Development work can now be committed in the local Git repository, and patches can be generated with git format-patch. For example, we could change the board information for the Wandboard with the 0001-wandboard-Change-board-info.patch file:
diff --git a/board/wandboard/wandboard.c b/board/wandboard/wandboard.c
index 3c8b7a5d2d0a..a466d4c74b8f 100644
--- a/board/wandboard/wandboard.c
+++ b/board/wandboard/wandboard.c
@@ -404,7 +404,7 @@ int board_init(void)
int checkboard(void)
{
- puts("Board: Wandboard\n");
+ puts("Board: Wandboard custom\n");
return 0;
}
To add this patch to Yocto's U-Boot recipe, we create a meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc_2014.10.bbappend file with the following content:
Copyright Packt Publishing 2015
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"
SRC_URI_append = " file://0001-wandboard-Change-board-info.patch"
The patch needs to be placed under meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc-v2014.10/, as specified in the FILESEXTRAPATHS variable.
Files added to the SRC_URI variable that end in the patch or diff prefixes will be applied in the order they are found. You can also force a file to be treated as patch by specifying an apply=yes property to it in SRC_URI.
Working directory development
A typical workflow when working on a small modification would be:
$ bitbake -c cleanall virtual/bootloader
This will erase the build folder, shared state cache, and downloaded package source.
$ bitbake -c devshell virtual/bootloader
This will fetch, unpack, and patch the U-Boot sources and spawn a new shell with the environment ready for U-Boot compilation. The new shell will change to the U-Boot build directory, which contains a local Git repository.
$ bitbake -C compile virtual/bootloader
Note the capital C. This invokes the compile task but also all the tasks that follow it.
The newly compiled U-Boot image is available under tmp/deploy/images/wandboard-quad.
From the host computer, we would use dd to copy the new U-Boot image to an offset of 0x400, which is where the i.MX6 bootrom expects to find it.
sudo dd if=u-boot.imx of=/dev/sdN bs=512 seek=2 && sync
This writes with an offset of 2 blocks, which, given a 512-byte block size, is 0x400 (1024) bytes.
Tip
Be careful when running the dd command, as it could harm your machine. You need to be absolutely sure that the sdN device corresponds to your microSD card and not a drive on your development machine.
From the device itself, we can use U-Boot's mmc command as follows:
> setenv ipaddr <target_ip>
> setenv serverip <host_ip>
> tftp ${loadaddr} u-boot.imx
The hexadecimal file size of the TFTP transfer is kept in the filesize environment variable, which we will use later on.
> mmc dev 0
> mmc part
Partition Map for MMC device 0 -- Partition Type: DOS
Part Start Sector Num Sectors UUID Type
1 8192 16384 0003b9dd-01 0c
2 24576 131072 0003b9dd-02 83
We can see that partition 1 starts at sector 8192, leaving enough space to program U-Boot.
> setexpr filesizeblks $filesize / 0x200
> setexpr filesizeblks $filesizeblks + 1
> mmc write ${loadaddr} 0x2 ${filesizeblks}
$ git add --all .
$ git commit -s -m "Well thought commit message"
$ git format-patch -1 -o /opt/yocto/fsl-community- bsp/sources/meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc- v2014.10/
Explaining Yocto's Linux kernel support
The Yocto project offers a kernel framework that allows us to work with the Linux kernel in different ways:
In this recipe, we will show how to work with a linux-yocto style kernel.
How to do it...
To use a linux-yocto style kernel, the kernel recipe inherits the linux-yocto.inc file. A Git repository for a linux-yocto style kernel contains metadata either in the recipe or inside the kernel Git tree, in branches named with the meta prefix.
The linux-yocto style kernel recipes are all named linux-yocto and follow the upstream kernel development, rooted in the kernel.org repository. Once a new Yocto release cycle starts, a recent upstream kernel version is chosen, and the kernel version from the previous Yocto release is maintained. Older versions are updated inline with the Long Term Support Initiative (LTSI) releases. There is also a linux-yocto-dev package, which always follows the latest upstream kernel development.
Yocto kernels are maintained separately from the upstream kernel sources, and add features and BSPs to cater to embedded system developers.
Although the Freescale community BSP does not include linux-yocto style kernels, some other BSP layers do.
Metadata variables that are used to define the build include:
How it works...
The metadata included in the Linux kernel manages the configuration and source selection to support multiple BSPs and kernel types. The tools that manage this metadata are built in the kern-tools package.
The metadata can be set either in recipes, for small changes or if you are using a kernel repository you do not have access to, or most usually inside the kernel Git repository in meta branches. The meta branch that is to be used defaults to a meta directory in the same repository branch as the sources, but can be specified using the KMETA variable in your kernel recipe. If it does not reside in the same branch as the kernel source, it is kept in an orphan branch; that is, a branch with its own history. To create an orphan branch, use the following commands:
$ git checkout --orphan meta
$ git rm -rf .
$ git commit --allow-empty -m "Meta branch"
Your recipe must then include SRCREV_meta to point to the revision of the meta branch to use.
The metadata is described in SCC files, which can include a series of commands:
SCC files are broadly divided into the following logical groupings:
cfg/spidev.scc:
define KFEATURE_DESCRIPTION "Enable SPI device support"
kconf hardware spidev.cfg
cfg/spidev.cfg:
CONFIG_SPI_SPIDEV=y
patches/fix.scc:
patch fix.patch
patches/fix.patch
features/feature.scc
define KFEATURE_DESCRIPTION "Enable feature"
patch 0001-feature.patch
include cfg/feature_dependency.scc
kconf non-hardware feature.cfg
Other kernel types can be defined by using the KTYPE variable on an SCC file.
See also
Describing Linux's build system
The Linux kernel is a monolithic kernel and as such shares the same address space. Although it has the ability to load modules at runtime, the kernel must contain all the symbols the module uses at compilation time. Once the module is loaded, it will share the kernel's address space.
The kernel build system, or kbuild, uses conditional compilation to decide which parts of the kernel are compiled. The kernel build system is independent of the Yocto build system.
In this recipe, we will explain how the kernel's build system works.
How to do it...
The kernel configuration is stored in a .config text file in the kernel root directory. The kbuild system reads this configuration to build the kernel. The .config file is referred to as the kernel configuration file. There are multiple ways to define a kernel configuration file:
Note
Note that to build and use these interfaces, your Linux host needs to have the appropriate dependencies.
Each machine also defines a default configuration in the kernel tree. For ARM platforms, these are stored in the arch/arm/configs directory. To configure an ARM kernel, that is, to produce a .config file from a default configuration, you run:
$ make ARCH=arm <platform>_defconfig
For example we can build a default configuration for Freescale i.MX6 processors by running:
$ make ARCH=arm imx_v6_v7_defconfig
How it works...
Kbuild uses Makefile and Kconfig files to build the kernel source. Kconfig files define configuration symbols and attributes, and Makefile file match configuration symbols to source files.
The kbuild system options and targets can be seen by running:
$ make ARCH=arm help
There's more...
In recent kernels, a default configuration contains all the information needed to expand to a full configuration file. It is a minimal kernel configuration file where all dependencies are removed. To create a default configuration file from a current .config file, you run:
$ make ARCH=arm savedefconfig
This creates a defconfig file in the current kernel directory. This make target can be seen as the opposite of the <platform>_defconfig target explained before. The former creates a configuration file from a minimal configuration, and the other expands the minimal configuration into a full configuration file.
Configuring the Linux kernel
In this recipe, we will explain how to configure a Linux kernel using the Yocto build system.
Getting ready
Before configuring the kernel, we need to provide a default configuration for our machine, which is the one the Yocto project uses to configure a kernel. When defining a new machine in your BSP layer, you need to provide a defconfig file.
The Wandboard's defconfig file is stored under sources/meta-fsl-arm-extra/recipes-kernel/linux/linux-wandboard-3.10.17/defconfig.
This would be the base defconfig file for our custom hardware, so we copy it to our BSP layer:
$ cd /opt/yocto/fsl-community-bsp/sources
$ mkdir -p meta-bsp-custom/recipes-kernel/linux/linux-wandboard- 3.10.17/
$ cp meta-fsl-arm-extra/recipes-kernel/linux/linux-wandboard- 3.10.17/defconfig meta-bsp-custom/recipes-kernel/linux/linux- wandboard-3.10.17/
We then add it to our kernel using meta-bsp-custom/recipes-kernel/linux/linux-wandboard_3.10.17.bbappend as follows:
Copyright Packt Publishing 2015
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"
SRC_URI_append = " file://defconfig"
Kernel configuration changes to your platform can be made directly in this defconfig file.
How to do it...
To create a .config file from the machine defconfig file, execute the following command:
$ bitbake -c configure virtual/kernel
This will also run the oldconfig kernel make target to validate the configuration against the Linux source.
We can then configure the Linux kernel from the BitBake command line using the following:
$ bitbake -c menuconfig virtual/kernel
The menuconfig user interface, as well as other kernel configuration user interfaces, has a search functionality that allows you to locate configuration variables by name. Have a look at the following screenshot:
Note
In the following chapters, we will mention specific kernel configuration variables, like CONFIG_PRINTK, without specifying the whole path to the configuration variable. The search interface of the different UIs can be used to locate the configuration variable path.
When you save your changes, a new .config file is created on the kernel's build directory, which you can find using the following command:
$ bitbake -e virtual/kernel | grep ^B=
You can also modify the configuration using a graphical UI, but not from the BitBake command line. This is because graphical UIs need host dependencies, which are not natively built by Yocto.
To make sure your Ubuntu system has the needed dependencies, execute the following command:
$ sudo apt-get install git-core libncurses5 libncurses5-dev libelf- dev asciidoc binutils-dev qt3-dev-tools libqt3-mt-dev libncurses5 libncurses5-dev fakeroot build-essential crash kexec-tools makedumpfile libgtk2.0-dev libglib2.0-dev libglade2-dev
Then change to the kernel build directory, which you found before, with:
$ cd /opt/yocto/fsl-community-bsp/wandboard- quad/tmp/work/wandboard_quad-poky-linux-gnueabi/linux- wandboard/3.10.17-r0/git
Next, run the following:
$ make ARCH=arm xconfig
Note
If you encounter compilation errors, attempt to run from a new terminal that has not had the environment configured with the setup-environment script.
A new window will open with the graphical configuration user interface shown in the next screenshot:
When you save your changes, the .config file will be updated.
To use an updated configuration, you need to take care that BitBake does not revert your changes when building. Refer to the Building the Linux kernel recipe in this chapter for additional details.
There's more...
You can make your kernel changes permanent with the following steps:
$ make ARCH=arm savedefconfig
$ cp defconfig /opt/yocto/fsl-community-bsp/sources/meta-bsp- custom/recipes-kernel/linux/linux-wandboard-3.10.17
Alternatively, you may use BitBake from the build directory as follows:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake -c savedefconfig virtual/kernel
This also creates a defconfig file in the Linux kernel's source directory, which needs to be copied to your recipe.
Using configuration fragments
The linux-yocto style kernels can also apply isolated kernel configuration changes defined in the kernel configuration fragments; for example:
spidev.cfg:
CONFIG_SPI_SPIDEV=y
Kernel configuration fragments are appended to SRC_URI in the same way, and are applied over the defconfig file.
The linux-yocto style kernels (not the one for the Wandboard though) also provide a set of tools to manage kernel configuration:
$ bitbake -f -c kernel_configme linux-yocto
$ bitbake -c diffconfig linux-yocto
$ bitbake -f -c kernel_configcheck linux-yocto
Building the Linux kernel
In this recipe, we will go through the development workflows described earlier using the Linux kernel as an example.
How to do it...
We will see how the following development workflows are applied to the Linux kernel:
How it works...
Let's explain the three methodologies listed previously in detail.
External development
When compiling outside of the Yocto build environment, we can still use the Yocto-provided toolchain to build. The process is as follows:
$ cd /opt/yocto
$ git clone https://github.com/wandboard-org/linux.git linux-wandboard
$ cd linux-wandboard
$ git checkout -b wandboard_imx_3.10.17_1.0.2_ga origin/wandboard_imx_3.10.17_1.0.2_ga
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon- poky-linux-gnueabi
$ cp /opt/yocto/fsl-community-bsp/sources/meta-bsp-custom/recipes-kernel/linux/linux-wandboard-3.10.17/defconfig arch/arm/configs/wandboard-quad_defconfig
$ make wandboard-quad_defconfig
$ make
You can optionally pass a -jN argument to make to build multithreaded.
This will build the kernel's zImage, modules, and device tree files.
Note
Older Yocto environment setup scripts set the LD variable to use gcc, but the Linux kernel uses ld instead. If your compilation is failing, try the following before running make:
$ unset LDFLAGS
To build only modules, you may run:
$ make modules
And to build only device tree files, you may run:
$ make dtbs
$ cp arch/arm/boot/zImage arch/arm/boot/dts/imx6q- wandboard.dtb /var/lib/tftpboot
$ make LOADADDR=0x10800000 uImage
UBOOT_ENTRYPOINT_mx6 = "0x10008000"
Some other embedded Linux targets might need to compile a uImage if the U-Boot bootloader is not compiled with zImage booting support:
$ make LOADADDR=0x10800000 uImage
Note
The mkimage tool is part of the Yocto toolchain when built with the FSL community BSP. We will see how to build and install an SDK in the Preparing and using an SDK recipe in Chapter 4, Application Development.
If it is not included in your toolchain, you can install the tool in your host using the following command:
$ sudo apt-get install u-boot-tools
LOADADDR is the U-Boot entry point; that is, the address where U-Boot will place the kernel in memory. It is defined in the meta-fsl-arm imx-base.inc file:
UBOOT_ENTRYPOINT_mx6 = "0x10008000"
External source development
As we did with U-Boot before, we will use the Yocto build system, pointing it to a local directory with a clone of the Linux source repository. We will use the local Git repository cloned in the earlier section.
We configure for external development in our conf/local.conf file using the following code:
INHERIT += "externalsrc"
EXTERNALSRC_pn-linux-wandboard = "/opt/yocto/linux-wandboard"
EXTERNALSRC_BUILD_pn-linux-wandboard = "/opt/yocto/linux- wandboard"
Tip
Remember to remove this configuration when using the working directory development methodology explained next in this recipe.
But, just as before, the compilation fails with U-Boot. In this case, the linux-wandboard recipe, not being a linux-yocto style recipe, is not prepared for external source compilation and it fails in the configuration task.
Kernel developers prefer to compile the kernel externally as we saw earlier, so this scenario is not likely to be fixed soon.
Working directory development
Typically we work with patches and use this development workflow when we have a small amount of changes or we don't own the source repository.
A typical workflow when working on a modification would be:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake -c cleanall virtual/kernel
This will erase the build folder, shared state cache, and downloaded package source.
$ bitbake -c configure virtual/kernel
This will convert the machine defconfig file into a .config file and call oldconfig to validate the configuration with the kernel source.
You can optionally add your own configuration changes with:
$ bitbake -c menuconfig virtual/kernel
$ bitbake -c devshell virtual/kernel
This will fetch, unpack, and patch the kernel sources and spawn a new shell with the environment ready for kernel compilation. The new shell will change to the kernel build directory which contains a local Git repository.
$ bitbake -C compile virtual/kernel
Note the capital C. This invokes the compile task but also all the tasks that follow it.
The newly compiled kernel image is available under tmp/deploy/images/wandboard-quad.
$ cd tmp/deploy/images/wandboard-quad/
$ cp zImage-wandboard-quad.bin zImage-imx6q-wandboard.dtb /var/lib/tftpboot
Refer to the Configuring network booting for a development setup recipe in Chapter 1, The Build System for details.
Alternatively, the U-Boot bootloader can boot a Linux zImage kernel from memory with its corresponding device tree using the following syntax:
> bootz <kernel_addr> - <dtb_addr>
For example, we can fetch images from TFTP and boot the Wandboard images as follows:
> tftp ${loadaddr} ${image}
> tftp ${fdt_addr} ${fdt_file}
> bootz ${loadaddr} - ${fdt_addr}
If we were using an initramdisk, we would pass it as the second argument. Since we aren't, we use a dash instead.
The command to boot a uImage Linux kernel image from memory would use bootm instead, as in:
> bootm <kernel_addr> - <dtb_addr>
$ git add --all .
$ git commit -s -m "Well thought commit message"
$ git format-patch -1 -o /opt/yocto/fsl-community- bsp/sources/meta-bsp-custom/recipes-kernel/linux/linux- wandboard-3.10.17
Building external kernel modules
The Linux kernel has the ability to load modules at runtime that extend the kernel functionality. Kernel modules share the kernel's address space and have to be linked against the kernel they are going to be loaded onto. Most device drivers in the Linux kernel can either be compiled into the kernel itself (built-in) or as loadable kernel modules that need to be placed in the root filesystem under the /lib/modules directory.
The recommended approach to develop and distribute a kernel module is to do it with the kernel source. A module in the kernel tree uses the kernel's kbuild system to build itself, so as long as it is selected as module in the kernel configuration and the kernel has module support enabled, Yocto will build it.
However, it is not always possible to develop a module in the kernel. Common examples are hardware manufacturers who provide Linux drivers for a wide variety of kernel versions and have an internal development process separated from the kernel community. The internal development work is usually released first as an external out-of-tree module, although it is common for some or all of these internal developments to finish up in the mainstream kernel eventually. However, upstreaming is a slow process and hardware companies will therefore prefer to develop internally first.
It's worth remembering that the Linux kernel is covered under a GPLv2 license, so Linux kernel modules should be released with a compatible license. We will cover licenses in more detail in the following chapters.
Getting ready
To compile an external kernel module with Yocto, we first need to know how we would link the module source with the kernel itself. An external kernel module is also built using the kbuild system of the Linux kernel it is going to be linked against, so the first thing we need is a Makefile:
obj-m:= hello_world.o
SRC := $(shell pwd)
all:
$(MAKE) -C $(KERNEL_SRC) M=$(SRC)
modules_install:
$(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install
clean:
rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
rm -f Module.markers Module.symvers modules.order
rm -rf .tmp_versions Modules.symvers
The Makefile file just wraps the make command used to compile a module on a Linux system:
make -C $(KERNEL_SRC) M=$(SRC)
Here, make is instructed to build in the location of the kernel source, and the M argument tells kbuild it is building a module at the specified location.
And then we code the source of the module itself (hello_world.c):
/ *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
static int hello_world_init(void)
{
printk("Hello world\n");
return 0;
}
static void hello_world_exit(void)
{
printk("Bye world\n");
}
module_init(hello_world_init);
module_exit(hello_world_exit);
MODULE_LICENSE("GPL v2");
It's worth remembering that we need to compile against a kernel source that has already been built. Use the following steps for compilation:
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon- poky-linux-gnueabi
$ KERNEL_SRC=/opt/yocto/linux-wandboard make
How to do it...
Once we know how to compile the module externally, we are ready to prepare a Linux kernel module Yocto recipe for it.
We place the module source file and Makefile in recipes-kernel/hello-world/files/ inside our meta-bsp-custom layer. We then create a recipes-kernel/hello-world/hello-world.bb file with the following content:
Copyright (C) 2015 Packt Publishing.
SUMMARY = "Simplest hello world kernel module."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL- 2.0;md5=801f80980d171dd6425610833a22dbe6"
inherit module
SRC_URI = " \
file://hello_world.c \
file://Makefile \
"
S = "${WORKDIR}"
COMPATIBLE_MACHINE = "(wandboard)"
The recipe defines the source directory and the two module files after inheriting the module class, which takes care of everything. The KERNEL_SRC argument in our Makefile is set by the module class to STAGING_KERNEL_DIR, the location where the kernel class places the Linux kernel headers needed for external module compilation.
We build it with the following command:
$ bitbake hello-world
The resulting module is called hello_world.ko, with the kernel-module prefix being added to the package name by the module bbclass automatically.
There's more...
The previous instructions will build the module but will not install it in the root filesystem. For that, we need to add a dependency to the root filesystem. This is usually done in machine configuration files using MACHINE_ESSENTIAL (for modules that are needed to boot) or MACHINE_EXTRA (if they are not essential for boot but needed otherwise), variables.
Debugging the Linux kernel and modules
We will highlight some of the most common methods employed by kernel developers to debug kernel issues.
How to do it...
Above all, debugging the Linux kernel remains a manual process, and the most important developer tool is the ability to print debug messages.
The kernel uses the printk function, which is very similar syntactically to the printf function call from standard C libraries, with the addition of an optional log level. The allowed formats are documented in the kernel source under Documentation/printk-formats.txt.
The printk functionality needs to be compiled into the kernel with the CONFIG_PRINTK configuration variable. You can also configure the Linux kernel to prepend a precise timestamp to every message with the CONFIG_PRINTK_TIME configuration variable, or even better, with the printk.time kernel command-line argument or through sysfs under /sys/module/printk/parameters. Usually all kernels contain printk support, and the Wandboard kernel does too, although it is commonly removed on production kernels for small embedded systems.
The printk function can be used in any context, interrupt, non-maskable interrupt (NMI), or scheduler. Note that using it inside interrupt context is not recommended.
A useful debug statement to be used during development could be:
printk(KERN_INFO "[%s:%d] %pf -> var1: %d var2: %d\n", __FUNCTION__, __LINE__, __builtin_return_address(0), var1, var2);
The first thing to note is that there is no comma between the log level macro and the print format. We then print the function and line where the debug statement is placed and then the parent function. Finally, we print the variables we are actually interested in.
How it works...
The available log levels in printk are presented in the following table:
Type | Symbol | Description |
---|---|---|
Emergency | KERN_EMERG | System is unstable and about to crash |
Alert | KERN_ALERT | Immediate action is needed |
Critical | KERN_CRIT | Critical software or hardware failure |
Error | KERN_ERR | Error condition |
Warning | KERN_WARNING | Nothing serious, but might indicate a problem |
Notice | KERN_NOTICE | Nothing serious, but user should take note |
Information | KERN_INFO | System information |
Debug | KERN_DEBUG | Debug messages |
If no log level is specified, the default log message as configured in the kernel configuration is used. By default, this is KERN_WARNING.
All printk statements go to the kernel log buffer, which may wrap around, except debug statements, which only appear if the DEBUG symbol is defined. We will see how to enable kernel debug messages soon. The printk log buffer must be a power of two, and its size should be set in the CONFIG_LOG_BUF_SHIFT kernel configuration variable. You may modify it with the log_buf_len kernel command-line parameter.
We print the kernel log buffer with the dmesg command. Also, a Yocto user space will have a kernel log daemon running that will log kernel messages to disk under /var/log/messages.
Messages above the current console log level will also appear on the console immediately. The ignore_loglevel kernel command-line argument, also available under /sys/module/printk/parameters, may be used to print all kernel messages to the console independently of the log level.
You can also change the log level at runtime via the proc filesystem. The /proc/sys/kernel/printk file contains the current, default, minimum, and boot time default log levels. To change the current log level to the maximum, execute:
$ echo 8 > /proc/sys/kernel/printk
You can also set the console log level with the dmesg tool as follows:
$ dmesg -n 8
To make the change persistent, you can pass a log level command-line parameter to the kernel, or on some Yocto root filesystem images, you could also use a /etc/sysctl.conf file (those that install the procps package).
There's more...
Linux drivers do not use the printk function directly. They use, in order of preference, subsystem-specific messages (such as netdev or v4l) or the dev_* and pr_* family of functions. The latter are described in the following table:
Device message | Generic message | Printk symbol |
---|---|---|
dev_emerg | pr_emerg | KERN_EMERG |
dev_alert | pr_alert | KERN_ALERT |
dev_crit | pr_crit | KERN_CRIT |
dev_err | pr_err | KERN_ERR |
dev_warn | pr_warn | KERN_WARNING |
dev_notice | pr_notice | KERN_NOTICE |
dev_info | pr_info | KERN_INFO |
dev_dbg | pr_debug | KERN_DEBUG |
To enable the debug messages within a driver, you may do either of these:
#define DEBUG
Using dynamic debug
To use the dynamic debug functionality in the Linux kernel, follow these steps:
$ mount -t debugfs nodev /sys/kernel/debug
The flags are defined as follows:
echo -n 'file <filename> +p' > /sys/kernel/debug/dynamic_debug/control
$ echo -n 'file <filename> line nnnn +p' > /sys/kernel/debug/dynamic_debug/control
$ awk '$3 != "=_"' /sys/kernel/debug/dynamic_debug/control
To make the debug changes persistent, we can pass dyndbg="<query>" or module.dyndbg="<query>" to the kernel in the command-line arguments.
Note that the query string needs to be passed surrounded by quotes so that it is correctly parsed. You can concatenate more than one query in the command-line argument by using a semicolon to separate them; for example, dyndbg="file mxc_v4l2_capture.c +pfl; file ipu_bg_overlay_sdc.c +pfl"
Rate-limiting debug messages
There are rate-limiting and one-shot extensions to the dev_*, pr_*, and printk family of functions:
And you also have utility functions to dump a buffer in hexadecimal; for example, print_hex_dump_bytes().
See also
Debugging the Linux kernel booting process
We have seen the most general techniques for debugging the Linux kernel. However, some special scenarios require the use of different methods. One of the most common scenarios in embedded Linux development is the debugging of the booting process. This recipe will explain some of the techniques used to debug the kernel's booting process.
How to do it...
A kernel crashing on boot usually provides no output whatsoever on the console. As daunting as that may seem, there are techniques we can use to extract debug information. Early crashes usually happen before the serial console has been initialized, so even if there were log messages, we would not see them. The first thing we will show is how to enable early log messages that do not need the serial driver.
In case that is not enough, we will also show techniques to access the log buffer in memory.
How it works...
Debugging booting problems have two distinctive phases, before and after the serial console is initialized. After the serial is initialized and we can see serial output from the kernel, debugging can use the techniques described earlier.
Before the serial is initialized, however, there is a basic UART support in ARM kernels that allows you to use the serial from early boot. This support is compiled in with the CONFIG_DEBUG_LL configuration variable.
This adds supports for a debug-only series of assembly functions that allow you to output data to a UART. The low-level support is platform specific, and for the i.MX6, it can be found under arch/arm/include/debug/imx.S. The code allows for this low-level UART to be configured through the CONFIG_DEBUG_IMX_UART_PORT configuration variable.
We can use this support directly by using the printascii function as follows:
extern void printascii(const char *);
printascii("Literal string\n");
However, much more preferred would be to use the early_print function, which makes use of the function explained previously and accepts formatted input in printf style; for example:
early_print("%08x\t%s\n", p->nr, p->name);
Dumping the kernel's printk buffer from the bootloader
Another useful technique to debug Linux kernel crashes at boot is to analyze the kernel log after the crash. This is only possible if the RAM memory is persistent across reboots and does not get initialized by the bootloader.
As U-Boot keeps the memory intact, we can use this method to peek at the kernel login memory in search of clues.
Looking at the kernel source, we can see how the log ring buffer is set up in kernel/printk/printk.c and also note that it is stored in __log_buf.
To find the location of the kernel buffer, we will use the System.map file created by the Linux build process, which maps symbols with virtual addresses using the following command:
$grep __log_buf System.map
80f450c0 b __log_buf
To convert the virtual address to physical address, we look at how __virt_to_phys() is defined for ARM:
x - PAGE_OFFSET + PHYS_OFFSET
The PAGE_OFFSET variable is defined in the kernel configuration as:
config PAGE_OFFSET
hex
default 0x40000000 if VMSPLIT_1G
default 0x80000000 if VMSPLIT_2G
default 0xC0000000
Some of the ARM platforms, like the i.MX6, will dynamically patch the __virt_to_phys() translation at runtime, so PHYS_OFFSET will depend on where the kernel is loaded into memory. As this can vary, the calculation we just saw is platform specific.
For the Wandboard, the physical address for 0x80f450c0 is 0x10f450c0.
We can then force a reboot using a magic SysRq key, which needs to be enabled in the kernel configuration with CONFIG_MAGIC_SYSRQ, but is enabled in the Wandboard by default:
$ echo b > /proc/sysrq-trigger
We then dump that memory address from U-Boot as follows:
> md.l 0x10f450c0
10f450c0: 00000000 00000000 00210038 c60000008.!.....
10f450d0: 746f6f42 20676e69 756e694c 6e6f2078 Booting Linux on
10f450e0: 79687020 61636973 5043206c 78302055 physical CPU 0x
10f450f0: 00000030 00000000 00000000 00000000 0...............
10f45100: 009600a8 a6000000 756e694c 65762078Linux ve
10f45110: 6f697372 2e33206e 312e3031 2e312d37 rsion 3.10.17-1.
10f45120: 2d322e30 646e6177 72616f62 62672b64 0.2-wandboard+gb
10f45130: 36643865 62323738 20626535 656c6128 e8d6872b5eb (ale
10f45140: 6f6c4078 696c2d67 2d78756e 612d7068 x@log-linux-hp-a
10f45150: 7a6e6f67 20296c61 63636728 72657620 gonzal) (gcc ver
10f45160: 6e6f6973 392e3420 2820312e 29434347 sion 4.9.1 (GCC)
10f45170: 23202920 4d532031 52502050 504d4545) #1 SMP PREEMP
10f45180: 75532054 6546206e 35312062 3a323120 T Sun Feb 15 12:
10f45190: 333a3733 45432037 30322054 00003531 37:37 CET 2015..
10f451a0: 00000000 00000000 00400050 82000000P.@.....
10f451b0: 3a555043 4d524120 50203776 65636f72 CPU: ARMv7 Proce
There's more...
Another method is to store the kernel log messages and kernel panics or oops into persistent storage. The Linux kernel's persistent store support (CONFIG_PSTORE) allows you to log in to the persistent memory kept across reboots.
To log panic and oops messages into persistent memory, we need to configure the kernel with the CONFIG_PSTORE_RAM configuration variable, and to log kernel messages, we need to configure the kernel with CONFIG_PSTORE_CONSOLE.
