Table of Contents
Webmin Administrator's Cookbook
Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
Introduction
Installing Webmin on a Debian-based system
How to do it...
How it works...
There's more...
See also
Installing Webmin on an RPM-based system
How to do it...
How it works...
There's more...
See also
Installing Webmin on another system
Getting ready
How to do it...
How it works...
See also
Connecting to Webmin
Getting ready
How to do it...
How it works...
There's more...
Changing Webmin's listening port
Specifying the IP address on which Webmin listens
Installing additional Webmin modules
Getting ready
How to do it...
How it works...
There's more...
Installing a module from a repository
Uninstalling a module
See also
Monitoring what Webmin is doing
Getting ready
How to do it...
How it works...
There's more...
Rolling back file changes
See also
Controlling which system services are started at boot
How to do it...
How it works...
There's more...
Creating a custom init script
Inspecting active processes
Inspecting the installed software packages
How to do it...
How it works...
There's more...
Viewing the files installed with a package
Identifying which package installed a file
Installing software packages
Getting ready
How to do it...
How it works...
There's more...
Updating the installed packages to the latest versions
How to do it...
How it works...
There's more...
Enabling Webmin to send an e-mail
Getting ready
How to do it...
How it works...
See also
Getting an e-mail when new versions of packages become available
Getting ready
How to do it...
How it works...
There's more...
Reading the documentation of the installed software
How to do it...
How it works...
There's more...
Introduction
Creating a Webmin user
Getting ready
How to do it...
How it works...
There's more...
Clone a Webmin user
Switch to user
See also
Creating a Webmin group with access to specific modules and options
How to do it...
How it works...
There's more...
Permissions for all modules
See also
Allowing users to log in to Webmin with the system credentials
Getting ready
How to do it...
How it works...
There's more...
Creating Webmin users based on system accounts
Getting ready
How to do it...
How it works...
Controlling who is currently using Webmin
How to do it...
How it works...
Creating a system user account
Getting ready
How to do it...
How it works...
Modifying a user's UID and other information
How to do it...
How it works...
Temporarily disabling a user account
How to do it...
How it works...
Creating and editing a system group
How to do it...
How it works...
Changing a user's password
Getting ready
How to do it...
How it works...
Exporting users and importing them into another system
How to do it...
How it works...
Webmin's batch file format for operations on users
Webmin's batch file format for operations on groups
There's more...
Export and import system groups
Batch update user accounts
Batch delete user accounts
See also
Installing Usermin
How to do it...
How it works...
See also
Introduction
Server security checklist
Keeping your system up-to-date
Turning off unnecessary services
Building a firewall around your system
Performing backups
Monitoring your system
Verifying the strength of your passwords
Verifying the system security and setting up intrusion detection and prevention software
Setting up a Linux firewall
Some iptables terminology
Getting ready
How to do it...
How it works...
There's more...
See also
Allowing access to a service through the firewall
Getting ready
How to do it...
How it works...
There's more...
Creating a service accessible only from the internal network
See also
Verifying your firewall by port scanning
Getting ready
How to do it...
How it works...
There's more...
Host discovery with Nmap
Scanning all ports
Scanning without administrative privileges
See also
Turning off unnecessary services
How to do it...
How it works...
Verifying the strength of passwords
Getting ready
How to do it...
How it works...
Disabling root login over SSH
How to do it...
How it works...
Restricting Webmin access to a specific IP
Getting ready
How to do it...
How it works...
There's more...
Allowing access from multiple IP addresses
Allowing access from a dynamically allocated IP
Allowing access from an IP range
Allowing access from the local network
Connecting to Webmin securely over an SSH tunnel
Getting ready
How to do it...
How it works...
There's more...
Sharing the SSH tunnel with other machines
Creating a tunnel on Windows using Putty
See also
Closing inactive Webmin sessions automatically
How to do it...
How it works...
Introduction
Executing a command on the server
How to do it...
How it works...
There's more...
Executing a series of commands
Executing commands conditionally
Executing a command from history
Executing a command as another user
Getting ready
How to do it...
How it works...
There's more...
Passing input to a command
Running tasks in background
Setting a command to be executed in the future
Getting ready
How to do it...
How it works...
There's more...
See also
Scheduling a command to run regularly with cron
Getting ready
How to do it...
How it works...
There's more...
Disabling a cron task temporarily
Cloning a cron task
Specifying which users can schedule tasks with cron
Creating a panel for the commands that you execute often
Getting ready
How to do it...
How it works...
There's more...
Cloning a command
Specifying command arguments
Making the command available in Usermin
See also
Creating a panel with the database commands that you execute often
Getting ready
How to do it...
How it works...
See also
Running a terminal emulator in the browser
How to do it...
How it works...
There's more...
Introduction
Viewing and searching through system logfiles
Getting ready
How to do it...
How it works…
There's more...
Configuring system logs to refresh automatically
See also
Saving Syslog messages to a file
Getting ready
How to do it...
How it works...
There's more...
Adding other logfiles to Webmin
Getting ready
How to do it…
How it works...
There's more...
Configuring logfile rotation
Getting ready
How to do it...
How it works...
There's more...
Rotating logfiles on demand
Editing default options
Sending logfiles by email when rotating
Listing recent logins
How to do it...
How it works...
There's more...
Receiving an e-mail when a service stops running
Getting ready
How to do it...
How it works...
There's more...
Inspecting monitor history
Using predefined monitors
Monitoring system load
Monitoring disk space
See also
Automatically restarting a service that goes down
Getting ready
How to do it...
How it works...
Monitoring a remote server
Getting ready
How to do it...
How it works...
There's more...
Checking that a remote server is up
Checking that a remote server is running a network service
6. Managing Files on Your System
Introduction
Downloading files from the server
How to do it...
How it works...
See also
Uploading files to the server
Getting ready
How to do it...
How it works...
There's more...
Downloading files from the Web directly onto your server
Downloading files from the Web in the background
Managing files and directories on the server
Getting ready
How to do it...
Copying or moving a file or directory
Renaming a file or directory
Deleting a file or directory
Editing a file on the server
Creating a directory on the server
Creating a new file on the server
Creating a symbolic link on the server
Downloading a directory and its content
Extracting files from a compressed archive
How it works...
See also
Changing file ownership and permissions
Getting ready
How to do it...
How it works...
There's more...
Enabling the setuid bit on an executable file
Setting the sticky bit on a directory
Changing ACLs on a directory
Setting up network-shared folders for Windows
Getting ready
How to do it...
Creating a UNIX pseudo user
Creating a Samba shared network folder
Creating Samba user accounts
Granting Samba users access to the shared folder
How it works...
There's more...
Sharing home directories
Checking who's connected and disconnecting sessions
Debugging Samba
Mounting a Windows-shared folder
Getting ready
How to do it...
How it works...
There's more...
Setting up an NFS-shared volume
Getting ready
How to do it...
How it works...
There's more...
Granting access to multiple clients
See also
Mounting a remote NFS volume
Getting ready
How to do it...
How it works...
There's more...
Mounting NFS v4 exports
See also
Giving users access to your server via SFTP
Getting ready
How to do it...
How it works...
See also
Giving users access to your server via FTP
How to do it...
Opening FTP access in your firewall
How it works...
Passive and active FTP connections
Global configuration and virtual servers
There's more...
Restricting access to users' home directories
Denying FTP access to some users
FTP-only users
See also
Introduction
Backing up configuration files
Getting ready
How to do it...
How it works...
There's more...
See also
Restoring configuration files from backup
How to do it...
How it works...
There's more...
See also
Automatically backing up configuration files
Getting ready
How to do it...
How it works...
See also
Creating a backup of a selected directory
Getting ready
How to do it...
How it works...
There's more...
Restoring files from a backup archive
See also
Creating a backup of an entire mount point
Getting ready
How to do it...
How it works...
There's more...
Creating an incremental backup archive
Restoring data from a backup archive
See also
Backing up to a remote host
Getting ready
How to do it...
How it works...
Setting up automatic backups
How to do it...
How it works...
Backing up databases
How to do it...
How it works...
See also
8. Running an Apache Web Server
Introduction
Installing Apache on your system
Getting ready
How to do it...
How it works...
There's more...
Setting Apache to start at system boot time
Monitoring that Apache is up and running
See also
Restarting Apache
How to do it...
How it works...
There's more...
Verifying Apache configuration syntax
Enabling Apache modules
How to do it...
How it works...
There's more...
Installing additional modules from software packages
Creating a static HTML site
How to do it...
How it works...
See also
Creating a virtual host
Getting ready
How to do it...
How it works...
There's more...
Creating an IP-based virtual host
See also
Setting options for directories, files, and locations
Getting ready
How to do it...
How it works...
There's more...
Setting options on files with names matching a pattern
Setting options for specific URLs
Changing matching path or pattern
Setting options using an .htaccess file
Creating a password-protected website
Getting ready
How to do it...
Creating a user account
How it works...
There's more...
Keeping Apache and system accounts synchronized
See also
Displaying a listing of files in a directory
Getting ready
How to do it...
How it works...
There's more...
See also
Redirecting incoming requests
Getting ready
How to do it...
How it works...
There's more...
Creating a filesystem alias
Setting up encrypted websites with SSL
Getting ready
Generating a private key
Making a self-signed certificate
Obtaining a commercially signed certificate
Inspecting certificate data
How to do it...
How it works...
There's more...
Logging incoming requests and errors
Getting ready
How to do it...
How it works...
See also
Analyzing logfiles using Webalizer
Getting ready
How to do it...
How it works...
There's more...
9. Running a MySQL Database Server
Introduction
Installing the MySQL database server
How to do it...
How it works...
There's more...
Making MySQL ready for production use
See also
Allowing access to MySQL over the network
Getting ready
How to do it...
Instructing MySQL server to listen for network connections
Creating a new user
Granting user access to database
Testing the connection
How it works...
There's more...
Managing databases remotely
See also
Accessing your MySQL server over an SSH tunnel
Getting ready
How to do it...
How it works...
There's more...
Making an SSH tunnel in MySQL Workbench
See also
Creating a new database
How to do it...
How it works...
See also
Creating users and granting permissions to databases
Getting ready
How to do it...
Creating a user account
Granting privileges
How it works...
There's more...
Granting permissions to a specific database table
Granting permissions to a specific column in a database table
Automatically granting new system users access to MySQL
Creating a backup of your database
Getting ready
How to do it...
How it works...
There's more...
Backing up all databases automatically
Exporting a database table to CSV
See also
Executing custom SQL commands
How to do it...
How it works...
See also
Restoring database from the backup
Getting ready
How to do it...
How it works...
There's more...
Editing the structure of your database
Getting ready
How to do it...
Creating a table in a database
Adding a field to a database table
Editing a field
Creating an index
Deleting an index
Deleting a field
Deleting a table from the database
How it works...
See also
Editing records in a database
Getting ready
How to do it...
Adding a row to database table
Editing a row
Deleting a row
How it works...
See also
Checking who is using your database server
How to do it...
How it works...
There's more...
Installing phpMyAdmin
How to do it...
How it works...
There's more...
10. Running a PostgreSQL Database Server
Introduction
Installing the PostgreSQL database server
How to do it...
How it works...
See also
Locating the PostgreSQL server configuration files
Getting ready
How to do it...
How it works...
There's more...
Determining location of other configuration files and data files
Checking values of other settings
Allowing access to PostgreSQL over the network
Getting ready
How to do it...
How it works...
See also
Accessing the PostgreSQL server over an SSH tunnel
Getting ready
How to do it...
How it works...
See also
Creating a new database
How to do it...
How it works...
See also
Creating users and granting permissions
How to do it...
How it works...
There's more...
See also
Creating a backup of your database
Getting ready
How to do it...
How it works...
There's more...
Backing up all databases automatically
Exporting a database table to CSV
See also
Executing custom SQL commands
How to do it...
How it works...
There's more...
Executing a SQL script from a file
See also
Restoring a database from backup
How to do it...
How it works...
There's more...
Editing the structure of your database
Getting ready
How to do it...
How it works...
See also
Editing records in a database
Getting ready
How to do it...
How it works...
See also
Installing phpPgAdmin
How to do it...
How it works...
Introduction
Generating dynamic pages using CGI
Getting ready
Checking what user and group Apache is running as
How to do it...
How it works...
There's more...
Displaying incoming request headers
Displaying incoming request body
See also
Installing PHP
Getting ready
How to do it...
How it works...
See also
Changing PHP configuration settings
Getting ready
How to do it...
How it works...
There's more...
Modifying PHP settings for a directory using .htaccess files
Modifying PHP settings dynamically inside script code
See also
Displaying PHP errors while debugging
How to do it...
How it works...
See also
Logging in PHP
Getting ready
How to do it...
How it works...
There's more...
See also
Installing WordPress on your server
How to do it...
Creating a database
Creating a virtual host and installing WordPress
How it works...
See also
Installing Drupal on your server
Getting ready
How to do it...
Creating a database
Creating a virtual host and installing WordPress
How it works...
See also
Installing a Django-based application using mod_wsgi
How to do it...
How it works...
See also
12. Setting Up an E-mail Server
Introduction
Setting up your server to send and receive e-mails
Getting ready
How to do it...
How it works...
See also
Setting up secure IMAP access to mailboxes
Getting ready
How to do it...
How it works...
There's more...
See also
Setting up a secure SMTP relay for users
Getting ready
How to do it...
How it works...
There's more...
See also
Controlling the mail queue
Getting ready
How to do it...
How it works...
Reading and writing e-mails on the server
How to do it...
How it works...
Configuring e-mail aliases
How to do it...
How it works...
There's more...
Creating a simple mailing list
Using .forward files
See also
Filtering incoming mail using Procmail and SpamAssassin
How to do it...
How it works...
There's more...
See also
Debugging e-mail-related problems
Getting ready
How to do it...
How it works...
There's more...
Analyzing mail logs
Testing message sending through Webmin
Sending mail from the command line
Using Telnet to test SMTP authentication
See also
Webmin Administrator's Cookbook
Webmin Administrator's Cookbook
Copyright © 2014 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: March 2014
Production Reference: 1190314
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK
ISBN 978-1-84951-584-9
Cover Image by Michał Karzyński (<michal@karzynski.pl>)
Credits
Author
Michał Karzyński
Reviewers
Valerie Odolph Azar
Robert K Casto
Habyb Fernandes
Andrew Pam
Danny Sauer
Acquisition Editors
Nikhil Chinnari
Sarah Cullington
Akram Hussain
Content Development Editor
Arvind Koul
Technical Editors
Tanvi Bhatt
Neha Mankare
Shiny Poojary
Copy Editors
Roshni Banerjee
Sarang Chari
Brandt D'Mello
Project Coordinator
Priyanka Goel
Proofreaders
Bridget Braund
Ameesha Green
Lauren Harkins
Indexer
Tejal Soni
Graphics
Ronak Dhruv
Production Coordinator
Kyle Albuquerque
Cover Work
Kyle Albuquerque
About the Author
Michał Karzyński, with a scientific research background in the areas of molecular biology and bioinformatics, has been running Unix-like operating systems since 2002. He works as a web application developer, programming in dynamic languages such as JavaScript, Python, Perl, and PHP. He specializes in designing programming interfaces between servers and client applications based on the HTTP protocol. He has been using Webmin for over five years to assist in setting up and managing servers. He is currently employed as a project manager at the Gdańsk University of Technology in Poland. His blog can be found at http://michal.karzynski.pl.
I would like to thank my family and all my friends for their support. I would also like to express my gratitude to Jamie Cameron, the author of Webmin and all other contributors of open source projects who have made our digital revolution a fair and welcoming meritocracy.
About the Reviewers
Valerie Odolph Azar graduated from Holy Spirit University of Kaslik (USEK) in 2013 with a diploma in IT. As a part of her curriculum, she started to share her experience by working at MGG The Linux Experts company from June 2012, improving her skills in server and networking (Linux, CentOS 5, Knoppix, and Windows). She's currently a part of Microsoft Student Partner (MSP) from October 2012 at Microsoft. She develops applications in Windows 8 and Windows Phone 8 based on the C# language (using VS 2012). In addition, she's familiar with Java, HTML, VB.net, JavaScript, CS5, C++, PL/SQL, and OpenGL. She had participated in Imagine Cup 2013 where her team, M#jeur, introduced the MusicLanguage application. In May 2013, she started working at OmniSoft (IBM Partners). She learned, tested, and discovered new IBM products (TSM, TIM, TDI, WebSphere Application Server, and so on). She learned more about server hardware and maintaining teamwork by working as a technical consultant in software services. In November 2013, she started to work at Procomix Technology Group as a system developer.
Special thanks to my family and friends who support me every day, and to all my acquaintances at Procomix company who always help me upgrade my knowledge and achieve my goals.
Robert K Casto was born and raised in Columbus, Ohio where he graduated from The Ohio State University with a Computer Science degree in 1995. He has worked for companies such as Nationwide Financial Services, Amazon.com, Cornerstone Brands, PCMS, Walgreens, and Best Buy. He now lives in Cincinnati, Ohio where he started SellersToolbox in 2011 to help companies that sell on Amazon.com. He has spoken at Sellers Conference for Online Entrepreneurs (SCOE), volunteers for The Strange Loop conference in St Louis, and works on Cub Scout projects with his son. This is his first foray into the publishing world, and he would like to thank the people at Packt Publishing for making the experience an enjoyable one.
Habyb Fernandes is a senior website developer, an IT developer, and definitely a tech enthusiast based in the city of Rio de Janeiro, Brazil. He has over 12 years' experience in creating websites and belongs to a time when it was very fun to create static websites using tables, frames, and animated gifs. In all these years, he acquired a lot of experience working with a wide variety of sizes and design requirements. He has specialized in Drupal, developing solutions to medium and large customers.
Andrew Pam has been following developments in hypermedia and hypertext, content management and online publishing, file systems, distributed systems, and peer-to-peer networking for many years. He is also interested in digital information preservation and is an active advocate of free and open source software and free speech rights. His main interests are in hypermedia, computer-mediated communications technologies, media, and culture.
He is a chief scientist and system administrator of Project Xanadu, the original hypertext system that founded the field; a partner and system administrator of Glass Wings, the longest running arts website in Australia celebrating its twentieth anniversary in 2014; and a manager and system administrator of the computer consultancy Serious Cybernetics. He is a life member since the founding and ten-year board member of the online civil rights organization Electronic Frontiers Australia; a committee member of the Linux Users of Victoria user group; and currently employed as a senior software developer by Australia's leading independent digital publisher Private Media.
Danny Sauer has been a system administrator, Perl developer, security engineer, open source advocate, and general computer geek at various companies for around 20 years. His exposure to Webmin began in the late 90s, and he has written a number of custom modules over the years. When he's not building solutions in the digital world, he and his wife enjoy restoring their antique home and teaching new tricks to old cars.
www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.Â
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
Preface
Welcome to Webmin Administrator's Cookbook. This book provides over a hundred practical recipes for solving real-world system administration tasks through a convenient tool called Webmin.
Running an internet-connected private server used to be expensive and available mainly to larger companies who either hired professional sysadmins or outsourced administration. Thanks to the wide adoption of virtualization software, efficient private servers have now become available to anyone with the right skills. Whether you're a developer trying to optimize the performance of your web application or you're a startup looking to implement new software architecture for your systems, chances are you'll need to configure and run your own servers.
Few things are as valuable as having the right tools for a job, and Webmin is a great addition to your toolbox. It allows you to get your server up and running quickly, monitor its state, and be notified by e-mail when the server needs your attention. Webmin simplifies many system administration tasks by abstracting away the complexity of the system command and configuration file syntax, replacing them with a friendly graphical web interface.
Webmin is very lightweight for a GUI application because it doesn't require a desktop environment to be running on your system. You also don't need complex desktop sharing solutions to use it. Since it is a web application, all you need to make full use of Webmin is a browser. Its web nature also makes Webmin resilient to slow or unstable Internet connections. Overall, it's a great tool for administering servers remotely.
The following are just some of the things Webmin can do:
In this book, we will discuss all of the topics given in the previous list. We'll go through the process of setting up a server from a fresh installation to a full-fledged web application server that runs Apache, a database management system and e-mail software. We'll cover how to set up web applications written in a range of scripting languages. We'll also set up Webmin to monitor your system and alert you about potential problems.
What this book covers
Chapter 1, Setting Up Your System, covers the first steps that will get your Webmin up and running. In this chapter, we will discuss how to set up Webmin itself, how to monitor what it does, and how to undo changes made through Webmin. The chapter also covers the process of installing other software on your system, selecting which software gets started at boot time, and how to inspect what installation packages put on your system.
Chapter 2, User Management, deals with topics related to the users of your system. The chapter discusses adding and editing system users or groups, allowing these users access to Webmin. We'll also demonstrate how Webmin can be used to export a list of all users from one server and import their accounts into another system. We end the chapter by introducing Usermin, the user-facing companion of Webmin.
Chapter 3, Securing Your System, deals with basic system security, including locking down your system with a firewall and connecting to system services over encrypted tunnels. We'll go through a checklist of security precautions that you should take before putting your server on the Internet.
Chapter 4, Controlling Your System, demonstrates how Webmin can be used to execute commands on your system remotely through a web browser. In this chapter, we'll also discuss how to set up cron jobs to execute commands regularly, delaying command execution until a chosen time, and setting up a web panel for easy access to tasks you need to run occasionally.
Chapter 5, Monitoring Your System, discusses how Webmin can be used to watch over your system and even other servers. We'll demonstrate how Webmin can be set up to handle a situation when services on your machine crash—it can send you e-mail alerts or try to restart the services automatically. In this chapter, we'll also discuss how to analyze the state of your system through log files and configure log rotation routines.
Chapter 6, Managing Files on Your System, covers topics related to remote file management through Webmin. In this chapter, we will also cover how to set up your system as a file-sharing server (CIFS, NFS, SFTP, and FTP) and demonstrate how you can use Webmin to connect your system to remote file shares (CIFS and NFS).
Chapter 7, Backing Up Your System, deals with making copies of important files and databases for safekeeping. We'll demonstrate how Webmin can be used to automate this process, run it on a schedule, and even make off-site backups.
Chapter 8, Running an Apache Web Server, goes through topics related to administering your web server. We'll set up and configure Apache; create virtual servers, password-protected sites, HTTPS websites; and inspect incoming traffic and error logs.
Chapter 9, Running a MySQL Database Server, and Chapter 10, Running a PostgreSQL Database Server, cover tasks related to setting up and running your database server. We'll demonstrate how Webmin can be used to create and edit databases, back them up and manage database users. We'll also demonstrate how to connect to your database securely over an encrypted tunnel and how to install web-based database management tools.
Chapter 11, Running Web Applications, demonstrates how all the pieces come together to run web applications. We'll demonstrate how to set up your system to run web apps written in any scripting language, but we'll focus mainly on PHP and Python. We'll provide recipes for installing popular applications such as WordPress, Drupal, and Django.
Chapter 12, Setting Up an E-mail Server, covers topics related to e-mail. We'll demonstrate how to set your system up as an e-mail server for both incoming and outgoing mail. We'll also discuss dealing with spam.
What you need for this book
Throughout this book, we'll be dealing with system administration, which means you'll need a system to administer. You will get the most out of this book if you rent a Virtual Private Server (VPS) from a hosting provider and set it up with a fresh installation of Linux (preferably Debian or CentOS). VPS servers are inexpensive these days, with prices starting at $5/month. If you prefer to experiment locally, you can set up a virtual machine inside the free VirtualBox platform. You should also configure a terminal emulator or SSH client through which you can access your server to execute commands and edit files.
All instructions provided here will work on Linux, so you will get most out of this book if that is the OS you're using. Debian- or RedHat-based distributions are recommended, but other Linux flavors supported by Webmin should work as well. Many of these recipes will also work on other Unixes (such as BSD-based FreeBSD or OS X), but Webmin's support for these platforms may be limited in places. A complete list of operating systems supported by Webmin may be found online at:
http://www.webmin.com/support.html
Tip
Super users with administrative privileges
In order to perform most tasks described in this book, you will need to have administrative privileges on your system.
The main system administrator on Unix-like operating systems such as Linux is often called root. On some systems you can log in as this super user. When this is the case, you can do anything and everything on the system. This makes potential mistakes more dangerous. Other systems (such as Ubuntu) won't allow you to log in as root, so you will need to log in as a regular user with super user (sudo) privileges.
Users and groups with super user privileges are defined in the /etc/sudoers file. Throughout this book, we will mark commands that require administrative privileges by preceding them with the sudo command, for example:
$ sudo apt-get install webmin
Note that you don't need to use this additional command if you're logged in as root, but it's a good practice to stay logged in as a regular user.
If you can't find the /etc/sudoers file on your system, you will have to log in as root and install the sudo package.
Keep in mind that Webmin runs as root on your system, which means that it can break things. The recipes in this book have been tested, but every system is different and we can't guarantee that they will always work as expected. Before you implement these solutions on your production systems, you should test them in a secondary machine. Make sure you know what you're doing before changing the configuration of your production systems.
Who this book is for
This book is for people who decide to administer a Linux system and want to learn how Webmin helps to make administrative tasks easier. It is expected that you have some previous experience with Linux, but you don't necessarily need to be familiar with all of its details. If you're a novice administrator, this book is a good starting off point; if you're a professional, this book will highlight how Webmin can make your job simpler.
When working with Webmin you may find places where it does not behave as expected on your particular version of your operating system. You should report such cases to Webmin's authors via GitHub. Make sure you include the exact version numbers of Webmin, your OS and other software you're running and step-by-step instructions needed to reproduce your problem. Webmin's issues tracker on GitHub can be found at: https://github.com/webmin/webmin/issues
Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, and user input are shown as follows: "The above account and privileges will allow the dbuser to connect to and have full control over the testdb database."
A block of code is set as follows:
create:groupname:passwd:gid:member,member,...
When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
create:username:passwd:uid:gid:realname:homedir:shell:min:max:warn:inactive:expire
modify:oldusername:newusername:passwd:uid:gid:realname:homedir:shell:min:max:warn:inactive:expire
delete:username
Any command-line input or output is written as follows:
$ perl -le'@chars=(a..z,A..Z,0..9,_);$p.=$chars[rand(@chars)] while($i++<22);print $p'
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Click the Create button to create the account".
Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Setting Up Your System
In this chapter, we will cover the following topics:
Introduction
Webmin is an open source, web-based system configuration tool written primarily in Perl. Thanks to its web nature, Webmin can be used to control your system remotely from any computer running a browser. It allows you to control numerous aspects of your system's configuration, such as managing users, installing additional software, configuring services, controlling access, and monitoring system activity.
In this chapter, we'll focus on installing Webmin and then demonstrate how it can be used to perform the tasks related to installing, upgrading, and running other software on your system.
Installing Webmin on a Debian-based system
Installing Webmin on a Debian-based system, such as Ubuntu or Linux Mint, is easy because we can rely on the excellent package management system called Advanced Packaging Tool (APT). APT resolves and installs dependencies automatically and also ensures that Webmin will be updated automatically when you perform a system update.
How to do it...
To install Webmin, perform the following steps:
deb http://download.webmin.com/download/repository sarge contrib
deb http://webmin.mirror.somersettechsolutions.co.uk/repository sarge contrib
Tip
On most systems, the vi text editor is installed by default, but it may be a bit tricky if you haven't used it before. If you want an easy-to-use editor, try nano. You can install it by issuing the following command:
$ sudo apt-get install nano
After it's installed, you can use nano to edit the sources.list file by issuing the following command:
$ sudo nano /etc/apt/sources.list
$Â wget -qO - http://www.webmin.com/jcameron-key.asc | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install webmin
How it works...
Webmin provides an online repository with DEB installation packages that are compatible with Debian-based systems. We need to give our system the address of this repository so that it can take advantage of it. The list of available repositories is kept in the /etc/apt/sources.list file as well as other *.list files stored in the /etc/apt/source.list.d/ directory.
Every package is cryptographically signed to ensure that even if someone breaks into the repository and uploads a package pretending to be Webmin, we don't install it by accident. We downloaded the public GPG key needed to verify this signature by using wget and added it to our list of trusted keys by using the apt-key add command.
GNU Privacy Guard (GPG) is an open source alternative to Pretty Good Privacy (PGP), a cryptographic software suite that provides encryption and authentication functions. Every Webmin package contains a GPG cryptographic signature, which could only be generated using a private key that is kept secret by Webmin's author Jamie Cameron. A corresponding public key, which is made freely available, may be used to verify that the signature was generated using that private key. If even a single bit of the package code were modified after the package was signed, the signature would not match anymore. This ensures that nobody tampers with Webmin on its way between the author and your system. APT checks the signature automatically, we just need to provide it with Webmin's public key.
Tip
If you want to be extra careful, you can check whether the public key you imported is actually the one belonging to Jamie Cameron. Issue the following command and verify that its output contains the same key fingerprint:
$ sudo apt-key fingerprint
/etc/apt/trusted.gpg

pub 1024D/11F63C51 2002-02-28
 Key fingerprint = 1719 003A CE3E 5A41 E2DE 70DF D97A 3AE9 11F6 3C51
uid Jamie Cameron <jcameron@webmin.com>
By updating the APT cache, we ensure that our system becomes aware of packages available in the new repository. Then, we can install Webmin. APT not only resolves dependencies and installs more than just the Webmin package, but also other components it needs to run, including the Perl programming language and others.
There's more...
Webmin also provides a .deb (Debian software package) file that can be downloaded and installed manually. If you want to do it this way for some reason, you would need to follow these steps:
$ wget http://prdownloads.sourceforge.net/webadmin/webmin_NNN_all.deb
$ sudo apt-get install perl libapt-pkg-perl libnet-ssleay-perl openssl libauthen-pam-perl libpam-runtime libio-pty-perl apt-show-versions python
$ sudo dpkg --install webmin_NNN_all.deb
Tip
Your system may complain that some other package needed by Webmin is missing. For instance, you could see an error message like the following:
dpkg: dependency problems prevent configuration of webmin:
webmin depends on PACKAGE-NAME; however:
 Package PACKAGE-NAME is not installed.
If you see this error, you should install the package designated by PACKAGE-NAME before installing Webmin.
See also
More information about installing Webmin on a Debian-based system and about APT package management in general can be found at the following Webmin and Debian websites:
Installing Webmin on an RPM-based system
Installing Webmin on an RPM-based system, such as RHEL, Fedora, CentOS, or openSUSE, is just as easy as on Debian-based systems. Here, we'll rely on the equally excellent package management system called Red Hat Package Manager (RPM) and the yum utility. Yum resolves and installs dependencies automatically and also ensures that Webmin will be updated automatically when you perform a system update.
On a SUSE-based system, you may use the yum utility as well, but it isn't installed by default. On these systems, it may be more convenient to use the zypper command-line utility or the YaST interface. In this recipe, we will provide zypper alternatives to yum commands to be used on SUSE.
How to do it...
To install Webmin, perform the following steps:
[Webmin]
name=Webmin Distribution Neutral
#baseurl=http://download.webmin.com/download/yum
mirrorlist=http://download.webmin.com/download/yum/mirrorlist
enabled=1
Tip
On most systems, the vi text editor is installed by default, but it may be a bit tricky if you haven't used it before. If you want an easy-to-use editor, try nano. You can install it by issuing the following command:
$ sudo yum install nano
After it's installed, you can use nano to edit the webmin.repo file by issuing the following command:
$ sudo nano /etc/yum.repos.d/webmin.repo
Note
On a SUSE-based system, you don't need to edit the repository files manually. You can add Webmin's repository by issuing the following command:
$ sudo zypper addrepo -f http://download.webmin.com/download/yum "Webmin Distribution Neutral"
$ wget http://www.webmin.com/jcameron-key.asc
$ sudo rpm --import jcameron-key.asc
$ rm jcameron-key.asc
$ sudo yum makecache
Note
On a SUSE-based system, issue the following command:
$ sudo zypper refresh
$ sudo yum install webmin
Note
On a SUSE-based system, issue the following command:
$ sudo zypper install webmin
How it works...
Installation of Webmin using yum is based on exactly the same principles as installing it using apt-get on Debian. Take a look at the How it works... section in the previous recipe.
There's more...
Webmin also provides an RPM package that can be downloaded and installed manually. If you wanted to do it this way for some reason, you would need to follow these steps:
$ wget http://prdownloads.sourceforge.net/webadmin/webmin-NNN.noarch.rpm
$ sudo yum localinstall webmin-NNN.noarch.rpm
Note
On a SUSE-based system, issue the following command:
$ sudo yast --install webmin-NNN.noarch.rpm
See also
More information about installing Webmin on an RPM-based system can be found at the following Webmin website and wiki:
Installing Webmin on another system
Even if your system doesn't use the Debian or RPM package managers, there may be a Webmin package available in your distribution repositories. For example, Arch Linux and Gentoo provide Webmin packages, while FreeBSD provides a Webmin package and port.
If your system doesn't provide a Webmin package, you may use steps outlined in this recipe to install Webmin on your Unix-like system, such as Linux, BSD, and OS X.
Note
A complete list of supported operating systems can be found on Webmin's website:
http://www.webmin.com/support.html
Getting ready
Before installing Webmin, make sure that you have Perl Version 5 installed on your system. You can verify this using the following command:
$ perl --version
In order to enable SSL encryption of connections, you should install the Perl module Net::SSLeay. You can verify that it's installed by using the following command. It will complain if Net::SSLeay is not installed. If it's installed, the command will generate no output.
$ perl -e "use Net::SSLeay"
How to do it...
Perform the following steps to install Webmin:
$ wget http://prdownloads.sourceforge.net/webadmin/webmin-NNN.tar.gz
$ tar -xzf webmin-NNN.tar.gz
$ cd webmin.NNN
$ sudo ./setup.sh /usr/local/webmin
Config file directory [/etc/webmin]:
Log file directory [/var/webmin]:
Full path to perl (default /usr/bin/perl):
Web server port (default 10000):

Operating system name:Â Â Â Mac OS X
Operating system version: 10.9

Login name (default admin):
Login password:
Password again:
Use SSL (y/n): y
Start Webmin at boot time (y/n): y
How it works...
Webmin installation script is able to install it on most Unix-like operating systems.
When we were starting the installation script, we indicated that we want to install Webmin's program files in /usr/local/webmin. Use a different path if you want to place it elsewhere.
Webmin asks you a series of questions during installation. For instance, it asks you where to store configuration files (defaults to /etc/webmin/) and log files (defaults to /var/webmin/). These locations may be changed, but the defaults will work well on most systems.
You will also need to specify the username and password of the first Webmin user. This user will have complete control of your system through Webmin and will be able to add more user accounts.
See also
You can find more information about installing Webmin on its website at http://www.webmin.com/tgz.html
Look for a Webmin package for your system. Here are a few links:
Connecting to Webmin
The only client software you need to start using Webmin is a web browser. You can connect to Webmin using your server's IP address or domain name. Webmin allows you to change which IP address, port, or domain name it will use for connections.
Getting ready
The first step is to check the IP address of your server. One way to do it is to run the /sbin/ifconfig command. It will give you lots of information about network interfaces configured on your system, including the IP number for each one under the heading inet addr. You will have at least two network interfaces on your system. One will be called lo or lo0, this is the local loopback interface that is used only for connections originating from the same machine. This will have the IP of 127.0.0.1. The other interface will most likely be named eth0 or en0 and this will be the primary network adapter of your machine. To connect from another computer, note this IP address. You can also set up a DNS entry for this IP, and then you'll be able to connect using a domain name.
How to do it...
You can connect to Webmin by performing the following steps:
Tip
If your browser reports that it could not establish a connection to the server, then you may be running a firewall on the server, which is blocking incoming connections. On most Linux systems, the default firewall is called iptables and you can direct it to allow all incoming TCP traffic on the port 10000 by issuing the following command:
$ sudo iptables -I INPUT -p tcp --dport 10000 -j ACCEPT
Tip
If you receive an error stating that establishing a secure connection failed instead, try to connect to http://webmin.host:10000 using regular HTTP.
On the next screen, you will be asked to provide the login and password of a user with administrative privileges. This is almost always either root or a user who has ALL privileges granted through sudo. Type the username and password and hit the button to log in.
Once you log in, Webmin will greet you with a home screen displaying an overview of your system, similar to the following screenshot:
This welcome screen shows Webmin's main interface. On the left-hand side, we see a sidebar containing a hierarchical menu listing all installed modules organized into categories. To the right, we see an interface of the currently activated module (in this case, it's System Information).
How it works...
Webmin runs a web server on port 10000 of your server. Since browsers connect to port 80 by default (or port 443 when using HTTPS), we need to specify the port number as part of the URL.
If the Perl module Net::SSLeay is installed on your system, all connections to Webmin are encrypted to avoid eavesdropping or man-in-the-middle attacks. In order to establish an encrypted connection, we instruct the browser to connect using the HTTPS protocol. If you try to connect over regular HTTP, Webmin will provide you with a page redirecting you to the encrypted connection similar to the following screenshot:
The error message we see when we establish an encrypted connection is caused by the fact that the certificate we're using to encrypt communication was generated by Webmin itself and wasn't signed by a commercial, trusted certificate authority. This is not a cause for worry. A self-signed certificate has one important advantage: it's free, and it provides the same encryption as a commercial certificate.
There's more...
Webmin uses port 10000 by default to host its web server and will accept connections coming in on any network interface. You can change these options if you wish.
Changing Webmin's listening port
Navigate to the Ports and Addresses configuration module by selecting the following options from the menu: Webmin | Webmin Configuration. Then, click the Ports and Addresses icon. You will get the following screen. On this screen, you can change the port on which Webmin listens for connections by specifying it in Listen on port | Specific port. Leave the value of the Bind to IP address field as Any address for now. Consider the following screenshot:
Change the port to 10001 or any unused port number you prefer and click Save.
Tip
You can get a list of used ports by issuing the netstat command. Daemons on your server use some ports to listen for incoming connections. You won't be able to use any of these for Webmin. On Linux, you can use the following command to get a list of listening ports:
$ netstat -ltn
On BSD-based systems, use this instead:
$ netstat -nap tcp | grep LISTEN
Webmin will change its port and redirect you to the new address.
