Getting Started with Intel Galileo
Matt Richardson
Preface
Intel Galileo is a hardware development board that lets you write code and create electronic circuits to build your own projects. It’s capable of acting as the brain in a robot, controlling haunted house special effects, uploading sensor data to the Internet, and much more.
The board doesn’t do very much on its own, so it’s up to you connect the right hardware and write the code to tell it what you want it to do. In that sense, Galileo is like a painter’s canvas. It doesn’t become anything remarkable until you start to work with it.
Luckily, since Galileo is Arduino-compatible, you have a vast amount of resources from the world of Arduino available to you. These include code examples, libraries that help you do complex things, expansion shields that make it easy to connect circuits, and a simple development workflow—which means you spend more time being creative and less time figuring out how to get things to work. Not only that, but you also have access to the enormous community of Arduino users if you run into trouble.
 |
Why Galileo?
When Intel announced Galileo at Maker Faire Rome in October of 2013, there was already an abundant selection of hardware development boards to choose from. At the time, there were so many boards available that an issue of MAKE magazine (Volume 36, Board Games) was released to take on the task of featuring the most interesting boards and helping readers choose the right one for them.
“We’re now seeing an explosion of new boards coming to market,” wrote Alasdair Allan in that issue of MAKE. “And there’s no reason to expect the trend to slow in the next year or two.” With so many boards out there, why did Intel decide to jump into this market?
After the announcement of Galileo, Intel CEO Brian Krzanich explained why Galileo came to be. “We wanted to be part of the Arduino ecosystem and maker community for two reasons,” said Krzanich to Maker Media’s founder, Dale Dougherty. “One was the pure innovation we see happening in the maker community around open source hardware, and we needed to be part of that innovation. Second, we saw that, in education, engineers and others were learning on non-Intel platforms and we wanted to change that, and in doing so, give them more capabilities.”
Like the Galileo, the development boards that were gaining popularity had fairly powerful processors, similar to those found in cell phones and tablet computers. What they typically didn’t have was an easy-to-use development environment, a good out-of-box experience, or an established community of users. With its strong Arduino compatibility, Galileo excels in these realms. Galileo also gives you the power of Linux under its hood.
Linux is a free and open source operating system that many people run on their desktops and on servers. It’s also used in many consumer electronic devices. There’s a lot to understand about Linux, but with Galileo, you can focus on bringing your creation to life without needing to know that Linux is there. This makes it easy for users to get more power and capabilities without sacrificing ease-of-use or community support. As you’ll see later in this book, you can do some amazing things by poking around under the hood.
Intended Audience
The purpose of this book is to get you started with creating your own hardware projects with Intel Galileo. You won’t need any experience wiring up circuits or writing code, but basic computer skills will be helpful so that you can move files around and install the software you’ll need to develop projects.
Getting Started with Intel Galileo is written to give you a wide variety of experience and a basic understanding of the many different capabilities of Galileo. It won’t dig into electrical engineering or computer science theory. I’ll leave that for you to learn elsewhere should you want to pursue those subjects in depth. Instead, I’ll focus on how to get things done so that you can experiment, be creative, and make cool stuff with Intel Galileo.
Feedback
I encourage you to contact me with any feedback as you read this book. I hope to be able to incorporate your suggestions into future editions. My email address is mattr@makezine.com. You can also find me on Twitter with the name @MattRichardson.
Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by context.
NOTE
This element signifies a tip, suggestion, or a general note.
WARNING
This element indicates a warning or caution.
Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/mrichardson23/GSW-Intel-Galileo.
This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from MAKE books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Getting Started With Galileo by Matt Richardson (Maker Media). Copyright 2014, 978-1-4493-4537-2.”
If you feel your use of code examples falls outside fair use or the permission given here, feel free to contact us at bookpermissions@makermedia.com.
Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search over 7,500 technology and creative reference books and videos to find the answers you need quickly.
With a subscription, you can read any page and watch any video from our library online. Read books on your cell phone and mobile devices. Access new titles before they are available for print, get exclusive access to manuscripts in development, and post feedback for the authors. Copy and paste code samples, organize your favorites, download chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.
Maker Media has uploaded this book to the Safari Books Online service. To have full digital access to this book and others on similar topics from MAKE and other publishers, sign up for free at http://my.safaribooksonline.com.
How to Contact Us
Please address comments and questions concerning this book to the publisher:
MAKE |
1005 Gravenstein Highway North |
Sebastopol, CA 95472 |
800-998-9938 (in the United States or Canada) |
707-829-0515 (international or local) |
707-829-0104 (fax) |
MAKE unites, inspires, informs, and entertains a growing community of resourceful people who undertake amazing projects in their backyards, basements, and garages. MAKE celebrates your right to tweak, hack, and bend any technology to your will. The MAKE audience continues to be a growing culture and community that believes in bettering ourselves, our environment, our educational system—our entire world. This is much more than an audience, it’s a worldwide movement that Make is leading—we call it the Maker Movement.
For more information about MAKE, visit us online:
MAKE magazine: http://makezine.com/magazine/ |
Maker Faire: http://makerfaire.com |
Makezine.com: http://makezine.com |
Maker Shed: http://makershed.com/ |
We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at:
http://oreil.ly/getting_started_with_galileo |
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com |
Acknowledgements
I’d like to thank a few people who have provided their knowledge, support, advice, and feedback to Getting Started with Galileo:
Larry Barras |
Julien Carreno |
Michael Castor |
Jez Caudle |
Pete Dice |
Seth Hunter |
Tom Igoe |
Brian Jepson |
Jerry Knaus |
Eiichi Kowashi |
Mike Kuniavsky |
Michael McCool |
Jay Melican |
Eric Rosenthal |
Andrew Rossi |
Mark Rustad |
David Scheltema |
Jim St. Leger |
Chapter 1. Introduction to Galileo
The purpose of the hardware and software that make up the Arduino platform is to reduce complexity when making an electronic project. It’s meant to let you experiment, invent, and explore creative uses of technology rather than getting bogged down in technical mastery. By offering compatibility with Arduino hardware and software, Intel Galileo delivers an easy-to-use platform but has more power and features than typical Arduino boards.
What Is Galileo?
Galileo is a hardware development board, which is an electronic circuit board that helps you develop interactive objects by reading information from the physical world, processing it, and then taking action in the physical world. If it’s connected to a network, it can also communicate to other devices like web servers. Galileo is an Arduino-compatible development board.
WHAT IS ARDUINO?
There are a few answers to the question, “What is Arduino?” First and foremost, it’s a hardware development board like Intel’s Galileo. There are models of boards such as the Arduino Uno, Arduino Mega, and Arduino Yún. Each of these Arduino boards has different capabilities. The most basic board, the Arduino Uno, is typically what people are referring to when they say “an Arduino.”
There’s also the Arduino IDE software, which is the computer application that you use write code and upload it to the board. Arduino is also the name of the language used to program the board.
If you’re entirely unfamiliar with Arduino and want to learn more about it, the Arduino website has many resources including getting started guides, reference information, communities, projects, and news updates. The book Getting Started with Arduino by Massimo Banzi (O’Reilly) was my first guide to using the popular development board. It covers the design philosophy of Arduino (“The Arduino Way”) and walks you through the basics of using it. This book will cover a lot of that ground as well, but tailored for the Galileo board.
Galileo is an Arduino-compatible board, meaning that it can be programmed with the Arduino IDE using the Arduino programming language. It’s also compatible with the Arduino 1.0 pinout, the design specification that says which pins go where on the board. Because it’s compatible with the Arduino 1.0 pinout, you’re able to attach most Arduino shields. A shield sits on top of the board and expands the functionality of it. Common circuits to drive motors, control many LEDs, or play sounds can come in the form of shields. The pin layout compatibility also makes it easy to use Galileo when you’re following tutorials written for the other Arduino boards.
Inputs and Outputs
Like other hardware development boards, Galileo reads inputs and can control outputs. An input brings information from the physical world into the board’s processor. It can be as simple as the state of a button or switch but can also be the position of a dial or slider like you see on a sound mixing board. Sensors can also be used as inputs (see Figure 1-1) to read information from the physical world. There are plenty of sensors to choose from including temperature, light level, sound level, acceleration, and much more.
Figure 1-1. A few possible inputs. From left to right: an accelerometer, a photo cell, a pressure sensor, a button, and a temperature sensor.
An output is how a development board like the Galileo can affect the physical world. It can be as simple as a light emitting diode, or LED, which glows when electrical current runs through it. An LED might indicate whether the device is turned on, or if there’s an error (a blinking red LED would be perfect for that). Outputs could also be motors that drive wheels on a robot, a text display for the temperature, or a speaker that plays musical tones. Figure 1-2 shows a few.
Figure 1-2. A few possible outputs. From left to right: a servo motor, a light emitting diode, and an LCD character display.
For example, a simple stopwatch has inputs and outputs. The start button would be considered an input. When you press the start button, it triggers a timer that keeps track of the time and outputs that information to the display on the face of the watch.
A digital voice recorder has a microphone for sound input, and a small speaker for sound output. Like the stopwatch, it also has input buttons to start or stop the recorder and a small display to output the amount of time that’s left to record before you fill up the device’s memory.
Code
Of course, it’s not as simple as just wiring up inputs and outputs to a Galileo. You have to tell the board how you want it to respond to the inputs and how you want it to control the outputs. By programming the board, you’ll be able to tell it what you want it to do.
For instance, a simple thermostat project will periodically check the value from a temperature sensor and compare it to the desired temperature that the user set using a dial control. If the temperature that the sensor measures is lower than the desired temperature, the board will activate a heater until the temperature gets close enough to the desired temperature. Logic like this will be defined by the code you write.
The Galileo can be programmed and reprogrammed over and over again. In fact, in the course of developing a project, you’ll likely go through a cycle of writing code, uploading it to the board, checking how it works, finding problems, making adjustments to your code, and then uploading it again.
You may even find yourself using the board for one project, and then pulling the board out, reprogramming it, and using it for a completely different project a few weeks later.
Communication
The Galileo can also communicate with other devices in a few different ways. You can have it connect to your computer via USB to send and receive data. You might have Galileo send information about what it’s doing to a console window running on your computer so that you can figure out why something isn’t working right (this is known as debugging). Or you can have it send information about sensors to the computer so that it can display a live graph.
Galileo can also connect to other devices over the Internet using its built-in Ethernet (Figure 1-3) or an optional WiFi module. It can receive information about the weather or your email. It can search Twitter and much more. It can also use the Internet connection to send information such as temperature sensor data, the images from a webcam, or the state of your dog’s water bowl.
Figure 1-3. The Galileo’s Ethernet port is just one way it can communicate with users or other devices.
What Makes Galileo Different?
If you’ve used a typical Arduino like the Uno before, there are a few key differences between it and the Galileo (Figure 1-4). In fact, the specs on the Galileo make it seem like it’s the product of cross-pollination between an Arduino Uno and a low-end computer.
Figure 1-4. An Intel Galileo next to an Arduino Uno
The board itself is a little bit larger than an Arduino Uno, but along with that size, you get a more powerful processor (see Figure 1-5), more memory to store running programs, more data storage space, an Ethernet connector for connecting it to a network, and the ability to connect computer accessories through the USB port or the Mini PCI Express connector on the bottom.
Figure 1-5. Intel’s Quark SoC X1000 is the processor at the heart of the Intel Galileo.
The firmware that runs on the Galileo is much more advanced than what’s on an Arduino Uno. On an Uno and most other Arduino devices, there is firmware on the board called the bootloader which is meant to help you upload and run your code on the board’s processor. It only does that and not much else. The firmware on the Galileo, on the other hand, is much more advanced. Not only does it help you upload and run your code on the board, but it also keeps track of files, the date and time of day, and helps share the board’s various resources between multiple programs running at the same time. In that way, it’s more like a typical computer.
In fact, the firmware on the Galileo is a version of Linux, the free operating system that powers many desktop computers and servers these days. Galileo may not have a screen or desktop environment, but it still has much of the functionality that an operating system affords. And through your Arduino code, you’ll be able to access this functionality, giving you much more capabilities than you’d have with a typical Arduino. For instance, if you want your project to take a picture from a web cam and email it, it’s something that would be difficult to do with only Arduino code. But with the power of Linux, this could be done more easily.
Sketching in Hardware
Artists, engineers, designers, architects, and makers frequently start their work with a simple sketch on paper. Putting the idea down as a sketch helps by pushing something from being abstract towards something more concrete, more real. Sketching something out also helps you communicate your idea to your peers and collaborators. But you don’t necessarily need to use a paper and pencil to create a sketch.
Having the power of a computer but the simplicity of Arduino development tools means that there’s less to stand between you and your idea for an interactive object. It can help make the abstract idea a little more concrete. As a tool, the Galileo is meant to help you prototype early and iterate often so that you can get an idea of the look and feel of your project and refine it without hassle. I like to call this “sketching in hardware,” a term I first heard from Mike Kuniavsky, who organizes a yearly conference by that name. According to Mike, the notion of this term originated with Bill Buxton’s work on sketching in the realm of user experience design.
I don’t want to be the one to stand between you and sketching in hardware, so let’s jump right in.
Chapter 2. First Steps
Blinking an LED is commonly the first thing to try with a new hardware development board. It’s easy to do and it confirms that you have everything working correctly. If you’ve tried programming before, your first step may have been to get your code to print the text “Hello world.” Getting an LED to blink on a hardware development board is its way of saying “Hello world.”
By the end of this chapter, you’ll learn a few of the different parts of the Galileo, what tools and components you’ll need to work with it, and how to install the development software and upload code to the board. To test things out, you’ll use Galileo to make an LED blink.
Tour of the Board
First let’s take a look at some of the important components on the Galileo. It’s not necessary to fully understand what every single part does or how it works in order to get the most out of the board, so I’ll just stick to the highlights, which are shown in Figure 2-1.
Figure 2-1. A few of the important components on the Galileo
Processor (1)
The processor is the brains of the whole operation. Just like the central processing unit, or CPU, on your computer, it carries out all the instructions in your program by making calculations and reading or writing data in memory. This particular processor is Intel’s Quark SoC X1000 Application Processor, which is designed for small-sized, low-power applications. It’s not as powerful as your laptop’s CPU, but it’s much more powerful than the chip on an Arduino Uno.
Random-access memory (RAM) (2)
Random-access memory, or RAM, is where Galileo keeps running programs and keeps track of data that’s being used by those programs. The Galileo has 512 kilobytes of RAM built into the processor and an additional 256 megabytes of RAM on these chips. When the board is powered down, the data stored in RAM is lost. Any data that should be saved (such as your code) must be stored on the microSD card.
Flash memory (3)
The flash memory acts like the hard drive of Galileo. Unlike with RAM, any data stored here is saved even after the board is shut down and the power is disconnected. For this reason, it’s where the board’s software and operating system are stored. It can hold 8 megabytes of data, most of which is taken up by Galileo’s operating system.
MicroSD card slot (4)
If you need more space for larger programs or to store data, you can insert a microSD card into this slot. MicroSD cards are just like the memory cards that you insert into a digital camera to save photographs. You can even load an operating system onto the card and boot off of it instead of the on-board Flash memory. You’ll need to do this if you want additional functionality like WiFi and access to the webcam because those drivers can’t fit onto the 8 megabytes of on-board Flash memory. Galileo can use a card that’s up to 32 gigabytes in size. See Appendix D for more information.
Arduino expansion pins (5)
Using these pins, you’ll be able to connect to the inputs and outputs on the Galileo. You’ll either use jumper wires to connect the pins to a breadboard for prototyping, or you’ll use an Arduino shield to add functionality to your board. We’ll cover these components a bit more in Helpful Tools and Components.
USB client port (6)
You’ll use this port to connect your Galileo to the USB port on your computer. Once it’s connected, you can upload your code and communicate with it. Always connect the power supply before plugging the Galileo into your computer over USB.
USB host port (7)
This port allows you to connect USB computer peripherals to your Galileo. It could be accessories such as webcams, sound devices, storage, and much more.
Serial port (8)
This may look like a headphone jack, but it’s not meant for audio. It’s actually a serial port, used for interacting with the Galileo’s Linux operating system via a text-based command line environment. See Appendix H for more information.
Power input (9)
This is where you’ll plug in Galileo’s power adapter. You must plug in the AC adapter when using Galileo. You must always power the board through its power supply before connecting it via USB to your computer. Otherwise, you may damage your board.
Ethernet port (10)
The Ethernet port on the board will let you connect it to a wired network so that it can communicate with other computers and devices on the network, or access the Internet.
Mini PCI express slot (not pictured)
If you want to make your network connection wireless, you can connect a WiFi card to the Mini PCI Express slot on the bottom of the board. This slot can also accommodate cards that offer additional functionality such as more storage space, GSM access for connecting to cellular networks, Bluetooth for wireless device connectivity, and much more.
Clock battery power (11)
This connector will let you wire up a small 3-volt coin cell battery to the Galileo so that the processor can keep track of the date and time even when the board is not connected to 5 volts.