We then need to configure the location of the persistent storage on an unused memory location, but keep the last 1 MB of memory free. For example, we could pass the following kernel command-line arguments to reserve a 128 KB region starting at 0x30000000:
ramoops.mem_address=0x30000000 ramoops.mem_size=0x200000
We would then mount the persistent storage by adding it to /etc/fstab so that it is available on the next boot as well:
/etc/fstab:
pstore /pstore pstore defaults 0 0
We then mount it as follows:
mkdir /pstore
mount /pstore
Next, we force a reboot with the magic SysRq key:
echo b > /proc/sysrq-trigger
On reboot, we will see a file inside /pstore:
-r--r--r-- 1 root root 4084 Sep 16 16:24 console-ramoops
This will have contents such as the following:
SysRq : Resetting
CPU3: stopping
CPU: 3 PID: 0 Comm: swapper/3 Not tainted 3.14.0-rc4-1.0.0-wandboard-37774-g1eae
[<80014a30>] (unwind_backtrace) from [<800116cc>] (show_stack+0x10/0x14)
[<800116cc>] (show_stack) from [<806091f4>] (dump_stack+0x7c/0xbc)
[<806091f4>] (dump_stack) from [<80013990>] (handle_IPI+0x144/0x158)
[<80013990>] (handle_IPI) from [<800085c4>] (gic_handle_irq+0x58/0x5c)
[<800085c4>] (gic_handle_irq) from [<80012200>] (__irq_svc+0x40/0x70)
Exception stack(0xee4c1f50 to 0xee4c1f98)
We should move it out of /pstore or remove it completely so that it doesn't occupy memory.
Using the kernel function tracing system
Recent versions of the Linux kernel contain a set of tracers that, by instrumenting the kernel, allow you to analyze different areas like:
The tracers have no performance overhead when not enabled.
Getting ready...
The tracing system can be used in a wide variety of debugging scenarios, but one of the most common tracers used is the function tracer. It instruments every kernel function with a NOP call that is replaced and used to trace the kernel functions when a trace point is enabled.
To enable the function tracer in the kernel, use the CONFIG_FUNCTION_TRACER and CONFIG_FUNCTION_GRAPH_TRACER configuration variables.
The kernel tracing system is controlled via a tracing file in the debug filesystem, which is mounted by default on Yocto's default images. If not, you can mount it with:
$ mount -t debugfs nodev /sys/kernel/debug
We can list the available tracers in our kernel by executing:
$ cat /sys/kernel/debug/tracing/available_tracers
function_graph function nop
How to do it...
You can enable a tracer by echoing its name to the current_tracer file. No tracers are enabled by default:
$ cat /sys/kernel/debug/tracing/current_tracer
nop
You can disable all tracers by executing the following command:
$ echo -n nop > /sys/kernel/debug/tracing/current_tracer
We use echo -n to avoid the trailing newline when echoing to files in sysfs.
To enable the function tracer, you would execute:
$ echo -n function > /sys/kernel/debug/tracing/current_tracer
A prettier graph can be obtained by using the function graph tracer as follows:
$ echo -n function_graph > /sys/kernel/debug/tracing/current_tracer
How it works...
You can look at the captured trace in human-readable format via the trace and trace_pipe files, with the latter blocking on read and consuming the data.
The function tracer provides the following output:
$ cat /sys/kernel/debug/tracing/trace_pipe
root@wandboard-quad:~# cat /sys/kernel/debug/tracing/trace_pipe
sh-394 [003] ...1 46.205203: mutex_unlock <- tracing_set_tracer
sh-394 [003] ...1 46.205215: __fsnotify_parent <-
vfs_write
sh-394 [003] ...1 46.205218: fsnotify <-vfs_write
sh-394 [003] ...1 46.205220: __srcu_read_lock <- fsnotify
sh-394 [003] ...1 46.205223: preempt_count_add <- __srcu_read_lock
sh-394 [003] ...2 46.205226: preempt_count_sub <- __srcu_read_lock
sh-394 [003] ...1 46.205229: __srcu_read_unlock <- fsnotify
sh-394 [003] ...1 46.205232: __sb_end_write <- vfs_write
sh-394 [003] ...1 46.205235: preempt_count_add <- __percpu_counter_add
sh-394 [003] ...2 46.205238: preempt_count_sub <- __percpu_counter_add
sh-394 [003] d..1 46.205247: gic_handle_irq <- __irq_usr
<idle>-0 [002] d..2 46.205247: ktime_get <- cpuidle_enter_state
The format for the function tracer output is:
task-PID [cpu-nr] irqs-off need-resched hard/softirq preempt-depth delay-timestamp function
The graphical function tracer output is as follows:
$ cat /sys/kernel/debug/tracing/trace_pipe
3) ==========> |
3) | gic_handle_irq() {
2) ==========> |
2) | gic_handle_irq() {
3) 0.637 us | irq_find_mapping();
2) 0.712 us | irq_find_mapping();
3) | handle_IRQ() {
2) | handle_IRQ() {
3) | irq_enter() {
2) | irq_enter() {
3) 0.652 us | rcu_irq_enter();
2) 0.666 us | rcu_irq_enter();
3) 0.591 us | preempt_count_add();
2) 0.606 us | preempt_count_add();
The format for the grapical function tracer output is:
cpu-nr) timestamp | functions
There's more...
The kernel tracing system allows us to insert traces in the code by using the trace_printk function call. It has the same syntax as printk and can be used in the same scenarios, interrupts, NMI, or scheduler contexts.
Its advantage is that as it prints to the tracing buffer in memory and not to the console, it has much lower delays than printk, so it is useful to debug scenarios where printk is affecting the system's behavior; for example, when masking a timing bug.
Tracing is enabled once a tracer is configured, but whether the trace writes to the ring buffer or not can be controlled. To disable the writing to the buffer, use the following command:
$ echo 0 > /sys/kernel/debug/tracing/tracing_on
And to re-enable it, use the following command:
$ echo 1 > /sys/kernel/debug/tracing/tracing_on
You can also enable and disable the tracing from kernel space by using the tracing_on and tracing_off functions.
Inserted traces will appear in any tracer, including the function tracer, in which case it will appear as a comment.
Filtering function traces
You can get finer granularity in the functions being traced by using the dynamic tracer, which can be enabled with the CONFIG_DYNAMIC_FTRACE configuration variable. This is enabled with the tracing functionality by default. This adds two more files, set_ftrace_filter and set_ftrace_notrace. Adding functions to set_ftrace_filter will trace only those functions, and adding them to set_ftrace_notrace will not trace them, even if they are also added to set_ftrace_filter.
The set of available function names that can be filtered may be obtained by executing the following command:
$ cat /sys/kernel/debug/tracing/available_filter_functions
Functions can be added with:
$ echo -n <function_name> >> /sys/kernel/debug/tracing/set_ftrace_filter
Note that we use the concatenation operator (>>) so that the new function is appended to the existing ones.
And functions can also be removed with:
$ echo -n '!<function>' >> /sys/kernel/debug/tracing/set_ftrace_filter
To remove all functions, just echo a blank line into the file:
$ echo > /sys/kernel/debug/tracing/set_ftrace_filter
There is a special syntax that adds extra flexibility to the filtering: <function>:<command>:[<parameter>]
Let's explain each of the components individually:
Here are some examples:
$ echo -n 'ipu_*:mod:ipu' > /sys/kernel/debug/tracing/set_ftrace_filter
$ echo -n 'suspend_enter:dump' > /sys/kernel/debug/tracing/set_ftrace_filter
$ echo -n 'suspend_enter:traceon' > /sys/kernel/debug/tracing/set_ftrace_filter
Enabling trace options
Traces have a set of options that can be individually enabled in the /sys/kernel/debug/tracing/options directory. Some of the most useful options include:
Using the function tracer on oops
Another alternative to log the kernel messages on oops or panic is to configure the function tracer to dump its buffer contents to the console so that the events leading up to the crash can be analyzed. Use the following command:
$ echo 1 > /proc/sys/kernel/ftrace_dump_on_oops
The sysrq-z combination will also dump the contents of the tracing buffer to the console, as does calling ftrace_dump() from the kernel code.
Getting a stack trace for a given function
The tracing code can create a backtrace for every function called. However, this is a dangerous feature and should only be used with a filtered selection of functions. Have a look at the following commands:
$ echo -n <function_name> > /sys/kernel/debug/tracing/set_ftrace_filter
$ echo -n function > /sys/kernel/debug/tracing/current_tracer
$ echo 1 > /sys/kernel/debug/tracing/options/func_stack_trace
$ cat /sys/kernel/debug/tracing/trace
$ echo 0 > /sys/kernel/debug/tracing/options/func_stack_trace
$ echo > /sys/kernel/debug/tracing/set_ftrace_filter
Configuring the function tracer at boot
The function tracer can be configured in the kernel command-line arguments and started as early as possible in the boot process. For example, to configure the graphic function tracer and filter some functions, we would pass the following arguments from the U-Boot bootloader to the kernel:
ftrace=function_graph ftrace_filter=mxc_hdmi*,fb_show*
See also
Managing the device tree
The device tree is a data structure that is passed to the Linux kernel to describe the physical devices in a system.
In this recipe, we will explain how to work with device trees.
Getting ready
Devices that cannot be discovered by the CPU are handled by the platform devices API on the Linux kernel. The device tree replaces the legacy platform data where hardware characteristics were hardcoded in the kernel source so that platform devices can be instantiated. Before device trees came into use, the bootloader (for example, U-Boot) had to tell the kernel what machine type it was booting. Moreover, it had to pass other information such as memory size and location, kernel command line, and more.
The device tree should not be confused with the Linux kernel configuration. The device tree specifies what devices are available and how they are accessed, not whether the hardware is used.
The device tree was first used by the PowerPC architecture and was adopted later on by ARM and all others, except x86. It was defined by the Open Firmware specification, which defined the flattened device tree format in Power.org Standard for Embedded Power Architecture Platform Requirements (ePAPR), which describes an interface between a boot program and a client.
Platform customization changes will usually happen in the device tree without the need to modify the kernel source.
How to do it...
A device tree is defined in a human-readable device tree syntax (.dts) text file. Every board has one or several DTS files that correspond to different hardware configurations.
These DTS files are compiled into Device Tree Binary (DTB) blobs, which have the following properties:
Device tree blobs can either be attached to the kernel binary (for legacy compatibility) or, as is more commonly done, passed to the kernel by a bootloader like U-Boot.
To compile them, we use a Device Tree Compiler (DTC), which is included in the kernel source inside scripts/dtc and is compiled along with the kernel itself, or we could alternatively install it as part of your distribution. It is recommended to use the DTC compiler included in the kernel tree.
The device trees can be compiled independently or with the Linux kernel kbuild system, as we saw previously. However, when compiling independently, modern device trees will need to be preprocessed by the C preprocessor first.
It's important to note that the DTC currently performs syntax checking but no binding checking, so invalid DTS files may be compiled, and the resulting DTB file may result in a non-booting kernel. Invalid DTB files usually hang the Linux kernel very early on so there will be no serial output.
The bootloader might also modify the device tree before passing it to the kernel.
How it works...
The DTS file for the wandboard-quad variant is under arch/arm/boot/dts/imx6q-wandboard.dts and looks as follows:
#include "imx6q.dtsi"
#include "imx6qdl-wandboard.dtsi"
/ {
model = "Wandboard i.MX6 Quad Board";
compatible = "wand,imx6q-wandboard", "fsl,imx6q";
memory {
reg = <0x10000000 0x80000000>;
};
};
What we see here is the device tree root node that has no parents. The rest of the nodes will have a parent. The structure of a node can be represented as follows:
node@0{
an-empty-property;
a-string-property = "a string";
a-string-list-property = "first string", "second string";
a-cell-property = <1>;
a-cell-property = <0x1 0x2>;
a-byte-data-property = [0x1 0x2 0x3 0x4];
a-phandle-property = <&node1>;
}
The node properties can be:
The device tree is initially parsed by the C preprocessor and it can include other DTS files. These include files have the same syntax and are usually appended with the dtsi suffix. File inclusion can also be performed with the device tree /include/ operator, although #include is recommended, and they should not be mixed. In this case, both imx6q.dtsi and imx6qdl-wandboard.dtsi are overlaid with the contents of imx6q-wandboard.dts.
Device tree nodes are documented in bindings contained in the Documentation/devicetree/bindings/ directory of the kernel source. New nodes must include the corresponding bindings, and these must be reviewed and accepted by the device tree maintainers. Theoretically, all bindings need to be maintained, although it is likely this will be relaxed in the future.
The compatible property
The most important property in a device tree node is the compatible property. In the root node, it defines the machine types the device tree is compatible with. The DTS file we just saw is compatible in order of precedence with the wand,imx6q-wandboard and fsl,imx6q machine types.
On a non-root node, it will define the driver match for the device tree node, binding a device with the driver. For example, a platform driver that binds with a node that defines a property that is compatible with fsl,imx6q-tempmon would contain the following excerpt:
static const struct of_device_id of_imx_thermal_match[] = {
{ .compatible = "fsl,imx6q-tempmon", },
{ /* end */ }
};
MODULE_DEVICE_TABLE(of, of_imx_thermal_match);
static struct platform_driver imx_thermal = {
.driver = {
.name = "imx_thermal",
.owner = THIS_MODULE,
.of_match_table = of_imx_thermal_match,
},
.probe = imx_thermal_probe,
.remove = imx_thermal_remove,
};
module_platform_driver(imx_thermal);
The Wandboard device tree file
Usually, the first DTSI file to be included is skeleton.dtsi, which is the minimum device tree needed to boot, once a compatible property is added.
/ {
#address-cells = <1>;
#size-cells = <1>;
chosen { };
aliases { };
memory { device_type = "memory"; reg = <0 0>; };
};
Here are the other common top nodes:
A summary representation of the imx6q-wandboard.dts file showing only the selected buses and devices follows:
#include "skeleton.dtsi"
/ {
model = "Wandboard i.MX6 Quad Board";
compatible = "wand,imx6q-wandboard", "fsl,imx6q";
memory {};
aliases {};
intc: interrupt-controller@00a01000 {};
soc {
compatible = "simple-bus";
dma_apbh: dma-apbh@00110000 {};
timer@00a00600 {};
L2: l2-cache@00a02000 {};
pcie: pcie@0x01000000 {};
aips-bus@02000000 { /* AIPS1 */
compatible = "fsl,aips-bus", "simple-bus";
spba-bus@02000000 {
compatible = "fsl,spba-bus", "simple-bus";
};
aipstz@0207c000 {};
clks: ccm@020c4000 {};
iomuxc: iomuxc@020e0000 {};
};
aips-bus@02100000 {
compatible = "fsl,aips-bus", "simple-bus";
};
};
};
On this DTS, we can find several nodes defining system on chip (SoC) buses and several other nodes defining on-board devices.
Defining buses and memory-addressable devices
Buses are typically defined by the compatible property or the simple-bus property (to define a memory-mapped bus with no specific driver binding) or both. The simple-bus property is needed so that children nodes to the bus are registered as platform devices.
For example, the soc node is defined as follows:
soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
aips-bus@02000000 { /* AIPS1 */
compatible = "fsl,aips-bus", "simple-bus";
reg = <0x02000000 0x100000>;
}
}
The properties on the soc node are used to specify the memory addressability of the children nodes.
In this case, any child of soc needs to define its memory addressing with a reg property that contains one cell for the address and one cell for the size. The aips-bus node does that with the following property:
reg = <0x02000000 0x100000>;
There's more...
When the device tree binary blob is loaded in memory by the Linux kernel, it is expanded into a flattened device tree that is accessed by offset. The fdt_* kernel functions are used to access the flattened device tree. This fdt is then parsed and transformed into a tree memory structure that can be efficiently accessed with the of_* family of functions (the prefix comes from Open Firmware).
Modifying and compiling the device tree in Yocto
To modify the device tree in the Yocto build system, we execute the following set of commands:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake -c devshell virtual/kernel
We then edit arch/arm/boot/dts/imx6q-wandboard.dts and compile the changes with:
$ make dtbs
If we want to create a device tree with extra space, let's say 1024 bytes (for example, to add nodes dynamically as explained in the next recipe), we need to specify it with a DTC flag as follows:
DTC_FLAGS="-p 1024" make dtbs
To deploy it, we exit the devshell and build the kernel from the project's build directory:
$ bitbake -c deploy -f virtual/kernel
See also
Debugging device tree issues
This recipe will show some techniques to debug common problems with the device tree.
How to do it...
As mentioned before, problems with the syntax of device tree files usually result in the kernel crashing early in the boot process. Other type of problems are more subtle and usually appear once a driver is making use of the information provided by the device tree. For both types of problems, it is helpful to be able to look not only at the device tree syntax file, but also at the device tree blob, as it is read by both U-Boot and the Linux kernel. It may also be helpful to modify the device tree on the fly using the tools that U-Boot offers.
How it works...
Looking at the device tree from U-Boot
The U-Boot bootloader offers the fdt command to interact with a device tree blob. On the Wandboard's default environment, there are two variables related to the device tree:
To fetch the Wandboard's device tree from the TFTP server location and place it in memory, we use the following command:
> tftp ${fdt_addr} ${fdt_file}
Once we have the device tree blob in memory, we tell U-Boot where it is located:
> fdt addr ${fdt_addr}
And then we can inspect nodes from the device tree using the full path to them from the root node. To inspect the selected levels, we use the list command, and to print complete subtrees, we use the print command:
> fdt list /cpus
cpus {
#address-cells = <0x00000001>;
#size-cells = <0x00000000>;
cpu@0 {
};
};
> fdt print /cpus
cpus {
#address-cells = <0x00000001>;
#size-cells = <0x00000000>;
cpu@0 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0x00000000>;
next-level-cache = <0x0000001d>;
[omitted]
};
};
U-Boot can also attach new nodes to the tree assuming there is extra space in the device tree:
> fdt mknode / new-node
> fdt list /new-node
new-node {
};
It can also create or remove properties:
> fdt set /new-node testprop testvalue
> fdt print /new-node
new-node {
testprop = "testvalue";
};
> fdt rm /new-node testprop
> fdt print /new-node
new-node {
};
For example, it can be useful to modify the kernel command line through the chosen node.
Looking at the device tree from the Linux kernel
Once the Linux kernel is booted, it can be useful to expose the device tree to user space so that it can be explored. You can do this by configuring the Linux kernel with the CONFIG_PROC_DEVICETREE configuration variable. The Wandboard Linux kernel comes preconfigured to expose the device tree in /proc/device-tree as follows:
ls /proc/device-tree/cpus/
#address-cells cpu@0 cpu@2 name
#size-cells cpu@1 cpu@3
Chapter 3. The Software Layer
In this chapter, we will cover the following recipes:
Introduction
With hardware-specific changes on their way, the next step is customizing the target root filesystem; that is, the software that runs under the Linux kernel, also called the Linux user space.
The usual approach to this is to start with one of the available core images and both optimize and customize it as per the needs of your embedded project. Usually, the images chosen as a starting point are either core-image-minimal or core-image-sato, but any of them will do.
This chapter will show you how to add a software layer to contain those changes, and will explain some of the common customizations made, such as size optimization. It will also show you how to add new packages to your root filesystem, including licensing considerations.
Exploring an image's contents
We have already seen how to use the build history feature to obtain a list of packages and files included in our image. In this recipe, we will explain how the root filesystem is built so that we are able to track its components.
Getting ready
When packages are built, they are classified inside the working directory of your project (tmp/work) according to their architecture. For example, on a wandboard-quad build, we find the following directories:
BitBake will build all the packages included in its dependency list inside its own directory.
How to do it...
To find the build directory for a given package, we can execute the following command:
$ bitbake -e <package> | grep ^WORKDIR=
Inside the build directory, we find some subdirectories (assuming rm_work is not used) that the build system uses in the packaging task. These subdirectories include the following:
The components to be installed in each package are selected using the FILES variable. For example, to add to the default package, you could execute the following command:
FILES_${PN} += "${bindir}/file.bin"
And to add to the development package, you could use the following:
FILES_${PN}-dev += "${libdir}/lib.so"
How it works...
Once the Yocto build system has built all the individual packages in its dependency list, it runs the do_rootfs task, which populates the sysroot and builds the root filesystem before creating the final package images. You can find the location of the root filesystem by executing:
$ bitbake -e core-image-minimal | grep ^IMAGE_ROOTFS=
Note that the IMAGE_ROOTFS variable is not configurable and should not be changed.
The contents of this directory will later be prepared into an image according to what image types are configured in the IMAGE_FSTYPES configuration variable. If something has been installed in this directory, it will then be installed in the final image.
Adding a new software layer
Root filesystem customization involves adding or modifying content to the base image. Metadata for this content goes into one or more software layers, depending on the amount of customization needed.
A typical embedded project will have just one software layer containing all non-hardware-specific customizations. But it is also possible to have extra layers for graphical frameworks or system-wide elements.
Getting ready
Before starting work on a new layer, it is good practice to check whether someone else provides a similar layer. Also, if you are trying to integrate an open source project, check whether a layer for it already exists. There is an index of available layers at http://layers.openembedded.org/.
How to do it...
We can then create a new meta-custom layer using the yocto-layer command as we learned in the Creating a custom BSP layer recipe in Chapter 2, The BSP Layer. From the sources directory, execute the following command:
$ yocto-layer create custom
Don't forget to add the layer to your project's conf/bblayers.conf file and to your template's conf directory to make it available for all new projects.
The default conf/layer.conf configuration file is as follows:
We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"
We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes-*/*/*.bbappend"
BBFILE_COLLECTIONS += "custom"
BBFILE_PATTERN_custom = "^${LAYERDIR}/"
BBFILE_PRIORITY_custom = "6"
We have discussed all the relevant variables in this snippet in the Creating a custom BSP layer recipe in Chapter 2, The BSP Layer.
How it works...
When adding content to a new software layer, we need to keep in mind that our layer needs to play well with other layers in the Yocto project. To this end, when customizing recipes, we will always use append files, and will only override existing recipes if we are completely sure there is no way to add the customization required through an append file.
To help us manage the content across several layers, we can use the following bitbake-layers command-line utilities:
There's more...
We will sometimes add customizations that are specific to one board or machine. These are not always hardware-related, so they could be found both in a BSP or software layer.
When doing so, we will try to keep our customizations as specific as possible. One typical example is customizing for a specific machine or machine family. If you need to add a patch for the wandboard-quad machine, you would use the following line of code:
SRC_URI_append_wandboard-quad = " file://mypatch.patch"
And, if the patch is applicable to all i.MX6-based boards, you can use the following:
SRC_URI_append_mx6 = " file://mypatch.patch"
To be able to use machine families overrides, the machine configuration files need to include a SOC_FAMILY variable, such as the one for the wandboard-quad in meta-fsl-arm-extra. Refer to the following line of code:
conf/machine/wandboard-quad.conf:SOC_FAMILY = "mx6:mx6q:wandboard"
And for it to appear in the MACHINEOVERRIDES variable, the soc-family.inc file needs to be included, as it is in meta-fsl-arm. Here is the relevant code excerpt from the conf/machine/include/imx-base.inc file:
include conf/machine/include/soc-family.inc
MACHINEOVERRIDES =. "${@['', '${SOC_FAMILY}:']['${SOC_FAMILY}' != '']}"
BitBake will search a predefined path, looking for files inside the package's working directory, defined in the FILESPATH variable as a colon-separated list. Specifically:
${PN}-${PV}/${DISTRO}
${PN}/${DISTRO}
files/${DISTRO}
${PN}-${PV}/${MACHINE}
${PN}/${MACHINE}
files/${MACHINE}
${PN}-${PV}/${SOC_FAMILY}
${PN}/${SOC_FAMILY}
files/${SOC_FAMILY}
${PN}-${PV}/${TARGET_ARCH}
${PN}/${TARGET_ARCH}
files/${TARGET_ARCH}
${PN}-${PV}/
${PN}/
files/
In the specific case of the wandboard-quad, this translates to the following:
${PN}-${PV}/poky
${PN}/poky
files/poky
${PN}-${PV}/wandboard-quad
${PN}/wandboard-quad
files/wandboard-quad
${PN}-${PV}/wandboard
${PN}/wandboard
files/wandboard
${PN}-${PV}/mx6q
${PN}/mx6q
files/mx6q
${PN}-${PV}/mx6
${PN}/mx6
files/mx6
${PN}-${PV}/armv7a
${PN}/armv7a
files/armv7a
${PN}-${PV}/arm
${PN}/arm
files/arm
${PN}-${PV}/
${PN}/
files/
Here, PN is the package name and PV is the package version.
It is best to place patches in the most specific of these, so wandboard-quad, followed by wandboard, mx6q, mx6, armv7a, arm, and finally the generic PN-PV, PN, and files.
Note that the search path refers to the location of the BitBake recipe, so append files need to always add the path when adding content. Our append files can add extra folders to this search path if needed by appending or prepending to the FILESEXTRAPATHS variable as follows:
FILESEXTRAPATHS_prepend := "${THISDIR}/folder:"
Note
Note the immediate operator (:=) that expands THISDIR immediately, and the prepend that places your added path before any other path so that your patches and files are found first in the search.
Also, we have seen the += and =+ style of operators in configuration files, but they should be avoided in recipe files and the append and prepend operators should be given preference, as seen in the example code explained previously to avoid ordering issues.
Selecting a specific package version and providers
Our layers can provide recipes for different versions of the same package. For example, the meta-fsl-arm layer contains several different types of Linux sources:
As we mentioned before, all recipes provide the package name (for example, linux-imx or linux-fslc) by default, but all Linux recipes must also provide the virtual/kernel virtual package. The build system will resolve virtual/kernel to the most appropriate Linux recipe name, taking into account the requirements of the build, such as the machine it is building for.
And within those recipes, linux-imx, for example, has both 2.6.35.3 and 3.10.17 recipe versions.
In this recipe, we will show how to tell the Yocto build system which specific package and version to build.
How to do it...
To specify the exact package we want to build, the build system allows us to specify what provider and version to use.
How do we select which provider to use?
We can tell BitBake which recipe to use by using the PREFERRED_PROVIDER variable. To set a preferred provider for the virtual/kernel virtual package on our Wandboard machine, we would add the following to its machine configuration file:
PREFERRED_PROVIDER_virtual/kernel = "linux-imx"
How do we select which version to use?
Within a specific provider, we can also tell BitBake which version to use with the PREFERRED_VERSION variable. For example, to set a specific linux-imx version for all i.MX6-based machines, we would add the following to our conf/local.conf file:
PREFERRED_VERSION_linux-imx_mx6 = "3.10.17"
The % wildcard is accepted to match any character, as we see here:
PREFERRED_VERSION_linux-imx_mx6 = "3.10%"
It is, however, more common to see this type of configuration done in machine configuration files, in which case we would not use the _mx6 append.
How do we select which version not to use?
We can use the DEFAULT_PREFERENCE variable set to -1 to specify that a version is not to be used unless explicitly set by a PREFERRED_VERSION variable. This is commonly used in development versions of packages.
DEFAULT_PREFERENCE = "-1"
Adding supported packages
It is common to want to add new packages to an image that already has an available recipe in one of the included Yocto layers.
When the target image desired is very different from the supplied core images, it is recommended to define a new image rather than to customize an existing one.
This recipe will show how to customize an existing image by adding supported packages to it, but also to create a completely new image recipe if needed.
Getting ready
To discover whether a package we require is included in our configured layers, and what specific versions are supported, we can use bitbake-layers from our build directory as we saw previously:
$ bitbake-layers show-recipes | grep -A 1 htop
htop:
meta-oe 1.0.3
Alternatively, we can also use BitBake as follows:
$ bitbake -s | grep htop
htop :1.0.3-r0
Or we can use the find Linux command in our sources directory:
$ find . -type f -name "htop*.bb"
./meta-openembedded/meta-oe/recipes-support/htop/htop_1.0.3.bb
Once we know what packages we want to include in our final images, let's see how we can add them to the image.
How to do it...
While developing, we will use our project's conf/local.conf file to add customizations. To add packages to all images, we can use the following line of code:
IMAGE_INSTALL_append = " htop"
Note
Note that there is a space after the first quote to separate the new package from the existing ones, as the append operator does not add a space.
We could also limit the addition to a specific image with:
IMAGE_INSTALL_append_pn-core-image-minimal = " htop"
Another way to easily customize is by making use of features. A feature is a logical grouping of packages. For example, we could create a new feature called debug-utils, which will add a whole set of debugging utilities. We could define our feature in a configuration file or class as follows:
FEATURE_PACKAGES_debug-utils = "strace perf"
We could then add this feature to our image by adding an EXTRA_IMAGE_FEATURES variable to our conf/local.conf file as follows:
EXTRA_IMAGE_FEATURES += "debug-utils"
If you were to add it to an image recipe, you would use the IMAGE_FEATURES variable instead.
Usually, features get added as a packagegroup recipe instead of being listed as packages individually. Let's show how to define a packagegroup recipe in the recipes-core/packagegroups/packagegroup-debug-utils.bb file:
SUMMARY = "Debug applications packagegroup"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=3f40d7994397109285ec7b81fdeb3b58"
inherit packagegroup
RDEPENDS_${PN} = "\
strace \
perf \
"
And you would then add it to the FEATURE_PACKAGES variable as follows:
FEATURE_PACKAGES_debug-utils = "packagegroup-debug-utils"
We can use packagegroups to create more complex examples. Refer to the Yocto Project Development Manual at http://www.yoctoproject.org/docs/1.7.1/dev-manual/dev-manual.html for details.
How it works...
The best approach to customize images is to create our own images using an existing image as template. We could use core-image-minimal.bb, which contains the following code:
SUMMARY = "A small image just capable of allowing a device to boot."
IMAGE_INSTALL = "packagegroup-core-boot ${ROOTFS_PKGMANAGE_BOOTSTRAP} ${CORE_IMAGE_EXTRA_INSTALL}"
IMAGE_LINGUAS = " "
LICENSE = "MIT"
inherit core-image
IMAGE_ROOTFS_SIZE ?= "8192"
And extend it to your own version that allows for the customization of IMAGE_FEATURES, by adding the following meta-custom/recipes-core/images/custom-image.bb image file:
require recipes-core/images/core-image-minimal.bb
IMAGE_FEATURES += "ssh-server-dropbear package-management"
Of course, we can also define a new image from scratch using one of the available images as a template.
There's more...
A final way to customize images is by adding shell functions that get executed once the image has been created. You do this by adding the following to your image recipe or conf/local.conf file:
ROOTFS_POSTPROCESS_COMMAND += "function1;...;functionN"
You can use the path to the root filesystem in your command with the IMAGE_ROOTFS variable.
Classes would use the IMAGE_POSTPROCESS_COMMAND variable instead of ROOTFS_POSTPROCESS_COMMAND.