Specifying the IP address on which Webmin listens
You can use the Ports and Addresses screen to select on which IP address Webmin will be listening. This is useful if you have more than one network interface installed on your machine (for instance, one for accessing the Internet and one on a local network). You can also use this option to select the loopback interface and allow only connections originating from the same machine or coming in over an SSH tunnel (refer to the Connecting to Webmin securely over an SSH tunnel recipe in Chapter 3, Securing Your System). To restrict connections only to local traffic, select Bind to IP address | Only address... and enter 127.0.0.1 as shown in the following screenshot:
Installing additional Webmin modules
Webmin has a modular architecture and it's possible to extend it by installing additional modules. The majority of stable Webmin modules come bundled into Webmin, so in most cases you don't actually need to install them. Modules, which are installed but not active, are located in the Un-used Modules section of the menu. They will usually become activated automatically when you install the software that they depend on. For instance, you may see the MySQL Database Server module listed in this section. When you install MySQL or other supported software on your system, Webmin will detect it and move the appropriate module into its section in the menu.
After you install the additional software, you may need to click the Refresh Modules link at the bottom of the menu and reload the browser for this update to happen.
Getting ready
If you find a good third-party module that doesn't come bundled with Webmin, you can install it by following this recipe. Just a word of warning: a Webmin module will have privileged access to your system; you should never install modules from sources you don't fully trust.
How to do it...
To install additional Webmin modules, perform the following steps:
How it works...
Webmin will download and decompress the module archive file and place a new module folder on disk in the /usr/share/webmin/ directory. When you reload Webmin, it will scan the modules directory, discover the new module, and add it to its menu.
Each Webmin module can be made available to all users or a selected group. This choice can be made during the installation of the module or it can be done later in Webmin | Webmin users settings. More information about users and access control can be found in Chapter 2, User Management.
There's more...
Webmin can also download module files from two repositories: the standard module repository hosted at webmin.com and a repository of third-party modules that may be hosted anywhere on the Internet.
Installing a module from a repository
In order to install a module from one of the repositories, perform the following steps:
Webmin will download the file automatically from the repository's URL.
Uninstalling a module
If you'd like to uninstall a module, navigate to Webmin | Webmin Configuration | Webmin Modules | Delete, select the module or modules you want to remove, and click Delete Selected Modules. In the next screen, you will be asked to confirm your action and the modules will be deleted.
See also
Monitoring what Webmin is doing
One useful feature of Webmin is the fact that it keeps a log of every action it performs. It's sometimes useful to refer to this history to check how users have changed your system's configuration through Webmin's interface.
Getting ready
In order to take full advantage of Webmin's logging facility, you should enable the monitoring of file changes made though Webmin. This allows you to roll back the changes later.
In order to enable this function, go to Webmin | Webmin Configuration | Logging and set Yes as the answer to these two questions: Log changes made to files by each action? and Record all modified files before actions, for rollbacks?
How to do it...
To monitor what Webmin is doing, perform the following steps:
How it works...
Webmin records all actions performed by users to the log file /var/webmin/webmin.log. User annotations are stored in the /var/webmin/annotations directory. If monitoring of file changes is enabled, each change is recorded in the /var/webmin/diffs directory. Please note that these directories could potentially grow quite large over time on a busy system.
The Webmin Actions Log interface allows you to search these log files, display them, and use them to revert file changes.
There's more...
If you enabled monitoring of file changes as described in the Getting ready section of this recipe, you can use Webmin to revert the changes.
Rolling back file changes
As an exercise, go to Webmin | Webmin Configuration | User Interface and set the page background to a light blue color with the RGB hex value of C9DFFF. Go back to Webmin | Webmin Actions Log, and then find your action and view its details. In the section Files changed and commands run, you will see that a change to the file /etc/webmin/config was recorded, as shown in the following screenshot:
Tick the checkbox next to the file change and click the Roll Back Selected Files button. Confirm the rollback and go back to the Action Details page. Notice that the background color changes back to white.
See also
Controlling which system services are started at boot
During the boot process, your operating system should load all services that will be running in the background on your machine. This includes database servers, web servers, tools such as Webmin, and other system processes. Server distributions are very lean by default, so they will only start a handful of essential services. Webmin allows you to control which of these scripts is executed through the Bootup and Shutdown module.
How to do it...
Perform the following steps to check which system services are started at boot:
How it works...
When your OS starts, it first loads the system kernel and then starts a process called init (short for initialization), which executes various init scripts that start system services. Under Linux, these scripts are stored in one directory (/etc/init.d) and activated by the creation of symbolic links to them in a special directory from which all scripts are executed at boot time. Webmin allows you to control which init scripts are executed by creating or removing these symbolic links or performing other activation functions specific to your system.
The init system described earlier is often referred to as SysV-style init. It's named after the historic UNIX System V that inspired all modern Unix-like operating systems, including Linux and BSD. Many distributions are gradually switching over to more modern alternatives such as Upstart and Systemd. The details of how these systems differ from SysV-init are beyond the scope of this book, but Webmin tries to provide a common interface to all of them. Screenshots in this recipe may differ slightly depending on which init system your distribution uses.
There's more...
Webmin also allows you to easily create your own init scripts and verify that a started service is actually running.
Creating a custom init script
Most server packages you install will come with their own init scripts and activate them in your init system. If you install a package that doesn't, you can use Webmin to create a simple init script for you.
Navigate to System | Bootup and Shutdown and click the Create a new bootup and shutdown action link.
Note
Depending on the init system you're using, this link may also be named Create a new action, Create a new upstart service, Create a new systemd service, and so on.
You will be asked to specify the name and description of the startup item as well as two commands: one for starting the service and one for shutting it down. Once you fill these out, click Create and Webmin will automatically create a basic init script for you.
Inspecting active processes
Even if a service is successfully started during boot, it could potentially crash. To inspect which services are actually running, go to System | Running Processes. There, you will see a tree of processes sorted in the order in which another process has started them. You can also sort processes by owner or the amount of CPU or RAM they are consuming. Consider the following screenshot:
Click on a process ID for one of Webmin's processes to get more information about it, including those files or network connections the process still has open.
Inspecting the installed software packages
Webmin provides an easy-to-use interface to your system's package management system. You can use it to check what packages are installed and view the files installed by each package.
How to do it...
For checking what packages are installed, perform the following steps:
How it works...
Webmin is able to determine which package management system your OS is using, and provides a unified interface to common tasks such as inspecting, installing, and uninstalling packages. In the background, Webmin will execute the appropriate commands (apt-get, yum, rpm, yast, and so on) for you and display the results in the form of a web page.
There's more...
Beyond simply viewing the installed packages, it's often useful to check which files were installed by a package. You may also be interested in a particular file on disk and want to check which package installed it. Webmin allows you to gather this information easily.
Viewing the files installed with a package
To view files installed from a package, perform the following steps:
Identifying which package installed a file
To identify which package has installed a file, perform the following steps:
If the file is identified by the package management system, you will see a screen with information about the file, including the name of the package which installed it:
Installing software packages
Webmin is able to use your OS package management to install additional software. If you're using a Debian-based system, such as Ubuntu, you can install packages from .deb files or APT repositories. If you're using an RPM-based system, such as CentOS or openSUSE, you can install packages from .rpm files or yum repositories.
Getting ready
Many web applications depend on an image manipulation library called ImageMagick. Many programs that are used to create, edit, compose, or convert bitmap images such as PNG and JPEG use this library. In this recipe, we will install ImageMagick, but the same procedure may be applied to any other software available in your distribution's repository.
How to do it...
Follow these steps to install a software package using Webmin:
Webmin will download and install ImageMagick along with a long list of its dependencies. On the results screen, you can see the details for all the installed packages.
Tip
If the software package you're installing provides a component that may be managed by Webmin (such as Apache, MySQL, PostgreSQL, and Postfix), you should take two additional steps. Click the Refresh Modules link in Webmin's main menu and then refresh your entire browser. This will ensure that Webmin recognizes the newly installed software and updates its menu.
How it works...
Webmin determines which package management system your OS uses. It executes the appropriate commands to search available repositories for packages matching your query and installs them along with their dependencies. The same task can be accomplished from the command line, but Webmin abstracts away the command syntax particular to your packaging system so that you can use the same interface regardless of the underlying OS.
There's more...
Webmin also allows you to install software from a package file that you may have. In order to do that, follow this recipe, but select the From uploaded file radio button and upload your file instead of searching the repository. If your package file is too large to upload with a browser, you can install it from its URL instead.
Please note that this method will require you to install its dependencies manually before installing the package itself.
Updating the installed packages to the latest versions
Open source communities continually release updates to the software they manage. It's very important to be up-to-date with these upgrades, because they often contain fixes for security vulnerabilities discovered in your software.
How to do it...
To update installed packages, perform the following steps:
How it works...
Webmin determines which package management system your OS uses and queries the package repositories for information about latest available versions. You can trigger this package cache update yourself by clicking Refresh Available Packages. When you select to perform the update, Webmin executes the appropriate package management commands to install latest versions.
There's more...
Webmin will also notify you if updates are available for any of its own modules. This notice will appear on the System Information page, which is the first page displayed when you log in. If you see it, click Install Updates Now to install the module updates as shown in the following screenshot:
Enabling Webmin to send an e-mail
Webmin is a good tool for monitoring the state of your server. You can set it up to send you an e-mail whenever an event that requires your attention occurs.
Getting ready
Webmin needs access to a mail server in order to send an e-mail. In Chapter 12, Setting Up an E-mail Server, we will cover setting one up. However, if you don't plan to set up your own mail server or you want to start monitoring your system before you do, you can use an external e-mail service.
Webmin can send e-mail over SMTP, but it doesn't support TLS/SSL encryption. You'll need an account with a provider who allows you to connect via SMTP without encryption.
How to do it...
Perform the following steps to enable Webmin to send e-mails:
How it works...
Webmin is able to communicate with a remote server over unencrypted SMTP, so your mail will actually be sent from there. Please note that the configuration, including your password is saved in clear text on the server in the /etc/webmin/mailboxes/config file. This file is accessible to all users with administrative privileges on the server, and they will be able to read your e-mail password.
See also
Getting an e-mail when new versions of packages become available
If you have multiple servers running with different sets of installed software, it may become cumbersome to regularly check for software updates manually. Webmin allows you to schedule automatic update checking and sends you an e-mail whenever new versions of software become available.
Getting ready
Make sure that Webmin is set up for sending e-mail. Refer to the Enabling Webmin to send an e-mail recipe of this chapter for more information.
How to do it...
To get an e-mail notification when new versions of software become available, perform the following steps:
How it works...
cron is a system utility, which runs in the background as a daemon and starts tasks that are scheduled to execute at a specific time. When Scheduled checking options is enabled, Webmin adds an entry in the system's cron table to execute its update verification script. The cron daemon will then execute the script once every day (hour or week, depending on the setting). If Webmin discovers available updates, it will send you an e-mail.
There's more...
You could set up Webmin to automatically install the updates when they become available. This may not be as great idea as it seems, because every update can potentially break something on your system. This should not normally happen, but it's a good practice for a human to monitor the update process and verify that everything works as it should after updates have been applied.
Reading the documentation of the installed software
Most packages that you install on your system will come with their documentation. Webmin provides a simple utility to search through these manuals.
How to do it...
To read the documentation of the installed software, perform the following steps:
Webmin will search through all available documentation and display a list of all manual pages and package notes that mention wget.
How it works...
Documentation accompanying a package usually consists of the program's manual pages and packaging information. The man pages contain instructions on using the installed software. They are stored in a special format (usually in /usr/share/man, /usr/local/man or similar locations) and displayed using the man command. Package information, on the other hand, may include information about how this package was prepared, how it is intended to be used, and so on. Package docs are usually stored as text or HTML files in /usr/share/doc.
Webmin scans the available man pages, package documentation files, and Perl module documentation for mentions of your search term. It displays all the results in the form of web pages for easy viewing.
There's more...
Webmin provides another important search form, which is located in the sidebar menu under the list of module categories. This allows you to perform a detailed search of Webmin itself, which scans both its documentation and also the elements of its user interface. For instance, if you use this form to search for the Send test message phrase, Webmin will display a result listing with a link to the Sending E-mail module that allows you to send a test e-mail.
Chapter 2. User Management
In this chapter, we will cover:
Introduction
Webmin's user management features are quite sophisticated. You can use Webmin to manage users and groups on your system, decide which of them have access to Webmin, and which modules they will be allowed to see. You can also create special Webmin-only users, who will not have regular accounts on your system, but will still be able to access selected Webmin modules.
If you're the main administrator of a system, you can set up Webmin to allow other administrators to modify only selected parts of your system's configuration. For instance, you can allow sub-administrators to configure the Apache web server but not to change other settings. This particular workflow is so common, in fact, that a sibling product to Webmin called Usermin was developed to allow non-administrators access to a Webmin-like environment through which they can access databases, configure web hosts, set up cron jobs, and read local mail.
Note
Webmin distinguishes between two types of users:
Any system user can be given the status of Webmin user. You can also configure Webmin to add and delete Webmin accounts whenever a system user is added or removed. It's up to you to decide what will suit your situation best—keeping Webmin user accounts separate from system accounts or keeping them synchronized.
Another important concept to keep in mind is a Webmin group. Similar to system groups, these are groups of users with specific privileges. You can decide which modules are available to all members of a Webmin group. In general, if you have more then one user with the same privileges, you should assign them to a group and then assign module permissions to the group instead of assigning them individually to each user. This will make future management easier to handle.
Creating a Webmin user
The simplest way to grant someone access to Webmin is to create a Webmin user account for him/her. You can regulate which IPs the user will be allowed to log in from and even at what times during the week the access will be open. During account creation, you can specify what modules the user will have access to or which group he/she will belong to.
In this recipe, we will create a new user with access to only one module.
Getting ready
We will create a new user account with a single-use password, which the user will have to change after the first login. In order to use this one-time password, we need to enable a feature in Webmin. Perform the following steps to set the password expiry policy:
How to do it...
Perform the following steps to create a new Webmin user:
Tip
Strong passwords are long strings of characters randomly selected from a large alphabet. If you use all alphanumeric characters (a-z, A-Z, and 0–9) then each character adds approximately 6 bits of entropy to the strength of the password. This means that for a 128-bit password you'd need a 22-character string, for a 256-bit strength you'd need 43 characters, and so on. You can generate a pseudo-random password using a simple Perl one-liner such as:
$ perl -le'@chars=(a..z,A..Z,0..9,_);$p.=$chars[rand(@chars)] while($i++<22);print $p'
If you wish to use a truly random password generated by a quantum mechanical white noise generator, visit GRC's Ultra High Security Passwords page:
https://www.grc.com/passwords.htm
How it works...
Webmin keeps its own database of user accounts, separate from the system user list. The list of accounts is kept by default in the miniserv.users file at /etc/webmin/. Information about which modules each account has access to is stored in the webmin.acl file at /etc/webmin/ (acl stands for access control list).
When a user tries to log into Webmin, it checks those files to determine whether the login information provided is correct, if the account is active, and which modules the user has access to. Based on this information, Webmin logs the user in and creates an interface for him/her.
There's more...
Webmin provides additional features, which make account administration easier. For instance, if you find that you need to create a few similar accounts, you can create one and clone it. If you want to preview what Webmin looks like to a particular user, you can switch to that user's account without the need to know their password.
Clone a Webmin user
In order to clone an already existing user account, go to Webmin | Webmin Users, and click the username of the user you would like to clone. At the bottom of the Edit Webmin User screen, you will find a button marked Clone. If you click on it, you will be brought to an account creation page with options prefilled based on settings of the user you cloned.
Switch to user
If you want to check what options Webmin makes available to a particular user, you can go to Webmin | Webmin Users, click on the username, and then click the Switch to User button at the bottom of the screen. After you are finished testing, you will need to log out and log in again as yourself if this user does not have access to the Webmin Users module.
See also
Creating a Webmin group with access to specific modules and options
Webmin users should be organized into groups. If you have more then one user whom you would like to equip with the same privileges, creating a group is the way to go. Webmin provides very granular permissions, which you can grant to each group. You can set the following three types of permissions:
Tip
Permissions for an individual account can be configured with the same level of granularity.
How to do it...
In this recipe, we will create a Webmin group with access limited to viewing log files from the /var/log directory:
Note
Note that full access to this module allows users to view any file as a log. This could give users unauthorized access to other files on your system.
Tip
You can reset module permissions to full access by clicking on the Reset To Full Access button.
Let's verify that the new group permissions work as expected:
You will see Webmin as the new user would see it, and you should have access limited to the System Logs module, within which you should only be able to view logs from /var/log.
How it works...
By default, Webmin keeps information about existing groups in the webmin.groups file at /etc/webmin/. Information about module-specific permissions is stored in access control list (ACL) files. Each module has its own directory in /etc/webmin, containing a separate ACL file for each group and user. For instance, a group of ACL files for a module named module_name and a group named group_name would be stored at: /etc/webmin/module_name/group_name.gacl. A similar file for a user named user_name would be stored in the user_name.acl file at /etc/webmin/module_name/. Webmin inspects these files whenever a user accesses a module and determines which options to make available to them.
Note
The exact structure of each ACL file is specific to its individual module; it may also change when upgrading Webmin to a new version. Editing these files manually requires familiarity with the module's internal code, so it's probably best to edit permissions through Webmin's interface.
There's more...
In addition to module-specific access permissions, Webmin also allows you to specify global permissions, which modify the behavior of all modules.
Permissions for all modules
In order to set Webmin-wide permissions for a group, go to Webmin | Webmin Users, click the name of the group, and open the Permissions for all modules section.
Here, you can set which files will be visible in Webmin's file chooser when a module requires the user to select a file, which users and groups will be visible in their chooser widgets, and other global options:
See also
Allowing users to log in to Webmin with the system credentials
Webmin's default settings don't allow regular system users to log in to Webmin, but at least one user is allowed to log in after installation. Depending on the settings included in your Webmin package, that may be any of the following:
In this recipe, we will allow all users of a Unix group to log in to Webmin with limited permissions.
Getting ready
We need to begin by creating a standard Webmin account, which will be shared by all system users we grant access to. Refer to the recipe, Creating a Webmin user, for instructions, and create a Webmin account, named webmin_user, for instance, with specific permissions.
How to do it...
Follow these steps to allow members of a system group to log in to Webmin:
From now on, all Unix users belonging to the users group will be able to log in to Webmin and have the same privileges as the Webmin user you selected.
How it works...
If we use the preceding configuration, Webmin will verify login credentials against the pluggable authentication module (PAM) service configured on your system. In its basic setup, PAM will verify credentials against those stored in the standard system files (/etc/passwd and /etc/shadow).
Note
If PAM is set up differently on your system, the login information may be validated by an external service such as LDAP, NIS, Kerberos, Active Directory, or looked up in a SQL database. By default, Webmin uses your system's common configuration (system-auth or common-auth), but it can use its own separate settings.
Webmin also checks which system groups the authenticating user belongs to. If any of those groups are listed in Webmin's configuration or the user account is individually listed as allowed, the user will be logged in as if using the associated Webmin account.
There's more...
In order to allow the users with unrestricted access via sudo to log in to Webmin as root, follow these steps:
Creating Webmin users based on system accounts
In previous recipes, we talked about creating Webmin users and allowing system users to log in as a chosen Webmin account. You may choose to have a more direct, one-to-one correspondence between Webmin and system accounts. You can achieve this by creating Webmin accounts for selected existing users and setting up account synchronization for users added in the future.
Getting ready
In this recipe, we will create a Webmin account for each system user. All new Webmin accounts will be assigned to a Webmin group. Before we begin, set up a Webmin group following the recipe, Creating a Webmin group with access to specific modules and options.
How to do it...
Our first step will be to create Webmin accounts for existing system users:
Webmin accounts for all selected users should now be created. You can inspect them on the Webmin Users screen.
The second step is to instruct Webmin to create accounts automatically for all newly created system users:
From now on, every new system account will be associated with an automatically created Webmin account.
Note
Please note that Webmin will not synchronize accounts created at the command line or by editing system configuration files directly. Only system accounts created through Webmin will receive associated Webmin accounts.
How it works...
Webmin inspects your system configuration files (/etc/passwd and /etc/group) to find a list of system users and creates corresponding Webmin accounts based on your selection.
Note
In reality, Webmin doesn't read the passwd file directly, but instead uses a system call such as getpwent to inspect your system's password database. This means that account information may also be read from a database or external services such as NIS or LDAP.
If you set up user synchronization, Webmin adds an additional step to its user creation functionality, which automatically sets up a new Webmin account for each new system user.
Controlling who is currently using Webmin
Webmin keeps a log of all the actions performed by users. You can inspect a list of currently open user sessions, check what actions were performed during a session, or close a session, forcing the user to be logged out.
How to do it...
Perform these steps to check which users are currently logged into Webmin:
You can close any session, except your own, and force the user to log in again. To do this, click the link in the Session ID column. The next time this user clicks a link or submits a form, he/she will be asked to log in again.
How it works...
Whenever a user logs in, Webmin creates a session for him/her. A session consists of a specific ID and associated information about who the owner of the session is and whether the session is active.
The session ID is passed to the user's browser in a secure cookie, thanks to which Webmin can identify subsequent requests coming in from the same user. This identifier is stored in Webmin's log files to group together actions performed by the user during the time between logging in and logging out. You can search Webmin's log for actions associated with any session.
If you choose to end a session, Webmin deletes its identifier from the list of active sessions. When the user makes another request to Webmin, the session identifier passed by the cookie will no longer be recognized, and the user will have to log in again, creating a new session.
Creating a system user account
Creating user accounts in Unix is a multistep process: you need to add user data to system configuration files, create a home directory, copy template files to that directory, and set ownership of those files to the new user. Webmin automates this process for you.
Tip
In addition, if you set up synchronization, a Webmin account will also be created for the new user. Refer to the recipe, Creating Webmin users based on existing system accounts, for more information about account synchronization.
Getting ready
We will create a new user account with a single-use password, which the user will have to change to after the first login. In order to allow the user to change the password through Webmin, go to Webmin | Webmin Configuration | Authentication, and set the Password expiry policy option to Prompt users with expired passwords to enter a new one.
How to do it...
Perform the following steps to create a system user account:
Tip
Take a look at the recipe, Creating a Webmin user, for a note about generating strong passwords.
How it works...
Quite a bit is happening here; let's go through it step by step.
We are asking Webmin to create an account for the user whose real name we specified. The user will be able to log in using the username we provided. We told Webmin to generate User ID and Home directory automatically. The UID will be the first available integer higher than 500 or 1,000, depending on the system. The home directory will be placed in /home/ and named as the username.
We set the user's shell to /bin/bash, which is the default user shell on most modern Linux distributions. If your users prefer to use a different shell, such as ksh, zsh, or fish, you can set it here after its package is installed.
Tip
If you wish to prevent the user from logging into the system console (or over SSH and FTP), you can set the shell to /bin/false. This will prevent shell access but will allow the user to use other system services that don't require Unix user authentication, such as e-mail or Webmin.
Next, we created a one-time password for the user. The user will be forced to change it after the first login regardless of whether he/she logs in through the console or Webmin.
During account creation, we need to assign the user to a primary group. On some systems, the default group will be named users; other systems will create a private group for the new user, named the same as the user. It's up to you as the system's administrator to decide how you wish to use these groups.
Because we answered Yes to questions about setting up the home directory, Webmin took care of it for us and created the new user's directory with all the required files.
Finally, by answering Yes to the question about creating the user account in other modules, we told Webmin to make information about the new account available to other parts of Webmin. Thanks to this, the new user will be available in configuration settings of other modules (for instance, file sharing).
Modifying a user's UID and other information
Modifying basic information about an existing user is usually quite simple. The exception to this rule is the change of a user's UID. This is sometimes necessary if a user has accounts on two different Unix systems and both systems have to identify him/her as the same person. A typical example of this situation is sharing files over NFS as we will discuss in Chapter 6, Managing Files on Your System.
Changing a UID requires an update of file ownership of all files belonging to that user. This can be quite tedious, but Webmin does the job for us.
How to do it...
Follow these steps for modifying a user's UID:
Note
Limiting file updates to the user's home directory will speed things up, but any files belonging to the user but located in other directories will become orphaned. If a new user is later created with the leftover UID, these files may unexpectedly change hands and belong to the new user. Choose this option only if you're sure that the user doesn't own any files outside of the home directory.
Tip
You can use the same method to change the GID of the user's primary group.
How it works...
Webmin updates the user's system data with the information you provide. It then scans the disk in search of files that belong to the user and updates the file owner's UID.
Temporarily disabling a user account
If a person stops using your system, it's often a good idea not to delete their account, but rather to disable it. Perhaps you need to preserve data for forensic purposes, the user would need access to your system again in the future or is the owner of files on your system, which you don't want to delete or leave orphaned.
How to do it...
Disabling a user account through Webmin is very easy. Perform the following steps to do so:
Tip
You can re-enable the account by following the same procedure. Just uncheck the Login temporarily disabled box, and hit Save.
How it works...
To disable a user account, Webmin updates the /etc/shadow file, which stores hashed user passwords. The password hash for the selected user is prepended with an exclamation point (!). This invalidates the hash and makes the password unusable, so the user can no longer log in. Removing the exclamation point re-enables the account.
Creating and editing a system group
Creating and editing system groups through Webmin is very simple; just follow the steps outlined.
How to do it...
Let's start by creating a group as follows:
You can now edit the group by performing the following steps:
How it works...
Depending on which operating system you're using, Webmin will either directly modify system files that store information about groups (/etc/group, /etc/gshadow), or use a dedicated utility to update group information (such as the dscl—Directory Service command-line utility on OS X).
When you change a group's GID, Webmin will also scan your filesystem and update all the files owned by the group with its new GID.
Changing a user's password
When a user forgets his/her password, he/she will contact you as the system's administrator and request a password reminder. For security reasons, passwords are stored on your system only in the form of cryptographic hashes, not plain text. Because of this, you cannot send passwords to users, but you can reset a password and send the new one to the user. The best practice in such a case is to make the new password usable only once, allowing the user to log in, but requesting that he/she immediately change it to a password of his/her own choice.
In this recipe, we will describe how to reset a user's password to a one-time value.
Getting ready
In order to use single-use passwords in Webmin, we need to enable this feature. Go to Webmin | Webmin Configuration | Authentication, and set the Password expiry policy option to Prompt users with expired passwords to enter a new one.
How to do it...
Perform the following steps to change the user's password:
Tip
Take a look at the recipe, Creating a Webmin user, for a note about generating strong passwords.
How it works...
Webmin modifies your system's passwords file (/etc/shadow), updating the user's stored password hash with the new string we provided.
Your system also stores the information about when the password was last changed. Webmin changes this setting to 0 (equivalent to January 1, 1970). This causes your system to request a password change next time the user logs in. Webmin also respects this setting and will ask the user to change the password when he/she logs into Webmin. Note the steps described in the Getting ready section.
Exporting users and importing them into another system
When you're setting up another server for your organization, you may need to recreate accounts of multiple users on the new system. Webmin's user management module has the ability to export data about existing user accounts to a special batch file, which you can then import into any other system that also runs Webmin. This allows you to recreate multiple accounts quickly and easily.
How to do it...
In this recipe, we will export selected users from one system (source) and import them into a second system (destination).
Let's start by exporting users as follows:
Tip
Note that you should use an export format compatible with the destination operating system. Use the Standard format if you're exporting to Linux, but use the BSD, Mac OS, or AIX specific formats if you're exporting to those systems. Always test on a small number of users' accounts before importing a large batch.
You can now import the accounts on another machine.
How it works...
Webmin uses a simple but powerful file format to describe its operations on users and groups. Each line in this file describes a single operation, which may be either create, modify, or delete. Fields in each line are separated by colon characters (:), similar to the format of the Unix user file (/etc/passwd). The first field is the name of the operation, the second field contains the name of the user or group we want to perform the operation on, and the following fields contain additional data.
The following is a brief explanation of the format for Webmin's batch files:
Webmin's batch file format for operations on users
Webmin's batch instructions are written as text with one operation described in each line. The following standard format is used in operations on system users in Linux:
create:username:passwd:uid:gid:realname:homedir:shell:min:max:warn:inactive:expire
modify:oldusername:newusername:passwd:uid:gid:realname:homedir:shell:min:max:warn:inactive:expire
delete:username
The fields used in Webmin's batch instructions are similar to fields stored in standard Unix system files. Following are various fields used in Webmin's batch instruction:
Tip
If you're performing the modify operation, you can leave all fields empty, except for the ones you want to change.
Webmin's batch file format for operations on groups
The following format is used in operations on system groups:
create:groupname:passwd:gid:member,member,...
modify:oldgroupname:newgroupname:passwd:gid:member,member,...
delete:groupname
The following fields are used:
There's more...
Webmin's batch file format can be used to perform operations on both system users and groups. This functionality is not limited to exporting and importing data between systems. Batch files can also be used to quickly modify or delete multiple accounts.
Export and import system groups
In order to export a list of system groups from one system to another, you can follow this recipe, but when you navigate to System | Users and Groups, switch to the Local Groups tab before performing the import and export.
Batch update user accounts
Let's say you find yourself in a situation that calls for a change in all system user accounts. Let's also say, for example, that we decide to switch the default shell program of all accounts to zsh. In order to do that, you should prepare a batch file with the following line for each user, where username is substituted by the username of each account:
modify:username:::::::/bin/zsh:::::
Next, navigate to System | Users and Groups; click on the link marked Run batch file, provide your batch file, and execute it. This will update all user accounts with the new default shell program.
The same method can be used to update the values of any standard account field.
Batch delete user accounts
If you need to delete a large number of users, you can create a batch file with the following line for each user, where username is substituted by the name of each user:
delete:username
We run the file in the same way as described previously.
Tip
You can use the same method to delete multiple groups; just use group names instead of a username, and switch to the Local Groups tab before executing the batch file.
See also
Installing Usermin
If you would like to make the basic functionality of your system available to its users through an interface similar to Webmin, you can use Webmin's companion product called Usermin. This environment is just as easy to use as Webmin and provides a number of features that do not require administrative privileges:
How to do it...
Installation of Usermin is very simple and using it is analogous to using Webmin. The main difference is that you connect over a different port; the default port for Usermin is 20000.
Let's start by installing Usermin:
Tip
If you've installed Webmin from a package file instead of a repository, navigate to Un-used Modules | Usermin Configuration, and click on the button marked Install Usermin package.
After installation, Usermin will be automatically activated. The usage of Usermin is analogous to the way you use Webmin. Usermin's default port is 20000, so you can connect to it using your web browser and the following address; just substitute the words webmin.host with the IP address or domain name of your server:
https://webmin.host:20000
You can now log in as any user of your system and explore Usermin's features.
Usermin's configuration is done through Webmin and is available in the Webmin | Usermin Configuration module. Notice that this screen is similar to Webmin's main settings screen. Configuration options are analogous but limited to the features of Usermin.
First of all, let's decide which of our users will have access to Usermin:
Second, let's decide which Usermin modules to make available:
How it works...
Usermin is a companion package to Webmin, which is installed by default in the directory, /usr/share/usermin. It functions in much the same way as Webmin, but is focused on providing access to basic functions that don't require root privileges.
See also
Because Usermin's functionality is similar to Webmin's, you can refer to other recipes in this book to get an idea about its usage and configuration. In particular, take a look at the following chapters:
You can find more information about Usermin online at the following URL: http://doxfer.webmin.com/Usermin/Introduction
Chapter 3. Securing Your System
In this chapter, we will cover the following topics:
Introduction
Some people say that the only secure machine is one that is switched off. This may be true, but that machine is not very useful. If you want to make your server more functional, you'll have to turn it on and most likely expose it to the curious eyes of the Internet.
Online computer security is a topic large enough to deserve its own book. In fact, a whole shelf of such books is readily available. In this chapter, we will learn basic techniques, which will allow you to secure your server before putting it up online. If your server is exposed to the Internet, it will be a good idea to follow up by doing more in-depth security research and monitor what's happening to your machine on a day-to-day basis. Because this is a book on Webmin, we will only address topics in which Webmin can assist you.
This chapter is divided into three parts:
Server security checklist
There are a number of basic security precautions that you should undertake on any computer system exposed on the Internet. This list is not comprehensive; there are other things you might probably want to do, but it's a good starting point and you shouldn't be ignoring these areas.
Keeping your system up-to-date
Software is never perfect and mistakes are discovered every day. Some of these mistakes are merely inconvenient, but others have the potential to be exploited by nefarious people to break into your machine. It's a critical part of an online system's maintenance to be up-to-date with security patches and system updates. Refer to the Updating the installed packages to the latest versions and Getting an e-mail when new versions of packages become available recipes from Chapter 1, Setting Up Your System, for information about keeping yourself updated.
Turning off unnecessary services
A security flaw in your FTP server software will not be very dangerous if this service is not running. It's a good idea to switch off all the unessential services to minimize your system's exposure. Refer to the Turning off unnecessary services and Verifying your firewall by port scanning recipes in this chapter for more information on this topic.
Building a firewall around your system
You can use packet-filtering software to restrict access to your system. You can decide whether you want to allow only people from certain parts of the Internet to connect, which ports should accept connections, or whether some services will be available only locally. Refer to the Setting up a Linux firewall and Allowing access to a service through the firewall recipes in this chapter for more information.
Performing backups
In case something does go wrong, it's important to keep a backup copy of all your essential data, preferably on another system in another location. Refer to Chapter 7, Backing Up Your System, for more information.
Monitoring your system
If something goes wrong on your server, it's important that you are the first one to know about it. Keep an eye on your system's logs and set up your system to send you automated e-mails with log updates. If someone breaks into your system, they may tamper with the logs. So, it's a good idea to keep logs on a separate dedicated logging server. For more information, look at Chapter 5, Monitoring Your System.
Verifying the strength of your passwords
No matter how tight your security is otherwise, if you leave your root password set to root or admin, your server is sure to get hacked. Likewise, the strength of your users' passwords should be periodically verified. See the Verifying the strength of passwords recipe in this chapter. It's actually a good idea to disable root's login over SSH altogether. For this, take a look at the Disabling root login over SSH recipe.
Verifying the system security and setting up intrusion detection and prevention software
The following topics go beyond the scope of this book. However, if you want to make sure that your server is as secure as possible, you should implement the following processes:
Note
More information about the following systems can be found on their web pages:
Nessus: http://www.tenable.com/products/Nessus.
OSSEC : http://www.ossec.net.
Bro : http://www.bro.org.
Snort : http://www.snort.org.
ClamAV : http://www.clamav.net.
Linux Malware Detect : https://www.rfxn.com/projects/linux-malware-detect/.
chkrootkit : http://www.chkrootkit.org.
rkhunter : http://rkhunter.sourceforge.net.
Tip
Backtrack is a Linux distribution that comes with a wide range of preinstalled security tools. It's a good starting point for security testing and auditing your servers. More information is available online at http://www.backtrack-linux.org.
Setting up a Linux firewall
Linux systems have a firewall software built right into the kernel. This packet-filtering framework is called netfilter (since Linux 2.4). It is controlled by a tool called iptables, which instructs the kernel what to do with incoming and outgoing network packets.
In this recipe, we will begin with an empty iptables configuration (firewall disabled) and configure it to drop any incoming packets except those we specifically allow. Before we set up a firewall, we should review some basic concepts related to network communication and the organization of iptables.
The following are some basic packet-filtering concepts:
Some iptables terminology
The iptables tool is capable of performing quite a complex set of operations on packets. The rules used to make decisions about a packet's fate are grouped into several levels of organization, which are as follows:
Getting ready
In this recipe, we will set up a firewall configuration from scratch and reset any configuration that your system may have come with. This is not necessary, and if you know how iptables work, you may build on your system's default firewall configuration. In this case, you may wish to skip ahead to the recipe Allowing access to a service through the firewall.
Webmin also provides a series of predefined configurations that you may use to initialize your firewall. These configurations will become available after enabling the firewall or by navigating to Networking | Linux Firewall and clicking Reset Firewall. Webmin's predefined firewall configuration choices are shown in the following screenshot:
The following table describes what Webmin's predefined firewall configurations do:
Option	Description
Allow all traffic | This is a configuration without any rules, which allows all traffic by default. |
Block all incoming connections on external interface | This prevents connections to your server from the network and allows only established connections and basic DNS and ICMP packets through. |
Block all except SSH and IDENT on external interface | This is the same as Block all incoming connections on external interface, but allows incoming SSH connections and, unfortunately, requests of the Identification Protocol (IDENT). Permitting the latter is not recommended. |
Block all except SSH, IDENT, ping and high ports on interface | This is the same as Block all except SSH and IDENT on external interface, but also allows your server to respond to the ping command and allows requests to most ports in the range 1024 to 65535. These high ports may be used to accept connections by processes started by non-root users. This configuration should not be used on the open Internet. |
Block all except ports used for virtual hosting, on interface | This allows incoming connections to most commonly used services, such as SSH, HTTP, mail, FTP, and DNS. This also allows connections to Webmin, Usermin, and unfortunately IDENT. |
Do network address translation on external interface | This sets the Masquerade rule on the POSTROUTING chain. This allows your server to act as a network gateway for other computers on your network. |
How to do it...
Perform the following steps to set up a firewall:
Set the following options:
Then, click the Create button.
Tip
Webmin also uses UDP port 10000 to discover other servers that are running Webmin on your network. If you plan to use Webmin's clustering functions, you should also add a rule for port 10000 and Network protocol UDP.
Note
You may choose to drop or reject packets. When packets are dropped, your server sends no response, and when they are rejected, it sends a friendly port closed response.
A firewall configuration that allows incoming SSH and Webmin connections, but drops all others.
Tip
Modifying the firewall configuration using a network tool such as Webmin is a little tricky; if you make a mistake, you could potentially lock yourself out. In case of emergency, you can disable the firewall temporarily by logging in through the system console and issuing the following commands:
$ sudo iptables -F INPUT
$ sudo iptables -P INPUT ACCEPT
The first command flushes (removes) all rules from the INPUT chain and the second sets its default policy to ACCEPT incoming packets. These changes will be temporary and the default configuration will be reset after a system reboot.
How it works...
Webmin really helps us out here, especially if your system doesn't come with a default firewall configuration. Webmin issues a long series of commands to create an empty but valid iptables configuration. It then saves this configuration to a file and allows us to add rules to it. When we ask Webmin to enable the firewall at boot time, it also adds the appropriate commands to the system's network configuration scripts.
There's more...
There is quite a bit more that iptables can do for you. For instance, it would be a good idea to limit access to Webmin only to yourself and perhaps some of your administrator colleagues. Other people on the Internet don't even need to know that you are running Webmin. In order to achieve this, you can restrict access to a list of IP addresses or Internet subnets.