Reboot button (12)
This button will reboot the board, including Galileo’s Linux operating system.
Reset button (13)
This button will restart your code and send the reset signal to any shield attached to the expansion header. Galileo’s Linux operating system will remain running as normal and won’t restart.
JTAG header (14)
This 10-pin connector is mostly used by electrical engineers or advanced hobbyists to test and debug boards.
IOREF jumper (x3) (15)
This jumper lets you change the logic voltage level of the board from 5 volts to 3.3 volts for compatibility with 3.3-volt shields and components. Throughout this book, you’ll be using Galileo in its 5-volt mode.
VIN jumper (16)
Pulling this jumper out will disconnect the VIN pin from Galileo’s 5-volt regulator. If you’re using a shield that requires more than 5 volts on the VIN pin, you must pull out this jumper to protect the board from damage.
I2C jumper (17)
This jumper lets you change the I2C address of a couple of on-board components. You may need to do this if you’re using I2C components that conflict with the components on the board. In all likelihood, you won’t need to use this.
Helpful Tools and Components
There are a few accessories that you’ll want to have handy in order to get the most out of experimenting with your board. If you bought Galileo as part of a bundle, you probably already have a lot of these components (Figure 2-2). You might have others already lying around.
Figure 2-2. Some very basic prototyping components. From left to right: a breadboard, jumper wires, light emitting diodes (LEDs), buttons, and resistors.
At the very least, in order to turn on the board and upload code, you’ll need:
Computer
You will need to download the software for programming the board later in this chapter. It can be run on most Windows, OS X, or Linux machines.
Power supply
The power supply is typically included in the box with your Galileo. If you don’t have one, you’ll want to get a 5-volt DC power supply that’s capable of providing at least 2 amperes. To connect it to your board, it should have a 2.1mm DC barrel connector with a center-positive plug. Most DC barrel connectors are center-positive, but it’s good to be sure. (Adafruit.com part number 276)
USB A to micro B cable
This is the same type of USB cable that is used to connect newer USB devices like Android phones. (Monoprice.com product number 5137, Adafruit.com product number 592, Sparkfun.com product number 10215)
With those basics, you can boot Galileo and upload code to the board. But without a few extra components, you won’t be able to make it interact with the physical world. The parts below will be used in the projects and exercises in this book.
Solderless breadboard
These inexpensive boards are great for prototyping electronics because they make it easy to make connections between components. (Makershed.com part number MKEL3, Adafruit.com part number 64, Sparkfun.com part number 12002)
Jumper wires
To connect Galileo’s expansion pins to the breadboard, or to connect components to each other on the breadboard, you’ll use basic male-to-male jumper wires. (Makershed.com part number MKSEEED3, Adafruit.com part number 758, Sparkfun.com part number 08431)
LEDs, assorted
LEDs are a part that I reach for all the time when I’m experimenting or building a project. I usually buy them in three colors: red, amber, and green. (Makershed.com part number MKEE7, Adafruit.com part number 299, Sparkfun.com part number 12062)
Resistors, assorted
These are inexpensive electronic components that come in different resistance values. Vendors like Maker Shed and Jameco sell multi-packs of resistors that contain a variety of values. Any multipack of 1/4-watt, 5%-tolerance resistors will be perfect to get started. (Makershed.com part number MKEE4, Sparkfun.com part number 10969)
Buttons and switches, assorted
These are the kind of components that you can harvest from old electronics and appliances. Or you can stop by your local RadioShack and browse the selection in their component bins, which is one of my favorite things to do! (There are a huge variety of buttons and switches. For the most basic type of switch that will fit in a breadboard: Adafruit.com part number 00097, Sparkfun.com part number 00097)
MicroSD card
Galileo has a limited amount of on-board storage. With a MicroSD card, you can boot from a version of the Linux operating system that has more features and can store data from your projects. Galileo can use a card that’s up to 32 gigabytes in size. (These days you can get MicroSD cards at supermarkets, drugstores, or any place that sells electronics.)
USB OTG adapter
If you want to connect USB devices to your board, you’ll probably need a USB OTG adapter with a USB A female end (which is where a USB device will plug in). I’ve found them to be as cheap as $3.50 online (see Figure 2-3). (Monoprice.com part number 9724, Adafruit.com part number 1099, Sparkfun.com part number 11604)
Figure 2-3. A USB OTG adapter like the one you see here will help you connect USB components to the Galileo.
These parts are nice to have, but there’s no need to rush out and buy them:
Serial cable
Using a serial cable, you can access the Galileo’s Linux text-based command line environment from your computer. There are other ways to get to this command line without the cable, so this will only be needed if you run into trouble. See Appendix H for more information.
Case
A case isn’t required, but it may help to make sure that your board is protected from the hazards on a maker’s workbench such as spilled beverages. If you have access to a 3D printer, you can even print your own! Engrained Products was one of the first companies to sell cases made specifically for Galileo.
PowerSwitch Tail II
This handy device will help you use the Galileo to control A/C appliances like lamps and blenders. (Makershed.com part number MKPS01, Adafruit.com part number 268, Sparkfun.com part number 10747)
Writing Programs to Control Your Galileo
In order to write the code to program the board, you’ll need the Arduino integrated development environment, or IDE, on your computer. It’s also sometimes referred to as the Arduino software. The development environment is the program where you’ll write your code, check it for errors, and upload it to the Galileo. To download the software:
NOTE
Because the Galileo support site and the IDE software frequently change, these directions may differ slightly from your experience.
Next, install the software on your computer:
From here, there are some differences in how each operating system installs and launches software. Here’s a basic overview of the installation and launching process for each platform:
NOTE
For OS X systems, if you already have a copy of the standard Arduino IDE installed, you can rename the one you downloaded from Intel and keep both in your Applications folder. The name you choose must not contain spaces, so just Galileo would be a good choice.
Getting Familiar with the Development Environment
When you open the IDE for the first time, you’ll be presented with a window for a new sketch (Figure 2-4). A sketch is an Arduino project’s code files. Here are a few of the parts of the IDE.
Figure 2-4. The Arduino IDE is where you’ll write code and upload it to Galileo.
Code entry area (1)
This is where you’ll type in the code for your sketch.
The console (2)
This is where you’ll see status messages when uploading your code to the board.
Verify button (3)
Click this button to verify that your code has no errors. If your code does have errors, they will be displayed in the console.
Upload button (4)
Click this button to verify the code and upload it to the board if there are no errors.
New button (5)
This creates a new sketch in the current window.
Open button (6)
This will allow you to open a saved sketch from your sketchbook folder, the location on your computer where the Arduino IDE saves your sketches.
Save button (7)
This will allow you to save the sketch in the current window. You’ll be prompted to enter a file name if you haven’t already saved the file.
Serial monitor (8)
This button opens the serial monitor, which lets you send and receive information between your board and your computer. We’ll cover this further in Chapter 3.
You’ll get a chance to explore more features of the IDE as you progress through this book.
Connecting the Board
The next step is to power on the Galileo and connect it to your computer (Figure 2-5) so that you can upload your code to the board.
Figure 2-5. After connecting your Galileo to power using the AC power adapter, plug it into your computer via USB.
WARNING
You must always power the board through its power supply before connecting it via USB to your computer. Otherwise, you may damage your board.
Depending on your system, you may see a few different options under the Serial Port menu (Figure 2-6).
Keep in mind that it takes a bit of time for the board to boot up. You may not see the port appear in the menu immediately after powering the Galileo and plugging it into your computer.
NOTE
If you have multiple serial ports to choose from and aren’t sure which to choose, try unplugging the Galileo from your computer, checking the Serial Ports menu, plugging the board back in, and opening the menu again to see which port gets added.
Figure 2-6. Your serial port will likely have a different name, but on a Mac, it will be similar to the one selected here.
NOTE
Now is a good time to make sure that you have the most up-to-date firmware on the Galileo. Click Help→Firmware Update to update your board to the latest version.
Uploading Code
One of the fantastic things about Arduino is the excellent code examples that come along with the IDE. Now you’ll open the most basic example and upload it to the board.
Figure 2-7. Navigating through the examples menu to open the Blink example
While you were waiting for “Done uploading” to appear, the Arduino IDE compiled the sketch, which means it turned the code into instructions that Galileo’s processor will understand. The IDE then uploaded the compiled program to the board.
Now when you look at the board, you should see an LED blinking on and off right next to the clock battery connector (see Figure 2-8). If not, you’ll want to troubleshoot this before moving forward. Here are a few troubleshooting steps:
If all else fails, you can always seek help from the Galileo Support Community or the Arduino Forums.
Figure 2-8. The small on-board LED attached to pin 13 will blink after uploading the example code.
Taking It Further
Throughout the code, there are plain English explanations written as comments. Any text between a /* and a */ is considered a comment and is ignored by the Arduino compiler. And on a line of code, any text after a // is also treated as a comment and is ignored. You’ll notice that the Arduino IDE sets the color of comments to gray so that it’s easy to distinguish from the actual code (see Example 2-1).
Example 2-1. Comments in Arduino code
/*
Everything here is ignored by Arduino's
compiler.
*/
int led = 13;
void setup() {
// This is also ignored.
pinMode(led, OUTPUT);
}
void loop () {
digitalWrite(led, HIGH); // This text is ignored as well.
delay(1000);
digitalWrite(led, LOW);
delay(1000);
}
Take a look at the code in the Blink sketch and see if you can understand what it’s doing by reading the comments. We’ll dig deeper into the structure of Arduino sketches in Chapter 3.
Try making some changes to the code. For instance, what do you think you should change to make the LED blink faster? Try changing the code and uploading it to the board again.
What happens when you delete a semicolon at the end of a line and try to upload the code?
What happens when you delete one of the curly brackets and try to upload the code?
If you’re curious, feel free to explore the other examples that come along with the Arduino IDE!
Chapter 3. Outputs
A blinking LED is just one example of an output with Galileo, and there are plenty of other types of outputs available to you. For instance, a speaker can play tones or a motor can drive the wheels of a robot. LEDs, speakers, and motors convert the electrical energy from Galileo into some other form of energy. An LED converts electrical energy into light energy. A speaker converts electrical energy into sound energy. And a motor converts electrical energy into mechanical energy.
Outputs can be used to communicate information to a user, make things move, or send signals to other devices. In this chapter, you will use Galileo’s output functionality to:
Back to Blinking: Digital Output
At the end of Chapter 2, you connected Galileo to your computer and uploaded example code that caused an LED to blink on and off. Let’s take a closer look at the code, which I’ve reproduced in Example 3-1.
Example 3-1. The Arduino Blink Example
int led = 13;
void setup() {
pinMode(led, OUTPUT);
}
void loop() {
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);
}
Setup and Loop
The first thing to notice is that there are two separate blocks of code enclosed within curly brackets. One starts with void setup() and the other starts with void loop(). Every Arduino sketch you write will have both of these.
The block of code that starts with void setup() is the setup function. When your sketch starts, the Galileo will execute each line of code within the setup function, starting with the first line and then working its way down. It will then move onto the loop function, which is all the code in the curly brackets after void loop(). Galileo will repeatedly execute the code in the loop function over and over again until power is shut down or the reboot or reset button is pressed. Again, it will execute the code in the order it is written (see Figure 3-1).
Figure 3-1. The structure of every sketch starts with a setup and loop function. The code in the setup function is executed once at the beginning of your sketch, and then code in the loop function executes over and over again.
To summarize, when an Arduino sketch runs, it will:
Variables
Now you may be eyeing the line that says int led = 13; right before the setup function in Example 3-1. That line is creating a variable, a place in memory to store data. In this case, you’re storing an integer, which is a whole number. This line gives this spot in memory a name (led) and stores the value 13 in it.
A variable is like a locker to store data. At any point in your sketch, your code can open the locker to access the data inside, or it can replace that data with other data. int led = 13; means that your code is creating a locker with the label led and it’s going to hold integers (as opposed to other types of data such as floating point numbers or text). It’s also going to put the value 13 in that locker.
If you jump down further in the code, any spot where you see led is where the sketch will be accessing that number 13 from memory.
Pin Numbers
But why store the integer 13 in a variable called led? The reason is that there are 14 digital input/output pins on the Galileo (see Figure 3-2). These are pins that can be used to control outputs or read inputs. (In this chapter you’re using them as outputs only.) These pins are numbered 0 through 13 and you use one of those numbers in your sketch to identify the pin that you want to turn on or off. If you store one of those pin numbers in a variable, you can use that variable name (in this case, led) in your sketch instead of having to refer to the pin number (in this case, 13) over and over in your sketch (see Hardcoding).
Figure 3-2. The fourteen digital input/output pins on the Galileo are numbered 0 through 13.
Pin number 13 is different from the others because it’s wired up to an LED that’s attached to the board. That’s the one that was blinking after you uploaded the code at the end of Chapter 2.
Pin 13 is also wired up to the tiny hole labeled with the number 13 on the Arduino expansion pins. To prove it, follow the instructions below to wire up another LED.
For this exercise, you’ll need:
Here’s how to wire up the LED, step-by-step:
Figure 3-3. Connecting ground and digital pin 13 to a breadboard with jumper wires
Figure 3-4. On an LED, the longer lead (on the left side) is the anode. The shorter lead (on the right side) is the cathode. The anode connects to positive voltage and the cathode connects to ground.
NOTE
This handy resistor calculator for LEDs can help you determine the right resistor to use with your LED. The source voltage will be 5 volts, the diode forward voltage depends on your LED (typically 2 volts for a red LED), and the forward current should be set to 10 mA to match the current that Galileo will provide. Your resistor value doesn’t need to be spot on, but get it as close as possible.
Figure 3-5. A wire connects Galileo’s ground to the cathode side of the LED. The other wire connects Galileo’s digital pin 13 to a 330 ohm resistor, which connects it to the anode side of the LED.
Figure 3-6. A closer look at the breadboard layout
As long as you have the Blink sketch (Uploading Code) uploaded, you should see your LED blink along with the on-board LED.
Figure 3-7 shows a simplified diagram of how these parts connect together. Your wires don’t necessarily have to be arranged in this orientation.
Figure 3-7. This diagram shows the components used to make an external LED blink: the Galileo, a resistor, and an LED.
Circuits and the Flow of Electricity
Before jumping back into the code, let’s take a break to explain what’s going on with the circuit you created. Electrical current is the flow of electrons through a conductor. It’s a type of energy. The electrical current from pin 13 (when it’s turned on) will move towards the ground pin through a material that allows electrons to move through it. Materials like copper and other metals allow electrons to move freely and are therefore considered good conductors of electricity. That’s why many wires are made with copper. The loop that allows the electrical current to flow from the pin to ground is called a circuit (see Figure 3-8).
Figure 3-8. This is a closer look at part of the diagram in Figure 3-7. When making the LED blink, the flow of electric current makes a complete loop (or circuit) from the digital output pin to ground.
The energy from the flow of electrons in a circuit can be used by the LED, which is converting that electrical current into light energy.
NOTE
If you were able to see electrons in the wires, the flow that makes up electrical current is actually moving from ground to pin 13. When we think of the flow of electricity while making circuits, we think in the reverse of reality: that the flow of electrical current goes from a positive charge source (like digital pin 13) to ground. This is by convention only. When electricity was first discovered, early physicists weren’t sure which direction electricity flows and so they made a guess. We later found out that they were wrong. However, that early convention is still used.
Most of the time, the circuits you’ll be making with Galileo will be using 5 volts. The IOREF jumper, as shown in Figure 2-1, will let you change the logic voltage level for compatibility with shields that use 3.3 volts. Throughout this book, you’ll be using Galileo in its 5-volt mode.
Voltage refers to the amount of pressure that the electricity is under. As an analogy, if you had a hose connected to a wimpy little water pump, water might dribble out of the other end of the hose. If you connected a more powerful water pump (that is, increased the voltage), the water would be under more pressure and would shoot out of the hose.
Current, on the other hand, is the amount of electrical energy (the number of electrons) that flows through a given point in the circuit in a period of time. Using the water analogy, attaching a larger hose to the pump would allow more gallons per second to flow past a particular point. Electrical current is measured in amperes (amps). A typical red LED might consume 20 milliamps (mA), or 0.02 amps. It’s important to note, however, that Galileo’s digital output pins will only provide about 10mA of current.
LED Polarity
Earlier, you identified the anode and cathode of the LED and connected the anode to pin 13 through a resistor. The cathode of the LED connected to the ground side of the circuit. If you got this reversed, the LED would not light up and you wouldn’t have a complete circuit. This is simply a side effect of the way an LED works.
In fact, all diodes (even the ones that don’t light up), by definition, oppose the flow of electricity in only one direction. This comes in handy for some circuits where you need to protect sensitive components from a possible condition in which the flow of electricity reverses.
A component that must be connected in a certain orientation in relation to the flow of electrical current is considered to be polarized or have polarity.