One example of usage can be found in the debug-tweaks feature in image.bbclass, when images are tweaked to allow passwordless root logins. This method is also commonly used to customize the root password of a target image.
Configuring packages
As we saw in the Configuring the Linux kernel recipe in Chapter 2, The BSP Layer, some packages, like the Linux kernel, provide a configuration menu and can be configured with the menuconfig BitBake command.
Another package worth mentioning with a configuration interface is BusyBox. We will show how to configure BusyBox, for example to add pgrep, a tool that looks up process's IDs by name. To do so follow the next steps:
$ bitbake -c menuconfig busybox
$ bitbake -C compile busybox
$ bitbake -e busybox | grep ^WORKDIR=
$ scp ${WORKDIR}/deploy-rpms/cortexa9hf_vfp_neon/busybox- 1.22.1-r32.cortexa9hf_vfp_neon.rpm root@<target_ip>:/tmp
rpm --force -U /tmp/busybox-1.22.1- r32.cortexa9hf_vfp_neon.rpm
Note that we are forcing the update as the package version has not increased with the configuration change.
Adding new packages
We have seen how to customize our image so that we can add supported packages to it. When we can't find an existing recipe or we need to integrate some new software we have developed, we will need to create a new Yocto recipe.
Getting ready
There are some questions we need to ask ourselves before starting to write a new recipe:
Once we know the answers to these questions, we are ready to start writing our recipe.
How to do it...
It is best to start from a blank template like the one that follows than to start from a similar recipe and modify it, as the result will be cleaner and contain only the strictly needed instructions.
A good starting base for a minimal recipe addition is:
SUMMARY = "The package description for the package management system"
LICENSE = "The package's licenses typically from meta/files/common-licenses/"
LIC_FILES_CHKSUM = "License checksum used to track open license changes"
DEPENDS = "Package list of build time dependencies"
SRC_URI = "Local or remote file or repository to fetch"
SRC_URI[md5sum] = "md5 checksums for all remote fetched files (not for repositories)"
SRC_URI[sha256sum] = "sha256 checksum for all remote fetched files (not for repositories)"
S = "Location of the source in the working directory, by default ${WORKDIR}/${PN}-${PV}."
inherit <class needed for some functionality>
Task overrides, like do_configure, do_compile and do_install, or nothing.
Package splitting (if needed).
Machine selection variables (if needed).
How it works...
We will explain each one of the recipe sections in more detail in the following sections.
Package licensing
Every recipe needs to contain a LICENSE variable. The LICENSE variable allows you to specify multiple, alternative, and per-package type licenses, as seen in the following examples:
LICENSE = "GPL-2.0 | MIT"
LICENSE = "ISC & MIT"
LICENSE_${PN} = "GPLv2"
LICENSE_${PN}-dev = "GPLv2"
LICENSE_${PN}-dbg = "GPLv2"
LICENSE_${PN}-doc = "CC-BY-2.0"
Open source packages usually have the license included with the source code in README, COPYING, or LICENSE files, and even the source code header files.
For open source licenses, we also need to specify LIC_FILES_CHECKSUM for all licenses so that the build system can notify us when the licenses change. To add it, we locate the file or file portion that contains the license and provide its relative path from the directory containing the source and a MD5 checksum for it. For example:
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common- licenses/GPL-2.0;md5=801f80980d171dd6425610833a22dbe6"
LIC_FILES_CHKSUM = "file://COPYING;md5=f7bdc0c63080175d1667091b864cb12c"
LIC_FILES_CHKSUM = "file://usr/include/head.h;endline=7;md5=861ebad4adc7236f8d1905338 abd7eb2"
LIC_FILES_CHKSUM = "file://src/file.c;beginline=5;endline=13;md5=6c7486b21a8524b1879f a159578da31e"
Proprietary code should have the license set as CLOSED, and no LIC_FILES_CHECKSUM is needed for it.
Fetching package contents
The SRC_URI variable lists the files to fetch. The build system will use different fetchers depending on the file prefix. These can be:
Files stored in remote servers (not local files or remote repositories) need to specify two checksums. If there are several files, they can be distinguished with a name argument; for example:
SRCREV = "04024dea2674861fcf13582a77b58130c67fccd8"
SRC_URI = "git://repo.com/git/ \
file://fix.patch;name=patch \
http://example.org/archive.data;name=archive"
SRC_URI[archive.md5sum] = "aaf32bde135cf3815aa3221726bad71e"
SRC_URI[archive.sha256sum] = "65be91591546ef6fdfec93a71979b2b108eee25edbc20c53190caafc9a92d4e7"
The source directory folder, S, specifies the location of the source files. The repository will be checked out here, or the tarball decompressed in this location. If the tarball decompresses in the standard ${PN}-${PV} location, it can be omitted as it is the default. For repositories, it needs to always be specified; for example:
S = "${WORKDIR}/git"
Specifying task overrides
All recipes inherit the base.bbclass class, which defines the following tasks:
Usually, only the configuration, compilation, and installation tasks are overridden, and this is mostly done implicitly by inheriting a class like autotools.
For a custom recipe that does not use a build system, you need to provide the required instructions for configuration (if any), compilation, and installation in their corresponding do_configure, do_compile, and do_install overrides. As an example of this type of recipe, meta-custom/recipes-example/helloworld/helloworld_1.0.bb, may be seen here:
DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"
SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile() {
${CC} helloworld.c -o helloworld
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
With the meta-custom/recipes-example/helloworld/helloworld-1.0/helloworld.c source file being the following:
#include <stdio.h>
int main(void)
{
return printf("Hello World");
}
We will see example recipes that use the most common build systems in the next chapter.
Configuring packages
The Yocto build system provides the PACKAGECONFIG variable to help in the configuration of packages by defining a number of features. Your recipe defines the individual features as follows:
PACKAGECONFIG ??= "feature"
PACKAGECONFIG[feature] = "--with-feature,--without-feature,build- deps-feature,rt-deps-feature"
The PACKAGECONFIG variable contains a space-separated list of feature names, and it can be extended or overridden in bbappend files; have a look at the following example:
PACKAGECONFIG_append = " feature1 feature2"
To extend or override it from a distribution or local configuration file, you would use the following syntax:
PACKAGECONFIG_pn-<package_name> = "feature1 feature2"
PACKAGECONFIG_append_pn-<package_name> = " feature1 feature2"
Following that, we characterize each feature with four ordered arguments:
The four arguments are optional, but the ordering needs to be maintained by leaving the surrounding commas.
For example, the wpa-supplicant recipe defines two features, gnutls and openssl, but only enables gnutls by default, as seen here:
PACKAGECONFIG ??= "gnutls"
PACKAGECONFIG[gnutls] = ",,gnutls"
PACKAGECONFIG[openssl] = ",,openssl"
Splitting into several packages
It is common to separate the recipe contents into different packages that serve different needs. Typical examples are to include documentation in a doc package, and header and/or libraries in a dev package. We can do this using the FILES variable as follows:
FILES_${PN} += "List of files to include in the main package"
FILES_${PN}-dbg += "Optional list of files to include in the debug package"
FILES_${PN}-dev += "Optional list of files to include in the development package"
FILES_${PN}-doc += "Optional list of files to include in the documentation package"
Setting machine-specific variables
Each recipe has a PACKAGE_ARCH variable that categorizes the recipe into a package feed, as we saw in the Exploring an image's contents recipe. Most of the times, they are automatically sorted out by the Yocto build system. For example, if the recipe is a kernel, a kernel module recipe, or an image recipe, or even if it is cross-compiling or building native applications, the Yocto build system will set the package architecture accordingly.
BitBake will also look at the SRC_URI machine overrides and adjust the package architecture, and if your recipe is using the allarch class, it will set the package architecture to all.
So when working on a recipe that only applies to a machine or machine family, or that contains changes that are specific to a machine or machine family, we need to check whether the package is categorized in the appropriate package feed, and if not, specify the package architecture explicitly in the recipe itself by using the following line of code:
PACKAGE_ARCH = "${MACHINE_ARCH}"
Also, when a recipe is only to be parsed for specific machine types, we specify it with the COMPATIBLE_MACHINE variable. For example, to make it compatible only with the mxs, mx5 and mx6 SoC families, we would use the following:
COMPATIBLE_MACHINE = "(mxs|mx5|mx6)"
Adding data, scripts, or configuration files
All recipes inherit the base class with the default set of tasks to run. After inheriting the base class, a recipe knows how to do things like fetching and compiling.
As most recipes are meant to install some sort of executable, the base class knows how to build it. But sometimes all we want is to install data, scripts, or configuration files into the filesystem.
If the data or configuration is related to an application, the most logical thing to do is to package it together with the application's recipe itself, and if we think it is better to be installed separately, we could even split it into its own package.
But some other times, the data or configuration is unrelated to an application, maybe it applies to the whole system or we just want to provide a separate recipe for it. Optionally, we could even want to install some Perl or Python scripts that don't need to be compiled.
How to do it...
In those cases, our recipe should inherit the allarch class that is inherited by recipes that do not produce architecture-specific output.
An example of this type of recipe, meta-custom/recipes-example/example-data/example-data_1.0.bb, may be seen here:
DESCRIPTION = "Example of data or configuration recipe"
SECTION = "examples"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-licenses/GPL-2.0;md5=801f80980d171dd6425610833a22dbe6"
SRCREV = "${AUTOREV}"
SRC_URI = "git://github.com/yoctocookbook/examples.git \
file://example.data"
S = "${WORKDIR}/git"
inherit allarch
do_compile() {
}
do_install() {
install -d ${D}${sysconfdir}
install -d ${D}${sbindir}
install -m 0755 ${WORKDIR}/example.data ${D}/${sysconfdir}/
install -m 0755 ${S}/python-scripts/* ${D}/${sbindir}
}
It assumes that the fictitious examples.git repository contains a python-scripts folder, which we want to include in our root filesystem.
A working recipe example can be found in the source that accompanies the book.
Managing users and groups
It is also common to need to add or modify users and groups to our filesystem. This recipe explains how it is done.
Getting ready
The user information is stored in the /etc/passwd file, a text file that is used as a database for the system user's information. The passwd file is human-readable.
Each line on it corresponds to one user in the system, and it has the following format:
<username>:<password>:<uid>:<gid>:<comment>:<home directory>:<login shell>
Let's see each of the parameters of this format:
The default passwd file is stored with the base-passwd package and looks as follows:
root::0:0:root:/root:/bin/sh
daemon:*:1:1:daemon:/usr/sbin:/bin/sh
bin:*:2:2:bin:/bin:/bin/sh
sys:*:3:3:sys:/dev:/bin/sh
sync:*:4:65534:sync:/bin:/bin/sync
games:*:5:60:games:/usr/games:/bin/sh
man:*:6:12:man:/var/cache/man:/bin/sh
lp:*:7:7:lp:/var/spool/lpd:/bin/sh
mail:*:8:8:mail:/var/mail:/bin/sh
news:*:9:9:news:/var/spool/news:/bin/sh
uucp:*:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:*:13:13:proxy:/bin:/bin/sh
www-data:*:33:33:www-data:/var/www:/bin/sh
backup:*:34:34:backup:/var/backups:/bin/sh
list:*:38:38:Mailing List Manager:/var/list:/bin/sh
irc:*:39:39:ircd:/var/run/ircd:/bin/sh
gnats:*:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:*:65534:65534:nobody:/nonexistent:/bin/sh
All accounts have disabled direct logins, indicated by an asterisk on the password field, except for root, which has no password. This is because, by default, the image is built with the debug-tweaks feature that enables passwordless login for the root user, among other things. If the root password was enabled, we would see the encrypted root password.
Note
Do not forget to remove the debug-tweaks feature from production images.
There is a corresponding /etc/group file that is installed at the same time with the information for the system groups.
The core-image-minimal image does not include shadow password protection, but other images, such as core-image-full-cmdline, do. When enabled, all password fields contain an x, and the encrypted passwords are kept on a /etc/shadow file, which is only accessible to the super user.
Any user that is needed by the system but not included in the list we saw earlier needs to be created.
How to do it...
The standard way for a recipe to add or modify system users or groups is to use the useradd class, which uses the following variables:
USERADD_PACKAGES = "${PN}"
An example snippet of a recipe using the useradd class follows:
inherit useradd
PASSWORD ?= "miDBHFo2hJSAA"
USERADD_PACKAGES = "${PN}"
USERADD_PARAM_${PN} = "--system --create-home \
--groups tty \
--password ${PASSWORD} \
--user-group ${PN}"
The password can be generated on your host using the mkpasswd Linux command-line utility, installed with the whois Ubuntu package.
There's more...
When generating users and groups using the useradd class, the uid and gid values are assigned dynamically during package installation. If this is not desired, there is a way to assign system-wide static uid and gid values by providing your own passwd and group files.
To do this, you need to define the USERADDEXTENSION variable in your conf/local.conf file as follows:
USERADDEXTENSION = "useradd-staticids"
The build system will then search the BBPATH variable for files/passwd and files/group files to obtain the uid and gid values. The files have the standard passwd layout as defined previously, with the password field ignored.
The default filenames can be overridden by using the USERADD_UID_TABLES and USERADD_GID_TABLES variables.
You also need to define the following:
USERADD_ERROR_DYNAMIC = "1"
This is done so that the build system produces an error if the required uid and gid values are not found in the provided files.
Note
Note that if you use the useradd class in a project that is already built, you will need to remove the tmp directory and rebuild from the sstate-cache directory or you will get build errors.
There is also a way to add user and group information that is not tied to a specific recipe but to an image – by using the extrausers class. It is configured by the EXTRA_USERS_PARAMS variable in an image recipe and used as follows:
inherit extrausers
EXTRA_USERS_PARAMS = "\
useradd -P password root; \
"
This sets the root password to password.
Using the sysvinit initialization manager
The initialization manager is an important part of the root filesystem. It is the first thing the kernel executes, and it has the responsibility to start the rest of the system.
This recipe will introduce the sysvinit initialization manager.
Getting ready
This is the default initialization manager in Yocto and it has been used in Linux since the operating system's origin. The kernel is passed an init command-line argument, typically /sbin/init, which is then launched. This init process has PID 1 and is the parent of all processes. The init process can either be implemented by BusyBox or be an independent program installed with the sysvinit package. Both of them work in the same way, based on the concept of runlevel, a machine state that defines which processes to run.
The init process will read an inittab file and look for a default runlevel. The default inittab file is installed with the sysvinit-inittab package and is as follows:
/etc/inittab: init(8) configuration.
$Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $
The default runlevel.
id:5:initdefault:
Boot-time system configuration/initialization script.
This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS
What to do in single-user mode.
~~:S:wait:/sbin/sulogin
/etc/init.d executes the S and K scripts upon change
of runlevel.
#
Runlevel 0 is halt.
Runlevel 1 is single-user.
Runlevels 2-5 are multi-user.
Runlevel 6 is reboot.
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin
Then, init runs all scripts starting with S in the /etc/rcS.d directory, followed by all the scripts starting with S in the /etc/rcN.d directory, where N is the runlevel value.
So the init process just performs the initialization and forgets about the processes. If something goes wrong and the processes are killed, no one will care. The system watchdog will reboot the system if it becomes unresponsive, but applications built with more than one process usually need some type of process monitor that can react to the health of the system, but sysvinit does not offer these types of mechanisms.
However, sysvinit is a well-understood and reliable initialization manager and the recommendation is to keep it unless you need some extra feature.
How to do it...
When using sysvinit as the initialization manager, Yocto offers the update-rc.d class as a helper to install initialization scripts so that they are started and stopped when needed.
When using this class, you need to specify the INITSCRIPT_NAME variable with the name of the script to install and INITSCRIPT_PARAMS with the options to pass to the update-rc.d utility. You can optionally use the INITSCRIPT_PACKAGES variable to list the packages to contain the initialization scripts. By default, this contains the main package only, and if multiple packages are provided, the INITSCRIPT_NAME and INITSCRIPT_PARAMS need to be specified for each using overrides. An example snippet follows:
INITSCRIPT_PACKAGES = "${PN}-httpd ${PN}-ftpd"
INITSCRIPT_NAME_${PN}-httpd = "httpd.sh"
INITSCRIPT_NAME_${PN}-ftpd = "ftpd.sh"
INITSCRIPT_PARAMS_${PN}-httpd = "defaults"
INITSCRIPT_PARAMS_${PN}-ftpd = "start 99 5 2 . stop 20 0 1 6 ."
When an initialization script is not tied to a particular recipe, we can add a specific recipe for it. For example, the following recipe will run a mount.sh script in the recipes-example/sysvinit-mount/sysvinit-mount_1.0.bb file.
DESCRIPTION = "Initscripts for mounting filesystems"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://mount.sh"
INITSCRIPT_NAME = "mount.sh"
INITSCRIPT_PARAMS = "start 09 S ."
inherit update-rc.d
S = "${WORKDIR}"
do_install () {
install -d ${D}${sysconfdir}/init.d/
install -c -m 755 ${WORKDIR}/${INITSCRIPT_NAME} ${D}${sysconfdir}/init.d/${INITSCRIPT_NAME}
}
Using the systemd initialization manager
As an alternative to sysvinit, you can configure your project to use systemd as an initialization manager, although systemd packs many more features.
Getting ready
The systemd initialization manager is replacing sysvinit and other initialization managers in most Linux distributions. It is based on the concepts of units, an abstraction of all elements that are relevant for system startup and maintenance, and targets, which group units and can be viewed as a runlevel equivalent. Some of the units systemd defines are:
The default targets and their runlevel equivalents are defined in the following table:
Sysvinit | Runlevel | Systemd target | Notes |
---|---|---|---|
0 | runlevel0.target | poweroff.target | Halt the system. |
1, s, single | runlevel1.target | rescue.target | Single user mode. |
2, 4 | runlevel2.target, runlevel4.target | multi-user.target | User-defined/site-specific runlevels. By default, identical to 3. |
3 | runlevel3.target | multi-user.target | Multiuser, non-graphical. Users can usually log in via multiple consoles or via the network. |
5 | runlevel5.target | graphical.target | Multiuser, graphical. Usually has all the services of runlevel 3 plus a graphical login. |
6 | runlevel6.target | reboot.target | Reboot the system. |
The systemd initialization manager is designed to be compatible with sysvinit, including using sysvinit init scripts.
Some of the features of systemd are:
How to do it...
To configure your system to use systemd, you need to add the systemd distribution feature to your project by adding the following to your distribution's configuration file, under sources/poky/meta-yocto/conf/distro/poky.conf for the default poky distribution, or locally on your project's conf/local.conf file:
DISTRO_FEATURES_append = " systemd"
Note
Note the space required after the starting quote.
VIRTUAL-RUNTIME_init_manager = "systemd"
This configuration example allows you to define a main image with systemd and a rescue image with sysvinit, providing it does not use the VIRTUAL-RUNTIME_init_manager variable. Hence, the rescue image cannot use the packagegroup-core-boot or packagegroup-core-full-cmdline recipes. As an example, the recipe where the image size has been reduced, which we will introduce in the Reducing the root filesystem image size recipe in this chapter, could be used as the basis for a rescue image.
To remove sysvinit completely from your system, you would do the following:
DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME_initscripts = ""
Feature backfilling is the automatic extension of machine and distribution features to keep backwards compatibility. The sysvinit distribution feature is automatically filled in, so to remove it, we need to blacklist it by adding it to the DISTRO_FEATURES_BACKFILL_CONSIDERED variable as shown earlier.
Tip
Note that if you are using an existing project and you change the DISTRO_FEATURES variable as explained earlier, you will need to remove the tmp directory and build with sstate-cache or the build will fail.
There's more...
Not only does the root filesystem needs to be configured, but the Linux kernel also needs to be specifically configured with all the features required by systemd. There is an extensive list of kernel configuration variables in the systemd source README file. As an example, to extend the minimal kernel configuration that we will introduce in the Reducing the Linux kernel image size recipe later on this chapter, for the Wandboard to support systemd, we would need to add the following configuration changes in the arch/arm/configs/wandboard-quad_minimal_defconfig file:
+CONFIG_FHANDLE=y
+CONFIG_CGROUPS=y
+CONFIG_SECCOMP=y
+CONFIG_NET=y
+CONFIG_UNIX=y
+CONFIG_INET=y
+CONFIG_AUTOFS4_FS=y
+CONFIG_TMPFS=y
+CONFIG_TMPFS_POSIX_ACL=y
+CONFIG_SCHEDSTATS=y
The default kernel configuration provided for the Wandboard will launch a core-image-minimal image of systemd just fine.
Installing systemd unit files
Yocto offers the systemd class as a helper to install unit files. By default, unit files are installed on the ${systemd_unitdir}/system path on the destination directory.
When using this class, you need to specify the SYSTEMD_SERVICE_${PN} variable with the name of the unit file to install. You can optionally use the SYSTEMD_PACKAGES variable to list the packages to contain the unit files. By default, this is the main package only, and if multiple packages are provided, the SYSTEMD_SERVICE variable needs to be specified using overrides.
Services are configured to launch at boot by default, but this can be changed with the SYSTEMD_AUTO_ENABLE variable.
An example snippet follows:
SYSTEMD_PACKAGES = "${PN}-syslog"
SYSTEMD_SERVICE_${PN}-syslog = "busybox-syslog.service"
SYSTEMD_AUTO_ENABLE = "disabled"
Installing package-installation scripts
The supported package formats, RPM, ipk, and deb, support the addition of installation scripts that can be run at different times during a package installation process. In this recipe, we will see how to install them.
Getting ready
There are different types of installation scripts:
How to do it...
An example snippet of the installation of a preinstallation script in a recipe is as follows:
pkg_preinst_${PN} () {
Shell commands
}
All installation scripts work in the same way, with the exception that the postinstallation scripts may be run either on the host at root filesystem image creation time, on the target (for those actions that cannot be performed on the host), or when a package is directly installed on the target. Have a look at the following code:
pkg_postinst_${PN} () {
if [x"$D" = "x"]; then
Commands to execute on device
else
Commands to execute on host
fi
}
If the postinstallation script succeeds, the package is marked as installed. If the script fails, the package is marked as unpacked and the script is executed when the image boots again.
How it works...
Once the recipe defines an installation script, the class for the specific package type will install it while following the packaging rules of the specific format.
For postinstallation scripts, when running on the host, D is set to the destination directory, so the comparison test will fail. But D will be empty when running on the target.
Note
It is recommended to perform postinstallation scripts on the host if possible, as we need to take into account that some root filesystems will be read only and hence it would not be possible to perform some operations on the target.
Reducing the Linux kernel image size
Before or in parallel with the root filesystem customization, embedded projects usually require an image size optimization that will reduce the boot time and memory usage.
Smaller images mean less storage space, less transmission time, and less programming time, which saves money both in manufacturing and field updates.
By default, the compressed Linux kernel image (zImage) for the wandboard-quad is around 5.2 MB. This recipe will show how we can reduce that.
How to do it...
An example of a minimal kernel configuration for a Wandboard that is able to boot from a microSD card root filesystem is the arch/arm/configs/wandboard-quad_minimal_defconfig file that follows:
CONFIG_KERNEL_XZ=y
CONFIG_NO_HZ=y
CONFIG_HIGH_RES_TIMERS=y
CONFIG_BLK_DEV_INITRD=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_EMBEDDED=y
CONFIG_SLOB=y
CONFIG_ARCH_MXC=y
CONFIG_SOC_IMX6Q=y
CONFIG_SOC_IMX6SL=y
CONFIG_SMP=y
CONFIG_VMSPLIT_2G=y
CONFIG_AEABI=y
CONFIG_CPU_FREQ=y
CONFIG_ARM_IMX6_CPUFREQ=y
CONFIG_CPU_IDLE=y
CONFIG_VFP=y
CONFIG_NEON=y
CONFIG_DEVTMPFS=y
CONFIG_DEVTMPFS_MOUNT=y
CONFIG_PROC_DEVICETREE=y
CONFIG_SERIAL_IMX=y
CONFIG_SERIAL_IMX_CONSOLE=y
CONFIG_REGULATOR=y
CONFIG_REGULATOR_ANATOP=y
CONFIG_MMC=y
CONFIG_MMC_SDHCI=y
CONFIG_MMC_SDHCI_PLTFM=y
CONFIG_MMC_SDHCI_ESDHC_IMX=y
CONFIG_DMADEVICES=y
CONFIG_IMX_SDMA=y
CONFIG_EXT3_FS=y
This configuration builds an 886 K compressed Linux kernel image (zImage).
How it works...
Apart from hardware design considerations (such as running the Linux kernel from a NOR flash and execute in place (XIP) to avoid loading the image to memory), the first step in kernel size optimization is to review the kernel configuration and remove all superfluous features.
To analyze the sizes of kernel blocks, we may use:
$ size vmlinux */built-in.o
text data bss dec hex filename
8746205 356560 394484 9497249 90eaa1 vmlinux
117253 2418 1224 120895 1d83f block/built-in.o
243859 11158 20 255037 3e43d crypto/built-in.o
2541356 163465 34404 2739225 29cc19 drivers/built-in.o
1956 0 0 1956 7a4 firmware/built-in.o
1728762 18672 10544 1757978 1ad31a fs/built-in.o
20361 14701 100 35162 895a init/built-in.o
29628 760 8 30396 76bc ipc/built-in.o
576593 20644 285052 882289 d7671 kernel/built-in.o
106256 24847 2344 133447 20947 lib/built-in.o
291768 14901 3736 310405 4bc85 mm/built-in.o
1722683 39947 50928 1813558 1bac36 net/built-in.o
34638 848 316 35802 8bda security/built-in.o
276979 19748 1332 298059 48c4b sound/built-in.o
138 0 0 138 8a usr/built-in.o
Here, vmlinux is the Linux kernel ELF image, which can be found in the Linux build directory.
Some of the usual things to exclude are:
A good strategy is to start with a minimal kernel and add the essential stuff until you get a working system. Start with the allnoconfig GNU make target and review the configuration items under CONFIG_EXPERT and CONFIG_EMBEDDED as they are not included in the allnoconfig setting.
Some configuration changes that might not be obvious but reduce the image size considerably without feature removal are listed here:
You may also want to have a different configuration for production and development systems, so you may remove the following from your production images:
In the compilation side of things, optimize for size using CONFIG_CC_OPTIMIZE_FOR_SIZE.
Once the basics are covered, we would need to analyze the kernel functions to identify further reduction areas. You can print a sorted list of kernel symbols with the following:
$ nm --size-sort --print-size -r vmlinux | head
808bde04 00040000 B __log_buf
8060f1c0 00004f15 r kernel_config_data
80454190 000041f0 T hidinput_connect
80642510 00003d40 r drm_dmt_modes
8065cbbc 00003414 R v4l2_dv_timings_presets
800fbe44 000032c0 T __blockdev_direct_IO
80646290 00003100 r edid_cea_modes
80835970 00003058 t imx6q_clocks_init
8016458c 00002e74 t ext4_fill_super
8056a814 00002aa4 T hci_event_packet
You would then need to look into the kernel source to find optimizations.
The actual space used by the uncompressed kernel in memory can be obtained from a running Wandboard kernel log as follows:
$ dmesg | grep -A 3 "text"
.text : 0x80008000 - 0x80a20538 (10338 kB)
.init : 0x80a21000 - 0x80aae240 (565 kB)
.data : 0x80ab0000 - 0x80b13644 (398 kB)
.bss : 0x80b13644 - 0x80b973fc (528 kB)
From here, the .text section contains code and constant data, the .data section contains the initialization data for variables, and the .bss sections contains all uninitialized data. The .init section contains global variables used during Linux initialization only, which are freed afterwards as can be seen from the following Linux kernel boot message:
Freeing unused kernel memory: 564K (80a21000 - 80aae000)
There are ongoing efforts to reduce the size of the Linux kernel, so it is expected that newer kernel versions will be smaller and will allow for better customization for use in embedded systems.
Reducing the root filesystem image size
By default, the core-image-minimal size for the wandboard-quad unpacked tarball is around 45 MB, and core-image-sato is around 150 MB. This recipe will explore methods to reduce their size.
How to do it...
An example of a small image, core-image-small, that does not include the packagegroup-core-boot recipe and can be used as the base for a root filesystem image with reduced size, recipes-core/images/core-image-small.bb, is shown next:
DESCRIPTION = "Minimal console image."
IMAGE_INSTALL= "\
base-files \
base-passwd \
busybox \
sysvinit \
initscripts \
${ROOTFS_PKGMANAGE_BOOTSTRAP} \
${CORE_IMAGE_EXTRA_INSTALL} \
"
IMAGE_LINGUAS = " "
LICENSE = "MIT"
inherit core-image
IMAGE_ROOTFS_SIZE ?= "8192"
This recipe produces an image of about 6.4 MB. You can go even smaller if you use the poky-tiny distribution by adding the following to your conf/local.conf file:
DISTRO = "poky-tiny"
The poky-tiny distribution makes a series of size optimizations that may restrict the set of packages you can include in your image. To successfully build this image, you have to skip one of the sanity checks that the Yocto build system performs, by adding the following:
INSANE_SKIP_glibc-locale = "installed-vs-shipped"
With poky-tiny, the size of the image is further reduced to around 4 MB.
There are further reductions that can be done to the image; for example, we could replace sysvinit with tiny-init, but that is left as an exercise for the reader.
Images with reduced sizes are also used alongside production images for tasks such as rescue systems and manufacturing test processes. They are also ideal to be built as initramfs images; that is, images that the Linux kernel mounts from memory, and can even be bundled into a single Linux kernel image binary.
How it works...