Go back to the rule you created for Webmin access and add another condition. Set source address or network to the IP of the machine you're connecting from. If you'd like to grant access to the whole network segment, also specify the subnet mask after a slash character (/). For instance, if you would like to restrict the access to requests coming from IPs in the range 10.10.10.0 to 10.10.10.255, use the following address and mask: 10.10.10.0/255.255.255.0
Tip
In this recipe, we only set up rules that filter incoming network traffic. Firewalls can also control outgoing traffic from your server to the Internet. It may be a good idea to block outgoing connections on machines that could potentially be compromised by user-installed malware.
See also
Allowing access to a service through the firewall
Once your firewall is set up, all unauthorized traffic coming into your server will be dropped. If you decide to add a service to your server, you'll need to add another firewall rule to allow the incoming traffic to reach the service. Otherwise, external users will not be able to access the new service. In fact, they will not even be able to see that the service is running and their connections will simply time out.
Getting ready
Make sure that your firewall is set up. Refer to the Setting up a Linux firewall recipe for more information. Make sure you know which port numbers and protocols are used by the service to which you want to allow access. Common port numbers such as 80 and 443 for a web server and 20 and 21 for FTP are listed in the file /etc/services. Usermin uses the port 20000 by default.
How to do it...
Perform the following steps for accessing a service through firewall:
Tip
The iptables rules are applied in a specific order. This is the order in which the rules are listed in Webmin from top to bottom. If a rule to accept or drop matches a packet, other rules further down the list will have no effect. When you make a rule to accept a certain type of packet, make sure it's placed before a more general rule that would cause this packet to be dropped or rejected. Use the grey upward arrows to move rules up the chain.
How it works...
We created a new firewall rule that allows packets to come in if, and only if, they are using the protocol we specified (TCP or UDP), the port number we selected, and they are packets initiating the connection (NEW state).
Webmin adds our rule to the iptables configuration file and loads the new firewall configuration. From now on, packets with the specified port will be allowed a safe passage into your system.
There's more...
You may wish to run services on your system that will only be accessible internally from the same machine. A database server for your web application may be a good example of such a case. If you wish to allow access to a service only locally, you can create a firewall rule that will allow incoming request only if they are coming in over the local loopback interface.
Creating a service accessible only from the internal network
In order to create a local-only service, follow the same steps as described in this recipe, but add another condition to the rule. Under Incoming interface, select Equals and lo (the name of the local loopback interface).
Note
Our default firewall configuration, which is described in the Setting up a Linux firewall recipe, allows all locally initiated requests to come in. You may disable this behavior by removing its rule and allow local access to specific services only.
See also
Verifying your firewall by port scanning
After your firewall is configured, you may wish to check that you haven't unintentionally left any unnecessary open doors. A good way to do this is to initiate a scan from another machine that will tell you what open ports it discovered on your server. Only ports associated with services that you want to make publicly accessible should be found.
Getting ready
We will be using two machines in this recipe. One will be the scanner machine and the other will be the server we want to scan.
Nmap is a great and widely available port scanner. Let's start by installing it on the scanner machine. You can install it from the repositories of most Linux distributions, from ports on BSD and from Homebrew on OS X. You can also download an installer for Windows from http://nmap.org/download.html.
How to do it...
Perform the following steps to verify your firewall by port scanning:
$ nmap -sT webmin.host
You should see the following output:
Starting Nmap 6.25 (http://nmap.org) at 2013-08-13 21:42 CEST
Nmap scan report for 37.139.1.192
Host is up (0.039s latency).
Not shown: 998 filtered ports
PORTÂ Â Â Â Â STATE SERVICE
22/tcp open ssh
10000/tcp open snet-sensor-mgmt
Nmap done: 1 IP address (1 host up) scanned in 17.65 seconds
Tip
Some ISPs may block outgoing scan packets before they reach the server that you're testing. For instance, packets addressed to port 25 are quite commonly blocked to fight against spam e-mail.
You can verify that the scan you're performing is actually working by running it against the server with its firewall temporarily disabled. When the server has no active firewall, your remote scan should give results similar to executing the following command on the server itself. This netstat command enumerates the open ports on the server.
$ netstat –ltn
Take a look at the Turning off unnecessary services recipe in this chapter for more information about using netstat.
How it works...
With its default options, Nmap scans will send a SYN packet (the first part of an initial connection handshake) to the 1,000 most commonly used ports on the machine you specify. If the machine is accepting connections on any port, it will send an SYN/ACK packet back, acknowledging that it is ready to open a connection. From this, Nmap can determine that the port is open.
Connections to those ports that your firewall is set to drop will be marked as filtered because they don't return any information at all. Ports that your firewall is set to reject will return a port unreachable message and will be marked as closed in your scan.
There's more...
Nmap has a wide variety of options. It can be used to perform a scan of the whole network, scan every port of a machine, or perform a scan that doesn't require administrative privileges on the scanning machine.
Host discovery with Nmap
If you want to know what computers are active on your segment of the network, type in the following command, specifying the range of IP addresses that you want to scan:
$ nmap -sn 10.10.10.0-255
Scanning all ports
By default, Nmap scans only the 1,000 most commonly used port numbers. If you want to be more thorough and scan every single port, use the following command (with the -p- argument). Note that such a scan may take a few minutes.
$ sudo nmap -sT -p- webmin.host
Scanning without administrative privileges
Nmap's standard port scanning technique requires administrative access on the scanning computer, because it uses raw sockets to perform only the first part of a connection (sending the SYN packet). If you don't have administrative privileges, you can perform a different type of scan that initiates a normal connection by issuing the following command (with the -sP argument):
$ nmap -sP webmin.host
See also
Turning off unnecessary services
The best way to avoid potential security issues with services you're not actively using is to disable them. This recipe will list the steps to identify the running system services that have open network ports and disable them.
How to do it...
Let's start by identifying the processes that open network ports on your systems. This can be done with the help of the following steps:
You will see a list of server processes with active network connections.
In the Local Address column, you will see entries such as 0.0.0.0:22. This means that a process is listening on port 22. The PID/Program name column will tell you which process is responsible for opening this port.
If you identify a process that you are not using and you know that it isn't essential to your system, you can disable it with the help of the following steps:
How it works...
The netstat command allows you to display information about the network connections. The arguments written as -tulpen are a mnemonic (tulpen means tulips in German) for the options that you need to verbosely list the servers with open ports listening for connections. The parameters serve the following functions:
Verifying the strength of passwords
If you allow administrative users to log into your system using their username and password, your system is only as secure as the passwords used by those users. It's a good idea to periodically attempt to crack all the passwords on your system. If you find passwords that are easy to guess or crack through brute force, you should ask users to change them.
Getting ready
For this recipe, we will be using the password-cracking program called John the Ripper. Start by installing the package named john. Refer to the Installing software packages recipe from Chapter 1, Setting Up Your System, for more details.
How to do it...
John the Ripper tries to crack passwords by brute force, which means it will try every word and combination of characters. If any user on your system has a strong password (long and complex), John will not be able to crack it in a reasonable amount of time. You should let the cracking run for a couple of days and then decide that the remaining passwords are strong enough.
Note
John the Ripper tries to be a good system citizen and uses only spare CPU cycles that would otherwise go unused. It may nevertheless reduce the responsiveness of your system. So, if your system is under heavy load or its speed is mission critical, you may choose to crack passwords on a different machine.
Perform the following steps to identify weak passwords:
john -show /etc/shadow
If some passwords remain uncracked after a couple of days, you may decide that they are strong enough and stop John the Ripper with the help of following steps:
Tip
You may resume the stopped cracking session by issuing the following command:
john –restore
Use the same procedure as in the first step to schedule its execution in the background.
How it works...
You provide John the Ripper with password hashes of your system users. The john program first determines which hashing techniques and salts your system uses. It then proceeds to apply the same hashing algorithm to every word in a wordlist file. If a hash it generates is identical to a password hash stored for one of your users, then this particular word was used as the password—the password is cracked. After trying every word in the wordlist, John the Ripper proceeds to try every letter combination possible. This part of the process takes a long time and uses a lot of CPU power. If you find that John is taking a very long time (more then a few days) to crack your passwords, you may decide that they are strong enough and stop.
Disabling root login over SSH
Allowing the root user to log in over SSH is a potential security vulnerability. An attacker may try to break into your system by trying every password for the root user. It's recommended to disallow the root user's access over SSH and to log in as another user with the sudo privileges to perform administrative tasks.
How to do it...
Perform the following steps to disable root login:
How it works...
Webmin updates the SSH configuration file (/etc/ssh/sshd_config) by setting PermitRootLogin to no. From now on, SSH will treat every password entered for the root user as incorrect.
Restricting Webmin access to a specific IP
The firewall is your first line of defense, but you should take additional precautions while running Webmin on an Internet-connected server. Webmin allows you to restrict access to a list of specific IP addresses and networks. It's a good idea to protect Webmin this way; otherwise, an attacker can try to guess your password and take over your system.
In this recipe, we will configure Webmin to accept connections only from your IP address.
Getting ready
Before you start, you should determine the IP address you are currently using to connect to Webmin. In order to do this, log into Webmin and navigate to Webmin | Webmin Users | View Login Sessions. Your active login session will be marked in bold and your address will be listed in the IP address column.
How to do it...
For restricting Webmin access, perform the following steps:
From now on, you will be able to connect from the specified IP. However, users trying to connect to Webmin from other computers will receive an HTTP 403 error (Access denied).
How it works...
Webmin stores information about which hosts are allowed to connect in its server configuration file (/etc/webmin/miniserv.conf by default). The line that allows host access starts with the keyword allow, and specifies a list of IP addresses and ranges separated with a space character. For instance, it may look like the following:
allow=93.184.216.119 192.0.2.0/24
Whenever a client tries to connect, Webmin consults this configuration to determine whether to allow the incoming connection or not.
There's more...
Webmin's IP access control module is quite flexible and allows you to specify sets of IP addresses in a number of ways.
Allowing access from multiple IP addresses
The simplest way to allow access to Webmin from multiple locations is to add multiple IP addresses to the text area in the IP Access Control module. You can add as many IP addresses as needed, just place each one on a separate line.
Allowing access from a dynamically allocated IP
Many Internet providers allocate IP addresses dynamically. This type of address may change at some point in the future, which could leave you unable to connect to Webmin. If you're using a dynamic IP, you may consider signing up for dynamic DNS. A dynamic DNS service will provide you with a hostname that automatically updates to match your changing IP. Keeping this information up-to-date requires the setting up of a daemon process on your computer or network router.
Note
There are many providers of dynamic DNS; some also offer a basic free service. Take a look at the following or search for Dynamic DNS Providers:
DynamicDNS: http://dyn.com.
NoIP: http://noip.com.
FreeDNS: http://freedns.afraid.org.
For Webmin to grant access to your dynamically allocated IP address, go to the IP Access Control module and enter the hostname provided by your dynamic DNS provider.
Allowing access from an IP range
If all your Webmin users use the same Internet provider, they are probably using a shared network. If you know the range of IP addresses shared by this subnet, you can specify the range by using the subnet address/mask or address/mask bits format:
192.0.2.0/24
192.0.2.0/255.255.255.0
Note
Both of the preceding lines are equivalent and specify all IP addresses between 192.0.2.0 and 192.0.2.255. Don't be overly broad while specifying the IP range. Using the entire range of public IPs that is used by your Internet provider would not be a very good idea, because a potential attacker may have control of a computer connected to the Internet from the same provider.
Allowing access from the local network
If your server is available via your local network, you can tell Webmin to allow all the connections coming from within the LAN. In order to do this, follow the steps in this recipe, but also check the box marked as Include local network in list.
Connecting to Webmin securely over an SSH tunnel
If your server is connected to the Internet and you use SSH to connect to it, you can secure it by disallowing Webmin from accepting any remote connections. You can then use an SSH tunnel to connect to Webmin. This lowers the potential attack surface of your machine and protects you against possible security vulnerabilities in Webmin itself. Any attacker would have to break into your SSH account or otherwise gain local access to your system to connect to Webmin.
Getting ready
Before you begin, you should follow the Restricting Webmin access to a specific IP recipe of this chapter and add the IP address 127.0.0.1 to the list of hosts allowed to connect to Webmin.
In this recipe, we'll be using the command line version of SSH that is available on most systems, but it is not available on Windows. Look in the There's more... section of this recipe for instructions specific to Windows.
How to do it...
Perform the following steps to securely connect to Webmin:
$ ssh -L 15000:localhost:10000 username@webmin.host
You should now be able to use Webmin through an SSH tunnel.
How it works...
You can open an SSH tunnel by issuing the following command:
$ ssh -L client_port:remote_host:remote_port username@ssh_host
An SSH tunnel connects machines as listed in the following diagram:
When you open a tunnel, the SSH client opens a network port on the machine on which it is running (client_port). This port will now accept connections and all incoming packets will be intercepted by the SSH client program. The SSH client will encrypt them and send them using the SSH protocol to the SSH server machine. The SSH server will decrypt the packets and forward them to the remote machine (remote_host:remote_port). Responses sent by the remote machine will also be encrypted and traverse the tunnel in the opposite direction.
The tunnel we use to connect to Webmin is simpler because only two machines are involved. The local machine is also the SSH client machine, while the remote machine is also the SSH server.
When we issue the command
$ ssh -L 15000:localhost:10000 username@webmin.host,
we are opening port 15000 on our computer and the SSH server on webmin.host will forward all the packets to its own machine's Webmin port (localhost:10000). In effect, by connecting to our own computer's port 15000, we will have access to the remote Webmin interface as if we were connecting to that machine directly.
There's more...
We will cover two more things in this recipe: giving access to the SSH tunnel to other machines and creating an SSH tunnel on Windows using Putty.
Sharing the SSH tunnel with other machines
By default, the SSH client will only allow tunneling of connections originating on the same machine. You can override this by using the -g option:
$ ssh -g -L 15000:localhost:10000 username@webmin.host
This command will allow all the computers that can connect to the SSH client machine on port 15000 access to Webmin on the remote machine.
Creating a tunnel on Windows using Putty
If you're running Windows, download the Putty SSH client from http://www.chiark.greenend.org.uk/~sgtatham/putty/.
You should now be able to use Webmin through an SSH tunnel.
See also
Once you are able to establish tunneled connections to Webmin, you will no longer need to provide remote access to it. You can remove Webmin's entry from the firewall configuration and instruct Webmin to listen for connections only on the local IP 127.0.0.1.
Closing inactive Webmin sessions automatically
Webmin's login sessions are not set to expire by default. This causes a potential security risk. If a user leaves his or her computer unattended while logged into Webmin, an attacker could potentially use the situation to harm your system or disable its security. Fortunately, this situation is easily remedied by changing a Webmin setting.
How to do it...
Perform the following steps to close inactive Webmin sessions automatically:
How it works...
Webmin stores authentication options in its server configuration file (/etc/webmin/miniserv.conf by default). The line defining inactivity time after which users will be automatically logged out starts with the keyword logouttime and specifies the time in minutes. For instance, it may look like this:
logouttime=10
Whenever a client tries to connect, Webmin checks in the session database when this user was last connected. Webmin consults its configuration to determine whether the time elapsed is not higher then allowed. If the user wants to perform an action after the allowed inactivity time elapses, he or she is asked to log in again.
Chapter 4. Controlling Your System
In this chapter, we will cover the following topics:
Introduction
Webmin allows you to control your system remotely using only the browser. Whether you need to execute a single command or have full terminal access, Webmin provides convenient tools for each job. In order to make your life easier, Webmin also allows you to set up a control panel for each task you execute more than once. In the cases where you need to run commands repeatedly, Webmin gives you an easy-to-use interface for creating cron jobs.
Executing a command on the server
The simplest way to execute commands on your server that uses Webmin is the Command Shell module. In this recipe, we will execute a command that lists all network services running on our machine.
How to do it...
Perform the following steps to execute a netstat command:
You will be presented with a page showing the output of your command. At the bottom of the screen, you will see a form that allows you to execute another command. You can clear the command output by clicking the Clear history button:
How it works...
Webmin executes every command you type in as the root user by default, and saves each command into a history file for the currently logged in user. Webmin also keeps track of the directories you move into using the cd command, but other environment variables will not be preserved between command executions.
There's more...
Sometimes, you may need to execute multiple commands that depend on one another. It's possible to do this in Webmin's basic command shell by combining multiple commands into a single execution.
Executing a series of commands
The most basic way to run a series of commands is to separate commands using the semicolon (;) character. Perform the following steps to do so:
export MESSAGE="Hello from Webmin!" ; echo $MESSAGE
The first command (export) sets a variable in the environment where your commands are being executed. The second command (echo) sends the value of this variable to the standard output. Consequently, you should see the message displayed on screen. If you executed these commands separately, the environment variable would not be preserved between executions.
Executing commands conditionally
If you want to execute a series of commands in which the second command should only be executed (in case the first one is completed without problems), you may chain them using the logical AND operator (&&). This will cause the second command to be executed only if the first one completes successfully (returns an exit code value of 0). Perform the following steps:
/bin/true && echo "Last command exited cleanly"
You should see the message, Last command exited cleanly, appear on the screen.
If the previous command returned an exit code indicating an error, the message would not appear. Try it yourself by executing the following commands:
/bin/false && echo "Last command exited cleanly"
You will not see any output because the second command does not get executed.
This method is useful for commands such as make && make install that are used during compilation and installation of software, where the second command should not be executed if the first one fails.
Executing a command from history
Because Webmin keeps a history of all the commands you execute, you can re-run previous commands by selecting them from a list instead of typing them in again.
You will see the list of previous commands appear under the command textbox after you execute your first command:
To execute a command from history, select it from the list and click Execute previous command. You can also change the command by clicking the Edit previous button. If you wish to clear the command history, click the Clear commands button.
Executing a command as another user
Sometimes, it's useful to execute commands as another user. For instance, management commands for some services are, by default, accessible to the system user associated with the service. You may also wish to test whether a user account is configured correctly and execute a command as another user to check if it will work as expected.
Getting ready
In this recipe, we will create a new PostgreSQL database named testdb by issuing the createdb command that is available to the postgres user. If you do not have PostgreSQL installed yet, you may refer to Chapter 10, Running a PostgreSQL Database Server, for information about installing and running this database system.
How to do it...
To execute a command as another user, we will use the Running Processes module:
You will be redirected to a page that shows the output messages of your command. If the command executes silently, you will be informed that no output was generated.
How it works...
Webmin executes the command you pass to it using a system call. It collects all the command outputs and displays it on the next screen. Because the Webmin process itself runs as root, it can impersonate any user when executing commands.
There's more...
Webmin offers a few more options for issuing commands in this module.
Passing input to a command
If you wish, you can put input data for the command in the Input to command text area. The data that is provided will be passed to the program that is executed by your first command over standard input (STDIN):
The output screen will present you with a sorted list of the words you provided.
This functionality is also useful for executing short programs written in scripting languages:
Running tasks in background
If a task takes a long time to complete, you may execute it in the background. This option will not present you with the output of the command, but you may safely disconnect from Webmin without interrupting command execution.
Setting a command to be executed in the future
It is sometimes useful to schedule a command to run at some point in the future. For instance, you may want to update or synchronize your database or restore files from a backup during the night, when your system is not heavily used. You may decide not to wait until a convenient time, but instead ask your system to execute a command automatically at a specific moment. Webmin gives you access to your system's command scheduling functionality and makes it easy to set up and remove scheduled commands.
Getting ready
For this recipe, I will assume that you have an installation of MediaWiki (the software which runs Wikipedia) installed on your server and you want to schedule the execution of its checkUsernames script at 2:30 a.m. on a Sunday.
Before you begin, you should make note of the following:
Tip
We are assuming that the PHP command-line package is installed on your system and the php binary is placed within the binary search path. The default search path usually includes locations such as /bin, /sbin, /usr/bin, and /usr/local/bin. If the binary you wish to execute is not located in one of the default search paths, you should use an absolute path to the binary, that is, one which starts with /, for example, /usr/bin/php.
How to do it...
For setting a command that will be executed, perform the following steps:
On the screen that follows, you will see your command on a list of currently scheduled commands. Consider the following screenshot:
How it works...
Webmin uses your system's command scheduling facility (called at on Unix systems) that allows users to postpone the execution of a command until a specified future time.
The steps we took in this recipe could also be performed at the command line by issuing the following commands:
$ su root
cd /var/www/mediawiki/maintenance
echo 'php checkUsernames.php' | at -m 02:30 8.9.2013
The at command wraps commands (that are passed through standard input) into script files that are stored in a directory (usually in /var/spool/at or /var/spool/cron/atjobs/). The atd daemon waits until the time specified for execution and runs the scripts at the appropriate moment.
Webmin also allows you to list and delete scheduled jobs. Take a look at the There's more... section of this recipe. Listing of jobs can be done at the command line using the atq command, and deleting a particular job can be done using the atrm command that takes the job's number as a parameter.
There's more...
To see a list of commands scheduled for execution on your system, navigate back to System | Scheduled Commands. Consider the following screenshot:
To cancel any of these commands, check the box next to its ID and click the Cancel Selected Commands button.
See also
Scheduling a command to run regularly with cron
Many tasks need to be executed repeatedly on a regular schedule. These include housekeeping jobs such as backing up important files, checking for software updates, deleting old temporary files, and checking logs for unusual messages to alert administrators.
Your applications may have additional tasks that should also be run on a regular schedule, and Webmin provides an interface that is more intuitive than the command-line crontab utility to create and manage cron jobs.
Getting ready
In this recipe, I will assume that you have a site powered by Drupal hosted under the URL, http://example.com/. Drupal has a series of tasks that it should execute regularly (updating caches, checking for updates, and so on). In order to trigger these tasks, we will set up a cron job which regularly connects to the following URL: http://example.com/cron.php?cron_key=XYZ.
How to do it...
To add a command to the cron schedule, follow these steps:
curl -s 'http://example.com/cron.php?cron_key=XYZ'
Note
curl is a widely available command to transfer data with URL syntax over various network protocols. We use the preceding command to connect to and download a webpage from our web server. This strategy is used by Drupal to trigger maintenance tasks. The -s parameter passed to curl prevents it from outputting a progress meter or error messages.
How it works...
Webmin adds the task we specified in the crontab (cron table) file for the user we selected. These files are usually stored in the /var/spool/cron/crontabs directory.
The time is specified in terms of minutes, hours, days of month, months, and weekdays. The scheduled command will execute at the exact time that matches these settings. For instance, if we specified the time as 19 minutes, 0 and 12 hours, and all days, months, and weekdays, the command will be executed every day at 0:19 and 12:19. The cron daemon waits until the appropriate time and then executes the scheduled commands.
Tip
You should not start all jobs on the full hour because you may create unnecessary system load spikes. Jobs should be spread out over the hour. If you don't have many jobs scheduled yet, you can pick a time at random. If your cron does a lot of work, you should probably check when fewest jobs are scheduled.
There's more...
Webmin's interface allows us more control over cron jobs.
Disabling a cron task temporarily
If we want to disable a cron job temporarily, we can edit the crontab and comment the job's line out by prepending it with a hash symbol (#). Webmin makes this simpler by providing a graphical interface to the task.
Cloning a cron task
If you would like to create another cron task similar to one that already exists, use Webmin's cloning function.
Specifying which users can schedule tasks with cron
For security reasons, you may wish to restrict which users have the ability to schedule cron jobs. You may choose to allow all users access, choose to select users who have access, or select users for whom access will be denied.
Note
If you allow certain users to create cron jobs, all other users will be prevented from doing so. Conversely, if you deny some users the ability to create cron jobs, you are implicitly granting this possibility to everyone else.
Creating a panel for the commands that you execute often
There are some commands that you will find yourself running over and over again. In such cases, you may wish to use Webmin's Custom Commands module to create a convenient control panel from which you can run your command with the click of a button.
Tip
Using this feature, you can also allow some users to run a command as a different user. It's also useful as an alternative to creating scripts and a way to store the syntax of long or complicated commands.
Getting ready
In this recipe, we will create a custom button that uses the drush command to clear caches of a Drupal site. You will probably want to use a different command, so make a note of its syntax and the directory you want to execute it in before you begin.
How to do it...
In order to create a custom command button, follow these steps:
You will be brought back to the Custom Commands module where a new command button will be presented. Click the button to execute your command. You can come back to Others | Custom Commands at any time to run your command by pressing this button.
How it works...
Webmin stores the custom command configurations in the /etc/webmin/custom directory. Whenever you visit the Custom Commands module, Webmin reads these configuration files and dynamically builds an administrative panel for you. When you press a button associated with a command, Webmin executes it for you.
There's more...
There are quite a few other options associated with Webmin's custom commands functionality.
Cloning a command
If you would like to create another custom command similar to one that already exists, use Webmin's cloning function.
Specifying command arguments
If your command takes arguments, you can build a more complex user interface that will ask you to specify the values of these parameters.
In our example, we set up a control panel entry to execute the following command:
drush cache-clear all
The last argument (all) specifies which caches should be cleared. Other possible values of this parameter include: theme-registry, menu, css-js, and so on. Let's expand our control panel to ask the user for this parameter:
printf "all\ntheme-registry\nmenu\ncss-js" |
Note
Do not forget to add the pipe (|) character at the end or the menu will fail to appear properly.
The command line outputs possible values of the parameter on separate lines. Consider the following screenshot:
Tip
In this example, we specified the possible parameter values by using the printf command and separating each value by a new-line character (\n).
Another way of specifying possible parameter values is to save them to a file (also one value per line) and specify the pathname of the file in the textbox.
In effect, you would have created a custom command form that allows you to specify a parameter value before execution. Consider the following screenshot:
Making the command available in Usermin
You may decide to make your custom control panel command available to your non-administrative users through Usermin. This is quite simple. Perform the following steps:
See also
Creating a panel with the database commands that you execute often
In the previous recipe, we created an easy-to-use control panel that allows you to execute custom commands with the click of a button. Webmin allows you to extend this functionality by adding custom commands that execute SQL queries on MySQL and PostgreSQL databases.
Getting ready
In order to follow this recipe, you will need to have a MySQL or PostgreSQL database installed and set up. Refer to Chapter 9, Running a MySQL Database Server, and Chapter 10, Running a PostgreSQL Database Server, for information on how to do this.
In this recipe, I will assume that you are running a web application that uses a database called django and stores its caches in the database table called cache. We'll create a custom command that empties (truncates) the cache table. Your situation will probably be different. So, before beginning, make a note of the following:
How to do it...
In order to create a custom database command button, follow these steps:
TRUNCATE TABLE cache;
How it works...
Webmin stores the custom command configurations in the /etc/webmin/custom directory. Whenever you visit the Custom Commands module, Webmin reads these configuration files and dynamically builds an administrative panel for you. When you press a button associated with a command, Webmin connects to the database server and executes the SQL commands for you.
See also
Running a terminal emulator in the browser
Despite the wide range of options that Webmin allows you to control, you will find yourself in situations that require more direct access to your system. For such situations, you should equip yourself with a full-fledged terminal emulator and SSH client. If you need to perform a quick operation on your server through the terminal but don't have access to your tools, Webmin will allow you to open a simple terminal emulator in the browser.
How to do it...
To run a server terminal in your browser, follow these steps:
How it works...
Webmin uses a component called Ajaxterm that connects to your system over SSH, passes your commands to the server, and displays terminal output in the web browser.
For more information, visit the Ajaxterm website at https://github.com/antonylesuisse/qweb.
There's more...
There is another component that allows you to access your computer's terminal through Webmin. You can find it by navigating to Others | SSH login. This component has similar features. However, it requires running Java in your browser, which isn't recommended for security reasons.
Chapter 5. Monitoring Your System
In this chapter, we will cover the following topics:
Introduction
While your server is running, it keeps a record of the actions it performs. A log entry is made whenever a service is started or stopped, a cron job runs, a mail message is sent and especially whenever some action produces an unexpected result or error.
Log messages help you fix problems on your server. If something isn't working, there is probably a log message somewhere explaining what's happening and what the problem is. Log messages also allow you to detect unusual situations, such as attempts to break into your server. It's important to review your system logs regularly.
Each log message is useful for a limited time. After a couple of weeks or months, old log messages can be removed to prevent logs from growing too large and filling up your disk space.
In this chapter, we will demonstrate how Webmin can be used as a convenient tool for viewing your system logfiles, how it can assist you in rotating logs to keep an archive and delete old entries. We will also demonstrate how Webmin can monitor your system by performing regular tests and how it can alert you to problems or even try to fix some of them automatically.
Viewing and searching through system logfiles
You can configure Webmin's System Logs module to be a one-stop source for all logging information about your system. In this recipe, we'll demonstrate how easy it is to quickly view and scan through logfiles using Webmin's interface. In the two recipes following this one, we'll show you how to add other logfiles to this module to create a comprehensive overview of your system's activity.
Getting ready
In this recipe, we'll inspect the auth.log file at /var/log/, which keeps a log of messages related to authentication and authorization. This file is present by default on most systems from the Debian family, but if you're using a different system, you may not find it. You can add this file to your system by following the recipe, Saving Syslog messages to a file.
You can, of course, follow the same steps to view any other file listed in the System Logs module.
How to do it...
Follow these steps to view log messages:
How it works…
Behind the scenes, Webmin uses the tail command to display the last lines of your system log. If you want to achieve a similar view at the terminal, you could use the following command:
$ sudo tail -n 40 /var/log/auth.log
If you want to filter the log to include only lines containing the word, webmin, combine the tail command with grep, as follows:
$ sudo grep webmin /var/log/auth.log | tail -n 40
There's more...
When debugging a problem on your system, it's often useful to watch the logfile messages appear as you're performing the task, which ends in an error. Webmin can automatically refresh the log display to show new messages as they come in.
Configuring system logs to refresh automatically
Perform the following steps to configure system logs to refresh automatically:
Now, when you display a log, it will automatically refresh your view, filters and all, every 10 seconds. You can keep this window open while you're performing a debugging task, and watch as messages are output to the log.
Tip
Depending on your browser, Webmin's automatic refresh functionality may be disabled by a security mechanism, which checks each incoming HTTP request for a correct referrer header. You can disable this mechanism by following these steps:
You can also follow the output as it is added to a file by using the tail command's -f option, as follows:
$ sudo tail -f /var/log/auth.log
See also
Saving Syslog messages to a file
The standard logging protocol on Unix and related systems is called Syslog. Most modern Linux distributions use an implementation such as Rsyslog or Syslog-NG. They all perform the same tasks:
Most system utilities send log messages to Syslog, but other server software (such as Apache, MySQL, or PostgreSQL), by default, save messages directly to files on disk.
Webmin allows you to control Syslog and decide which messages get saved to which files. In order to understand how Syslog separates messages, we need to explain two concepts: facilities and priorities.
Each message sent to Syslog is described by a facility level and priority level. Based on these properties, you can decide which messages to discard, which to save, and where.
A facility level describes what type of message this is. Since programs usually send all messages with the same facility, it usually specifies what type of program sent the message. The following table lists various facility levels:
Facility	Associated messages
auth and authpriv | Messages associated with user authorization or security. These may contain sensitive information (especially authpr iv) and should be accessible only to trusted system users. |
cron | Messages associated with the execution of scheduled commands. |
daemon | Messages output by background processes (system daemons). |
ftp | Messages associated with the FTP server. |
kern | Messages generated by the system kernel. |
local0 to local7 | You can configure your local programs to send log messages to Syslog using these facilities. |
lpr | Messages associated with printing. |
Messages associated with the mail server. | |
mark | A special facility, which generates a timestamp at regular intervals. |
news | Obsolete. |
syslog | Messages associated with Syslog itself. |
user | Messages associated with user processes. This is also the default facility if no other was specified when sending the message. |
uucp | Obsolete. |
* | All of the above. |
The priority (severity) level describes how important a log message is. You can use this description to specify which messages to discard and which to keep. Priority levels have a specific order, so you can choose, for example, to log all messages with the priority, warning, and above. The following table lists priority levels from highest to lowest:
Priority | Description |
---|---|
emerg | Emergency—system is unstable. This is the highest possible priority level. |
alert | Alert—action must be taken immediately. |
crit | Critical—system is in a critical condition. Action should be taken. |
err | Error—an error occurred and should be fixed. |
warning | Warning—something is not working as expected. Check configuration. |
notice | Notice—system performed a significant action. |
info | Information—messages with information about the system's normal functions. |
debug | Debugging—verbose messages used primarily for setting services up and debugging problems. |
Getting ready
In this recipe, we will use Webmin to instruct our Syslog daemon to save all log messages associated with user authorization to the file, auth.log at /var/log/. If you're using a Debian-based system, you will probably already have this file on your system. In this case, you can save these messages to a second file called auth2.log for practice and remove the configuration later.
How to do it...
Follow these steps to save Syslog messages to a file:
Tip
On some systems, the Apply Changes button may not be visible or will have no effect. In this case, you'll need to restart the Syslog service manually.
If your system uses Rsyslog, you can restart it with this command:
$ sudo service rsyslog restart
Refer to the recipe, Executing a command on the server, in Chapter 4, Controlling Your System for information about executing commands via Webmin.
You can now view the /var/log/auth.log file as described in the recipe, Viewing and searching through system logfiles.
How it works...
Based on the choices you make, Webmin updates your Syslog configuration file and restarts the service. Your Syslog daemon reads in the new configuration; if necessary, creates a new output file for log messages; and sends the selected messages there.
There's more...
After you change your Syslog configuration, you may want to check if log messages are routed correctly to their intended destinations. You can send a log message to Syslog by executing the logger command. The command's syntax is this:
logger -p facility.priority "The message text"
For instance, if you want to send a message Hello Syslog with a priority info and facility auth, use the following command:
$ logger -p auth.info "Hello Syslog"
Check the auth.log file to see your log entry.
Adding other logfiles to Webmin
Server daemons, which do not use Syslog, save their log messages directly to files on your disk. Webmin allows you to view, search, and monitor all logfiles in ways described in this chapter's first recipe. For easy reference, you can add commonly viewed logfiles to the list in System Logs module.
Getting ready
Log messages you need to debug your problem are in there somewhere; you just need to know where to look. Before you can add them to Webmin, you need to find the logfile's full path.
On Linux, logs are typically stored in the /var/log directory. The following table lists the default locations of log messages of some commonly used services:
Daemon | Default log file location |
---|---|
Apache 2 | Messages may be output to: /var/log/apache2/access.log, /var/log/apache2/error.log, and so on. |
MySQL | Messages may be output to: /var/log/mysql/mysql.log. or go to Syslog with the daemon facility. |
PostgreSQL | Messages may be output to: /var/log/pgsql_log. or go to Syslog with the local0 facility. |
PHP | PHP does not specify a default log location. If PHP is running as an Apache module, messages may appear in Apache logs. Check your php.ini file to see if logging is enabled. |
Webmin | Messages may be output to: /var/webmin/webmin.log and other files in /var/webmin. |
Because every system distribution may configure your services in a slightly different way, check your service's configuration file to determine the location of its logs if you cannot find it in its default place.
In this recipe, we'll add the Apache access log (/var/log/apache2/access.log) and error log (/var/log/apache2/error.log) to Webmin's System Logs module.
How to do it…
To monitor additional logfiles through Webmin, follow these steps:
/var/log/apache2/access.log Apache access log
/var/log/apache2/error.log Apache error log
The files you added will now appear in the System Logs list.
How it works...
The additional file definitions are stored in a configuration file (/etc/webmin/syslog/config). Webmin inspects this file each time it prepares the System Logs module page and adds the files to its listing.
There's more...
You can also use Webmin to check a logfile once, without adding it to System Logs permanently. The following are the steps to do so:
Configuring logfile rotation
Log messages are very useful for debugging problems, analyzing usage patterns of your system, and checking if attempts were made to compromise your server. Each message is useful for a limited time, however, and old logs can be deleted to reclaim disk space.
Log rotation is a strategy that ensures that the most recent log messages are always readily available while older messages are stored in separate files, which can be compressed to save space. After a few weeks or months, depending on the log type, the oldest messages can be deleted.
Webmin allows you to control the logrotate utility that performs automatic logfile rotation for you. Most packages that you will install will come with their own logrotate configuration files, which they will place in the /etc/logrotate.d directory. Placing a configuration file in this directory ensures that files will fall under log rotation control. Webmin gives you a graphical interface to easily create and modify these files.
Getting ready
Before creating a log rotation routine, make sure that the logrotate package is installed on your system. Refer to the recipe, Installing software packages in Chapter 1, Setting Up Your System, for more information.
In this recipe, we will create a logrotate configuration for a logfile called custom.log, which contains the log output of a daemon called customd. We will schedule a weekly rotation of the logfile, storing four weeks worth of past logs, and compressing all but the latest log archive. We will instruct Webmin to restart the daemon after log rotation, so it starts writing to the new file.
When creating a logrotate configuration, you will need the logfile path as well as the syntax of the command, which restarts the logging daemon. Some software have a special command designed to inform the daemon that logs were rotated, which does not require a full restart. Refer to the daemon documentation to find it.
How to do it...
Follow these steps to create a logrotate configuration:
How it works...
Webmin creates a logrotate configuration file in the /etc/logrotate.d directory, which places the logfiles you specify under rotation.
There's more...
Webmin's interface has a number of other features to control logrotate.
Rotating logfiles on demand
Rotation of logfiles is triggered by a command scheduled with cron to run once a day. If you wish to rotate the logfiles sooner, you can trigger rotation manually at any time:
Editing default options
Webmin allows you to set the default options, which apply to all log rotation routines if not overridden. Perform the following steps to do so:
Sending logfiles by email when rotating
logrotate can be set to send you a copy of your logfile when rotating it:
You could specify whether you wanted to be e-mailed the newest logfile archive, which was just created, or the oldest archive, which was about to be deleted.
Listing recent logins
Every time a user logs into your system or logs out, information about this is stored in a log of interactive login sessions. You can use Webmin to inspect this log.
How to do it...
Follow these steps to list recent logins:
You will see a list of logins by the selected user since the logfile was last rotated.
How it works...
Webmin inspects the standard Unix file named wtmp, usually stored in /var/log/wtmp, which stores the history of all logins and logouts on the system. This is a binary file, so you can't inspect it using standard text log parsing tools. If you wanted to view login history at the command line, you would use the last command, for example, last root to show logins of the root user.
You can also use the other related commands as listed:
There's more...
Webmin also allows you to check which users are logged in currently:
Receiving an e-mail when a service stops running
You put your server up to perform a specific service: running a website, hosting a database, or exchanging e-mail. If that service stops working, your visitors, clients, or co-workers will complain, so in case of problems you should always be the first to know.
Webmin provides a capable monitoring system, which can periodically check the status of your server and send you an e-mail if something is out of the ordinary.