Resistors with LEDs
Another property of an LED is that it has a typical voltage and current at which it’s meant to operate. Differences in color, size, and manufacturer can have an effect on these properties. If the LED is given too much voltage or is allowed to pull more current than it needs, it will be damaged or burn out.
The purpose of a resistor is to resist the flow of electrical current. Using the water hose analogy, it would be like stepping your foot down on the hose. By adding a little bit of resistance to your LED circuit, you can ensure that the LED is provided with the proper voltage and current.
Unlike LEDs, resistors do not have polarity, so the orientation of this component in relation to the flow of electrical current doesn’t matter.
That’s enough discussion of electrical matters for now. Let’s get back into the code.
pinMode()
The only line of code in the Blink sketch’s setup function says pinMode(led, OUTPUT);. pinMode() is one of many Arduino functions available to you. A function is a collection of Arduino statements. You run the statements inside a function when you call it by name. Functions each have a particular task that they do. They sometimes take data inputs, which are called parameters. They sometimes can give back data called return values. To understand these concepts better, let’s take a closer look at the use of pinMode() in the Blink sketch.
By calling pinMode(), you’re telling Galileo that you’re going to use a particular pin either as an input or an output. Therefore, it’ll need two pieces of information: the pin number and the mode (input or output). You need to do this for each digital pin you plan to use before you use it. Typically, you’ll do this in the setup function.
Every function’s parameters are passed to it by entering the values in parentheses after the name of the function. If there are multiple parameters, each value is separated by a comma. In the case of pinMode(), the first parameter is the number of the pin you want to set the mode of and the second value is the pin’s mode, written as INPUT or OUTPUT (in all caps).
To summarize, the syntax of pinMode() is:
pinMode(pin, mode);
The parameters of pinMode() are:
pinMode() doesn’t return a value. In Chapter 4, you’ll take a look at functions that return values.
In the Blink sketch, the statement pinMode(led, OUTPUT); takes the pin number value from the variable led (in this case, 13) and sets that pin as an output.
Arduino Language Reference
But how would you know this information if you didn’t already have a book or teacher walking you through this? The Arduino Language Reference lists each Arduino function, its purpose, parameters, and return values. Each even has an example to demonstrate how to use it (see Figure 3-9).
Figure 3-9. The Arduino Language Reference page is where you can find information about all of the available Arduino functions.
If you look at the reference page for pinMode(), the information there should now look familiar to you. It tells you what pinMode() does, shows its syntax, explains the parameters, and notes that it does not return a value.
digitalWrite()
Within the loop function, the Arduino function digitalWrite() is called twice. digitalWrite() turns a pin on or off (high or low in digital electronics parlance). When the pin is set to high, 5 volts flows through the pin and can be used to power the LED. When the pin is low, it’s connected to ground and the LED will turn off.
The syntax of digitalWrite() is:
digitalWrite(pin, value);
The parameters of digitalWrite() are:
digitalWrite() does not return a value. Again, I’ll cover return values in Chapter 4.
Therefore, within the Blink sketch, digitalWrite(led, HIGH); sends 5 volts to pin 13, illuminating the LED.
And digitalWrite(led, LOW); connects pin 13 to ground, turning off the LED.
delay()
Your code will run very quickly, so if you only turned the pins on and off in the loop function, there won’t be enough time to see the LED fully on or fully off and it’ll simply appear dim. Therefore, you need to tell Galileo to wait for a second after turning it on and again after turning it off.
To do that, you’ll use the Arduino function delay(), which stops your program in its tracks for the amount of milliseconds that you specify.
The syntax of delay() is:
delay(ms);
The parameter of delay() is:
delay() does not return a value.
In the case of the Blink sketch, delay(1000); tells Galileo to wait for 1 second (1,000 milliseconds) after setting pin 13 high and again after setting it low.
Code and Syntax Notes
Now that you’ve walked through each line of code in the Blink sketch, let’s discuss some of the details when it comes to code.
Semicolons
You probably noticed that many lines of code have a semicolon at the end. This is called a terminator and it lets the Arduino compiler know that it has reached the end of a statement. In programming, a statement is like a sentence and in Arduino syntax, the semicolon is like the period at the end of a sentence.
There are some cases when you don’t use a semicolon, such as when you’re opening a block of code. You’ll see in this in the Blink sketch with the lines that start the setup and loop functions. You also do not need a semicolon after the curly bracket that closes a block of code.
Lines and Spacing
Because the Arduino compiler can separate each statement by looking at the semicolons and the curly brackets, it doesn’t concern itself at all with how you format your lines. In fact, you could put the entire Blink sketch on one line if you’d like.
To make it easier for mere mortals to read and understand your code, however, it’s a good idea to put each statement on its own line and indent each new block of code.
Case Sensitivity
With the Arduino language, everything is case-sensitive. This means that trying to call a function called PINMODE() will generate an error (try pinMode() instead). This goes for variables as well. If you define a variable called led, you can’t access it with LED, which would be considered a totally separate variable.
Hardcoding
When you called pinMode() and digitalWrite() in the Blink sketch, you used the variable led to pass the pin number 13 into the function. You could have also used the functions in the following way, by putting the number 13 in each of the functions’ pin parameters:
pinMode(13, OUTPUT);
digitalWrite(13, HIGH);
This is called hardcoding because you’re writing the value directly into each function as opposed to referring to it as data from elsewhere. There are a few reasons you’ll want to avoid hardcoding these values.
For one, creating a variable and giving it a good name makes your code easier to understand. If you have a motor on pin 12 and an LED on pin 13 and you want to turn the motor on and the LED off, this code is a little easier to understand:
digitalWrite(motorPin, HIGH);
digitalWrite(ledPin, LOW);
than this:
digitalWrite(12, HIGH);
digitalWrite(13, LOW);
In that last example, you’d have to remember which pin is which, or else you’d have to look it up.
Another reason to refer to the values as variables is that if you need to change your pin numbers, you won’t need to dig through all the lines of your code and make changes. You’ll only need to change a single line, and that will be reflected throughout the rest of your sketch.
It may seem like extra work to do it this way, but as your projects begin to grow, it will make things much easier!
Going Further with Digital Output
If you know how to control one digital pin, you know how to control the rest. Now try adding more LEDs to the mix.
For this exercise, you’ll need:
Here’s how to wire up more LEDs, step-by-step:
Figure 3-10. One way of wiring up multiple LEDs to Galileo using a solderless breadboard
Now using the functions digitalWrite() and delay(), try modifying the Blink example and uploading the code to blink the LEDs in different patterns.
WARNING
Pins 0 and 1 are special digital pins because they’re given additional functionality: serial communication. You’ll get to try out serial in Serial Data Output. Be aware that if you use these pins, they may not behave as expected. For now, I would suggest avoiding digital pins 0 and 1.
Analog Output
Until now, you’ve been using digitalWrite() to control the pins. In the realm of digital, you’re working with two possible states: high or low (on or off). However, not everything in the world is either on or off, and sometimes things come in a range of values.
For instance, a lamp connected to a regular wall switch is either on or off. But if it’s connected to a dimmer switch (Figure 3-11), it will have a range from totally off to maximum brightness and all the levels of dim in between. If digitalWrite() is like an on/off switch, then the next function you’ll try, analogWrite(), is sort of like a dimmer switch.
Figure 3-11. Digital is like the switch on the left, it can be either on or off. Analog, on the other hand, can be set at a range of values between fully on and completely off.
analogWrite()
I wrote that it’s “sort of” like a dimmer switch because analogWrite() uses a feature called pulse width modulation, or PWM, to make it seem like there’s a range of voltages coming out of the pin. What it’s actually doing is pulsing the pins on and off really quickly. So if you want the pin to be as though it’s at half voltage, the pin will be pulsed so that it is on 50% of the time and off for 50% of the time. If you want the pin to be as though it’s at 20% power, it will turn the pin on 20% of the time and off 80% of the time. This percentage of time that it’s on versus total time of the cycle is called the duty cycle (Figure 3-12). When you connect an LED to these pins and use analogWrite() to change the duty cycle, it can give the effect of dimming the LED.
Figure 3-12. The duty cycle represents how much time the pin is turned on over the course of an entire on-off cycle.
However, not all pins on the Galileo are capable of being pulsed with PWM. If you look at the board, you’ll see a few digital pins marked with a tilde (~), as shown in Figure 3-13. These are the pins that you can use with analogWrite(). On the Galileo, these are digital pins 3, 5, 6, 9, 10, and 11.
Now let’s take a look at the analogWrite() function itself and then try to put it to use.
Figure 3-13. You can only use pins capable of Pulse Width Modulation with analogWrite(). These pins are indicated with a tilde (~) next to the pin number on the board.
The syntax of analogWrite() is:
analogWrite(pin, value);
The parameters of analogWrite() are:
analogWrite() does not return a value.
Try the function out now to make an LED fade up and down, much like the LED on some computers that shows it’s “sleeping.”
If you’ve got everything right, you should see a fading LED! Just like those fancy computers! Let’s take a look at the code in Example 3-2.
Example 3-2. The Arduino fade example
int led = 9; //
int brightness = 0; //
int fadeAmount = 5; //
void setup() { //
pinMode(led, OUTPUT); //
}
void loop() { //
analogWrite(led, brightness); //
brightness = brightness + fadeAmount; //
if (brightness == 0 || brightness == 255) { //
fadeAmount = -fadeAmount; //
}
delay(30); //
}
Store the integer 9 into a new variable called led. This is the pin number connected to the LED.
Store the integer 0 into a new variable called brightness. This is where the sketch will keep track of the brightness level.
Store the integer 5 into a new variable called fadeAmount. This will define the amount of steps in brightness to take each time the brightness is changed.
Start the setup function, which is only executed once at the start of the sketch.
Set led (pin 9) as an output.
Start the loop function, which is executed over and over again after the setup function is finished.
Set led (pin 9) to the PWM value as determined by the variable brightness. The first time executing this loop, it will be 0 (completely off) because the value of brightness was initialized as 0 at the beginning of the sketch.
Take the current value of brightness, add fadeAmount to it and then assign that amount to brightness. In other words, add fadeAmount to brightness.
If brightness equals 0 or 255, execute the code within the curly brackets.
Set fadeAmount to its opposite (make it negative if it’s positive; make it positive if it’s negative).
Wait 30 milliseconds before executing the loop function again.
Code and Syntax Notes
Besides analogWrite(), the code in Example 3-2 introduces a few concepts that you haven’t already encountered in this book.
Variable Assignment
Up until now, you’ve stored values inside variables at the time that you created the variable. In Example 3-2, you’ll see that in order to assign a new value, you’ll use the equal sign:
brightness = brightness + fadeAmount;
Galileo will look at the right side of the equal sign first, complete any operations, and then assign that value to the variable on the left side of the equal sign. In this case, the initial value of brightness is added to the value of fadeAmount. The result of that addition operation is then assigned as the new value of brightness.
When I see an equal sign used in this way, I don’t think of it as “equals” but rather as “gets the value of.” When reading that line in the example, I would think of it as "brightness gets the value of brightness plus fadeAmount.” This makes it a little easier to understand what’s happening in that statement.
The purpose of this line in Example 3-2 is to change the brightness every time the loop is executed.
Another variable assignment that happens in the loop function is:
fadeAmount = -fadeAmount;
Simply put, this sets fadeAmount to its opposite. If it’s a negative number, it will make it positive. If it’s a positive number, it will make it negative. When the fadeAmount is positive, it’s adding to the PWM value in every loop, making it get brighter. Conversely, when it’s negative, it’s dimming the LED because summing the brightness and -5 will decrease the brightness by 5 steps.
Math Operators
Of course, you’re not limited to only adding values with Arduino. You can also do subtraction (-), multiplication (*), division (/), and modulus (%), which gives the remainder when dividing two numbers.
You can use those math operations with an assignment operator to make a math operation and update the value of a variable in one fell swoop using compound operators. These two lines of code all do the exact same thing:
doubleThis = doubleThis * 2;
doubleThis *= 2;
There’s also shorthand syntax to increment and decrement integers by using ++ or --. The following three lines of code all do the exact same thing:
countUp = countUp + 1;
countUp += 1;
countUp++;
And these lines of code all do the same thing as well:
countDown = countDown - 1;
countDown -= 1;
countDown--;
if Statements
Another new programming concept introduced in Example 3-2 is the if statement, which you’ll likely find yourself using a lot. The concept is fairly simple: if something is true, then do something.
The syntax looks like this:
if (condition) {
execute this code if condition is true
}
There are a few different conditions you can test for, as laid out in Table 3-1.
Table 3-1. Comparison operators
Operator | Evaluates to True if… |
x == y | x is equal to y |
x != y | x is not equal to y |
x < y | x is less than y |
x > y | x is greater than y |
x <= y | x is less than or equal to y |
x >= y | x is greater than or equal to y |
Let’s take a look at a few simple examples of if statements:
int n = 10;
if (n > 10) {
// this will not be executed because n is not greater than 10
digitalWrite(redLed, HIGH);
}
if (n < 10) {
// this will not be executed because n is not less than 10
digitalWrite(greenLed, HIGH);
}
if (n == 10) {
// this will be executed because n equals 10
digitalWrite(yellowLed, HIGH);
}
WARNING
It’s important to remember that a single equal sign is used to assign values to variables and a double equal sign is a comparison operator to check if one value is the same as another. It’s very unlikely that you’ll ever use the assignment operator inside an if statement’s parentheses. I find that it’s an easy mistake to make. Unfortunately, you will not get an error from the compiler if you make this mistake, and your sketch won’t behave as expected.
You can have multiple tests in a single if statement. The logical operators to help you do this are listed in Table 3-2. There’s also a not operator to negate any result.
Table 3-2. Logical operators
Operator | Meaning |
&& | and |
|| | or |
! | not |
Here are a few examples to demonstrate how the logical operators work so that you can test for two conditions at once:
int n = 10;
if ((n > 8) && (n < 12)) {
// this will be executed because n is greater than 8 and less
// than 12
digitalWrite(redLed, HIGH);
}
if ((n > 8) && (n < 10)) {
// this will not be executed because n is not less
// than 10 even though it is greater than 8. With &&,
// both must be true.
digitalWrite(greenLed, HIGH);
}
if ((n > 8) || (n < 10)) {
// this will be executed because n is greater than 8, even though
// it's not less than 10. With ||, only one must be true.
digitalWrite(greenLed, HIGH);
}
With that information, you can now better understand what’s going on in the if statement in Example 3-2:
if (brightness == 0 || brightness == 255) {
fadeAmount = -fadeAmount ;
}
If the value of brightness equals 0 or it equals 255, then set the value of fadeAmount to its opposite. Essentially, when the brightness hits the maximum value (255), the sketch starts fading the LED down until it gets to its minimum value (0). Then it reverses fadeAmount’s direction again.
Other Outputs
Output pins aren’t just for blinking and fading LEDs. They can also be used to do things like control motors, make sounds, or communicate with devices.
Serial Data Output
Sometimes you may want to have Galileo send data to your computer. Perhaps you need help figuring out why a project isn’t working (also called debugging). Or you want to send sensor data to a spreadsheet. Maybe you want to use the Galileo as a controller for a computer game you made.
For these purposes, you can use Arduino’s serial library, which is a way of sending and receiving data between devices. For now, you’re just going to use Galileo to send serial data, but you’ll learn how to receive data as well in Chapter 5.
The USB connection between your computer and Galileo is not only for programming the board. It’s also for serial communication. To experiment with basic serial communication from Galileo to your computer, make a few simple modifications to the fade sketch, Example 3-2. These changes are reflected in Example 3-3.
Example 3-3. The Arduino fade example with serial
int led = 9;
int brightness = 0;
int fadeAmount = 5;
void setup() {
pinMode(led, OUTPUT);
Serial.begin(9600); //
}
void loop() {
analogWrite(led, brightness);
brightness = brightness + fadeAmount;
if (brightness == 0 || brightness == 255) {
Serial.print ("Brightness is at "); //
Serial.print (brightness); //
Serial.println (". Switching directions."); //
fadeAmount = -fadeAmount;
}
delay(30);
}
Opens serial port and sets data rate to 9600 bits per second (also known as the baud rate).
Send a string of text over serial.
Send the value of brightness over serial.
Send a string of text over serial and then a carriage return.
After uploading the code from Example 3-3 to the board, click the magnifying glass button on the right side of the Arduino IDE toolbar to open the serial monitor (as shown in Figure 3-14).
Figure 3-14. To open the serial monitor, click the magnifying glass button on the upper-right side of the Arduino IDE window.
A new window will appear. Make sure that 9600 baud is selected in the dropdown on the lower-right side of the window. If you’ve got everything right, you should see something like this, over and over again (see Figure 3-15):
Brightness is at 0. Switching directions.
Brightness is at 255. Switching directions.
Brightness is at 0. Switching directions.
Brightness is at 255. Switching directions.
Brightness is at 0. Switching directions.