Start with an appropriate image like core-image-minimal and analyze the dependencies as shown in the Debugging the build system recipe in Chapter 1, The Build System, and decide which of them are not needed. You could also use the file sizes listed in the image's build history, as seen in the Using build history recipe, also in Chapter 1, The Build System, to detect the biggest files in the filesystem and review them. To sort the file sizes, which appear in the fourth column of the files-in-image.txt file, in reverse order, we could execute:
$ sort -r -g -k 4,4 files-in-image.txt -o sorted-files-in-image.txt
sorted-files-in-image.txt:
-rwxr-xr-x root root 1238640 ./lib/libc-2.19.so
-rwxr-xr-x root root 613804 ./sbin/ldconfig
-rwxr-xr-x root root 539860 ./bin/busybox.nosuid
-rwxr-xr-x root root 427556 ./lib/libm-2.19.so
-rwxr-xr-x root root 130304 ./lib/ld-2.19.so
-rwxr-xr-x root root 88548 ./lib/libpthread-2.19.so
-rwxr-xr-x root root 71572 ./lib/libnsl-2.19.so
-rwxr-xr-x root root 71488 ./lib/libresolv-2.19.so
-rwsr-xr-x root root 51944 ./bin/busybox.suid
-rwxr-xr-x root root 42668 ./lib/libnss_files- 2.19.so
-rwxr-xr-x root root 30536 ./lib/libnss_compat- 2.19.so
-rwxr-xr-x root root 30244 ./lib/libcrypt-2.19.so
-rwxr-xr-x root root 28664 ./sbin/init.sysvinit
-rwxr-xr-x root root 26624 ./lib/librt-2.19.so
From this, we observe that glic is the biggest contributor to the filesystem size. Some other places where some space on a console-only system can be saved are:
VIRTUAL-RUNTIME_dev_manager = "mdev"
Note that this will only work with core images that include packagegroup-core-boot.
Note
Recently, there has been some activity with musl (http://www.musl-libc.org/), a new MIT-licensed C library. To enable it, you would add the following to your conf/local.conf file:
TCLIBC = "musl"
And you would need to add the meta-musl layer (https://github.com/kraj/meta-musl) to your conf/bblayers.conf file.
It currently builds core-image-minimal for QEMU targets, but there is still work to be done to use it on real hardware like the Wandboard.
Releasing software
When releasing a product based on the Yocto project, we have to consider that we are building on top of a multitude of different open source projects, each with different licensing requirements.
At the minimum, your embedded product will contain a bootloader (probably U-Boot), the Linux kernel, and a root filesystem with one or more applications. Both U-Boot and the Linux kernel are licensed under the General Public License version 2 (GPLv2). And the root filesystem could contain a variety of programs with different licenses.
All open source licenses allow you to sell a commercial product with a mixture of proprietary and open licenses as long as they are independent and the product complies with all the open source licenses. We will discuss open source and proprietary cohabiting in the Working with open source and proprietary code recipe later on.
It is important to understand all the licensing implications before releasing your product to the public. The Yocto project provides tools to make handling licensing requirements an easier job.
Getting ready
We first need to specify what requirements we need to comply with to distribute a product built with the Yocto project. For the most restrictive open source licenses, this usually means:
How to do it...
We can use the archiver class to provide the deliverables that need to be distributed to comply with the licenses. We can configure it to:
To use the archiver class as specified earlier, we add the following to our conf/local.conf file:
INHERIT += "archiver"
ARCHIVER_MODE[src] = "original"
ARCHIVER_MODE[diff] = "1"
ARCHIVER_MODE[recipe] = "1"
COPY_LIC_MANIFEST = "1"
COPY_LIC_DIRS = "1"
The sources will be provided in the tmp/deploy/sources directory under a license subdirectory hierarchy.
For the wandboard-quad, we find the following directories under tmp/deploy/sources:
And looking for what's distributed for the Linux kernel source, a GPLv2 package, we find under tmp/deploy/sources/arm-poky-linux-gnueabi/linux-wandboard-3.10.17-r0:
So we have the kernel configuration, the source tarball, and the recipes used to build it, which include:
And the license text for the root filesystem packages will also be included in the root filesystem under /usr/share/common-licenses, in a package directory hierarchy.
This configuration will provide deliverables for all build packages, but what we really want to do is provide them only for those whose licenses require us to.
For sure, we don't want to blindly distribute all the contents of the sources directory as is, as it will also contain our proprietary source, which we most likely don't want to distribute.
We can configure the archiver class only to provide the source for GPL and LGPL packages with the following:
COPYLEFT_LICENSE_INCLUDE = "GPL* LGPL*"
COPYLEFT_LICENSE_EXCLUDE = "CLOSED Proprietary"
And also, for an embedded product, we are usually only concerned with the software that ships in the product itself, so we can limit the recipe type to be archived to target images with the following:
COPYLEFT_RECIPE_TYPES = "target"
We should obtain legal advice to decide which packages have licenses that make source distribution a requirement.
Other configuration options exist, such as providing the patched or configured source instead of the separated original source and patches, or source rpms instead of source tarballs. See the archiver class for more details.
There's more…
We can also choose to distribute the whole of our build environment. The best way to do this is usually to publish our BSP and software layers on a public Git repository. Our software layer can then provide bblayers.conf.sample and local.conf.sample, which can be used to set up ready-to-use build directories.
See also
Analyzing your system for compliance
The Yocto build system makes it easy to provide auditing information to our legal advisers. This recipe will explain how.
How to do it...
Under tmp/deploy/licenses, we find a directory list of packages (including their corresponding licenses) and an image folder with a package and license manifest.
For the example image provided before, core-image-small, we have the following:
tmp/deploy/licenses/core-image-small-wandboard-quad-<timestamp>/package.manifest
base-files
base-passwd
busybox
busybox-syslog
busybox-udhcpc
initscripts
initscripts-functions
libc6
run-postinsts
sysvinit
sysvinit-inittab
sysvinit-pidof
update-alternatives-opkg
update-rc.d
And the corresponding tmp/deploy/licenses/core-image-small-wandboard-quad-<timestamp>/license.manifest file excerpt is as follows:
PACKAGE NAME: base-files
PACKAGE VERSION: 3.0.14
RECIPE NAME: base-files
LICENSE: GPLv2
PACKAGE NAME: base-passwd
PACKAGE VERSION: 3.5.29
RECIPE NAME: base-passwd
LICENSE: GPLv2+
These files can be used to analyze all the different packages that form our root filesystem. We can also audit them to make sure we comply with the licenses when releasing our product to the public.
There's more
You can instruct the Yocto build system to specifically avoid certain licenses by using the INCOMPATIBLE_LICENSE configuration variable. The usual way to use it is to avoid GPLv3-type licenses by adding the following to your conf/local.conf file:
INCOMPATIBLE_LICENSE = "GPL-3.0 LGPL-3.0 AGPL-3.0"
This will build core-image-minimal and core-image-base images as long as no extra image features are included.
Working with open source and proprietary code
It is common for an embedded product to be built upon an open source system like the one built by Yocto, and to include proprietary software that adds value and specializes the product. This proprietary part usually is intellectual property and needs to be protected, and it's important to understand how it can coexist with open source.
This recipe will discuss some examples of open source packages commonly found on embedded products and will briefly explain how to use proprietary software with them.
How to do it...
Open source licenses can be broadly divided into two categories based on whether they are:
However, some licenses might "pollute" modifications and derivative work with their own conditions, commonly referred to as viral licenses, while others will not. For example, if you link your application to GPL-licensed code, your application will be bound by the GPL too.
The virulent nature of the GPL has made some people wary of using GPL-licensed software, but it's important to note that proprietary software can run alongside GPL software as long as the license terms are understood and respected.
For example, violating the GPLv2 license would mean losing the right to distribute the GPLv2 code in the future, even if further distribution is GPLv2 compliant. In this case, the only way to be able to distribute the code again would be to ask the copyright holder for permission.
How it works...
Next, we will provide guidance regarding licensing requirements for some open source packages commonly used in embedded products. It does not constitute legal advice, and as stated before, proper legal auditing of your product should be done before public release.
The U-Boot bootloader
U-Boot is licensed under the GPLv2, but any program launched by it does not inherit its license. So you are free to use U-Boot to launch a proprietary operating system, for example. However, your final product must comply with the GPLv2 with regards to U-Boot, so U-Boot source code and modifications must be provided.
The Linux kernel
The Linux kernel is also licensed under the GPLv2. Any application that runs in the Linux kernel user space does not inherit its license, so you can run your proprietary software in Linux freely. However, Linux kernel modules are part of the Linux kernel and as such must comply with the GPLv2. Also, your final product must release the Linux kernel source and modifications, including external modules that run in your product.
Glibc
The GNU C library is licensed under the Lesser General Public License (LGPL), which allows dynamic linking without license inheritance. So your proprietary code can dynamically link with glibc, but of course you still have to comply with the LGPL with regards to glibc. Note, however, that statically linking your application would pollute it with the LGPL.
BusyBox
BusyBox is also licensed under the GPLv2. The license allows for non-related software to run alongside it, so your proprietary software can run alongside BusyBox freely. As before, you have to comply with the GPLv2 with regards to BusyBox and distribute its source and modifications.
The Qt framework
Qt is licensed under three different licenses, which is common for open source projects. You can choose whether you want a commercial license (in which case, your proprietary application is protected), a LGPL license (which, as discussed before, would also protect your proprietary software by allowing the dynamic linking of your application as long as you complied with the LGPL for the Qt framework itself), or the GPLv3 (which would be inherited by your application).
The X Windows system
The X.Org source is licensed under permissive MIT-style licenses. As such, your proprietary software is free to make any use of it as long as its use is stated and copyright notices are preserved.
There's more...
Let's see how to integrate our proprietary-licensed code into the Yocto build system. When preparing the recipe for our application, we can take several approaches to licensing:
LICENSE = "CLOSED"
LICENSE = "Proprietary"
LIC_FILES_CHKSUM = "file://EULA.txt;md5=93b784b1c11b3fffb1638498a8dde3f6"
LICENSE = "GPLv2+ & LGPLv2.1+ & LGPLv2+"
LICENSE_FLAGS = "commercial"
LIC_FILES_CHKSUM = "file://COPYING;md5=a6f89e2100d9b6cdffcea4f398e37343 \ file://gst/synaesthesia/synaescope.h;beginline=1;endline=20 ;md5=99f301df7b80490c6ff8305fcc712838 \ file://tests/check/elements/xingmux.c;beginline=1;endline=2 1;md5=4c771b8af188724855cb99cadd390068 \ file://gst/mpegstream/gstmpegparse.h;beginline=1;endline=18 ;md5=ff65467b0c53cdfa98d0684c1bc240a9"
When the LICENSE_FLAGS variable is set on a recipe, the package will not be built unless the license appears on the LICENSE_FLAGS_WHITELIST variable too, typically defined in your conf/local.conf file. For the earlier example, we would add:
LICENSE_FLAGS_WHITELIST = "commercial"
The LICENSE and LICENSE_FLAGS_WHITELIST variables can match exactly for a very narrow match or broadly, as in the preceding example, which matches all licenses that begin with the word commercial. For narrow matches, the package name must be appended to the license name; for instance, if we only wanted to whitelist the gst-plugins-ugly package from the earlier example but nothing else, we could use the following:
LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"
See also
Chapter 4. Application Development
In this chapter, we will cover the following recipes:
Introduction
Dedicated applications are what define an embedded product, and Yocto offers helpful application development tools as well as the functionality to integrate with popular Integrated Development Environments (IDE) like Eclipse and Qt Creator. It also provides a wide range of utility classes to help in the integration of finished applications into the build system and the target images.
This chapter will introduce the IDEs and show us how they are used to build and debug C and C++ applications on real hardware, and will explore application development, including graphical frameworks and Yocto integration, not only for C and C++ but also Python and Java applications.
Introducing toolchains
A toolchain is a set of tools, binaries, and libraries used to build applications to run on a computer platform. In Yocto, the toolchains are based on GNU components.
Getting ready
A GNU toolchain contains the following components:
These components are enough to build bare metal applications, bootloaders like U-Boot, or operating systems like the Linux kernel, as they don't need a C library and they implement the C library functions they need. However, for Linux user space applications, a POSIX-compliant C library is needed.
The GNU C library, glibc, is the default C library used in the Yocto project. Yocto is introducing support for musl, a smaller C library, but as we have mentioned before, there is still work to be done until it is ready to be used with the hardware platforms supported by the FSL community layer.
But on embedded systems, it is not just a toolchain we need, but a cross-compilation toolchain. This is because we build in a host computer but run the resulting binaries on the target, which is usually a different architecture. In reality, there are several types of toolchains, based on the architecture of the machine building the toolchain (build machine), running the toolchain (host machine), and running the binaries built by the toolchain (target machine). The most common combinations are:
The process of building a cross-compilation toolchain is complex and fault prone, so automated tools for toolchain building have emerged, like buildroot and crosstool-NG. The Yocto build system also compiles its own toolchain on every build, and as we will see, you can use this toolchain for application development too.
But the cross-compilation toolchain and C library are not the only things we need in order to build applications; we also need a sysroot; that is, a root filesystem on the host with the libraries and header files that can be found on the target root filesystem.
The combination of the cross-compilation toolchain, the sysroot, and sometimes other development tools such as an IDE is referred to as an SDK, or Software Development Kit.
How to do it...
There are several ways to obtain an SDK with the Yocto project:
If you are using a hardware platform supported by Poky (that is, a virtualized QEMU machine or one of the reference boards), the recommendation is to use ADT, which will install all the required SDK components for you.
The easiest way to obtain a cross-compilation toolchain for a supported platform is to download a precompiled one; for example from the Yocto project downloads site, http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/toolchain/. The Yocto project provides prebuilt toolchains for both 32- and 64-bit i686 host machines, and prebuilt ARM toolchains both for armv5 and armv7 architectures. These contain sysroot that match the core-image-sato target image. However, the prebuilt sysroot is soft floating point, so it can't be used with the target images built by the FSL community layer for i.MX6-based platforms, which are hard floating point. To install the prebuilt armv7 toolchain for an x86_64 host, run the following:
$ wget http://downloads.yoctoproject.org/releases/yocto/yocto- 1.7.1/toolchain/x86_64/poky-glibc-x86_64-core-image-sato- armv7a-vfp-neon-toolchain-1.7.1.sh
$ chmod a+x poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon- toolchain-1.7.1.sh
$./poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon- toolchain-1.7.1.sh
On most embedded Linux projects, your machine will be supported by an external layer, and you will have a customized root filesystem that your sysroot will need to match. So building your own toolchain installer is recommended when you have a customized root filesystem. For example, the ideal toolchain to work with the Wandboard would be Cortex-A9-specific and targeted to produce hard floating point binaries.
Finally, if you already have a Yocto build system installation on your host, you can also use it for application development. Usually, application developers do not need the complexity of a Yocto build system installation, so a toolchain installer for the target system will be enough.
Preparing and using an SDK
The Yocto build system can be used to generate a cross-compilation toolchain and matching sysroot for a target system.
Getting ready
We will use the previously used wandboard-quad build directory and source the setup-environment script as follows:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
How to do it...
There are several ways to build an SDK with the Yocto build system:
This method will build a toolchain that matches your target platform, and a basic sysroot that will not match your target root filesystem. However, this toolchain can be used to build bare metal software like the U-Boot bootloader or the Linux kernel, which do not need a sysroot. The Yocto project offers downloadable sysroot for the supported hardware platforms. You can also build this toolchain yourself with:
$ bitbake meta-toolchain
Once built, it can be installed with:
$ cd tmp/deploy/sdk
$./poky-glibc-x86_64-meta-toolchain-cortexa9hf-vfp-neon- toolchain-1.7.1.sh
This is the recommended way to build a toolchain matching your target platform with a sysroot matching your target root filesystem. You build it with:
$ bitbake core-image-sato -c populate_sdk
You should replace core-image-sato for the target root filesystem image you want the sysroot to match. The resulting toolchain can be installed with:
$ cd tmp/deploy/sdk
$./poky-glibc-x86_64-core-image-sato-cortexa9hf-vfp-neon- toolchain-1.7.1.sh
Also, if you want your toolchain to be able to build static applications, you need to add static libraries to it. You can do this by adding specific static libraries to your target image, which could also be used for native compilation. For example, to add the static glibc libraries, add the following to your conf/local.conf file:
IMAGE_INSTALL_append = " glibc-staticdev"
And then build the toolchain to match your root filesystem as explained previously.
You usually won't want the static libraries added to your image, but do you want to be able to cross-compile static applications, so you can also add all the static libraries to the toolchain by adding:
SDKIMAGE_FEATURES_append = " staticdev-pkgs"
This method will extend meta-toolchain to build Qt applications. We will see how to build Qt applications later on. To build this toolchain, execute the following command:
$ bitbake meta-toolchain-qt
Once built, it can be installed with:
$ cd tmp/deploy/sdk
$./poky-glibc-x86_64-meta-toolchain-qt-cortexa9hf-vfp-neon- toolchain-qt-1.7.1.sh
The resulting toolchain installers will be located under tmp/deploy/sdk for all the cases mentioned here.
This method does not generate a toolchain installer, but it prepares the current build project to use its own toolchain. It will generate an environment-setup script inside the tmp directory.
$ bitbake meta-ide-support
To use the bundled toolchain, you can now source that script as follows:
$ source tmp/environment-setup-cortexa9hf-vfp-neon-poky-linux- gnueabi
Using the Application Development Toolkit
The ADT is an SDK installation script that installs the following for Poky-supported hardware platforms:
Getting ready
To install the ADT, you can choose either of the following options:
$ wget http://downloads.yoctoproject.org/releases/yocto/yocto- 1.7.1/adt-installer/adt_installer.tar.bz2
The ADT installer is an automated script to install precompiled Yocto SDK components, so it will be the same whether you download the prebuilt version or you build one yourself.
You can then configure it before running it to customize the installation.
Note that it only makes sense to use the ADT for the Poky-supported platforms. For instance, it is not that useful for external hardware like wandboard-quad unless you provide your own components.
How to do it...
To build the ADT from your Yocto build directory, open a new shell and execute the following:
$ cd /opt/yocto/poky
$ source oe-init-build-env qemuarm
$ bitbake adt-installer
The ADT tarball will be located in the tmp/deploy/sdk directory.
How it works...
To install it, follow these steps:
$ cd /opt/yocto
$ cp /opt/yocto/poky/qemuarm/tmp/deploy/sdk/adt_installer.tar.bz2 /opt/yocto
$ tar xvf adt_installer.tar.bz2
$ cd /opt/yocto/adt-installer
And then for the specific target architectures (only shown for ARM):
$./adt_installer
It will ask for an installation location (by default /opt/poky/1.7.1) and whether you want to run it in interactive or silent mode.
Using the Eclipse IDE
Eclipse is an open source IDE that is written mostly in Java and released under the Eclipse Public License (EPL). It can be extended using plugins, and the Yocto project releases a Yocto plugin that allows us to use Eclipse for application development.
Getting ready
Yocto 1.7 provides Eclipse Yocto plugins for two different Eclipse versions, Juno and Kepler. They can be downloaded at http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/eclipse-plugin/. We will use Kepler 4.3, as it is the newest. We will start with the Eclipse Kepler standard edition and install all the required plugins we need.
It is recommended to run Eclipse under Oracle Java 1.7, although other Java providers are supported. You can install Oracle Java 1.7 from Oracle's web site, https://www.java.com/en/, or using a Ubuntu Java Installer PPA, https://launchpad.net/~webupd8team/+archive/ubuntu/java. The latter will integrate Java with your package management system, so it's preferred. To install it, follow these steps:
$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java7-set-default
To download and install Eclipse Kepler standard edition for an x86_64 host, follow these steps:
$ wget http://download.eclipse.org/technology/epp/downloads/release/kepler/SR2/eclipse-standard-kepler-SR2-linux-gtk-x86_64.tar.gz
$ tar xvf eclipse-standard-kepler-SR2-linux-gtk-x86_64.tar.gz
$ nohup eclipse/eclipse &
LTTng - Linux Tracing Toolkit
C/C++ Remote Launch
Remote System Explorer End-user Runtime
Remote System Explorer User Actions
Target Management Terminal
TCF Remote System Explorer add-in
TCF Target Explorer
C/C++ Autotools Support
C/C++ Development Tools
How to do it...
To configure Eclipse to use a Yocto toolchain, go to Window | Preferences | Yocto Project ADT.
The ADT configuration offers two cross-compiler options:
It also offers two target options:
An example configuration when using the ADT installer with its default configuration would be to choose the standalone prebuilt toolchain option along with the QEMU emulator as follows:
Toolchain root location: /opt/poky/1.7.1
Sysroot location: ${HOME}/test-yocto/qemuarm
Target architecture: armv5te-poky-linux-gnueabi
QEMU kernel: /tmp/adt-installer/download_image/zImage-qemuarm.bin
And for a build system derived toolchain using the wandboard-quad reference board, this is what you will need:
Toolchain root location: /opt/yocto/fsl-community-bsp/wandboard-quad
Sysroot location: /opt/yocto/fsl-community-bsp/wandboard-quad/tmp/sysroots/wandboard-quad
There's more...
In order to perform debugging on a remote target, it needs to be running the tcf-agent daemon. It is included by default on the SDK images, but you can also include it in any other image by adding the following to your conf/local.conf file:
EXTRA_IMAGE_FEATURES += "eclipse-debug"
See also
Developing GTK+ applications
This recipe will show how to build, run, and debug a graphical GTK+ application using the Eclipse IDE.
Getting ready
EXTRA_IMAGE_FEATURES += "eclipse-debug"
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-sato
$ bitbake -c populate_sdk core-image-sato
$ cd tmp/deploy/sdk
$./poky-glibc-x86_64-core-image-sato-cortexa9hf-vfp-neon- toolchain-1.7.1.sh
Before launching the Eclipse IDE, we can check whether we are able to build and launch a GTK application manually. We will build the following GTK+ hello world application:
The following is a code for gtk_hello_world.c:
#include <gtk/gtk.h>
int main(int argc, char *argv[])
{
GtkWidget *window;
gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_show (window);
gtk_main ();
return 0;
}
To build it, we use the core-image-sato toolchain installed as described previously:
$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky- linux-gnueabi
$ ${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags --libs gtk+-2.0`
This command uses the pkg-config helper tool to read the .pc files that are installed with the GTK libraries in the sysroot to determine which compiler switches (--cflags for include directories and --libs for the libraries to link with) are needed to compile programs that use GTK.
We can manually copy the resulting binary to our Wandboard while booting core-image-sato over NFS and run it from the target's console with:
DISPLAY=:0 helloworld
This will open a GTK+ window over the SATO desktop.
How to do it...
We can now configure the Eclipse ADT plugin using the standalone toolchain as described before, or we could decide to use the build system derived toolchain instead.
Follow the next steps to build and run an example hello world application:
Tip
When choosing a name for your project, avoid using special characters like dashes, as they could cause problems with the build tools.
Tip
If you have problems connecting to the target, verify that it is running tcf-agent by typing in the following on the target's console:
ps w | grep tcf
735 root 11428 S /usr/sbin/tcf-agent -d -L- -l0
If you have login problems, you can use Eclipse's Remote System Explorer (RSE) perspective to clear passwords and debug the connection to the target. Once the connection can be established and you are able to browse the target's filesystem through RSE, you can come back to the run configuration.
There's more...
To debug the application, follow these steps:
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm- poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb
If it isn't, point it to the correct location.
Tip
If you get Text file busy error, remember to close the application we ran on the previous point.
Using the Qt Creator IDE
Qt Creator is a multiplatform IDE part of the Qt Application Development Framework SDK. It is the IDE of choice for Qt application development and is available with multiple licenses, including GPLv3, LGPLv2, and commercial licenses as well.
Getting ready
$ wget http://download.qt.io/official_releases/qtcreator/3.3/3.3.0/qt -creator-opensource-linux-x86_64-3.3.0.run
$ chmod u+x qt-creator-opensource-linux-x86_64-3.3.0.run
$./qt-creator-opensource-linux-x86_64-3.3.0.run
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake meta-toolchain-qt
$ cd tmp/deploy/sdk
$./poky-glibc-x86_64-meta-toolchain-qt-cortexa9hf-vfp-neon- toolchain-qt-1.7.1.sh
How to do it...
Before launching Qt Creator, we need to set up the development environment. To make this happen automatically when we launch Qt Creator, we can patch its initialization script by adding the following line right at the beginning of the bin/qtcreator.sh file:
source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky- linux-gnueabi
#! /bin/sh
Note
Note that the environment initialization script is placed before the hash bang.
Now we can run Qt Creator as follows:
$./bin/qtcreator.sh &
And configure it by going to Tools | Options and using the following steps:
Set the root password in the target by using the passwd command from the target's root console and type it in the password field.
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm- poky-linux-gnueabi/arm-poky-linux-gnueabi-g++
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm- poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/qmake
/opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux- gnueabi/
Tip
In Ubuntu, Qt Creator stores its configuration on the user's home directory under .config/QtProject/.
Developing Qt applications
This recipe will show how to build, run, and debug a graphical Qt application using Qt Creator.
Getting ready
Before launching Qt Creator, we check whether we are able to build and launch a Qt application manually. We will build a Qt hello world application.
Here is the code for qt_hello_world.cpp:
#include <QApplication>
#include <QPushButton>
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QPushButton hello("Hello world!");
hello.show();
return app.exec();
}
To build it, we use the meta-toolchain-qt installed as described previously:
$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky- linux-gnueabi
$ qmake -project
$ qmake
$ make
This uses qmake to create a project file and a Makefile file with all the relevant code files in the folder.
To run it, we first need to build a filesystem with Qt support. We first prepare the environment as follows:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
And configure our project with the qt4-pkgs extra feature by adding the following to conf/local.conf:
EXTRA_IMAGE_FEATURES += "qt4-pkgs"
And for Qt applications, we also need the International Component for Unicode (ICU) library, as the Qt libraries are compiled with support for it.
IMAGE_INSTALL_append = " icu"
And build it with:
$ bitbake core-image-sato
Once finished, we can program the microSD card image and boot the Wandboard. Copy the qt_hello_world binary to the target and run:
DISPLAY=:0 qt_hello_world
You should see the Qt hello world window on the X11 desktop.
How to do it...
Follow these steps to build and run an example hello world application:
SOURCES += \
qt_hello_world.cpp
TARGET = qt_hello_world
target.files = qt_hello_world
target.path = /
INSTALLS += target
Replace qt_hello_world with the name of your project.
Tip
You can try to manually run the toolchain environment-setup script before launching Qt Creator.
IMAGE_INSTALL_append = " openssh-sftp-server"
However, there are other tools we will need, like the gdbserver if we want to debug our application, so it's easier to add the eclipse-debug feature, which will add all of the needed applications to the target image.
EXTRA_IMAGE_FEATURES += "eclipse-debug"
Tip
If the application fails to be deployed with a login error, verify that you have set a root password in the target as explained in the recipe previously, or that you are using SSH key authentication.
You should now see the example Qt hello world application running on your SATO desktop.
There's more...
To debug the application, toggle a breakpoint on the source and click on the Debug button.
Describing workflows for application development
The workflows for application development are similar to the ones we already saw for U-Boot and the Linux kernel back in Chapter 2, The BSP Layer.
How to do it...
We will see how the following development workflows are applied to application development:
How it works...
External development
This is what we have been using on the recipes we saw before when building from the command line using a standalone toolchain, and also when using both the Eclipse and Qt Creator IDEs. This workflow produces binaries that have to be individually copied to the hardware to run and debug. It can be used in conjunction with the other workflows.
Working directory development
When the application is being built by the Yocto build system, we use this workflow to debug sporadic problems. However, it is not the recommended workflow for long developments. Note, though, that it is usually the first step when debugging third-party packages.
We will use the helloworld_1.0.bb custom recipe we saw back in the Adding new packages recipe in Chapter 3, The Software Layer, meta-custom/recipes-example/helloworld/helloworld_1.0.bb, as an example.
DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile() {
${CC} helloworld.c -o helloworld
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
Here, the helloworld.c source file is the following:
#include <stdio.h>
int main(void)
{
return printf("Hello World");
}
The workflow steps are:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake -c cleanall helloworld
This will erase the package's build folder, shared state cache, and downloaded package source.
$ bitbake -c devshell helloworld
This will fetch, unpack, and patch the helloworld sources and spawn a new shell with the environment ready for compilation. The new shell will change to the package's build directory.
$ git init
$ git add helloworld.c
$ git commit -s -m "Original revision"
#include <stdio.h>
int main(void)
{
return printf("Howdy World");
}
$ bitbake -C compile helloworld
Tip
Note the capital C (which invokes the compile task) and also all the tasks that follow it.
$ bitbake -e helloworld | grep ^WORKDIR=
WORKDIR="/opt/yocto/fsl-community-bsp/wandboard- quad/tmp/work/cortexa9hf-vfp-neon-poky-linux- gnueabi/helloworld/1.0-r0"
$ scp ${WORKDIR_PATH}/deploy-rpms/deploy- rpms/cortexa9hf_vfp_neon/helloworld-1.0- r0.cortexa9hf_vfp_neon.rpm root@<target_ip_address>:/
$ rpm -i /helloworld-1.0-r0.cortexa9hf_vfp_neon.rpm
This assumes the target's root filesystem has been built with the package-management feature and the helloworld package is added to the RM_WORK_EXCLUDE variable when using the rm_work class.
$ bitbake -c devshell helloworld
$ git add helloworld.c
$ git commit -s -m "Change greeting message"
$ git format-patch -1 -o /opt/yocto/fsl-community- bsp/sources/meta-custom/recipes- example/helloworld/helloworld-1.0
SRC_URI = "file://helloworld.c \
file://0001-Change-greeting-message.patch"
External source development
This workflow is recommended for development work once the application has been integrated into the Yocto build system. It can be used in conjunction with external development using an IDE, for example.
In the example recipe we saw earlier, the source file was placed on the meta-custom layer along with the metadata.
It is more common to have the recipe fetch directly from a revision control system like Git, so we will change the meta-custom/recipes-example/helloworld/helloworld_1.0.bb file to source from a Git directory as follows:
DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "git://github.com/yoctocookbook/helloworld"
S = "${WORKDIR}/git"
do_compile() {
${CC} helloworld.c -o helloworld
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
We can then clone it into a local directory as follows:
$ cd /opt/yocto/
$ git clone git://github.com/yoctocookbook/helloworld
An alternative to using a remote revision controlled repository it to use a local one. To do so, follow these steps:
$ mkdir -p /opt/yocto/helloworld
$ cd /opt/yocto/helloworld
$ git init
$ git add helloworld.c
$ git commit -s -m "Original revision"
In any case, we have the version-controlled source in a local directory. We will then configure our conf/local.conf file to work from it as follows:
INHERIT += "externalsrc"
EXTERNALSRC_pn-helloworld = "/opt/yocto/helloworld"
EXTERNALSRC_BUILD_pn-helloworld = "/opt/yocto/helloworld"
And build it with:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake helloworld
We can then work directly in the local folder without the risk of accidentally having BitBake erase our code. Once development is complete, the modifications to conf/local.conf are removed and the recipe will fetch the source from its original SRC_URI location.