Getting ready
Webmin's monitoring service will send an e-mail alert using your local e-mail server. Refer to Chapter 12, Setting Up an E-mail Server for instructions on setting it up.
Before you can use Webmin's monitoring functionality, you'll need to activate it. Follow these steps to do it:
You should receive e-mail alerts when a monitor has something to report. You should set up a test monitor, which you know will fail to check whether these e-mails reach you.
In this recipe, we'll set up a monitor that checks whether the Apache web server is running. Refer to Chapter 8, Running an Apache Web Server, for information about setting up Apache.
How to do it...
Follow these steps to receive e-mail alerts when a service stops running on your server:
You should now receive an e-mail if any of Apache's processes stop running. To test the monitor, stop Apache for five minutes, and check if you received an e-mail report.
How it works...
When you activate Webmin's monitoring facility, it creates a cron job, which runs the monitor scripts on a schedule. Each monitor test can return a success or failure status. If a failure status is returned by a test, Webmin will send out alert e-mails to the address specified in the Scheduled Monitoring configuration.
There's more...
Webmin's monitoring is quite feature rich, and we will cover aspects of it in this section and in the following dedicated recipes.
Inspecting monitor history
Webmin keeps a history of the status of all monitors, allowing you to check when a given monitor passed and when it failed its test:
Tip
If your monitor just started running, you may not have a history to inspect yet. Check back after a few monitoring cycles have been completed. If the history fails to appear at all, it suggests that your monitor is not set up correctly.
Using predefined monitors
In this recipe, we created a custom monitor, which checked whether the Apache process was running. In fact, Webmin has quite a few predefined monitor types that require no configuration, they only need to be activated. For instance, to use a predefined monitor for Apache, follow these steps:
Monitoring system load
In addition to checking if a given piece of software is running, Webmin can also monitor other system resources. For instance, you can be notified when your system is pegging its CPU. This could indicate heavy traffic on your server, but may also indicate a runaway process stuck in an infinite loop, which should probably be killed, or an on-going denial of service attack. Perform the following steps to monitor system load:
Tip
If you have a single CPU, a load average higher then 1 for the last 15 minutes indicates that your system is overloaded. On a 2-core machine, a load below 2 indicates that the system is not overloaded. Different operating systems calculate this value in slightly different ways, so you may need to test your server with the uptime command during normal operation to check what load average is normal for your system.
You may find more information about system load on Wikipedia: http://en.wikipedia.org/wiki/Load_(computing).
Monitoring disk space
Your server will come to a screeching halt if it completely runs out of disk space. Because this situation must be avoided, you should monitor your system and react if file space usage reaches a high value, such as 90 percent. Perform the following steps to monitor disk space:
See also
Automatically restarting a service that goes down
Webmin's monitoring functionality can alert you to problems detected on your system, but it can also automatically react to detected problems by executing commands. For instance, if a service goes down, you can try to restart it automatically.
Getting ready
This recipe is an extension of the previous one, Receiving e-mail when a service stops running. Make sure you follow the setup steps in that recipe before you start this one.
In this recipe, we'll tell Webmin to monitor Apache and restart it automatically if it stops running.
How to do it...
Follow these steps to automatically restart a service that goes down:
How it works...
Webmin creates a cron job, which runs its monitors on a regular schedule. If a monitor changes state from success to failure, Webmin will execute any commands you preset. The commands may be used to restart a service that stopped running, thus automatically reacting and correcting your system's state.
This is a good strategy for services such as a web server, mail server, or application server. This may not be the best idea for a service such as a database, which may require your intervention when restarting to fix problems such as corrupt database tables.
Monitoring a remote server
You may use Webmin's monitoring facility to periodically check the state of a remote server that does not run Webmin itself. Since we only have limited access to a remote server, we can only test its externally visible state. Nevertheless, this is a very useful tool, which can tell us whether any other server is up and running a network service on a specific port. If a service on the remote server goes down, Webmin will notify us by an e-mail.
Getting ready
This is an extension of the recipe, Receiving e-mail when a service stops running. Make sure you follow the setup steps in that recipe before you start this one.
In this recipe, we'll tell Webmin to periodically check if a remote web server is running and returning an expected HTML page.
How to do it...
Follow these steps to monitor a remote server:
Note
For example, if we were to monitor https://en.wikipedia.org/wiki/Main_Page, we could check for the string, Wikipedia, the free encyclopedia, which we expect to appear as the title of a properly generated page.
How it works...
Webmin creates a cron job, which runs its monitors on a regular schedule. The remote HTTP service monitor tries to establish a connection to the web server configured to respond under a given URL. If the connection is established, Webmin requests the specified web page and scans it in search of our regular expression.
If the monitor cannot establish a connection, or the returned webpage does not match our regular expression; the test will fail; and the monitor will change its state and send an e-mail alert message.
There's more...
Webmin is able to monitor remote web servers, but it can also be used to monitor other services remotely.
Checking that a remote server is up
The remote server you are running may be a firewall or another piece of network infrastructure that does not expose any network services. Even such a secure server should still respond to ICMP ping echo requests. Webmin can send ping packets to the remote server to determine that it is reachable via the network. Perform the following steps to check if a remote server is up:
Checking that a remote server is running a network service
You can use Webmin to test virtually any network service on the remote server if you know the port number it's supposed to be listening on. Webmin will send a TCP connection request to the remote server on a specific port. If the remote server responds, Webmin will immediately close the connection. If the server fails to respond, an alert message will be sent.
Chapter 6. Managing Files on Your System
In this chapter, we will cover:
Introduction
Webmin provides facilities to transfer files to and from your server, as well as a full-fledged file manager, which can be run in your browser as a Java applet. In this chapter, we will go over using these functionalities to manage files on your server from Webmin without the need for additional tools.
The second half of the chapter will demonstrate how you can use Webmin to set up file sharing on your local network using Windows networking (CIFS), Network File System (NFS), and File Transfer Protocol (FTP). If you would like to access your files from the Internet, the best solution would be to use the Secure File Transfer Protocol (SFTP) functionality, which is also covered in this chapter.
The two recipes Mounting a Windows-shared folder and Mounting a remote NFS volume in this chapter demonstrate how Webmin can help you set up a CIFS or NFS client and make remote file resources available on your system.
Downloading files from the server
You will often run into a situation where you need to view the contents of a file or download a file from your server. Webmin's Upload and Download module makes these tasks very easy.
In this recipe, we'll inspect your system's hostname database file to check if you defined any local hostname entries that override domain names resolved by DNS. This file is stored in /etc/hosts on most systems.
How to do it...
Follow these steps to download a file from the server:
The hosts file will be displayed in your browser. If you would prefer to download your file to disk, simply answer No in step 5.
How it works...
Webmin accesses the file you select from your system disk. If the file contains text, it will be displayed directly in your browser. If you choose to download the file, Webmin will add HTTP headers (such as Content-Disposition: Attachment) to the response to force your browser to display a save dialog, which allows you to save the file on disk instead of displaying it.
See also
Uploading files to the server
Webmin's graphical interface allows you to easily upload files from your local computer to your server. Webmin also allows you to transfer files from a web URL directly onto your server, without the need to download them to your local computer first.
Getting ready
In this recipe, we'll upload a default welcome message to be served by your Apache web server. Refer to Chapter 8, Running an Apache Web Server, for information about setting up Apache.
If you would like to perform the same task, start by preparing a simple HTML file on your local system and saving it as index.html. You can of course follow the same steps to upload any other file to any location on your server.
How to do it...
Follow these steps to upload your files on the server:
An upload progress window will pop up to inform you about the status of the upload. After the upload is complete, Webmin will display a screen informing you about how much data was uploaded onto your server.
How it works...
Webmin uses the HTTP protocol to transfer files onto your server. Uploaded files will belong to the user selected as owner. This functionality eliminates the need for any additional tools for simple tasks such as uploading a small number of files onto your server.
There's more...
Webmin also allows you to transfer files from a web URL directly onto your server without the need to download them to your local computer first.
Downloading files from the Web directly onto your server
Let's say that you'd like to use jQuery on your welcome webpage. You can download the library directly onto your server if you know its URL. In case of jQuery, you can download it from http://code.jquery.com/jquery-1.10.0.min.js.
A download progress screen will appear, informing you about the status of the download.
Downloading files from the Web in the background
If you want to download a large file from a slower server, Webmin allows you to schedule the download to be executed in the background.
In order to accomplish this, follow the steps in the Downloading files from the Web directly onto your server section, but set the Download mode field to In background. You can set the download time to the current time or later. If you configured Webmin to send mail, as discussed in Chapter 1, Setting Up Your System, you can instruct Webmin to notify you when the transfer is complete.
Managing files and directories on the server
Webmin provides a simple but capable file manager, which you can access directly in the browser.
Getting ready
Webmin's file manager runs as a Java applet. In order to use it, you will need to install Java on your local machine and enable its use in the browser. You do not need to install Java on your server.
How to do it...
In this recipe, we'll discuss basic functions of the file manager, such as copying and moving files on your server.
Webmin's File Manager
Copying or moving a file or directory
Perform the following steps to create or move a file or directory:
The file will be transferred from source directory to the destination directory. If the destination directory already contains a file with the same name, a dialog will appear in which you can specify an alternate name or the same name to overwrite the destination file.
Renaming a file or directory
Perform the following steps to rename a file or directory:
Deleting a file or directory
Perform the following steps to delete a file or directory:
Editing a file on the server
Perform the following steps to edit a file on the server:
Creating a directory on the server
Perform the following steps to create a directory on the server:
Creating a new file on the server
Perform the following steps to create a new file on the server:
Creating a symbolic link on the server
In many instances, you will find it useful to create symbolic links to files or directories in another location. For most practical purposes, symbolic links behave like the objects they link to, but they are only pointers to the original location. This means that you can have access to a single directory or file from many filesystem paths. Perform the following steps to create a symbolic link on the server:
Tip
Symbolic links can reference absolute paths (those starting with the root directory /), but they can also reference relative paths. In relative paths, two dots denote the parent of the directory in which the link is placed. For instance, if we have file in directory A and want to make a link to it in a sibling directory B, we could make a link to ../A/file. This way, we can move both directories A and B together to another location and the symbolic link would still point to the same file.
Downloading a directory and its content
Webmin's file manager allows you to download an entire directory, including its content, as a compressed archive file, as shown in the following steps:
Note
The tape archive (TAR) file format is able to preserve most metadata about the files you're downloading, such as ownership, permissions, and extended file attributes (although not SELinux contexts or POSIX ACLs).
You can also choose to download the file in a ZIP format, which may be easier to extract on some systems, but metadata about the files will be lost.
Extracting files from a compressed archive
If you have a compressed archive on your server in the ZIP, TAR, or GZIP format, Webmin's file manager will allow you to extract its content by performing the following steps:
Note
Please note that if your directory already contains files with the same names as files in your archive, they will be overwritten without further confirmation prompts.
How it works...
Webmin's file manager runs in the Java Virtual Machine on your local PC. The Java applet is embedded in Webmin's webpage and can be accessed in the browser. Whenever you perform an action in the file manager, the Java applet sends a request to your server with instructions about what actions should be performed.
Note
File manager requests are sent using the HTTP protocol. The instructions will be encrypted by SSL if you enabled HTTPS support in Webmin.
Webmin performs those instructions on the server and sends back information about their effect along with other information needed to display on the next screen in the file manager window.
See also
Changing file ownership and permissions
Webmin's file manager allows you to manipulate standard POSIX file ownership and permissions. The user interface for this function is easy to use and powerful, allowing you to modify files recursively, but distinguish between files and directories.
Every filesystem node (file, directory, and so on) on a UNIX-like system is owned by a single user and a single group. The system also stores permission information for each node with separate permissions for the file owner, group, and everybody else. Standard permissions are listed in the following table:
Binary notation | Octal notation | Permission name | Description |
---|---|---|---|
000 | 0 | None | No permission of any kind. |
001 | 1 | Execute | Execute a program file or traverse a directory. In most cases, read permission is also needed. |
010 | 2 | Write | Write to file or create file entries in directory. |
100 | 4 | Read | Read file content or list directory content. |
011 | 3 | Write and execute | Combinations of the mentioned permissions. |
101 | 5 | Read and execute | |
110 | 6 | Read and write | |
111 | 7 | Read, write, and execute |
The octal notation is commonly used as it is the most concise. For instance, commonly used permissions for files are denoted as 644, which specify 6 (read and write bits) for the file owner, 4 (read bit) for the file's group and all other users. We could specify the permissions as 640 to deny access to any user from outside our group.
The standard permissions for a directory, on the other hand, are denoted as 755, which is similar to 644 but adds the execute bit to all permissions allowing everyone to enter the directory.
Note
Be careful when setting the third permission for others as this applies to everyone with access to your system.
If you copy a directory from another system to your server, the ownership and permission information can be lost or improperly set. In this recipe, we'll edit a directory recursively to change the owner and permission for the directory and its content. We'll set the permission to 644 on all files and 755 on all subdirectories.
Getting ready
In this recipe, we'll be using Webmin's file manager, which runs as a Java applet. In order to use it, you will need to install Java on your local machine and enable its use in the browser. You do not need to install Java on your server.
How to do it...
Let's begin. Perform the following steps to change the file ownership and permissions:
How it works...
Webmin's file manager runs in the Java Virtual Machine on your local PC. The Java applet is embedded in Webmin's webpage and can be accessed in the browser. Whenever you perform an action in the file manager, the Java applet sends an HTTP request to your server with instructions on what actions should be performed. Webmin performs those instructions on the server and sends back information about their effect along with the other information needed to display on the next screen in the file manager window.
There's more...
Webmin's file manager has a number of other options related to file permissions.
Enabling the setuid bit on an executable file
Normally, when a user executes a program from a file, that program will run with the permissions of that user. In special cases, when an executable file is marked with the setuid (set user ID upon execution) bit, then the executed program will run with the permissions of the owner of the executable, not the user who is running the program. This is useful in situations where a user has to write something to a file he or she would not normally have access to. For example, when a user updates his or her password, they change the shadow file in the /etc directory, which normal users don't have access to. Follow these steps to set the setuid bit on a file:
Setting the sticky bit on a directory
The sticky bit is a useful feature of directories on modern UNIX-like systems. If a directory has the sticky bit set, then files contained within the directory can only be edited or deleted by their respective owners or the root user, regardless of what the other file permissions dictate. A good example of this is the /tmp directory, where every user may create files, but they can only delete and rename files they own.
Webmin's file manager allows you to set the sticky bit on directories by performing the following steps:
Changing ACLs on a directory
If your system supports filesystem Access Control Lists (ACLs), you can use them to specify additional permissions on files and directories. For example, you may choose to set default permissions which will be applied to all new files created in a directory. If you have a directory where Webmin places backup files, you may choose to make backups inaccessible to other users by default.
You can use Webmin to manipulate ACLs by using the following steps:
Setting up network-shared folders for Windows
A server running on a local area network can be quite useful as a repository of shared files. If other computers in your local network are running Microsoft Windows, your best choice for setting up a network file server is the Windows standard Common Internet File System (CIFS) protocol. Webmin can assist you with setting up network shares of this type by installing and helping you configure the Samba package utilities.
Tip
It wouldn't be a good idea to use Windows file sharing on the open Internet. Computers out in the open are regularly scanned for vulnerabilities of the Windows file sharing protocol and you could fall victim to an attack if an exploit becomes widespread before a security patch is developed and applied on your system.
Make sure that your firewall blocks incoming external network traffic on User Datagram Protocol (UDP) ports 137, 138, and 139 as well as TCP ports 137, 139, and 445. All of these ports are used by Windows file sharing and should only be accessible to trusted computers on your local network.
If you need to make network assets available via the Internet, a better choice would be to use the SFTP or FTP protocols, described later in this chapter.
Getting ready
In order to set up Windows file sharing on your server, you need to install the Samba package from your distribution repository. If Samba is already installed, you will find the Samba Windows File Sharing module in the Servers section of Webmin's main menu; otherwise, you will find it in the Un-used Modules section.
On most systems, Webmin will be able to download the Samba package and its dependencies automatically. Navigate to Un-used Modules | Samba Windows File Sharing and click the link to download and install the package. Alternatively, you can follow the Installing software packages recipe from Chapter 1, Setting Up Your System, and install the package named samba.
Note
At the time of this publication, Webmin supports Samba Version 3 series, not yet the newer Samba 4.
After installation, follow the Allowing access to a service through the firewall recipe from Chapter 3, Securing Your System, to unblock TCP ports 137, 139, and 445 and UDP ports 137-139.
Follow the Controlling which system services are started at boot recipe from Chapter 1, Setting Up Your System, to make sure that services nmb, smb, and winbind are started and set to start automatically at boot time.
Finally, we can set how our server will be visible on the network. Navigate to Servers | Samba Windows File Sharing | Windows Networking and set Workgroup to WORKGROUP or another name used in your organization. Set Server description to the name by which you want the server to be visible on the network. You can set the description field to %h, which will cause Samba to use the server's default hostname.
How to do it...
In this recipe, we will create a shared network folder available to the users of Windows. Linux and OS X are also capable of accessing CIFS servers, so this type of network-attached storage will be broadly available on your local network.
Creating a UNIX pseudo user
We will create a shared network folder accessible to multiple users. This shared resource must be stored on our server's disk and will have to belong to a UNIX user. In order to simplify management of file ownership and permissions, we will create a special pseudo user named samba. This user will not be associated with any one person and the account will not have the ability to log into our system. The user will simply own all files in the shared directory, which we'll create in /srv/samba. Follow the Creating a system user account recipe from Chapter 2, User Management, to create a pseudo user. Use the following settings:
Note
The nologin binary may be placed under another path, such as /sbin/nologin, on your system. You may also use /bin/false, which will not return a polite message to the user but also prevents logging in.
These settings are shown in the following screenshot:
Creating a Samba shared network folder
The next step is creating the actual shared network resource. Webmin makes this part quite easy. Perform the following steps to create a shared network folder:
Creating Samba user accounts
Samba stores its own list of users separate from your system's user list. Webmin allows you to easily create Samba user accounts for system users by performing the following steps:
Tip
The user may change his or her password through Usermin. Refer to the Installing Usermin recipe in Chapter 2, User Management, for information about setting up Usermin.
If the user's name and password on your Samba server matches their username and password on Windows, they should be able to authenticate transparently, without retyping their password when accessing shared folders.
Granting Samba users access to the shared folder
The final part of the process is to grant Samba users access to the shared folder we created. We'll also inform Samba that it should set UNIX ownership of all incoming files to the pseudo user samba created in the preceding section. Perform the following steps to grant Samba users access to the shared folder:
Note
If you're running Security Enhanced Linux (SELinux), you may run into a problem wherein your users are able to access shares but cannot list, read, or write files. This is caused by SELinux blocking what it considers unauthorized access to the underlying directory. You may overcome this problem by either disabling SELinux or configuring a SELinux security context for /srv/samba. Take a look at this link for more information: http://fedoraproject.org/wiki/SELinux/samba.
After a moment, you should be able to access your shares from other computers on the network. Look for your server in the Windows network WORKGROUP or in the Shared sidebar of Finder on OS X.
How it works...
Samba's configuration is stored in /etc/smb.conf or /etc/samba/smb.conf depending on the operating system. Webmin's graphical interface allows you to edit options stored in this and associated files to modify Samba's configuration without learning this file's complex syntax. Samba automatically re-reads its configuration quite often, so there should be no need to restart smb and associated daemons after making most common configuration changes.
There's more...
There is quite a lot more you can do with Samba, but we don't have space here to cover it all. Topics we have to omit include: sharing server-attached printers on your network, authenticating users using Microsoft's Active Directory services, setting up access control lists to maintain file ownership on both Windows and UNIX systems, and so on.
In the rest of this section, we'll cover just a few additional features Webmin can help you with.
Sharing home directories
On many systems, Samba creates home directory shares automatically. This allows users to access files stored in their home directories on your server over the network. If this is a feature you didn't intend to activate, you can disable it temporarily or delete the share configuration permanently. Here are the steps to make home directories unavailable:
Checking who's connected and disconnecting sessions
If you would like to see who's connected to your server via Samba and disconnect them, perform the following steps:
Note
Disconnecting a user whose files are open may bring programs on their Windows machine to a halt. Use caution when disconnecting users.
Debugging Samba
If you run into problems with Samba, you should check for error messages in its log files. Samba's log messages are stored in /var/log/samba. You will find multiple files there, as the server keeps separate files for each connecting client. By default, Samba's logging is very quiet because logging every action would seriously slow the service down. If you're having problems, you may wish to temporarily increase the verbosity of Samba's logging; just make sure to set it back to defaults when you're done. Perform the following steps to change Samba's log verbosity level:
Mounting a Windows-shared folder
It's quite common for network attached storage volumes to use the CIFS protocol. Tools that allow setting up such sharing are built into popular operating systems such as Microsoft Windows and OS X. Many NAS devices also use this protocol, often running a version of the Samba package for Linux. Mounting CIFS shares in desktop environments is quite simple, but what if you want your server to have permanent access to a CIFS volume? Webmin can help you set up an automounting network filesystem that will connect to a remote CIFS server during system boot.
Getting ready
Before your system can access CIFS network volumes, you will need to install an additional package typically named cifs-utils. Refer to the Installing software packages recipe from Chapter 1, Setting Up Your System, for information about how to install packages using Webmin.
How to do it...
Follow these steps to mount a Windows shared folder in your filesystem:
username=cifsusername
password=cifspassword
Tip
You can use Webmin's file manager to create the file and edit its permissions. Check the Managing files and directories on the server recipe in this chapter.
Tip
You may specify another user or create a special pseudo user for use with Samba, as described in the Setting up network-shared folders for Windows recipe in this chapter.
How it works...
The /etc/fstab directory contains information about all filesystems mounted by your system during boot. This includes both local disks and remote network volumes. When creating a permanent CIFS mount, Webmin creates an additional line in your file. This line will have the following format:
\\192.168.1.50\sharedfolder /mnt/remoteshare cifscredentials=/root/.smbcredentials,nounix,uid=0,gid=100,dir_mode=0770,file_mode=0660 0 0
The preceding line contains the following information:
There's more...
If you want to mount a CIFS share once and not make it a permanent fixture of your server's filesystem, you can simplify this recipe.
Follow the steps given in the How to do it... section in this recipe, but instead of creating a credentials file, put the username and password in the Login Name and Login Password fields. Also set Save Mount to Don't save.
This is equivalent to executing the following command:
$ sudo mount -t cifs //192.168.1.50/sharedfolder/mnt/remoteshare-o username=cifsusername,password=cifspassword,file_mode=0660,dir_mode=0770,nounix,uid=0,gid=100
Setting up an NFS-shared volume
Network File System (NFS) is a distributed filesystem protocol designed to allow systems to share file resources over the network. An NFS server can export part of its filesystem, and then a remote client system can mount the exported directories as part of its local filesystem. Webmin can assist you with exporting directories for sharing using NFS.
Note
NFS v3 preserves UNIX permissions and file ownership, but the job of checking who's who is left up to the client system. That means that if the NFS server has a user with a uid value of 500, then the same user should have the same uid number on the NFS client system. Otherwise, his files may be assigned to a different user or no user at all. This is an important security consideration when setting up NFS servers and clients. Make sure that both systems have the same user accounts.
Getting ready
The NFS server may come built into your system at installation. If it is, Webmin should recognize it and enable the NFS Exports module. If you find the module listed in the Networking section of the menu, the NFS server should already be installed; otherwise, we'll need to install it.
Depending on your system, the NFS server comes in a package named nfs-kernel-server or nfs-utils. Find the appropriate package in your repository and install it. Refer to the Installing software packages recipe in Chapter 1, Setting Up Your System, for more information.
Go to System | Bootup and Shutdown and verify that the rpcbind service is running on our system. If it isn't, select it and click the Start Now and On Boot button.
Tip
Running an NFS server on a system protected by firewall is a little tricky. Port numbers for various components of the NFS server that are listening are assigned dynamically and can change over time. You can coerce your system to assign static port numbers to the NFS-related services through editing configuration files. The location of these files and their syntax is specific to your system distribution and version. Do a web search for nfs iptables and the name of your OS to find instructions specific to your system.
If your system is running on a secure internal network protected by a firewall on another machine, you can also consider disabling the firewall on your NFS server.
How to do it...
In this recipe, we will export /home/shared and make it available to users of a remote system with the IP 192.168.1.60. We will use the simpler and more broadly supported NFS Version 3. Perform the following steps to set up an NFS shared volume:
Note
You may not see the version selection screen when setting up the first NFS export. Don't worry about that; Version 3 is the default.
Tip
The root user account is "squashed" by default when traversing NFS. This means that root from the client system appears as the user nobody on the server. You can change this behavior using the Trust remote users: Everyone option (which sets the no_root_squash flag on the export). This has serious security considerations and should only be done if absolutely necessary as you must trust all users with root access to all remote machines allowed to mount this share.
How it works...
NFS exports are listed in /etc/exports. When creating an export, Webmin adds a line to this file, which is read by the NFS server. For instance, the export we created would be represented by this simple entry:
/home/shared 192.168.1.60 (rw)
The first field in the line represents the directory that will be exported (/home/shared), followed by the IP or domain name of the machine, which will be able to access the export and options. In this simple case, the only option present is rw, which designates that the export can be mounted in read-write mode.
There's more...
If you want to check which exports are currently being served by your NFS server, you can execute the following command:
$ sudo exportfs
Granting access to multiple clients
If you would like to make the NFS export available to more than one machine, you can specify the hosts in terms of a wildcard. For instance, to make the export available to all servers in the intra.mydomain.com domain, you could set Host(s) to *.intra.mydomain.com.
If you would rather specify a subnet, you can use the IPv4 Network and Netmask fields instead. For instance, to make your export available to all machines with IPs in the 192.168.1.0-192.168.1.255 range, you would set IPv4 Network to 192.168.1.0 and Netmask to 24.
See also
Mounting a remote NFS volume
If your server has access to a remote volume exported using NFS, Webmin can assist you with mounting the volume as part of your filesystem.
Getting ready
NFS client support may come installed by default on your system or have been installed together with NFS server software. Verify that the package named nfs-utils or nfs-common (depending on your system) is installed, or install it if needed. Refer to the Inspecting installed software packages and Installing software packages recipes in Chapter 1, Setting Up Your System, for more information.
How to do it...
In this recipe, we'll mount the /home/shared directory exported by a remote NFS server with the IP 192.168.1.50 in the local mount point /mnt/remoteshare. Perform the following steps to mount a remote NFS volume:
Tip
At this stage, it's a good idea to click the ellipsis (…) button next to the NFS Directory field. A list of available exported directories should appear. If it does not, there may be a problem with the network connection or the NFS server is not exporting the directory to our client system properly.
How it works...
During boot, your system mounts filesystems based on a description placed in /etc/fstab. When creating a permanent mount point, Webmin adds a line to this file corresponding to the NFS export.
This is the entry created by this recipe:
192.168.1.50:/home/shared /mnt/remoteshare nfs _netdev,intr,bg 0 0
The preceding entry contains the following fields:
There's more...
You don't have to make an entry in /etc/fstab to mount an NFS volume temporarily. You can do this through Webmin; just set the Save option to Don't save. This is equivalent to issuing the following command:
$ sudo mount -t nfs -o intr,bg 192.168.1.50:/home/shared /mnt/remoteshare
Mounting NFS v4 exports
Webmin can also mount shares exported by NFS Version 4. In this version of NFS, the organization of exports is slightly different. Directories are not exported one by one, but rather as part of an entire pseudo filesystem. You mount this entire filesystem in your mount point, and the exported directories become subdirectories of the mount point.
The differences in creating an NFS v4 mount point using Webmin are twofold. You should select Network Filesystem v4 (nfs4) from the Type dropdown and set NFS Directory to / since the entire exported filesystem will be mounted in one location.
See also
Giving users access to your server via SFTP
Users may need to transfer files to and from your server over the Internet. You can enable this facility in a simple and secure way using SSH File Transfer Protocol (SFTP). Setting this up does not require installing any software other than the SSH server, which you are most likely running anyway, to control your server remotely. All users who have access to SSH may also use SFTP client programs (such as Filezilla) to access your server.
In this recipe, we will set up an account for a user who will be able to transfer files to your server but will not have shell access to your system.
Getting ready
If you haven't installed the SSH server on your system yet, follow the Installing software packages recipe in Chapter 1, Setting Up Your System, to install the openssh-server package.
After installation, follow the Allowing access to a service through the firewall recipe from Chapter 3, Securing Your System, to unblock TCP port 22.
How to do it...
In order to enable SFTP-only access to a user, we will have to set the user's shell to the sftp-server program. Let's begin by finding the location of this program on your system:
Subsystem sftp /usr/lib/openssh/sftp-server
This means that the SFTP server binary is located at /usr/lib/openssh/sftp-server.
The next step is to add the path to the SFTP server binary to the list of available user shells listed in the /etc/shells file. You can do this by executing the following command as the user root:
echo '/usr/lib/openssh/sftp-server' >> /etc/shells
Follow these steps to grant users SFTP access to your server without granting them the ability to log in:
The user will now be able to access your server over SFTP. The user will not have the ability to log into your system's command-line shell.
Note
Users with shell set to sftp-server have access to your server's entire filesystem, in accordance with Unix permissions. You can grant users read and write permissions to other directories on your system if you want them to access files there.
To create additional SFTP-only users, follow the Creating a system user account recipe from Chapter 2, User Management, but make sure to set their Shell to sftp-server.
Tip
When users connect to your server over SFTP, the first directory listing they will see is their home directory. Keep in mind that you can set a user's home directory to any place in the filesystem. You could also make life easier for your users by creating symbolic links in their home directories to locations on the system that they should be able to access most easily.
How it works...
The user's shell program is the first program started by the system for the user when they log in. If this shell is sftp-server, then the user can only interact with this program. This is what is needed for transferring files, but it won't allow the user to perform other actions on your system or start other programs.
The definitions of user accounts are stored in /etc/passwd. Webmin edits this file when we create accounts or change users' shell program settings.
See also
Giving users access to your server via FTP
The File Transfer Protocol (FTP) is one of the most popular data exchange protocols on the Internet. FTP servers allow your users to authenticate and upload files onto your machine. This type of access does not require granting users other privileges on your server and you may restrict access over FTP to a user's home directory.
Note
Please note that FTP is a very insecure protocol, because the username and password are exchanged without encryption unless you enable TLS. If your server is running in an untrusted network, consider running SFTP instead.
How to do it...
The first step toward allowing your users to access your system via FTP is to install an FTP server daemon. We'll be using the stable and feature-rich ProFTPd server, which Webmin supports well. Follow these steps to set up an FTP server:
Tip
At this stage, you may run into a problem if the ProFTPD package is not found in your system distribution's package repository. Most distributions include ProFTPD packages, but you may need to activate an additional repository.
For instance, if you're running a Linux distribution from the RedHat family (RHEL, CentOS, Fedora, and so on), you should add the Extra Packages for Enterprise Linux (EPEL) repository by executing a command as shown in the following:
$ sudo rpm -Uvh http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
On 32-bit (i386) systems, substitute x86_64 with i386.
At the time of writing this book, the latest version of EPEL's index is 6.8; check what the latest version currently is at the EPEL site and modify the URL in the command if needed. More information can be found at http://fedoraproject.org/wiki/EPEL.
If the server doesn't start, run the following command to check your configuration:
$ sudo proftpd --configtest
You may see a warning such as this:
warning: unable to determine IP address of 'server-name'
This means that your server cannot determine its own IP address based on its hostname. The easiest way to fix this is to follow these steps:
Note
This adds the following line to your /etc/hosts file:
127.0.0.1Â Â server-name
Opening FTP access in your firewall
If clients connect to your server from behind a firewall, you should use passive mode for establishing FTP connections. Follow these steps to tell ProFTPd which range of ports it should use for passive connections and then to open those ports along with port 21 on your firewall.
At this stage, your FTP server should be up and running. Try to connect to it from another computer using an FTP client. Try to log in as any regular user other then root.
Tip
If you're using SELinux, you may be unable to log into your FTP server and may find strange Permission denied error messages in ProFTPd's log. If this is the case, you'll need to set a SELinux flag, which allows FTP access. You can do this by executing one of the following commands:
To allow FTP access to user home directories only, use this:
$ sudo setsebool ftp_home_dir on
To allow FTP access to the entire filesystem, use this:
$ sudo setsebool allow_ftpd_full_access on
How it works...
Webmin is able to download and install the ProFTPd package using your system's package management system. The package comes with a startup script through which we started the server and set it to launch during system startup.
Passive and active FTP connections
File Transfer Protocol uses two simultaneous connections to exchange data between the server and client. One connection is used to send instructions (command channel) and the other to transfer files (data channel). The command channel is always opened by the client, which establishes a connection with your server on a port dedicated to FTP (usually, number 21). The data channel, however, can be opened in two different ways:
Global configuration and virtual servers
The ProFTPd service can run multiple virtual servers with different configurations. Each virtual server runs on a different IP, so if your server is connected to the network or multiple networks using different interfaces, you can set up a different FTP server with a different configuration on each IP. The server-specific settings are accessible in Webmin via the Virtual Servers section. It will contain at least one configuration—Default Server. Settings in the Global Configuration section apply to all servers, but each virtual server may choose whether to use the default global value or override it. In most cases, your server will only run one virtual server. In such cases, there is no practical difference between storing settings in the Global Configuration or the Default Server sections. You should keep this in mind, however, because if you change a setting in Global Configuration and the change does not seem to have an effect, it may be overridden in the Default Server configuration.
There's more...
The ProFTPd server is very flexible. Here are some common options you may wish to set.
Restricting access to users' home directories
If you would like users to be able to access only files in their home directories using FTP, perform the following steps:
Denying FTP access to some users
If you would like to deny some users access over FTP, perform the following steps:
FTP-only users
You may allow users to access your server over FTP, but prevent them from being able to log into your server otherwise, by performing the following steps:
Note
The nologin binary may be placed under another path, such as /sbin/nologin, on your system.
See also
Chapter 7. Backing Up Your System
In this chapter, we will cover the following topics:
Introduction
Data stored on your server is usually more important and valuable than the server hardware on which it is stored. Keeping your server secure and your data safe is one of the top priorities of a system administrator. As much as we hope to avoid trouble such as hardware failures or malicious security breaches, we need to be prepared to fix the consequences of these problems. Making regular backups of your data is essential to recover from unforeseen disasters. You should also regularly test the backups you create to make sure they will actually allow you to recover data when you need it.
In this chapter, we will provide recipes that demonstrate how Webmin helps you keep a backup of the following things:
Keep the following things in mind when designing your backup strategy:
A perfect backup strategy would store daily (and maybe even hourly) incremental backups and periodic (weekly or monthly) full backups in offline and offsite form. The number of backups you keep will determine how far back in time you can go to retrieve a lost or corrupted file.
Tip
Backups may contain sensitive data, such as passwords or other confidential information. Make sure to store backups securely, perhaps consider encrypting files stored offsite.
In this chapter, we'll demonstrate how to create backups, but it's up to you to make sure that the backup files are stored in a safe location and regularly tested.
Backing up configuration files
You spend a lot of time setting up your system and optimizing its settings for the best performance and features. Erasing a configuration file or even making changes that turn out not to be optimal can have dire consequences, especially in a production setting. Before making changes, you should make a backup of configuration files and keep it handy in case you need to revert to the previous configuration. Webmin has a facility to help you do just that.
Getting ready
In this recipe, we will create backup files with names containing the current date. We need to enable this feature. So, before starting the backup process, navigate to Webmin | Backup Configuration Files | Module Config and answer Yes to the question, Do strftime substitution of backup destinations?.
How to do it...
Perform the following steps to back up the configuration files:
Tip
Make sure that your backup directory is stored on a partition with enough disk space so you don't accidentally fill up your entire disk. Placing /backups on a separate partition or in /var/backups may be a good idea.
You should also protect the backup location from prying eyes. You can use permissions and ACLs to do this, as explained in the Changing ACLs on a directory section of the Changing file ownership and permissions recipe in Chapter 6, Managing Files on Your System.
Tip
You can backup multiple modules, or even all of them, if you want a more complete backup.
Webmin configuration files will be backed up in a file in the /backups directory. The name of the file will contain the date and time of the backup.
How it works...
Webmin knows which configuration files are used by the services it helps you configure. When you back up configuration files for a given module, Webmin creates a compressed TAR file with those files in the location you specify.
Since we activated strftime substitution, patterns preceded by a percent sign (%) are replaced by date components. For instance, %Y is replaced by the year number and %m by the month number. A full list of available tokens can be found by clicking the Do strftime substitution of backup destinations? link in the Module Config screen.
Tip
Webmin only backs up the files that it is aware of. If you would like to perform a complete backup of all configuration files on your server, you should consider making a backup of the entire /etc directory. Take a look at the Creating a backup of a selected directory recipe in this chapter for more information.
There's more...
Webmin allows you to back up files to a remote server using the FTP or SFTP (SSH) protocol. The steps to do this are the same as listed in the preceding section, except for changing the Backup destination option to FTP Server or SSH Server. To transfer files to a remote server, you also need to specify the remote server's IP or domain name and a username and password on the remote server. You may also choose to download the backup to the computer from which you are connecting to Webmin by choosing the Download in browser destination option.
See also
Restoring configuration files from backup
If you use Webmin to create backups of configuration files, you can use them later to restore system settings if you run into problems with the changes that you made since the backup.
How to do it...
To restore the configuration backups, follow these steps:
Tip
You may also choose a file located on a remote FTP or SSH server, or upload a file from the computer you're using to connect to Webmin.
How it works...
Webmin keeps an index of files used by each module inside the backup archive. When you select one or more modules to restore, Webmin will replace their active configuration files with their backed up counterparts. If it's necessary, Webmin will restart the services that use the restored configuration files.
There's more...
It's a good idea to check which files would be restored from backup without actually making any changes before restoring the actual backup. To do this, follow the preceding section, but set the Just show what will be restored? option to Yes.
If you want, you can also inspect the content of the configuration files stored in the backup. After all, the backup is just a compressed TAR archive, so you can extract the files and view them. Take a look at the Managing files and directories on the server recipe in Chapter 6, Managing Files on Your System, to see how you can do this without leaving Webmin.
See also
Automatically backing up configuration files
Webmin allows you to set up a schedule it will follow to create backups of system configuration files automatically. You can use this option to keep a rolling archive of configuration changes made on your system.