Brightness is at 255. Switching directions.
Figure 3-15. Set the serial monitor’s baud rate to match the baud rate established by the Serial.begin() function in your sketch.
To get this to happen, you’re using three different serial library functions. Let’s look at each.
Serial.begin()
This is the function that opens the serial port on the Galileo and tells it what speed to send the data. The number represents bits per second. Because this is only used once in a sketch, you’ll typically call it in the setup function.
NOTE
Two devices communicating via serial must be using the same baud rate, even if you’re only transmitting data in one direction. If you have a mismatch between the baud rate of your two devices, the receiving device may interpret the data it receives as gibberish.
However, as a side effect of how Galileo handles serial communication between the board and the serial monitor, setting matching baud rates may not matter. It would be a good idea to do it anyway so that you’re accustomed to doing it and so that your code will work with other Arduino boards.
Within this book, I’ll be sticking with standard Arduino convention because it will work with Galileo and other Arduino boards.
The syntax of Serial.begin() is:
Serial.begin(speed);
The parameter is:
speed: the speed in bits per second (also known as baud). The following values are typically used: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200. With Arduino sketches, 9600 is most common.
Serial.begin() does not return a value.
Serial.print()
This function transmits data over the serial port.
The syntax of Serial.print() is:
Serial.print(value);
The parameter is:
value: the data to send. This can be a string of text, a character, a byte, an integer, or other types of data.
Serial.print() returns the number of bytes transmitted. It’s not necessary to use this return value and you can safely ignore it.
Serial.println()
Just like Serial.print(), Serial.println() sends data over the serial port. The difference is that it adds a carriage return to the end of the data it sends.
The syntax of Serial.println() is:
Serial.println(value);
The parameter is:
value: the data to send. This can be a string of text, a character, a byte, an integer, or other types of data.
Serial.println() returns the number of bytes transmitted. It’s not necessary to use this return value and you can safely ignore it.
Controlling A/C Appliances with Relays
The small amount of electrical current that comes from the digital pins is not enough to power much more than a small LED. In order to control the power to something like a lamp or blender, you’ll need to use a relay.
A typical relay is a mechanical switch that can handle larger amounts of electricity. That switch can be turned on or off with a small amount of electricity.
It’s possible to buy a relay and then do the wiring so that it’s switching the power source that you want to control. However there’s a fantastic product called the PowerSwitch Tail which makes it easy to use a development board like the Galileo to control appliances that plug into the wall. You don’t need to do much wiring at all because your appliance will plug right into the PowerSwitch Tail and the PowerSwitch Tail will plug into your wall outlet (see Figure 3-16).
Figure 3-16. The PowerSwitch Tail helps you move from controlling LEDs to controlling high voltage A/C devices that plug into your wall outlet.
You only need to wire up ground and one of Galileo’s digital out pins to the Power-Switch Tail, then it’s only a matter of using digitalWrite to turn it on and off:
// Turn the blender on for one second:
digitalWrite(powerSwitchTailPin, HIGH);
delay(1000);
digitalWrite(powerSwitchTailPin, LOW);
Controlling Servos
A typical hobby servo motor is a small motor that can set and hold the position of its axle depending on the pulses of electricity being sent to it, usually with a 180 degrees of rotation (Figure 3-17). It’s powered by a connection to 5 volts and ground through the servo’s red and black wires. Your Galileo will send signal pulses to the motor to set its position through its yellow wire.
Figure 3-17. Hobby servos like the ones pictured come in many different sizes and varieties but generally operate in the same way.
Sending the right high and low pulses to a servo (or servos) might be a bit difficult and time consuming if you had to write the code by yourself. Luckily, you have access to an Arduino library to help you work with servo motors with very little fuss. A library is a collection of code that makes complex coding tasks easier. Instead of needing to know what rate you need to send pulses and how to send them without blocking the rest of your code from running, you can simply input the angle into a function from the library. The Galileo will start sending the appropriate pulse until you tell it to stop or change the angle (Figure 3-18).
Figure 3-18. Most servos have 180 degrees of rotation. When using the Arduino servo library, 0 degrees positions the axle in the fully counter-clockwise position. 180 degrees positions the axle in the fully clockwise position. 90 degrees sets the axle in the middle.
To start experimenting with servos and try the servo library, first connect a servo to your Galileo.
For this exercise, you’ll need:
Wiring up and testing the servo won’t be difficult:
Figure 3-19. Wiring up a hobby servo to Galileo
If you have everything wired up correctly, you should see the servo swing back and forth (see Example 3-4)!
Example 3-4. Servo Test
#include <Wire.h>
#include <Servo.h> //
int servoPin = 9;
Servo myServo; //
void setup() {
myServo.attach(servoPin); //
}
void loop() {
myServo.write(0); //
delay(1000);
myServo.write(180); //
delay(1000);
}
When compiling, include the servo library code. This is required to use the servo library’s functions.
Create a new servo object called myServo.
Establish that the servo you’ll be controlling is on pin 9.
Set the servo’s position to 0 degrees.
Set the servo’s position to 180 degrees.
Figure 3-20. The servo’s yellow wire connects to your digital output pin (any of the PWM pins will work). The black (or sometimes brown) wire connects to ground. The red wire connects to the VIN pin.
NOTE
In Example 3-4, the line #include <Wire.h> is a workaround to get the servo library working with Galileo in Intel’s version 0.7.5 of the software. It may not be required for later versions. Your best bet is to try it with and without the line to see what works.
The Servo Object
When you’re reviewing the lines of code that control the servo, you’re encountering a new programming concept called the object.
Servo myservo;
In programming parlance, this line creates a Servo object called myservo. You don’t need to know the nitty gritty of what an object is or how it works, but what’s important with an object is that it lets you create multiple servos and act on them independently with the servo functions. The best way to see this in action is to look at an example with two servos. Let’s say you have a camera on a servo that controls its pan from left to right and another servo that controls the camera’s tilt from up to down. To do this, you would create two Servo objects:
Servo panServo;
Servo tiltServo;
You can then tell Galileo which pin each servo is connected to with the attach() function. Assuming the pan servo is on pin 9 and the tilt servo is on pin 10, you’d put the following in your setup function:
panServo.attach(9);
tiltServo.attach(10);
Then to tell each servo where to go, you’ll use the write() function, and input the number of degrees between 0 and 180. If you wanted each servo to sit right in the middle, it would be 90 degrees:
panServo.write(90);
tiltServo.write(90);
Those are the basics of how the servo library works and a quick crash course in creating and acting on an object. Most other libraries that you’ll use will use the object paradigm and usually include examples to help you understand them.
Looking at Linux
Up until this point in the book, most of what you’ve learned has focused on the Arduino-like capabilities of Galileo. As mentioned in Chapter 1, one of the features of Galileo is that it’s running Linux. Let’s now take a small dip into the world of Linux on Galileo.
The first thing you need to do is connect to the Linux command line. Here, I’ll show you how to connect via Telnet over the network. You can also connect directly via serial. See Appendix H for how to do that.
Connecting via Telnet
If your computer is connected to the same LAN (local area network) as the Galileo, you can use Telnet to connect to Galileo’s Linux command line prompt through the network.
With your Galileo powered up and connected to your computer via USB, upload Example 3-5 to the board. This code will enable Telnet on the board and pipe information about Galileo’s network connection to the serial monitor.
Example 3-5. Code to enable Telnet and Print IP
void setup() {
system("telnetd -l /bin/sh"); //
}
void loop() {
system("ifconfig eth0 > /dev/ttyGS0"); //
delay(5000);
}
Execute the Linux command to enable Telnet.
Output information about the Ethernet connection to the Arduino serial monitor.
NOTE
Example 3-5 uses the system() function, which is unique to Galileo. It’s meant for running Linux commands within Arduino code. This will be covered in more depth in Chapter 6.
eth0 Link encap:Ethernet HWaddr 98:4F:EE:00:1A:F3
inet addr:192.168.1.4 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::9a4f:eeff:fe00:1af3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:326 errors:0 dropped:0 overruns:0 frame:0
TX packets:93 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:52925 (51.6 KiB) TX bytes:7511 (7.3 KiB)
Interrupt:41 Base address:0x8000
Next, connect to your Galileo:
On Mac OS X
On Linux
On Windows
Once you’re connected, you’ll see a # to indicate you’re at the command prompt:
Trying 192.168.1.4...
Connected to 192.168.1.4.
Escape character is '^]'.
Poky 9.0 (Yocto Project 1.4 Reference Distro) 1.4.1 clanton
/ #
WARNING
Any changes you make to files will not persist after a reboot unless you’re booting from a microSD card. See Appendix D for how to create one.
Working with Pins
From the command-line prompt, you can execute Linux commands on Galileo. You can use commands to read or write files, get information about your system, make network connections, read and write the pins, and much more. You’re going to use a few Linux commands to turn a pin into an output and then set it to high.
From the command line, first log in as root (you don’t need to do this if you’re connected via serial):
/ # login root
root@clanton:~#
Next use the command cd to change to the directory /sys/class/gpio:
root@clanton:~# cd /sys/class/gpio/
Now list the contents of that directory with the command ls:
root@clanton:/sys/class/gpio# ls
export gpio19 gpio27 gpio38 gpio46 gpiochip0
gpio0 gpio20 gpio28 gpio4 gpio47 gpiochip16
gpio1 gpio21 gpio29 gpio40 gpio48 gpiochip2
gpio14 gpio22 gpio30 gpio41 gpio49 gpiochip8
gpio15 gpio23 gpio31 gpio42 gpio50 unexport
gpio16 gpio24 gpio32 gpio43 gpio51
gpio17 gpio25 gpio36 gpio44 gpio54
gpio18 gpio26 gpio37 gpio45 gpio55
This is a listing of files and directories (or folders) for working with the different pins on Galileo (it’s been formatted to fit this page nicely, so it may not look exactly like your output). Within the Linux environment, you can write to a particular file to control a pin and read from a file to get the pin’s state.
The letters GPIO above stand for general purpose input/output, which means that the pins can be configured to do many different things such as digital output, digital input, analog output, and analog input, to name a few.
NOTE
On other Linux development boards, you normally would not necessarily see all the GPIO pins in /sys/class/gpio. However, since you’ve uploaded and launched an Arduino sketch to get Telnet running, the sketch exported those pins and configured them for use already.
The listing of the pin numbers in /sys/class/gpio does not match the pin numbers you use within your Arduino code or the numbers printed on the board. Table 3-3 shows which Arduino pin number matches which Linux GPIO signal number.
Table 3-3. Translating Arduino pin numbers to Linux signal names
Arduino Digital Pin | Linux Signal Number |
0 | 50 |
1 | 51 |
2 | 14 |
3 | 15 |
4 | 28 |
5 | 17 |
6 | 24 |
7 | 27 |
8 | 26 |
9 | 19 |
10 | 16 |
11 | 25 |
12 | 38 |
13 | 39 |
Connect an LED to pin 13, just as you did in Pin Numbers. Because pin 13 is connected to Linux signal name 39 as shown in Table 3-3, change to the directory gpio39 and list its contents.
root@clanton:/sys/class/gpio# cd gpio39
root@clanton:/sys/devices/virtual/gpio/gpio39# ls
active_low direction edge power subsystem uevent value
The next command you’ll use is cat, which outputs the contents of a file to the terminal. First output the contents of the direction file.
root@clanton:/sys/devices/virtual/gpio/gpio39# cat direction
in
This indicates that the pin is configured as an input. Change it to output by using the command echo to write “out” to gpio39’s direction file. This is the equivalent of the Arduino code pinMode(13, OUTPUT);:
root@clanton:/sys/devices/virtual/gpio/gpio39# echo out > direction
To set pin 13 high, just write the value 1 to the value file. This is the equivalent of the Arduino code digitalWrite(13, HIGH);:
root@clanton:/sys/devices/virtual/gpio/gpio39# echo 1 > value
If you got it right, the LED should have turned on! Now turn it off:
root@clanton:/sys/devices/virtual/gpio/gpio39# echo 0 > value
When you toggled pin 13 with Arduino code, you also controlled the on-board LED pictured in Figure 2-8. Why didn’t it turn on and off now? That’s because the on-board LED on Galileo is connected to Arduino pin 13 through software only. It’s actually on its own Linux GPIO signal. If you want to try blinking it, it’s controlled with Linux signal name gpio3.
Because you can read and control Galileo’s pins by reading and writing files within the Linux environment, it opens up a whole new realm of power and flexibility, one that previous Arduino boards didn’t have. As the Galileo software matures, it’s likely that it will take advantage of this ability and further empower users. For now, consider yourself in somewhat uncharted territory and report back what you find.
Taking It Further
This chapter armed you with the ability to control digital output pins by writing their values to be high or low or using pulse width modulation to send pulses of high and low signals. Along the way, you learned a lot of programming concepts that you’ll use throughout your work with Galileo.
Here are a few ideas for how you can apply what you’ve learned in this chapter:
Here are some additional resources in case you’d like to learn more about the concepts covered in this chapter:
Chapter 4. Inputs
Buttons, switches, dials, cameras, motion sensors, and pressure sensors are all examples of possible inputs to Galileo, and that list only scratches the surface of inputs available to you. Inputs help Galileo know what’s happening in the physical world so that a user can control your device or the device can respond to its environment. When combined with outputs, inputs make your device interactive.
In this chapter, you will use Galileo’s input functionality to:
Switches: Digital Input
When you used digitalWrite() in Chapter 3, there were two possible states of a digital output pin: high or low. When it comes to digital input, the same is true. When you read the state of a digital input, it will either be connected to 5 volts, which indicates a high state, or to ground, which indicates a low state. By connecting a simple pushbutton switch, you can change the state of a digital input pin simply by pressing the button.
A pushbutton switch like the one pictured in Figure 4-1 is great for experimenting with digital input. It snaps right into the breadboard, and it’s a component that you’ll frequently see in electronics starter kits. The two terminals on the top of the switch are connected to each other, as are the pair on the bottom. When you push down on the switch, both pairs of terminals are connected together.
NOTE
Because the terminals on opposite sides of the breadboard are connected to each other, it means that the pushbutton is making a connection across the gap in the breadboard just as if you had put a jumper wire across the gap. So, in Figure 4-1, this means that both sides of row 11 are connected, as are both sides of row 13. But unless you are pressing the button down, there is no connection between rows 11 and 13.
Figure 4-1. A pushbutton switch
You’re going to use a pushbutton switch to make and break a connection between 5 volts and one of the digital pins, which will be configured in your sketch as an input. You’re also going to add a pulldown resistor to ensure that the input is connected to ground when it’s not connected to 5 volts. If the input pin were disconnected from both 5 volts and ground, it would be considered floating and it would return unexpected results if you tried to read it. That is because an unconnected pin can be affected by ambient electrical activity (without the pulldown resistor, the pin essentially functions as an antenna). See Figure 4-4 for a closer look at the pulldown resistor in the circuit.
Here’s what you’ll need to try this example:
Here’s how to wire it up and try it out:
Figure 4-2. Connecting a pushbutton switch to digital pin 2 with a 10K pulldown resistor
Figure 4-3. Connecting a pushbutton switch to digital pin 2 with a 10K pulldown resistor
Figure 4-4. The pulldown resistor in a digital input circuit ensures that there’s a connection to ground when the connection between 5 volts and the input pin is broken.
Example 4-1. Basic digital input sketch
int switchInputPin = 2;
void setup() {
pinMode(switchInputPin, INPUT); //
Serial.begin(9600);
}
void loop() {
int switchState = digitalRead(switchInputPin); //
if (switchState == HIGH) { //
Serial.println("The switch is on!"); //
}
else { //
Serial.println("The switch is off!"); //
}
delay (500); //
}
Set the switchInputPin (pin 2) as an input.
Read the state of switchInputPin and store it in the variable switchState.
If switchState is high or connected to 5 volts…
…print “The switch is on!” via serial.
If switchState is low or connected to ground…
…print “The switch is off!” via serial.
Pause for half a second to slow down the output of the sketch.
When you upload this code to Galileo and open the serial monitor, you should see The switch is off! printed repeatedly in the window. Push down on the switch and it should change!
digitalRead()
The main takeaway from Example 4-1 is the use of digitalRead(), which checks the value of the pin provided in the parameters. In this case, you provided the variable switchInputPin, which evaluates to 2. After checking to see if pin 2 is connected to 5 volts or ground, digitalRead() returns either HIGH or LOW respectively. That value is stored in a new variable called switchState.
NOTE
You may be wondering: HIGH and LOW aren’t integers, so why are we storing them as variables with the type int? The reason is that Galileo thinks of high and low as the integers 1 and 0 and therefore HIGH and LOW are defined to mean 1 and 0 respectively in Arduino code. This makes the code a little bit easier to read and understand.
To prove that HIGH and LOW are equivalent to 1 and 0, try using Serial.println() to print the value of HIGH + HIGH to the serial monitor.