Working with GNU make
GNU make is a make implementation for Linux systems. It is used by a wide variety of open source projects, including the Linux kernel. The build is managed by a Makefile, which tells make how to build the source code.
How to do it...
Yocto recipes inherit base.bbclass and hence their default behavior is to look for a Makefile, makefile, or GNU Makefile and use GNU make to build the package.
If your package already contains a Makefile, then all you need to worry about are the arguments that need to be passed to make. Make arguments can be passed using the EXTRA_OEMAKE variable, and a do_install override that calls the oe_runmake install needs to be provided, otherwise an empty install is run.
For example, the logrotate recipe is based on a Makefile and looks as follows:
SUMMARY = "Rotates, compresses, removes and mails system log files"
SECTION = "console/utils"
HOMEPAGE = "https://fedorahosted.org/logrotate/"
LICENSE = "GPLv2"
DEPENDS="coreutils popt"
LIC_FILES_CHKSUM = "file://COPYING;md5=18810669f13b87348459e611d31ab760"
SRC_URI = "https://fedorahosted.org/releases/l/o/logrotate/logrotate- ${PV}.tar.gz \"
SRC_URI[md5sum] = "99e08503ef24c3e2e3ff74cc5f3be213"
SRC_URI[sha256sum] = "f6ba691f40e30e640efa2752c1f9499a3f9738257660994de70a45fe00d12b64"
EXTRA_OEMAKE = ""
do_install(){
oe_runmake install DESTDIR=${D} PREFIX=${D} MANDIR=${mandir}
mkdir -p ${D}${sysconfdir}/logrotate.d
mkdir -p ${D}${sysconfdir}/cron.daily
mkdir -p ${D}${localstatedir}/lib
install -p -m 644 examples/logrotate-default ${D}${sysconfdir}/logrotate.conf
install -p -m 755 examples/logrotate.cron ${D}${sysconfdir}/cron.daily/logrotate
touch ${D}${localstatedir}/lib/logrotate.status
}
See also
Working with the GNU build system
A Makefile is a good solution when you are always going to build and run your software on the same system, and things like glibc and gcc versions and the available library versions are known. However, most software need to be built and run in a variety of systems.
Getting ready
The GNU build system, or autotools, is a set of tools whose aim is to create a Makefile for your software in a variety of systems. It's made up of three main tools:
How to do it...
The Yocto build system contains classes with the required knowledge to build autotools packages. All your recipe needs to do is to inherit the autotools class and configure the arguments to be passed to the configure script in the EXTRA_OECONF variable. Usually, the autotools system understands how to install the software, so you do not need a do_install override.
There is a wide variety of open source projects that use autotools as the build system.
An example, meta-custom/recipes-example/hello/hello_2.9.bb, that does not need any extra configure options, follows:
DESCRIPTION = "GNU helloworld autotools recipe"
SECTION = "examples"
LICENSE = "GPLv3"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common- licenses/GPL-3.0;md5=c79ff39f19dfec6d293b95dea7b07891"
SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"
SRC_URI[sha256sum] = "ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"
inherit autotools gettext
See also
Working with the CMake build system
The GNU make system is a great tool when you build exclusively for Linux systems. However, some packages are multiplatform and need a way to manage Makefile files on different operating systems. CMake is a cross-platform build system that can work not only with GNU make, but also Microsoft Visual Studio and Apple's Xcode.
Getting ready
The CMake tool parses the CMakeLists.txt files in every directory to control the build process. An example CMakeLists.txt file to compile the hello world example follows:
cmake_minimum_required(VERSION 2.8.10)
project(helloworld)
add_executable(helloworld helloworld.c)
install(TARGETS helloworld RUNTIME DESTINATION bin)
How to do it...
The Yocto build system also contains classes with the required knowledge to build CMake packages. All your recipe needs to do is to inherit the cmake class and configure the arguments to be passed to the configure script in the EXTRA_OECMAKE variable. Usually, the CMake system understands how to install the software, so you do not need a do_install override.
A recipe to build the helloworld.C example application, meta-custom/recipes-example/helloworld-cmake/helloworld-cmake_1.0.bb, follows:
DESCRIPTION = "Simple helloworld cmake application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://CMakeLists.txt \
file://helloworld.c"
S = "${WORKDIR}"
inherit cmake
EXTRA_OECMAKE = ""
See also
Working with the SCons builder
SCons is also a multiplatform build system written in Python, with its configuration files also written in the same language. It also includes support for Microsoft Visual Studio among other features.
Getting ready
SCons parses the SConstruct files, and by default it does not propagate the environment into the build system. This is to avoid build issues caused by environment differences. This is a complication for Yocto, as it configures the environment with the cross-compilation toolchain settings.
SCons does not define a standard way to support cross-compilation, so every project will implement it differently. For a simple example as the hello world program, we can just initialize the CC and PATH variables from the external environment as follows:
import os
env = Environment(CC = os.environ['CC'],
ENV = {'PATH': os.environ['PATH']})
env.Program("helloworld", "helloworld.c")
How to do it...
The Yocto build system also contains classes with the required knowledge to build SCons packages. All your recipe needs to do is to inherit the SCons class and configure the arguments to be passed to the configure script in the EXTRA_OESCONS variable. Although some packages using SCons might deal with installation through an install alias as required by the SCons class, your recipe will mostly need to provide a do_install task override.
An example recipe to build the helloworld.c example application, meta-custom/recipes-example/helloworld-scons/helloworld-scons_1.0.bb, follows:
DESCRIPTION = "Simple helloworld scons application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://SConstruct \
file://helloworld.c"
S = "${WORKDIR}"
inherit scons
EXTRA_OESCONS = ""
do_install() {
install -d ${D}/${bindir}
install -m 0755 helloworld ${D}${bindir}
}
See also
Developing with libraries
Most applications make use of shared libraries, which saves system memory and disk space, as they are shared between different applications. Modularizing code into libraries also allows for easier versioning and code management.
This recipe will explain how to work with both static and shared libraries in Linux and Yocto.
Getting ready
By convention, library files start with the lib prefix.
There are basically two library types:
Libraries are placed in the following standard root filesystem locations:
Dynamic libraries follow certain naming conventions on running systems so that multiple versions can co-exist, so a library can be referenced by different names. Some of them are explained as follows:
In GNU glibc, starting an ELF binary calls a program loader, /lib/ld-linux-X. Here, X is the version number, which finds all the needed shared libraries. This process uses a couple of interesting files:
The ldconfig tool reads the ld.so.conf file and creates a cache file (/etc/ld.so.cache) to increase access speed.
The following environment variables can also be helpful:
Building a static library
We will build a static library, libhelloworld, from two source files, hello.c and world.c, and use it to build a hello world application. The source files for the library are presented here.
The following is the code for the hello.c file:
char * hello (void)
{
return "Hello";
}
This is the code for world.c file:
char * world (void)
{
return "World";
}
To build the library, follow these steps:
$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp- neon-poky-linux-gnueabi
${CC} -c hello.c world.c
${AR} -cvq libhelloworld.a hello.o world.o
${AR} -t libhelloworld.a
The application source code is presented next.
#include <stdio.h>
int main (void)
{
return printf("%s %s\n",hello(),world());
}
${CC} -o helloworld helloworld.c libhelloworld.a
$ readelf -d helloworld
Dynamic section at offset 0x534 contains 24 entries:
Tag Type Name/Value
0x00000001 (NEEDED) Shared library: [libc.so.6]
Building a shared dynamic library
To build a dynamic library from the same sources, we would run:
${CC} -fPIC -g -c hello.c world.c
${CC} -shared -Wl,-soname,libhelloworld.so.1 -o libhelloworld.so.1.0 hello.o world.o
We can then use it to build our helloworld C application, as follows:
${CC} helloworld.c libhelloworld.so.1.0 -o helloworld
And again, we can check the dynamic libraries using readelf, as follows:
$ readelf -d helloworld
Dynamic section at offset 0x6ec contains 25 entries:
Tag Type Name/Value
0x00000001 (NEEDED) Shared library: [libhelloworld.so.1]
0x00000001 (NEEDED) Shared library: [libc.so.6]
How to do it...
An example recipe for the static library example we just saw follows, meta-custom/recipes-example/libhelloworld-static/libhelloworldstatic_1.0.bb:
DESCRIPTION = "Simple helloworld example static library"
SECTION = "libs"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://hello.c \
file://world.c \
file://helloworld.pc"
S = "${WORKDIR}"
do_compile() {
${CC} -c hello.c world.c
${AR} -cvq libhelloworld.a hello.o world.o
}
do_install() {
install -d ${D}${libdir}
install -m 0755 libhelloworld.a ${D}${libdir}
}
By default, the configuration in meta/conf/bitbake.conf places all static libraries in a -staticdev package. It is also placed in the sysroot so that it can be used.
For a dynamic library, we would use the following recipe, meta-custom/recipes-example/libhelloworld-dyn/libhelloworlddyn_1.0.bb:
meta-custom/recipes-example/libhelloworld-dyn/libhelloworlddyn_1.0.bb
DESCRIPTION = "Simple helloworld example dynamic library"
SECTION = "libs"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://hello.c \
file://world.c \
file://helloworld.pc"
S = "${WORKDIR}"
do_compile() {
${CC} -fPIC -g -c hello.c world.c
${CC} -shared -Wl,-soname,libhelloworld.so.1 -o libhelloworld.so.1.0 hello.o world.o
}
do_install() {
install -d ${D}${libdir}
install -m 0755 libhelloworld.so.1.0 ${D}${libdir}
ln -s libhelloworld.so.1.0 ${D}/${libdir}/libhelloworld.so.1
ln -s libhelloworld.so.1 ${D}/${libdir}/libhelloworld.so
}
Usually we would list the library dependencies (if any) in the RDEPENDS variable, but this is not always needed as the build system performs some automatic dependency checking by inspecting both the library file and the pkg-config file and adding the dependencies it finds to RDEPENDS automatically.
Multiple versions of the same library can co-exist on the running system. For that, you need to provide different recipes with the same package name but different package revision. For example, we would have libhelloworld-1.0.bb and libhelloworld-1.1.bb.
And to build an application using the static library, we would create a recipe in meta-custom/recipes-example/helloworld-static/helloworldstatic_1.0.bb, as follows:
DESCRIPTION = "Simple helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
DEPENDS = "libhelloworld-static"
SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile() {
${CC} -o helloworld helloworld.c ${STAGING_LIBDIR}/libhelloworld.a
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
To build using the dynamic library, we would just need to change the recipe in meta-custom/recipes-example/helloworld-shared/helloworldshared_1.0.bb to meta-custom/recipes-example/helloworld-shared/helloworldshared_1.0.bb:
meta-custom/recipes-example/helloworld-shared/helloworldshared_1.0.bb
DESCRIPTION = "Simple helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
DEPENDS = "libhelloworld-dyn"
SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile() {
${CC} -o helloworld helloworld.c -lhelloworld
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
How it works...
Libraries should provide the information required to use them, such as include headers and library dependencies. The Yocto Project provides two ways for libraries to provide build settings:
A pkg-config build settings file has the .pc suffix, is distributed with the library, and is installed in a common location known to the pkg-config tool.
The helloworld.pc file for the dynamic library looks as follows:
prefix=/usr/local
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib
Name: helloworld
Description: The helloworld library
Version: 1.0.0
Cflags: -I${includedir}/helloworld
Libs: -L${libdir} -lhelloworld
However, for the static library, we would change the last line to:
Libs: -L${libdir} libhelloworld.a
A package wanting to use this .pc file would inherit the pkgconfig class.
There's more...
There's a provision for packages that build both a library and an executable but do not want both of them installed together. By inheriting the lib_package class, the package will create a separate -bin package with the executables.
See also
Working with the Linux framebuffer
The Linux kernel provides an abstraction for the graphical hardware in the form of framebuffer devices. These allow applications to access the graphics hardware through a well-defined API. The framebuffer is also used to provide a graphical console to the Linux kernel, so that it can, for example, display colors and a logo.
In this recipe, we will explore how applications can use the Linux framebuffer to display graphics and video.
Getting ready
Some applications, especially in embedded devices, are able to access the framebuffer by mapping the memory and accessing it directly. For example, the gstreamer framework is able to work directly over the framebuffer, as is the Qt graphical framework.
Qt is a cross-platform application framework written in C++ and developed both by Digia, under the Qt company name, and the open source Qt project community.
For Qt applications, Poky provides a qt4e-demo-image and the FSL community BSP provides a qte-in-use-image, both of which include support for Qt4 Extended over the framebuffer. The provided framework also includes support for hardware acceleration – not only video but also 2D and 3D graphical acceleration provided through the OpenGL and OpenVG APIs.
How to do it...
To compile the Qt hello world application we saw in the Developing Qt applications recipe earlier, we could use the following meta-custom/recipes-qt/qt-helloworld/qt-helloworld_1.0.bb Yocto recipe:
DESCRIPTION = "Simple QT helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
RDEPENDS_${PN} += "icu"
SRC_URI = "file://qt_hello_world.cpp \
file://qt_hello_world.pro"
S = "${WORKDIR}"
inherit qt4e
do_install() {
install -d ${D}${bindir}
install -m 0755 qt_hello_world ${D}${bindir}
}
Here the meta-custom/recipes-qt/qt-helloworld/qt-helloworld-1.0/qt_hello_world.cpp source file is as follows:
#include <QApplication>
#include <QPushButton>
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QPushButton hello("Hello world!");
hello.show();
return app.exec();
}
And the meta-custom/recipes-qt/qt-helloworld/qt-helloworld-1.0/qt_hello_world.pro project file is as follows:
SOURCES += \
qt_hello_world.cpp
Then we add it to the image by using the following in your project's conf/local.conf file:
IMAGE_INSTALL_append = " qt-helloworld"
And we build the image with:
$ bitbake qt4e-demo-image
We can then program the SD card image, boot it, log in to the Wandboard, and launch the application by running:
qt_hello_world -qws
The -qws command-line option is needed to run the server application.
How it works...
The framebuffer devices are located under /dev. The default framebuffer device is /dev/fb0, and if the graphics hardware provides more than one, they will be sequentially numbered.
By default, the Wandboard boots with two framebuffer devices, fb0 and fb1. The first is the default video display, and the second one is an overlay plane that can be used to combine content on the display.
However, the i.MX6 SoC supports up to four displays, so it could have up to four framebuffer devices in addition to two overlay framebuffers.
You can change the default framebuffer used by applications with the FRAMEBUFFER environment variable. For example, if your hardware supports several framebuffers, you could use the second one by running:
export FRAMEBUFFER=/dev/fb1
The framebuffer devices are memory mapped and you can perform file operations on them. For example, you can clear the contents of the screen by running:
cat /dev/zero > /dev/fb0
Or copy it with:
cat /dev/fb0 > fb.raw
You may even restore the contents with:
cat fb.raw > /dev/fb0
User space programs can also interrogate the framebuffers or modify their configuration programmatically using ioctls, or from the console by using the fbset application, which is included in Yocto's core images as a BusyBox applet.
fbset -fb /dev/fb0
mode "1920x1080-60"
D: 148.500 MHz, H: 67.500 kHz, V: 60.000 Hz
geometry 1920 1080 1920 1080 24
timings 6734 148 88 36 4 44 5
accel false
rgba 8/16,8/8,8/0,0/0
endmode
You can configure the framebuffer HDMI device with a specific resolution, bits per pixel, and refresh rate by passing the video command-line option from the U-Boot bootloader to the Linux kernel. The specific format depends on the device framebuffer driver, and for the Wandboard it is as follows:
video=mxcfbn:dev=hdmi,<xres>x<yres>M[@rate]
Where:
For example, for the fb0 framebuffer, you could use:
video=mxcfb0:dev=hdmi,1920x1080M@60
Tip
Note that after some time of inactivity, the virtual console will blank out. To unblank the display, use:
echo 0 > /sys/class/graphics/fb0/blank
There's more...
The FSL community BSP layer also provides a fsl-image-multimedia target image that includes the gstreamer framework, including plugins that make use of the hardware acceleration features within the i.MX6 SoC. A fsl-image-multimedia-full image is also provided, which extends the supported gstreamer plugins.
To build the fsl-image-multimedia image with framebuffer support, you need to remove the graphical distribution features by adding the following to your conf/local.conf file:
DISTRO_FEATURES_remove = "x11 directfb wayland"
And build the image with:
$ bitbake fsl-image-multimedia
The resulting fsl-image-multimedia-wandboard-quad.sdcard image at tmp/deploy/images can be programmed into a microSD card and booted.
The default Wandboard device tree defines an mxcfb1 node as follows:
mxcfb1: fb@0 {
compatible = "fsl,mxc_sdc_fb";
disp_dev = "hdmi";
interface_pix_fmt = "RGB24";
mode_str ="1920x1080M@60";
default_bpp = <24>;
int_clk = <0>;
late_init = <0>;
};
So, connecting a 1920x1080 HDMI monitor should show a virtual terminal with the Poky login prompt.
We can then use the gstreamer command-line tool, gst-launch, to construct gstreamer pipelines. For example, to view a hardware-accelerated video over the framebuffer, you can download the Big Bunny teaser full HD video file and play it over the framebuffer using the gstreamer framework's gst-launch command-line tool as follows:
cd /home/root
wget http://video.blendertestbuilds.de/download.blender.org/peach/trailer_ 1080p.mov
gst-launch playbin2 uri=file:///home/root/trailer_1080p.mov
The video will use Freescale's h.264 video decoder plugin, vpudec, which makes use of the hardware video processing unit inside the i.MX6 SoC to decode the h.264 video.
You can see a list of the available i.MX6-specific plugins by running:
gst-inspect | grep imx
h264.imx: mfw_h264decoder: h264 video decoder
audiopeq.imx: mfw_audio_pp: audio post equalizer
aiur.imx: webm: webm
aiur.imx: aiurdemux: aiur universal demuxer
mpeg2dec.imx: mfw_mpeg2decoder: mpeg2 video decoder
tvsrc.imx: tvsrc: v4l2 based tv src
ipucsc.imx: mfw_ipucsc: IPU-based video converter
mpeg4dec.imx: mfw_mpeg4aspdecoder: mpeg4 video decoder
vpu.imx: vpudec: VPU-based video decoder
vpu.imx: vpuenc: VPU-based video encoder
mp3enc.imx: mfw_mp3encoder: mp3 audio encoder
beep.imx: ac3: ac3
beep.imx: 3ca: ac3
beep.imx: beepdec: beep audio decoder
beep.imx: beepdec.vorbis: Vorbis decoder
beep.imx: beepdec.mp3: MP3 decoder
beep.imx: beepdec.aac: AAC LC decoder
isink.imx: mfw_isink: IPU-based video sink
v4lsink.imx: mfw_v4lsink: v4l2 video sink
v4lsrc.imx: mfw_v4lsrc: v4l2 based camera src
amrdec.imx: mfw_amrdecoder: amr audio decoder
See also
Using the X Windows system
The X Windows system provides the framework for a GUI environment – things like drawing and moving windows on the display and interacting with input devices like the mouse, the keyboard, and touchscreens. The protocol version has been X11 for over two decades, so it also known as X11.
Getting ready
The reference implementation for the X Windows system is the X.Org server, which is released under permissive licenses such as MIT. It uses a client/server model, with the server communicating with several client programs, serving user input, and accepting graphical output. The X11 protocol is network transparent so that the clients and the server may run on different machines, with different architectures and operating systems. However, mostly, they both run on the same machine and communicate using local sockets.
User interface specifications, such as buttons or menu styles, are not defined in X11, which leaves it to other window manager applications that are usually part of desktop environments, such as Gnome or KDE.
X11 has input and video drivers to handle the hardware. For example, it has a framebuffer driver, fbdev, that can output to a non-accelerated Linux framebuffer, and evdev, a generic Linux input device driver with support for mice, keyboards, tablets, and touchscreens.
The design of the X11 Windows systems makes it heavy for embedded devices, and although a powerful device like the quad-core i.MX6 has no trouble using it, many embedded devices choose other graphical alternatives. However, there are many graphical applications, mostly from the desktop environment, that run over the X11 Windows system.
The FSL community BSP layer provides a hardware-accelerated X video driver for the i.MX6 SoC, xf86-video-imxfb-vivante, which is included in the X11-based core-image-sato target image and other graphical images.
The X server is configured by an /etc/X11/xorg.conf file that configures the accelerated device as follows:
Section "Device"
Identifier "i.MX Accelerated Framebuffer Device"
Driver "vivante"
Option "fbdev" "/dev/fb0"
Option "vivante_fbdev" "/dev/fb0"
Option "HWcursor" "false"
EndSection
The graphical acceleration is provided by the Vivante GPUs included in the i.MX6 SoC.
Low-level X11 development is not recommended, and toolkits such as GTK+ and Qt are preferred. We will see how to integrate both types of graphical applications into our Yocto target image.
How to do it...
SATO is the default visual style for the Poky distribution based on Gnome Mobile and Embedded (GMAE). It is a desktop environment based on GTK+ that uses the matchbox-window-manager. It has the peculiarity of showing one single fullscreen window at a time.
To build the GTK hello world application, meta-custom/recipes-graphics/gtk-helloworld/gtk-helloworld-1.0/gtk_hello_world.c, that we introduced earlier, as follows:
#include <gtk/gtk.h>
int main(int argc, char *argv[])
{
GtkWidget *window;
gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_show (window);
gtk_main ();
return 0;
}
We can use the following meta-custom/recipes-graphics/gtk-helloworld/gtk-helloworld_1.0.bb recipe:
DESCRIPTION = "Simple GTK helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://gtk_hello_world.c"
S = "${WORKDIR}"
DEPENDS = "gtk+"
inherit pkgconfig
do_compile() {
${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags -- libs gtk+-2.0`
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
We can then add the package to the core-image-sato image by using:
IMAGE_INSTALL_append = " gtk-helloworld"
And we can build it, program it, and run the application from the serial terminal with:
export DISPLAY=:0
helloworld
There's more...
Accelerated graphical output is also supported on the Qt framework, either directly on the framebuffer (like in the qt4e-demo-image target we saw before) or using the X11 server available in core-image-sato.
To build the Qt hello world source we introduced in the previous recipe but over X11, we can use the meta-custom/recipes-qt/qtx11-helloworld/qtx11-helloworld_1.0.bb Yocto recipe shown as follows::
DESCRIPTION = "Simple QT over X11 helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
RDEPENDS_${PN} += "icu"
SRC_URI = "file://qt_hello_world.cpp \
file://qt_hello_world.pro"
S = "${WORKDIR}"
inherit qt4x11
do_install() {
install -d ${D}${bindir}
install -m 0755 qt_hello_world ${D}${bindir}
}
We then need to add the Qt4 framework to the target image as well as the application.
EXTRA_IMAGE_FEATURES += "qt4-pkgs"
IMAGE_INSTALL_append = " qtx11-helloworld"
We can then build core-image-sato using the following command:
$ bitbake core-image-sato
Program and boot our target. Then run the application with:
export DISPLAY=:0
qt_hello_world
See also
Using Wayland
Wayland is a display server protocol that is intended to replace the X Window system, and it is licensed under the MIT license.
This recipe will provide an overview of Wayland, including some key differences with the X Window system, and will show how to make use of it in Yocto.
Getting ready
The Wayland protocol follows a client/server model in which clients are the graphical applications requesting the display of pixel buffers on the screen, and the server, or compositor, is the service provider that controls the display of these buffers.
The Wayland compositor can be a Linux display server, an X application, or a special Wayland client. Weston is the reference Wayland compositor in the Wayland project. It is written in C and works with the Linux kernel APIs. It relies on evdev for the handling of input events.
Wayland uses Direct Rendering Manager (DRM) in the Linux kernel and does not need something like an X server. The client renders the window contents to a buffer shared with the compositor by itself, using a rendering library, or an engine like Qt or GTK+.
Wayland lacks the network transparency features of X, but it is likely that similar functionality will be added in the future.
It also has better security features than X and is designed to provide confidentiality and integrity. Wayland does not allow applications to look at the input of other programs, capture other input events, or generate fake input events. It also makes a better job out of protecting the Window outputs. However, this also means that it currently offers no way to provide some of the features we are used to in desktop X systems like screen capturing, or features common in accessibility programs.
Being lighter than X.Org and more secure, Wayland is better suited to use with embedded systems. If needed, X.Org can run as a client of Wayland for backwards compatibility.
However, Wayland is not as established as X11, and the Wayland-based images in Poky do not receive as much community attention as the X11-based ones.
How to do it...
Poky offers a core-image-weston image that includes the Weston compositor.
Modifying our GTK hello world example from the Using the X Windows system recipe to use GTK3 and run it with Weston is straightforward.
DESCRIPTION = "Simple GTK3 helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://gtk_hello_world.c"
S = "${WORKDIR}"
DEPENDS = "gtk+3"
inherit pkgconfig
do_compile() {
${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags -- libs gtk+-3.0`
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
To build it, configure your conf/local.conf file by removing the x11 distribution feature as follows:
DISTRO_FEATURES_remove = "x11"
Note
You will need to build from scratch by removing both the tmp and sstate-cache directories when changing the DISTRO_FEATURES variable.
Add the application to the image with:
IMAGE_INSTALL_append = " gtk3-helloworld"
And build the image with:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-weston
Once the build finishes, you will find the microSD card image ready to be programmed under tmp/deploy/images/wandboard-quad.
You can then launch the application by running:
export XDG_RUNTIME_DIR=/var/run/user/root
helloworld
There's more...
The FSL community BSP release supports hardware-accelerated graphics in Wayland using the Vivante GPU included in the i.MX6 SoC.
This means that applications like gstreamer will be able to offer hardware-accelerated output when running with the Weston compositor.
Wayland support can also be found in graphical toolkits like Clutter and GTK3+.
See also
Adding Python applications
In Yocto 1.7, Poky has support for building both Python 2 and Python 3 applications, and includes a small set of Python development tools in the meta/recipes-devtools/python directory.
A wider variety of Python applications are available in the meta-python layer included as part of meta-openembedded, which you can add to your conf/bblayers.conf file if you want to.
Getting ready
The standard tool for packaging Python modules is distutils, which is included for both Python 2 and Python 3. Poky includes the distutils class (distutils3 in Python 3), which is used to build Python packages that use distutils. An example recipe in meta-python that uses the distutils class is meta-python/recipes-devtools/python/python-pyusb_1.0.0a2.bb.
SUMMARY = "PyUSB provides USB access on the Python language"
HOMEPAGE = "http://pyusb.sourceforge.net/"
SECTION = "devel/python"
LICENSE = "BSD"
LIC_FILES_CHKSUM = "file://LICENSE;md5=a53a9c39efcfb812e2464af14afab013"
DEPENDS = "libusb1"
PR = "r1"
SRC_URI = "\
${SOURCEFORGE_MIRROR}/pyusb/${SRCNAME}-${PV}.tar.gz \
"
SRC_URI[md5sum] = "9136b3dc019272c62a5b6d4eb624f89f"
SRC_URI[sha256sum] = "dacbf7d568c0bb09a974d56da66d165351f1ba3c4d5169ab5b734266623e1736"
SRCNAME = "pyusb"
S = "${WORKDIR}/${SRCNAME}-${PV}"
inherit distutils
However, distutils does not install package dependencies, allow package uninstallation, or allow us to install several versions of the same package, so it is only recommended for simple requirements. Hence, setuptools was developed to extend on distutils. It is not included in the standard Python libraries, but it is available in Poky. There is also a setuptools class in Poky (setuptools3 for Python 3) that is used to build Python packages distributed with setuptools.
How to do it...
To build a Python hello world example application with setuptools, we would use a Yocto meta-custom/recipes-python/python-helloworld/pythonhelloworld_1.0.bb recipe as follows:
DESCRIPTION = "Simple Python setuptools hello world application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://setup.py \
file://python-helloworld.py \
file://helloworld/__init__.py \
file://helloworld/main.py"
S = "${WORKDIR}"
inherit setuptools
do_install_append () {
install -d ${D}${bindir}
install -m 0755 python-helloworld.py ${D}${bindir}
}
To create an example hello world package, we create the directory structure shown in the following screenshot:
Here is the code for the same directory structure:
$ mkdir -p meta-custom/recipes-python/python-helloworld/python- helloworld-1.0/helloworld/
$ touch meta-custom/recipes-python/python-helloworld/python- helloworld-1.0/helloworld/__init__.py
And create the following meta-custom/recipes-python/python-helloworld/python-helloworld-1.0/setup.py Python setup file:
import sys
from setuptools import setup
setup(
name = "helloworld",
version = "0.1",
packages=["helloworld"],
author="Alex Gonzalez",
author_email = "alex@example.com",
description = "Hello World packaging example",
license = "MIT",
keywords= "example",
url = "",
)
As well as the meta-custom/recipes-python/python-helloworld/python-helloworld-1.0/helloworld/main.py python file:
import sys
def main(argv=None):
if argv is None:
argv = sys.argv
print "Hello world!"
return 0
And a meta-custom/recipes-python/python-helloworld/python-helloworld-1.0/python-helloworld.py test script that makes use of the module:
#!/usr/bin/env python
import sys
import helloworld.main
if __name__ == '__main__':
sys.exit(helloworld.main.main())
We can then add it to our image with:
IMAGE_INSTALL_append = " python-helloworld"
And build it using:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-minimal
Once programmed and booted, we can test the module by running the example script:
/usr/bin/python-helloworld.py
Hello world!
There's more...
In meta-python, you can also find the python-pip recipe that will add the pip utility to your target image. It can be used to install packages from the Python Package Index (PyPI).
You can add it to your image with:
IMAGE_INSTALL_append = " python-pip python-distribute"
You will need to add the meta-openembedded/meta-python layer to your conf/bblayers.conf file in order to build your image, and also the python-distribute dependency, which is needed by python-pip. Then you can build for the core-image-minimal image with:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-minimal
Once installed, you can use it from the target as follows:
pip search <package_name>
pip install <package_name>
Integrating the Oracle Java Runtime Environment
Oracle provides two specialized Java editions for embedded development:
We will focus on Java SE embedded, which can be downloaded in binary format from the Oracle download site.
Java SE embedded is commercially licensed and requires royalty payments for embedded deployments.
Getting ready
Yocto has a meta-oracle-java layer that is meant to help in the integration of the official Oracle Java Runtime Environment (JRE) Version 7. However, installation without user intervention is not possible, as the Oracle's web page requires login and the acceptance of its license.