Getting ready
In this recipe, we will create backup files with names containing the current date. We need to enable this feature, so before starting, navigate to Webmin | Backup Configuration Files | Module Config and answer Yes to the question, Do strftime substitution of backup destinations?.
How to do it...
Perform the following steps to automatically back up the configuration files:
Tip
Make sure that your backup directory is stored on a partition with enough disk space so you don't accidentally fill up your entire disk. Placing /backups on a separate partition or in /var/backups may be a good idea.
You should also protect the backup location from prying eyes. You can use permissions and ACLs to do this, as explained in the Changing ACLs on a directory section of the Changing file ownership and permissions recipe in Chapter 6, Managing Files on Your System.
Tip
After you receive a few e-mails to confirm that backups are working as expected, you can come back and switch this option to Only when an error occurs.
System configuration files will be backed up every day at midnight to a file in the /backups directory. The name of the file will contain the date and time of the backup.
How it works...
Webmin creates a cron job that runs at every midnight. The task creates a compressed TAR archive containing all the configuration files that Webmin is aware of. If an error occurs while creating the backup archive, an e-mail will be sent to the provided address.
See also
Creating a backup of a selected directory
Webmin allows you to easily back up the contents of a directory to a TAR (tape archive) file. Backup tasks are saved, so you can perform the backup again with a single click in the future.
Note
The TAR file format preserves information about file ownership and permissions set on each file. It does not, however, store the extended attributes of the files. If you're using extended attributes and an ext filesystem, you should use the dump command instead. Take a look at the Creating a backup of an entire mount point recipe of this chapter for more information about making backups with the dump command.
Getting ready
In this recipe, we will create backup files with names containing the current date. We need to enable this feature. So, before starting, navigate to System | Filesystem Backup | Module Config and answer Yes to the question, Do strftime substitution of backup destinations?.
How to do it...
A backup of the directory will be created in a compressed TAR archive at the specified destination. The filename will include the date and time of creation.
How it works...
Webmin creates a Gzip compressed TAR archive of the selected directory in the specified backup location. This is roughly equivalent to running the following command at the command line:
$ tar -czf /backups/backup-destination.tgz /backup/source/directory
Before creating the backup, Webmin also executes the sync command that flushes the filesystem buffers, committing unwritten changes to the disk.
There's more...
When the time comes to restore files from a backup, you have a number of options. You can restore the files to a separate directory and then move them to the original location. You can also restore files from the archive directly to their original locations.
Restoring files from a backup archive
The following steps extract files to a temporary location from which you'll have to move them to their final locations:
Tip
To place files in their original locations automatically, use the root directory (/) as Restore to directory. Note that this option will place files from the backup back in place, but will not delete files created since the backup was created. If you would like to restore only those files that were deleted since backing up, use the Don't overwrite files? option.
See also
Creating a backup of an entire mount point
Webmin allows you to set up backup tasks that use the UNIX dump command to archive the entire ext filesystem's mount points. This strategy has a number of advantages over creating archives using TAR. Firstly, all information contained in the filesystem is preserved, including extended file attributes, ACLs, special files, and so on.
Secondly, dump allows you to create incremental archives containing only the files changed since the previous backup. The dump command uses the concept of levels to distinguish between full and partial backups. A level 0 backup will archive all files (full backup), while a level 1 will only archive files changed since the last level 0 backup. A level 2 backup will archive all files changed since the last level 1 backup, and so on. There are 10 levels to choose from, and you don't need to use consecutive level numbers. One possible dump strategy is to perform a level 0 backup every month, a level 3 backup every week, and a level 6 backup every day. This means that the daily backups will be relatively small and fast, as they keep track only of changes made during the week.
If you use an incremental backup strategy with dump, you'll need to restore backups from archives of each level. For example, if you followed the 0-3-6 strategy described in the previous paragraph, you would start by restoring files from the most recent level 0, then the most recent level 3, and finally, the most recent level 6 archive.
Tip
The dump command was designed to write backup archives to magnetic tape drives. Webmin will be able to assist you in writing files to a tape device; just specify the device name instead of a destination filename when creating a backup task.
Getting ready
Before starting, install the dump package on your system, or check that it is installed. Refer to the Installing software packages recipe from Chapter 1, Setting Up Your System, for more information.
You should also prepare a backup destination that is located on another filesystem, other than the one you're planning to back up. This may be an external drive, a network filesystem, or a magnetic tape device. In this recipe, I will assume you're backing up to an external disk mounted as /media/backups.
How to do it...
Note
You don't need the file extension, but you may find it useful in the future to quickly check what type of filesystem is contained in a backup archive. Change ext4 to ext3 or ext2, depending on your system.
A backup of the entire filesystem's mount point will be created in a compressed dump archive at the specified destination. The filename will include the date and time of creation.
How it works...
Webmin uses the dump command to create a backup archive containing all the files from the filesystem mounted in the specified source directory. All the metadata contained in the filesystem is also stored in the archive. The backup is compressed using the bzip algorithm to reduce the size of the archive.
There's more...
In order to create an incremental backup that will be completed more quickly and use less disk space, create a dump of a level other than 0.
Creating an incremental backup archive
A dump archive of another level will contain only the files that were modified since the most recent dump of a lower level was performed. Follow the same steps that were given in the preceding section to create an incremental backup, but change the Dump level parameter to a different value and make sure that the filename (or tape label) reflects that this archive contains a backup of this level. Remember that you will need the most recent archives of all levels, down to level 0, to restore all backed up files.
Restoring data from a backup archive
To restore a backup from a dump archive, follow these steps:
Tip
You do not have to enter the original path as the restore destination. You can enter another path to extract the backup to a different location.
Tip
You can check what files are contained in the backup archive by choosing the Only show files in backup? option.
If you would like to restore only a few files or directories, set Files to restore to Listed files and enter a list of pathnames separated by spaces.
See also
Backing up to a remote host
Storing backup archives locally on the same machine will not protect you from hardware failure or malicious attack. When the machine goes down, backups will go down with it. For this reason, backups should be stored remotely on another server.
The easiest way to back up to a remote host is to use a network file sharing protocol such as NFS or CIFS. You start by creating a network volume on the remote server and then mount the volume on your server. Now, you can back up to the files on the remote system just as easily as if they were stored locally. Take a look at Chapter 6, Managing Files on Your System, for instructions on setting up network file sharing using NFS or CIFS.
If you have only SSH access to the remote host or want to back up to a remote magnetic tape device, you can follow the steps outlined in this recipe. We'll demonstrate how Webmin helps you set up either tar or dump to create remote backups over SSH.
Getting ready
The root user of our server will need to access the remote server over SSH without entering a password. Instead of a password, SSH will use a key; so, we'll need to instruct the remote server to accept it.
Let's start by locating the public RSA key of our server's root user. The key is stored in a file named /root/.ssh/id_rsa.pub by default.
If this file does not exist, you may need to create a SSH public and private key pair for the root user of your server. This can be done by entering the following command at the terminal, but by substituting root@my_server with the e-mail of your server's root user:
ssh-keygen -P "" -f "/root/.ssh/id_rsa"-t rsa -C "root@my_server"
The next step is to instruct the remote server to accept SSH connections using this key. Let's say that we are going to log in as a user called backups on the remote server. We would need to append the content of the /root/.ssh/id_rsa.pub file from our local server to the end of the /home/backups/.ssh/authorized_keys file in the home directory of the user on the remote server.
Note
Connections made using any of the keys placed in a file named ~/.ssh/authorized_keys in a users' home directory are treated as legitimate, authorized connections.
When this is done, the root user of our server should be able to log in over SSH to the remote server as the user, backups, without providing a password.
The final step is to make sure that the rmt command is installed on the remote host while also noting the path to the rmt binary. You can check for this by running the command, which rmt as root. If the command is not found, install the rmt or tar package on the remote host.
How to do it...
You can convert any filesystem backup task created in Webmin into a remote backup. Start by creating a backup task as described in the Creating a backup of a selected directory or Creating a backup of an entire mount point recipes of this chapter. Perform the following steps to back up to a remote host:
The backup job will run and an archive containing the backup will be created in the location specified on the remote server.
How it works...
Modern versions of both the tar and dump commands are able to use the SSH protocol to transfer backup archives securely over the Internet to a remote destination backup server. Webmin assists you by setting the slightly complex set of options needed to run tar or dump over SSH.
Setting up automatic backups
Backups should be performed on a regular schedule. You can use cron to automate this process and run backup tasks at specified times. Webmin's backup facility makes this very simple.
How to do it...
You can convert any filesystem backup task created in Webmin into an automatic backup. Start by creating a backup task as described in Creating a backup of a selected directory or Creating a backup of an entire mount point recipes of this chapter. Perform the following steps to set up automatic backups:
Tip
If you have a series of backups that you would like to run together, Webmin allows you to schedule a backup to run after another backup completes.
Tip
Choose a more complex schedule—if you require one—by marking the minutes, hours, and days of the month at which the job is to be performed.
How it works...
Webmin adds an entry, which starts the backup job to the cron table of your system's root user. Whenever cron is running during the scheduled time, the backup job will be started. When the backup task is completed, you should receive a message with information about the success or failure of the job.
Backing up databases
Webmin can help you set up a schedule to perform automatic backups of all databases hosted on your system. Webmin will dump the databases as SQL files into a directory on your local filesystem or locally mounted remote network volume.
Tip
You can make backups of databases to a local directory and back that directory up to a remote server. You can also instruct Webmin to run a command that will remove old local backups after transferring them to a remote location.
How to do it...
Tip
After you receive a few e-mails to confirm that backups are working as expected, you can come back and switch this option to Only when an error occurs.
Tip
Choose a more complex schedule—if you require one—by marking the minutes, hours, and days of the month at which the job is to be performed.
Tip
You can click the Backup Now button to save the databases to SQL files immediately.
How it works...
Webmin accesses your database system and creates an SQL dump file for each database on your server. The database files are stored on the disk in the specified directory. When you set up a schedule for automatic backups, Webmin adds a job to the root user's cron table to create the backups at specified times. When a backup task is completed, Webmin sends an e-mail to the address specified, but we set it to only send e-mails in the event of problems to avoid spamming you unnecessarily.
See also
Chapter 8. Running an Apache Web Server
In this chapter, we will cover the following points:
Introduction
For most people, the Web is the Internet. Since it gained popularity in the 1990s, the World Wide Web has become a part of the everyday life of nearly every person on this planet. Websites provide us with information; social media allow us to communicate with other people; and online retail allows us to shop all over the world. The humble Hypertext Transfer Protocol (HTTP) makes all these killer features of the Internet possible.
Modern web browsers are capable of much more than just displaying hypertext. Thanks to the inclusion of the JavaScript runtime, the web has become the most widespread computing platform available. Programmers who want to reach the broadest number of users don't have to dedicate resources to creating a version of their application for every operating system. Instead they can create a web application, which can run on every device with a capable browser.
This arrangement is also a boon for system administrators, who can choose to implement many services in the form of web applications and not worry about supporting software installed locally on many client computers. Come upgrade time, it's much more efficient to update one server than each client system.
There are many web servers to choose from but Apache is by far the most popular solution, and Webmin supports it very well. Another open source web server, which is currently gaining popularity, is Nginx, but Webmin's support for it is currently very limited.
In this chapter, we will cover topics related to setting up Apache, configuring it to serve static websites, and analyzing logfiles. In Chapter 11, Running Web Applications, we'll cover topics related to running dynamic sites and web applications.
Installing Apache on your system
Some operating systems come bundled with the Apache web server as a matter of course. Others provide packages in their repositories, which allow you to quickly install Apache with a working default configuration.
Getting ready
Start by checking whether Apache is already installed on your system. If it is, Webmin should recognize it and place the Apache Webserver module in the Servers section of its menu.
How to do it...
Follow these steps to set up Apache on your system:
Note
Depending on your system, the Apache version 2 package may be named apache2 or simply httpd.
The Apache test page should greet you. It may simply state It works! or provide more information about running Apache on your operating system.
How it works...
Your operating system's package maintainers provide a working default configuration of Apache for your system. Installing the package and starting the HTTP server daemon should be sufficient to get a functional starting point for further customization.
HTTP servers listen on ports 80 and 443 by default. When you point your browser at a web server it will try to connect to port 80 when making a standard http:// request or to port 443 when making a secure https:// request. You should make sure those connections to your server on these ports are not dropped by your system firewall.
Apache can be configured to listen for connections on other ports, but the port number will then have to be entered in the URL field for each connection. This would be similar to connecting to Webmin, which runs an HTTP server on a non-standard port 10000.
There's more...
We don't want to have to start Apache manually every time our server is restarted, so we should activate an init script included in the software package to start the service automatically. We should also monitor the server and allow it to alert us if the HTTP service becomes unavailable.
Setting Apache to start at system boot time
Follow these steps to start Apache at system boot time:
Monitoring that Apache is up and running
If the HTTP server crashes users will be unable to connect to your website or use your web application. If this happens, you should be notified as soon as possible so that you can take appropriate action to restart and fix your server.
Chapter 5, Monitoring Your System, covers topics related to monitoring the status of your server in detail. Take a look in particular at the recipes Receiving an e-mail if a service stops running and Automatically restarting a service that goes down. It's also a good idea to monitor your server from a second machine so that you will be notified of trouble even if the entire server becomes unavailable. Take a look at the recipe Monitoring a remote server for more information.
See also
Restarting Apache
Whenever you make changes to the configuration of the Apache web server, associated runtime environments (such as PHP), or web applications served by Apache through additional modules (such as mod_wsgi), you will need to restart the server daemon processes.
How to do it...
Restarting Apache using Webmin is very simple:
How it works...
Clicking on Apply changes in Webmin's Apache web server module causes Apache to restart gracefully. This causes Apache to finish processing all requests but to stop accepting new connections. When Apache finishes sending the last response, it restarts and resumes accepting connections. From the perspective of a user, this will cause some requests to take longer to complete, but otherwise the server restart should be transparent. After the restart, Apache will work in accordance with the new configuration files.
You can also restart Apache in a similar fashion using the following command:
$ sudo apachectl graceful
There's more...
Making Apache configuration changes through Webmin allows you to not worry about making syntax errors. Sometimes, however, you will need to make custom configuration changes manually. When you do, you should check configuration syntax before restarting the server because a syntax error will prevent Apache from coming back up after a restart.
Verifying Apache configuration syntax
To check whether your configuration files contain no error, which would prevent Apache from starting, issue the following command:
$ sudo apachectl configtest
If everything is fine, the command will return the message Syntax OK.
Enabling Apache modules
The Apache HTTP server employs a modular architecture. Additional functionality can be added to the server by including additional modules. While these modules can be compiled into the server itself, on most systems they are installed separately as shared libraries. Apache's configuration files decide which modules are loaded when the server starts.
Webmin provides a simple form to enable and disable Apache modules. In this recipe, we will activate the mod_rewrite module.
How to do it...
Follow these steps to enable an Apache module:
How it works...
Webmin adds a line to Apache's configuration, which loads the selected module. In Apache Version 1, the directive for loading modules is AddModule, while in Version 2 it is LoadModule.
On some systems Apache2 doesn't actually store the LoadModule lines in the main configuration file (/etc/apache2/httpd.conf) but instead stores a separate file for each module in the /etc/apache2/mods-available/ directory. The modules are activated by making symbolic links to their activation files in the /etc/apache2/mods-enabled directory, from which all files are included in the configuration during server start. When using this form of configuration, special scripts are provided which take care of creating or deleting these symbolic links as needed. In effect, we can enable the rewrite module by issuing the following command and restarting Apache:
$ sudo a2enmod rewrite
The module can be disabled by using this command:
$ sudo a2dismod rewrite
There's more...
Apache HTTP server packages include most of the more commonly used modules, but additional modules can be installed as software packages or compiled from sources.
Installing additional modules from software packages
If you want to include an additional Apache module, which did not come bundled with the server, search for it in your system packages repositories. The name of the package with an Apache module may differ from distribution to distribution. For instance, if you wanted to install the mod_wsgi module, you could find it in a package named libapache2-mod-wsgi, apache2-mod_wsgi or simply mod_wsgi depending on your system. Follow the steps described in the recipe Installing software packages in Chapter 1, Setting Up Your System, to install the package.
Creating a static HTML site
The simplest task that an Apache server can perform is to serve a static website. When a browser sends an HTTP request to such a site, Apache processes the incoming URL, maps its path to a file on disk, and returns the contents of that file to the browser. If the file contains HTML code, a web page is rendered in the browser.
A single Apache instance can serve multiple websites, but for this recipe, we will configure only a single website as Apache's default site. If this is your only configuration, it will be used regardless of what IP address or domain name is associated with the incoming request.
In this recipe, we will configure Apache as a single-site server. It will respond to incoming requests with static files from the directory /var/www/default.
If you want to serve different websites under different domain names, you will have to create virtual host configurations for each domain. This topic is covered in the recipe Creating a virtual host.
How to do it...
We will instruct Apache to listen for all incoming requests on port 80 in order to create a single-site server as follows:
We can now set the server's root document directory, from which the files will be served.
<!DOCTYPE html>
<html>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>
You can now upload your entire static site to the /var/www/default directory and host it on your server.
How it works...
The Apache configuration is divided into three main sections: global settings, default server settings, and settings for virtual hosts. Virtual host settings are used if a request comes in with a host name or IP address that matches the name or address of a configured virtual web server. If no matching virtual host configuration is found, the request is passed on to the default host.
In our configuration, we specified no virtual hosts, so the default host will handle every incoming request. We configured the default host to serve files from the /var/www/default directory, which is equivalent to setting the DocumentRoot directive in the main Apache configuration file.
See also
Creating a virtual host
An Apache server can host multiple websites at the same time. Each website can be hosted on a separate IP address if your server has multiple network interfaces, but more commonly all websites share the same IP address and are distinguished by the domain name associated with the site.
Note
The ability of a single web server to host multiple websites in different domains from the same IP address is an aspect of the HTTP protocol. When you type in the URL http://example.com into your address bar, the browser looks up the IP address of the server associated with the example.com domain and opens a connection to port 80 of a server at that IP. The name of the web host (example.com) is passed as the Host: header of the request.
A single Apache instance can support multiple configurations. The server checks the IP and Host: header of every incoming request and decides which configuration to use based on this information. If you have a special configuration (virtual host) associated with example.com, Apache will use it for all arriving requests addressed to http://example.com. If you don't have a configuration for that address, the default server configuration will be used.
Getting ready
In this recipe, we will create a virtual server configuration for the domain example.com.
You can configure a domain to point at your server by setting up a DNS entry with your domain provider. If your domain isn't pointed at your server yet, you can simulate this during tests by making an entry in the /etc/hosts file of the client computer from which you will be connecting to test your server.
Tip
If you're using a Windows machine for testing, you will have to find the hosts file in the directory %SystemRoot%\system32\drivers\etc.
Wikipedia provides the locations of hosts file on other systems: http://en.wikipedia.org/wiki/Hosts_%28file%29#Location_in_the_file_system.
The hosts file entry contains the IP address of your server and the host name you would like to point to that IP, separated by whitespace, for instance:
198.51.100.1Â Â Â example.com
How to do it...
Perform the following steps to create a virtual host:
<!DOCTYPE html>
<html>
 <body>
 <h1>Welcome to Example.com</h1>
 </body>
</html>
You should now be able to use your browser to visit a new site at the URL http://example.com.
How it works...
Webmin creates a virtual server by adding the following section to your Apache configuration:
<VirtualHost *:80>
ServerName example.com
DocumentRoot "/var/www/example.com"
</VirtualHost>
The preceding directive specifies that the server should listen to connections on port 80, and if it encounters any requests directed at Host: example.com, it should use this configuration to serve them. The only other line in this VirtualHost section specifies which directory HTML files should be served from. Further options for this host will be added to this VirtualHost section to further customize the configuration of the virtual server.
There's more...
An Apache virtual host is highly customizable. You can find the configuration screen of the newly created virtual server by navigating to Servers | Apache Webserver | Existing virtual hosts and clicking the icon next to the server with Server Name example.com.
Creating an IP-based virtual host
Apache can also create separate virtual hosts at different IP addresses if your machine is equipped with multiple network interfaces. The procedure is very similar to the steps described previously, but instead of specifying Server Name, you should set Handle connections to address to Specific address and provide the IP for the virtual host:
See also
Setting options for directories, files, and locations
Apache allows you to customize settings at the level of a directory or file. This means that requests matching a specific path on your server are treated differently from requests for other parts of the site.
Per-directory options can be set as part of Apache's configuration files using the <Directory> directive. Options set this way will apply to the chosen directory and all of its subdirectories. The <Directory> options set on a subdirectory will override the settings of a higher-level directory.
Local settings can also be specified by placing them in a special file (called .htaccess by default) placed in a directory. The AllowOverride option must be set on the directory for .htaccess files to have an effect.
In this recipe, we will create a directory-specific configuration, which allows the usage of .htaccess files in that directory and its subdirectories.
Getting ready
We will set specific options on the directory /var/www/default inside of the Default Server configuration. Before you begin, note the full path to the directory you would like to set configuration directives for, and identify which virtual host serves files from that directory (if other then the default virtual server).
How to do it...
Perform the following steps to set options for directories, files and locations:
Tip
You may also enter a wildcard path such as /var/www/default/site*. Options set this way will apply to all directories that match.
If you require even more flexibility, you can select the Match regexp option and specify the path using a regular expression.
How it works...
When we choose to set per-directory options, Webmin creates a <Directory> directive for us and fills it with the selected options. In the example we presented, we chose to allow all settings to be overridden by local .htaccess files. This created the following configuration section:
<Directory "/var/www/default">
AllowOverride All
</Directory>
If we chose to edit the Default Server, the <Directory> directive will be created in the main Apache settings file. These settings will always apply to the directory regardless of which virtual host is used to access it. If you wanted to create per-directory settings, which apply only to a selected virtual server, you would choose that server in the Existing virtual hosts tab. Settings created in this way would be saved within the particular <VirtualHost> section.
There's more...
Webmin allows you to set most local options available to your version of Apache through the Per-Directory Options user interface. Browse around to familiarize yourself with this section, and you will be able to tweak settings quickly when needed.
Apache allows you to set local options by matching the filesystem path of a directory, but you can also match names of requested files or URL addresses.
Setting options on files with names matching a pattern
Apache allows you to set specific options on files with names matching a particular pattern. For instance, it's a bad idea to allow external users to read the contents of .htaccess and other local Apache configuration files. You can prevent access to all of these files (collectively matching the regular expression ^\.ht) by following these steps:
Setting options for specific URLs
You may wish to apply custom settings to specific URLs, which don't necessarily match a particular underlying filesystem path or filename. Apache's <Location> directive can be used in such cases, and Webmin will assist you in its configuration.
Let's use as an example the dynamically generated /server-status page that gives you an overview of your server if the mod_status module is enabled. There is no path on your disk called server-status, but you may still control requests to this URL by creating a location-based configuration.
You would want the server information to be available only to a limited group of users. Let's limit access to this URL to requests coming from the localhost IP of 127.0.0.1:
Note
Webmin always provides one empty entry in the list. When you enter the section again, you will be able to add a second access restriction.
Changing matching path or pattern
If you have already created a set of local settings, but need to change the path they are applied to, follow these steps:
Setting options using an .htaccess file
Using the .htaccess files is a convenient way to allow users without administrative privileges on your server to customize local settings of the Apache server at the level of a directory. As long as the user has the ability to modify the settings file, they can tweak the server without the need for support from an administrator. Changes in settings done through the .htaccess file do not require the server to be restarted.
Note
You should be aware that using the .htaccess files causes a reduction in Apache's performance as the server has to look for the settings file in the requested directory (and potentially also the .htaccess files in higher-level directories) during every request.
The following are the steps to create the .htaccess options file:
You will arrive at a screen that allows you to modify local settings through the .htaccess file.
Creating a password-protected website
The HTTP protocol provides a basic functionality for authenticating users. When a request is sent to a protected site, or a protected area within a site, the browser presents the user with a prompt for name and password. If the provided values match an authorized user, access to the site is granted.
Note
The basic HTTP authentication method is simple to set up on Apache, especially with assistance from Webmin. The main drawback to this functionality is that it isn't very secure or customizable. If you plan to use this form of authentication on the open Internet, make sure you use it in combination with the encrypted HTTPS protocol.
Getting ready
Before starting, make sure that the module auth_basic is enabled in your Apache configuration. Take a look at the recipe Enabling Apache modules for more information.
How to do it...
Perform the following steps to create a password-protected website
Tip
You can protect a subsection of your site with a password by creating the per-directory settings for a subdirectory.
Tip
The passwords file should never be accessible through the web server. You should save it in a location outside of the document root. If you need to keep it within the document root directory, restrict access to it by following the steps described in the Setting options on files with names matching a pattern section of the Setting options for directories, files, and locations recipe.
Creating a user account
Perform the following steps to create a user account:
How it works...
Webmin creates a password-protected site by creating a <Directory> directive in your Apache configuration with the appropriate instructions for the auth_basic module. For example, the instructions outlined earlier would add the following section to your Apache configuration:
<Directory "/var/www/example.com">
AuthName "Please enter your ISIS password"
AuthType Basic
require valid-user
AuthBasicProvider file
AuthUserFile /etc/apache2/htpasswd
</Directory>
Webmin also helps you to create valid username and password pairs, which will be treated as valid users. This information is stored in the file specified by the AuthUserFile directive.
There's more...
Apache passwords are kept separate from your system's user account information. If you would like these accounts to be kept synchronized, Webmin can help you substantially by performing the task for you.
Keeping Apache and system accounts synchronized
Perform the following steps to keep Apache and system accounts synchronized:
See also
Displaying a listing of files in a directory
A web server makes a great repository for downloadable files. This system of file distribution has for the most part replaced anonymous FTP as it offers a more seamless experience for users. If you would like to give users access to a directory of files with an automatically generated index, Apache is the right tool for the job.
Note
In most cases, listing files in directories of a website is unnecessary, and in some cases it may even expose sensitive information to potential attackers. Use directory listings only where it makes sense.
Getting ready
In this recipe, we will expose a listing of the directory /var/www/example.com/downloads, which is served by the virtual host named example.com from the URL http://example.com/downloads. Note the file path, virtual host name, and URL of your case and substitute appropriately.
How to do it...
Perform the following steps to display a listing of files in a directory:
You should now be able to see a listing of files under the URL http://example.com/downloads.
How it works...
Webmin creates a directory-listing configuration by making a <Directory> directive in your Apache configuration. For example, the steps outlined would add the following section to the virtual host configuration:
<Directory "/var/www/example.com/downloads">
Options Indexes
IndexOptions FancyIndexing
</Directory>
There's more...
By default, Apache's directory listings pages include a header containing the directory path and a footer containing information about the server and Apache. You can customize the content of the header and footer by placing files named HEADER.html and README.html inside the directory. Any HTML code placed in those files will be displayed on the file listing page. If you want to prevent Apache from listing these files, go to the Directory Indexing options screen, and type their names in the Files to ignore in directory index field (one filename per line).
See also
Redirecting incoming requests
You can use Apache's HTTP redirects to forward an incoming request to another address. This can be useful if the address of your webpage changes or you would like to create a memorable URL address, which will redirect to a longer address of a specific page.
Let's say that we used to host a number of articles at http://oldsite.com/articles/, and we decided to move our site to another domain, and the same articles will now be hosted at http://example.com/info/.
We can configure Apache at our old site to redirect all incoming requests to the new domain.
Getting ready
Before starting, make sure that the module alias is enabled in your Apache configuration. Take a look at the recipe Enabling Apache modules for more information.
How to do it...
On your old server, follow these steps to create a redirect to your new domain:
Note
The regular expression group marked by (.*) in the From field captures any string which comes after /articles/ and the content of the captured group is placed in the $1 placeholder of the To field.
An HTTP redirection status 301 means that the resource was moved permanently. If the redirection is temporary, status 302 is commonly used.
How it works...
Webmin creates the redirect by adding a RedirectMatch directive in your virtual host's configuration file. Steps in the preceding example would create the following instruction:
RedirectMatch 301 /articles/(.*) "http://example.com/info/$1"
If we weren't using regular expressions, a simpler Redirect directive would suffice, for example:
Redirect 301 /articles/ "http://example.com/info/"
There's more...
An Apache module called mod_alias provides the Redirect directives. These directives allow you to create simple forwarding between addresses. Another module called mod_rewrite provides a much more sophisticated mechanism of redirecting incoming requests based on every part of the URL, filesystem tests, server and environment variables, HTTP headers, time stamps, and so on. Unfortunately, the syntax for mod_rewrite directives can be quite unique and complex, so editing its configuration by hand remains your best option.
More information can be found on the Apache website: http://httpd.apache.org/docs/current/rewrite/.
Creating a filesystem alias
If you want to serve files from a directory outside of your server's document root or you want to serve files from one directory in a number of locations, you can use local aliases instead of redirects. A redirect forwards the user to a different URL, while an alias is transparent to the user and it serves different content from the same URL.
For example, we can store site images in the directory /var/www/resources/images but use an alias to serve them from the URL /images/. The end user will see no difference between files served directly or through an alias.
Follow these steps to serve files located in /var/www/resources/images from URLs starting with /images/:
Tip
Before you can serve files from another filesystem location, you may need to create a directory-specific Apache configuration, which will allow the server to make these files publicly available. Take a look at the recipe Setting options for directories, files, and locations for more information.
Setting up encrypted websites with SSL
The HTTP protocol is transmitted over the Internet as plain text. This means that the communication can be intercepted and read by people other than the end user of the website and server administrator. In most cases, the exchanged information is public, and this security vulnerability is acceptable. In other cases, where passwords or other secret information is exchanged, simple HTTP should not be used. Thankfully, securing web communications is not very difficult thanks to the HTTPS protocol, which adds a layer of encryption.
Note
SSL encryption that is used by HTTPS is added before the actual HTTP conversation is initiated. This means that name-based virtual servers, which are specified in HTTP headers, cannot be used with HTTPS. In practice, this means that each SSL-protected website has to be served from a dedicated IP address.
If you only plan to create a single HTTPS website on your server, you're fine. However, if you plan to create more secure websites, you will need to add a separate network interface with its own IP addresses to your server for each site.
If your server has only one IP address, and you must serve multiple HTTPS sites, you have the option of using a technology called Server Name Indication (SNI). For more information take a look at this Wikipedia page: http://en.wikipedia.org/wiki/Server_Name_Indication.
Getting ready
Before starting, make sure that the module ssl is enabled in your Apache configuration. Take a look at the recipe Enabling Apache modules for more information.
The next step will be obtaining a key and certificate, which will be used to sign and encrypt HTTPS communication. You have a choice of creating your own self-signed certificate or purchasing a signed certificate from a commercial certificate authority. You can generate a self-signed certificate quickly and for free, but visiting browsers will complain to users that your site cannot be fully trusted because an external authority did not certify the certificate used to encrypt communication. A third party could also potentially spoof a self-signed certificate, so it does not guarantee that someone else isn't pretending to be you.
A commercial certificate will be slightly harder to obtain and will cost a few dollars per year, but your users will be able to trust that they are connecting to your site and will see no warnings and a pleasing colorful padlock in the browser's address bar.
The process of creating an SSL certificate requires the openssl package to be installed on your system. Take a look at the recipe Installing software packages from Chapter 1, Setting Up Your System, if you need to install it. Keys and certificates don't have to be generated on the server; you can generate them on any machine that has the openssl command available.
Generating a private key
SSL is built around asymmetric cryptography, which uses two keys: one of which is public, and the other secret (or private). The public key is used to encrypt messages or verify their signature, while the private key is used to decrypt messages and create signatures. The private key should be known only to its owner and kept in a protected file.
Use this command to generate a strong RSA private key, and save it to the file key.pem:
$ openssl genrsa -out key.pem 2048
A person with your private key can pretend to be you even if you pay for a signed certificate. Change permissions on the key file so that only the root user can read it, and make sure it doesn't fall into the wrong hands. Use the following command to change permissions:
$ chmod 400 key.pem
Making a self-signed certificate
You can create a self-signed certificate using the next command. The certificate will be saved to the file cert.pem, it will be signed by your private key (from key.pem) and will be set to expire in 365 days:
$ openssl req -new -key key.pem -x509 -nodes -days 365 -out cert.pem
When generating a certificate, you will be asked a series of questions, including country name, state or province, locality, organization, organization unit, and e-mail address. If you want to leave any of these fields blank, enter a single dot (.), and press Enter. You will also be asked to provide a Common Name for the certificate, which in this case will be the full domain name of your site (for example, www.example.com). Remember that the common name in a certificate must match your domain exactly, so a certificate generated for www.example.com will not work on example.com and vice versa.
Tip
If you need a certificate, which will work on multiple domains, you can prepare a wildcard certificate, or one with multiple domains specified in the Subject Alt Name field.
Obtaining a commercially signed certificate
In order to obtain a commercially signed certificate, you will need to generate a certificate signing request (CSR) file signed with your private key. You send this file to a commercial certificate authority that will verify your identity, process your payment, and then send you back a signed certificate.
You can use this command to generate a CSR file (csr.pem) based on your private key (key.pem):
$ openssl req -new -key key.pem -out csr.pem
You will be asked the same series of questions as when making a self-signed certificate. Make sure you specify this information precisely; any discrepancy between this data and information provided to the certificate authority can throw the certification process off course.
Inspecting certificate data
Once you have a certificate (cert.pem), you can display information contained within by issuing the following command:
$ openssl x509 -noout -text -in cert.pem
How to do it...
Follow these steps to set up an SSL-protected HTTPS website run by Apache:
Note
Under no circumstances should these files ever find their way to a publicly available document directory. Keep them in a secure location available only to the root user.
$ sudo chmod 400 key.pem
You can now use your browser to connect to the HTTPS address of your site https://www.example.com.
How it works...
Webmin activates SSL by adding the following instructions to the configuration of an Apache virtual host:
SSLEngine on
SSLCertificateFile /etc/apache2/cert.pem
SSLCertificateKeyFile /etc/apache2/key.pem
This basic configuration enables communication with the server using the HTTPS protocol. When a browser makes an HTTPS connection, the request is sent to the server's port 443. Before the HTTP dialog begins, an SSL handshake is performed, and all subsequent communication is encrypted.
There's more...
If you prepare a virtual server that listens for HTTPS requests on port 443, clients will not be able to connect to it using standard HTTP requests to port 80. You may want to prepare a second virtual host for the same domain that will redirect all incoming traffic to URLs beginning with https://. Take a look at the recipe Redirecting incoming requests for more information.
Logging incoming requests and errors
A server hosting a website on the Internet gets a lot of attention. It's visited by users, scanned by indexing search bots, and looked over by would-be attackers trying to see if it could be broken into. Your web server should record information about all this traffic, and you should look through it regularly to ascertain that everything is working correctly.
By default, Apache keeps two types of logfiles: an access log, which contains information about each incoming request and an error log with information about encountered problems. You can configure Apache to keep a single pair of logfiles, but in most cases it's more useful to keep a separate access and error log for each virtual server.
Getting ready
Apache's logging facility is highly customizable, and you can set your server to output log entries in many different ways. A few of the formats have become recognized as standard, and currently, the recommended logging standard is nicknamed combined log format. It logs many pieces of information, among which are:
All these fields form the combined log format denoted as:
%h %l %u %t "%r" %>s %O "%{Referer}i" "%{User-Agent}i"
You should make sure that the format nicknamed combined is available in your server's configuration. Here's how you can add it in case it isn't:
%h %l %u %t "%r" %>s %O "%{Referer}i" "%{User-Agent}i"
You can find more information about Apache log formats in its documentation:
http://httpd.apache.org/docs/current/mod/mod_log_config.html
How to do it...
In this recipe, we will set logging for the virtual host serving the domain example.com. We'll direct Apache to save access log entries in /var/log/apache2/example.com-access.log and errors in /var/log/apache2/example.com-error.log. If your system uses the /var/log/httpd or another directory for Apache logs, modify the path accordingly. Perform the following steps for logging incoming requests and errors:
How it works...
Webmin configures logging for a virtual server by adding the following directives to its <VirtualHost> section:
ErrorLog /var/log/apache2/example.com-error.log
LogLevel warn
LogFormat "combined"
TransferLog /var/log/apache2/example.com-access.log
These instructions tell Apache where to save this host's access and error logs, what format should be used for access logs (LogFormat), and how detailed the error reporting should be (LogLevel).
See also
Analyzing logfiles using Webalizer
Web server logfiles contain a lot of useful information, but they are too long and verbose to read. In order to get an overview of the state of your website, you will need a tool to analyze the contents of its access logfiles. One such tool is called Webalizer; it's easy to install and integrates well with Webmin. Webalizer parses your logfiles and generates a graphical report in HTML turning your logfiles into clear graphs and tables.
Getting ready
Follow the steps described in the recipe installing software packages in Chapter 1, Setting Up Your System, to install the webalizer package on your system.
How to do it...
Make a note of the location of the Apache access logfile you want to analyze. In this recipe, we will prepare a Webalizer report for the website hosted at example.com with an access logfile stored in /var/log/apache2/example.com-access.log. Perform the following steps to analyze logfiles using Webalizer:
Tip
Even if you rotate logs with logrotate, Webalizer will pick up the entire family of logfiles, including compressed backup log archives.
A new Webalizer analysis entry will appear in the list. If you don't want to wait until the next day, you can generate a report immediately:
From now on, you can always come to the Servers | Webalizer Logfile Analysis and click the link at the right-hand side of the screen to view a Webalizer report updated daily.
How it works...
Webmin creates a cron job, which executes the webalizer binary every night at midnight. Webalizer parses the specified logfile and generates a graphical report in the form of an HTML page. When you decide to view the report, Webmin displays the Webalizer-generated HTML page in your browser.
There's more...
You can customize certain aspects of the way Webalizer generates reports. You can edit the settings globally by going to the Servers | Webalizer Logfile Analysis page and clicking the Edit Global Options button.
You can also set custom settings for a report by following these steps:
Chapter 9. Running a MySQL Database Server
In this chapter, we will cover the following topics:
Introduction
MySQL is a powerful open source database management system. MySQL servers are easy to set up and scale quite well. This database system powers some of the world's largest websites including Facebook, Twitter, and Wikipedia.
MySQL employs a distributed client-server architecture. A single server can provide database services to multiple client programs simultaneously. Clients running on the same machine as the server usually connect using a Unix socket. Clients can also run on separate machines and connect to the database server over the network. MySQL uses TCP connections, and the server's default listening port is 3306.