You can also see that you used pinMode() to set pin 2 as an input in the setup function. You’re required to do this if you want to use digitalRead() on that pin.
The syntax of digitalRead() is:
digitalRead(pin);
The parameter of digitalRead is:
digitalRead() returns HIGH or LOW.
Code and Syntax Notes
There are also a couple of new programming concepts introduced in Example 4-1.
Local Variables
In the code examples in Chapter 3, variables were declared outside of the setup and loop functions. Those were considered global variables because they can be accessed and changed from either the setup or loop functions. And when you learn to write your own functions, you could access global variables within those functions as well.
However, in Example 4-1, you declared a new variable within the loop function:
int switchState = digitalRead(switchInputPin);
What’s important to know about variables declared within a block of code is that it can only be accessed within that block of code. It’s called a local variable. When the Galileo is done executing that particular block, it frees up that memory for other uses. The block of code where a variable can be accessed is called its scope.
Therefore, when the loop function has completed a cycle, the switchState variable is destroyed. A new switchState variable is created the next time the loop function is executed.
if… else Statements
Building on what you learned in if Statements, the else statement in Example 4-1 is a way of setting up a block of code to execute when the if condition evaluates as false.
Here’s the basic syntax:
if (condition) {
execute this code if condition is true
}
else {
execute this code if condition is false
}
In Example 4-1, the if statement checks if the input pin is high. If it is, it will execute the block of code immediately after it in order to print the text “The switch is on!” However, if the pin is low, the if condition will evaluate as false and then Galileo will execute the block of code immediately following the else statement. This will print “The switch is off!”
You’ll never see an else statement without an if statement. But as you saw in Example 3-2, you can have an if without an else.
Analog Input
As discussed in Chapter 3, a digital pin (input or output) represents information as either on or off. But there are plenty of inputs that could have a range of values. Dials, sliders, temperature sensors, and light sensors are all examples of possible analog inputs to Galileo. Along with the function analogRead(), you can have Galileo get the value of these inputs and act on them.
On the Galileo, there are six dedicated analog input pins numbered 0 through 5 (Figure 4-5). They accept a range of voltages from 0 to 5 volts. Since Galileo and all computers work in the digital realm, the range of voltages must be converted into digital data. Therefore, these input pins connect to an analog to digital converter, or ADC, which is a chip that allows Galileo to read what voltage is being sent to each pin.
Figure 4-5. The six analog input pins are numbered 0 through 5.
Thanks to Galileo and the Arduino software, you don’t need to understand how an ADC works in order to read the value of analog sensors in your projects.
Potentiometers
When first experimenting with analog input, I recommend trying out a potentiometer. Frequently called pots, these components connect to voltage and ground and deliver a variable voltage to the analog input pin. They can come in a few different varieties such as rotary (Figure 4-6) or linear, like the faders you’d see on a sound mixing board.
Figure 4-6. This is a typical rotary potentiometer.
Let’s wire up a potentiometer to Galileo to give its ADC a test drive. Here’s what you’ll need:
Here’s how to connect the potentiometer to Galileo:
Potentiometer is at 0%.
Potentiometer is at 5%.
Potentiometer is at 9%.
Potentiometer is at 14%.
Potentiometer is at 22%.
Potentiometer is at 30%.
Potentiometer is at 39%.
Potentiometer is at 50%.
Potentiometer is at 62%.
Potentiometer is at 74%.
Potentiometer is at 89%.
Potentiometer is at 100%.
Figure 4-7. There are three terminals on a potentiometer. The one in the middle connects to analog input pin 0. One of the outside terminals connects to ground and the other outside terminal connects to 5 volts.
Figure 4-8. A diagram of how the potentiometer connects to Galileo
Example 4-2. Basic analog input sketch
const int potentiometerPin = 0; //
void setup() {
Serial.begin(9600);
}
void loop() {
int sensorReading = analogRead(potentiometerPin); //
int displayValue = map(sensorReading, 0, 1023, 0, 100); //
Serial.print("Potentiometer is at ");
Serial.print(displayValue);
Serial.println("%.");
delay(500);
}
Create a constant integer called potentiometerPin and assign it the value 0.
Create a new variable integer called sensorReading and store the analog reading from potentiometerPin in it.
Scale the analog input value (which runs from 0 to 1023) to a percentage (0-100%). Store that value in a new variable called displayValue.
analogRead()
When you explored digitalRead(), the function returned a value, either high or low. Like digitalRead(), analogRead() returns a value as well. However, the value is an integer between 0 and 1023. That value represents the amount of voltage going into the analog input pin, from 0 to 5 volts.
That return value can be stored in a variable for use later in your code or it can be evaluated “on the spot,” such as within an if statement’s condition:
if (analogRead(0) > 1000) {
Serial.println("Ludicrous Speed GO!")
}
In Example 4-2, the value from analogRead is stored in a variable called sensorReading.
The syntax of analogRead() is:
analogRead(pin)
The parameter is:
analogRead() returns an integer between 0 and 1023 (representing 0 to 5 volts).
NOTE
If you changed the IOREF jumper so that you’re using 3.3 volts, you must not send more than 3.3 volts to the analog input pins. It’s also important to know that the returned value from analogRead() will still be on the scale of 0 to 1023 to represent 0 to 5 volts, even if IOREF is set to 3.3 volts.
Code and Syntax Notes
Like previous examples, Example 4-2 also introduces a few more programming concepts to help you along your way.
Constants
To store the pin numbers in memory, you previously used variables. However, in Example 4-2 you tried something a little different:
const int potentiometerPin = 0;
This syntax creates a spot in memory for an integer called potentiometerPin and stores 0 in it, just like a variable. Except this isn’t a variable, it’s a constant. After you assign it the value when you initialize it, you cannot change the value again. If you try to, you’ll receive an error when you compile the sketch.
This might be helpful if you want to store a value in memory and you know that it should never be changed. Since the compiler won’t compile it and will return an error, you’ll know when you’ve done something wrong in your code.
map()
Because the return value of analogRead() is a value between 0 and 1023, you’ll sometimes need to scale that value to another range (see Figure 4-9). In the case of Example 4-2, you used the map() function to scale that to a percentage (0 to 100) with the following code:
int displayValue = map(sensorReading, 0, 1023, 0, 100);
Figure 4-9. The map function is responsible for scaling a value from one set of ranges to another. In the preceding example, if the input scale went from 0 to 1023 and the output scale went from 0 to 100, inputting the value 256 would return 25.
Knowing what the result of this line of code is without looking at any reference information, you might be able to tell what each parameter is. If not:
The syntax of map() is:
map(input, inFrom, inTo, outFrom, outTo)
The parameters of map() are:
map() returns a value on the scale of outFrom to outTo.
To work with map() on your own, try modifying Example 4-2 so that it outputs the approximate voltage going into the analog input pin. You can also try taking analog input reading and remap it to an analog output pin.
Variable Resistors
While there are many that do, not all analog sensors work like the potentiometer does, which provides a variable voltage based on some factor (such as the amount the dial on the pot is turned).
Some sensors are simply variable resistors that resist the flow of electricity based on some factor. For instance, a photocell like the one in Figure 4-10 will act like a resistor that changes values based on the amount of light hitting the cell. Add more light and the resistance goes down. Take away light and the resistance goes up. The force sensitive resistor decreases its resistance as you put pressure on the pad. You’ll learn more about this in Force Sensitive Resistor.
Figure 4-10. The photocell and force sensitive resistors act as variable resistors and can be used as analog inputs.
In order to read sensors like these with Galileo’s analog input pins, you’ll need to incorporate a voltage divider circuit.
Voltage Divider Circuit
When you’re working with sensors that offer variable resistance, the purpose of a voltage divider is to convert the variable resistance into a variable voltage, which is what the analog input pins are measuring. First take a look at a simple voltage divider.
In Figure 4-11, you’ll see two resistors of the same value in series between the positive and ground and one wire to analog input 0 from between the two resistors. Since both resistors are 10K ohms, there’s 2.5 volts going to analog input 0.
Figure 4-11. With two of the same value resistors between voltage and ground, the voltage between the two would be half of the total voltage.
Without getting bogged down in the math involved, if you removed the 10K resistor connected to 5 volts and replaced it with a resistor of a higher value, the voltage going into the analog pin would decrease. If you removed that 10K resistor and replaced it with one of a lower value, the voltage going into the analog pin would increase. We can use this principle with sensors that are variable resistors in order to read them with the analog input pins. You’ll simply replace one of the resistors with your sensor.
To try the circuit out, you’ll wire up a type of variable resistor called a force sensitive resistor, or FSR.
Force Sensitive Resistor
A force sensitive resistor is a variable resistor that changes based on the amount of pressure placed on its pad. When there’s no pressure on the pad, the circuit is open. When you start placing pressure on it, the resistance drops.
The exact figures will depend on your particular FSR, but typically you’ll see 100K ohms of resistance with light pressure and 1 ohm of resistance with maximum pressure. If you have a multimeter, you can measure the changes in resistance to see for yourself, or you can look at the component’s datasheet which will tell you what to expect from the sensor.
If you’re going to replace the resistor connected to 5 volts in Figure 4-11 with a variable resistor like an FSR, you’ll want the value of the other resistor to be somewhere in between the minimum and maximum resistance so that you can get the most range out of the sensor. For a typical FSR, try a 10K ohm resistor. Here’s what you’ll need to try this out:
To connect the FSR to Galileo:
Watch the serial monitor as you squeeze the sensor’s pad.
Figure 4-12. How to connect a force sensitive resistor to Galileo
Figure 4-13. How to connect a force sensitive resistor to Galileo
Example 4-3. Reading a force sensitive resistor
#define FSR_PIN 0 //
void setup() {
Serial.begin(9600);
}
void loop() {
int sensorReading = analogRead(FSR_PIN); //
if (sensorReading < 10) { //
Serial.println("I don't feel much at all!");
}
else if (sensorReading < 600) { //
Serial.println("Thanks for the squeeze!");
}
else { //
Serial.println("Ouch!");
}
delay(1000);
}
Tell the compiler to replace all instances of FSR_PIN with 0 before compiling the sketch.
Take the analog reading from FSR_PIN (pin 0) and store it in an integer variable called sensorReading.
If the sensorReading is less than 10, print “I don’t feel much at all!” via serial.
Otherwise, if sensorReading is less than 600, print “Thanks for the squeeze!” via serial.
Otherwise, print “Ouch!” via serial. Based on the previous if statements, this would only be executed if sensorReading is greater than or equal to 600.
Code and Syntax Notes
Not only did you use analogRead() to try out the FSR in Example 4-3, there are also a couple of new coding concepts: #define and else if.
#define
#define is considered a preprocessor directive. It tells the compiler to do a “find and replace” before it compiles. In the case of Example 4-3, all instances of FSR_PIN are replaced with 0 and then the code is compiled.
NOTE
Preprocessor directives like #define do not get a semicolon terminator at the end of the line.
Writing the name of the #define in all capital letters is not required, but it’s a convention used by most programmers.
Practice using #defines by improving the code in Example 4-3. The threshold between feeling nothing and feeling a squeeze is 10. The threshold between feeling a squeeze and saying “ouch” is 600. Try setting these up as #define statements so it’s easier to adjust the values according to your sensor.
else if
With else if, you can check for another condition if the first if condition evaluates as false. The syntax looks like this:
if (condition A) {
execute this code if condition A is true
}
else if (condition B) {
execute this code if condition A is false
and condition B is true.
}
else {
execute this code if both condition A
and condition B are false.
}
You can chain together many else ifs together and optionally you can have an else statement at the end of the chain for code that should be executed if all the previous conditions evaluate as false.
Going Further
Now that you’ve explored outputs and inputs with Galileo, you can create a device that’s interactive. Here are a few ideas for how you can apply what you’ve learned in this chapter:
Here are some additional resources if you’d like to learn more about and explore the concepts covered in this chapter:
Chapter 5. Going Further with Code
As you learned about how to work with inputs and outputs on Galileo, you also got a tutorial on a few different coding concepts. This short chapter aims to fill in some of the gaps so that you’ll have the tools you need to create your own projects.
Data Types
When creating variables, so far the only data type you’ve encountered is the integer, which is meant for storing whole numbers, or in the case of Example 4-1, the digital pin states HIGH or LOW. But there are plenty of other types of data that you can store in memory with Galileo.
int
Since you’re already familiar with the basics of the integer, I’ll give you a little more information about it. Because an integer on Galileo is stored with 32 binary bits including one bit for the sign (positive or negative), you can count up to the integer 2,147,483,647. If you add 1 to that number, it rolls over to -2,147,483,648.
If 2,147,483,647 isn’t high enough for you, you can also use an unsigned integer, which takes away the bit needed to determine whether it’s positive or negative. An unsigned integer can count from 0 to 4,294,967,295. If you add 1 to that maximum, it will roll over to 0. Initializing a new unsigned integer is as easy as initializing a regular integer:
unsigned int bigNumber = 4294967295;
NOTE
Other Arduino boards have different ranges for the type integer. For instance, an integer on Arduino Uno can range between -32,768 and 32,767. Keep this in mind if you’re porting code to or from other boards.
Another important thing to know about integers is that if you do a math operation such as division and expect a number with a decimal, the result will simply be the whole number with the decimal chopped off. That’s right, if you were to divide two integers and normally expect a result of 2.75, the result you’ll actually get is 2! Try 11 divided by 4 on a calculator and in your code:
Serial.println(11/4);
// integer division result: 2
float
If you do need to work with decimals, the data type float is there for you. Its name is short for floating point number. As with ints, you can store float variables in memory. Here’s how:
float cost = 29.95;
And if you want to do math with decimals, you’ll simply use a decimal point to indicate that you’d like to do math with floating points so that you don’t lose the decimal like you do with integers:
Serial.println(11.0/4);
The line above would print 2.75 to the serial monitor.
long
When looking at Arduino code from the official examples or from other projects, you may encounter the data type long. This type is mostly helpful for Arduinos like the Uno, where integers use fewer bits (16 bits versus 32 on the Galileo) and therefore can’t count as high. long is a type meant to store a wider range of numbers than int and use less precious memory. However, on the Galileo, both int and long (along with their unsigned counterparts) use the same number of bits and therefore have the same range.
While using an int will suffice in most cases, it’s important to be aware of the existence of long as some Arduino functions return this data type. For instance, see millis(). It’s also important to be aware of long if you are writing a sketch that you may run on an Arduino Uno, Leonardo, or compatible board. On those boards, the maximum value for an int is 32,767.
boolean
A boolean variable is meant to store the values true or false. This data type is frequently used to store “flags” to indicate a state or mode of your sketch. You can then evaluate those variables in loops and if statements. For instance:
#define START_BUTTON 3
boolean gameStarted = false; //
void setup() {
pinMode(START_BUTTON, INPUT);
}
void loop() {
if (digitalRead(START_BUTTON)) {
gameStarted = true; //
}
if (gameStarted) { //
// game play code here
}
}
Create a new boolean variable called gameStarted and store false in it.
If the start button is pressed, set gameStarted to true.
If gameStarted is true, execute the code in the block.
Using flags like this can help you structure your sketch so that you can check for a few conditions at one time and then act on those conditions later in your code.
char
The data type char is a byte that represents an ASCII character. ASCII is a system from the early days of computers for translating between bytes and characters. Typically, you’ll use the char data type when you’re reading the characters that are sent to Galileo via serial (see More Serial). Here’s how to create and assign a char variable:
char letter = 'm';
When using a character in your code (for instance, when you assign it to a variable or when you compare variable to a particular value), it will always be between single quotation marks:
char letter = 'm';
if (letter == 'm') {
// This code will be executed
}
String Object
If you need to work with text and not just single characters, you’ll want to familiarize yourself with the String object. It’s a little different from the previous data types because it’s technically not a variable, but an object, much like the Servo object in Chapter 3. Because it’s an object, it means that there are special things a String can do that other variables cannot.
NOTE
You may notice that I’m using a capital S when referring to String objects. This is a convention to distinguish it from an array of chars, which is considered a string (with a lower case s). While character arrays use less memory, they’re a little bit harder to work with than String objects.
Here’s one way to make a new String object:
String gatekeeperString = "There is no Dana, only Zuul!";
There are many other ways to create String objects and to work with them. Check out the Arduino Reference for more information.
millis()
Keeping track of time can be very helpful in an Arduino sketch. In Example 3-1, you tried out the delay() function, which stops a sketch for the specified number of milliseconds. But what if you just want to set up a few things to happen on different intervals? That’s just one way that millis() comes in handy.
The millis() function returns the number of milliseconds since the sketch started. You can then check that time against the time you expect something to execute. If the current time is past the time you expected it to execute, then you execute the code and set the next time you expect it to execute.
To explore this concept further, read through the Arduino example BlinkWithoutDelay. From within the IDE, click File → Examples → 02.Digital → BlinkWithoutDelay.