In Java SE embedded Version 7, Oracle offered both soft and hard floating point versions of headless and headful JREs for ARMv6/v7, and a headless version JRE for soft floating point user spaces for ARMv5. Java SE embedded version 7 provides two different Java Virtual Machines (JVMs) for ARM Linux:
At the time of writing, the meta-oracle-java layer only has a recipe for the headless hard floating-point version with the client JVM. We will add recipes for the latest Java 7 SE embedded, which is update 75, for both headless and headful hard floating point JREs, which are appropriate to run on an i.MX6-based board like wandboard-quad.
How to do it...
To install the Java SE embedded runtime environment, first we need to clone the meta-oracle-java layer into our sources directory and add it to our conf/bblayers.conf file as follows:
$ cd /opt/yocto/fsl-community-bsp/sources
$ git clone git://git.yoctoproject.org/meta-oracle-java
Then we need to explicitly accept the Oracle Java license by adding the following to our conf/local.conf file:
LICENSE_FLAGS_WHITELIST += "oracle_java"
We want to build the newest update available, so we add the following meta-custom/recipes-devtools/oracle-java/oracle-jse-ejre-arm-vfphflt-client-headless_1.7.0.bb recipe to our meta-custom layer:
SUMMARY = "Oracle Java SE runtime environment binaries"
JDK_JRE = "ejre"
require recipes-devtools/oracle-java/oracle-jse.inc
PV_UPDATE = "75"
BUILD_NUMBER = "13"
LIC_FILES_CHKSUM = "\
file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/COPYRIGHT;md5=0b204 bd2921accd6ef4a02f9c0001823 \
file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/THIRDPARTYLICENSERE ADME.txt;md5=f3a388961d24b8b72d412a079a878cdb \
"
SRC_URI = "http://download.oracle.com/otn/java/ejre/7u${PV_UPDATE}- b${BUILD_NUMBER}/ejre-7u${PV_UPDATE}-fcs-b${BUILD_NUMBER}-linux- arm-vfp-hflt-client_headless-18_dec_2014.tar.gz"
SRC_URI[md5sum] = "759ca6735d77778a573465b1e84b16ec"
SRC_URI[sha256sum] = "ebb6499c62fc12e1471cff7431fec5407ace59477abd0f48347bf6e89c6bff3b"
RPROVIDES_${PN} += "java2-runtime"
Try to build the recipe with the following:
$ bitbake oracle-jse-ejre-arm-vfp-hflt-client-headless
You will see that we get a checksum mismatch. This is caused by the license acceptance step in Oracle's website. To get around this, we will need to manually download the file into the downloads directory as specified in our project's DL_DIR configuration variable.
Then we can add the JRE to our target image:
IMAGE_INSTALL_append = " oracle-jse-ejre-arm-vfp-hflt-client- headless"
And build it with:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-minimal
We can now log in to the target and run it with:
/usr/bin/java -version
java version "1.7.0_75"
Java(TM) SE Embedded Runtime Environment (build 1.7.0_75-b13, headless)
Java HotSpot(TM) Embedded Client VM (build 24.75-b04, mixed mode)
We can also build the headful version using the following meta-custom/recipes-devtools/oracle-java/oracle-jse-ejre-arm-vfphflt-client-headful_1.7.0.bb recipe:
SUMMARY = "Oracle Java SE runtime environment binaries"
JDK_JRE = "ejre"
require recipes-devtools/oracle-java/oracle-jse.inc
PV_UPDATE = "75"
BUILD_NUMBER = "13"
LIC_FILES_CHKSUM = "\
file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/COPYRIGHT;md5=0b204 bd2921accd6ef4a02f9c0001823 \
file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/THIRDPARTYLICENSERE ADME.txt;md5=f3a388961d24b8b72d412a079a878cdb \
"
SRC_URI = "http://download.oracle.com/otn/java/ejre/7u${PV_UPDATE}- b${BUILD_NUMBER}/ejre-7u${PV_UPDATE}-fcs-b${BUILD_NUMBER}-linux- arm-vfp-hflt-client_headful-18_dec_2014.tar.gz"
SRC_URI[md5sum] = "84dba4ffb47285b18e6382de2991edfc"
SRC_URI[sha256sum] = "5738ffb8ce2582b6d7b39a3cbe16137d205961224899f8380eebe3922bae5c61"
RPROVIDES_${PN} += "java2-runtime"
And add it to the target image with:
IMAGE_INSTALL_append = " oracle-jse-ejre-arm-vfp-hflt-client- headful"
And build core-image-sato with:
$ cd cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-sato
In this case, the reported Java version is:
/usr/bin/java -version
java version "1.7.0_75"
Java(TM) SE Embedded Runtime Environment (build 1.7.0_75-b13)
Java HotSpot(TM) Embedded Client VM (build 24.75-b04, mixed mode)
There's more...
The latest release at the time of this writing is Java SE embedded Version 8 update 33 (8u33).
Oracle offers the download of the JDK only, and a host tool, jrecreate, needs to be used to configure and create an appropriate JRE from the JDK. The tool allows us to choose between different JVMs (minimal, client, and server) as well as soft or hard floating point ABIs, extensions like JavaFX, locales, and several other tweakings to the JVM.
Oracle Java SE embedded Version 8 provides support for headful X11 development using Swing, AWT, and JavaFX only for ARMv7 hard floating point user spaces, and includes support for JavaFX (the graphical framework aimed to replace Swing and AWT) on the Freescale i.MX6 processor.
There is no Yocto recipe to integrate Java Version 8 at the time of this writing.
Integrating the Open Java Development Kit
The open source alternative to the Oracle Java SE embedded is the Open Java Development Kit (OpenJDK), an open source implementation of Java SE licensed under the GPLv2, with the classpath exception, which means that applications are allowed to link without being bound by the GPL license.
This recipe will show how to build OpenJDK with Yocto and integrate the JRE into our target images.
Getting ready
The main components of OpenJDK are:
Initially, OpenJDK needed to be built using a proprietary JDK. However, the IcedTea project allowed us to build OpenJDK using the GNU classpath, the GNU compiler for Java (GCJ), and bootstrap a JDK to build OpenJDK. It also complements OpenJDK with some missing components available on Java SE like a web browser plugin and web start implementations.
Yocto can build meta-java using the meta-java layer, which includes recipes for cross-compiling OpenJDK using IcedTea.
You can download OpenJDK from its Git repository at http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/.
Development discussions can be followed and contributed to by visiting the development mailing list at http://lists.openembedded.org/mailman/listinfo/openembedded-devel.
The meta-java layer also includes recipes for a wide variety of Java libraries and VMs, and tools for application development like ant and fastjar.
How to do it...
To build OpenJDK 7, you need to clone the meta-java layer as follows:
$ cd /opt/yocto/fsl-community-bsp/sources/
$ git clone http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/
At the time of this writing, there is no 1.7 Dizzy branch yet, so we will work directly from the master branch.
Add the layer to your conf/bblayers.conf file:
+ ${BSPDIR}/sources/meta-java \
"
And configure the project by adding the following to your conf/local.conf file:
PREFERRED_PROVIDER_virtual/java-initial = "cacao-initial"
PREFERRED_PROVIDER_virtual/java-native = "jamvm-native"
PREFERRED_PROVIDER_virtual/javac-native = "ecj-bootstrap-native"
PREFERRED_VERSION_openjdk-7-jre = "25b30-2.3.12"
PREFERRED_VERSION_icedtea7-native = "2.1.3"
You can then add the OpenJDK package to your image with:
IMAGE_INSTALL_append = " openjdk-7-jre"
And build the image of your choice:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-sato
When you run the target image, you will get the following Java version:
java -version
java version "1.7.0_25"
OpenJDK Runtime Environment (IcedTea 2.3.12) (25b30-2.3.12)
OpenJDK Zero VM (build 23.7-b01, mixed mode)
How it works...
To test the JVM, we can byte-compile a Java class on our host and copy it to the target to execute it. For instance, we can use the following simple HelloWorld.java example:
class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");
}
}
To byte-compile it in the host, we need to have a Java SDK installed. To install a Java SDK in Ubuntu, just run:
$ sudo apt-get install openjdk-7-jdk
To byte-compile the example, we execute:
$ javac HelloWorld.java
To run it, we copy the HelloWorld.class to the target, and from the same folder we run:
java HelloWorld
There's more...
When using OpenJDK on a production system, it is recommended to always use the latest available release, which contains bug and security fixes. At the time of this writing, the latest OpenJDK 7 release is update 71 (jdk7u71b14), buildable with IcedTea 2.5.3, so the meta-java recipes should be updated.
See also
Integrating Java applications
The meta-java layer also offers helper classes to ease the integration of Java libraries and applications into Yocto. In this recipe, we will see an example of building a Java library using the provided classes.
Getting ready
The meta-java layer provides two main classes to help with the integration of Java applications and libraries:
How to do it...
We will use the following meta-custom/recipes-java/java-helloworld/java-helloworld-1.0/HelloWorldSwing.java graphical Swing hello world as an example:
import javax.swing.JFrame;
import javax.swing.JLabel;
public class HelloWorldSwing {
private static void createAndShowGUI() {
JFrame frame = new JFrame("Hello World!");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel label = new JLabel("Hello World!");
frame.getContentPane().add(label);
frame.pack();
frame.setVisible(true);
}
public static void main(String[] args) {
javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {
createAndShowGUI();
}
});
}
}
To integrate this HelloWorldSwing application, we can use a Yocto meta-custom/recipes-java/java-helloworld/java-helloworld_1.0.bb recipe as follows:
DESCRIPTION = "Simple Java Swing hello world application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
RDEPENDS_${PN} = "java2-runtime"
SRC_URI = "file://HelloWorldSwing.java"
S = "${WORKDIR}"
inherit java-library
do_compile() {
mkdir -p build
javac -d build `find . -name "*.java"`
fastjar cf ${JARFILENAME} -C build .
}
BBCLASSEXTEND = "native"
The recipe is also buildable for the host native architecture. We can do this either by providing a separate java-helloworld-native recipe that inherits the native class or by using the BBCLASSEXTEND variable as we did earlier. In both cases, we could then use the _class-native and _class-target overrides to differentiate between native and target functionality.
Even though Java is byte-compiled and the compiled class will be the same for both, it still makes sense to add the native support explicitly.
How it works...
The java-library class will create a library package with the name lib<package>-java.
To add it to a target image, we would use:
IMAGE_INSTALL_append = " libjava-helloworld-java"
We can then decide whether we want to run the application with the Oracle JRE or OpenJDK. For OpenJDK, we will add the following packages to our image:
IMAGE_INSTALL_append = " openjdk-7-jre openjdk-7-common"
And for the Oracle JRE, we will use the following:
IMAGE_INSTALL_append = " oracle-jse-ejre-arm-vfp-hflt-client- headful"
The available JREs do not currently run over the framebuffer or Wayland, so we will use an X11-based graphical image like core-image-sato:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-sato
We can then boot it, log in to the target, and execute the example with OpenJDK by running:
export DISPLAY=:0
java -cp /usr/share/java/java-helloworld.jar HelloWorldSwing
There's more...
At the time of this writing, OpenJDK as built from the meta-java layer master branch is not able to run X11 applications and will fail with this exception:
Exception in thread "main" java.awt.AWTError: Toolkit not found: sun.awt.X11.XToolkit
at java.awt.Toolkit$2.run(Toolkit.java:875)
at java.security.AccessController.doPrivileged(Native Method)
at java.awt.Toolkit.getDefaultToolkit(Toolkit.java:860)
at java.awt.Toolkit.getEventQueue(Toolkit.java:1730)
at java.awt.EventQueue.invokeLater(EventQueue.java:1217)
at javax.swing.SwingUtilities.invokeLater(SwingUtilities.java:1287)
at HelloWorldSwing.main(HelloWorldSwing.java:17)
However, the precompiled Oracle JRE runs the application without issues with:
export DISPLAY=:0
/usr/bin/java -cp /usr/share/java/java-helloworld.jar HelloWorldSwing
Note
If you see build errors when building packages with the Oracle JRE, try using a different package format, for example, IPK, by adding the following to your conf/local.conf configuration file:
PACKAGE_CLASSES = "package_ipk"
This is due to dependency problems in the meta-oracle-java layer with the RPM package manager, as explained in the layer's README file.
Chapter 5. Debugging, Tracing, and Profiling
In this chapter, we will cover the following recipes:
Introduction
Debugging an embedded Linux product is a common task not only during development, but also in deployed production systems.
Application debugging in embedded Linux is different from debugging in a traditional embedded device in that we don't have a flat memory model with an operating system and applications sharing the same address space. Instead, we have a virtual memory model with the Linux operating system, sharing the address space and assigning virtual memory areas to running processes.
With this model, the mechanisms used for kernel and user space debugging differ. For example, the traditional model of using a JTAG-based hardware debugger is useful for kernel debugging, but unless it knows about the user space processes memory mapping, it will not be able to debug user space applications.
Application debugging is approached with the use of a user space debugger service. We have seen an example of this methodology in action with the TCF agent used in the Eclipse GDB. The other commonly used agent is the gdbserver, which we will use in this chapter.
Finally we will explore the area of tracing and profiling. Tracing is a low-level logging of frequent system events, and the statistical analysis of these captured traces is called profiling.
We will use some of the tools embedded Linux and Yocto offer to trace and profile our systems so that they run to their maximum potential.
Analyzing core dumps
Even after extensive quality assurance testing, embedded systems in-field also fail and need to be debugged. Moreover, often the failure is not something that can be easily reproduced in a laboratory environment, so we are left with production, often hardened system, to debug.
Assuming we have designed our system with the aforementioned scenario in mind, our first debugging choice is usually to extract as much information about the failing system—for example, by obtaining and analyzing a core dump of the misbehaving processes.
Getting ready
In the process of debugging embedded Linux systems, we can use the same toolbox as standard Linux systems. One of the tools enables applications to generate into the disk a memory core dump upon crashing. This assumes that we have enough disk space to store the application's entire memory map, and that writing to disk is quick enough that it will not drag the system to a halt.
Once the memory core dump is generated, we use the host's GDB to analyze the core dump. GDB needs to have debug information available. Debug information can be in the executable itself—for example, when we install the -dbg version of a package, or we configure our project to not strip binaries—or can be kept in a separate file. To install debug information separately from the executable, we use the dbg-pkgs feature. By default, this installs the debug information of a package in a .debug directory in the same location as the executable itself. To add debug information for all packages in a target image, we add the following to our conf/local.conf configuration file:
EXTRA_IMAGE_FEATURES += "dbg-pkgs"
We can then build an appropriate toolchain generated to match our filesystem, as we saw in the Preparing and using an SDK recipe in Chapter 4, Application Development. The core dump contains build IDs for the executables and libraries in use at the time of the crash, so it's important to match the toolchain and the target image.
How to do it...
We can display the limits of the system-wide resources with the ulimit tool. We are interested in the core file size, which by default is set to zero to avoid the creation of application core dumps. In our failing system, preferably in a test environment, make your application dump a memory core upon crashing with:
$ ulimit -c unlimited
You can then verify the change with:
$ ulimit -a
-f: file size (blocks) unlimited
-t: cpu time (seconds) unlimited
-d: data seg size (kb) unlimited
-s: stack size (kb) 8192
-c: core file size (blocks) unlimited
-m: resident set size (kb) unlimited
-l: locked memory (kb) 64
-p: processes 5489
-n: file descriptors 1024
-v: address space (kb) unlimited
-w: locks unlimited
-e: scheduling priority 0
-r: real-time priority 0
For this example, we will be using the wvdial application in a real segmentation fault scenario. The purpose is not to debug the application itself but to showcase the methodology used for core dump analysis; so, details regarding the application-specific configuration and system setup are not provided. However, being a real crash, the example is more illustrative.
To run wvdial on the target, use the following code:
wvdial
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Sending: AT+CGDCONT=1,"IP","internet"
AT+CGDCONT=1,"IP","internet"
OK
--> Modem initialized.
--> Idle Seconds = 3000, disabling automatic reconnect.
Segmentation fault (core dumped)
The application will create a core file in the same folder, which you can then copy to your host system to analyze.
Tip
You can also simulate a core dump by sending a SIGQUIT signal to a running process. For example, you could force the sleep command to core dump with a SIGQUIT signal as follows:
$ ulimit -c unlimited
$ sleep 30 &
$ kill -QUIT <sleep-pid>
How it works...
Once in possession of the core dump, use the cross GDB in the host to load it and get some useful information, such as the backtrace, using the following steps:
$ cd /opt/poky/1.7.1/
$ source environment-setup-cortexa9hf-vfp-neon-poky-linux- gnueabi
The whole GDB banner is showed below but will be omitted in future examples.
$ arm-poky-linux-gnueabi-gdb /opt/yocto/fsl-community- bsp/wandboard-quad/tmp/work/cortexa9hf-vfp-neon-poky-linux- gnueabi/wvdial/1.61-r0/packages-split/wvdial- dbg/usr/bin/.debug/wvdial core
GNU gdb (GDB) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-pokysdk-linux -- target=arm-poky-linux-gnueabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from /opt/yocto/fsl-community-bsp/wandboard- quad/tmp/work/cortexa9hf-vfp-neon-poky-linux- gnueabi/wvdial/1.61-r0/packages-split/wvdial- dbg/usr/bin/.debug/wvdial...done.
[New LWP 1050]
warning: Could not load shared library symbols for 14 libraries, e.g. /usr/lib/libwvstreams.so.4.6.
Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?
Core was generated by `wvdial'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x76d524c4 in ?? ()
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/usr/lib/libwvstreams.so.4.6...Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux- gnueabi/usr/lib/.debug/libwvstreams.so.4.6...done.
done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/usr/lib/libwvstreams.so.4.6
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/usr/lib/libwvutils.so.4.6...Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon- poky-linux-gnueabi/usr/lib/.debug/libwvutils.so.4.6...done.
done.
[...]
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/lib/libdl.so.2
(gdb) bt
#0 0x76d524c4 in WvTaskMan::_stackmaster () at utils/wvtask.cc:416
#1 0x00000000 in ?? ()
See also
Native GDB debugging
On devices as powerful as the Wandboard, native debugging is also an option to debug sporadic failures. This recipe will explore the native debugging method.
Getting ready
For native development and debugging, Yocto offers the -dev and -sdk target images. To add developing tools to the -dev images, we can use the tools-sdk feature. We also want to install debug information and debug tools, and we do this by adding the dbg-pkgs and tools-debug features to our image. For example, for core-image-minimal-dev, we would add the following to our conf/local.conf file:
EXTRA_IMAGE_FEATURES += "tools-sdk dbg-pkgs tools-debug"
To prepare a development-ready version of the core-image-minimal-dev target image, we would execute the following commands:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad
$ bitbake core-image-minimal-dev
We will then program the development image to our target.
How to do it...
Once the target has booted, you can start the wvdial application through the native GDB using the following steps:
$ gdb wvdial
(gdb) run
Starting program: /usr/bin/wvdial
Cannot access memory at address 0x0
Cannot access memory at address 0x0
Program received signal SIGILL, Illegal instruction.
0x7698afe8 in ?? () from /lib/libcrypto.so.1.0.0
(gdb) sharedlibrary libcrypto
Symbols already loaded for /lib/libcrypto.so.1.0.0
(gdb) bt
#0 0x7698afe8 in ?? () from /lib/libcrypto.so.1.0.0
#1 0x769878e8 in OPENSSL_cpuid_setup () from /lib/libcrypto.so.1.0.0
#2 0x76fe715c in ?? () from /lib/ld-linux-armhf.so.3
Cannot access memory at address 0x48535540
This is not the same backtrace you got when analyzing the core dump. What is going on here? The clue is on libcrypto, part of the OpenSSL library. OpenSSL probes the capabilities of the system by trying each capability and trapping the illegal instruction errors. So the SIGILL signal you are seeing during startup is normal and you should instruct GDB to continue.
(gdb) c
Continuing.
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Sending: AT+CGDCONT=1,"IP","internet"
AT+CGDCONT=1,"IP","internet"
OK
--> Modem initialized.
--> Idle Seconds = 3000, disabling automatic reconnect.
Program received signal SIGSEGV, Segmentation fault.
0x76db74c4 in WvTaskMan::_stackmaster() () from /usr/lib/libwvbase.so.4.6
This result is now compatible with the core dump you saw in the previous recipe.
There's more...
When debugging applications, it is sometimes useful to reduce the level of optimization used by the compiler. This will reduce the application's performance but will facilitate debugging by improving the accuracy of the debug information. You can configure the build system to reduce optimization and add debug information by adding the following line of code to your conf/local.conf file:
DEBUG_BUILD = "1"
By using this configuration, the optimization is reduced from FULL_OPTIMIZATION (-O2) to DEBUG_OPTIMIZATION (-O -fno-omit-frame-pointer). But sometimes this is not enough, and you may like to build with no optimization. You can achieve this by overriding the DEBUG_OPTIMIZATION variable either globally or for a specific recipe.
See also
Cross GDB debugging
When we run a cross compiled GDB in the host, which connects to a native gdbserver running on the target, it is referred to as cross debugging. This is the same scenario we saw in the Using the Eclipse IDE recipe earlier, except that Eclipse uses the Target Communications Framework (TCF). Cross debugging has the advantage of not needing debug information on target images, as they are already available in the host.
This recipe will show how to use a cross GDB and gdbserver.
Getting ready
To include gdbserver in your target image, you can use an -sdk image, or you can add the tools-debug feature to your image by adding the following to your conf/local.conf configuration file:
EXTRA_IMAGE_FEATURES += "tools-debug"
So that GDB can access debug information of the shared libraries and executables, add the following to the conf/local.conf file:
EXTRA_IMAGE_FEATURES += "dbg-pkgs"
The images running on the target and the toolchain's sysroot need to match. For example, if you are using core-image-minimal images, the toolchain needs to have been generated in the same project with:
$ bitbake -c populate_sdk core-image-minimal
This will generate a sysroot containing debug information for binaries and libraries.
How to do it...
Once the toolchain is installed, you can run the application to be debugged on the target using gdbserver—in this case, wvdial—in the following steps:
gdbserver localhost:1234 /usr/bin/wvdial
Process wvdial created; pid = 879
Listening on port 1234
The gdbserver is launched listening on localhost on a random 1234 port and is waiting for a connection from the remote GDB.
$ cd /opt/poky/1.7.1/
$ source environment-setup-cortexa9hf-vfp-neon-poky-linux- gnueabi
You can then launch the cross GDB, passing to it the absolute path to the debug version of the application to debug, which is located in a .debug directory on the sysroot:
$ arm-poky-linux-gnueabi-gdb /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux- gnueabi/usr/bin/.debug/wvdial
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/usr/bin/.debug/wvdial...done.
(gdb)
(gdb) set auto-load safe-path /
(gdb) handle SIGILL nostop
(gdb) target remote <target_ip>:1234
Remote debugging using 192.168.128.6:1234
Cannot access memory at address 0x0
0x76fd7b00 in ?? ()
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf- vfp-neon-poky-linux-gnueabi/lib/ld-linux- armhf.so.3...done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/lib/ld-linux-armhf.so.3
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Sending: AT+CGDCONT=1,"IP","internet"
AT+CGDCONT=1,"IP","internet"
OK
--> Modem initialized.
--> Idle Seconds = 3000, disabling automatic reconnect.
Program received signal SIGILL, Illegal instruction.
Program received signal SIGSEGV, Segmentation fault.
0x76dc14c4 in WvTaskMan::_stackmaster () at utils/wvtask.cc:416
416 utils/wvtask.cc: No such file or directory.
(gdb) bt
#0 0x76dc14c4 in WvTaskMan::_stackmaster () at utils/wvtask.cc:416
#1 0x00000000 in ?? ()
Although limited, this backtrace could still be useful to debug the application.
How it works...
We see a limited backtrace because the compiled binaries are not suitable for debugging, as they omit stack frames. To keep information on stack frames, add the following to the conf/local.conf configuration file:
DEBUG_BUILD = "1"
This changes the compilation flags to debug optimization as follows:
DEBUG_OPTIMIZATION = "-O -fno-omit-frame-pointer ${DEBUG_FLAGS} - pipe"
The -fno-omit-frame-pointer flag will tell gcc to keep stack frames. The compiler will also reduce the optimization level to provide a better debugging experience.
A debug build will also make it possible to trace variables and set breakpoints and watchpoints, as well as other common debugging features.
After building and installing the target images and toolchain again, you can now follow the same process as in the preceding recipe:
(gdb) target remote <target_ip>:1234
Remote debugging using 192.168.128.6:1234
warning: Unable to find dynamic linker breakpoint function.
GDB will be unable to debug shared library initializers
and track explicitly loaded dynamic code.
Cannot access memory at address 0x0
0x76fdd800 in ?? ()
Set the sysroot as follows:
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf- vfp-neon-poky-linux-gnueabi/lib/ld-linux- armhf.so.3...done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp- neon-poky-linux-gnueabi/lib/ld-linux-armhf.so.3
(gdb) c
Continuing.
Program received signal SIGILL, Illegal instruction.
Program received signal SIGABRT, Aborted.
0x76b28bb4 in __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:55
55 ../sysdeps/unix/sysv/linux/raise.c: No such file or directory.
(gdb) bt
#0 0x76b28bb4 in __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:55
#1 0x76b2cabc in __GI_abort () at abort.c:89
#2 0x76decfa8 in __assert_fail (__assertion=0x76df4600 "magic_number == -0x123678",
__file=0x1 <error: Cannot access memory at address 0x1>, __line=427,
__function=0x76df4584 <WvTaskMan::_stackmaster()::__PRETTY_FUNCTION__> "static void WvTaskMan::_stackmaster()")
at utils/wvcrashbase.cc:98
#3 0x76dc58c8 in WvTaskMan::_stackmaster () at utils/wvtask.cc:427
Cannot access memory at address 0x123678
#4 0x00033690 in ?? ()
Cannot access memory at address 0x123678
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
You can now see a complete backtrace.
Using strace for application debugging
Debugging does not always involve working with source code. Sometimes it is a change in an external factor that is causing the problem.
Strace is a tool that is useful for scenarios where we are looking for problems outside of the binary itself; for example configuration files, input data, and kernel interfaces. This recipe will explain how to use it.
Getting ready
To include strace in your system, add the following to your conf/local.conf file:
IMAGE_INSTALL_append = " strace"
Strace is also part of the tools-debug image feature, so you can also add it with:
EXTRA_IMAGE_FEATURES += "tools-debug"
Strace is also included in the -sdk images.
Before starting, we will also include pgrep, a process utility that will make our debugging easier by looking up process IDs by name. To do so, add the following to your conf/local.conf configuration file:
IMAGE_INSTALL_append = " procps"
How to do it...
When printing a system call, strace prints the values passed to the kernel or returned from the kernel. The verbose option prints more details for some system calls.
For example, filtering just the sendto() system calls from a single ping looks as follows:
strace -f -t -e sendto /bin/bash -c "ping -c 1 127.0.0.1"
5240 17:18:04 sendto(0, "\10\0;\220x\24\0\0\225m\256\355\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ 0\0"..., 64, 0, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("127.0.0.1")}, 28) = 64
How it works...
Strace allows the monitoring of system calls of running processes into the Linux kernel. It uses the ptrace() system call to do so. This means that other programs that use ptrace(), such as gdb, will not run simultaneously.
Strace is a disruptive monitoring tool, and the process being monitored will slow down and create many more context switches. A generic way of running strace on a given program is:
strace -f -e <filter> -t -s<num> -o <log file>.strace <program>
The arguments are explained below:
It can also attach to running processes using the following command:
$ strace -p $(pgrep <program>)
Or several instances of a process using the following command:
$ strace $(pgrep <program> | sed 's/^/-p')
To detach, just press Ctrl + C.
See also
Using the kernel's performance counters
Hardware performance counters are perfect for code optimization, especially in embedded systems with a single workload. They are actively used by a wide range of tracing and profiling tools. This recipe will introduce the Linux performance counters subsystem and show how to use it.
Getting ready
The Linux Kernel Performance Counters Subsystem (LPC), commonly known as linux_perf, is an abstraction interface to different CPU-specific performance measurements. The perf_events subsystem not only exposes hardware performance counters from the CPU, but also kernel software events using the same API. It also allows the mapping of events to processes, although this has a performance overhead. Further, it provides generalized events which are common across architectures.
Events can be categorized into three main groups:
To know whether perf_event support is available for your platform, you can check for the existence of the /proc/sys/kernel/perf_event_paranoid file. This file is also used to restrict access to the performance counters, which by default are set to allow both user and kernel measurement. It can have the following values:
The i.MX6 SoC has a Cortex-A9 CPU which includes a PMU, providing six counters to gather statistics on the operation of the processor and memory, each one of them able to monitor any of 58 available events.
You can find a description of the available events in the Cortex-A9 Technical Reference Manual.
The i.MX6 performance counters do not allow exclusive access to just user or just kernel measurements. Also, i.MX6 SoC designers have unfortunately joined the PMU interrupts from all CPU cores, when ideally they should only be handled by the same CPU that raises them. You can start the i.MX6 with just one core, using the maxcpus=1 kernel command-line argument, so that you can still use the perf_events interface.
To configure the Linux kernel to boot with one core, stop at the U-Boot prompt and change the mmcargs environment variable as follows:
> setenv mmcargs 'setenv bootargs console=${console},${baudrate} root=${mmcroot} ${extra_bootargs}; run videoargs'
> setenv extra_bootargs maxcpus=1
Note
The mmcargs environmental variable is only used when booting from an MMC device like the microSD card. If the target is booting from another source, such as a network, the corresponding environmental variable will have to be changed. You can dump the whole U-Boot environment with the printenv U-Boot command, and change the required variable with setenv.
How to do it...
The interface introduces a sys_perf_event_open() syscall, with the counters being started and stopped using ioctls, and read either with read() calls or mmapping samples into circular buffers. The perf_event_open() syscall is defined as follows:
#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>
int perf_event_open(struct perf_event_attr *attr,
pid_t pid, int cpu, int group_fd,
unsigned long flags);
There is no C library wrapper for it, so it needs to be called using syscall().
How it works...