Note
Unix domain sockets are channels used for inter-process communication. Different programs running on the same machine can read and write information to a socket, enabling communication between the programs. Unix sockets are represented as nodes of the filesystem, so you can find a socket by listing the contents of a directory in which it was created.
The permissions system of MySQL is very granular. Each client can have access limited to a subset of databases and be allowed to execute a different set of SQL commands on each database.
The database server maintains a list of client accounts, which are separate from the system user accounts. Each client account is defined not only by a username and password, but also by the host from which the user is connecting. Thanks to this solution, complex permission definitions are possible. For instance, the same username and password may be used locally to perform administrative tasks, but allowed only to view the server state remotely.
The default MySQL installation creates an administrative superuser called root as well as an anonymous account, which makes it possible to connect to the database server without authentication. It's important to equip the root account with a strong password and disable anonymous accounts on a production system.
Note
In addition to a username and password, MySQL may require the client to provide a certificate for increased security.
Webmin's support for MySQL is excellent and allows you to perform most tasks related to the running of the database server. In this chapter, we will demonstrate how Webmin can help you install MySQL, set up access to the server over a network, manage user accounts, create databases, and edit the structure and data of databases. We'll also demonstrate how to automatically backup databases and restore backup files. If you find that you need an even more advanced web-based management tool, we will demonstrate how to set up phpMyAdmin on your server.
Installing the MySQL database server
Practically all operating systems that come with a package management solution for open source software make MySQL packages available for installation. In this recipe, we will install MySQL from a package and set it up on your system. The server package automatically installs MySQL's command-line client package as well.
How to do it...
Follow these steps to set up MySQL on your server:
Note
Most distributions make multiple versions of MySQL available in their package repositories. On some systems, you will find a meta-package called mysql-server that installs the latest version. On other systems, you will find packages with version numbers in the name, for instance mysql-server-5.5 or mysql55-server for version 5.5.x. Pick the package with the latest version unless you have reasons to stick to an older one.
Webmin should be able to connect to your MySQL server. You will see a list of databases that, at this stage, should include default databases such as information_schema and mysql.
Tip
If you see Warning: The Perl modules DBI and DBD::mysql are not installed on your system, click the link and follow Webmin's instructions to install the missing Perl modules.
The default MySQL setup is fine for a development or testing server. However, if you plan to use the database in production or on a shared server, please continue reading the There's more section of this recipe.
How it works...
Webmin helps you find and install the mysql-server package from your distribution's repositories. The package contains an init script, which we enabled in order to start the database server whenever your machine boots.
The default MySQL installation contains a number of convenient features, such as anonymous user accounts or the ability to log in as root without providing a password. These default options make it easier to get started with MySQL. However, they should never be used in production because they constitute a major security risk.
There's more...
Perform the following steps to make MySQL more secure for use in a production setting.
Making MySQL ready for production use
Follow these steps to provide basic security for your MySQL server:
Tip
You may also use Webmin's Text Login module.
The mysql_secure_installation script performs the following tasks:
See also
Allowing access to MySQL over the network
Programs that access MySQL databases, which are called clients, may be running on the same machine as the server. In this case, the client and server will communicate most efficiently using a Unix domain socket, which is a channel of inter-process communication accessed through the filesystem like a file or directory. Access to a socket is controlled by the filesystem's permissions.
Other client programs may be able to communicate only over TCP network sockets. These clients may connect to the local server using the loopback interface and IP address of 127.0.0.1. In this case, the MySQL server must be compiled with networking support and configured to listen for connections on the loopback interface.
However, if the client program is located on a machine other than the server, then communication between them must take place over the network using the TCP protocol. In order to make this communication possible, you will need to open an exception in your firewall and instruct MySQL to listen for incoming network connections on a physical network interface.
Tip
You may also tunnel MySQL traffic over SSH, which may be a more secure solution. Take a look at the Accessing your database server remotely over an SSH tunnel recipe for more information.
Getting ready
If you plan to make your database server available over the network, you should definitely take measures to secure it. Take a look at the Making MySQL ready for production use section of the Installing the MySQL database server recipe in this chapter for more information.
Before starting, follow steps described in the Allowing access to a service through the firewall recipe in Chapter 3, Securing your system, to allow incoming TCP traffic to port 3306 through your firewall as shown in the following screenshot:
How to do it...
Steps in this recipe will be divided into the following four sections:
Instructing MySQL server to listen for network connections
For MySQL to accept incoming network connections, perform the following steps:
Creating a new user
In order to create a new user, perform the following steps:

Granting user access to database
In order to grant user access to database, perform the following steps:
Tip
For added security, you should specify an IP address or domain name from which the user will be able to connect. You can use % as part of the address to specify a wildcard. For example, 192.168.0.% would denote the entire 192.168.0.1/24 subnet, while %.example.com would include all hosts within a domain.
Testing the connection
Try to connect to your database server from a second machine on the network. If your other machine has the MySQL command-line client installed, you can test the connection by typing in this command at the terminal, but substitute mysql-host with the IP or domain name of your MySQL server:
$ mysql -u dbuser -p -h mysql-host -D testdb
If the connection is successful, you will see the following welcome message including the server's MySQL version:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 58
Server version: 5.5.31-0+wheezy1 (Debian)
mysql> exit
Bye
When you arrive at the mysql> prompt, you can start executing SQL commands. Type exit and press Enter to disconnect.
How it works...
In order to allow the MySQL server to accept incoming network connections, Webmin edits your server's configuration file (usually located in /etc/my.cnf, /var/db/mysql/my.cnf or /etc/mysql/my.cnf).
There are two lines in the server's configuration that specify what connections the server will accept. For instance, if we only want to accept local connections, these lines could read like the following:
socket=/var/lib/mysql/mysql.sock
bind-address=127.0.0.1
The first line instructs MySQL to create a local Unix socket for communication with other programs on the same machine, while the second line instructs it to listen for incoming connections on the local loopback interface (127.0.0.1). In order to make the server listen to incoming network connections on all interfaces, Webmin simply removes the bind-address line.
We tested our connection by issuing the following command on another computer attached to the same network:
$ mysql -u dbuser -p -h mysql-host -D testdb
This command starts the MySQL command-line client. The options specified are as follows:
In order to create database users and grant them permissions, Webmin operates directly on the data stored in MySQL's internal configuration databases. If you wanted to perform the same operations manually, you could connect to the MySQL server by using the command-line client and issuing the following commands.
First, connect to the local database server as root:
$ mysql -u root -p
Next, issue the following MySQL commands:
mysql> CREATE USER 'dbuser'@'%' IDENTIFIED BY 'strongpassword';
mysql> GRANT ALL PRIVILEGES ON testdb.* TO 'dbuser'@'%';
mysql> FLUSH PRIVILEGES;
The first command creates a user named dbuser, while the second gives this user complete access to the testdb database. The final command forces your MySQL server to reload information about users and privileges so that the new user can connect.
Tip
The MySQL command-line client stores a history of all the entered commands in a file. If we execute the commands listed earlier, the history file will contain the password of our newly created user. To avoid this, we can instruct MySQL not to save history during this session by issuing the following command before connecting to the server:
$ export MYSQL_HISTFILE=/dev/null
There's more...
This recipe allows a user to access a single database remotely. For security reasons, the primary management account (root) should not be allowed to connect to your server from another computer. If you would nevertheless like to allow some remote management of the database server (creating databases, users, and so on), you can perform the following outlined steps.
Managing databases remotely
Follow these steps to create an account that you will use for remote administration:
Note
More information about the significance of each permission can be found in the Privileges Provided by MySQL section of MySQL's documentation at the following link:
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html
You should now be able to connect to your server (mysql-host) from a remote client computer. You do not need to specify a database name when you connect:
$ mysql -u administrative_user -p -h mysql-host
See also
In order to make remote access and management of your MySQL databases more secure, you can tunnel your connection over SSH.
Accessing your MySQL server over an SSH tunnel
If your server is hosting a website on the Internet and running a database system on the same machine, it is safer to disable remote network access to MySQL. On the other hand, you may still want to manage your databases remotely, and you can do so by tunneling MySQL traffic over an SSH connection.
Note
One of the most important aspects of a database system is the speed with which it can find and return the data that you ask for. Tunneling traffic over SSH will add significant overhead to this communication. This solution is great for intermittent management tasks, but is typically not suitable as a replacement for a direct connection to your database system.
Getting ready
The server you want to connect to must run both the MySQL server and an SSH server. The remote client machine must have an SSH client and MySQL client software installed. Make a note of the IP address or domain name of the server (mysql-host), the SSH username (ssh-user), MySQL user (mysql-user), and database name (database-name). Substitute them in this recipe.
How to do it...
In order to create an SSH tunnel for MySQL, follow these steps:
$ ssh -L 15000:localhost:3306 ssh-user@mysql-host
This creates a tunnel between the port 15000 on your client machine and the port 3306 of the server. You can now access the remote database by making a MySQL connection to your client computer's local port 15000.
$ mysql -u mysql-user -p -D database-name -h 127.0.0.1 -P 15000
How it works...
The SSH client acts as an intermediator in communication between a MySQL client running on your machine and the remote server. It opens port 15000 and listens for incoming connections. All packets arriving at port 15000 are encrypted and forwarded over SSH to the server. On the server side, SSH receives the packets, decrypts them, and sends them to port 3306. Answers are sent back in the opposite direction over the same channel.
You can find more information about SSH tunnels in the Connecting to Webmin securely over an SSH tunnel recipe in Chapter 3, Securing Your System.
There's more...
Some MySQL clients incorporate the ability to set up an SSH tunnel when connecting to a remote database.
Making an SSH tunnel in MySQL Workbench
Popular GUI clients such as MySQL Workbench or Sequel Pro allow you to specify the SSH connection settings in the same window as the database connection settings. The procedure is similar in all cases. In MySQL Workbench you would set up the connection as follows:
You will be asked for the password of the SSH user and then the password of the MySQL user. If all goes well, you will see a message indicating that the connection parameters are correct.
See also
Creating a new database
Creating a new MySQL database through Webmin's interface is very quick and simple.
How to do it...
Follow these steps to create a new database:
Note
The character set specifies how letter characters are stored in your database and the utf8 character set contains all the letters of most alphabets. The collation order, on the other hand, specifies what order the letters should be placed in when sorting alphabetically. The utf8_unicode_ci collation aims to be universal, but there may be regional variations that make a local collation such as utf8_polish_ci more appropriate for your situation.
How it works...
Webmin takes the information that you provide and creates a new database by connecting to the MySQL server and executing the following command:
mysql> CREATE DATABASE `new_db` CHARACTER SET utf8 COLLATE utf8_unicode_ci;
See also
Creating users and granting permissions to databases
Because of MySQL's client-server architecture, the server may accept connections from multiple clients. The connecting clients authenticate themselves to MySQL using a username and password. Information about user accounts and privileges is stored in an internal database called mysql.
MySQL accounts are separate from system accounts, which is usually a good thing because more often than not they represent applications running on your server rather than actual users. Each application connecting to your database server should have its own user account, with access privileges limited to only those databases which are needed for the application to run. It would be a bad idea to allow an application root-level access. This is because if the application is compromised, an attacker could steal or damage all databases on your system.
In addition to a username and password, MySQL accounts are also described by the host from which a user is allowed to connect. This means that 'user'@'localhost' is a different account than 'user'@'remotehost' and these accounts may have different access privileges.
Unfortunately, this means that multiple accounts have to be created if a user should have access from multiple hosts, or worse yet, if the location of the user changes as he roams around the network. In such cases, you may specify % as part of the host address as a wildcard. For example, 192.168.0.% would specify the entire 192.168.0.1/24 subnet and %.example.com would specify all hosts within a domain.
If the location of your users cannot be narrowed down to a network or range of IP addresses, you should consider using SSH tunnels instead of opening access to your database server from the entire Internet. See the Accessing your MySQL server over an SSH tunnel recipe in this chapter for more information.
Getting ready
You should remove MySQL's anonymous accounts unless you have a particular reason to use them. Anonymous accounts are created by default for testing purposes, but they may cause difficulties in debugging problems with user privileges.
Let's say, for example, that you have a user account with access from any location: 'user'@'%', but you also have an anonymous account with access from the local host @'localhost'. If you try to connect as user from the local host, MySQL will first check the privileges entry that specifies the incoming connection's host more precisely (@'localhost' is more specific then @'%'). This will cause user to be assigned privileges of the anonymous account rather than the expected 'user'@'%' account. You can check what user you are connected as by issuing the following MySQL command:
mysql> SELECT CURRENT_USER();
You will get the following output:
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+
The output shows that we are being treated as an anonymous user @'localhost'. The solution to this situation is to add a second account for user as 'user'@'localhost'. Then, when we log in again, we will see the following output of the same command:
+----------------+
| CURRENT_USER() |
+----------------+
| user@localhost |
+----------------+
If you don't need them for any specific purpose, it's safer and more convenient to remove anonymous accounts altogether.
How to do it...
In this recipe, we will create a user named dbuser with access from the local machine to the database testdb. The user will have to authenticate using a strong password. Prepare the username, database name, and password for your particular case.
Creating a user account
In order to create a user account, perform the following steps:
Note
We do not need to grant any global permission to the account, as the user will have access limited to a specific database.
Granting privileges
In order to grant privileges, perform the following steps:
The created account and privileges will allow dbuser to connect to and have full control over the testdb database when connecting to the local MySQL server.
Tip
The MySQL server will use accounts associated with the localhost when a client connects from the local machine, regardless of whether the connection is made over a socket or TCP. However, if you create an account associated with 127.0.0.1, it will be used when connecting over TCP, but not when connecting on a socket. When connecting over TCP using IPv6, a third option comes into play, namely the IPv6 address of the local machine ::1. It's best to set up accounts for localhost to avoid this confusion.
How it works...
Webmin creates accounts and grants privileges by manipulating the mysql database directly. In particular, it adds a row to the user and db tables and then executes the FLUSH PRIVILEGES command.
If you wanted to perform the same operations manually, you could connect to the MySQL server using its command-line client and issue the following commands.
First connect to the local database server as root:
$ mysql -u root -p
Next issue the MySQL commands:
mysql> CREATE USER 'dbuser'@'localhost' IDENTIFIED BY 'strongpassword';
mysql> GRANT ALL PRIVILEGES ON testdb.* TO 'dbuser'@'localhost';
mysql> FLUSH PRIVILEGES;
The first command creates a user named dbuser, the second gives this user complete access to the testdb database. The final command forces your MySQL server to reload information about users and privileges so that the new user can connect.
There's more...
Webmin allows you to specify more granular access permissions—at the level of a database table or even a specific column within a database table. It also allows you to automatically create MySQL accounts for the new system users that are created via Webmin.
Granting permissions to a specific database table
In order to grant permissions to a specific database table, perform the following steps:
Granting permissions to a specific column in a database table
To grant permissions to a specific column in a database table, perform the following steps:
Automatically granting new system users access to MySQL
To automatically grant all system users access to MySQL, perform the following steps:
From now on, every new user account created through Webmin will automatically receive a corresponding MySQL account with the same password as the system password. Passwords will be updated if changed through Webmin, and the MySQL account will be deleted if the corresponding system account is also deleted through Webmin.
Creating a backup of your database
Webmin can help you make backups of your MySQL databases. With just a few clicks, you can make a backup of any database. Webmin can also help you set up cron jobs to create backups automatically on a regular schedule.
Getting ready
Before starting, create a directory to store local backup files. You can keep these files in /backups in the root directory /root/backups, or in any location that you find convenient.
Tip
Backup files created by Webmin will be readable by all users of your system. This may be a security risk, since database backups often contain sensitive data such as hashed user passwords. You should remove all permissions on the backups directory for users outside of root's group. You can do that by issuing the following command:
$ sudo chmod o-rwx /backups
If your file system supports access control lists, you can additionally set the default mask for newly created files in this directory in such a way that they are not readable by users outside of the group. You can set the default ACL for /backups by issuing the following command:
$ sudo setfacl -d -m other:- /backups
Take a look at the Changing file ownership and permissions recipe in Chapter 6, Managing Files on Your System , for more information.
How to do it...
Follow these steps to create a database backup:
Note
This helps you import the created backup into an existing database. Tables with the same names will be deleted (dropped) before importing the ones stored in the backup.
Note
Bzip2 gives really good compression for text such as SQL command files.
How it works...
Webmin executes the mysqldump command to output a series of SQL commands that would be needed to create the entire database. The database "dump" is then piped through the bzip2 compression algorithm and saved to an output file. If you wanted to do the same kind of backup in the terminal, you could run a command similar to the following (make sure you set the mysqldump options correctly):
$ mysqldump --add-drop-table --routines database-name | bzip2 -c > /backups/database-name.sql.bz2
There's more...
Webmin is quite a capable tool for making backups. Here are a few other, easily accessible functions.
Backing up all databases automatically
Webmin can help you make an automated backup of some or all databases hosted by your server. These backups will be executed on a regular schedule by cron. For more information about scheduling commands take a look at the Scheduling a command to run regularly with cron recipe in Chapter 4, Controlling Your System. In order to back up all databases automatically, perform the following steps:
Note
Note that many things may be scheduled to start at midnight on your system, so you can choose another time if your system resources are limited. Choose a more complex schedule by marking the minutes, hours, and days of the month at which the job is to be performed.
Exporting a database table to CSV
Webmin can export a single table of your database into a comma-separated-values (CSV) file that can be opened by spreadsheet programs, such as Excel, Calc, or Gnumeric. To export a database table to CSV, perform the following steps:
See also
Executing custom SQL commands
Webmin provides a simple interface to your MySQL database server that allows you to execute arbitrary SQL commands. This can be a useful feature when you want to quickly find something in a database or perform a bulk update of multiple rows of data.
How to do it...
Follow these steps to execute an SQL command on your database:
SELECT host,user FROM user;
You will be presented with a sortable display of data returned by the SELECT command.
How it works...
Webmin simply passes the SQL command to the database server. If the command returns an error, it will be displayed on screen. If the command returns rows of data, Webmin will convert them into an HTML page and display them on screen. Please note that Webmin is running as the root user, so caution should be used when executing commands.
See also
Restoring database from the backup
Databases may be stored as text files that contain SQL instructions which rebuild them. If you have a SQL backup file, you can use Webmin to restore it.
Getting ready
Large backups should be uploaded to the server before being executed. If your backup file is large, upload it to the server and note its location. Take a look at the Uploading files to the server recipe in Chapter 6, Managing Files on Your System, for more information.
We will restore the backup to an existing database. If you haven't created the database yet, follow instructions in the Creating a new database recipe before starting.
How to do it...
Follow these steps to restore a database from backup or execute a SQL script saved in a file:
Tip
Webmin can handle SQL files that are compressed using gzip or bzip2.
How it works...
Webmin pipes the entire SQL instructions file into the MySQL server. The server executes every instruction stored in the file, rebuilding the database line by line.
If you wanted to perform the same task in the terminal, you could use the following command:
$ mysql database-name < backup-file.sql
There's more...
Webmin can import a single table into your database from a CSV file that can be created by a spreadsheet program such as Excel, Calc, or Gnumeric.
Follow these steps to import a CSV file:
You will be presented with an information screen that describes how many rows were successfully imported or what errors were encountered.
Editing the structure of your database
Webmin allows you to quickly modify the structure of tables in your MySQL database through an easy-to-use interface. In this recipe, we will demonstrate how to perform the following list of tasks:
Getting ready
For demonstration purposes, we will be using a database called testdb. You can create a database with this name through Webmin by following the steps described in the Creating a new database recipe of this chapter.
How to do it...
In the testdb database, we'll create a table called people and add a column called name to the table. We'll then change the width of the field, turn it into a unique index, and finally delete the index, field, and table from the database.
Creating a table in a database
To create a table in a database, perform the following steps:
Note
The table type option specifies which storage engine is used by this table. This determines what features are available for your table, for instance myisam allows for full-text search indexes, while innodb supports transactions. You can find more information on storage engines in MySQL's manual:
http://dev.mysql.com/doc/refman/5.6/en/storage-engines.html
Adding a field to a database table
In order to add a field to the database table, perform the following steps:
Editing a field
To edit a field, perform the following steps:
Creating an index
To create an index, perform the following steps:
Deleting an index
To delete an index, perform the following steps:
Deleting a field
In order to delete a field, perform the following steps:
Deleting a table from the database
To delete a table from the database, perform the following steps:
How it works...
Webmin prepares the syntax for the appropriate CREATE, DROP, and ALTER TABLE SQL commands to perform all of the earlier mentioned actions, and then executes those commands on your MySQL server as the root user.
See also
Editing records in a database
Webmin allows you to quickly edit data in your MySQL database through a simple interface. In this recipe, we will demonstrate how to add, edit, and delete records in a database table.
Getting ready
In this recipe, we will use examples based on the testdb database created in the Creating a new database and Editing the structure of your database recipes of this chapter.
How to do it...
We'll add a record to the people table of the testdb database; we'll edit the same record, and finally delete it to show how to perform these actions in Webmin.
Adding a row to database table
In order to add a row to the database table, perfom the following steps:
Editing a row
In order to edit a row, perform the following steps:
Deleting a row
In order to delete a row, perform the following steps:
How it works...
Webmin prepares the syntax for the appropriate INSERT, UPDATE, and DELETE SQL commands to perform the preceding actions and executes those commands on your MySQL server as the root user.
See also
Checking who is using your database server
You may wish to check who is connected to your database server when debugging network connectivity, auditing security, or simply if you're curious. In Webmin, this information is just a few clicks away.
How to do it...
Follow these steps:
You will see a list of active connections or a message that no clients other then Webmin are connected to the database at this time. Consider the following screenshot:
How it works...
Webmin queries your MySQL server for information about active client connections. You could gain the same information by running the SQL command SHOW PROCESSLIST in a MySQL client:
mysql> SHOW PROCESSLIST;
You will get the following output:
+------+------+-----------+------+---------+------------------+
| Id | User | Host | db | Command | Info |
+------+------+-----------+------+---------+------------------+
| 5797 | root | localhost | NULL | Query | SHOW PROCESSLIST |
+------+------+-----------+------+---------+------------------+
1 row in set (0.00 sec)
There's more...
Webmin also makes it easy to close any unnecessary connections. The clients will have to re-establish their connections to continue using the database.
Follow these steps to close a connection:
Installing phpMyAdmin
phpMyAdmin is a commonly used database administration tool for MySQL. It is a web-based application, like Webmin itself, but dedicated to all tasks related to the administration of a MySQL server. It's easy to use and can be a helpful tool for your database users and administrators.
Note
System packages are configured to run phpMyAdmin on Apache. The Apache web server and PHP are installed as package dependencies. If you're not already using Apache and PHP, this exposes a potential attack vector on your database server. Consider the security implications of installing phpMyAdmin and keep it up to date.
How to do it...
Follow these steps to set up phpMyAdmin on your system:
Tip
On some systems, you may need to add an additional repository to install the package. For instance, if you're running a Linux distribution from the RedHat family (RHEL, CentOS, Fedora, and so on), you should add the Extra Packages for Enterprise Linux (EPEL) repository. Information about the setting up of EPEL can be found in the Giving users access to your server via FTP recipe in Chapter 6, Managing Files on Your System.
Tip
On some systems, phpMyAdmin is configured to be accessible to connections that originate from the local host only. If you wish to change this behavior, go to Servers | Apache Webserver | Default Server, select Per-Directory Options for phpMyAdmin's directory, and change its Access Control settings. More information is provided in the Setting options for directories, files, and locations recipe in Chapter 8, Running an Apache Web Server.
Information about additional steps that may be necessary to set up phpMyAdmin in your system distribution can be found in package documentation files. Refer to the Reading the documentation of the installed software recipe in Chapter 1, Setting Up Your System.
Note
phpMyAdmin will log you in as if you were connecting from the local machine, so privileges assigned to an account on localhost will be used.
How it works...
phpMyAdmin is an application written in PHP. The main configuration file of phpMyAdmin is named config.inc.php, and it is usually installed inside the /etc/ directory. Example locations for different distributions are listed in the following table. The code of the application itself is stored in the form of PHP script files in a directory named phpMyAdmin.
Because phpMyAdmin is served by Apache, the installation package includes an application-specific configuration file that will be loaded by the web server. This file informs Apache where phpMyAdmin is stored on the disk and which of its directories should be made available on the web.
File	OS / distro	Location
phpMyAdmin configuration | Debian | /etc/phpmyadmin/config.inc.php |
CentOS | /etc/phpMyAdmin/config.inc.php | |
OpenSUSE | /etc/phpMyAdmin/config.inc.php | |
phpMyAdmin files | Debian | /usr/share/phpmyadmin |
CentOS | /usr/share/phpMyAdmin | |
OpenSUSE | /srv/www/htdocs/phpMyAdmin | |
Apache configuration file for phpMyAdmin | Debian | /etc/phpmyadmin/apache.conf |
CentOS | /etc/httpd/conf.d/phpMyAdmin.conf | |
OpenSUSE | /etc/apache2/conf.d/phpMyAdmin.conf |
Regardless of how package maintainers decided to prepare it, you can tweak the Apache configuration for phpMyAdmin by going to Servers | Apache Webserver | Default Server and selecting Per-Directory Options for the phpMyAdmin directory.
There's more...
phpMyAdmin is a very capable tool and you can find detailed information about how it can be used in its documentation at: http://docs.phpmyadmin.net/en/latest/
Chapter 10. Running a PostgreSQL Database Server
In this chapter, we will cover the following recipes:
Introduction
PostgreSQL is a powerful open source relational database management system (DBMS). It features a powerful type system and advanced programming functions. This allows it to store and perform calculations on complex values, such as geographic coordinates, JSON objects, and arrays.
PostgreSQL uses a distributed client-server architecture, which means that the database server and client applications can run on separate machines. If the client and server are running on the same system, they can communicate using Unix sockets; otherwise, they communicate over the network by using TCP sockets. The Postgres server uses port number 5432 by default, but this setting can be changed if needed.
Note
Unix domain sockets are channels used for inter-process communication. Different programs running on the same machine can read and write information to a socket, enabling communication between the programs. Unix sockets are represented as nodes of the filesystem, so you can find a socket by listing the contents of a directory in which it was created.
The PostgreSQL DBMS is very popular and most operating system distributions provide packages for its easy installation. Each Postgres server hosts a database cluster that consists of a collection of databases, associated configuration files, and running processes. On some systems, the cluster must be initiated after package installation. Initiation creates the directory structure of the cluster and fills it with standard databases. The standard database, template1, plays a special role, because all new databases are created as its copies by default.
Installation of the Postgres system involves the creation of a special user, usually named postgres. This user has complete administrative control over your databases, and Webmin will run most database commands and scripts as this user.
Webmin allows you to perform many tasks related to the running of the Postgres database server. In this chapter, we will demonstrate how Webmin can help you install PostgreSQL, set up access to the server over a network, manage user accounts, create databases, and edit their structure and data. We'll also demonstrate how to automatically back up databases and restore backup files. If you find that you need an even more advanced web-based management tool, we will demonstrate how to set up phpPgAdmin on your server.
Installing the PostgreSQL database server
Most operating systems that come with a package management solution for open source software make PostgreSQL packages available for installation. In this recipe, we will install PostgreSQL from a package and set it up on your system. Installing the server package automatically installs the PostgreSQL command-line client package, as well.
How to do it...
Perform the following steps to install the PostgreSQL database server:
Note
In most package repositories, the PostgreSQL server package is simply named postgresql-server. If your distribution allows you to select among different versions of PostgreSQL, the package names will contain version numbers such as postgresql-9.1 or postgresql93-server. Pick the package with the latest version unless you have reasons to stick with an older one.
Tip
At the bottom of the screen, if you see the message, Warning: The Perl modules DBI and DBD::Pg are not installed on your system, click the link and follow Webmin's instructions to install the missing Perl modules.
How it works...
Webmin helps you find and install the postgresql-server package from your distribution's repositories. The package installs the database server, client, and an init script that starts the server during system boot.
Before Postgres can be used to manage databases, a new cluster must be created. A PostgreSQL cluster is a collection of databases managed by a single server. Creating the cluster involves the creation of a directory in which the database files will be stored, and filling it with a few standard databases. The standard database named template1 plays a special role, because all new databases in the cluster will be made by copying this template.
If your package installation script does not initialize a database cluster for you, you can ask Webmin to do it by clicking the Initialize Database button. This runs the following subcommand of the init script:
/etc/rc.d/init.d/postgresql initdb
See also
Locating the PostgreSQL server configuration files
The main configuration file of the PostgreSQL server is usually named postgresql.conf, and is stored in the database cluster data directory by default. Various system distributions move this configuration outside of the data directory and place it in a different location, for example, in the /etc/ directory. In this recipe, we will demonstrate how to find the postgresql.conf and change it to modify the server's configuration. Webmin does not assist you in the modification of the basic settings of PostgreSQL, so you will need to edit the configuration file manually.
Getting ready
Make sure that the PostgreSQL server is installed and running, and that you are able to connect to it via Webmin before starting. The recipe, Installing the PostgreSQL database server, provides more information.
How to do it...
Follow these steps to locate PostgreSQL's main configuration file on your system:
SHOW config_file;
How it works...
When an init script starts the PostgreSQL server, it may specify the location of the database cluster's data directory or the location of the server's main configuration file (customarily called postgresql.conf). By default, the main configuration file is stored inside of the data directory, but package maintainers often move it to a different location (such as /etc/) to keep system configuration files in order. The SQL command, SHOW config_file;, can be used to check where the main configuration file is located.
There's more...
The location of other configuration files and the values of other settings can also be displayed using the SQL SHOW command.
Determining location of other configuration files and data files
Use the following commands to check where other configuration files are located:
Setting | Command |
---|---|
Main configuration file (postgresql.conf) | SHOW config_file; |
Data directory | SHOW data_directory; |
Host-based access configuration file (pg_hba.conf) | SHOW hba_file; |
Identity mapping file (pg_ident.conf) | SHOW ident_file; |
Directory where the Unix-domain socket will be created | SHOW unix_socket_directory; |
Checking values of other settings
You can also reveal the values of all settings by issuing the following command:
SHOW all;
Allowing access to PostgreSQL over the network
Programs that access PostgreSQL databases, which are called clients, may be running on the same machine as the server. In this case, the client and server will communicate most efficiently using a Unix-domain socket, a channel of inter-process communication accessed through the filesystem such as a file or directory. Access to a socket is controlled by filesystem permissions.
Other client programs may be able to communicate only over TCP network sockets. These clients may connect to the local server using the loopback interface and IP address of 127.0.0.1.
However, if a client program is located on a machine other than the server, then communication between them must take place over the network using the TCP protocol. There are a number of ways to set up network connections for PostgreSQL. The most efficient but least secure method is to use a direct unencrypted connection between the client and server. This method has the drawback that unencrypted information could potentially be eavesdropped upon or even modified in transit over the network. Because database systems are usually designed to be as efficient as possible, this type of communication is used often, but should only be deployed inside of a secure network. We will describe how to enable this type of communication in this recipe.
Tip
In order to make network access to your PostgreSQL server more secure, you can choose to encrypt the transferred information using SSL. This prevents eavesdropping and man-in-the-middle attacks, but leaves the PostgreSQL server's network port exposed and potentially vulnerable to brute-force password guessing and other attacks.
If you really need security, for instance, to access your database server over the Internet, you should probably choose a third option: send the PostgreSQL traffic over an encrypted SSH tunnel. This is the least efficient of the described transmission methods, but it generates the fewest security concerns. For more information, take a look at the recipe, Accessing the PostgreSQL server over an SSH tunnel.
Getting ready
In this recipe, we will prepare your PostgreSQL server to accept incoming network connections. In order to test the connection, we will need access to two computers attached to the same network: the server and a client machine. Make note of the server and client's IP or domain name before starting.
How to do it...
The steps in this recipe will be divided into five sections:
Perform the following steps to instruct the PostgreSQL server to listen for network connections:
listen_addresses = '*'
Tip
The most effective way to edit files on your server is to use an editor such as Vim or Nano in a terminal session (for example, over SSH). But to make a small change in a configuration file, you do not need to leave Webmin. Take a look at the Editing a file on the server section of the Managing files and directories on the server recipe from Chapter 6, Managing Files on Your System.
Your PostgreSQL server will now listen for incoming network connections on port 5432.
Perform the following steps to create a new user:
Perform the following steps to create a database:
Perform the following steps to grant a user remote access to the database:
Tip
If the client can connect from more then one IP, you can specify a subnet by providing a network and netmask or CIDR length. For instance, to grant access to all computers in the 10.10.10.* subnet, you could specify the network as 10.10.10.0 and either the netmask as 255.255.255.0 or the CIDR length as 24.
Tip
You can shave off a little performance overhead by not using SSL, but you should only do that on entirely trusted networks.
Tip
On a busy production system it would be a bad idea to restart the database server unnecessarily, although that is the sure way of reloading all settings. After changing access settings, you don't really need to restart the server. You could send it a SIGHUP signal instead. This signal instructs Postgres to reload its configuration. On systems equipped with the pg_ctl program, this can be achieved by issuing the following command:
$ sudo pg_ctl reload
On systems with the pg_ctlcluster command, you will need to specify the server version and cluster name, for example:
$ sudo pg_ctlcluster 9.1 main reload
For testing the connection, try to connect to your database server from the client machine that uses the IP we specified. If your other machine has the PostgreSQL command-line client installed, you can test the connection by typing in this command at the terminal. However, substitute postgresql-host with the IP or domain name of your Postgres server as follows:
$ psql -h postgresql-host -U dbuser testdb
testdb=# \q
If the connection is successful, you should arrive at the PostgreSQL prompt (testdb=#). Type \q and press Enter to exit.
How it works...
In order to enable network access to the PostgreSQL database server, we needed to modify two configuration files. We edited the main configuration file (postgresql.conf) manually to instruct the server to listen for incoming network connections on all network interfaces. The second file, which was edited through Webmin's interface, is the host-based authentication configuration (pg_hba.conf). This file instructs the server which users should be allowed to connect from which network hosts and how they should be required to authenticate.
Webmin added the following line to pg_hba.conf:
hostssl testdb dbuser 10.10.10.100 255.255.255.255 md5
The preceding line instructs the server to accept SSL connections to the testdb database by the dbuser user if the connection originated from the IP address 10.10.10.100. The user should be asked to provide an MD5-encrypted password for authentication.
Another line in pg_hba.conf can look like the following:
local all postgres peer
This line instructs the server to accept connections made locally over the Unix socket. These connections use the peer authentication method, which checks the username of the system account running the connecting client program. If the system username matches a Postgres account name, then the connection is considered authenticated. Password checking is not performed in peer authentication. The preceding line of code will allow the system account postgres to access all databases.
See also
Accessing the PostgreSQL server over an SSH tunnel
If your server is hosting a website on the Internet and running a database system on the same machine, it is safer to disable remote network access to the database. On the other hand, you may still want to manage your databases remotely. You can do so by tunneling PostgreSQL traffic over an SSH connection.
Note
One of the most important aspects of a database system is the speed with which it can find and return the data that you ask for. Tunneling traffic over SSH will add significant overhead to this communication. This solution is great for intermittent management tasks, but not suitable as a replacement for a direct connection to your database system.
Getting ready
Before you can access the PostgreSQL server through an SSH tunnel, you will need to make sure that an allowed hosts entry exists in the pg_hba.conf file. This entry should allow users from the loopback IP 127.0.0.1 to authenticate using MD5-encrypted passwords. Take a look at the recipe, Allowing access to PostgreSQL over the network, for more information. This is what the appropriate line in pg_hba.conf would look like:
IPv4 local connections:
host all all 127.0.0.1/32 md5
The server you want to connect to must run both the PostgreSQL server and an SSH server. The remote client machine must have an SSH client and PostgreSQL client software installed. Make a note of the IP address or domain name of the server (postgresql-host), the SSH username (ssh-user), the PostgreSQL user (postgresql-user), and the database name (database-name). Substitute them in the following recipe.
How to do it...
In order to create an SSH tunnel for PostgreSQL, follow these steps:
$ ssh -N -L 15000:localhost:5432 ssh-user@postgresql-host
This creates a tunnel between port 15000 on your client machine and port 5432 of the server. You can now access the remote database by making a PostgreSQL connection to your client computer's local port 15000.
$ psql -h 127.0.0.1 -p 15000 -U postgresql-user database-name
How it works...
The SSH client acts as an intermediary in the communication between the PostgreSQL client running on your machine and the remote server. It opens port 15000 on the client machine and listens for incoming connections. All packets arriving at port 15000 are encrypted and forwarded over SSH to the server. On the server side, SSH receives the packets, decrypts them, and sends them to port 5432. Answers are sent back in the opposite direction over the same channel.
See also
Creating a new database
Creating a new PostgreSQL database through Webmin's interface is very quick and simple.
How to do it...
Follow these steps to create a database:
How it works...
Webmin takes the information you provide and creates a new database by connecting to the PostgreSQL server and executing the following command:
CREATE DATABASE new_db WITH OWNER="dbuser" TEMPLATE = template1;
Postgres creates the new database by making a copy of a selected template. The database, template1, is installed by default to serve as a source of default settings for newly created databases. If you want new databases to have different settings, for instance, character set and collation, you can introduce these changes to your template database.
Another way to create a database is to execute the createdb command as the user, postgres, for instance:
postgres@postgresql-host:~$ createdb --owner dbuser new_db
See also
Creating users and granting permissions
Creating PostgreSQL users through Webmin is very simple. Users can be designated as owners of newly created databases and will have complete access and administrative rights to the databases they own. Users may also be granted limited privileges on specific database tables.
How to do it...
In this recipe, we will create a new user called dbuser and grant selected privileges on a table named dbtable in a database called testdb.
Perform the following steps to create a user:
Perform the following steps to grant user privileges on a database table:
How it works...
Webmin creates a new database user by connecting to the PostgreSQL server and executing the following command:
CREATE USER 'dbuser' WITH PASSWORD '***' NOCREATEDB NOCREATEUSER;
Another way to create a database user is to execute the createuser command as the user postgres, for instance:
postgres@postgresql-host:~$ createuser dbuser
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
Privileges are assigned to users through the GRANT command, for instance:
GRANT SELECT,UPDATE,INSERT,DELETE ON "public"."dbtable" to 'dbuser';
The PostgreSQL manual provides the following definitions of privileges:
Privilege	Definition
SELECT | This allows SELECT from any column of the specified table. |
UPDATE | This allows UPDATE of any column of the specified table. |
INSERT | This allows INSERT of a new row into the specified table. |
DELETE | This allows DELETE of a row from the specified table. |
RULE | This allows the creation of a rule on the table. |
REFERENCES | To create a foreign key constraint, it is necessary to have this privilege on both the referencing and referenced tables. |
TRIGGER | This allows the creation of a trigger on the specified table. |
There's more...