Other Loops
In Chapter 3 you first encountered the loop function, which executes its block of code repeatedly until the board is reset or power is disconnected. But what if you want something to happen repeatedly within the main loop function? Or what if you want to loop through a bunch of pins within the setup function? There are a few different types of loops available to you for just this purpose.
while
A while loop simply executes a block of code over and over again as long as the condition is true. The syntax is:
while (condition) {
execute this code repeatedly as long as condition is true
}
If the condition isn’t true when Galileo gets to that point in the code, it simply won’t execute the block of code at all.
do… while
A do... while loop, on the other hand, executes a block of code and then checks for a condition. If that condition is true, it executes the block of code again. This continues until the condition evaluates as false.
do {
execute this code once and then continue executing it
repeatedly as long as the condition is true
} while (condition)
This means that the code inside a do... while block will always execute at least once.
for Loops
A for loop is a way of having a block of code execute a specific number of times. The syntax is a bit complicated at first, but you’ll find yourself using them and encountering them a lot more than while and do... while loops. With practice, you’ll be writing and reading for loops fluently.
Let’s start by taking a look at a basic for loop:
for (int i = 0; i < 10; i++) {
Serial.println("Hello, Galileo!");
}
The code above would print “Hello, Galileo!” ten times to the serial monitor.
The for loop statement has three parts inside the parentheses and each part is separated by a semicolon. First the initialization, which is code that is executed once before anything else happens. The second part is the condition. It’s evaluated and if the statement is true, then the code in the block is executed. After the code in the block is executed, the third part of code in the for loop statement, the afterthought, is executed. To summarize the syntax:
for (initialization; condition; afterthought) {
execute this code if condition is true
}
To explore what’s going on, take a look at another for loop:
for (int i = 0; i < 3; i++) {
Serial.print("Loop iteration number: ");
Serial.println(i);
}
This would print:
Loop iteration number: 0
Loop iteration number: 1
Loop iteration number: 2
Here’s a breakdown of what’s going on, to explain how that for loop works:
Figure 5-1. This flow chart is another way of showing how a for loop works.
NOTE
In the for loop above, you’ll notice that the loop iterated 3 times, but it only counted up to the number 2. As a typical convention in programming, you start counting from the number 0. Therefore, a list with 10 items would be numbered 0 through 9.
The most common way that a for loop is used is to have a particular block of code run a specific number of times. You’ll therefore see a for loop like this quite frequently:
for (int i = 0; i < 10; i++) {
// This will be executed 10 times
}
NOTE
As with Local Variables, the variable i in the example above can only be accessed within the looping block of code. After the for loop has executed its last iteration, the variable will be destroyed.
More Serial
In Chapter 2, you learned how Galileo can send data via serial to a computer. But serial can act as a two-way channel of communication between your Galileo and computer (or other device). There are a few Serial functions that help you process the data that’s sent to your board.
Serial.available() and Serial.read()
On the Galileo, there’s a serial buffer which stores all the bytes of serial data it receives. When you use your sketch to read a byte from serial, you’re actually reading the first byte that’s “at the front of the line” in the buffer. After reading that byte, it’s removed from the buffer, and the next byte (if there is one) is ready to be read next.
In other words, the serial buffer follows a first in, first out, or FIFO, convention. The first byte received into the buffer is the first byte out when read by your sketch.
NOTE
There is a limited amount of space for data in the serial buffer, so you want to make sure that your sketch is reading the data at least as frequently as the transmitting device is sending it.
If the device that’s transmitting bytes sends a lot of data and your sketch doesn’t call Serial.read() frequently enough, the buffer will overflow and you may get unexpected results.
One way to avoid this problem is to use a system of “call and response.” When the Galileo is ready for data, it sends a byte to the other device. The other device will respond with some data. The Galileo can then take its time processing the data and acting on it. When it’s ready for more data, it will send another byte.
To try out reading serial information, upload Example 5-1 to your board and open the serial monitor.
Example 5-1. Serial receive example
#define LED 13
void setup() {
pinMode(LED, OUTPUT);
Serial.begin(9600);
}
void loop() {
if (Serial.available()) { //
char c = Serial.read(); //
if (c == 'h') {
digitalWrite(LED, HIGH);
}
if (c == 'l') {
digitalWrite(LED, LOW);
}
}
}
If there are characters available in the serial buffer, execute the code in the block.
Create a new char variable called c and store the next byte from the serial buffer in it. This will remove it from the serial buffer.
In the Arduino IDE, open the serial monitor by clicking the magnifying glass button on the upper right side of the window. In the input text box at the top of the serial monitor, enter a lowercase h or l and click Send. The on-board LED connected to pin 13 should turn on when you send the “h”, and it should turn off when you send an “l.” Sending any other character should have no effect on the LED.
The function Serial.available() returns the number of bytes in the serial buffer. If there are none, the if statement in Example 5-1 will evaluate as false and the code in the block won’t be executed. Any value other than 0 will evaluate as true.
The function Serial.read() will return the next byte in the serial buffer, which removes it from the buffer.
Taking It Further
With everything this book has covered so far, you should be able to understand most of the examples that are included with the Arduino IDE. However, it can take some practice to really cement these concepts. Here are a few ideas to help you do just that:
Chapter 6. Getting Online
Internet connectivity is an important feature of today’s hardware development boards. Galileo not only has built-in network connectivity, but it also does a fantastic job supporting sketches that use the standard Arduino Ethernet and WiFi libraries (this means that Galileo can run the same sketches you run on other Arduino boards). And if you choose to tap into the power of Linux, you can do even more with an Internet connection outside of your sketch.
In this chapter, you will use Galileo to:
Connecting and Testing an Ethernet Connection
First you should make sure that you can get your board to connect to the Internet in the simplest way possible. Try it out now:
Connect your Galileo via an Ethernet cable to your network. You can either plug it directly into an available port on your router, or if you are wired for Ethernet, plug it into an active jack.
NOTE
Some large networks—like those at companies, schools, and hotels—don’t let any device just plug in and connect to the Internet. For instance, when I wanted to start using the Galileo at New York University, I had to use my computer’s web browser to log in to my school account and register Galileo’s MAC address as a device that I own. If you need to know your Galileo’s MAC address, it can be found either on the back side of the board (on the Mini PCI Express port) or on top of the Ethernet port on the top of the board.
If your board was successful in connecting to a server, you’ll see text start to appear in the serial monitor (Figure 6-1). This example programs your Galileo to do a Google search for the term “Arduino.” As the HTML response from Google’s server is received, it sends those characters to the Serial Monitor.
Figure 6-1. The raw HTML response from Google’s server is displayed in the serial monitor. A lot of the text may appear on a single line. While the text is coming in, you can turn off Autoscroll in the serial monitor and scroll back to the beginning.
Connecting and Testing with a WiFi Connection
On the back side of the Galileo is a Mini PCI Express slot that can hold a WiFi module so that your project can connect to the Internet wirelessly.
In order to use a WiFi card, you must boot Galileo off of a MicroSD card that has a more complete version of Linux than runs on Galileo by default. This is because the drivers needed to work with WiFi Mini PCI Express cards do not fit into Galileo’s on-board flash memory. For information on how to load a MicroSD card with Linux and have Galileo boot off of it, see Appendix D.
To test your wireless connection:
Enter your WiFi network’s SSID and password on the lines:
char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
Figure 6-2. Attaching a WiFi Mini PCI Express card to Galileo
If your board was successful in connecting to a server via WiFi, you’ll see text start to appear in the serial monitor. The first few lines will be information about your WiFi connection, such as the name of the SSID, the IP address your router assigned to your Galileo, and the signal strength. After that, you’ll see a raw HTML response from Google’s servers. As noted in the caption of Figure 6-1, you may want to turn Autoscroll off so that you can look at the text as it’s coming in.
Connecting Using Linux Commands
Now that you’ve tested your connection using the Ethernet library or WiFi library for Galileo, I want to introduce you to a different way to make connections. As mentioned in Chapter 1, there’s a version of Linux running on Galileo, and a simple bit of Arduino code can run any Linux command. You tried this out a bit in Looking at Linux, but here you’re going to take a deeper dive.
If you’ve ever used the Linux or Unix command line before, you’ll feel pretty comfortable with this. Those of you who are well-versed in the command line will quickly see how powerful this can be. No matter what your experience level is, you’ll find this to be a handy trick when you want to do things that are more complicated than Arduino code can handle easily.
If everything is working correctly, you should see HTML from MAKE’s website pouring into your serial monitor.
Example 6-1. Using a system call to connect to a server
void setup() {
Serial.begin(9600);
}
void loop() {
if (Serial.available()) { //
Serial.read(); //
system("curl http://makezine.com &> /dev/ttyGS0"); //
}
}
If there’s a character available in the serial buffer, execute the code in the block below. Where does this character come from? You’ll type it into the serial monitor.
Read a character from the serial buffer in order to remove it.
Execute the Linux command curl with the URL makezine.com and push the output back to the serial monitor.
The Serial functionality in Example 6-1 is included so that you can tell Galileo to make a single request, as opposed to just executing it once when the sketch starts (easy to miss in the serial monitor) or executing it repeatedly (which wouldn’t be very kind to the server, and might get your network temporarily blocked because it looks like a network attack).
system()
The system() function is a special one for Galileo. It tells your Arduino code to execute a command-line operation in the Linux shell. To learn how it works, take a closer look at its use in Example 6-1:
system("curl http://makezine.com &> /dev/ttyGS0");
The system() function itself takes a single parameter, a string. It’s the exact command that you would type on the command line. In this case, we’re using the command curl to fetch the URL http://makezine.com/. So that we can see if the command works, the output of that request should be redirected back to our serial monitor. The &> indicates that standard output (normal text output) and errors (most error messages) should be redirected to /dev/ttyGS0, which is the device that Galileo uses to display information in the Arduino IDE’s serial monitor.
Getting Galileo’s IP Address Using system()
From time to time, you may need to know information about how your Galileo is connected to the network. Frequently, I want to know a device’s IP address so that if the board is acting like a server, I can connect to it.
The command-line function ifconfig allows you to see information about your connections. You can try it out on your computer’s command line if you’re running Linux or OS X. On Windows, the similarly named ipconfig fills this role.
To execute ifconfig on the Galileo through Arduino code and see the results in the serial monitor:
Example 6-2. Using a system call to see output of ifconfig
void setup() {
Serial.begin(9600);
}
void loop() {
system("ifconfig &> /dev/ttyGS0"); //
delay(3000);
}
Execute the command ifconfig and output the results to the serial monitor.
If you see text like the text below in the serial monitor, you’ll know you have it working correctly (if you’re connected with WiFi, the wlan0 adapter will appear in the list, too).
eth0 Link encap:Ethernet HWaddr 00:13:20:FD:F6:5D
inet addr:10.0.1.119 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::213:20ff:fefd:f65d/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2625 errors:0 dropped:0 overruns:0 frame:0
TX packets:877 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:632810 (617.9 KiB) TX bytes:143590 (140.2 KiB)
Interrupt:41 Base address:0x4000
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
The preceding example lists two network devices: the first, eth0, represents the Ethernet connection to the router. The second, lo, is a local loopback. It’s a virtual network device for testing and enables programs running on your device to connect to local services (or daemons) even if there’s no Ethernet or WiFi connection.
The device we want to focus on is eth0 (or wlan0 if you are using WiFi). Within the information for that device, the IP address is indicated after inet addr:. In the case of my Galileo, it’s 10.0.1.119. If I want to connect to my Galileo from another device on my network, I’ll use that address. I could even have my router expose that IP to the Internet if I want to access it from wherever I have an Internet connection (after taking some security precautions of course). See Connecting to Galileo from the Internet for more information on that.
Connecting to Servers
When you browse the Web with your web browser, you’re seeing a human-readable display of information, hopefully laid out in a way to make it easy to consume the content you want. When machines need to get content from the web, however, they don’t necessarily need all the layout and design information—just the data.
Many sites that provide services such as weather, social networking, communication, and file storage also offer an application programming interface, or API. It’s the way that information is communicated to or from a particular service.
For instance, if you wanted your site or device to post a photo to your Facebook profile, you’d use Facebook’s Graph API. You can also use the Graph API to download a list of your friends. These APIs are Facebook’s way of saying, “here’s how to have your devices and services communicate with our servers.”
However, these services can be complex to use (for example, just authenticating yourself to the service can take a lot of programming), so we’re going to stick to a very simple example of an API to start off.
How Many Days Until MAKE Comes Out?
I’ve created a simple website called How Many Days Until MAKE Comes Out?, which serves one simple purpose: it tells you how many days until the next issue of MAKE Magazine is expected to hit newsstands. The data is entered into a database by me based on the production calendars I receive as a MAKE contributing editor. It’s served by a free tier of Google App Engine, and the source code for the site is available on GitHub if you want to take a look at how I made it.
When you go to http://nextmakemagazine.appspot.com/ in your web browser, you’ll see that the information is formatted to be viewed and understood by a human, but the server is also configured to speak directly to simple microcontrollers by stripping away all the extra style and language and only returning the number of hours until the next issue is released. You can see this if you go to http://nextmakemagazine.appspot.com/simple.
Your Galileo can use its Internet connection via Ethernet or WiFi to connect to this URL, take the data it receives, and evaluate how to display it (see Figure 6-3). First, let’s make sure it can connect to the server.
Figure 6-3. Galileo has many ways to connect physical objects to the Internet!
In the serial monitor, you should see a number printed every five seconds. This number represents the number of hours until the next issue of MAKE is released (in case you want to be more precise!).
Example 6-3. Getting simple data from the Internet
void setup() {
Serial.begin(9600);
}
void loop() {
Serial.println(getHours()); //
delay(5000);
}
int getHours() { //
char output[5]; //
FILE *fp;
fp = popen("curl http://nextmakemagazine.appspot.com/simple", "r"); //
if (fp == NULL) { //
Serial.println("Couldn't run the curl command.");
return -1;
}
else {
fgets(output, sizeof(output), fp);
}
if (pclose(fp) != 0) { //
Serial.println("The curl command returned an error.");
return -1;
}
return atoi(output); //
}
Call the function getHours() and print its result. getHours() is defined below.
Create a new function called getHours that will return an integer.
Create an array of characters called output for storing the response.
Create a file pointer called fp, which is how our code will reference the output of the Linux command.
Use the Linux curl command to fetch the number of hours and store it in fp.
If there was a problem running curl, report the error in the serial monitor and have the getHours() function return -1.
Otherwise, read the data in fp and put it into the output array.
If curl had a problem getting the data (for instance, if the server is not available), report the error in the serial monitor and have the getHours() function return -1.
Have the function return the contents of the array as an integer using the built-in atoi (ASCII character array/string to integer) function.
Defining Functions
The first thing you might notice in Example 6-3 is that the loop function has only two lines of code. The delay(5000) ensures that each iteration of the loop happens only every five seconds. But what about Serial.println(getHours());? The innermost function, getHours(), is actually defined right below the loop function.
The first line of the function definition indicates that our function is called getHours and will return an integer as a result. Whenever the function is called from the setup or loop functions, the code inside the function is executed. For getHours, it will request data from the server, store that response, and then convert that response into an integer value representing the number of hours you’ll need to wait until a new issue of MAKE is available. That integer is returned from the function as long as there are no errors. If there are any errors, it will return the value -1.
Executing a Linux command and getting its response is just one way that you can get data into your sketch. This is a very unique Galileo feature because it’s a powerful way to connect different technologies together. You can also have data passed between the Linux system and your Arduino code by writing and reading files. See Another Approach to Passing Data for a few hints on how to do that.
Converting ASCII Characters to Integers
There’s another interesting thing going on in Example 6-3. Let’s say the server sent a response of 45. It’s actually sending two ASCII characters, a 4 and a 5. When the Arduino reads these characters, it’s not going to understand them as the integer 45, but rather as two bytes that represent the characters 4 and 5. This means if you need to do math with the value, you must convert them to an integer. That’s what the function atoi() is for. It will look at the array of characters and output their value as an integer, which you can use for arithmetic.
Parsing JSON with Python
The How Many Days Until MAKE Comes Out? server makes the preceding example pretty easy because it supplies one simple piece of data. Other services may provide a few different pieces of data structured in a format called JSON, or JavaScript Object Notation.
JSON has become the standard format for transmitting structured data through the web. If you want to be able to read data from a site that offers JSON, you’ll have to parse it. As this would be difficult to do with Arduino code, you can use other languages to do this job and pass the appropriate information into Arduino’s code.
NOTE
Another format for structuring data is called XML, or eXtensible Markup Language.
To preview JSON data, visit http://nextmakemagazine.appspot.com/json in your web browser.
The response will likely be together on one line, but if you were to add line breaks and indentation, it would look like Example 6-4. There are three key/value pairs: the number of hours until the next issue, the next volume number, and the number of days until the next issue.
Example 6-4. JSON response
{
totalHours: 1473,
volumeNumber: "38",
daysAway: 61
}
The code in Example 6-5 uses the Python programming language to connect to the server’s JSON feed at http://nextmakemagazine.appspot.com/json and parses the volume number and number of hours.