Following is an example, perf_example.c, program modified from the perf_event_open man page to measure instruction count for a printf call:
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/perf_event.h>
#include <asm/unistd.h>
static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
int cpu, int group_fd, unsigned long flags)
{
int ret;
ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
group_fd, flags);
return ret;
}
int
main(int argc, char **argv)
{
struct perf_event_attr pe;
long long count;
int fd;
memset(&pe, 0, sizeof(struct perf_event_attr));
pe.type = PERF_TYPE_HARDWARE;
pe.size = sizeof(struct perf_event_attr);
pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.disabled = 1;
fd = perf_event_open(&pe, 0, -1, -1, 0);
if (fd == -1) {
fprintf(stderr, "Error opening leader %llx\n", pe.config);
exit(EXIT_FAILURE);
}
ioctl(fd, PERF_EVENT_IOC_RESET, 0);
ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
printf("Measuring instruction count for this printf\n");
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
read(fd, &count, sizeof(long long));
printf("Used %lld instructions\n", count);
close(fd);
return 0;
}
For compiling this program externally, we can use the following commands:
$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky- linux-gnueabi
$ ${CC} perf_example.c -o perf_example
After copying the binary to your target, you can then execute it with the help of the following code:
./perf_example
Measuring instruction count for this printf
Used 0 instructions
Obviously, using zero instructions for the printf() call can't be correct. Looking into possible causes, we find a documented erratum (ERR006259) on i.MX6 processors that states that in order for the PMU to be used, the SoC needs to receive at least 4 JTAG clock cycles after power on reset.
Rerun the example with the JTAG connected:
./perf_example
Measuring instruction count for this printf
Used 3977 instructions
There's more...
Even though you can access the perf_events interface directly as in the preceding example, the recommended way to use it is through a user space application, such as perf, which we will see in the Tracing and profiling with perf recipe in this chapter.
See also
Using static kernel tracing
The Linux kernel is continuously being instrumented with static probe points called tracepoints, which when disabled have a very small overhead. They allow us to record more information than the function tracer we saw in Chapter 2, The BSP Layer. Tracepoints are used by multiple tracing and profiling tools in Yocto.
This recipe will explain how to use and define static tracepoints independently of user space tools.
Getting ready
Static tracepoints can be instrumented using custom kernel modules, and also through the event tracing infrastructure. Enabling any of the tracing features in the kernel will create a /sys/kernel/debug/tracing/ directory; for example, the function tracing feature as explained in the Using the kernel function tracing system in Chapter 2, The BSP Layer.
So before continuing with this recipe, you need to configure the function tracing feature in the Linux kernel as explained before.
How to do it...
The static tracing functionality is exposed via the debugfs filesystem. The functionality offered by the interface includes:
You can see a list of available tracepoints exposed via sysfs and ordered in subsystem directories with:
ls /sys/kernel/debug/tracing/events/
asoc ftrace migrate rcu spi
block gpio module regmap sunrpc
cfg80211 header_event napi regulator task
compaction header_page net rpm timer
drm irq oom sched udp
enable jbd power scsi vmscan
ext3 jbd2 printk signal workqueue
ext4 kmem random skb writeback
filemap mac80211 raw_syscalls sock
Or in the available_events file with the <subsystem>:<event> format using the following commands:
grep 'net' /sys/kernel/debug/tracing/available_events
net:netif_rx
net:netif_receive_skb
net:net_dev_queue
net:net_dev_xmit
Each event has a specific printing format that describes the information included in the log event, as follows:
#cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/format
name: netif_receive_skb
ID: 378
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:void * skbaddr; offset:8; size:4; signed:0;
field:unsigned int len; offset:12; size:4; signed:0;
field:__data_loc char[] name; offset:16; size:4; signed:0;
print fmt: "dev=%s skbaddr=%p len=%u", __get_str(name), REC- >skbaddr, REC->len
You can enable or disable events in the following ways:
echo 1 > /sys/kernel/debug/tracing/events/net/netif_receive_skb/enable
echo 1 > /sys/kernel/debug/tracing/events/net/enable
echo netif_receive_skb >> /sys/kernel/debug/tracing/set_event
Note the append operation >> is used not to clear events.
echo '!netif_receive_skb' >> /sys/kernel/debug/tracing/set_event
echo 'net:*' > /sys/kernel/debug/tracing/set_event
echo > /sys/kernel/debug/tracing/set_event
You can also enable tracepoints from boot by passing a trace_event=<comma separated event list> kernel command line-argument.
To see the tracepoints appear on the tracing buffer, turn tracing on:
echo 1 > /sys/kernel/debug/tracing/tracing_on
Tracepoint events are integrated into the ftrace subsystem so that if you enable a tracepoint, when a tracer is running, it will show up in the trace. Take a look at the following commands:
cd /sys/kernel/debug/tracing
echo 1 > events/net/netif_receive_skb/enable
echo netif_receive_skb > set_ftrace_filter
echo function > current_tracer
cat trace
<idle>-0 [000] ..s2 1858.542206: netif_receive_skb <-napi_gro_receive
<idle>-0 [000] ..s2 1858.542214: netif_receive_skb: dev=eth0 skbaddr=dcb5bd80 len=168
How it works...
A tracepoint is inserted using the TRACE_EVENT macro. It inserts a callback in the kernel source that gets called with the tracepoint parameters as arguments. Tracepoints added with the TRACE_EVENT macro allow ftrace or any other tracer to use them. The callback inserts the trace at the calling tracer's ring buffer.
To insert a new tracepoint into the Linux kernel, define a new header file with a special format. By default, tracepoint kernel files are located in include/trace/events, but the kernel has functionality so that the header files can be located in a different path. This is useful when defining a tracepoint in a kernel module.
To use the tracepoint, the header file must be included in any file that inserts the tracepoint, and a single C file must define CREATE_TRACE_POINT. For example, to extend the hello world Linux kernel module we saw in a previous chapter with a tracepoint, add the following code to meta-bsp-custom/recipes-kernel/hello-world-tracepoint/files/hello_world.c:
#include <linux/module.h>
#include "linux/timer.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
static struct timer_list hello_timer;
void hello_timer_callback(unsigned long data)
{
char a[] = "Hello";
char b[] = "World";
printk("%s %s\n",a,b);
/* Insert the static tracepoint */
trace_log_dbg(a, b);
/* Trigger the timer again in 8 seconds */
mod_timer(&hello_timer, jiffies + msecs_to_jiffies(8000));
}
static int hello_world_init(void)
{
/* Setup a timer to fire in 2 seconds */
setup_timer(&hello_timer, hello_timer_callback, 0);
mod_timer(&hello_timer, jiffies + msecs_to_jiffies(2000));
return 0;
}
static void hello_world_exit(void)
{
/* Delete the timer */
del_timer(&hello_timer);
}
module_init(hello_world_init);
module_exit(hello_world_exit);
MODULE_LICENSE("GPL v2");
The tracepoint header file in meta-bsp-custom/recipes-kernel/hello-world-tracepoint/files/trace.h would be:
#undef TRACE_SYSTEM
#define TRACE_SYSTEM log_dbg
#if !defined(_HELLOWORLD_TRACE) || defined(TRACE_HEADER_MULTI_READ)
#define _HELLOWORLD_TRACE
#include <linux/tracepoint.h>
TRACE_EVENT(log_dbg,
TP_PROTO(char *a, char *b),
TP_ARGS(a, b),
TP_STRUCT__entry(
__string(a, a)
__string(b, b)),
TP_fast_assign(
__assign_str(a, a);
__assign_str(b, b);),
TP_printk("log_dbg: a %s b %s",
__get_str(a), __get_str(b))
);
#endif
/* This part must be outside protection */
#undef TRACE_INCLUDE_PATH
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_PATH .
#define TRACE_INCLUDE_FILE trace
#include <trace/define_trace.h>
And the module's Makefile file in meta-bsp-custom/recipes-kernel/hello-world-tracepoint/files/Makefile would look as follows:
obj-m := hello_world.o
CFLAGS_hello_world.o += -I$(src)
SRC := $(shell pwd)
all:
$(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)"
modules_install:
$(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)" modules_install
clean:
rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
rm -f Module.markers Module.symvers modules.order
rm -rf .tmp_versions Modules.symvers
Note the highlighted line that includes the current folder in the search path for include files.
We can now build the module externally, as we saw in the Building external kernel modules recipe in Chapter 2, The BSP Layer. The corresponding Yocto recipe is included in the source that accompanies the book. Here is the code for the same:
$ cd /opt/yocto/fsl-community-bsp/sources/meta-bsp-custom/recipes- kernel/hello-world-tracepoint/files/
$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky- linux-gnueabi
$ KERNEL_SRC=/opt/yocto/linux-wandboard make
After copying the resulting hello_world.ko module to the Wandboard's root filesystem, you can load it with:
insmod hello_world.ko
Hello World
You can now see a new log_dbg directory inside /sys/kernel/debug/tracing/events, which contains a log_dbg event tracepoint with the following format:
cat /sys/kernel/debug/tracing/events/log_dbg/log_dbg/format
name: log_dbg
ID: 622
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:__data_loc char[] a; offset:8; size:4; signed:0;
field:__data_loc char[] b; offset:12; size:4; signed:0;
print fmt: "log_dbg: a %s b %s", __get_str(a), __get_str(b)
You can then enable the function tracer on the hello_timer_callback function:
cd /sys/kernel/debug/tracing
echo 1 > events/log_dbg/log_dbg/enable
echo 1 > /sys/kernel/debug/tracing/tracing_on
cat trace
<idle>-0 [000] ..s2 57.425040: log_dbg: log_dbg: a Hello b World
There's more...
Static tracepoints can also be filtered. When an event matches a filter set, it is kept, otherwise it is discarded. Events without filters are always kept.
For example, to set a matching filter for the log_dbg event inserted in the preceding code, you could match either the a or b variables:
echo "a == \"Hello\"" > /sys/kernel/debug/tracing/events/log_dbg/log_dbg/filter
See also
Using dynamic kernel tracing
kprobes is a kernel debugging facility that allows us to dynamically break into almost any kernel function (except kprobe itself) to collect debugging and profiling information non-disruptively. Some architectures keep an array of blacklisted functions, which cannot be probed using kprobe, but on ARM the list is empty.
Because kprobes can be used to change a function's data and registers, it should only be used in development environments.
There are three types of probes:
They are packaged into a kernel module, with the init function registering the probes and the exit function unregistering them.
This recipe will explain how to use all types of dynamic probes.
Getting ready
To configure the Linux kernel with kprobes support, you need to:
arm-poky-linux-gnueabi-objdump -d -l vmlinux | grep do_sys_open
8010bfa8 <do_sys_open>:
do_sys_open():
8010c034: 0a000036 beq 8010c114 <do_sys_open+0x16c>
8010c044: 1a000031 bne 8010c110 <do_sys_open+0x168>
The kprobes API is defined in the kprobes.h file and includes registration/unregistration and enabling/disabling functions for the three types of probes as follows:
#include <linux/kprobes.h>
int register_kprobe(struct kprobe *kp);
int register_jprobe(struct jprobe *jp)
int register_kretprobe(struct kretprobe *rp);
void unregister_kprobe(struct kprobe *kp);
void unregister_jprobe(struct jprobe *jp);
void unregister_kretprobe(struct kretprobe *rp);
By default, a kprobe probe is enabled when registering, except when the KPROBE_FLAG_DISABLED flag is passed. The following function definitions enable or disable the probe:
int disable_kprobe(struct kprobe *kp);
int disable_kretprobe(struct kretprobe *rp);
int disable_jprobe(struct jprobe *jp);
int enable_kprobe(struct kprobe *kp);
int enable_kretprobe(struct kretprobe *rp);
int enable_jprobe(struct jprobe *jp);
The registered kprobe probes can be listed through debugfs:
$ cat /sys/kernel/debug/kprobes/list
They can globally be enabled or disabled with:
$ echo 0/1 > /sys/kernel/debug/kprobes/enabled
How to do it...
On registration, the kprobe probe places a breakpoint (or jump, if optimized) instruction at the start of the probed instruction. When the breakpoint is hit, a trap occurs, the registers are saved, and control passes to kprobes, which calls the pre-handler. It then single steps the breakpoint and calls the post-handler. If a fault occurs, the fault handler is called. Handlers can be NULL if desired.
A kprobe probe can be inserted either in a function symbol or into an address, using the offset field, but not in both.
Note
On occasions, kprobe will still be too intrusive to debug certain problems, as it slows the functions and may affect scheduling and be problematic when called from interrupt context.
For example, to place a kprobe probe in the open syscall, we would use the meta-bsp-custom/recipes-kernel/open-kprobe/files/kprobe_open.c custom module:
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
static struct kprobe kp = {
.symbol_name = "do_sys_open",
};
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
pr_info("pre_handler: p->addr = 0x%p, lr = 0x%lx,"
" sp = 0x%lx\n",
p->addr, regs->ARM_lr, regs->ARM_sp);
/* A dump_stack() here will give a stack backtrace */
return 0;
}
static void handler_post(struct kprobe *p, struct pt_regs *regs,
unsigned long flags)
{
pr_info("post_handler: p->addr = 0x%p, status = 0x%lx\n",
p->addr, regs->ARM_cpsr);
}
static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
{
pr_info("fault_handler: p->addr = 0x%p, trap #%dn",
p->addr, trapnr);
/* Return 0 because we don't handle the fault. */
return 0;
}
static int kprobe_init(void)
{
int ret;
kp.pre_handler = handler_pre;
kp.post_handler = handler_post;
kp.fault_handler = handler_fault;
ret = register_kprobe(&kp);
if (ret < 0) {
pr_err("register_kprobe failed, returned %d\n", ret);
return ret;
}
pr_info("Planted kprobe at %p\n", kp.addr);
return 0;
}
static void kprobe_exit(void)
{
unregister_kprobe(&kp);
pr_info("kprobe at %p unregistered\n", kp.addr);
}
module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");
We compile it with a Yocto recipe, as explained in the Building external kernel modules recipe in Chapter 2, The BSP Layer. Here is the code for the meta-bsp-custom/recipes-kernel/open-kprobe/open-kprobe.bb Yocto recipe file:
SUMMARY = "kprobe on do_sys_open kernel module."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL- 2.0;md5=801f80980d171dd6425610833a22dbe6"
inherit module
PV = "0.1"
SRC_URI = " \
file://kprobe_open.c \
file://Makefile \
"
S = "${WORKDIR}"
With the Makefile file in meta-bsp-custom/recipes-kernel/open-kprobe/files/Makefile being:
obj-m := kprobe_open.o
SRC := $(shell pwd)
all:
$(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)"
modules_install:
$(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)" modules_install
clean:
rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
rm -f Module.markers Module.symvers modules.order
rm -rf .tmp_versions Modules.symvers
Copy it to a target running the same kernel it has been linked against, and load it with the following:
$ insmod kprobe_open.ko
Planted kprobe at 8010da84
We can now see the handlers printing in the console when a file is opened:
pre_handler: p->addr = 0x8010da84, lr = 0x8010dc34, sp = 0xdca75f98
post_handler: p->addr = 0x8010da84, status = 0x80070013
There's more...
A jprobe probe is implemented with a kprobe. It sets a breakpoint at the given symbol or address (but it must be the first instruction of a function), and makes a copy of a portion of the stack. When hit, it then jumps to the handler with the same registers and stack as the probed function. The handler must have the same argument list and return type as the probed function, and call jprobe_return() before returning to pass the control back to kprobes. Then the original stack and CPU state are restored and the probed function is called.
Following is an example of a jprobe in the open syscall in the meta-bsp-custom/recipes-kernel/open-jprobe/files/jprobe_open.c file:
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
static long jdo_sys_open(int dfd, const char __user *filename, int flags, umode_t mode)
{
pr_info("jprobe: dfd = 0x%x, filename = 0xs "
"flags = 0x%x mode umode %x\n", dfd, filename, flags, mode);
/* Always end with a call to jprobe_return(). */
jprobe_return();
return 0;
}
static struct jprobe my_jprobe = {
.entry = jdo_sys_open,
.kp = {
.symbol_name = "do_sys_open",
},
};
static int jprobe_init(void)
{
int ret;
ret = register_jprobe(&my_jprobe);
if (ret < 0) {
pr_err("register_jprobe failed, returned %d\n", ret);
return -1;
}
pr_info("Planted jprobe at %p, handler addr %p\n",
my_jprobe.kp.addr, my_jprobe.entry);
return 0;
}
static void jprobe_exit(void)
{
unregister_jprobe(&my_jprobe);
pr_info("jprobe at %p unregistered\n", my_jprobe.kp.addr);
}
module_init(jprobe_init)
module_exit(jprobe_exit)
MODULE_LICENSE("GPL");
A kretprobe probe sets a kprobe at the given symbol or function address which when hit, replaces the return address with a trampoline, usually a nop instruction, where kprobe is registered. When the probed function returns, the kprobe probe on the trampoline is hit, calling the return handler and setting back the original return address before resuming execution.
Following is an example of a kretprobe probe in the open syscall in the meta-bsp-custom/recipes-kernel/open-kretprobe/files/kretprobe_open.c file:
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/ktime.h>
#include <linux/limits.h>
#include <linux/sched.h>
/* per-instance private data */
struct my_data {
ktime_t entry_stamp;
};
static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
struct my_data *data;
if (!current->mm)
return 1; /* Skip kernel threads */
data = (struct my_data *)ri->data;
data->entry_stamp = ktime_get();
return 0;
}
static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
int retval = regs_return_value(regs);
struct my_data *data = (struct my_data *)ri->data;
s64 delta;
ktime_t now;
now = ktime_get();
delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
pr_info("returned %d and took %lld ns to execute\n",
retval, (long long)delta);
return 0;
}
static struct kretprobe my_kretprobe = {
.handler = ret_handler,
.entry_handler = entry_handler,
.data_size = sizeof(struct my_data),
.maxactive = 20,
};
static int kretprobe_init(void)
{
int ret;
my_kretprobe.kp.symbol_name = "do_sys_open";
ret = register_kretprobe(&my_kretprobe);
if (ret < 0) {
pr_err("register_kretprobe failed, returned %d\n",
ret);
return -1;
}
pr_info("Planted return probe at %s: %p\n",
my_kretprobe.kp.symbol_name, my_kretprobe.kp.addr);
return 0;
}
static void kretprobe_exit(void)
{
unregister_kretprobe(&my_kretprobe);
pr_info("kretprobe at %p unregistered\n",
my_kretprobe.kp.addr);
/* nmissed > 0 suggests that maxactive was set too low. */
pr_info("Missed probing %d instances of %s\n",
my_kretprobe.nmissed, my_kretprobe.kp.symbol_name);
}
module_init(kretprobe_init)
module_exit(kretprobe_exit)
MODULE_LICENSE("GPL");
The highlighted maxactive variable is the number of reserved storage for return addresses in the kretprobe probe, and by default, it is the number of CPUs (or twice the number of CPUs in preemptive systems with a maximum of 10). If maxactive is too low, some probes will be missed.
The complete examples, including Yocto recipes, can be found in the source that accompanies the book.
See also
Using dynamic kernel events
Although dynamic tracing is a very useful feature, custom kernel modules is not a user-friendly interface. Fortunately, the Linux kernel has been extended with the support of kprobe events, which allow us to set kprobes probes using a debugfs interface.
Getting ready
To make use of this feature, we need to configure our kernel with the CONFIG_KPROBE_EVENT configuration variable.
How to do it...
The debugfs interface adds probes via the /sys/kernel/debug/tracing/kprobe_events file. For example, to add a kprobe called example_probe to the do_sys_open function, you can execute the following command:
echo 'p:example_probe do_sys_open dfd=%r0 filename=%r1 flags=%r2 mode=%r3' > /sys/kernel/debug/tracing/kprobe_events
The probe will print the function's argument list, according to the function's declaration arguments as seen in the funcion's definition below:
long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode);
You can then manage kprobes through the sysfs as follows:
cat /sys/kernel/debug/tracing/kprobe_events
p:kprobes/example_probe do_sys_open dfd=%r0 filename=%r1 flags=%r2 mode=%r3
cat /sys/kernel/debug/tracing/events/kprobes/example_probe/format
name: example_probe
ID: 1235
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:unsigned long __probe_ip; offset:8; size:4; signed:0;
field:u32 dfd; offset:12; size:4; signed:0;
field:u32 filename; offset:16; size:4; signed:0;
field:u32 flags; offset:20; size:4; signed:0;
field:u32 mode; offset:24; size:4; signed:0;
print fmt: "(%lx) dfd=%lx filename=%lx flags=%lx mode=%lx", REC->__probe_ip, REC->dfd, REC->filename, REC->flags, REC- >mode
echo 1 > /sys/kernel/debug/tracing/events/kprobes/example_probe/enable
cat /sys/kernel/debug/tracing/trace
tracer: nop
#
entries-in-buffer/entries-written: 59/59 #P:4
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU# |||| TIMESTAMP FUNCTION
| | | |||| | |
sh-737 [000] d... 1610.378856: example_probe: (do_sys_open+0x0/0x184) dfd=ffffff9c filename=f88488 flags=20241 mode=16
sh-737 [000] d... 1660.888921: example_probe: (do_sys_open+0x0/0x184) dfd=ffffff9c filename=f88a88 flags=20241 mode=16
echo '-:example_probe' >> /sys/kernel/debug/tracing/kprobe_events
echo > /sys/kernel/debug/tracing/kprobe_events
cat /sys/kernel/debug/tracing/kprobe_profile
example_probe 78 0
With the format being as follows:
<event name> <hits> <miss-hits>
How it works...
To set a probe we use the following syntax:
<type>:<event name> <symbol> <fetch arguments>
Let's explain each of the mentioned parameters:
<name>=<offset>(<argument>):<type>
Lets explain each of the mentioned parameters:
%<register>: This fetches the specified register. For ARM these are:
r0 to r10
fp
ip
sp
lr
pc
cpsr
ORIG_r0
@<address>: This fetches the memory at the specified kernel address
@<symbol><offset>: This fetches the memory at the specified symbol and optional offset
$stack: This fetches the stack address
$stack<N>: This fetches the nth entry of the stack
And for return probes we have:
$retval: This fetches the return value
u8,u16,u32,u64, for unsigned types
s8,s16,s32,s64, for signed types
string, for null terminated strings
bitfield, with the following format:
b<bit-width>@<bit-offset>/<container-size>
There's more...
Current versions of the Linux kernel (from v3.14 onwards) also have support for user space probe events (uprobes), with a similar interface to the one for the kprobes events.
Exploring Yocto's tracing and profiling tools
Tracing and profiling tools are used to increase the performance, efficiency, and quality of both, applications and systems. User space tracing and profiling tools make use of performance counters and static and dynamic tracing functionality that the Linux kernel offers, as we have seen in the previous recipes.
Getting ready
Tracing enables us to log an application's activity so that its behavior can be analyzed, optimized, and corrected.
Yocto offers several tracing tools including:
Profiling refers to a group of techniques used to measure an application's consumed resources and the time taken to execute an application. The data is then used to improve the application's performance and optimize it. Some of the aforementioned tools such as perf and SystemTap have evolved to become powerful tracing and profiling tools.
Apart from the enlisted tracing tools, which can also be used for profiling, Yocto offers several other profiling tools:
How to do it...
These tools can be added to your target image either individually or with the tools-profile feature. To use the tools, we also need to include debug information in our applications. To this extent we should use the -dbg version of the packages, or better, configure Yocto so that debug information is generated with the dbg-pkgs image feature. To add both features to your images, add the following to your project's conf/local.conf file:
EXTRA_IMAGE_FEATURES = "tools-profile dbg-pkgs"
The -sdk version of target images already adds these features.
There's more...
Apart from these tools, Yocto also offers the standard monitoring tools available on a Linux system. Some examples are:
And Yocto also offers the following network tools:
Tracing and profiling with perf
The perf Linux tool can instrument the Linux kernel with both hardware and software performance counter events as well as static and dynamic kernel trace points. For this, it uses the kernel functionality we have seen in previous recipes, providing a common interface to all of them.
This tool can be used to debug, troubleshoot, optimize, and measure applications, workloads, or the full system, which covers the processor, kernel, and applications. Perf is probably the most complete of the tracing and profiling tools available for a Linux system.
Getting ready
The perf source is part of the Linux kernel. To include perf in your system, add the following to your conf/local.conf file:
IMAGE_INSTALL_append = " perf"
Perf is also part of the tools-profile image feature, so you can also add it with the following:
EXTRA_IMAGE_FEATURES += "tools-profile"
Perf is also included in the -sdk images.
To take the maximum advantage of this tool, we need to have symbols both in user space applications and libraries, as well as the Linux kernel. For this, we need to avoid stripping binaries by adding the following to the conf/local.conf configuration file:
INHIBIT_PACKAGE_STRIP = "1"
Also, adding the debug information of the applications by adding the following is recommended:
EXTRA_IMAGE_FEATURES += "dbg-pkgs"
By default, the debug information is placed in a .debug directory in the same location as the binary it corresponds to. But perf needs a central location to look for all debug information. So, to configure our debug information with a structure that perf understands, we also need the following in our conf/local.conf configuration file:
PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
Finally, configure the Linux kernel with the CONFIG_DEBUG_INFO configuration variable to include debug information, CONFIG_KALLSYMS to add debug symbols into the kernel, and CONFIG_FRAME_POINTER to be able to see complete stack traces.
Note
As we saw in the Using the kernel's performance counters recipe, we will also need to pass maxcpus=1 (or maxcpus=0 to disable SMP) to the Linux kernel in order to use the i.MX6 PMU, due to the sharing of the PMU interrupt between all cores. Also, in order to use the PMU on i.MX6 processors, the SoC needs to receive at least 4 JTAG clock cycles after power on reset. This is documented in the errata number ERR006259.
At the time of writing, the meta-fsl-arm layer for Yocto 1.7 disables some of perf features. To be able to follow the upcoming examples, remove the following line from the meta-fsl-arm layer's /opt/yocto/fsl-community-bsp/sources/meta-fsl-arm/conf/machine/include/imx-base.inc file:
-PERF_FEATURES_ENABLE = ""
Newer Yocto releases will include this by default.
How to do it...
Perf can be used to provide a default set of event statistics for a particular workload with:
perf stat <command>
For example, a single ping will provide the following output:
perf stat ping -c 1 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: seq=0 ttl=64 time=6.489 ms
--- 192.168.1.1 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 6.489/6.489/6.489 ms
Performance counter stats for 'ping -c 1 192.168.1.1':
8.984333 task-clock # 0.360 CPUs utilized
15 context-switches # 0.002 M/sec
0 cpu-migrations # 0.000 K/sec
140 page-faults # 0.016 M/sec
3433188 cycles # 0.382 GHz
123948 stalled-cycles-frontend # 3.61% frontend cycles idle
418329 stalled-cycles-backend # 12.18% backend cycles idle
234497 instructions # 0.07 insns per cycle
1.78 stalled cycles per insn
22649 branches # 2.521 M/sec
8123 branch-misses # 35.86% of all branches
0.024962333 seconds time elapsed
If we are only interested in a particular set of events, we can specify the events we want to output information from using the -e option.
We can also sample data and store it so that it can be later analyzed:
perf record <command>
Better still, we can add stack backtraces with the -g option:
perf record -g -- ping -c 1 192.168.1.1
The result will be stored on a perf.data file which we would then analyze with:
perf report
Its output can be seen in the following screenshot:
The functions order may be customized with the --sort option.
We can see how perf has resolved both user space and kernel symbols. Perf will read kernel symbols from the Linux kernel ELF file under /boot. If it is stored in a non-standard location, we can optionally pass its location with a -k option. If it does not find it, it will fall back to using /proc/kallsyms, where the Linux kernel exports the kernel symbols to user space when built with the CONFIG_KALLSYMS configuration variable.
Note
If a perf report is not showing kernel symbols, it may be because the ELF file does not match the running kernel. You can try to rename it and see if using /proc/kallsyms works.
Also, to obtain complete backtraces, applications need to be compiled with debug optimization by using the DEBUG_BUILD configuration variable, as we saw earlier in this chapter.
By default, Perf uses a newt interface (TUI) that needs the expand utility, part of coreutils. If coreutils is not included in your root filesystem, you can ask for a text-only output with:
perf report –stdio
After executing the preceding command we get the following output:
We can see all the functions called with the following columns:
In the TUI interface, we can press enter on a function name to access a sub-menu, which will give us the following output:
From this we can, for example, annotate the code as shown in the following screenshot:
If using text mode, we can also get annotated output with:
perf annotate -d <command>
Perf can also do system-wide profiling instead of focusing on a specific workload. For example, to monitor the system for five seconds, we would execute the following command:
perf stat -a sleep 5
Performance counter stats for 'sleep 5':
5006.660002 task-clock # 1.000 CPUs utilized[100.00%]
324 context-switches # 0.065 K/sec [100.00%]
0 cpu-migrations # 0.000 K/sec [100.00%]
126 page-faults # 0.025 K/sec
12200175 cycles # 0.002 GHz [100.00%]
2844703 stalled-cycles-frontend # 23.32% frontend cycles idle [100.00%]
9152564 stalled-cycles-backend # 75.02% backend cycles idle [100.00%]
4645466 instructions # 0.38 insns per cycle
1.97 stalled cycles per insn [100.00%]
479051 branches # 0.096 M/sec [100.00%]
222903 branch-misses # 46.53% of all branches
5.006115001 seconds time elapsed
Or to sample the system for five seconds, we will execute the following command:
perf record -a -g -- sleep 5
When using system-wide measurements the command is just used as measurement duration. For this, the sleep command will not consume extra cycles.
How it works...
The perf tool provides statistics for both user and kernel events occurring in the system. It can instrument in two modes:
By default, perf counts events for all the threads in the given command, including child processes, until the command finishes or is interrupted.
A generic way to run perf is as follows:
perf stat|record [-e <comma separated event list> --filter '<expr>'] [-o <filename>] [--] <command> [<arguments>]
Let's explain the preceding code in detail:
It can also start or sample a running process by passing the -p <pid> option.
We can obtain a list of all available events by executing the following command:
perf list
Or on a specific subsystem with the following command:
perf list '<subsystem>:*'
You can also access raw PMU events directly by using the r<event> event, for example, to read the data cache misses on an ARM core:
perf stat -e r3 sleep 5
Unless specified, the perf record will sample hardware events at an average rate of 1000 Hz, but the rate can be modified with the -F <freq> argument. Tracepoints will be counted on each occurrence.