PostgreSQL does not make it easy to grant privileges to an entire database. In order to grant the user named dbuser access to all the tables defined in the public schema, execute the following command:
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO 'dbuser';
Note
Postgres databases may be subdivided into schemas. Each schema contains its own set of tables independent of other schemas and may use different user privileges. By default, each database contains only one schema called public, and all tables are assigned to it.
Inserting new objects also requires access to sequence objects, which may be granted as follows:
GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA public TO dbuser;
Unfortunately, when you add new tables to the database or add another schema, you will have to execute the commands again. Another option is to set default permissions for the objects by using the ALTER DEFAULT PRIVILEGES command:
ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT ALL PRIVILEGES ON TABLES TO 'dbuser';
ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT ALL PRIVILEGES ON SEQUENCES TO 'dbuser';
See also
Creating a backup of your database
Webmin can help you make backups of your PostgreSQL databases. With just a few clicks, you can make a backup of any database. Webmin can also help you set cron jobs to create backups automatically on a regular schedule.
Getting ready
Before starting, create a directory to store local backup files. You can keep these files in /backups in the root directory, /root/backups, or in any location you find convenient.
The backup directory should be owned by and be accessible only to the postgres user. Take a look at the recipe, Changing file ownership and permissions, in Chapter 6, Managing Files on Your System, for more information.
To get general background information about backups, refer to Chapter 7, Backing Up Your System .
How to do it...
Follow these steps to create a backup of a database:
Note
The backup will be stored as a series of SQL statements in plain text. If you are exporting a large database, use the compressed Custom archive format.
How it works...
Webmin executes the pg_dump command to output a series of SQL commands that would be needed to recreate the entire database. The command is run as a user who has administrative access to the database. On most systems, the user is called postgres.
The database dump is saved to the specified output file. If you wanted to do the same kind of backup in the terminal, you could run a command similar to the following:
postgres@postgresql-host:~$ pg_dump -U postgres -f /backups/database-name.sql database-name
There's more...
Webmin is quite a capable tool to create backups. Here are a few other easily accessible functions.
Backing up all databases automatically
Webmin can help you make an automated backup of some or all databases hosted by your server. These backups will be executed on a regular schedule by cron.
Note
The custom archive format is compressed to save the disk space. It's also very flexible and allows manual selection of archived items during the restore phase.
Note
Note that many things may be scheduled to start at midnight on your system, so you can choose another time if your system resources are limited. Choose a more complex schedule by marking the minutes, hours, and days of the month at which the job is to be performed.
Exporting a database table to CSV
Webmin can export a single table of your database into a CSV file that can be opened by spreadsheet programs such as Excel, Calc, or Gnumeric:
See also
Executing custom SQL commands
Webmin provides a simple interface to your Postgres database server, which allows you to execute arbitrary SQL commands. This can be a useful feature when you want to quickly find something in a database or perform a bulk update of multiple rows of data.
How to do it...
Perform the following steps to execute custom SQL commands:
CREATE TEMPORARY TABLE IF NOT EXISTS films (
 title varchar(40)
);
INSERT INTO films(title) VALUES ('Bananas'), ('Yojimbo');
SELECT * FROM films;
You will be presented with a sortable display of data returned by the SELECT command. The presented data will come from a temporary films table created by the first command. Temporary tables are not stored when the client who created them disconnects, so you will not see this table in your database later.
How it works...
Webmin simply passes the SQL commands to the database server. If the command returns an error, it will be displayed on screen. If the command returns rows of data, Webmin will convert them into an HTML page and display them on screen. Please note that Webmin is running as the administrative user (postgres), so caution should be used when executing commands.
There's more...
Webmin also allows you to execute the SQL scripts saved in files. These can be used to restore databases from plain SQL text backups.
Executing a SQL script from a file
Perform the following steps to execute a SQL script from a file:
See also
Restoring a database from backup
Backups of Postgres databases are created using the pg_dump command that can output a variety of formats. By default, backups are created as plain text SQL scripts, but a compressed custom PostgreSQL format is more efficient. Webmin helps you to create backups in both of these formats as well as in the TAR format.
The method of restoring your database will depend on the file format chosen during backup. If you chose the plain SQL text format, then simply running your backup script will restore the database. Take a look at the recipe, Execute custom SQL commands, for more information.
If you chose the custom archive or TAR file format, you should use the procedure described in this recipe.
How to do it...
Follow these steps to restore a database from backup:
Tip
If the backup file is larger then a few MB, it will be safer to upload the file to the server first, before running the restore. Take a look at the recipe, Uploading files to the server, in Chapter 6, Managing Files on Your System, for more information.
How it works...
Webmin uploads your file onto your server and then executes the pg_restore command to load contents of the backup into a database. If you wanted to restore a backup in the terminal, you could run a command similar to the following:
postgres@postgresql-host:~$ pg_restore -c -d database-name backup-file.post
Command-line options are as specified:
There's more...
Webmin can import data into a table of your database from a CSV file that can be created by spreadsheet programs such as Excel, Calc, or Gnumeric.
Follow these steps to restore a database table from a properly formatted CSV file:
Tip
You will have to select the same format when exporting data from your spreadsheet program. Experiment with the other formats if you run into problems.
You will be presented with an information screen that describes how many rows were successfully imported or what errors were encountered.
Editing the structure of your database
Webmin allows you to quickly modify the structure of tables in your PostgreSQL database through an easy-to-use interface. In this recipe, we will demonstrate how to perform the following list of tasks:
Getting ready
For demonstration purposes, we will be using a database called testdb. You can create a database with this name through Webmin by following steps described in the recipe, Creating a new database.
How to do it...
In the testdb database, we'll create a table called people and add a field called name to the table. We'll then change the name of the field, add a unique index, and finally delete the index, field, and table from the database.
Perform the following steps to create a table in a database:
Perform the following steps to add a field to a database table:
Perform the following steps to create an index:
Perform the following steps to delete an index:
Perform the following steps to delete a field:
Perform the following steps to delete a table from the database:
How it works...
Webmin prepares syntax for the appropriate CREATE, DROP, and ALTER TABLE SQL commands to perform all of the preceding actions and executes those commands on your PostgreSQL server as the postgres user.
See also
Editing records in a database
Webmin allows you to quickly edit data in your PostgreSQL database through a simple interface. In this recipe, we will demonstrate how to add, edit, and delete records in a database table.
Getting ready
In this recipe, we will use examples based on the testdb database and people table created in the recipe, Editing the structure of your database.
How to do it...
We'll add a record to the people table of the testdb database; we'll edit the same record, and finally delete it to show how to perform these actions in Webmin.
Perform the following steps to add a row to a database table:
Perform the following steps to edit a row:
Perform the following steps to delete a row:
How it works...
Webmin prepares syntax for the appropriate INSERT, UPDATE, and DELETE SQL commands to perform the preceding actions and executes those commands on your PostgreSQL server as the postgres user.
See also
Installing phpPgAdmin
phpPgAdmin is a database administration tool for PostgreSQL. It is a web-based application, like Webmin itself, but dedicated to all tasks related to the administration of a PostgreSQL server. It's easy to use and can be a helpful tool for your database users and administrators.
Note
System packages are configured to run phpPgAdmin on Apache. The Apache web server and PHP are installed as package dependencies. If you're not already using Apache and PHP, this exposes a potential attack vector on your database server. Consider the security implications of installing phpPgAdmin and keeping it up to date.
How to do it...
Perform the following steps to install phpPgAdmin:
Tip
On some systems, you may need to add an additional repository to install the package. For instance, if you're running a Linux distribution from the RedHat family (RHEL, CentOS, Fedora, and so on), you should add the Extra Packages for Enterprise Linux (EPEL) repository. Information about setting up EPEL can be found in the recipe, Giving users access to your server via FTP, in Chapter 6, Managing Files on Your System.
Tip
On some systems, phpPgAdmin is configured to be accessible to connections originating from the local host only. If you wish to change this behavior, go to Servers | Apache Webserver | Default Server, select the Per-Directory Options for phpPgAdmin's directory, and change its Access Control settings. More information is provided in the recipe, Setting options for directories, files, and locations, in Chapter 8, Running an Apache Web Server.
Information about additional steps that may be necessary to set up phpPgAdmin in your system distribution can be found in package documentation files. Refer to the recipe, Reading documentation of installed software in Chapter 1, Setting Up Your System.
Depending on the how phpPgAdmin's configuration is defined, it will connect to your Postgres server over a Unix socket or TCP network socket. The following line in config.inc.php decides how connections are established:
$conf['servers'][0]['host'] = 'localhost';
If the host value for a server is set to 'localhost', connections are made over a network socket. If the value is set as an empty string '', then connections are made over a Unix socket.
Your Postgres server must be set up to handle the chosen type of connection and allow users to authenticate using a password. Take a look at the recipe, Allowing access to PostgreSQL over the network, for more information.
Tip
If you are running a RedHat-based system with Security Enhanced Linux (SELinux), you may have to allow Apache to connect to databases by setting the following flag:
$ sudo setsebool -P httpd_can_network_connect_db 1
How it works...
phpPgAdmin is an application written in PHP. The main configuration file of phpPgAdmin is named config.inc.php, and is usually installed inside the /etc/ directory. Example locations for different distributions are listed in the following table. The code of the application itself is stored in the form of PHP script files in a directory named phpPgAdmin.
Because phpPgAdmin is served by Apache, the installation package includes an application-specific configuration file that will be loaded by the web server. This file informs Apache where phpPgAdmin is stored on disk and which of its directories should be made available on the Web:
File | OS / distro | Location |
---|---|---|
phpPgAdmin configuration | Debian | /etc/phppgadmin/config.inc.php |
CentOS | /etc/phpPgAdmin/config.inc.php | |
OpenSUSE | /etc/phpPgAdmin/config.inc.php | |
phpPgAdmin files | Debian | /usr/share/phppgadmin |
CentOS | /usr/share/phpPgAdmin | |
OpenSUSE | /srv/www/htdocs/phpPgAdmin | |
Apache configuration file for phpPgAdmin | Debian | /etc/apache2/conf.d/phppgadmin |
CentOS | /etc/httpd/conf.d/phpPgAdmin.conf | |
OpenSUSE | /etc/apache2/conf.d/phpPgAdmin.conf |
Regardless of how the package maintainers decided to prepare it, you can tweak the Apache configuration for phpPgAdmin by going to Servers | Apache Webserver | Default Server and selecting the Per-Directory Options for the phpPgAdmin directory.
Chapter 11. Running Web Applications
In this chapter, we will cover the following:
Introduction
Internet sites may be roughly divided into two categories: static and dynamic. When a web server hosts a static site, its role is very limited. The server waits for incoming requests, maps every request to a file on its disk, and sends contents of the file as its response. All pages of such a site have to be prepared ahead of time, and they don't change automatically between visits. The functionality of such sites may seem limited, but they do have a number of advantages. Since the server doesn't do any computational work, static sites can be very fast and can serve large numbers of requests. Such sites are also easy to index by search engines. The fact that a site is static does not mean that it can't be interactive. JavaScript components allow the browser to provide the user with a graphical interface, through which he or she may interact with our website. In the end though, if the user provides us with information we would like to store, we will need a dynamic component to process incoming data.
On a dynamic website, incoming requests are not mapped directly to files on a disk; instead, they are handed over to programs that process each request and produce a response. Processing usually involves interacting with a database to look up or store information; the response is generated on the fly and may be different each time. Dynamic websites are an essential component of the modern Internet, and Apache is a server that can host most available dynamic technologies.
In Chapter 8, Running an Apache Web Server, we demonstrated how Webmin can help you set up a web server to host static websites. In this chapter, we will dive into topics related to various dynamic website solutions. We will start with CGI, the classic way to serve dynamic websites using programs written in any language. To illustrate the point, we will demonstrate how to set up a simple dynamic website powered by a Bash script. We will then proceed to demonstrate how more efficient language-specific technologies can be hosted. Most of this chapter is focused on the PHP language, but the final recipe demonstrates how applications written in Python may be hosted using the Apache module mod_wsgi.
Generating dynamic pages using CGI
Since the earliest days of the World Wide Web, it was possible to generate web pages dynamically using a standard method called the Common Gateway Interface (CGI). With the use of CGI, an Apache web server can generate dynamic content by executing any program installed on the same machine as long as that program generates the text of a properly formatted HTTP response. The main advantage of this method is its universality, as CGI scripts may be written in any programming language. In this recipe, we will demonstrate how to write a simple Hello World script in the shell scripting language, Bash, but the same principles would apply to any other programming language.
The main disadvantage of the CGI protocol is the fact that the web server must invoke a new process for each incoming request. This solution does not scale very well and is therefore applicable to low traffic sites only. The other disadvantage of using CGI directly is that the protocol is very basic and parsing of incoming requests has to be done manually by your scripts.
Basic CGI is superseded by technologies that do not require a new process to be invoked for every incoming request but have a component loaded into memory, ready to process requests. These solutions are usually language specific and may come as Apache modules, for instance mod_perl, mod_php or mod_python. Some of these technologies are described in subsequent recipes in this chapter.
The method described in this recipe is still suitable for small tasks. If you have a web server and wish to return a simple status page but don't want the overhead (and potential security risks) associated with installing a technology such as PHP, you could use this basic method of generating dynamic web pages.
Note
CGI scripts are regular programs from the perspective of your Unix system, and they have access to the underlying machine with the same privileges as the web server process. If a CGI script accepts user input, great care should be taken to verify and clean up incoming data. Mistakes in input handling often become security vulnerabilities, which can be exploited.
Getting ready
This recipe involves the configuration of an Apache web server. Information about installing and configuring Apache can be found in Chapter 8, Running an Apache Web Server.
Checking what user and group Apache is running as
The Apache web server accesses your system as a special user, usually called apache, www-data, wwwrun, httpd, or something similar. In order to complete this recipe, you'll need to know the username and group of this Apache user. This can be easily checked through Webmin, as follows:
The Apache username will be displayed in the Run as Unix user field and the group in the Run as Unix group field. Both values are set to www-data in the preceding image. Make a note of your system's configuration.
How to do it...
This recipe will consist of two sections. First, we'll create a CGI script and then the Apache configuration needed to display the web page it generates.
Follow these steps to create a CGI-compatible shell script:
Tip
It is not a good idea to store CGI scripts in the DocumentRoot directory from which regular HTML pages are served. Incorrect configuration of the server could expose the source code of your scripts, run scripts that should not be executed, or make the directory writeable, which would constitute a serious security vulnerability.
#!/bin/bash
echo "Content-type: text/plain"
echo "" # End of headers, start of response body
echo "Hello World!"
echo "The current date is:"
date
exit 0
$ sudo chgrp www-data /usr/lib/cgi-bin/hello.sh
$ sudo chmod 750 /usr/lib/cgi-bin/hello.sh
Tip
Information about manipulating files and changing ownership and permissions can be found in the Manage files and directories on the server recipe in Chapter 6, Managing Files on Your System.
Follow these steps to create the Apache configuration:
Tip
You may wish to restrict access to specific client IPs if the presented data must not be made public. The location can also be protected with a password.
To see the result, navigate to the URL, http://your-server/cgi-bin/hello.sh, where your-server is the IP or domain name of your Apache server machine.
You should see a webpage with the words, Hello World, and the current date. Your shell script executed by Apache through the common gateway interface generated this text dynamically.
How it works...
When a browser requests a URL with a path matching /cgi-bin/hello.sh, Apache recognizes it as an alias to the script, /usr/lib/cgi-bin/hello.sh. Apache prepares an execution environment in which various request parameters, such as HTTP headers and the query string, are set as environment variables and then executes the script in this environment. The body of the request is passed to the script over the standard input stream.
The script we wrote creates the HTTP response, which will be sent back to the browser. The response consists of two parts: headers and the response body. We send only one header informing the browser that Content-type for our response is text/plain. This tells the browser that the response should be displayed as text rather than downloaded as a file. We then send an empty line to end the headers section and proceed to send the response body, which consists of the words, "Hello World!", and the current date.
The Apache configuration we created informs the server that all requests to paths starting with /cgi-bin/ should be treated as aliases to files in the directory, /usr/lib/cgi-bin/. We also informed Apache to execute scripts found in the directory and to allow access from all clients. This is equivalent to creating the following configuration fragment:
ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
<Directory "/usr/lib/cgi-bin">
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
</Directory>
All CGI scripts must be executable and the Apache user must have the ability to run them in order to use them. To achieve this, we gave the file to a group that Apache belongs to and assigned read and execute permissions to this group. Assigning permissions in this way allows Apache to run the script but not modify it. If the Apache user were able to modify CGI scripts, a compromised server could be used as a means of taking control of the server.
There's more...
Programs running over the CGI can output data as described earlier, but they can also read incoming headers and content of submitted forms. The CGI protocol was standardized and is described in the RFC3875 document, which can be found at http://tools.ietf.org/html/rfc3875.
Displaying incoming request headers
Incoming HTTP request headers and many other useful pieces of information described by the CGI protocol are available to the script as environment variables. In order to display them, you could use the printenv command, as in the following script:
#!/bin/bash
echo "Content-type: text/plain"
echo ""
printenv
exit 0
Displaying incoming request body
The incoming request body (which contains, for example, values of HTTP POST forms) is passed to the script over the standard input stream. In order to display the body of the request, you could add the following code to your script:
while read LINE; do
 echo ${LINE} # perform operations on request body
done
See also
We can also refer to the following sections:
Installing PHP
PHP is currently among the most popular programming languages for the Web. Many of the largest and most popular sites are powered by software written in PHP, including Facebook, Yahoo!, Wikipedia, and Wordpress.com. PHP started as a set of simple tools for designing dynamic personal home pages, but it quickly grew in popularity and evolved into a modern, object-oriented programming language. The open source community that grew around the language created many useful libraries and added support for multiple platforms, databases, and so on.
PHP is quite powerful, yet very easy to use. Deployment of a PHP application usually boils down to placing source code files in a directory on a server. It's also very easy to start programming with PHP—its code can be embedded directly within standard HTML. PHP makes programming for the Web very simple by abstracting away details of the HTTP protocol. For example, form values are available directly as data structures inside scripts, simple functions allow headers to be read and written, support for cookies and user sessions is built in, and so on.
PHP's ease of use may in fact be too great as it has allowed many to develop for the Web without fully understanding its underlying protocol. If you find a PHP application ready to install on your server, make sure to read its reviews to make sure it doesn't pose any serious security or stability issues.
In this recipe, we will demonstrate how to install PHP and then write and deploy a simple Hello World script.
Getting ready
This recipe involves the configuration of an Apache web server. Information about installing and configuring Apache can be found in Chapter 8, Running an Apache Web Server.
How to do it...
Follow these steps to install PHP and verify that it works on your system:
Tip
The Configure Apache Modules screen may not be present in your system. If you installed PHP from a package, then in all likelihood, it enabled the module for you already. Follow the rest of this recipe to test that.
<?php
 echo "Hello World!";
?>
To see the result, navigate to the URL, http://your-server/hello.php, where your-server is the IP or domain name of your Apache server machine. You should see a web page with the words Hello World! generated by PHP.
Tip
If you end up seeing the PHP code instead of Hello World!, you will have to enable the PHP module manually. Take a look at the How it works section for information about instructions that you'll have to add to the Apache configuration file, and read your package's documentation for directions.
How it works...
Practically all server OS distributions offer a PHP package for installation from their repositories. There are a few different ways to install PHP, and it's a good idea to install the standard system package as this will ensure that it is optimized for your version of Apache and will be kept up to date by package maintainers.
Installation of the package not only places PHP executables and documentation on your disk but also modifies configuration of the Apache web server. Introduced changes include the following:
LoadModule php5_module /path/to/libphp5.so
SetHandler application/x-httpd-php
Or
AddHandler php5-script .php
DirectoryIndex index.html index.php
See also
We can also refer to the following sections.
Changing PHP configuration settings
The PHP interpreter allows you to specify values of numerous settings, which determine how PHP applications behave on your system. This configuration affects how errors are logged or displayed, how input data is handled, what resources are allocated to the interpreter, and settings for extension modules bundled with PHP.
PHP's configuration file is traditionally called php.ini, and its location depends on your operating system distribution and version of PHP. Common locations of the php.ini file include: /etc/, /etc/php5/apache2/, and /usr/local/etc/. The php.ini file contains master setting values, but some settings may be overwritten locally with a PHP script or Apache configuration for a directory.
In this recipe, we will demonstrate how to check values of currently used configuration settings and how they can be modified.
Getting ready
Assuming you already have Apache and PHP installed, prepare a directory that is exposed through the web server and ready to serve PHP scripts. We will refer to this directory as the DocumentRoot directory in this recipe.
How to do it...
The first part of this recipe will check currently defined settings, which we will then proceed to modify.
Follow these steps to check current PHP settings:
<?php
 phpinfo();
?>
Note
This informs us where the main PHP configuration file (php.ini) is located.
Note
Note that there are two columns. They specify the local value and the master value of this setting. The master value is specified in php.ini, but the local value is currently in use. The local value may be different from the master value if it is overridden. See the There's more section of this recipe.
Follow these steps to change the master PHP settings:
Check the memory_limit value. Its master value should now be changed to 260M.
Tip
Leaving the phpinfo.php file on your server is a bad idea as it unnecessarily exposes information about your system to the public. Delete the file when you're done using it.
How it works...
Apache loads the global PHP configuration (php.ini) file every time the server is started. In this recipe, we modified this file through Webmin. In particular, we changed the line that determines how much memory the PHP interpreter will be able to use to the following:
memory_limit = 260M
After we modified the file, we went to Webmin's interface to apply the configuration changes by restarting Apache.
There's more...
PHP settings may be set locally in scripts and in Apache's per-directory configuration files.
Modifying PHP settings for a directory using .htaccess files
In order to modify PHP settings through .htaccess files, we must instruct Apache to allow local option overrides for the directory that contains our PHP script. Take a look at the Setting options for directories, files, and locations recipe in Chapter 8, Running an Apache Web Server, for more information. Perform the following steps:
Tip
This is equivalent to adding the following line to Apache's configuration for the directory:
AllowOverride Options
php_value memory_limit 32M
Note
The directive, php_value, is used to configure settings which accept parameter values. Boolean parameters, which only accept the values on and off, are set with the php_flag directive. More information can be found in PHP's online manual at http://php.net/manual/configuration.changes.php.
Verify the change in local settings using the phpinfo() function, as described earlier.
Modifying PHP settings dynamically inside script code
Prepare a phpinfo.php file as described in this recipe, but add the following code to it:
<?php
 ini_set('memory_limit', '64M');
 phpinfo();
?>
Navigate to the URL of the phpinfo.php file to verify the change in local settings.
See also
Displaying PHP errors while debugging
While writing code in PHP or installing a downloaded application, you may find yourself staring at a blank browser screen with no hint as to why it isn't working as expected. This is caused by the default PHP configuration that hides error messages from prying eyes. Error messages could reveal information about your server, so this is a good idea in production, but makes resolving problems more difficult. During development, you can enable PHP's friendly error messages by following this recipe.
How to do it...
Follow these steps to execute this recipe:
<?php
 echo "Hello World!";
 syntax!error
?>
After changing the setting, navigate to your broken script's URL once again. You should now see an error message like this:
Parse error: syntax error, unexpected '!' in /var/www/index.php on line 3
How it works...
PHP's display_errors setting is responsible for whether the interpreter displays error messages on the screen or hides them.
In this recipe, we enabled PHP's error reporting globally by turning on the display_errors configuration flag. To achieve this, we changed the display_errors line in php.ini to the following and restarted Apache:
display_errors = Off
You can also set the flag locally for a chosen directory by adding the following line to a .htaccess file. Make sure that Apache allows local overrides in this directory:
php_flag display_errors on
Don't use the ini_set function to turn on displaying errors, as some errors will prevent the script from being parsed and the setting will not be able to take effect.
See also
Logging in PHP
Applications written in PHP generate log messages whenever an error occurs. These messages may be saved to a log file, passed to syslog, or ignored, depending on the configuration settings of the interpreter. Ignoring error messages is a bad idea as it prevents you from detecting problems occurring on your server.
On the other hand, saving every message to a file can cause your logs to grow very quickly, especially on high-traffic sites. Fortunately, PHP allows you to configure which errors are logged quite precisely. All PHP errors are assigned a level value; most severe errors are marked as E_ERROR, less severe as E_WARNING, even less severe as E_NOTICE, and so on. A complete list of error levels can be found in the PHP manual at http://php.net/errorfunc.constants.php.
It is recommended to log all errors during development, but in production, all errors should be logged, except E_DEPRECATED (deprecation warnings) and E_STRICT (code style suggestions). We will set this level of logging in this recipe.
Getting ready
To complete this recipe, we will need to know what user and group Apache is running as. You can find instructions on obtaining this information in the Getting ready section of the Generating dynamic pages using CGI recipe of this chapter.
How to do it...
Instruct PHP to keep a log of error messages by following these steps:
$ sudo chown www-data /var/log/php_errors.log
Note
Information about manipulating files and changing ownership and permissions can be found in the Managing files and directories on the server recipe in Chapter 6, Managing Files on Your System.
$ sudo chmod u+w /var/log/php_errors.log
From now on, you should see error messages appear in PHP's log file.
How it works...
In order to enable PHP error logging, we set the following master values in your php.ini file:
log_errors = On
error_reporting = E_ALL & ~E_DEPRECATED & ~E_STRICT
error_log = /var/log/php_errors.log
The preceding settings turn on PHP's error logging (log_errors) and specify which file the errors should be saved in (error_log).
The error_reporting instruction specifies which messages are saved and which ones are ignored. This line accepts a complex syntax in which ampersand signs (&) allow you to specify different levels of messages to log and tilde characters (~) that negate a given class. This allows us to log errors of all levels (E_ALL), but not deprecation warnings (& ~E_DEPRECATED) or style suggestions (& ~E_STRICT).
Refer to the Changing PHP configuration settings recipe in this chapter for more information about ways of changing the configuration of PHP.
There's more...
PHP can also output error messages to the system log (syslog). If you wish to use syslog, change the error_log line as follows:
error_log = syslog
PHP errors are output to the syslog facility named user, and unfortunately, this cannot be changed through the PHP configuration at this time.
Note
Modern syslog implementations (such as rsyslog, syslog-ng) can filter messages based on the command that generated them.
Refer to the Saving syslog messages to a file recipe in Chapter 5, Monitoring Your System, for more information about syslog.
See also
For more information about using system logs, take a look at the following recipes:
Installing WordPress on your server
WordPress is a very popular open source blogging platform. The software is very easy to use yet versatile enough to serve a variety of purposes, such as running informational websites or even simple e-commerce shops. WordPress is written entirely in PHP, which makes it quite easy to install.
This recipe pulls together strands from various preceding chapters. We will demonstrate how to use the recipes provided in this book to set up a working web server hosting a website powered by the WordPress blogging platform.
Note
Package repositories of many operating system distributions host a package for WordPress. You may choose to install the package if you don't intend to customize your site or host multiple different versions of the software. Note that WordPress may be updated more frequently than packages in your OS repository, which could possibly lead you to use an insecure version of the software. Look for documentation contained within the package for more information if you choose this route.
How to do it...
This recipe is divided into a number of sections. We will prepare the server first by installing the required software packages. You may skip these steps if you have the software mentioned installed on your server already. We will then create a MySQL database and user for our WordPress installation. Finally, we'll create an Apache virtual host and install WordPress.
Please follow these steps to prepare the server:
Tip
In order for PHP applications to communicate with MySQL, you will need to install an additional PHP module, which is available as a package on most OS distributions. You can check to see if this module is already installed by looking at the output of the phpinfo() function, as described in the Changing PHP configuration settings recipe of this chapter. If you find an information section named mysql, then the php-mysql module is installed.
Note
More information about installing packages can be found in the installing software packages recipe in Chapter 1, Setting Up Your System.
Creating a database
We will create a database and user named wordpress. You should probably use a more informative name, especially if you plan to use more than one instance of WordPress. Please follow these steps to create a database:
Note
Information about creating MySQL databases and granting permissions can be found in the Creating a new database and Creating users and granting permissions to databases recipes in Chapter 9, Running a MySQL Database Server.
Tip
If you are running a system with Security Enhanced Linux (SELinux), you will have to allow Apache to connect to databases by setting the following flag:
$ sudo setsebool -P httpd_can_network_connect_db 1
Creating a virtual host and installing WordPress
In order to create a virtual host and install WordPress, perform the following steps:
Note
When the extraction is complete, WordPress's index.php file should have the following path: /var/www/blog.example.com/index.php.
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /
RewriteRule ^index\.php$ - [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /index.php [L]
</IfModule>
Tip
Apache's virtual host or directory configuration must allow options to be overridden by the .htaccess files (AllowOverride All). For more information, take a look at the Setting options for specific directories, files, and locations recipe in Chapter 8, Running an Apache Web Server.
You can now navigate to the URL of your WordPress site and follow onscreen instructions to finish setup and start using the site.
How it works...
WordPress uses technologies described throughout this book. In order to set up our server for the application, we need to install Apache, MySQL, and PHP. We also need a number of additional PHP modules to allow WordPress to communicate with the database and manipulate image files.
Every instance of WordPress requires access to a database. The table prefix is added to the name of every database table, which allows multiple installations of WordPress to share a single database. We left the prefix set at its default value of wp_. Since we are running our own server, we can create as many databases as we need; therefore, there is no need to share databases. In fact, we also created a dedicated database user for this application with access to one database only.
The virtual host configuration we created allows us to run WordPress on one subdomain (blog.example.com), leaving us free to run other software on the main domain or other subdomains.
The .htaccess file we created is designed to allow WordPress to use clean URLs. Thanks to this function, pages may have URLs such as http://blog.example.com/hello-world/ instead of http://blog.example.com/?p=1.
Note
More information about clean URLs, called permalinks in WordPress, is available in its documentation at http://codex.wordpress.org/Using_Permalinks.
We finished the installation by allowing WordPress to create the contents of its main configuration file (wp-config.php) for us. We needed to provide database connection details into a form, and WordPress prepared the configuration file itself. In addition to storing database connection details, the installer also generated pseudo-random cryptographic salt strings, which help keep WordPress secure. Salt strings are also stored in the configuration file and should be kept secret and changed occasionally.
Tip
To keep the WordPress configuration file safe, make sure its permissions are set correctly. It has to be readable for Apache, but not anyone else. Take a look at the Getting ready section of the Generating dynamic pages using CGI recipe in this chapter to find the name of the Apache user, as well as the Managing files and directories on the server recipe in Chapter 6, Managing Files on Your System, for information about setting permissions.
Also, make sure that any backup copies of this file are stored in a safe way.
See also
Installing Drupal on your server
Drupal is a powerful open source content management system (CMS). It is highly modular, which means it can be customized to perform nearly any task by installation of additional plugins. Drupal is written entirely in PHP, which makes it quite easy to install.
This recipe pulls together strands from various preceding chapters. We will demonstrate how to use recipes provided in this book to set up a working web server hosting a website powered by the Drupal CMS platform.
Tip
Package repositories of many operating system distributions host a package for Drupal. You may choose to install the package if you don't intend to host multiple different versions of the software. Note that Drupal may be updated more frequently than packages in your OS repository, which could possibly lead to using an insecure version of the software. Look for documentation contained within the package for more information if you choose this route.
Getting ready
To complete this recipe, we will need to know what user and group Apache is running as. You can find instructions on obtaining this information in the Getting ready section of the Generating dynamic pages using CGI recipe in this chapter.
How to do it...
This recipe is divided into a number of sections. We will prepare the server first by installing required software packages. You may skip these steps if you already have the software mentioned installed on your server. We will then create a MySQL database and user for our Drupal installation. Finally, we'll create an Apache virtual host and install Drupal.
Follow these steps to prepare the server:
Note
More information about installing packages can be found in the Installing software packages recipe in Chapter 1, Setting Up Your System.
Creating a database
We will create a database and user named drupal. You should probably use a more informative name, especially if you plan to use more than one instance of Drupal. Please follow these steps:
Note
Information about creating MySQL databases and granting permissions can be found in the Creating a new database and Creating users and granting permissions to databases recipes in Chapter 9, Running a MySQL Database Server.
Tip
If you are running a system with Security Enhanced Linux (SELinux), you will have to allow Apache to connect to databases by setting the following flag:
$ sudo setsebool -P httpd_can_network_connect_db 1
Creating a virtual host and installing WordPress
Follow these steps to create a virtual host and install Drupal:
Note
When the extraction is complete, Drupal's index.php file should have this path: /var/www/cms.example.com/index.php.
Tip
Drupal comes bundled with an .htaccess file. Make sure that the file was properly extracted to /var/www/cms.example.com/.htaccess.
Apache's virtual host or directory configuration must allow options to be overridden by .htaccess files (AllowOverride All). For more information, take a look at the Setting options for specific directories, files, and locations recipe in Chapter 8, Running an Apache Web Server.
Tip
Information about manipulating files and changing ownership and permissions can be found in the Managing files and directories on the server recipe in Chapter 6, Managing Files on Your System.
You can now navigate to the URL of your Drupal site and follow onscreen instructions to finish setup and start using the site.
How it works...
Drupal uses technologies described throughout this book. In order to set up our server for the application, we need to install Apache, MySQL, and PHP. We also need a number of additional PHP modules to allow Drupal to communicate with the database and manipulate image files.
After the initial server setup was complete, we created a virtual host, which allows us to run a Drupal site on a subdomain (cms.example.com), leaving us free to run other software on the main domain or other subdomains.
With everything prepared, we copied Drupal files to the domain directory, created the files and folder that Drupal needs for installation, and then allowed Drupal's installer to guide us through the remaining steps. Drupal filled its settings file with the information necessary to connect to the database and initialized the website. After installation, it's important to remove write permissions from the settings file.
See also
Installing a Django-based application using mod_wsgi
Django is a versatile web development framework written in the Python programming language. The framework allows for rapid development while encouraging good coding practices. Applications written in Django can be hosted on Apache with the use of the mod_wsgi module.
This recipe will demonstrate how to set up your server to host a Django application. Other Python applications supporting mod_wsgi can be set up in a similar fashion. This includes applications such as MoinMoin, PyBlosxom, Trac, and other frameworks such as CherryPy, Pylons, TurboGears, Pyramid, web.py, Werkzeug, Web2Py, and Zope.
How to do it...
Install the Apache web server by following the Installing Apache on your system recipe in Chapter 8, Running an Apache Web Server.
Tip
As of Version 1.5, Django supports Python 3, and setup is the same as in the newer version. You just need to substitute Python 2.7 with Python 3, and packages for pip and mod_wsgi with their Python 3 equivalents.
Tip
On some systems, you may need to add an additional repository to install the package. For instance, if you're running a Linux distribution from the RedHat family (RHEL, CentOS, Fedora, and so on), you should add the Extra Packages for Enterprise Linux (EPEL) repository. Information about setting up EPEL can be found in the Giving users access to your server via FTP recipe in Chapter 6, Managing Files on Your System.
$ sudo pip install django
Tip
You can modify the preceding command to install a particular version of Django. For instance, to install Django 1.6.2, use the following command:
$ sudo pip install django==1.6.2
$ cd /srv/webapps/ && django-admin.py startproject hello
Tip
Instead of starting a new project in hello, you can upload a Django application to another directory. Make a note of the application path and substitute it for /srv/webapps/hello in subsequent steps.
Tip
More information about setting up virtual servers can be found in the Createing virtual host recipe in Chapter 8, Running an Apache Web Server. This recipe also explains how to set up a mock DNS record in /etc/hosts if you don't have another way to point subdomains to your server.
ServerName hello.example.com
WSGIDaemonProcess hello python-path=/srv/webapps/hello/ processes=3 threads=1
WSGIProcessGroup hello
WSGIScriptAlias / /srv/webapps/hello/hello/wsgi.py
Alias /favicon.ico /srv/webapps/hello/static/favicon.ico
Alias /static/ /srv/webapps/hello/static/
Alias /media/ /srv/webapps/hello/media/
Consider the following screenshot:
Now, when you navigate to http://hello.example.com, you should be greeted by Django's welcome screen served by Apache.
Tip
If you're using SELinux, you may run into problems because the location /srv/webapps is not accessible to Apache. Disable SELinux temporarily to see if that solves your problem, and then refer to the following documentation page for information on how to fix the issue:
https://code.google.com/p/modwsgi/wiki/ApplicationIssues#Secure_Variants_Of_UNIX
How it works...
Web Server Gateway Interface (WSGI) is a low-level interface between web servers and web applications or frameworks written in Python. Apache is able to serve such applications through a module named mod_wsgi.
The configuration we created instructs Apache to create a number of daemon processes (processes=3) that reside in memory ready to process HTTP requests coming from the web server. The number of processes and threads started within each process determines how much of the system's resources are assigned to the application, which in turn decides how many requests it can handle simultaneously. These parameters should be tweaked to your specific needs.
The python-path parameter tells Python where it can find additional application modules. Our application is placed in /srv/webapps/hello/, which is not on the standard list of places Python searches when it looks for modules; therefore, we specify its location explicitly.
The WSGIScriptAlias directive instructs Apache to serve all requests coming in to the root URL of the domain (/) to be handled by Django. Alias directives instruct Apache that requests to places such as /static/ should be served directly from disk. You can combine the Alias and WSGIScriptAlias directives to specify which parts of a domain are served by an application and which parts Apache should serve directly.
See also
Chapter 12. Setting Up an E-mail Server
In this chapter, we will cover:
Introduction
E-mail is a standard means of communication on the Internet. As a way to send messages to anyone in the world, instantly and for free, it became one of the first killer features of the Internet and a harbinger of many things to come.
E-mail is an old technology, designed in the early, naive days of the Internet. Initially, every mail server accepted all messages from anyone and forwarded them on to any destination. E-mail accounts were protected by passwords, but those were symbolic—sent as plain text over unencrypted connections, and the word, "spam" was still associated mainly with the Monty Python sketches.
Unfortunately, as more and more people came online, many malicious users started to abuse the e-mail system. E-mail became a free way to send marketing information with the ability to reach every person on the planet. This caused an explosion of unwanted e-mail messages, most commonly called spam, which, at its peak, made up more than 95 percent of e-mail traffic. These days, the problem is slowly subsiding as administrators valiantly fight against the spam tide. On a properly configured system, spam is no longer the nuisance it once was, but there is no single foolproof solution. If you decide to host your own mail server, be aware that you will have to put in a substantial bit of work to get everything working properly.