Example 6-5. Using Python to parse JSON
import json #
import urllib2 #
httpResponse = urllib2.urlopen('http://nextmakemagazine.appspot.com/json') #
jsonString = httpResponse.read() #
jsonData = json.loads(jsonString) #
print "Volume", jsonData['volumeNumber'], "will be released in", \
jsonData['totalHours'], "hours." #
Import Python’s JSON library in order to parse the JSON response.
Import Python’s urllib2 library to fetch the data from the server.
Connect to the server to request the JSON feed and store the response in httpResponse.
Store the body of the response in jsonString.
Convert the string into a Python data object.
Print the information out.
There are a few different ways to put Python code onto the board. In this section, you’ll connect to the board and enter the code into the text editor, vi.
WARNING
In order to use Python and save your files on the board, you must boot Galileo with an SD card. See Appendix D for more information on how to create a bootable MicroSD card.
Change to root’s home directory:
cd /home/root/
Launch the text editor vi with the filename json-parse.py to create that file.
vi json-parse.py
Test the script by executing the code from the command line:
python json-parse.py
If you got everything right, you should see the following output on the command line:
Volume 38 will be released in 1473.0 hours.
WARNING
Unlike with Arduino code, Python is a bit particular about how each line of code is indented. As long as you don’t add any leading spaces or tabs before the lines of code in Example 6-5, you’ll be fine. In Example 6-11 later in this chapter, you’ll see an example where you’ll have to be careful with your leading white space.
As you can see from Example 6-5, parsing the JSON response from a website isn’t very difficult when you have Python available to you on Galileo. Now you simply need to connect the response from Python to your Arduino code.
To try that now, first modify json-parse.py:
On Galileo’s command line, be sure you’re still in root’s home directory:
cd /home/root/
Open the file for editing in vi:
vi json-parse.py
Example 6-6. Using Python to parse JSON
import json
import urllib2
httpResponse = urllib2.urlopen('http://nextmakemagazine.appspot.com/json')
jsonString = httpResponse.read()
jsonData = json.loads(jsonString)
print jsonData['daysAway'] #
Print only the number of days until the next MAKE will come out from the JSON response.
Example 6-7. Calling Python from Arduino code
void setup() {
Serial.begin(9600);
}
void loop() {
Serial.println(getDays());
delay(5000);
}
int getDays() {
char output[5];
FILE *fp;
fp = popen("python /home/root/json-parse.py", "r");
if (fp == NULL) {
Serial.println("Couldn't run the curl command.");
return -1;
}
else {
fgets(output, sizeof(output), fp);
}
if (pclose(fp) != 0) {
Serial.println("The curl command returned an error.");
return -1;
}
return atoi(output);
}
Use Python to execute your script, writing the output to fp.
Now, open the Serial Monitor in Arduino. You should see the response from the server as the number of days until the next issue of MAKE comes out.
ANOTHER APPROACH TO PASSING DATA
It’s important to know that every time you use the system() or popen() functions to run Python code, it can take time for Galileo to launch the Python interpreter and run the code. This also means that nothing else in your Arduino code will execute until that process is completely finished and Python has exited.
In this project, it’ll work fine. But as your projects grow in complexity, you may not want to wait for Python to relaunch each time you need to fetch data.
To solve this, you can also have your Python code run constantly in the background, updating a file (or files) that the Arduino code will read. In order to get the Arduino code to run your Python script and then move on to the rest of the Arduino code, simply append an ampersand to the end of the system call so that the Python script runs in the background and your Arduino code continues to execute. For instance:
system("python /home/root/json-loop.py &");
For more information about having Python read and write files, I recommend exercises 15 through 17 of the free online resource, Learn Python the Hard Way.
As an example of reading files within Arduino code, Example 6-8 shows a modified version of the getHours() function in Example 6-3. It has been rewritten so that the response from the server is piped into a file called response.txt and then read by the Arduino code.
Example 6-8. Writing and reading a file with Arduino code
int getHours() {
char output[5];
system("curl http://nextmakemagazine.appspot.com/simple > response.txt");
FILE *fp;
fp = fopen("response.txt", "r");
fgets(output, 5, fp);
fclose(fp);
return atoi(output);
}
Connecting an LCD Character Display
What good is this information if it can only be seen in the serial monitor? Let’s hook up an LCD display to print out this information.
In addition to the parts you’ve been using, you’ll also need:
To connect the LCD to Galileo:
Figure 6-4. Connecting the LCD character display to Galileo
Example 6-9. Displaying results on an LCD
#include <LiquidCrystal.h> //
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); //
void setup() {
lcd.init(1,12,255,11,5,4,3,2,0,0,0,0); //
lcd.begin(16, 2); //
lcd.setCursor(3, 0); //
lcd.print("days until"); //
lcd.setCursor(0, 1); //
lcd.print("MAKE is here!");
}
void loop() {
lcd.setCursor(0, 0); //
lcd.print(" "); //
lcd.setCursor(0, 0); //
lcd.print(getDays()); //
delay(30*60*1000); //
}
int getDays() {
char output[5];
FILE *fp;
fp = popen("python /home/root/json-parse.py", "r");
if (fp == NULL) {
Serial.println("Couldn't run the curl command.");
return -1;
}
else {
fgets(output, sizeof(output), fp);
}
if (pclose(fp) != 0) {
Serial.println("The curl command returned an error.");
return -1;
}
return atoi(output);
}
Include the code from Arduino’s Liquid Crystal library.
Create a new object called lcd and specify which Galileo pins are connected to it.
Initialize the LCD using the pin numbers from before. Thanks to Github user houmei for this hint: https://gist.github.com/houmei/8505883. This is only needed with the Galileo and isn’t needed for a regular Arduino.
Specify that the LCD has two lines of 16 characters each.
Set the cursor to the fourth character on the first line. (Start counting from 0.)
Print the message “days until”.
Reposition the cursor to the first character on the second line. (Again, counting from 0.)
Reset the cursor to the beginning of the first line.
Clear out anything that’s there by printing three spaces.
Reset the cursor to the beginning of the first line again.
Print the response from our Python script, which parses the JSON response from the server.
Wait 30 minutes before refreshing the display.
After uploading the code, the message should appear in the LCD display! You might need to adjust the display’s contrast using the potentiometer. It should look something like Figure 6-3.
Figure 6-5. Connecting the LCD character display to the potentiometer and the Galileo’s 5-volt and ground pins
Figure 6-6. Connecting the LCD’s data pins to the Galileo’s digital I/O pins
Serving a Web Page
Just as the Galileo can contact a web server to get or post information, it can also act as a simple web server itself. You can use your web browser to connect to it and get information about its input pins (such as sensors you’ve connected) or have it actuate an output when a browser connects. To test out these capabilities, you’re going to have a web page update when a button is pressed.
You should see the following text on screen: “The button is not pressed!” Try pushing the button and hitting refresh on your browser. You should then see “The button is pressed!” (Figure 6-7)
Figure 6-7. The response from Galileo displayed in a web browser
CONNECTING TO GALILEO FROM THE INTERNET
Depending on your network setup, this IP address is probably only accessible by computers that are on the same network. If you’d like to make Galileo accessible over the Internet, you’ll need to adjust your router’s settings so that it assigns your Galileo the same IP every time it powers on (look for something called MAC address reservations in your router’s settings) and you’ll also need to have connections from the Internet passed through your router’s firewall to the Galileo (look for a setting called port forwarding).
Example 6-10 shows how Arduino code can respond to requests from your web browser to show information from a button, but it could also show sensor information from around your house. Using Arduino code to create a server can be an acceptable solution for some simple things.
Example 6-10. A basic web server
#include <Ethernet.h>
int buttonPin = 2;
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
EthernetServer server(80); //
void setup() {
Serial.begin(9600);
Ethernet.begin(mac);
server.begin();
Serial.print("server is at ");
Serial.println(Ethernet.localIP());
pinMode(buttonPin, INPUT);
}
void loop() {
EthernetClient client = server.available();
if (client) { //
Serial.println("new client");
boolean currentLineIsBlank = true; //
while (client.connected()) {
if (client.available()) { //
char c = client.read(); //
Serial.write(c); //
if (c == '\n' && currentLineIsBlank) { //
client.println("HTTP/1.1 200 OK"); //
client.println("Content-Type: text/html");
client.println("Connection: close");
client.println();
client.println("<!DOCTYPE HTML>"); //
client.println("<html>");
if (digitalRead(buttonPin)) { //
client.println("<h1>The button is pressed!</h1>");
}
else { //
client.println("<h1>The button is not pressed!</h1>");
}
client.println("</html>");
break;
}
if (c == '\n') {
currentLineIsBlank = true;
}
else if (c != '\r') {
currentLineIsBlank = false;
}
}
}
delay(1);
client.stop();
Serial.println("client disconnected");
}
}
Have the server listen on port 80, the default port for HTTP (web) communication.
If a client connects, execute the code in the following block of code.
Create a flag to indicate when there’s a blank line in the request from the client.
If data from the client’s request is available, execute the code that follows.
Read in the request from the client.
Echo the request to the serial monitor.
When we receive two blank lines in a row, the client is ready to receive data.
Start sending the HTTP headers.
Start sending HTML.
If the button is pressed, send a piece of HTML that indicates that this is the case.
If the button is not pressed, send the alternate piece of HTML.
Serving a Web Page with Python
Even without Arduino code, you can have Python read from and write to Galileo’s pins. You can therefore use Python alone to do the same thing that Example 6-10 does. These instructions show you how.
Change to root’s home directory:
cd /home/root/
Launch the text editor vi with the filename server.py to create that file.
vi server.py
From the command line, execute the script:
python server.py
You should see the text on screen: “The button is not pressed!” Try pushing the button and hitting refresh on your browser. You should then see “The button is pressed!”
Example 6-11. Serving web pages with Python
import SocketServer
import SimpleHTTPServer #
PORT = 80 #
class MyTCPServer(SocketServer.TCPServer):
allow_reuse_address = True #
class myHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):
def do_GET(self):
self.send_response(200) #
self.send_header("Content-type", "text/html")
self.end_headers()
self.wfile.write("<html><body>") #
self.wfile.write("<h1>The button is")
with open("/sys/class/gpio/gpio32/value", "r") as gpio: #
state = gpio.read(1) #
if state == "0": #
self.wfile.write(" not") #
self.wfile.write(" pressed!</h1>") #
self.wfile.write("</body></html>")
httpd = MyTCPServer(("", PORT), myHandler)
print "Serving from port", PORT
httpd.serve_forever() #
Import the Python libraries for server functionality.
Set the port to 80, the default for HTTP.
Avoid “address already in use” error.
Send the HTTP response headers.
Send the HTTP response body.
Open the GPIO system file for pin 2 to get the pin’s status.
Store one byte from that file into state.
If the state is 0, it means the button is not pressed (low).
Reply with the word “not” if the button is not pressed.
Send the rest of the HTTP response.
Run the server until the user presses Control-C.
NOTE
Be sure to get the indentation just the way it’s shown in Example 6-11. You can use the tab button or spaces as long as the number of spaces for each level of indentation is consistent. That is to say, indenting by one level is two spaces, indenting by two levels is four spaces, and so on.
If you look at your terminal connection Galileo, you’ll probably see something like this for each time you refresh your browser:
192.168.2.1 - - [01/Jan/2001 04:39:50] "GET / HTTP/1.1" 200 -
192.168.2.1 - - [01/Jan/2001 04:39:51] "GET /favicon.ico HTTP/1.1" 200 -
The first line is showing your browser’s request for the HTML page. The second request also comes from your browser. It’s looking for a graphic file called favicon.ico. It’s a file that many web sites serve so that its icon will appear in the address bar or in your bookmarks.
Type Control-C to terminate the server.
Starting on Boot
You can make Galileo execute that Python script every time it boots.
From the command line, change to the directory /etc/init.d:
cd /etc/init.d
Use vi to create a new file called start-server.sh. This will be a shell script, which is just a series of commands saved in a file.
vi start-server.sh
Type i to enter insert mode and add the following line, which will execute the server script with Python and supress any output:
python /home/root/server.py >> /dev/null 2>&1 &
From the command line, make the script executable:
chmod +x start-server.sh
Then add that script as a system service:
update-rc.d start-server.sh defaults
Now shut down the board:
shutdown -h now
Now every time the Galileo launches, your server will start.
If you want to disable the script from starting up again, simply execute:
update-rc.d -f start-server.sh remove
Taking It Further
In this chapter, you used Galileo’s Linux capabilities to connect to Internet servers and even created your own basic server with Arduino code. Here are a few ways that you can push your Galileo even further:
Appendix A. Arduino Code Reference
analogRead
Gets the voltage value of a particular analog input pin. The values range from 0 to 1023, which represents the voltages 0 to 5. See Analog Input.
WARNING
If the IOREF jumper is set to 3.3V, then the maximum input voltage for the analog input pins is 3.3 volts. However, this will not adjust the scale of analogRead(), which will always be based on 0 to 5 volts.
Syntax
analogRead(pin);
Parameters
pin
The pin number
Return value
integer (between 0 and 1023, representing 0 to 5 volts)
Example
int sensorReading = analogRead(0);
Gets the value from analog pin 0 and stores it in a new integer variable called sensorReading.
analogReadResolution
Sets the resolution of the value returned by analogRead(). Galileo’s analog-to-digital converter has a resolution of up to 12 bits, but Arduino sets the default value to 10 bits.
By default, analogRead() will return values from 0 to 1023. If you call analogReadResolution(12), then analogRead() will return values of 0 to 4095. Both ranges represent the same voltage ranges on the analog input pins.
Syntax
analogReadResolution(bits);
Parameters
bits
The resolution that analogRead() will return in bits. The default is 10 and the maximum on Galileo is 12.
Return Value
None
Example
analogReadResolution(12);
Sets the analog-to-digital converter on Galileo to its maximum resolution, so that analogRead() will return a value between 0 and 4095 to represent 0 to 5 volts.
analogWrite
This sets the duty cycle of a pin capable of pulse width modulation. In other words, it will pulse the pin really quickly and allow you to adjust the amount of time it’s turned on versus turned off. On the Galileo, only pins 3, 5, 6, 9, 10, and 11 can be used with analogWrite(). These pins are marked with a tilde (~) on the board. See analogWrite().
Syntax
analogWrite(pin, value);
Parameters
pin
The pin number
value
An integer between 0 (totally off) and 255 (totally on)
Return value
None
Example
analogWrite(9, 127);
Pulses pin 9 so that it’s turned off 50% of the time.
atoi
Converts a string of numbers to an integer. With atoi, a string made up of the characters “23” can be converted to the integer 23 to be used in arithmetic. See Converting ASCII Characters to Integers for more information.
Syntax
atoi(stringNumber);
Parameters
stringNumber
An array of characters, such as those read from a file.
Return value
The integer value of the string.
Example
char number[] = "23";
int i = atoi(number);
number[] holds an array of characters: 2 and 3. atoi converts that into the integer value 23.
const
Store a spot in memory to hold data that cannot be changed. See Constants. This might be helpful if you want to store a value in memory and you know that it should never be changed. Because the compiler will stop and return an error if you try to change a const value, you’ll know when you’ve done something wrong in your code.
Example
const int potentiometerPin = 0;
Stores the integer 0 in a spot in memory called potentiometerPin. You will not be able to change this value later in code.
delay
Pauses the execution of code for the specified number of milliseconds. See delay().
Syntax
delay(ms);
Parameters
ms
The number of milliseconds to wait
Return value None.
Example
delay(1000);
This causes the execution of code to stop for one second (1,000 miliseconds).
digitalRead
Reads the value of an input pin and returns high or low. See digitalRead().
Syntax
digitalRead(pin);
Return value
HIGH or LOW.
Parameters
pin
The pin number
Example
if (digitalRead(9) == HIGH) {
Serial.println("Pin 9 is high.")
}
This prints “Pin 9 is high.” if it’s connected to 5 volts (or 3.3 volts if the IOREF jumper is set to 3.3V).
digitalWrite
Sets the value of a digital pin to high or low (on or off). See digitalWrite().
Syntax
digitalWrite(pin, value);
Parameters
pin
The pin number
value
Either HIGH or LOW (case-sensitive)
Return Value
None.
Example
digitalWrite(9, HIGH);
This turns on pin 9 (sets it to high).
else
Used with the if statement, the else statement indicates a block of code that should be executed when if evaluates as false. See if… else Statements.
Syntax
if (condition) {
//execute this code if condition is true
}
else {
//execute this code if condition is false
}
Example
int switchInputPin = 2;
void setup() {
pinMode(switchInputPin, INPUT);
Serial.begin(9600);
}
void loop() {
int switchState = digitalRead(switchInputPin);
if (switchState == HIGH) {
Serial.println("The switch is on!");
}
else {
Serial.println("The switch is off!");
}
delay (500);
}
fclose
This function from the C library is available within Galileo to close an opened file in the Linux file system. See Another Approach to Passing Data for more information.