Reading tracing data
Perf records samples and stores tracing data in a file. The raw timestamped trace data can be seen with:
perf script
After executing the command we get the following output:
As we have seen, we can use a perf report to look at the sampled data formatted for profiling analysis, but we can also generate python scripts that we can then modify to change the way the data is presented, by running the following line of code:
perf script -g python
This will generate a perf-script.py script that looks as follows:
To run the script, use the following command:
perf script -s perf-script.py
You need to install the perf-python package in our target image. You can add this to your image with:
IMAGE_INSTALL_append = " perf-python"
Now you will get a similar output as with the perf script earlier. But now you can modify the print statements in the python code to post process the sampled data to your specific needs.
There's more...
Perf can use dynamic events to extend the event list to any location where kprobe can be placed. For this, configure the kernel for kprobe and uprobe support (if available), as seen in the Using dynamic kernel events recipe earlier.
To add a probe point in a specific function execute the following command:
perf probe --add "tcp_sendmsg"
Added new event:
probe:tcp_sendmsg (on tcp_sendmsg)
You can now use it in all perf tools, such as profiling the download of a file:
perf record -e probe:tcp_sendmsg -a -g -- wget http://downloads.yoctoproject.org/releases/yocto/yocto- 1.7.1/RELEASENOTES
Connecting to downloads.yoctoproject.org (198.145.29.10:80)
RELEASENOTES 100% |**| 11924 0:00:00 ETA
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.025 MB perf.data (~1074 samples)]
And you can view the profiling data executing the following command:
perf report
And then you get the following output:
Note
You may need to configure DNS servers in your target for the wget command as seen in the preceding code to work. To use Google's public DNS servers, you can add the following to your /etc/resolv.conf file:
nameserver 8.8.8.8
nameserver 8.8.4.4
You can then delete the probe with:
perf probe --del tcp_sendmsg
/sys/kernel/debug//tracing/uprobe_events file does not exist - please rebuild kernel with CONFIG_UPROBE_EVENT.
Removed event: probe:tcp_sendmsg
Profile charts
System behavior can be visualized using a perf timechart. To gather data, run:
perf timechart record -- <command> <arguments>
And to turn it into an svg file use the following command:
perf timechart
Using perf as strace substitute
Perf can be used as an alternative to strace but with much less overhead with the following syntax:
perf trace record <command>
However, the Yocto recipe for perf does not currently build this support. We can see the missing library in the compilation log:
Makefile:681: No libaudit.h found, disables 'trace' tool, please install audit-libs-devel or libaudit-dev
See also
Using SystemTap
SystemTap is a GPLv2 licensed system wide tool that allows you to gather tracing and profiling data from a running Linux system. The user writes a systemtap script, which is then compiled into a Linux kernel module linked against the same kernel source it is going to run under.
The script sets events and handlers, which are called by the kernel module on the specified events triggering. For this, it uses the kprobes and uprobes (if available) interfaces in the kernel, as we saw in the Using dynamic kernel events recipe before.
Getting ready
To use SystemTap, we need to add it to our target image either by adding it specifically, as in:
IMAGE_INSTALL_append = " systemtap"
We can also add it by using the tools-profile image feature, or an -sdk image.
We will also need an SSH server running on the target. This is already available on the -sdk image; otherwise we can add one to our image with the following:
EXTRA_IMAGE_FEATURES += "ssh-server-openssh"
We will also need to compile the kernel with the CONFIG_DEBUG_INFO configuration variable to include debug information, as well as performance events counters and kprobes as explained in previous recipes.
How to do it...
To use systemtap on a Yocto system, we need to run the crosstap utility in the host, passing it the systemtap script to run. For example, to run the sys_open.stp sample script, we can run the following code:
probe begin
{
print("Monitoring starts\n")
printf("%6s %6s %16s\n", "UID", "PID", "NAME");
}
probe kernel.function("sys_open")
{
printf("%6d %6d %16s\n", uid(), pid(), execname());
}
probe timer.s(60)
{
print("Monitoring ends\n")
exit()
}
We would run the following commands:
$ source setup-environment wandboard-quad
$ crosstap root@<target_ip> sys_open.stp
Yocto does not support running scripts on the target, as that would require building modules on the target, and that is untested.
How it works...
SystemTap scripts are written with its own C/awk like language. They enable us to trace events by instrumenting the kernel code at different locations, such as:
They also enable us to extract data, such as:
Additionally, SystemTap also offers the ability to analyze the gathered data, and for different probes to work together. SystemTap includes a wide selection of example scripts and a framework for creating script libraries that can be shared. These tapsets are installed by default and can be extended by the user's own scripts. When a symbol is not defined in a script, SystemTap will search the tapset library for it.
See also
Using OProfile
OProfile is a statistical profiler released under the GNU GPL license. The version included in the Yocto 1.7 release is a system-wide profiler, which uses the legacy profiling mode with a kernel module to sample hardware performance counters data and a user space daemon to write them to a file. More recent Yocto releases use newer versions that use the performance events subsystem, which we introduced in the Using the kernel's performance counters recipe, so they are able to profile processes and workloads as well.
The version included in Yocto 1.7 consists of a kernel module, a user space daemon to collect sample data, and several profiling tools to analyze captured data.
This recipe will focus on the OProfile version included in the 1.7 Yocto release.
Getting ready
To include OProfile in your system, add the following to your conf/local.conf file:
IMAGE_INSTALL_append += " oprofile"
OProfile is also part of the tools-profile image feature, so you can also add it with:
EXTRA_IMAGE_FEATURES += "tools-profile"
OProfile is also included in the -sdk images.
OProfile does not need debugging symbols in applications unless annotated results are needed. For callgraph analysis, the binaries must have stack frames information so they should be build with debug optimization by setting the DEBUG_BUILD variable in the conf/local.conf file:
DEBUG_BUILD = "1"
To build the kernel driver, configure the Linux kernel with profiling support, CONFIG_PROFILING, and the CONFIG_OPROFILE configuration variable to build the OProfile module.
OProfile uses the hardware counters support in the SoC, but it can also work on a timer-based mode. To work with the timer-based model, you need to pass the oprofile.timer=1 kernel argument to the Linux kernel, or load the OProfile module with:
modprobe oprofile timer=1
Note
Because OProfile relies on the i.MX6 performance counters, we still need to boot with maxcpus=1 for it to work. This restricts the profiling in i.MX6 SoCs to one core.
How to do it...
To profile a single ping, start a profiling session as follows:
opcontrol --start --vmlinux=/boot/vmlinux --callgraph 5
Using 2.6+ OProfile kernel interface.
Reading module info.
Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.
Profiler running.
Then run the workload to profile, for example, a single ping:
ping -c 1 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: seq=0 ttl=64 time=5.421 ms
--- 192.168.1.1 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 5.421/5.421/5.421 ms
And stop collecting data with:
opcontrol --stop
Tip
We will get a parsing error if the kernel image name contains special characters. To avoid it, we can use a symbolic link as follows:
ln -s /boot/vmlinux-3.10.17-1.0.2- wandboard+gbe8d6872b5eb /boot/vmlinux
Also, if you see the following error:
Count 100000 for event CPU_CYCLES is below the minimum 1500000
You will need to change the reset count of the CPU_CYCLES event to that minimum, with:
opcontrol --setup --event=CPU_CYCLES:1500000
You can then view the collected data with:
opreport -f
Using /var/lib/oprofile/samples/ for samples directory.
CPU: ARM Cortex-A9, speed 996000 MHz (estimated)
Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No unit mask) count 1500000
CPU_CYCLES:150...|
samples| %|

401 83.0228 /boot/vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb
31 6.4182 /bin/bash
28 5.7971 /lib/libc-2.20.so
18 3.7267 /lib/ld-2.20.so
3 0.6211 /usr/bin/oprofiled
1 0.2070 /usr/bin/ophelp
1 0.2070 /usr/sbin/sshd
And an excerpt for output with callgraph and symbols is as follows:
opreport -cl
Using /var/lib/oprofile/samples/ for samples directory.
warning: [heap] (tgid:790 range:0x3db000-0x4bc000) could not be found.
warning: [stack] (tgid:785 range:0x7ee11000-0x7ee32000) could not be found.
CPU: ARM Cortex-A9, speed 996000 MHz (estimated)
Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No unit mask) count 1500000
samples % app name symbol name

102 48.8038 vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb __do_softirq
107 51.1962 vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb do_softirq
102 21.1180 vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb __do_softirq
102 47.4419 vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb __do_softirq
102 47.4419 vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb __do_softirq [self]
7 3.2558 vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb net_rx_action
4 1.8605 vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb run_timer_softirq
--- ----------
31 6.4182 bash /bin/bash
How it works...
The OProfile daemon records data continuously, accumulating data from multiple runs. Use the --start and --stop options to start and stop accumulating new data. If you want to start collecting data from scratch, use the --reset option first.
Before running a profiling session, you need to configure the OProfile daemon to run with or without kernel profiling. Specifying the kernel profiling option is the only compulsory configuration variable.
In order to configure the OProfile daemon, stop it first (if running) with the --shutdown option. The --stop option will only stop data collection, but will not kill the daemon.
To configure OProfile without kernel profiling you execute the following command:
opcontrol --no-vmlinux <options>
And to configure the kernel profiling, we can run the following command:
opcontrol --vmlinux=/boot/path/to/vmlinux <options>
Both of these will configure the daemon and load the OProfile kernel module, if needed. Some common options are:
Once the daemon is configured, you can start a profiling session.
To check the current configuration, you execute:
opcontrol --status
Daemon not running
Session-dir: /var/lib/oprofile
Separate options: library kernel
vmlinux file: /boot/vmlinux
Image filter: none
Call-graph depth: 5
The sampled data is stored in the /var/lib/oprofile/samples/ directory.
We can then analyze the collected data with:
opreport <options>
Some useful options include:
OProfile mounts a pseudo filesystem in /dev/oprofile which is used to report and receive configuration from user space. It also contains a character device node used to pass sampled data from the kernel module to the user space daemon.
There's more...
Yocto includes a graphical user interface for OProfile that can be run in the host. However, it is not part of Poky and needs to be downloaded and installed separately.
Refer to the oprofileui repository at https://git.yoctoproject.org/cgit/cgit.cgi/oprofileui/ for a README with instructions, or to the Yocto Project's Profiling and Tracing Manual at http://www.yoctoproject.org/docs/1.7.1/profile-manual/profile-manual.html.
See also
Using LTTng
LTTng is a set of dual licensed GPLv2 and LGPL tracing and profiling tools for both applications and kernel. It produces binary trace files in the production optimized Compact Trace Format (CTF), which can then be analyzed by tools, such as babeltrace.
Getting ready
To include the different LTTng tools in your system, add the following to your conf/local.conf file:
IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
They are also part of the tools-profile image feature, so you can also add them with:
EXTRA_IMAGE_FEATURES += "tools-profile"
These are also included in the -sdk images.
Tip
At the time of writing, Yocto 1.7 excludes lttng-modules from the tools-profile feature and sdk images for ARM; so they have to be added manually.
The LTTng command-line tool is the main user interface to LTTng. It can be used to trace both the Linux kernel—using the kernel tracing interfaces we have seen in previous recipes—as well as instrumented user space applications.
How to do it...
A kernel profiling session workflow is as follows:
lttng create test-session
Session test-session created.
Traces will be written in /home/root/lttng-traces/test- session-20150117-174945
lttng enable-event --kernel sched_switch,sched_process_fork
Warning: No tracing group detected
Kernel event sched_switch created in channel channel0
Kernel event sched_process_fork created in channel channel0
You can get a list of the available kernel events with:
lttng list --kernel
This corresponds to the static tracepoint events available in the Linux kernel.
lttng start
Tracing started for session test-session
ping -c 1 192.168.1.1
lttng stop
Waiting for data availability.
Tracing stopped for session test-session
lttng destroy
Session test-session destroyed
babeltrace /home/root/lttng-traces/test-session-20150117- 174945
The profiling data can also be copied to the host to be analyzed.
User space applications and libraries need to be instrumented so that they can be profiled. This is done by linking them with the liblttng-ust library.
Applications can then make use of the tracef function call, which has the same format as printf(), to output traces. For example, to instrument the example helloworld.c application we saw in previous chapters, modify the source in meta-custom/recipes-example/helloworld/helloworld-1.0/helloworld.c as follows:
#include <stdio.h>
#include <lttng/tracef.h>
main(void)
{
printf("Hello World");
tracef("I said: %s", "Hello World");
}
Modify its Yocto recipe in meta-custom/recipes-example/helloworld/helloworld_1.0.bb as follows:
DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 f302"
SRC_URI = "file://helloworld.c"
DEPENDS = "lttng-ust"
S = "${WORKDIR}"
do_compile() {
${CC} helloworld.c -llttng-ust -o helloworld
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
Then build the package, copy it to the target, and start a profiling session as follows:
lttng create test-user-session
Session test-user-session created.
Traces will be written in /home/root/lttng-traces/test-user- session-20150117-185731
lttng enable-event -u -a
Warning: No tracing group detected
All UST events are enabled in channel channel0
lttng start
Tracing started for session test-user-session
helloworld
Hello World
lttng stop
Waiting for data availability.
Tracing stopped for session test-user-session
lttng view
[18:58:22.625557512] (+0.001278334) wandboard-quad lttng_ust_tracef:event: { cpu_id = 0 }, { _msg_length = 19, msg = "I said: Hello World" }
lttng destroy test-user-session
Session test-user-session destroyed
How it works...
Kernel tracing is done using the tracing functionalities available in the Linux kernel, as we have seen in previous recipes. For the following examples to work, the Linux kernel must be configured appropriately as seen in the corresponding recipes earlier.
LTTng provides a common user interface to control some of the kernel tracing features we saw previously, such as the following:
You can enable specific static tracepoint events with:
lttng enable-event <comma separated event list> -k
You can enable all tracepoints with:
lttng enable-event -a -k --tracepoint
You can also enable all syscalls with:
lttng enable-event -a -k --syscall
You can enable all tracepoints and syscalls with:
lttng enable-event -a -k
You can also add dynamic tracepoints with:
lttng enable-event <probe_name> -k --probe <symbol>+<offset>
You can also add them with:
lttng enable-event <probe_name> -k --probe <address>
You can also use the function tracing kernel functionality with:
lttng enable-event <probe_name> -k --function <symbol>
And the hardware performance counters, for example for the CPU cycles, with the following command:
lttng add-context -t perf:cpu:cpu-cycles -k
Use the add-context --help option to list further context options and perf counters.
Extending application profiling
Further applications tracing flexibility can be achieved with the tracepoint() call by writing a template file (.tp), and using the lttng-gen-tp script along with the source file. This generates an object file that can then be linked to your application.
At the time of writing, Yocto has no standard way to cross-instrument user space applications, but it can be done natively using an -sdk image, or adding the following image features to the conf/local.conf file:
EXTRA_IMAGE_FEATURES += "tools-sdk dev-pkgs"
For example, define a tracepoint hw.tp file as follows:
TRACEPOINT_EVENT(
hello_world_trace_provider,
hw_tracepoint,
TP_ARGS(
int, my_integer_arg,
char*, my_string_arg
),
TP_FIELDS(
ctf_string(my_string_field, my_string_arg)
ctf_integer(int, my_integer_field, my_integer_arg)
)
)
Pass this through the lttng-gen-tp tool to obtain hw.c, hw.h, and hw.o files:
lttng-gen-tp hw.tp
Tip
Note that the lttng-gen-tp tool is not installed with the lttng-ust package, but with the lttng-ust-bin package. This has to be added to be the target image, for example, by adding the following in your conf/local.conf file:
IMAGE_INSTALL_append = " lttng-ust-bin"
You can now add the hw.h header file to your helloworld application that is in the helloworld.c file and use the tracepoint() call as follows:
#include <stdio.h>
#include "hw.h"
main(void)
{
printf("Hello World");
tracepoint(hello_world_trace_provider, hw_tracepoint, 1, "I said: Hello World");
}
Now link your application with the native gcc as follows:
gcc -o hw helloworld.c hw.o -llttng-ust -ldl
Tip
Note that in order to use gcc on the target, we need to build one of the -sdk images, or add some extra features to our image, such as:
EXTRA_IMAGE_FEATURES = "tools-sdk dev-pkgs"
To profile your application, do the following:
lttng create test-session
Spawning a session daemon
Warning: No tracing group detected
Session test-session created.
Traces will be written in /home/root/lttng-traces/test- session-20150117-195930
lttng enable-event --userspace hello_world_trace_provider:hw_tracepoint
Warning: No tracing group detected
UST event hello_world_trace_provider:hw_tracepoint created in channel channel0
lttng start
Tracing started for session test-session
#./hw
Hello World
lttng stop
lttng view
[20:00:43.537630037] (+?.?????????) wandboard-quad hello_world_trace_provider:hw_tracepoint: { cpu_id = 0 }, { my_string_field = "I said: Hello World", my_integer_field = 1 }
lttng destroy test-session
There's more...
You can also use the Trace Compass application or Eclipse plugin to analyze the traces in the host by visiting http://projects.eclipse.org/projects/tools.tracecompass/downloads. A stable release was not yet available at the time of writing.
See also
Using blktrace
There are a few tools available to perform block devices I/O monitoring and profiling.
Starting with iotop which we mentioned in the Exploring Yocto's tracing and profiling tools recipe, which gives a general idea of the throughput on a system and a particular process. Or iostat, which provides many more statistics regarding CPU usage and device utilization, but does not provide per process details. And finally blktrace that is a GPLv2 licensed tool which monitors specific block devices I/O at a low level, and can also compute I/O operations per second (IOPS).
This recipe will explain how to use blktrace to trace block devices and blkparse, to convert the traces into human readable format.
Getting ready
To use blktrace and blkparse, you can add them to the target image by adding it specifically, as in:
IMAGE_INSTALL_append = " blktrace"
Alternately, you can also use the tools-profile image feature, or an -sdk image.
You will also need to configure the Linux kernel with CONFIG_FTRACE and CONFIG_BLK_DEV_IO_TRACE to be able to trace block I/O actions.
When profiling a block device, it is important to minimize the effect of the tracing on the results; for example, not storing the tracing data on the block device being profiled.
There are several ways to achieve this:
Also, the filesystem being used in the block device to profile is an important factor, as filesystem features such as journalism will distort the I/O statistics. Flash filesystems, even if they are presented to user space as block devices, cannot be profiled with blktrace.
How to do it...
Let's imagine you want to profile the I/O for the microSD card device on the Wandboard. By booting the system from the network, as seen in the Configuring network booting for a development setup recipe from Chapter 1, The Build System, you can avoid unnecessary access to the device by the system.
For this example, we will mount as an ext2 partition to avoid journalism, but other tweaks may be needed for effective profiling of a specific workload:
mount -t ext2 /dev/mmcblk0p2 /mnt
EXT2-fs (mmcblk0p2): warning: mounting ext3 filesystem as ext2
EXT2-fs (mmcblk0p2): warning: mounting unchecked fs, running e2fsck is recommended
The workflow to profile a specific workload is as follows:
blktrace /dev/mmcblk0
dd if=/dev/urandom of=/mnt/home/root/random-10k-file bs=1k count=10 conv=fsync
10+0 records in
10+0 records out
10240 bytes (10 kB) copied, 0.00585167 s, 1.7 MB/s
^C=== mmcblk0 ===
CPU 0: 30 events, 2 KiB data
Total: 30 events (dropped 0), 2 KiB data
Some useful options for blktrace are:
How it works...
Once you have gathered the tracing data, you can process it with blkparse as follows:
blkparse mmcblk0
This provides an stdout output for all the gathered data, and a final summary, as follows:
Input file mmcblk0.blktrace.0 added
179,0 0 1 0.000000000 521 A W 1138688 + 8 <- (179,2) 1114112
179,0 0 2 0.000003666 521 Q W 1138688 + 8 [kworker/u8:0]
179,0 0 3 0.000025333 521 G W 1138688 + 8 [kworker/u8:0]
179,0 0 4 0.000031000 521 P N [kworker/u8:0]
179,0 0 5 0.000044666 521 I W 1138688 + 8 [kworker/u8:0]
179,0 0 0 0.000056666 0 m N cfq519A insert_request
179,0 0 0 0.000063000 0 m N cfq519A add_to_rr
179,0 0 6 0.000081000 521 U N [kworker/u8:0] 1
179,0 0 0 0.000121000 0 m N cfq workload slice:6
179,0 0 0 0.000132666 0 m N cfq519A set_active wl_class:0 wl_type:0
179,0 0 0 0.000141333 0 m N cfq519A Not idling. st->count:1
179,0 0 0 0.000150000 0 m N cfq519A fifo= (null)
179,0 0 0 0.000156000 0 m N cfq519A dispatch_insert
179,0 0 0 0.000167666 0 m N cfq519A dispatched a request
179,0 0 0 0.000175000 0 m N cfq519A activate rq, drv=1
179,0 0 7 0.000181333 83 D W 1138688 + 8 [mmcqd/2]
179,0 0 8 0.735417000 83 C W 1138688 + 8 [0]
179,0 0 0 0.739904333 0 m N cfq519A complete rqnoidle 0
179,0 0 0 0.739910000 0 m N cfq519A set_slice=4
179,0 0 0 0.739912000 0 m N cfq schedule dispatch
CPU0 (mmcblk0):
Reads Queued: 0, 0KiB Writes Queued:1,4KiB
Read Dispatches: 0, 0KiB Write Dispatches:1,4KiB
Reads Requeued: 0 Writes Requeued:0
Reads Completed: 0, 0KiB Writes Completed:1,4KiB
Read Merges: 0, 0KiB Write Merges:0,0KiB
Read depth: 0 Write depth:1
IO unplugs: 1 Timer unplugs:0
Throughput (R/W): 0KiB/s / 5KiB/s
Events (mmcblk0): 20 entries
Skips: 0 forward (0 - 0.0%)
The output format from blkparse is:
179,0 0 7 0.000181333 83 D W 1138688 + 8 [mmcqd/2]
This corresponds to:
<mayor,minor> <cpu> <seq_nr> <timestamp> <pid> <actions> <rwbs> <start block> + <nr of blocks> <command>
The columns correspond to:
The RWBS field corresponds to:
Another way of tracing non-disruptively is using live monitoring, that is, piping the output of blktrace to blkparse directly without writing anything to disk, as follows:
blktrace /dev/mmcblk0 -o - | blkparse -i -
This can also be done in just one line:
btrace /dev/mmcblk0
There's more...
The blktrace command can also send the tracing data over the network so that it is stored on a different device.
For this, start blktrace on the target system as follows:
blktrace -l /dev/mmcblk0
And on another device, run another instance as follows:
$ blktrace -d /dev/mmcblk0 -h <target_ip>
Back to the target, you can now execute the specific workload you want to trace:
dd if=/dev/urandom of=/mnt/home/root/random-10k-file bs=1k count=10 conv=fsync
10+0 records in
10+0 records out
10240 bytes (10 kB) copied, 0.00585167 s, 1.7 MB/s
Once it finishes, interrupt the remote blktrace with Ctrl + C. A summary will be printed at both the target and the host.
You can now run blkparse to process the gathered data.
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Table of Contents
Embedded Linux Projects Using Yocto Project Cookbook
Table of Contents
Embedded Linux Projects Using Yocto Project Cookbook
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Sections
Getting ready
How to do it…
How it works…
There's more…
See also
Conventions
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
1. The Build System
Introduction
Setting up the host system
Getting ready
How to do it...
How it works...
There's more...
See also
Installing Poky
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a build directory
How to do it...
How it works...
There's more...
Building your first image
Getting ready
How to do it...
How it works...
There's more...
Explaining the Freescale Yocto ecosystem
Getting ready
How to do it...
How it works...
There's more...
See also
Installing support for Freescale hardware
Getting ready
How to do it...
How it works...
There's more...
See also
Building Wandboard images
How to do it...
How it works...
See also
Troubleshooting your Wandboard's first boot
Getting ready
How to do it...
There's more...
Configuring network booting for a development setup
Getting ready
Installing a TFTP server
Installing an NFS server
How to do it...
Sharing downloads
Getting ready
How to do it...
Sharing the shared state cache
How to do it...
There's more...
Setting up a package feed
Getting ready
Versioning packages
How to do it...
See also
Using build history
How to do it...
How it works...
Looking at the build history
There's more...
Working with build statistics
How to do it...
How it works...
There's more...
Debugging the build system
Getting ready
Finding recipes
Dumping BitBake's environment
Using the development shell
How to do it...
Task log and run files
Adding logging to recipes
Looking at dependencies
Debugging BitBake
Error reporting tool
There's more...
2. The BSP Layer
Introduction
Creating a custom BSP layer
How to do it...
How it works...
There's more...
Adding a new machine
Adding a custom device tree to the Linux kernel
Adding a custom U-Boot machine
Adding a custom formfactor file
Introducing system development workflows
How to do it...
How it works...
External development
Working directory development
External source development
Adding a custom kernel and bootloader
Getting Ready
Finding the Linux kernel source
Finding the U-Boot source
Developing using a Git repository fork
How to do it...
How it works...
Building the U-Boot bootloader
How to do it...
How it works...
External development
How it works…
External source development
Working directory development
Explaining Yocto's Linux kernel support
How to do it...
How it works...
See also
Describing Linux's build system
How to do it...
How it works...
There's more...
Configuring the Linux kernel
Getting ready
How to do it...
There's more...
Using configuration fragments
Building the Linux kernel
How to do it...
How it works...
External development
External source development
Working directory development
Building external kernel modules
Getting ready
How to do it...
There's more...
Debugging the Linux kernel and modules
How to do it...
How it works...
There's more...
Using dynamic debug
Rate-limiting debug messages
See also
Debugging the Linux kernel booting process
How to do it...
How it works...
Dumping the kernel's printk buffer from the bootloader
There's more...
Using the kernel function tracing system
Getting ready...
How to do it...
How it works...
There's more...
Filtering function traces
Enabling trace options
Using the function tracer on oops
Getting a stack trace for a given function
Configuring the function tracer at boot
See also
Managing the device tree
Getting ready
How to do it...
How it works...
The compatible property
The Wandboard device tree file
Defining buses and memory-addressable devices
There's more...
Modifying and compiling the device tree in Yocto
See also
Debugging device tree issues
How to do it...
How it works...
Looking at the device tree from U-Boot
Looking at the device tree from the Linux kernel
3. The Software Layer
Introduction
Exploring an image's contents
Getting ready
How to do it...
How it works...
Adding a new software layer
Getting ready
How to do it...
How it works...
There's more...
Selecting a specific package version and providers
How to do it...
How do we select which provider to use?
How do we select which version to use?
How do we select which version not to use?
Adding supported packages
Getting ready
How to do it...
How it works...
There's more...
Configuring packages
Adding new packages
Getting ready
How to do it...
How it works...
Package licensing
Fetching package contents
Specifying task overrides
Configuring packages
Splitting into several packages
Setting machine-specific variables
Adding data, scripts, or configuration files
How to do it...
Managing users and groups
Getting ready
How to do it...
There's more...
Using the sysvinit initialization manager
Getting ready
How to do it...
Using the systemd initialization manager
Getting ready
How to do it...
There's more...
Installing systemd unit files
Installing package-installation scripts
Getting ready
How to do it...
How it works...
Reducing the Linux kernel image size
How to do it...
How it works...
Reducing the root filesystem image size
How to do it...
How it works...
Releasing software
Getting ready
How to do it...
There's more…
See also
Analyzing your system for compliance
How to do it...
There's more
Working with open source and proprietary code
How to do it...
How it works...
The U-Boot bootloader
The Linux kernel
Glibc
BusyBox
The Qt framework
The X Windows system
There's more...
See also
4. Application Development
Introduction
Introducing toolchains
Getting ready
How to do it...
Preparing and using an SDK
Getting ready
How to do it...
Using the Application Development Toolkit
Getting ready
How to do it...
How it works...
Using the Eclipse IDE
Getting ready
How to do it...
There's more...
See also
Developing GTK+ applications
Getting ready
How to do it...
There's more...
Using the Qt Creator IDE
Getting ready
How to do it...
Developing Qt applications
Getting ready
How to do it...
There's more...
Describing workflows for application development
How to do it...
How it works...
External development
Working directory development
External source development
Working with GNU make
How to do it...
See also
Working with the GNU build system
Getting ready
How to do it...
See also
Working with the CMake build system
Getting ready
How to do it...
See also
Working with the SCons builder
Getting ready
How to do it...
See also
Developing with libraries
Getting ready
Building a static library
Building a shared dynamic library
How to do it...
How it works...
There's more...
See also
Working with the Linux framebuffer
Getting ready
How to do it...
How it works...
There's more...
See also
Using the X Windows system
Getting ready
How to do it...
There's more...
See also
Using Wayland
Getting ready
How to do it...
There's more...
See also
Adding Python applications
Getting ready
How to do it...
There's more...
Integrating the Oracle Java Runtime Environment
Getting ready
How to do it...
There's more...
Integrating the Open Java Development Kit
Getting ready
How to do it...
How it works...
There's more...
See also
Integrating Java applications
Getting ready
How to do it...
How it works...
There's more...
5. Debugging, Tracing, and Profiling
Introduction
Analyzing core dumps
Getting ready
How to do it...
How it works...
See also
Native GDB debugging
Getting ready
How to do it...
There's more...
See also
Cross GDB debugging
Getting ready
How to do it...
How it works...
Using strace for application debugging
Getting ready
How to do it...
How it works...
See also
Using the kernel's performance counters
Getting ready
How to do it...
How it works...
There's more...
See also
Using static kernel tracing
Getting ready
How to do it...
How it works...
There's more...
See also
Using dynamic kernel tracing
Getting ready
How to do it...
There's more...
See also
Using dynamic kernel events
Getting ready
How to do it...
How it works...
There's more...
Exploring Yocto's tracing and profiling tools
Getting ready
How to do it...
There's more...
Tracing and profiling with perf
Getting ready
How to do it...
How it works...
Reading tracing data
There's more...
Profile charts
Using perf as strace substitute
See also
Using SystemTap
Getting ready
How to do it...
How it works...
See also
Using OProfile
Getting ready
How to do it...
How it works...
There's more...
See also
Using LTTng
Getting ready
How to do it...
How it works...
Extending application profiling
There's more...
See also
Using blktrace
Getting ready
How to do it...
How it works...
There's more...
Index