Tip
You may decide to let someone else host mail for your domain. For example, Google provides a commercial version of its Gmail service to businesses as Google Apps for Business. Many companies offer similar services.
Because e-mail is such a complex topic, one book chapter will only get you started. If you follow these recipes, you will end up with a working, but very basic, e-mail system. If e-mail is important to your enterprise, you should proceed to read other material on this topic. There is a benefit of starting here, as we will demonstrate how helpful Webmin can be in administering a mail server.
In this chapter, we will set up Postfix, a popular open source mail transfer agent. Its alternatives, such as exim and sendmail, are also supported by Webmin but are not covered here.
Setting up your server to send and receive e-mails
To handle e-mail, your server needs to run a service called a Mail Transfer Agent (MTA) that is capable of:
MTAs exchange messages using Simple Mail Transfer Protocol (SMTP). A mail server listens for connections on port 25 and accepts incoming e-mail messages from anywhere on the Internet. If the message is addressed to a valid local address, it should be delivered to the destination mailbox.
When a user of our server decides to send an e-mail, the MTA picks up the message, checks where it is addressed to, and forwards it to the MTA associated with the destination domain.
Note
MTAs can also relay e-mails—forward e-mails coming in over SMTP but bound for other destinations. This is discussed in the Setting up a secure SMTP relay for users recipe later in this chapter.
In this recipe, we will set up the Postfix mail transfer agent on your server.
Getting ready
E-mail addresses are based on the following structure: mailbox@fqdn, where mailbox uniquely identifies a user or alias and fqdn uniquely identifies a mail system through a fully qualified domain name (FQDN). You will need to assign an FQDN to your server in order to make use of the e-mail system.
Tip
To make sure that your server is assigned an FQDN, check that your domain's DNS A or MX (Mail eXchange) record points to the IP of your mail server. A DNS MX record allows you to host mail on a machine other than the one indicated by the basic A record.
Throughout this recipe, we will assume that your server's FQDN is mailserver.example.com, which makes mailserver its hostname and example.com its domain. Replace these with your real values.
How to do it...
Follow these steps to set up Postfix on your server:
Note
A system can have only one MTA installed at any time. If another MTA was installed on your system, you will need to uninstall it. If you're installing from a system package, this should be done automatically.
Your system should now be able to send and receive e-mail messages. Test the ability of the server to send e-mail, and its ability to receive it, by following the steps in the Debugging e-mail related problems recipe later in this chapter.
How it works...
In this recipe, we installed the popular open source MTA called Postfix on your system. In order to receive mail, we opened port 25 in your firewall, and we also made sure that the service is started during system boot.
We then proceeded to configure the mail system's basic settings. Postfix keeps settings in a text file located in the path /etc/postfix/main.cf. Posfix's default configuration is very close to what a working system requires, so we only needed to specify which domain we are going to handle mail for and instruct Postfix to listen for connections on all network interfaces.
More information about each setting we modified is available in Webmin. Just click the label of any form field to get a detailed description.
See also
Now that you have gotten your feet wet, you should probably read all recipes in this chapter:
Setting up secure IMAP access to mailboxes
Mail received by your MTA is delivered to a queue directory on your server. Recipients are expected to pick up messages from here and store them in their own mailboxes. If users connect to your server by SSH, they may use terminal applications such as mutt or alpine and store messages in their home directories. Another access method you can provide is a web mail application such as Roundcube, which runs on Apache with PHP. Webmin's companion product, Usermin, also provides basic mail functionality for users. See the Installing Usermin recipe in Chapter 2, User Management, for more information.
Tip
You can find more information on each of these programs online, but most system distributions offer convenient packages, which make installation very easy:
Roundcube: http://www.roundcube.net
Alpine, the successor to Pine: https://www.washington.edu/alpine/
Mutt: http://www.mutt.org
The standard method of picking up e-mail, however, is to use a Mail User Agent (MUA), more commonly referred to as an e-mail client or e-mail reader. Programs such as Thunderbird, KMail, Evolution, Apple Mail, Outlook, and many others, serve this role for desktop users. These programs expect to talk to your server using the IMAP, POP3, and SMTP protocols.
Protocol	Function
POP3 | Used to pick up messages from the server by downloading the entire mailbox. |
IMAP | Used to download new mail and manages message on the server. |
SMTP | Used to submit mail for delivery to others. |
In this recipe, we'll demonstrate how to set up IMAP access to your Postfix server using a companion server named Dovecot. We'll make sure that access is secured using a TLS encrypted connection. In the next recipe, Setting up a secure SMTP relay for users, we'll demonstrate setting up SMTP.
Note
The POP3 protocol is becoming obsolete, so in this recipe, we'll focus on IMAP. If you need it, enabling POP3 using the described software is simple.
Getting ready
In this recipe, we're building on basic Postfix MTA setup described in Setting up your server to send and receive e-mails. Make sure your Postfix is working properly before starting with this recipe.
We will need to know the location of your Postfix mail queue directory. Check it by following these steps:
How to do it...
Follow these steps to set up the Dovecot IMAP service:
mbox:~/mail:INBOX=/var/spool/postfix/%u
Users will now be able to connect to your server to receive mail via IMAP. Test the configuration by creating an account in your e-mail client program with the following settings:
Tip
If you're having trouble connecting, look for debugging information in your server's mail log. If you see an error message resembling Operation not permitted (egid=500(username), group based on /var/spool/mail/username), then you will need to change the group permissions of files in your mail spool directory. You can do that by issuing the following command:
$ sudo find /var/spool/mail -type f -execchmod 0600 '{}' \; -print
Paste the error messages you encounter into a search engine to find resolutions of other problems.
How it works...
Dovecot was designed to be secure and easy to configure. During installation, it generates a self-signed SSL certificate to encrypt communication with clients. This is very important because without encryption, your system username and password travels in plain text throughout the Internet and may be read by every ISP along the way. E-mail clients will complain that no recognized certificate authority signed your certificate. You may purchase a signed certificate and replace the self-signed certificate that Dovecot generated to get rid of these error messages. Take a look at the There's more section for more information.
Dovecot listens for IMAP connections on ports 143 or 993. Traditionally, port 143 was used for unencrypted IMAP connections and port 993 for SSL/TLS encrypted connections. Dovecot allows both ports to use encryption; in fact, we specifically instructed it to reject authentication attempts in non-SSL mode. Leaving both ports open makes it easier for users to configure their e-mail clients, which attempt to guess IMAP ports.
There's more...
Professional e-mail services use commercially signed SSL certificates. To replace your certificate, follow these steps:
See also
Setting up a secure SMTP relay for users
Users who employ a mail client program will want to send messages through your server using the SMTP protocol. Since we set up an MTA, your server already supports SMTP connections, but only to receive e-mail destined for your domain. Messages submitted anonymously for destinations other than your domain should be rejected. Otherwise, we would create a so-called open relay, and spammers would quickly abuse your server. Anti-spam filters would then put your server on blacklists, and other mail servers would stop accepting messages from your users.
In order to avoid creating an open relay, and yet allow remote users to send mail to other domains, we need to require user authentication. We will allow authenticated users to submit mail bound for any domain but reject outbound mail submitted anonymously.
The SMTP protocol supports a method of authentication called Simple Authentication and Security Layer (SASL), which allows users to specify their username and password before submitting e-mail.
In this recipe, we will use a combination of Postfix and Dovecot to set up SASL authentication for your SMTP server. Sensitive information should not be sent using an unencrypted connection, so we will also provide a layer of TLS encryption for SMTP connections.
Getting ready
This recipe builds on the groundwork performed in the previous recipes, Setting up your server to send and receive e-mails and Setting up secure IMAP access to mailboxes. Make sure your Postfix and Dovecot are working properly before starting with this recipe.
We will need to know the name of your Postfix user name and group. Check it by following these steps:
How to do it...
Follow these steps to set up a secure SMTP relay for your users:
smtpd_sasl_type = dovecot
smtpd_sasl_path = private/auth
service auth
{
...
 # Postfix smtp-auth
 unix_listener /var/spool/postfix/private/auth
 {
 mode = 0660
 user = postfix
 group = postfix
 }
...
}
Users will now be able to connect to your server and send mail via SMTP. Test the configuration by creating an account in your e-mail client program with the following settings:
Tip
Some users may have problems using port 25. Take a look at the There's more... section for instructions on adding the alternate SMTP port number 587.
Tip
If you're having trouble connecting, look for debugging information in your server's mail log. Refer to the Using Telnet to test SMTP authentication section of the Debugging e-mail related problems recipe for a way to manually test your server. Paste any error messages you encounter into a search engine to find solutions.
How it works...
Dovecot and Postgres work together to provide an authenticated SMTP server. Dovecot provides the SASL authentication service, which is accessible via a UNIX socket. The configuration file, 10-master.conf, tells Dovecot which services to launch when starting. We edited this file to instruct Dovecot to start the SASL service (named auth). We specified the location of the socket (/var/spool/postfix/private/auth) and which user and group may connect to it (postfix).
We also edited the main configuration file of Postfix called main.cf. The changes we made cause Postfix to require SASL authentication over an encrypted connection for submission of messages for relaying. We also told Postfix which type of authentication backend to use (dovecot) and the location of the socket relative to its mail queue directory (private/auth).
There's more...
Some Internet service providers block traffic on port 25 to prevent machines infected by viruses and worms from abusing the e-mail system. Your server can provide the SMTP service at an alternate port 587. This will allow users from such ISPs to send mail through your server.
Follow these steps to instruct Postfix to listen for SMTP connections on port 587:
See also
To find more detailed information about this setup, refer to the Postfix and Dovecot manuals:
Controlling the mail queue
Messages that your mail server is going to send are placed in a mail queue. Normally, they don't stay there very long as the server deletes them as soon as they are sent. However, if for any reason a message cannot be sent, it may stay stuck in the queue.
Inspecting the mail queue will give you important information about the health of your mail system. Webmin provides a convenient graphical user interface to view and control the queue.
Getting ready
In this recipe, we are going to control the Postfix MTA's mail queue. Refer to the Setting up your server to send and receive e-mails recipe in this chapter for information about its installation.
How to do it...
How it works...
Webmin controls the Postfix mail queue by issuing appropriate Postfix superintendent (postsuper) or Postfix queue control (postqueue) commands. The following table lists the functions of commands that Webmin allows you to execute:
Command | Function |
---|---|
Delete message | This removes the message from the queue without sending it. |
Requeue message | This moves the message to a new queue file, and restarts the delivery attempt. |
Hold message | This puts the message on hold and does not attempt to deliver it. |
Un-Hold message | This removes the hold on a message and attempts to deliver it. |
Flush queue | This attempts to deliver all queued messages. |
Refresh queue | This updates the information about the queue. |
Reading and writing e-mails on the server
Webmin gives you a convenient interface to read and write messages as any user of your system. This can be very useful when debugging mail problems, for instance, to check if a particular message reached a particular mailbox. Keep your users' privacy in mind of course.
How to do it...
How it works...
Webmin features a basic mail client program written in Perl. Thanks to this functionality, Webmin is able to read and write messages in your users' mailboxes.
Configuring e-mail aliases
Each e-mail address is normally associated with a single user's mailbox on your server. In some situations, however, it's beneficial to forward incoming mail to multiple users or to an address on another server. This can be achieved by using mail aliases, which Postfix supports and Webmin makes easy to administer.
Tip
There are a number of aliases which every mail server should define. For instance, mail to the root mailbox should always reach an actual person. If you're running a mail server, you should also define aliases named postmaster and abuse through which people can report mail-related issues. If you wish to read mail sent in reply to automated messages from your MTA, define an alias for mailer-daemon.
More information about common mailbox names may be found in the RFC2142 document at http://tools.ietf.org/html/2142.
Postfix aliases allow you to not only forward mail to other addresses, but also save their content to files or pipe them to other applications. Sensitive data such as password verification codes are often sent via e-mail, so keep the security of such destinations in mind.
In this recipe, we demonstrate how easy it is to configure Postfix mail aliases using Webmin.
How to do it...
For configuring e-mail aliases, perform the following steps:
How it works...
Whenever Postfix encounters an incoming message, it checks whether the destination address is contained amongst defined aliases. The main list of aliases is stored in a text file named /etc/aliases on most systems. Because this file can grow quite large, it isn't used directly in its text format. Instead, it's converted to an indexed binary file, which allows quick lookups. Every time the alias file is modified, Webmin executes a command named postalias, which creates the binary index. The command will resemble the following with paths adjusted for your system:
/usr/sbin/postalias -c /etc/postfix /etc/aliases
Postfix aliases may serve a number of different functions listed in the following table. Webmin allows you to not only create all of these, but also others that may not be supported by your MTA. This table lists examples of different ways to define the alias test (as in test@example.com) and what function they may serve:
Alias syntax | Function |
---|---|
test: user | This forwards the message to another local mailbox. |
test: user@remotedomain.com | This forwards the message to a remote e-mail address. |
test: "/path/to/file" | This appends incoming messages to a file. |
test: "|/usr/local/bin/mailhelper" | This pipes incoming messages to a program. |
test: user, root, user@remotedomain.com | This forwards the message to a list of recipients. |
test: :include:/path/to/aliases | This forwards the message to destinations listed in /path/to/aliases. |
There's more...
There are many interesting ways to use mail aliases, for instance, to create a basic mailing list. Users can also influence how their mail is forwarded by creating a special file in their home directory.
Creating a simple mailing list
You can create a basic mailing list by creating an address and assigning it to forward mail to addresses defined in a text file. You can then manage subscriptions by editing the file. For example, you could create a mailing list, students@yourdomain.com, by following these steps:
Tip
This type of mailing list provides only the most basic functionality. Users cannot manage their mailing preferences or sign out. There are multiple applications dedicated to running full-featured mailing lists. Take a look at Mailman (http://www.list.org) and Sympa (http://www.sympa.org).
Using .forward files
Users can also control their own mail-forwarding preferences by placing a file named .forward in their home directory. Before Postfix delivers mail to a user, it will check if this file exists, and if it does, Postfix will obediently forward the message to addresses specified in the file. Other types of alias behaviors can also be specified in .forward files.
See also
Filtering incoming mail using Procmail and SpamAssassin
E-mail gives us the ability to send free messages to nearly everyone in the world. Unfortunately, some people decided to abuse this system and send unsolicited mass mail (spam) in hopes of making money through advertising or fraud. So many people were tempted by this possibility that, at some point, spam made up over 95 percent of e-mail traffic. This would make e-mail practically unusable, but thankfully, anti-spam filters make this problem more manageable.
Spam fighting is a large and complex topic. In this recipe, we will demonstrate an effective yet basic technique based on the programs Procmail and SpamAssassin. If your site handles a large volume of e-mail, you will probably need a more efficient solution.
How to do it...
This recipe is divided into two parts. First, we instruct our Postfix MTA to hand incoming messages to a filtering program called Procmail. Next, we create a filter, which pipes messages through SpamAssassin and sends spam to a separate mailbox.
First, let's start with setting up Procmail filters in Postfix:
$ which procmail
The output of this command will give you the location of the binary, as follows:
/usr/bin/procmail
/usr/bin/procmail -a "$EXTENSION"
Now, let's set up SpamAssassin filters in Procmail:
$ which spamassassin
/usr/bin/spamassassin
Let's create a second filter now, which will move all spam messages to another folder called Junk.
Incoming mail should now be passed to SpamAssassin. Detected spam messages should not be delivered to your users' regular mailboxes but to files named ~/mail/Junk in their home directories.
How it works...
This recipe attempts to filter out spam by passing incoming messages through two programs. The first is Procmail, a mail delivery agent (MDA). Postfix hands messages off to the MDA for delivery to mailboxes. Procmail has the added functionality of passing mail through a series of configurable filters. A Procmail filter inspects the headers or body of a message and decides what to do with the message based on its content.
Note
Procmail is a stable software installed by default on many operating systems. Unfortunately, it's no longer maintained, so no new features will be added in the future. The maildrop program is often recommended as a newer replacement for Procmail, but Webmin does not currently support it. More information is available at http://www.courier-mta.org/maildrop/.
In our example, we set up two Procmail filters. The first has no conditions, which means that it applies to every message, and it hands the message off to yet another program for spam analysis. SpamAssassin inspects every part of the message, looks up DNS records of MTAs the message was relayed through, and checks them against spam blacklist and other sources of information about spammers. It uses all this data to perform statistical and artificial intelligence analysis and ends up giving every message a score. If the score is high, the message should probably be considered spam. SpamAssassin writes its report in the headers of the messages and hands it back to Procmail.
Our second Procmail filter inspects message headers to check if SpamAssassin decided that the message is spam (X-Spam-Status: Yes). These messages will not be delivered to a user's inbox but instead appended to a secondary inbox called Junk (~/mail/Junk).
Tip
If your system is going to handle a lot of mail, then invoking SpamAssassin for every message can create a serious bottleneck. It could slow down your server significantly and cause problems. There is a way to optimize SpamAssassin's performance by running it as a background daemon. Look for it in its manual.
There's more...
Once you have everything set up, you should test your anti-spam configuration. There is a way to trigger an automatic SpamAssassin high score. Just enter the following string in a message, and it will be marked as spam:
XJS*C4JDBQADN1.NSBN3*2IDNEN*GTUBE-STANDARD-ANTI-UBE-TEST-EMAIL*C.34X
You can find more information about this technique, called Generic Test for Unsolicited Bulk E-mail (GTUBE), in SpamAssassin's manual at http://spamassassin.apache.org/gtube/.
See also
Debugging e-mail-related problems
You will learn most about your mail server by talking to it directly in SMTP through a Telnet session. At the same time, you should be monitoring mail logfiles for any messages that occur while you're performing your tests.
In this recipe, we cover a number of techniques for testing and debugging e-mail systems. We will demonstrate how to test your system's ability to:
We'll also mention the location of mail logs, various ways of sending e-mail, debugging SMTP authentication, and other topics. Read on; this recipe should give you a way to find the solution to your problem.
Getting ready
We will be testing the mailing capabilities of a system located at the mailserver.example.com domain name. Our test will be performed from another machine (the client).
Before starting, make sure that you have the Telnet program installed on the client machine. A Telnet client is installed by default on most systems and can be installed from a package named telnet on others.
Tip
On some systems, the Netcat (nc) program may be a better alternative to using Telnet. You can find out more about it on its website: http://nc110.sourceforge.net.
How to do it...
Follow these steps to submit an e-mail message directly to your server using Telnet:
$ telnet mailserver.example.com 25
The mail server should respond with its greeting banner.
EHLO localhost.localdomain
Tip
If your client system isn't a mail server in its own right, it may not have an FQDN. In this situation, use localhost.localdomain, but note that most mail servers will reject your message if it comes from a misidentified sender. Look for information about the XCLIENT command in the Postfix manual if this is causing a problem for you.
MAIL FROM: user@localhost.localdomain
RCPT TO: user@example.com
Subject: Test
The complete Telnet session may look something like the following commands. Your commands are highlighted.
$ telnet mailserver.example.com 25
Trying 10.10.10.200...
Connected to mailserver.example.com.
Escape character is '^]'.
220 mailserver.example.com ESMTP Postfix (Debian/GNU)
EHLO localhost.localdomain
250-mailserver.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN
MAIL FROM: user@localhost.localdomain
250 2.1.0 Ok
RCPT TO: user@example.com
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
Subject: Test
This is the message body.
.
250 2.0.0 Ok: queued as DBE6040983
QUIT
221 2.0.0 Bye
Connection closed by foreign host.
How it works...
The Telnet client allows you to establish an interactive TCP connection to your server. When you successfully connect to port 25, the SMTP service answers with code 220 and a welcome message. You can then type text commands, which will be sent to the server when you press Enter. The server's answers are displayed inline, and you can proceed to send the next command. This technique may be used to debug any text-based protocol running over TCP such as HTTP, FTP, POP, or IMAP.
Simple Mail Transfer Protocol (SMTP) is as simple as the name promises. The only commands you need to send an e-mail are EHLO, MAIL FROM, RCPT TO, and DATA.
Note
The EHLO command used to be called HELO. It was substituted in the current extended version of the protocol (ESMTP). Using EHLO indicates that you are ready to use this protocol version.
Other information about the message is provided in an envelope, which consists of a number of headers. Each header is provided on a separate line consisting of the header name, colon, and header content. This section ends with an empty line.
Note
More information about e-mail formats may be found in RFC 2822:
http://tools.ietf.org/html/rfc2822
The message body ends when a line with a single dot character (.) is sent. This finishes the submission of this message, and the server will answer with 250 OK and information that the message was queued for delivery or an error message. The fact that a message was queued is not a guarantee of its delivery. The e-mail system will scan it for viruses, analyze if it isn't spam, and may decide not to deliver (bounce) the message. In most cases, the sender of the message will be notified by a response e-mail if the message could not be delivered. This may not be true if the message was classified as spam.
Using Telnet to analyze what your e-mail server is doing is a great way to see what errors others who try to send you mail may encounter. Note that not all diagnostic messages are displayed as SMTP responses. You should keep an eye on the server's mail log for additional details if you see any errors.
There's more...
There are many additional tools you should use when debugging e-mail system issues. Some of them are described in the following sections:
Analyzing mail logs
Your Postfix server sends detailed logs to Syslog's mail facility. These messages are usually saved in a file named /var/log/mail.log, /var/log/maillog, or some such similar name. Refer to the Viewing and searching through system log files and Saving Syslog messages to a file recipes in Chapter 5, Monitoring Your System, for more information.
Every message coming into your server is given a unique ID, which allows you to track it through verbose logs. For instance, a single message sent from root@mailserver.example.com to user@other.example.com could leave the following log trace as it is picked up, queued, delivered, and removed by your server. Note that the message identifier, EB0FA2049B, is contained in every entry.
Jan 11 09:35:27 mailserver postfix/pickup[23061]:EB0FA2049B: uid=0 from=<root@mailserver.example.com>
Jan 11 09:35:27 mailserver postfix/cleanup[23063]:EB0FA2049B: message-id=<1389429314.22675@mailserver.example.com>
Jan 11 09:35:27 mailserver postfix/qmgr[23062]:EB0FA2049B: from=<root@mailserver.example.com>,size=581, nrcpt=1 (queue active)
Jan 11 09:35:33 mailserver postfix/smtp[23065]:EB0FA2049B: to=<user@other.example.com>, relay=other.example.com[10.10.10.200]:25, delay=18,delays=13/0.03/5.1/0.02, dsn=2.0.0,status=sent (250 2.0.0 Ok: queued as 5431B40983)
Jan 11 09:35:33 mailserver postfix/qmgr[23062]:EB0FA2049B: removed
Testing message sending through Webmin
Webmin provides a convenient way to test whether your mail server is actually able to send e-mail messages. To do that, just follow these steps:
Sending mail from the command line
A quick way to send e-mail messages to others is to use the mail command. You can type the message body manually or pipe it into the mail command. For instance, to send a message to user@example.com , you can use the following syntax:
$ echo "Message body" | mail -s "Subject" user@example.com
If the command is not found on your system, you may need to install a package named mail or mailx.
Using Telnet to test SMTP authentication
You may test your server's SMTP authentication through a Telnet session. The only tricky part is to encode your username and password combination using Base64. For instance, to encode the username myusername and password mypassword, use the following Perl command:
$ perl -MMIME::Base64 -e 'printencode_base64("\000myusername\000mypassword");'
You should see the following output:
AG15dXNlcm5hbWUAbXlwYXNzd29yZA==
Note
Base64 is just a form of encoding; it's not a one-way hash or encryption. The algorithm is fully reversible, for instance, by using the following command:
$ perl -MMIME::Base64 -e 'printdecode_base64("AG15dXNlcm5hbWUAbXlwYXNzd29yZA==");
myusernamemypassword
Once you have your Base64 encoded username and password, you can use it in the AUTH command of a Telnet SMTP session, as shown in the following commands:
$ telnet mailserver.example.com 25
Trying 10.10.10.200...
Connected to mailserver.example.com.
Escape character is '^]'.
220 mailserver.example.com ESMTP Postfix (Debian/GNU)
EHLO localhost.localdomain
250-mailserver.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN
AUTH PLAIN AG15dXNlcm5hbWUAbXlwYXNzd29yZA==
235 2.0.0 Authentication successful
If everything went according to the plan, you should see the Authentication successful message.
See also
Index
A
B
C
D
E
F
G
H
I
J
L
M
N
O
P
R
S
T
U
V
W
Y
Z
Table of Contents
Webmin Administrator's Cookbook
Table of Contents
Webmin Administrator's Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
1. Setting Up Your System
Introduction
Installing Webmin on a Debian-based system
How to do it...
How it works...
There's more...
See also
Installing Webmin on an RPM-based system
How to do it...
How it works...
There's more...
See also
Installing Webmin on another system
Getting ready
How to do it...
How it works...
See also
Connecting to Webmin
Getting ready
How to do it...
How it works...
There's more...
Changing Webmin's listening port
Specifying the IP address on which Webmin listens
Installing additional Webmin modules
Getting ready
How to do it...
How it works...
There's more...
Installing a module from a repository
Uninstalling a module
See also
Monitoring what Webmin is doing
Getting ready
How to do it...
How it works...
There's more...
Rolling back file changes
See also
Controlling which system services are started at boot
How to do it...
How it works...
There's more...
Creating a custom init script
Inspecting active processes
Inspecting the installed software packages
How to do it...
How it works...
There's more...
Viewing the files installed with a package
Identifying which package installed a file
Installing software packages
Getting ready
How to do it...
How it works...
There's more...
Updating the installed packages to the latest versions
How to do it...
How it works...
There's more...
Enabling Webmin to send an e-mail
Getting ready
How to do it...
How it works...
See also
Getting an e-mail when new versions of packages become available
Getting ready
How to do it...
How it works...
There's more...
Reading the documentation of the installed software
How to do it...
How it works...
There's more...
2. User Management
Introduction
Creating a Webmin user
Getting ready
How to do it...
How it works...
There's more...
Clone a Webmin user
Switch to user
See also
Creating a Webmin group with access to specific modules and options
How to do it...
How it works...
There's more...
Permissions for all modules
See also
Allowing users to log in to Webmin with the system credentials
Getting ready
How to do it...
How it works...
There's more...
Creating Webmin users based on system accounts
Getting ready
How to do it...
How it works...
Controlling who is currently using Webmin
How to do it...
How it works...
Creating a system user account
Getting ready
How to do it...
How it works...
Modifying a user's UID and other information
How to do it...
How it works...
Temporarily disabling a user account
How to do it...
How it works...
Creating and editing a system group
How to do it...
How it works...
Changing a user's password
Getting ready
How to do it...
How it works...
Exporting users and importing them into another system
How to do it...
How it works...
Webmin's batch file format for operations on users
Webmin's batch file format for operations on groups
There's more...
Export and import system groups
Batch update user accounts
Batch delete user accounts
See also
Installing Usermin
How to do it...
How it works...
See also
3. Securing Your System
Introduction
Server security checklist
Keeping your system up-to-date
Turning off unnecessary services
Building a firewall around your system
Performing backups
Monitoring your system
Verifying the strength of your passwords
Verifying the system security and setting up intrusion detection and prevention software
Setting up a Linux firewall
Some iptables terminology
Getting ready
How to do it...
How it works...
There's more...
See also
Allowing access to a service through the firewall
Getting ready
How to do it...
How it works...
There's more...
Creating a service accessible only from the internal network
See also
Verifying your firewall by port scanning
Getting ready
How to do it...
How it works...
There's more...
Host discovery with Nmap
Scanning all ports
Scanning without administrative privileges
See also
Turning off unnecessary services
How to do it...
How it works...
Verifying the strength of passwords
Getting ready
How to do it...
How it works...
Disabling root login over SSH
How to do it...
How it works...
Restricting Webmin access to a specific IP
Getting ready
How to do it...
How it works...
There's more...
Allowing access from multiple IP addresses
Allowing access from a dynamically allocated IP
Allowing access from an IP range
Allowing access from the local network
Connecting to Webmin securely over an SSH tunnel
Getting ready
How to do it...
How it works...
There's more...
Sharing the SSH tunnel with other machines
Creating a tunnel on Windows using Putty
See also
Closing inactive Webmin sessions automatically
How to do it...
How it works...
4. Controlling Your System
Introduction
Executing a command on the server
How to do it...
How it works...
There's more...
Executing a series of commands
Executing commands conditionally
Executing a command from history
Executing a command as another user
Getting ready
How to do it...
How it works...
There's more...
Passing input to a command
Running tasks in background
Setting a command to be executed in the future
Getting ready
How to do it...
How it works...
There's more...
See also
Scheduling a command to run regularly with cron
Getting ready
How to do it...
How it works...
There's more...
Disabling a cron task temporarily
Cloning a cron task
Specifying which users can schedule tasks with cron
Creating a panel for the commands that you execute often
Getting ready
How to do it...
How it works...
There's more...
Cloning a command
Specifying command arguments
Making the command available in Usermin
See also
Creating a panel with the database commands that you execute often
Getting ready
How to do it...
How it works...
See also
Running a terminal emulator in the browser
How to do it...
How it works...
There's more...
5. Monitoring Your System
Introduction
Viewing and searching through system logfiles
Getting ready
How to do it...
How it works…
There's more...
Configuring system logs to refresh automatically
See also
Saving Syslog messages to a file
Getting ready
How to do it...
How it works...
There's more...
Adding other logfiles to Webmin
Getting ready
How to do it…
How it works...
There's more...
Configuring logfile rotation
Getting ready
How to do it...
How it works...
There's more...
Rotating logfiles on demand
Editing default options
Sending logfiles by email when rotating
Listing recent logins
How to do it...
How it works...
There's more...
Receiving an e-mail when a service stops running
Getting ready
How to do it...
How it works...
There's more...
Inspecting monitor history
Using predefined monitors
Monitoring system load
Monitoring disk space
See also
Automatically restarting a service that goes down
Getting ready
How to do it...
How it works...
Monitoring a remote server
Getting ready
How to do it...
How it works...
There's more...
Checking that a remote server is up
Checking that a remote server is running a network service
6. Managing Files on Your System
Introduction
Downloading files from the server
How to do it...
How it works...
See also
Uploading files to the server
Getting ready
How to do it...
How it works...
There's more...
Downloading files from the Web directly onto your server
Downloading files from the Web in the background
Managing files and directories on the server
Getting ready
How to do it...
Copying or moving a file or directory
Renaming a file or directory
Deleting a file or directory
Editing a file on the server
Creating a directory on the server
Creating a new file on the server
Creating a symbolic link on the server
Downloading a directory and its content
Extracting files from a compressed archive
How it works...
See also
Changing file ownership and permissions
Getting ready
How to do it...
How it works...
There's more...
Enabling the setuid bit on an executable file
Setting the sticky bit on a directory
Changing ACLs on a directory
Setting up network-shared folders for Windows
Getting ready
How to do it...
Creating a UNIX pseudo user
Creating a Samba shared network folder
Creating Samba user accounts
Granting Samba users access to the shared folder
How it works...
There's more...
Sharing home directories
Checking who's connected and disconnecting sessions
Debugging Samba
Mounting a Windows-shared folder
Getting ready
How to do it...
How it works...
There's more...
Setting up an NFS-shared volume
Getting ready
How to do it...
How it works...
There's more...
Granting access to multiple clients
See also
Mounting a remote NFS volume
Getting ready
How to do it...
How it works...
There's more...
Mounting NFS v4 exports
See also
Giving users access to your server via SFTP
Getting ready
How to do it...
How it works...
See also
Giving users access to your server via FTP
How to do it...
Opening FTP access in your firewall
How it works...
Passive and active FTP connections
Global configuration and virtual servers
There's more...
Restricting access to users' home directories
Denying FTP access to some users
FTP-only users
See also
7. Backing Up Your System
Introduction
Backing up configuration files
Getting ready
How to do it...
How it works...
There's more...
See also
Restoring configuration files from backup
How to do it...
How it works...
There's more...
See also
Automatically backing up configuration files
Getting ready
How to do it...
How it works...
See also
Creating a backup of a selected directory
Getting ready
How to do it...
How it works...
There's more...
Restoring files from a backup archive
See also
Creating a backup of an entire mount point
Getting ready
How to do it...
How it works...
There's more...
Creating an incremental backup archive
Restoring data from a backup archive
See also
Backing up to a remote host
Getting ready
How to do it...
How it works...
Setting up automatic backups
How to do it...
How it works...
Backing up databases
How to do it...
How it works...
See also
8. Running an Apache Web Server
Introduction
Installing Apache on your system
Getting ready
How to do it...
How it works...
There's more...
Setting Apache to start at system boot time
Monitoring that Apache is up and running
See also
Restarting Apache
How to do it...
How it works...
There's more...
Verifying Apache configuration syntax
Enabling Apache modules
How to do it...
How it works...
There's more...
Installing additional modules from software packages
Creating a static HTML site
How to do it...
How it works...
See also
Creating a virtual host
Getting ready
How to do it...
How it works...
There's more...
Creating an IP-based virtual host
See also
Setting options for directories, files, and locations
Getting ready
How to do it...
How it works...
There's more...
Setting options on files with names matching a pattern
Setting options for specific URLs
Changing matching path or pattern
Setting options using an .htaccess file
Creating a password-protected website
Getting ready
How to do it...
Creating a user account
How it works...
There's more...
Keeping Apache and system accounts synchronized
See also
Displaying a listing of files in a directory
Getting ready
How to do it...
How it works...
There's more...
See also
Redirecting incoming requests
Getting ready
How to do it...
How it works...
There's more...
Creating a filesystem alias
Setting up encrypted websites with SSL
Getting ready
Generating a private key
Making a self-signed certificate
Obtaining a commercially signed certificate
Inspecting certificate data
How to do it...
How it works...
There's more...
Logging incoming requests and errors
Getting ready
How to do it...
How it works...
See also
Analyzing logfiles using Webalizer
Getting ready
How to do it...
How it works...
There's more...
9. Running a MySQL Database Server
Introduction
Installing the MySQL database server
How to do it...
How it works...
There's more...
Making MySQL ready for production use
See also
Allowing access to MySQL over the network
Getting ready
How to do it...
Instructing MySQL server to listen for network connections
Creating a new user
Granting user access to database
Testing the connection
How it works...
There's more...
Managing databases remotely
See also
Accessing your MySQL server over an SSH tunnel
Getting ready
How to do it...
How it works...
There's more...
Making an SSH tunnel in MySQL Workbench
See also
Creating a new database
How to do it...
How it works...
See also
Creating users and granting permissions to databases
Getting ready
How to do it...
Creating a user account
Granting privileges
How it works...
There's more...
Granting permissions to a specific database table
Granting permissions to a specific column in a database table
Automatically granting new system users access to MySQL
Creating a backup of your database
Getting ready
How to do it...
How it works...
There's more...
Backing up all databases automatically
Exporting a database table to CSV
See also
Executing custom SQL commands
How to do it...
How it works...
See also
Restoring database from the backup
Getting ready
How to do it...
How it works...
There's more...
Editing the structure of your database
Getting ready
How to do it...
Creating a table in a database
Adding a field to a database table
Editing a field
Creating an index
Deleting an index
Deleting a field
Deleting a table from the database
How it works...
See also
Editing records in a database
Getting ready
How to do it...
Adding a row to database table
Editing a row
Deleting a row
How it works...
See also
Checking who is using your database server
How to do it...
How it works...
There's more...
Installing phpMyAdmin
How to do it...
How it works...
There's more...
10. Running a PostgreSQL Database Server
Introduction
Installing the PostgreSQL database server
How to do it...
How it works...
See also
Locating the PostgreSQL server configuration files
Getting ready
How to do it...
How it works...
There's more...
Determining location of other configuration files and data files
Checking values of other settings
Allowing access to PostgreSQL over the network
Getting ready
How to do it...
How it works...
See also
Accessing the PostgreSQL server over an SSH tunnel
Getting ready
How to do it...
How it works...
See also
Creating a new database
How to do it...
How it works...
See also
Creating users and granting permissions
How to do it...
How it works...
There's more...
See also
Creating a backup of your database
Getting ready
How to do it...
How it works...
There's more...
Backing up all databases automatically
Exporting a database table to CSV
See also
Executing custom SQL commands
How to do it...
How it works...
There's more...
Executing a SQL script from a file
See also
Restoring a database from backup
How to do it...
How it works...
There's more...
Editing the structure of your database
Getting ready
How to do it...
How it works...
See also
Editing records in a database
Getting ready
How to do it...
How it works...
See also
Installing phpPgAdmin
How to do it...
How it works...
11. Running Web Applications
Introduction
Generating dynamic pages using CGI
Getting ready
Checking what user and group Apache is running as
How to do it...
How it works...
There's more...
Displaying incoming request headers
Displaying incoming request body
See also
Installing PHP
Getting ready
How to do it...
How it works...
See also
Changing PHP configuration settings
Getting ready
How to do it...
How it works...
There's more...
Modifying PHP settings for a directory using .htaccess files
Modifying PHP settings dynamically inside script code
See also
Displaying PHP errors while debugging
How to do it...
How it works...
See also
Logging in PHP
Getting ready
How to do it...
How it works...
There's more...
See also
Installing WordPress on your server
How to do it...
Creating a database
Creating a virtual host and installing WordPress
How it works...
See also
Installing Drupal on your server
Getting ready
How to do it...
Creating a database
Creating a virtual host and installing WordPress
How it works...
See also
Installing a Django-based application using mod_wsgi
How to do it...
How it works...
See also
12. Setting Up an E-mail Server
Introduction
Setting up your server to send and receive e-mails
Getting ready
How to do it...
How it works...
See also
Setting up secure IMAP access to mailboxes
Getting ready
How to do it...
How it works...
There's more...
See also
Setting up a secure SMTP relay for users
Getting ready
How to do it...
How it works...
There's more...
See also
Controlling the mail queue
Getting ready
How to do it...
How it works...
Reading and writing e-mails on the server
How to do it...
How it works...
Configuring e-mail aliases
How to do it...
How it works...
There's more...
Creating a simple mailing list
Using .forward files
See also
Filtering incoming mail using Procmail and SpamAssassin
How to do it...
How it works...
There's more...
See also
Debugging e-mail-related problems
Getting ready
How to do it...
How it works...
There's more...
Analyzing mail logs
Testing message sending through Webmin
Sending mail from the command line
Using Telnet to test SMTP authentication
See also
Index