Syntax
fclose(fp);
Parameters
fp
A pointer to a file.
Return value
If successfully closed, 1. Otherwise, an error occurred.
Example
int getHours() {
char output[5];
system("curl http://nextmakemagazine.appspot.com/simple > response.txt");
FILE *fp;
fp = fopen("response.txt", "r");
fgets(output, 5, fp);
fclose(fp);
return atoi(output);
}
fgets
This function from the C library is available within Galileo to read the contents of an opened file in the Linux file system. See Another Approach to Passing Data for more information.
Syntax
fgets(output, bytes, fp);
Parameters
output
An array to store the read bytes
bytes
The number of bytes to read
fp
A pointer to a file
Return value
Returns the output bytes read from the file as an array.
Example
int getHours() {
char output[5];
system("curl http://nextmakemagazine.appspot.com/simple > response.txt");
FILE *fp;
fp = fopen("response.txt", "r");
fgets(output, 5, fp);
fclose(fp);
return atoi(output);
}
fopen
This function from the C library is available within Galileo to open a file from the Linux file system. See Another Approach to Passing Data for more information.
Syntax
fopen(filename, mode);
Parameters
filename
The name of the file to open
mode
“r” to read an existing file, “w” to write a new file or overwrite existing file, “a” to append to a file or create it if it doesn’t exist.
Return value
A pointer to a file.
Example
int getHours() {
char output[5];
system("curl http://nextmakemagazine.appspot.com/simple > response.txt");
FILE *fp;
fp = fopen("response.txt", "r");
fgets(output, 5, fp);
fclose(fp);
return atoi(output);
}
if
Executes a block of code if a particular condition is true. See if Statements.
Syntax
if (condition) {
//execute this code if condition is true
}
Example
int n = 10;
if (n > 10) {
// this will not be executed since n is not greater than 10
digitalWrite(redLed, HIGH);
}
if (n < 10) {
// this will not be executed since n is not less than 10
digitalWrite(greenLed, HIGH);
}
if (n == 10) {
// this will be executed since n equals 10
digitalWrite(yellowLed, HIGH);
}
int
The data type integer. This creates a spot in memory to hold a single whole number.
Example
int led = 13; // Creates a spot in memory called led and stores
// the number 13 in it.
void setup() {
pinMode(led, OUTPUT); // the value of led (13) is used to
// set the mode.
}
void loop() {
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);
}
loop
A required function in every Arduino sketch. This is the block of code that’s executed repeatedly after the setup function. See Setup and Loop.
Example
void setup() {
// The code here will be executed once
// when the board is booted.
}
void loop() {
// The code here will be executed
// repeatedly after setup() is executed.
}
map
Scales a value from one range of numbers to another. See map().
Syntax
map(input, inFrom, inTo, outFrom, outTo)
Parameters
input
The input value to be scaled
inFrom
The first number in the input scale
inTo
The second number in the input scale
outFrom
The first number in the output scale
outTo
The second number in the output scale
Return value
map() returns a value on the scale of outFrom to outTo.
Example
sensorReading = analogRead(0);
int displayValue = map(sensorReading, 0, 1023, 0, 100);
Given an input value from analog pin 0, which is on the scale of 0 to 1023, store a new value on the scale of 0 to 100. So if sensorReading were 256, displayValue would be 25.
pclose
This function from the C library is available within Galileo to close a stream opened by popen. See Example 6-3 for more information.
Syntax
pclose(fp);
Parameters
fp
File pointer from a popen stream.
Return value
0 if no error.
Example
int getHours() {
char output[5];
FILE *fp;
fp = popen("curl http://nextmakemagazine.appspot.com/simple", "r");
if (fp == NULL) {
Serial.println("Couldn't run the curl command.");
return -1;
}
else {
fgets(output, sizeof(output), fp);
}
if (pclose(fp) != 0) {
Serial.println("The curl command returned an error.");
return -1;
}
return atoi(output);
}
pinMode
Sets the direction (or mode) of a digital pin to input or output. See pinMode().
Syntax
pinMode(pin, mode);
Parameters
pin
The pin number
mode
Either INPUT or OUTPUT (case-sensitive)
Return Value
None.
Example
pinMode(13, OUTPUT);
This sets pin 13 as an output, which can be controlled with digitalWrite.
popen
This function from the C library is available within Galileo to execute a command in the Linux shell and get its output. See Example 6-3 for more information.
Syntax
popen(command, mode);
Parameters
command
The Linux command to execute.
mode
Usually “r” for reading the response from the command, but can also use “w”.
Return value
A pointer to a file.
Example
int getHours() {
char output[5];
FILE *fp;
fp = popen("curl http://nextmakemagazine.appspot.com/simple", "r");
if (fp == NULL) {
Serial.println("Couldn't run the curl command.");
return -1;
}
else {
fgets(output, sizeof(output), fp);
}
if (pclose(fp) != 0) {
Serial.println("The curl command returned an error.");
return -1;
}
return atoi(output);
}
Serial.begin
Opens the serial port on the Galileo and tells it what speed to send the data. See Serial.begin().
Syntax
Serial.begin(speed);
Parameters
speed
The speed in bits per second (also known as baud). The following standard Arduino speeds can be used: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200. With Arduino sketches, 9600 is most common. Intel Galileo also supports speeds of 50, 75, 110, 134, 150, 200, 1800, 230400, 460800, and 500000.
Return value
None.
Example
Serial.begin(9600);
Opens the serial port and sets the speed to 9600 bits per second.
Serial.print
Transmits data over the serial port. See Serial.print().
Syntax
Serial.print(value);
Parameters
value
The data to send. This can be a string of text, a character, a byte, an integer, or other types of data.
Return Value
long
The number of bytes transmitted.
Example
Serial.print("Hello, world!");
Serial.println
Transmits data over the serial port and then sends a carriage return. See Serial.println().
Syntax
Serial.println(value);
Parameters
value
The data to send. This can be a string of text, a character, a byte, an integer, or other types of data.
Return Value
long
The number of bytes transmitted
Example
Serial.println("Hello, world!");
servo.attach
Assigns a servo object to a particular pin. See Controlling Servos.
Syntax
myServo.attach(pin);
Parameters
pin
The pin number
myServo
Represents any servo object
TIP
There are additional parameters available for this function. See the full servo library documentation for details.
Return value
None.
Example
Servo myServo; // create a servo object
void setup() {
myServo.attach(9);
}
servo.write
Sets the position of a servo motor. See Controlling Servos.
Syntax
myServo.write(angle);
Parameters
angle
The angle to set on the servo, from 0 to 180
myServo
Represents any servo object
Return value
None.
Example
Servo myServo; // create a servo object
void setup() {
myServo.attach(9);
myServo.write(90);
}
setup
A required function in every Arduino sketch. This is the block of code that’s executed once when your Galileo is booted. See Setup and Loop.
Example
void setup() {
// The code here will be executed once
// when the board is booted.
}
void loop() {
// The code here will be executed
// repeatedly after setup() is executed.
}
system
Execute a Linux command. See system().
NOTE
system() does not work on other Arduino boards.
Example
system("curl http://makezine.com &> /dev/ttyGS0");
Uses the Linux command curl to fetch a site and output the server’s response to the Galileo serial monitor.
Appendix B. Breadboard Basics
A solderless breadboard helps you make electrical connections between components, but it can be a bit confusing at first. This section will give you a whirlwind tour of the breadboard so that you can understand how to use it while recreating the examples in this book.
In the Figure B-1, the shaded areas show which pins have electrical connections inside the breadboard.
Figure B-1. Electrical connections are already made between the shaded holes on this solderless breadboard. You’ll use jumper wires to connect them to each other and to your Galileo.
The rails that run up and down the left and right sides are meant for your power and ground connections. If you need power and ground on each side, you’ll have to connect each column to power and ground. You can also connect one set of rails to power and ground and then connect each set to each other, as in Figure B-2.
Figure B-2. Connecting the power rails together sometimes makes things a bit more convenient.
One thing that frequently trips people up: if you have a full-sized breadboard like the one in Figure B-3, you’ll need to connect the top half of the power rails to the bottom half if you want the power to go all the way down to the bottom.
Figure B-3. On a full-size breadboard like this one, you’ll need to connect the top half to the bottom half of the power rails in order to let power and ground run all the way down.
The breadboard jumpers in Figure B-4 can be very helpful to keep things neat when you start making lots of connections between components.
Figure B-4. These handy precut jumpers are great for breadboarding.
Appendix C. Resistor Reference
If you’re doing basic hobby electronics, you’ll typically use resistors with four color bands. The first three bands indicate resistance in ohms, according to Table C-1. The fourth band indicates tolerance, which will usually be gold (5%) or silver (10%), but could also be brown (1%) or red (2%).
The tolerance of the resistor indicates the possible amount of variance between the indicated value and the actual value of the resistor. If no tolerance is indicated, it’s assumed that it’s 20%.
Table C-1. Basic four-band resistor reference
Color | First Band | Second Band | Third Band (Multiplier) | Fourth Band (Tolerance) |
Black | 0 | 0 | x1 |
|
Brown | 1 | 1 | x10 | 1% |
Red | 2 | 2 | x100 | 2% |
Orange | 3 | 3 | x1K |
|
Yellow | 4 | 4 | x10K |
|
Green | 5 | 5 | x100K |
|
Blue | 6 | 6 | x1M |
|
Purple | 7 | 7 | x10M |
|
Gray | 8 | 8 |
|
|
White | 9 | 9 |
|
|
Gold |
|
|
| 5% |
Silver |
|
|
| 10% |
To determine the value of a typical resistor, follow these steps:
For example, a resistor with the colors brown (1), black (0), orange (1K), and gold (5%), as pictured in Figure C-1, would have the value 10K (10,000) ohms with 5% tolerance.
Figure C-1. This resistor has the color bands brown, black, orange, and gold. This indicates that it’s a 10K resistor with a 5% tolerance.
Table C-2. 10K Ohm resistor with 5% tolerance
Band | First Band | Second Band | Third Band (Multiplier) | Fourth Band (Tolerance) |
Color | Brown | Black | Orange | Gold |
Value | 1 | 0 | x1K | 5% |
If you encounter a resistor with five color bands, it simply means that there’s an extra digit before the multiplier. See Table C-3 to determine the value.
Table C-3. Basic five-band resistor reference
Color | First Band | Second Band | Third Band | Fourth Band (Multiplier) | Fifth Band (Tolerance) |
Black | 0 | 0 | 0 | x1 |
|
Brown | 1 | 1 | 1 | x10 | 1% |
Red | 2 | 2 | 2 | x100 | 2% |
Orange | 3 | 3 | 3 | x1K |
|
Yellow | 4 | 4 | 4 | x10K |
|
Green | 5 | 5 | 5 | x100K |
|
Blue | 6 | 6 | 6 | x1M |
|
Purple | 7 | 7 | 7 | x10M |
|
Gray | 8 | 8 | 8 |
|
|
White | 9 | 9 | 9 |
|
|
Gold |
|
|
|
| 5% |
Silver |
|
|
|
| 10% |
Appendix D. Creating a MicroSD Image
Certain features on Galileo are only available if you boot from a microSD card instead of the on-board flash memory. This is because the amount of on-board storage is too limited to include all the possible features. For instance, if you’d like to use Python or Node.js to program the board or if you’d like to use a PCI Express WiFi card, you’ll need to download the Intel-provided operating system, load it onto a microSD card, and have your Galileo boot from it.
To do this, you’ll need:
Here’s how to create the SD card and boot off of it:
If you’re running Mac OS X:
If you’re running Windows:
If you’re running Linux:
NOTE
It’s not always immediately apparent that you’ve done it correctly, but if you watch the LED labeled “SD” next to the MicroSD card slot, it should blink and flicker quite a bit when you boot up your board.
Appendix E. Setting Up Galileo on Windows
In Chapter 2, you got a quick rundown of how to get up and running with Galileo in Windows. If you need a little bit more guidance, this section is for you.
NOTE
The Galileo software is only supported on Windows versions 7 and 8.
Figure E-1. Drag the arduino-1.5.3 folder from the ZIP file to the C: drive.
NOTE
You could copy this folder to your Program Files folder, but because of an issue with the way files are unzipped in Windows, you’ll need to use a different ZIP utility like 7-Zip.
After installing the Arduino IDE in Windows, there are a few extra steps you’ll need to follow in order to get the IDE to be able to communicate with your board.
Figure E-2. When you plug in your Galileo for the first time, you can safely ignore this error message.
Figure E-3. Galileo will appear as “Gadget Serial V2.4” in your device manager before you install the driver.
NOTE
If you don’t see Gadget Serial V2.4 under Ports (COM & LPT), but it appears in Other Devices, check the Galileo Support site for the resolution to that issue.
Figure E-4. Finding the driver in the Arduino folder
Figure E-5. Finding the driver in the Arduino folder
Appendix F. Setting Up Galileo on Linux
In Chapter 2, you got a quick rundown of how to get up and running with Galileo in Linux. If you need a little bit more guidance, this section is for you.
NOTE
It would be difficult to give exact instructions that work in all Linux distributions. These instructions have been tested on a fresh installation of Ubuntu 12.04.3 LTS. However, they should work on many other distributions as well.
NOTE
If you’re not sure if you’re running a 32-bit or 64-bit system, type uname -m from the command line. The response will include “32” or “64.” If you’re still not sure, you can always just download the 32-bit version as it will run on both 64-bit and 32-bit systems.
According to the folks at Intel, a system service called modem manager can interfere with the Galileo. Remove it with the following command:
sudo apt-get remove modemmanager
Navigate to where your files downloaded and extract it from there to your home directory with tar:
cd ~/Downloads
tar -xzf Intel_Galileo_Arduino_SW_1.5.3_on_Linux64bit_v0.7.5.tgz -C ~/
Navigate to where you extracted the files:
cd ~/arduino-1.5.3
Launch the Arduino IDE:
./arduino
Figure F-1. Choose the serial port labeled /dev/ttypACM0.
Linux Notes
If you get an error about Java not being found, install it with:
sudo apt-get install default-jre
If the serial menu in the Arduino IDE is grayed out, it probably means that you need to escalate to root when launching the Arduino IDE to access the serial port. To do this, exit Arduino and re-execute it as root:
sudo ./arduino
Appendix G. Setting Up Galileo on Mac OS X
In Chapter 2, you got a quick rundown of how to get up and running with Galileo in Mac OS X. If you need a little bit more guidance, this section is for you.
Figure G-1. Drag the Arduino application from your Downloads folder to your Applications folder.
Figure G-2. Choose the serial port that begins with “/dev/cu.usbmodem”
Mac OS X Notes
Appendix H. Connecting to Galileo via Serial
Figure H-1. Connecting Galileo’s serial port to a computer’s USB port.
There are a few different ways to connect to Galileo’s command line from your computer. In Connecting via Telnet, you learned how to connect over the network via Telnet. This appendix will show you how to connect to the command line using a serial cable.
This method lets you run Linux commands without any networking, which will come in handy if you’re trying to debug a networking problem. It also lets you see the debug messages that Galileo outputs while it’s booting up. That information might be helpful in case there’s some other problem with the board.
NOTE
While this connection is made via serial, it’s different than the connection that’s made in the serial monitor of the Arduino development environment. Arduino’s serial monitor is for viewing output from your Arduino code and not for command line use.
To connect to the command line via serial, you’ll need:
To connect via serial:
If you’re using the USB adapter cable:
For Baudrate, select 115200 (Figure H-2).
Figure H-2. Selecting the speed and serial port in CoolTerm.
Check the box for “Handle BackSpace Character” to enable it (Figure H-3).
Figure H-3. Selecting the speed and serial port in CoolTerm
You should see a login prompt appear:
Poky 9.0 (Yocto Project 1.4 Reference Distro) 1.4.1 clanton /dev/ttyS1
clanton login:
Figure H-4. CoolTerm connected to Galileo and logged in
After that process, you should be at your Galileo’s command line:
root@clanton:~#
WARNING
Remember that any changes you make to files will not persist after a reboot unless you’re booting from a microSD card. See Appendix D for how to create one.
Colophon
The cover photo is by Jeffrey Braverman. The cover fonts are Benton Sans and Soho. The text font is Benton Sans; the heading font is Serifa; and the code font is The Sans Mono.
Getting Started with Intel Galileo
Matt Richardson
Editor
Brian Jepson
Editor
Melanie Yarbrough
Revision History | |
2014-03-11 | First release |
Copyright © 2014 Awesome Button Studios, LLC
Maker Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact O’Reilly Media’s corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
The Make logo and Maker Media logo are registered trademarks of Maker Media, Inc. Getting Started with Intel Galileo and related trade dress are trademarks of Maker Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Maker Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.
While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
Maker Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
2014-03-12T18:38:42Z
Getting Started with Intel Galileo
Table of Contents